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Depolarizing channel

* Random unitary rotation of a qubit:

) = cos 6] <) + sinBei®| 1) E()(]) = f AU |UT = 1/2

* In long fibers the output polarization of aphoton is completely
random



Gollectively depolarizing channel

* N qubit depolarizing channel, where each qubit experience the same
disturbance

SU(2) Haar measure

E(pn) = /dUU@NPNUT@)N

/

N qubit state

* The model applies e.g. to:

- photons transmitted through a long fiber
- spins 2 being sent through a slowly varying magnetic field
- communication in the absence of reference frames



Stucture of theoutput state

e Irreducible subspaces under the action of U%":
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*Faithfully transmitted states - allow for noiseless classical and
quantumcommunication
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What happensif noiseis not
perfectly correlated?



Imperfectly correlated noise mode]

* Gonsecutive qubits experience slightly different rotations

S(p):/dUl...dUNp(Ul,...,UN)Ul@---@UNpr---®U};

* The action described via a stationary Markov process

p(Ui,...,Un) =p(Un|Un-1) ...p(U2|Uy)

Whatis the natural choice for conditional
probability?

p(U;|U;—1)="



Diffusion on the SU(2) group

* [sotropic diffusion on SU(2)

1 o
0p(Ust) = 5D Ap(Ust)

Laplace operator on the SU(2) group
* Solution, with theinitial condition: p(U;0) = 6(U — 1)

:i(Qj—I—l)eXp —lj 1).¢ Z D7 (U
7=0 ( 2 />m3 \

diffusion strength rotation matrices

* Gonditional probability

p(Ui|U;—1) = p(U;U]_ ;1)

t — 0 perfect noise correlation t — oo no correlation



Action of thechannel

* Probability distribution for unitaries

p(U1,...,Uyx) = p(Un|Un-1) - p(U2|U1) = p(UNUY_13t) ... p(USUL;t)

* Thechannel action

5(,0):/dU1.../dUNp(Ul,...,UN)Ul@---@UNpU{f®---®UjV
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Example: Three qubit channel

» Structure of a three qubit twirled state

p 1 —p
P = 5(31711/2 ® pl/QJ) D T]]'HS/E
effectively two dimensional subspace one dimensional subspace
0 120 = 0, 7123 = 1/2 : .
0) (2 Jizs = 1/2) 2) (Ji12 = 1,123 = 3/2)

1) (J12 =1,7123 = 1/2)

*Wehaveaqutrit channel, with no coherence between |0), |1) subspace
and |2)

* [f correlations of noise were perfect (no diffusion), the channel would
allow for log, 3 bits of classical communication and 1 qubit of quantum

communication



Action of thechannel

« Output states have a twirled structure( 7:Z; commute)

E(p) =In-1ENn-2(.-.L1(T(p))-..))

* Input states can berestricted to have the twirled structure, so the
channel action can be described as

N/2 | N/2 /

27 1Il
=0

« Using properties of rotation matrices 7 (U/)", itis possible to
deriveanalytical expression for the action of the channel

E(p) = lengthy expression involving e~ 23+t and Wigner 67 symbols



Example: Two qubit channel

e Structure of a two qubit twirled state (Werner state)

o, 1—0p o 1—7p
p=plv )W+ Py =ply™ )@ |+T]1
singlet state projection on the triplet subspace
* The output state

Elp) =T1(T(p)) = dep(U;t)]l@U p1eUT

1—etp
4

E(p) = e PN ¥~ [ + I

quantum capacity = 0
classical capacity |Ball, Dragan, Banaszek, Phys. Rev. A, 69, 042324 (2004)]



Fidelity of transmitting a qubit

fort=1 0.6

et 0 0 0
—2t
rout pr— 0 € O rin + 0
0 0 26—2;_|_€—t €—2t3_6—t

anisotropic shrinknig with displacement, states with ¢ = 0, 7 will tend to have
high fidelity (weakest shrinking)



Fidelity of transmitting a qubit

* Transmitting a qubit

ler) = (10) + V3[1))/2

1) = cos(0/2)|er) + Siﬂ(9/2)€i¢’€2>
le2) = (V3]0) — [1))/2

substituting the output state |2), with a maximally mixed state of a qubit we
can write the effective qubit channel in terms of evolution of the Bloch vector

et 0 0 0
out = 0 €_2t 0 rin + 0
9e~2t 4 ot =2t _o—t
0 0 3 3

anisotropic shrinknig with displacement, states with ¢ = 0, 7 will tend to have
high fidelity (weakest shrinking)



Glassical capacity

 How many classical bits can be transmitted using 3 qubit states as
letters

Holevo-Schumacher-Westmoreland formula:

C= sup |S (8 (Zpip@-)) - piS(E (pm]
{pipi} \ i i /
-/
three qubit states von Neumann entropy

» States achieving optimal capacity
1) = cos(0/2)]e1) + sin(0/2)|es)

Uo) = cos(0/2)]er) —sin(0/2)lea) ()
gs) = [2)

e1)

|¢1>, |?,b2) are not orthogonall

|e2)



Glassical capacity

* Optimal capacity

o

logy 3™, optimal states
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» States achieving optimal capacity
1) = cos(0/2)]e1) + sin(0/2)|es)

Yo) = cos(0/2)|e1) — sin(0/2)|es)
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|¢1>, |?,D2) are not orthogonall




Glassical capacity

* Optimal capacity

log, 3~ optimal states
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* Optimal orthogonal states

(lex) + [e2))




Glassical capacity

* Optimal capacity

log, 3~ optimal states
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Goherentinformation

* To assess the quality of quantum information transmission, one
can calculate the coherentinformation

Ic =sup (S(E(p)) — Senv(E, p))

J2
e N\ entropy exchange
0.3 |
0.6 |

0.4t
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above this diffusion threshold ¢ > 0.275
coherent information vanishes



Summary

quant-ph/0703193 (Acceptedin Phys. Rev. A)

 Introduction of a natural model of an N qubit channel withimperfectly
correlatedrandom unitaryrotationsactingon consecutive qubits

* Derivation of an analytic formula for the action of thechannelon an
arbitraryinput state

* Detailed analysis of the case N=3
- fidelity of thechannel
- optimal classical capacity, and corresponding states
- orthogonal states that provide almost optimal classical capacity
even for non perfect noise correlations
- threshold of diffusion strength above which coherentinformation
vanishes

* Future work:
- develop a perturbative approach for weak dffusion for large number
of qubits, find optimal capacities and corresponding states

- analyse within this framework ''estimateand correct' startegy for
sendinginformation



