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Chapter 1

Qubit

1.1 Light polarization

The starting point of our discussion will be a plane electromagnetic wave with
the frequency ω propagating along the z axis. Because the electromagnetic
field is transverse, the electric field E(z, t) oscillates in the plane perpendic-
ular to the propagation direction and can be written as a superposition of
two components:

E(z, t) = exEx(z, t) + eyEy(z, t) (1.1)

where ex and ey are unit vectors oriented along the x and the y axis respec-
tively. The two components have in general the following form:

Ex(z, t) = E0x cos(kz − ωt+ φx) (1.2)

Ey(z, t) = E0y cos(kz − ωt+ φy) (1.3)

where E0x and E0y characterize the amplitudes of oscillations and φx and φy
are respective phases. The wave vector k is given by the frequency ω divided
by the speed of light.

It will be convenient to associate polarizations with shapes drawn by the
tip of the electromagnetic field vector observed when facing the incident wave
at a fixed point in space. For example, two rectilinear cases when only x or y
components are non-zero correspond to the horizontal (↔) and the vertical
(↕) polarization respectively. When Ex0 = Ey0 there are four worthwhile
cases. The electric field oscillates along diagonal directions when φx = φy
(↗↙) or φx = φy + π (↖↘). If φx = φy + π/2 the length of the electric field
vector is constant and rotates counterclockwise (	), while for φx = φy−π/2
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6 CHAPTER 1. QUBIT

we have clockwise rotation (	). In the general, the electric field vector draws
an ellipse. These two polarizations are called circular. The general case is
considered in Exercise 1.1.1.

It is very helpful to use a two-element complex vector, known in optics
as Jones vector, constructed from the parameters characterizing the electric
field:

E =

(
Ex
Ey

)
=

(
E0xe

iφx

E0ye
iφy

)
(1.4)

The electric field can then be written simply as:

E(z, t) = Re(Eeikz−iωt). (1.5)

where the z component is equal to zero by default. Let us note that multi-
plying the Jones vector by an overall complex phase is equivalent to shifting
time and it does not change the figure drawn by the tip of the electric field.

The Jones vector is a convenient tool to describe transformations of the
electromagnetic field by linear optical elements. One standard element is a
polarizer shown in Fig. 1.1(a), which separates horizontal and vertical polar-
ization components. The output beams are described by vectors with one of
the components replaced by zero and can be obtained by the following linear
transformations of the input Jones vector:(

Ex
0

)
=

(
1 0
0 0

)(
Ex
Ey

)
,

(
0
Ey

)
=

(
0 0
0 1

)(
Ex
Ey

)
(1.6)

A matrix that describes a linear transformation of the Jones vector is called
a Jones matrices.

A wave plate shown in Fig. 1.1(b) is an optical element made of bire-
fringent material that has two different refractive indices for two orthogonal
directions, called principal axes. If the axes are aligned with the coordinate
systems, this means that phases φx and φy of the two components of the
Jones vector are changed by different values αx and αy respectively. The
transformation of the Jones vector can be written as(

eiαxEx
eiαyEy

)
= ei(αx+αy)/2

(
eiα/2 0

0 e−iα/2

)(
Ex
Ey

)
(1.7)

where α = αx − αy. Because we are not interested in the overall phase
of the Jones vector, we will ignore in the following the overall phase factor
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1.1. LIGHT POLARIZATION 7

Figure 1.1: (a) Polarizer. (b) Wave plate.

ei(αx+αy)/2 and characterize the action of a wave plate with α. Wave plates
introducing α = π/2 and α = π relative phase shifts are called respectively
a quarter-wave plate and a half-wave plate.

Suppose now that a wave plate is oriented at an angle β with respect
to our coordinate system. To calculate the corresponding Jones matrix, we
need to switch to the coordinate system rotated by β about the z axis, apply
the wave plate transformation and go back. This gives:(

cos β − sin β
sin β cos β

)(
eiα/2 0

0 e−iα/2

)(
cos β sin β
− sin β cos β

)
=

(
cos α

2
+ i sin α

2
cos 2β i sin α

2
sin 2β

i sin α
2

sin 2β cos α
2
− i sin α

2
cos 2β

)
(1.8)

Note that any matrix of this form is unitary and special. Some examples of
wave plate transformations are analyzed in Exercise 1.1.2.

1.1.1 Calculate the orientation and length of principal axes for a plane electro-
magnetic wave whose electric field is characterized by parameters E0x, E0y,
φy. For simplicity, assume that φx = 0.
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8 CHAPTER 1. QUBIT

1.1.2 What will happen to a linearly polarized send to a half-wave plate oriented
at an angle ϑ with respect to input polarization? Show that a quarter wave
plate at 45◦ transforms horizontal polarization into a circular one.

1.1.3 How circular polarization is changed when the coordinate system is rotated
by an angle θ in the xy plane?

1.2 Polarization qubit

Let us consider an elementary experiment with light polarization. A light
beam is sent to a polarizer whose output ports are monitored by photode-
tectors. The intensities measured by the detectors will be proportional to
squared absolute values |Ex|2 and |Ey|2 of the elements of the Jones vector
describing the input beam. Suppose now that we decrease the amplitude of
the incident wave and detect light with very sensitive photodetectors, such
as photomultipliers. For very low light levels the response of the detectors
consists of “clicks” that herald generation of individual photoelectrons by the
incident light. As suggested first by Einstein, the photoelectrons are gener-
ated by absorption of elementary quantum portions of the electromagnetic
field called photons.

A meaningful question one may now ask is what happens if we send a
single photon to the polarizer—which of the two detectors will register it? All
experimental facts we know by now point to the conclusion that the outcome
is probabilistic: everything that can be predicted is the chance that one or
another detector will click. Therefore we need a theory that incorporates this
randomness. The complete quantum theory of electromagnetic fields is rather
complicated. But if we are interested only in a single degree of freedom, such
as polarization, we may take a shortcut and introduce a simplified quantum
description of a single photon. It turns out that the polarization of a single
photon is described by an object analogous to the Jones vector. It has two
complex components ψx and ψy, but their interpretation is now different:
their squared absolute values |ψx|2 and |ψy|2 specify the probabilities that
the photon will generate a click on one or another detector.

Because there is no other path for the photon to take at the exit, we
require that the normalization condition |ψx|2 + |ψy|2 = 1 is satisfied. A
macroscopic light beam can be thought of as composed of a large number of

(June 1, 2012)



1.2. POLARIZATION QUBIT 9

photons with the same polarization. Therefore it is natural to assume the
polarization state of an individual photon is described by the Jones vector
rescaled to satisfy the normalization condition. When many photons are
sent to the polarizer, this will reproduce the division of classical intensities
between the output port. For example, a photon polarized linearly at an
angle θ will be described by a vector

(
cos θ
sin θ

)
, and the probabilities of clicks

are cos2 θ and sin2 θ. This is the quantum analog of the Malus law.

In quantum theory, the object describing the state of a physical system
is called a state vector. Dirac introduced a convenient notation in which a
state vector is written as:

|ψ⟩ ≡
(
ψx
ψy

)
(1.9)

The components of the state vector are called probability amplitudes. The
column form of a state vector, denoted with a symbol closed with an angular
bracket on the right hand side, is called a ket for a reason that will become
clear in a moment.

It will be useful to denote horizontal and vertical polarization states of a
single photon are:

|↔⟩ ≡
(

1
0

)
, |↕⟩ ≡

(
0
1

)
. (1.10)

The states |↔⟩ and |↕⟩ can be identified unambiguously using a polarizer. If
we are tasked with encoding a classical message in the form of a string of bits
into the polarization of a train of photons, the solution is straightforward:
send the bit value 0 as |↔⟩, the bit value 1 as |↕⟩ and tell the receiving party
to read out the message using a polarizer and two single-photon detectors.
However, quantum mechanics offers us a possibility to prepare an arbitrary
superposition state which can be seen most directly by rewriting Eq. (1.9) to
the form

|ψ⟩ = ψx|↔⟩ + ψy|↕⟩ (1.11)

where |ψx|2 + |ψy|2 = 1. This quantum mechanical generalization of the bit
is called a qubit and it will be the main character of this story.
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10 CHAPTER 1. QUBIT

1.3 States and operators

It is useful to introduce special notation for frequently occuring polarization
states. Diagonal polarization states at ±45◦ are denoted as:

|↗↙⟩ ≡ 1√
2

(
1
1

)
, |↖↘⟩ ≡ 1√

2

(
1
−1

)
(1.12)

while it is natural to write the pair of circular polarization states as:

|	⟩ ≡ 1√
2

(
1
i

)
, |�⟩ ≡ 1√

2

(
1
−i

)
. (1.13)

The algebraic procedure of hermitian conjugation transforms a ket |ψ⟩
into a horizontal vector with complex-conjugated entries, which is called a
bra and denoted as:

⟨ψ| =
(
|ψ⟩
)† ≡ (ψ∗

x, ψ
∗
y)

A bra ⟨ψ| multiplying from the left side a ket |χ⟩ is simply the scalar product
of two state vectors. It is customary to draw just a single vertical line between
the bra and the ket when writing a scalar product:

⟨ψ|χ⟩ ≡ (ψ∗
x, ψ

∗
y)

(
χx
χy

)
=
∑
j=x,y

ψ∗
jχj

The object on the left-hand side has the form of a bracket which inspired
Dirac to name the two halves of this expression a bra and a ket. The scalar
product has the standard property ⟨χ|ψ⟩ =

(
⟨ψ|χ⟩

)∗
for any pair of state

vectors. The normalization condition for a state vector |ψ⟩ can be written
as ⟨ψ|ψ⟩ = 1.

Mathematically, the state vectors belong to a two-dimensional complex
vector space equipped with a scalar product. Let us write some basis alge-
braic facts using Dirac notation. The pairs of states defined in Eqs. (1.10),
(1.12), and (1.13) are normalized and mutually orthogonal, i.e. the scalar
product between the state vectors is zero. An arbitrary state vector can be
represented as a linear combination of such a pair, which we will write in
general as:

|ψ⟩ =
∑
k

ψk|uk⟩ (1.14)

(June 1, 2012)



1.3. STATES AND OPERATORS 11

where the index k runs over the values 0 and 1, and |u0⟩, |u1⟩ stands for any
of the pairs. The normalization and orthogonality conditions can be written
jointly as:

⟨uj|uk⟩ = δjk, (1.15)

where δjk is the Kronecker delta. The coefficients ψk in the decomposition
(1.14) can be found by projecting both sides of the above equation onto the
bra ⟨uj|, which yields ψj = ⟨uj|ψ⟩.

Optical elements discussed in Sec. 1.1 transform the state vector in a
completely analogous way to the classical Jones vector. In the quantum
context, such linear transformations are called operators and usually denoted
by capital letters with carets. Let us consider a transformation |ψ′⟩ = Û |ψ⟩.
If we decompose |ψ⟩ =

∑
k ψk|uk⟩, then the coefficients for the transformed

state |ψ′⟩ can be written as:

ψ′
j = ⟨uj|Û |ψ⟩ =

∑
k

⟨uj|Û |uk⟩ψk (1.16)

Thus when |ψ⟩ and |ψ′⟩ are written in the column vector form in the or-
thonormal basis |u0⟩, |u1⟩, the action of Û is represented as multiplication
by the matrix:

Û ≡
(
⟨u0|Û |u0⟩ ⟨u0|Û |u1⟩
⟨u1|Û |u0⟩ ⟨u1|Û |u1⟩

)
. (1.17)

An important class of operators are those which preserve normalization of
state vectors. For a qubit, this means that we need to satisfy the condition
⟨ψ|Û †Û |ψ⟩ = 1 for any state vector. This in turn implies that Û †Û = 1̂. We
will call these operators unitary.

There are three so-called Pauli operators that will appear frequently in
our discussions. In the rectilinear basis they are given by matrices

σ̂1 ≡
(

0 1
1 0

)
, σ̂2 ≡

(
0 −i
i 0

)
, σ̂3 ≡

(
1 0
0 −1

)
. (1.18)

It is easy to see that the pairs of diagonal, circular, and rectilinear polariza-
tion states are respective eigenstates of these three operators with eigenvalues
±1.

1.3.1 Design a setup to distinguish two arbitrary orthogonal states of a single
photon.
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12 CHAPTER 1. QUBIT

1.3.2 Show that a product of two Pauli matrices can be written as σ̂kσ̂l = δkl1̂+
iϵklmσ̂m, where ϵklm is the Levi-Civita permutation symbol.

1.3.3 Show that any qubit operator Â can be written as a decomposition Â =
a01̂+a1σ̂1+a2σ̂2+a3σ̂3, where a0 =

1
2Tr(Â) and ak =

1
2Tr(Âσ̂k), k = 1, 2, 3.

1.4 Quantum random access codes

An obvious question is whether a qubit entity can be used to transmit more
than one bit of classical information. For example, we could try to encode
four classical messages (i.e. two bits) into states |↔⟩, |↕⟩, |↗↙⟩, |↖↘⟩. But these
states would not give distinguishable outcomes at a polarizer: states |↗↙⟩ and
|↖↘⟩ would give completely random clicks. One might suspect that this is
because a polarizer is a too simple device for that task and we could devise
a more complex measurement scheme that would enable as to discriminate
these four states. It turns out that this is not possible, even in principle.
The fundamental reason for that only states that are orthogonal can be
distinguished unambiguously. Non-orthogonal states can be distinguished
only with partial success, and this actually does not increase our capacity to
trasfer classical information. We will discuss the problem of distinguishability
in Ch. ?? and the actual capacity in Ch. ??. Note that any pair of orthogonal
states can be used to transmit classical information with the capacity of one
bit, see Exercise 1.3.1.

There are however scenarios, in which sending a qubit gives us an ad-
vantage compared to a transmission of a classical bit. One of the simplest
ones is the problem of random access codes. Consider two parties, Alice and
Bob. In the simplest version of the protocol, Alice has been given two bits
of information she is supposed to pass over to Bob. Bob will need only one
of these bits, but it will be known which one of them is actually needed only
after Alice and Bob have been given an opportunity to communicate. Fur-
thermore, Alice is allowed to transmit only one bit of information to Bob.
If the chance that Bob will need one or another bit of information is 50/50,
then the optimal protocol is to transmit the first bit of information to Bob.
That way if the first bit is needed he will know its value for sure, and if the
second one is needed he chooses its value at random. The overall probability
that Bob will have the correct value of the bit he needs is thus 75%.

(June 1, 2012)



1.5. BLOCH SPHERE 13

What happens when Alice can send to Bob one qubit instead of one bit?
It will be convenient to denote by |ϑ⟩ a linear polarization state at an angle
ϑ
2

with respect to the horizontal plane:

|ϑ⟩ = cosϑ|↔⟩ + sinϑ|↕⟩ (1.19)

Let Alice prepare the following four linear polarization states of the qubit
depending on the pair of bits she would like to transmit to Bob:

00 ≡ |22.5◦⟩, 01 ≡ | − 22.5◦⟩, 10 ≡ |67.5◦⟩, 11 ≡ |112.5◦⟩. (1.20)

Suppose now that Bob can wait with measuring the received qubit until he
knows whether the first or the second qubit is needed. If he needs the value
of the first bit, he measures sets his polarizer to distinguish horizontal and
vertical polarization. The probability that he will obtain the correct bit value
is cos2 22.5◦ = (1 + 1/

√
2)/2 ≈ 85%. If the value of the second bit is needed,

Bob rotates the polarizers by 45◦. It is easy to verify that the probability
of success stays the same. Thus the average success rate exceeds that of the
optimal classical protocol by approximately 10%.

1.4.1 Devise a quantum random access code for a generalized problem when the
values of the first and the second qubit are needed with probabilities p and
1− p.

1.5 Bloch sphere

There is a convenient way to visualize the state of a qubit in three-dimensional
real space. It is based on the Bloch vector, which for a state vector |ψ⟩ =
ψx|↔⟩ + ψy|↕⟩ is defined as

s =

⟨ψ|σ̂1|ψ⟩
⟨ψ|σ̂2|ψ⟩
⟨ψ|σ̂1|ψ⟩

 =

 ψ∗
yψx + ψ∗

xψy
i(ψ∗

yψx − ψ∗
xψy)

|ψx|2 − |ψy|2.

 (1.21)

It is straightforward to see that the three components of the Bloch vector
are that real and that if the state |ψ⟩ is normalized, then its length is equal
to one, |s| = 1. We denote here by a dot the standard scalar product in

(June 1, 2012)



14 CHAPTER 1. QUBIT

three-dimensional real space. The Bloch vector can be formally written as

s = ⟨ψ|σ̂|ψ⟩, where σ̂ =

σ̂1σ̂2
σ̂3

 is a column vector with three Pauli operators

as its components.
The Bloch vector contains all relevant information about the quantum

state. In order to verify that, let us note that the normalization condition
ψx|2+|ψy|2 allows us to write the absolute values of the probability amplitudes
as |ψx| = cos θ

2
and |ψy| = sin θ

2
, where 0 ≤ θ ≤ π. Furthermore, if the overall

phase of the state vector does not matter, we can introduce only one phase
factor eiϕ in the vertical probability amplitude, ψy = eiϕ sin θ

2
, where 0 ≤

ϕ < 2π. It is easy to see that for this parametrization of |ψ⟩ ≡
(

cos θ
2

eiϕ sin θ
2

)
,

we have s =

sin θ cosϕ
sin θ sinϕ

cos θ

, i.e. θ and ϕ are respectively the inclination and

the azimuth angles in the spherical coordinate system. Thus all qubit states
form the Bloch sphere with unit radius.

It is easy to calculate that rectilinear, diagonal, and circular polarizations
are symmetrically located on the Bloch sphere, as shown in Fig. ?. The
squared absolute value of the scalar product between state vectors |ψ⟩ and
|ψ′⟩ can be represented by the corresponding Bloch vectors s and s′ as

|⟨ψ|ψ′⟩|2 =
1

2
(1 + s · s′). (1.22)

We leave the calculation as Exercise 1.5.1. Thus orthogonal states are located
on their antipodes of the Bloch sphere.

Bloch sphere allows us to visualize various state transformations. A
wave plate introducing a phase shift α between the horizontal and the ver-
tical polarizations transforms the state, up to the overall phase factor, as(

cos θ
2

eiϕ sin θ
2

)
7→
(

cos θ
2

ei(ϕ−α) sin θ
2

)
which implies that the azimuthal angle of the

Bloch vector is changed by ϕ 7→ ϕ− α. Therefore the action of a wave plate
with principal axes oriented in the rectilinear basis correponds to the rotation
of the Bloch sphere by an angle α about the s3 axis:

s 7→

cosα − sinα 0
sinα cosα 0

0 0 1

s1s2
s3

 (1.23)
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1.5. BLOCH SPHERE 15

This immediately shows that a quarter-wave plate with α = π
2

transforms
diagonal polarizations onto circular ones.

Let us now consider physical rotation of the coordinate system by an
angle β, given by an operator

B̂(β) ≡
(

cos β
2

sin β
2

− sin β
2

cos β
2

)
(1.24)

which induces a transformation of the state vector |ψ⟩ 7→ B̂(β)|ψ⟩. The
components of the Bloch vector for the transformed state will be given by
expressions ⟨ψ|B̂†(β)σ̂1B̂(β)|ψ⟩, i = 1, 2, 3. It is easy to verify that

B̂†(β)σ̂1B̂(β) = σ̂1 cos β − σ̂3 sin β

B̂†(β)σ̂2B̂(β) = σ̂2 (1.25)

B̂†(β)σ̂1B̂(β) = σ̂1 sin β + σ̂3 cos β

Therefore the transformed Bloch vector can be written as:

s 7→

⟨ψ|B̂†(β)σ̂1B̂(β)|ψ⟩
⟨ψ|B̂†(β)σ̂2B̂(β)|ψ⟩
⟨ψ|B̂†(β)σ̂3B̂(β)|ψ⟩

 =

cos β 0 − sin β
0 1 0

sin β 0 cos β

s1s2
s3

 (1.26)

i.e. it is a rotation about s2 axis by the angle 2β. Makes sense: circular
polarizations are invariant, β = 45◦ maps rectilinear onto circular.

We have proven a stronger fact: any unitary transformation corresponds
to a rotation of the Bloch sphere. This is because any unitary can be repre-
sented as composition of three transformations of the form considered above
(see Exercise 1.5.2

1.5.1 Verify Eq. 1.22.

1.5.2 Show that any special unitary 2× 2 matrix can be written as a product:(
eiα/2 0

0 e−iα/2

)(
cos β2 sin β

2

− sin β
2β cos β2

)(
eiγ/2 0

0 e−iγ/2

)
(1.27)

1.5.3 For a real non-zero vector a =

a1a2
a3

, we can define an operator Pauli

operator via a formal scalar product a · σ̂ = a1σ̂1 + a2σ̂2 + a3σ̂3. Show that
eigenvalues of this operator are given by ±|a| and its eigenvectors correspond
to Bloch vectors ±a/|a|.
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16 CHAPTER 1. QUBIT

1.5.4 Show that a unitary transformation exp(iαn · σ̂/2), where n is a unit real
vector, rotates the Bloch sphere by an angle α about the axis defined by n.
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Chapter 2

A more mystical face of the
qubit

2.1 Beam splitter

The optical field analyzed so far consisted of two orthogonally polarized com-
ponents traveling along the same path. These two components can be sepa-
rated with a polarizing beam splitter into distinguishable spatial paths and
made to have identical linear polarizations with the help of a halfwave plate.
From the fundamental point of view, there is no conceptual difference be-
tween the field before and after this transformation. Before we needed two
complex numbers to describe the horizontal and the vertical components of
the electric field, now we also need two complex numbers to describe the
amplitudes of the fields traveling along separate spatial paths. This leads us
to the notion of a mode, i.e. a light beam with well defined characteristics,
hose only tunable degree of freedom is the complex amplitude.

In the preceding chapter we assumed for simplicity that the modes are
plane waves with horizontal and vertical polarizations. In laboratory, we
are usually dealing with light beams that have finite both spatial extent and
duration. Therefore it is more appropriate to think of modes as wave packets
localized in space and in time. An elementary optical device that combines
two spatially separate modes is a beam splitter which partly reflects and
partly transmits each of the incident beams, see Fig. 2.1.

If a beam with an amplitude E1 enters through the upper port, a fraction
R1E1 will get reflected into the upper output port, and a fraction T1E1 will get

17



18 CHAPTER 2. A MORE MYSTICAL FACE OF THE QUBIT

E1

E2

E
′

1

E
′

2

Figure 2.1: Beam-splitter

transmitted. Similarly, a beam with an amplitude E2 entering through the
lower port will be split respectively into T2E2 into the upper output port and
R2E2 . We will assume that the alignment of the beams satisfies the condition
of mode matching, which means that by looking at the characteristics of
the outgoing beams in space and time one cannot say which direction they
came from. Then with simultaneous illumination of both the input ports the
output beams can be described with single amplitudes E ′

1 and E ′
2 which thanks

to the superposition principle will be sums of contributions from the upper
and lower input beams. We can describe the input modes entering the beam

splitter with a two-element complex vector

(
E1
E2

)
which is transformed by

the beamsplitter into

(
E ′
1

E ′
2

)
. The dependence between the amplitudes of

the incoming and outgoing modes is linear and can be written in the matrix
form (

E ′
1

E ′
2

)
= B

(
E1
E2

)
, B =

(
R1 T2

T1 R2

)
(2.1)

Matrix B is not arbitrary due to the energy conservation constraint. Since
the intensity of the light beam is proportional to |E|2, the energy is conserved
iff:

|E ′
1|2 + |E ′

2|2 = |E1|2 + |E2|2. (2.2)

This equality should be satisfied for arbitrary input fields E1, E2 which leads
to the following constraints on the entries of the B matrix:

|R1|2 + |T1|2 = |R2|2 + |T |22 = 1 (2.3)

R1T ∗
2 + T1R∗

2 = R∗
1T2 + T ∗

1 R2 = 0 (2.4)
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Note that these conditions imply |R1| = |R2|, |T1| = |T2|, and hence one can
introduce single power transmission and reflection coefficients R = |Ri|2, T =
|Ti|2 (exercise 2.1.2). Constraints (2.3-2.4) are equivalent to the condition
that B is a unitary matrix B†B = 1.

In what follows we will adopt a notation in which

B(θ) =

(
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

)
(2.5)

is a standard beam splitter with power transmission T = sin2 θ/2. It is easy
to convince oneself that the minus sign in the above definition is necessary
to ensure unitarity of B(θ). In particular the balanced beam-splitter with
T = R = 50% corresponds to B(π/2).

2.1.1 Prove that energy conservation constraint leads to Eqs. (2.3-2.4).

2.1.2 Prove that Eqs. (2.3-2.4) imply |R1| = |R2|, |T1| = |T2|.

2.1.3 Write down the most general matrix B corresponding to a beam splitter with
T = R = 50%.

2.2 Mach-Zehnder interferometer

Consider now a Mach-Zehnder interferometer composed of two balanced
beam-splitters and a relative phase delay φ between the two arms (see Fig. 2.2).

The two components of the complex vector

(
E1
E2

)
correspond now to the

amplitudes of the field in the upper and lower path of the interferome-
ter. Each of the balanced beam splitters corresponds to the B(π/2) =
1√
2

(
1 1
−1 1

)
matrix, while the relative phase delay is represented by F1(φ) =(

eiφ 0
0 1

)
. The overall action of the Mach-Zehnder interferometer is the re-

sult of the multiplication of the three matrices:

MZ(φ) = B(π/2)F1(φ)B(φ) = eiφ
(

i sinφ/2 cosφ/2
− cosφ/2 −i sinφ/2

)
(2.6)
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ϕE I1

I2

E
′

1

E
′

2

Figure 2.2: Mach-Zehnder interferometer

In particular, if a beam with amplitude E is send into the upper input
arm the output amplitudes read(

E ′
1

E ′
2

)
= MZ(φ)

(
E
0

)
= Eeiφ

(
i sinφ/2
− cosφ/2

)
. (2.7)

Light intensities Ii registered by the detectors placed at the outputs are
proportional to |Ei|2, hence I1 = I sin2 φ/2, I2 = I cos2 φ/2, where I is the
input beam intensity.

The above discussion implies that the Mach-Zehnder interferometer can
be regarded as a beam-splitter with power transmission T = cos2 φ/2. This
makes the Mach-Zehnder setup a perfect design for making a tunable beam-
splitter and in particular a fast optical switch as the phase delay may be
changed quickly with the help of an electro-optic modulator.

The eiφ factor standing in front of the matrix in (2.6) applies identical
phase shift to both of the amplitudes. If we restrict ourselves to the two-
mode scenario this phase shift is never observed. All that we measure are
intensities, and in an interference experiment the common phase shift will not
yield any intensity change at the output ports. Therefore we may drop this
term as unphysical. As a consequence we should have in mind the following
rule: all the transformations or states that differ only by a phase factor are
physically equivalent. This is again similar to what we have learned from the
polarization properties of classical light: the polarization state of light does
not change if the Jones vector is multiplied by eiφ.

2.2.1 Construct a B(θ) beam splitter, having only balanced B(π/2) beam splitters
and possibility of introducing arbitrary relative phase delays. Make sure that
all the phase factors match.
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2.3 Single photon interference

In the previous section we have analyzed propagation of the classical light
through the Mach-Zehnder interferometer. The essential feature in the whole
process was interference of the light beams. All that was said translates di-
rectly to the quantum description of a single photon. The state of a single
photon is described is described by a pair of probability amplitudes corre-
sponding to the photon traveling along the upper or lower arm. Analogously
as in the case of polarization we may regard this as an implementation of
a two-level quantum system—a qubit. To contrast it with the earlier polar-
ization qubit we will refer to this implementation as a dual-rail qubit as the
photon is in a superposition of two distinguishable spacial modes. A general
state of the photon is a superposition:

|ψ⟩ = ψ1|1⟩ + ψ2|2⟩, (2.8)

where |1⟩, |2⟩ represent the photon traveling in the upper, lower arm respec-
tively. and the probability of detecting a photon in the given arm is |ψi|2.
Hence, identically as for the polarization qubit the state of the photon is a

normalized two component complex vector |ψ⟩ =

(
ψ1

ψ2

)
and we treat as

physically equivalent states differing only by a phase factor |ψ⟩ ≡ eiφ|ψ⟩.
Even though the mathematics is the same, the dual-rail qubit may be

conceptually more challenging than the polarization qubit. While it may be
relatively easy to accept the fact that the diagonal polarization is a super-
position of horizontal and vertical polarizations, it may be a bit harder to
imagine a state |+⟩ = (|1⟩ + |2⟩)/

√
2 which is an equal superposition of the

photon traveling in the upper and the lower arm of an interferometer. We
have to accept that the notion of superposition is not equivalent to a prob-
abilistic mixture of two different states and that the state |+⟩ corresponds
to the situation in which the photon is simultaneously in the upper and the
lower arm of the interferometer.

Let us go step by step through a process in which a single photon is sent
into the upper arm of the Mach-Zehnder interferometer (Fig. 2.2). After
the first beam splitter the state of the photon becomes (|1⟩ + |2⟩)/

√
2, rep-

resenting the photon traveling simultaneously in both the upper and lower
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ϕ

|1〉 (eiϕ|1〉+ |2〉)/
√
2 i sin

ϕ

2
|1〉 − cos

ϕ

2
|2〉

p1

p2

Figure 2.3: Propagation of a single photon through a Mach-Zehnder inter-
ferometer

arm. If at this point the photon was measured the probability of measuring
the photon in each of the arms would be 1/2. If, however, the photon is
let to travel further through the interferometer it will experience the rela-
tive phase delay, (eiφ|1⟩ + |2⟩)/

√
2, and finally the two paths will interfere

at the final beam splitter yielding |ψ′⟩ = i sin(φ/2)|1⟩ − cos(φ/2)|2⟩. The
detectors placed at the output ports will measure the photon with respective
probabilities: p1 = sin2 φ/2, p2 = cos2 φ/2.

Consider for the moment the φ = 0 case. In this case the photon will
certainly go to the lower arm as p2 = 1. This is an example where we
most clearly see that we need to accept the fact that the superposition is
something totally different than the probabilistic mixture. In particular,
if someone insisted that the state (|1⟩ + |2⟩)/

√
2 inside the interferometer

corresponds simply to a photon traveling the upper arm with probability 1/2
or the photon traveling the lower arm with probability 1/2, he would no be
able to explain this observation that for φ = 0 the only possible event is the
clicking of the lower detector. This is because if photon indeed traveled one
particular arm, but it would be merely for our ignorance that we do know
which one, once it hit the final beam splitter it would have 50% chance to go
to either of the output ports. Without invoking the interference effect ,for
which the simultaneous propagation of the photon in both arms is necessary,
we are not able to explain the clicks at the output port of the Mach-Zehnder
interferometer.
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2.4 Polarization vs dual-rail qubit

Since we have a mathematical isomorphism between the polarization and the
dual-rail qubit we may translate all the states, operations and measurements
from one implementation to another.

If we identify |↔⟩, |↕⟩ polarization states with |1⟩, |2⟩ dual-rail states,
we see that the action of the balanced beam splitter that transforms, |1⟩ →
(|1⟩−|2⟩)/

√
2, |2⟩ → |+⟩ = (|1⟩+ |2⟩)/

√
2 is analogous to the placing a half-

wave plate that transform |↔⟩, |↕⟩ into diagonal, anti-diagonal polarizations
|↖↘⟩, |↗↙⟩. Along the same lines, one can convince oneself that placing detec-
tors directly in the upper and lower arms correspond to measuring photon
polarization in |↔⟩, |↕⟩ basis, while placing them after the balanced beam
splitter correspond to measuring the photon polarization in |↗↙⟩, |↖↘⟩ basis.

2.4.1 What measurement setup in the dual-rail implementation corresponds to
measuring polarization in the circular polarization basis.

2.4.2 Design a dual-rail setup which corresponds in polarization implementation
to to a φ-waveplate rotated by an angle θ.

2.4.3 Design a polarization analogue of the Mach-Zehnder interferometer

2.5 Surprising applications

In order to feel how unintuitive quantum mechanics can be, consider the
following two thought experiments.

2.5.1 Quantum bomb detection

Imagine a bomb that explodes at the tiniest possible interaction i.e. even
when it is hit by a single photon. Your goal is to the detect the presence
of a bomb in certain place without making it explode. Clearly, this is an
impossible task when you approach it classically. You need to interact with
the object in some way and this causes the bomb to explode.

Let us tackle this problem from the quantum perspective. We build a
Mach-Zehnder interferometer with one arm passing through a place were the
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suspected bomb might had been placed. We built the interferometer in a way
that the relative phase delay φ = 0. As discussed earlier, in ideal situation
this makes the detection of the photon at the lower output port certain and
in the upper arm impossible. Consider know what happens if the bomb is
present in the upper arm. Since the bomb explodes once it is hit by a photon
this situation is equivalent performing a measurement an a photon asking
“which path has the photon traveled”. If the bomb is present and explodes
this clearly implies the photon traveled the upper arm. If the bomb is present
and the bomb has not exploded this implies that the photon has traveled the
lower arm. Is there a chance to detect a bomb without making it explode.
Yes! If the bomb was not there we would only have the lower detector click.
If on the other hand we measure a click in the upper arm, we know that there
was something measuring the photon and destroying the interference effect.
If the bomb was present, then if we are lucky the photon had 50% chance to
go the lower arm, and additionally another 50% chance to go to the upper
detector. This makes a 25% chance that we detect a bomb without making
it explode. Maybe it is not much but still it is much more than we could
do classically. Actually a more sophisticated scheme could boost the success
probability arbitrarily close to 100%.

2.5.2 Shaping the history of the universe billions years
back

Consider a Mach-Zehnder interference setup in a cosmological scale. A star
emits a photon in superposition of paths separate by some small angle. The
two paths go on two opposite sites of a massive body (black hole?) that
curves them so that they finally both hit the earth. An observer on earth
may place two telescopes each facing one of the direction from which a photon
can come. After registering the photon in one od the telescopes, the observer
may say: “the photon traveled along the path i”.

Instead of measuring from which direction the photon has come, the ob-
server may on the other hand place a balanced beam-splitter in the place
where two paths cross and put the telescopes only after the beam-splitter.
In this way detection of a photon in one of the output ports tells him noth-
ing on the direction from which the photon has come but merely about the
relative phase factor between the terms representing the photon going either
path. In a sense, this measurement project the photon state on two basis
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states (|1⟩+ |2⟩)/
√

2, (|1⟩−|2⟩)/
√

2. Depending on the measurement results
the observer can say: “the photon traveled along both paths simultaneously
and the relative phase delay was 0 (or π)”.

The intriguing thing is the fact that the choice of the measurement:
“path” vs “phase” measurements is done billions of years after the photon
emission, but the choice of measurement determines how we will think about
the photon’s past. Whether we will ascribe it a definite path, or we will claim
it traveled both ways simultaneously and only determine its relative phase
delay. Putting this reasoning to extreme we may claim that by choosing one
or the other measurement we are shaping the history of the universe billions
years back . . .
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Chapter 3

Distinguishability

3.1 Quantum measurement

Let us revisit the polarizer with two detectors monitoring the output ports.
The probabilities of a click on the two detectors are given respectively by

|ψx|2 =
∣∣⟨↔|ψ⟩

∣∣2 = ⟨ψ|↔⟩⟨↔|ψ⟩ (3.1)

|ψy|2 =
∣∣⟨↕|ψ⟩∣∣2 = ⟨ψ|↕⟩⟨↕|ψ⟩ (3.2)

The expression |↔⟩⟨↔| can be viewed as a linear operator acting on the

state vectors. We will denote it as P̂↔ = |↔⟩⟨↔|. The result of its action on
an arbitrary state |ψ⟩ is the state |↔⟩ multiplied by ⟨↔|ψ⟩. Alternatively,
for the state |ψ⟩ written as a column vector we can represent P̂↔ as a 2 × 2
matrix

P̂↔ = |↔⟩⟨↔| ≡
(

1
0

)
(1, 0) =

(
1 0
0 0

)
(3.3)

Analogously, we will denote

P̂↕ = |↕⟩ ⟨↕| ≡
(

0
1

)
(0, 1) =

(
0 0
0 1

)
(3.4)

The probabilities of detection events can be consequently written as:

|ψx|2 = ⟨ψ|P̂↔|ψ⟩, |ψy|2 = ⟨ψ|P̂↕|ψ⟩.

An expression that consists of a linear operator Â sandwiched between a bra
and a ket corresponding to the same state vector, which yields a single (in
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general complex) number ⟨ψ|Â|ψ⟩, appears very often in quantum mechanics
and is called an expectation value.

Using Eqs. (??) and (1.11), the representation of a ket |ψ⟩ as a superpo-
sition of |↔⟩ and |↕⟩ can be written as:

|ψ⟩ = ψx|↔⟩ + ψy|↕⟩ = |↔⟩⟨↔|ψ⟩ + |↕⟩⟨↕|ψ⟩ =
(
P̂↔ + P̂↕

)
|ψ⟩

This is valid for any state |ψ⟩, which means that the sum of two operator
appearing in the parentheses must be equal to the identity operator:

|↔⟩⟨↔| + |↕⟩ ⟨↕| = 1̂. (3.5)

This property is also obvious in the matrix representation. Physically, this
means that the probabilities of all the possible outcomes add up to one.
Generally, an operator P̂ that satisfies P̂ 2 = P̂ is called a projector. Any
operator of the form |χ⟩ ⟨χ| where |χ⟩ is a normalized state vector is a pro-

jector, in particular both P̂↔ and P̂↕ are of this form. A measurement for
which probabilities of all possible outcomes are represented by expectation
values of projectors is called a projective measurement.

It is easy to devise an example of a measurement that is not projective.
Consider a plate oriented at the Brewster angle. The entire horizontal compo-
nent gets transmitted, while the vertical component is split. Let us denote by
T the fraction of the incident vertical amplitude that gets through and by R
the reflected fraction. For a lossless element, we will have |T |2 + |R|2 = 1.
The probabilities of outcomes will be given by p1 = |ψx|2 + |T ψy|2 and

p2 = |Rψy|2. These can be written as expectation values p1 = ⟨ψ|M̂1|ψ⟩ and

p2 = ⟨ψ|M̂2|ψ⟩, where:

M̂1 =

(
1 0
0 |T |2

)
, M̂2 =

(
0 0
0 |R|2

)
(3.6)

Easy to check that these operators are not projectors, but they add up to
one.

How to describe the most general measurement on a photon allowed by
quantum mechanics? Consider a measuring device which fed with a photon
yields one of outcomes labelled with an index r. All that quantum theory can
predict is the probability that a photon prepared in a state |ψ⟩ will produce a
specific outcome. We will postulate that each outcome r is associated with a
certain linear operator M̂r and that the probability of obtaining that outcome

(June 1, 2012)



3.1. QUANTUM MEASUREMENT 29

is given by the expectation value ⟨ψ|M̂r|ψ⟩. This set of operators provides full
quantum mechanical description our measuring apparatus. What conditions
must this set satisfy? First, for any state |ψ⟩ the expectation value ⟨ψ|M̂r|ψ⟩
needs to be greater or equal to zero, otherwise it could not be interpreted
as a probability. This means that each M̂r has to be positive. Secondly,
the sum of all probabilities must be equal to one, which we can write as:∑

r ⟨ψ|M̂r|ψ⟩ = 1 = ⟨ψ|1̂|ψ⟩. As this equation is valid for any |ψ⟩, we have:∑
r

M̂r = 1̂. (3.7)

This is a generalization of Eq. (3.5). We will call a set of positive definite
operators M̂r that satisfy Eq. (3.7) simply a measurement.

Two useful facts about expectation values. Suppose that for an operator
Â we can find an orthonormal basis |a1⟩, |a2⟩ composed of eigenstates, i.e.
Â|aj⟩ = αj|aj⟩, where αj are corresponding eigenvalues. The operator Â
can be written as a sum of projectors onto the eigenstates multiplied by
respective eigenvalues:

Â =
∑
j

αj|aj⟩ ⟨aj|. (3.8)

The expectation value can be written as:

⟨ψ|Â|ψ⟩ =
∑
j

αj
∣∣⟨aj|ψ⟩∣∣2.

Thus the expectation value is a weighted sum of eigenvalues with weights∣∣⟨uj|ψ⟩∣∣2 that add up to one. If all the eigenvalues are real, the expectation
value for any state lies always between the minimum and the maximum
eigenvalues. Obviously, eigenvalues of operators that form a measurement
must be real and bounded between zero and one.

An expectation value ⟨ψ|Â|ψ⟩ can be written in an alternative form which
we will use frequently in the future:

⟨ψ|Â|ψ⟩ = ⟨ψ|Â1̂|ψ⟩ =
∑
j=↔,↕

⟨ψ|Â|j⟩⟨j|ψ⟩ =
∑
j=↔,↕

⟨j|ψ⟩⟨ψ|Â|j⟩ (3.9)

where in the second step we used Eq. (3.5). The last expression under the
sum can be interpreted as a diagonal element of a matrix representing the
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product of a projector |ψ⟩⟨ψ| and an operator Â. Thus sum of all diagonal
matrix elements of an operator Â is the trace of the product:

⟨ψ|Â|ψ⟩ = Tr
(
|ψ⟩⟨ψ|Â

)
. (3.10)

Trace operation is linear with respect to its argument.

3.1.1 Show that the eigenvalues of a projector must be either 0 or 1.

3.1.2 Verify that Tr(ÂB̂) = Tr(B̂Â).

3.1.3 Show that if the expectation value of an operator on any state vector is real,
then the operator is hermitian.

3.1.4 Show that if s is the Bloch vector corresponding to a state |ψ⟩, then

|ψ⟩ ⟨ψ| = 1

2
(1̂+ s · σ̂), (3.11)

where s · σ̂ = s1σ̂1 + s2σ̂2 + s3σ̂3.

3.2 Minimum-error discrimination

Suppose that we are given a qubit prepared in one of two states |ψ⟩ or
|χ⟩ and our task is to find out which one of these two states it is. If the
two states correspond to orthogonal linear polarizations, then a properly
oriented polarizer will do the job. If general two mutually orthogonal states,
then a quarter wave plate and a suitably oriented polarizer as discussed in
Exercise 1.3.1.

What if the two states are not orthogonal? Let us start from a simple
example:

|ψ⟩ =

(
sin θ

2

cos θ
2

)
, |χ⟩ =

(
− sin θ

2

cos θ
2

)
(3.12)

The scalar product is ⟨χ|ψ⟩ = cos θ. Choosing θ from the range 0, π/2 gives
us the full range of the absolute value of the scalar product between two
normalized state vectors.

It will be helpful to think in terms of money. Suppose that both the states
are equiprobable. We gain e1 if we guess correctly, if we are wrong we need
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to pay e1. What is the average pay-off if we play the game many times. Of
course each time we receive a new qubit prepared freshly in randomly chosen
one of two states. Suppose that that we receive e1 for correct identification,
while in the case of a mistake we need to pay back e1. What is our average
pay-off if the game is repeated many times?

The basis to make a guess must be a certain a measurement. Let the
measuring apparatus have two possible outcomes ’ψ’ and ’χ’ meaning re-
spectively ’I think it was state |ψ⟩’ and ’I think it was state |χ⟩’. These
results correspond to a pair of positive definite operators M̂ψ and M̂χ that

sum up to the identity operator, M̂ψ + M̂χ = 1̂. The average pay-off P will
be:

P =
1

2
⟨ψ|M̂ψ|ψ⟩ −

1

2
⟨ψ|M̂χ|ψ⟩ +

1

2
⟨χ|M̂χ|χ⟩ −

1

2
⟨χ|M̂ψ|χ⟩.

Using Eq. (3.10) this expression can be transformed to:

P =
1

2
Tr
[(
|ψ⟩ ⟨ψ| − |χ⟩ ⟨χ|

)(
M̂ψ − M̂χ

)]
Using the relation M̂χ = 1̂− M̂ψ simplifies the expression to:

P = Tr
[(
|ψ⟩ ⟨ψ| − |χ⟩ ⟨χ|

)
M̂ψ

]
(3.13)

where we used the fact that Tr
(
|ψ⟩ ⟨ψ|

)
= Tr

(
|χ⟩ ⟨χ|

)
= 1. Let us now

calculate the matrix representation of the operator:

|ψ⟩ ⟨ψ| − |χ⟩ ⟨χ| ≡
(

0 sin θ
sin θ 0

)
≡ σ̂1 sin θ, (3.14)

where we denoted by σ̂1 the operator:

σ̂1 ≡
(

0 1
1 0

)
≡ |↗↙⟩⟨↗↙| − |↖↘⟩⟨↖↘| (3.15)

where the second form can be viewed as its spectral decomposition. Inserting
the final form back into Eq. (3.13) yields:

P = sin θ
(
⟨↗↙|M̂ψ|↗↙⟩ − ⟨↖↘|M̂ψ|↖↘⟩

)
It is easy to see that P reaches the maximum allowed value when ⟨↗↙|M̂ψ|↗↙⟩ =

1 and ⟨↖↘|M̂ψ|↖↘⟩ = 0. This can be achieved with the projective operator

M̂ψ = |↗↙⟩⟨↗↙|, which implies that M̂χ = |↖↘⟩⟨↖↘|.
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The maximum can be easily attained, for our specific example just take
let us just take M̂ψ = |↗↙⟩⟨↗↙|, which means that M̂χ = |↖↘⟩⟨↖↘|.

Thus the maximum pay-off equals to:

P = sin θ =
√

1 − cos2 θ =

√
1 −

∣∣⟨χ|ψ⟩∣∣2.
The second expression of the pay-off in terms of the absolute value of the
scalar product ⟨χ|ψ⟩, holds for an arbitrary pair of states, whose scalar prod-
uct is not necessarily real. The probability of correct identification equals
to:

⟨ψ|M̂ψ|ψ⟩ = ⟨χ|M̂χ|χ⟩ =
1

2

(
1 +

√
1 −

∣∣⟨χ|ψ⟩∣∣2) .
of wrong indentification:

⟨χ|M̂ψ|χ⟩ = ⟨ψ|M̂χ|ψ⟩ =
1

2

(
1 −

√
1 −

∣∣⟨χ|ψ⟩∣∣2) .
3.2.1 Find a unitary transformation which maps two qubit states |ψ′⟩ and |χ′⟩ onto

the states |ψ⟩ and |χ⟩ defined in Eq. (3.12) under a constraint
∣∣⟨χ′|psi′⟩

∣∣ =
cos θ.

3.2.2 What is the pay-off when the two states are given with probabilities pψ and
pχ?

3.3 Unambiguous discrimination

Let us now consider the task of discriminating between two non-orthogonal
states |ψ⟩ and |χ⟩, but with different rules. This time we do not want to make
a mistake. Because we already know that discrimination is not possible in
100% of cases, we will allow the measuring apparatus to have three outcomes:
’ψ’: that was for sure |ψ⟩, ’χ’: that was for sure |χ⟩, and ’?’: the identification
failed in this instance, and corresponding operators L̂ψ, L̂χ, and L̂?.

Another game: our task is to identify the state, but we do not want to
make mistakes. We allow for a possibility that we did not manage. Three
outcomes: L̂ψ, L̂χ, L̂?. The condition of no mistakes means that:

⟨χ|L̂ψ|χ⟩ = ⟨ψ|L̂χ|ψ⟩ = 0. (3.16)

(June 1, 2012)



3.3. UNAMBIGUOUS DISCRIMINATION 33

Let us first consider L̂ψ. We can introduce two orthogonal eigenvectors
|l1⟩, |l2⟩ and corresponding eigenvalues λ1, λ2. The expectation value can
be written as:

⟨χ|L̂ψ|χ⟩ = λ1
∣∣⟨l1|χ⟩∣∣2 + λ2

∣∣⟨l2|χ⟩∣∣2 (3.17)

If an eigenvalue, say λ1 is nonzero, then the scalar product must vanish,
⟨u1|χ⟩ = 0. This means that |u1⟩ must be orthogonal to |χ⟩. We can
write it as |u1⟩ = |χ⊥⟩. For a qubit, this state is defined unambiguously
up to an overall phase which does not play any role. The second eigenstate
is orthogonal to the first one and therefore it is simply |u2⟩ = |χ⟩. But
this means in turn that λ2 = 0. Thus according to Eq. (3.8) we can write
L̂ψ = λ1|χ⊥⟩ ⟨χ⊥|. We can carry out a similar reasoning for L̂ψ, which
needs to be proportional to the projector |ψ⊥⟩ ⟨ψ⊥|. In principle the non-
zero eigenvalue can be different, but symmetry suggests that the eigenvalues
are equal, we will denote them just by λ. The general case is a subject of
Problem ??. Thus we assume that L̂ψ = λ|χ⊥⟩ ⟨χ⊥| and L̂χ = λ|ψ⊥⟩ ⟨ψ⊥|,
where explicitly:

|ψ⊥⟩ ≡
(
− cos θ

2

sin θ
2

)
, |χ⊥⟩ ≡

(
cos θ

2

sin θ
2

)
The probability of correct identification is proportional to λ, therefore it

should be as large as possible. What limits this factor? Let us calculate the
matrix representation of L̂?, which is now defined uniquely:

L̂? = 1̂− L̂ψ − L̂χ ≡
(

1 − λ(1 + cos θ) 0
0 1 − λ(1 − cos θ)

)
Because the matrix is diagonal, it gives us the eigenvalues, equal to 1 −
λ(1 ± cos θ). The condition that the eigenvalues are nonnegative gives λ ≤
1/(1 + | cos θ|), and of course we should choose the maximum value. Thus
the probability of correct identification is:

⟨ψ|L̂ψ|ψ⟩ = λ
∣∣⟨χ⊥|ψ⟩

∣∣2 =
sin2 θ

1 + | cos θ|
= 1 − | cos θ|.

and similarly for |χ⟩, while the probability of an inconclusive result is

⟨ψ|L̂?|ψ⟩ = ⟨χ|L̂?|χ⟩ = | cos θ| =
∣∣⟨χ|ψ⟩∣∣

where the last expression is valid for arbitrary two states.
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3.3.1 Consider the general case of λψ ̸= λχ.

3.3.2 Generalize the unambiguous measurement to the case when the two states
are given with unequal probabilities pψ and pχ, and our aim is to minimize
the average probability of the ’?’ outcome.

3.3.3 Verify that the unambiguous measurement gives a lower pay-off in the game
considered in Sec. 3.2.

3.4 Optical realisation
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Chapter 4

Quantum cryptography

4.1 Codemakers vs. codebreakers

The science of cryptography is about transmitting a messages in the way that
no illegitimate party can learn its meaning. One of the earliest cryptographic
method was Ceasar cipher in which a letter in a message was replaced by
a letter k places further in the alphabet. If we took k = 3 then CEASAR
would be encoded as FADVDU. Such a code can be broken easily once one
knows that the message was encoded using Ceasar cipher. One simply has to
check all possible values of k, which is the number of letters in the alphabet
– 26, which is not a great amount of work.

The general scheme in cryptography can be depicted as follows:

message -

?

key

����
encoding

- cipher -

?

key

����
decoding

- message

In case of the Ceasar cipher the message is CEASAR, the cipher is FADVDU
and the key is k = 3.

A more general cipher is the substitution cipher, where each letter in
mapped onto another letter. The Ceasar cipher is an example of substitution
cipher. In a general substitution cipher we have 26! possibilities. Hence, such
a cipher can not be broken by checking all possible letter substitutions, and
thus is more secure than the Ceasar cipher. Nevertheless, it can be broken
by letter frequency analysis, since each language has its particular letter
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Figure 4.1: ENIGMA machine and the schematic representation of the en-
cryption mechanism. On the scheme from the left: input keyboard, output
lamps, plugboard, three scrambling discs, reflector.

frequency pattern, and one can quickly find out which letter was substituted
to which one by investigating frequencies in which they appear.

There are a number of ways in which the substitution cipher may be im-
munized to frequency analysis attacks with ENIGMA being the most famous
example. The basic idea is to change continuously the substitution cipher
while encoding the consecutive letters. In this way a letter “A” at one place
in the message is encoded to e.g “S” while the same letter “A” in in another
place may be encoded to e.g. “D”. Clearly for this cipher to work there needs
to be a rule of changing the substitution cipher known both to the sender
and the legitimate receiver. The ENIGMA looks like a sophisticated electri-
cal typewriter with the keyboard for entering the letters of the message and
the lamps lighting up the corresponding letter of the cipher. At the heart of
the ENIGMA laid a scrambling disc which provided a non trivial electrical
connection between 26 input and output letters. The scrambling disc could
rotate while the message was being entered and take 26 different positions,
each of which could be regarded as a realization of a different substitution
cipher. To make things even worse for a potential codebreaker the machine
was equipped with three such scrambling discs, each successive one taking as
the input the output letter of the preceding one. With each letter entered the
first disc moved to the next position, and each time it mad a full round trip
the second disc moved one step. Analogously, with a complete rotation of
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the second disc the third disc moved one step. In this way the machine could
be in one of 26 × 26 × 26 = 17576 different scrambling discs positions, each
corresponding to a different substitution cipher. It should not be surprising
that such a system is practically immune to any kind of frequency analysis
attack as on average each letter is encoded with equal frequencies to all other
letters.

Even though the number of discs positions combination seems large it
is not large enough to make ENIGMA secure. Recall that when analyzing
security of a given encryption system we assume the codebreaker to know the
encryption system and the only thing he does not know is the key. In the
ENIGMA case one assumes that the codebreaker has the ENIGMA machine.
What he does not have is the key, which in the case of ENIGMA would be the
initial setting of the three scrambling discs. Looking from this perspective,
one could brake the system by setting the discs to all 17576 combinations
and looking for a meaningful output. This look like a hard work but is
in principle possible. That is way the ENIGMA was additionally equipped
with a plugboard allowing 6 arbitrary chosen pairs of letter to be swapped.
Taking into account that the scrambling disc could also be permuted this
made together total of 1016 different keys much to much for a brute force
attack. The key that needed to be shared by the sender and the receiver
consisted now of: discs permutation, discs positions, 6 pairs of letters to be
swapped. In short, the role of the plugboard was simply to increase the
number of possible keys while the role of the scramblers was to make the
system immune to frequency analysis attacks. Was it possible to decode a
message without knowing the key? The system seems so complicated that
it is hard to imagine how it could have been broken. It had been broken
though, and the first one who did it was Marian Reyewski . . .

This should make us realize that almost all ciphers can theoretically be
broken, and they strength stems from the practical difficulties of doing so
Nevertheless, there is one exception to this rule. There is a cipher which is
proven to be secure! The cipher is the one time pad and it works as follows.
Write your message in the binary form, take the key which is a completely
random sequence of 0 and 1 of the same length as the message and perform
bitwise XOR operations to obtain the cipher

message 0 1 1 0 1 1 0
key 0 0 0 1 0 1 1

cipher = message ⊕ key 0 1 1 1 1 0 1
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Notice that since the key is completely random so is the cipher. More formally
let K be the random variable associated with the key. Let the key have
length n. Complete randomness means that all binary sequences are equally
probable: p(K) = 1/2n, which implies that the cipher carries no information
about the message for someone who does not know the key. In order to
decode the message the receiver has to apply exactly the same operation as
the sender. Application of the XOR operation to the received cipher and the
key bits yields the message.

The one time pad has one drawback which makes it impractical for real
life communication: it must be the same length as the transmitted message,
otherwise it is no longer secure. The main obstacle is thus the effective
distribution of the random key to legitimate parties. Once we know how to
distribute a long secret key securely we are done.

There are ways to avoid the issue of distributing the secret key. The ones
that are used today are based on a belief that some mathematical operations
are easy to perform in one direction but are very difficult to reverse. A
prominent example is multiplication vs. factoring on which the RSA protocol
is based. The problem with RSA and other similar protocols is that they
security is based not even on a mathematical proof but on a mathematical
belief. Nobody has proven that factoring is indeed hard, i.e. it cannot be done
in time which grows polynomially with number of digits of the number to be
factored. It is even worse. Somebody has found an algorithm which actually
does it, but it requires a quantum computer to be run on (see Chapter ?)

The future does not look bleak for the codemakers though. Leaving aside
the security which is based on complexity (or a belief in complexity) of some
mathematical problems one can base the security of a secret key distribution
on the laws of quantum physics. This promising alternative is the quantum
key distribution (QKD).

4.2 BB84 quantum key distribution protocol

We have observed in previous chapters that nonorthogonal quantum states
cannot be distinguished perfectly. This inaccessibility of quantum states
which seems only a nuisance at a first glance proves to be the key to the
secure information transmission.

Let us describe here the most famous protocol proposed by Bennet and
Brassard in 1984 (BB84). Consider two parties A, B, which are connected by
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a quantum channel allowing for transmission od qubits (e.g. an optical fiber
in through which single photons are sent), and a classical public channel (e.g.
telephone). We assume that noth channels are insecure and can be subjected
to eavesdropping. We only assume that classical channel is authenticated i.e.
A and B know that they talk to each other and their classical messages
although potentially tapped cannot be altered.

A and B will use photon polarization for qubits transmitted via the quan-
tum channel. A will send to B one of four states: |↔⟩, |↕⟩, |↗↙⟩, |↖↘⟩ randomly
with equal probabilities. We will say that the first two states form basis 1,
and the last two basis 2. A and B assign logical values to this states as
follows:

basis 1 basis 2
|↔⟩ |↕⟩ |↗↙⟩ |↖↘⟩

0 1 0 1
(4.1)

B measures the polarization state of an incoming photon randomly in one of
two basis. If he measures in the correct basis his results should be perfectly
correlated with bits sent, whereas when he measures in the incorrect basis his
results will be completely uncorrelated with that of A. After the transmission
took place B communicates to A via the classical channel in which basis he
performed the measurement in a given run. He does not reveal, however,
the actual results obtained. After this communication A i B keep only bits
measured in compatible basis (approximately half). We call this a sifting
stage. In ideal situation A and B should have perfectly correlated bits.

A ↔ ↗↙ ↗↙ ↖↘ ↕ ↕ ↔ ↗↙
B + × + + + × × ×

compatible? X X X X
key 0 0 1 0

Now the quantum features enter the game. How A and B can be sure that
they share bits that nobody else know about – i.e. that they have a one time
pad. Put in one sentence this can be stated as follows:

You can not distinguish perfectly between 4 states used in BB84,
and moreover you cannot learn anything about their identity
without introducing disturbance.

Hence, A and B can make themselves sure that nobody have eavesdropped
on their communication, by revealing part of their bits on classical channel
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(e.g. 100 bits), and checking whether they all agree. If there are no errors
they can be sure with high degree of confidence (the higher the more bits
they have revealed) that nobody had eavesdropped. If all bits agree, the
revealed bits are of course discarded, while the remaining ones are kept and
constitute the one time pad.

To get a feeling why lack of errors proves no eavesdropping, note first that
the messages exchanged by A and B over the public channel carry no infor-
mation about the generated key. Therefore Eve needs to gain information
about the state of the quantum systems passed from Alice to Bob. How-
ever, we have seen in the preceding chapters that the task of discriminating
between non orthogonal quantum states is highly nontrivial. Therefore any
measurement performed by Eve on photons sent by Alice will bring only
partial information about their states. But if Eve wants to conceal her inter-
vention, she needs to resend a photon to Bob in every case. Consequently,
the states of some of the photons received by Bob will be modified. This will
be seen as errors in the key.

If there are errors in the bits revealed, one cannot exclude the presence of
an eavesdropper E. Naively, A and B should abort communication and try
again using e.g. different channel. This, however, is impractical. In reality
there will always be errors in communication even if there is no eavesdropper.
Error may result from noise in the channel, imperfect detectors etc. In what
follows we will denote QBER to be the average bit error rate in communica-
tion form A to B. The question we now ask is: What is the tolerable QBER
below which we can still in some way distill a one time pad that will have
no errors and will be secure i.e. no third party will have any information on
it. This can be done using classical methods of error correction and privacy
amplification provided the eavesdropper information on the key is less than
the information of the legitimate receiver B. We will discuss error-correction
and privacy amplification ideas later on after introducing proper information
theoretic concepts.

For the time being, we will take a simplified approach and investigate the
security of the QKD analyzing just the QBER and the bit error rate of E
which we denote as eE. We adopt the following simplified security criterion:

If under a given attack eE ≤ QBER we claim that the protocol
is not secure. Otherwise, we will say that the protocol is secure
with respect to this attack.

Clearly, to prove full security, one needs to analyze the most general attacks
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obeying the laws of quantum mechanics. This in itself is a highly non-trivial
task and we will discuss it in Chapter ???.

4.2.1 Intercept and resend attacks on BB84

At the moment we will restrict ourselves to a simple class of attacks called
intercept and resend attacks, which are not optimal, and hence considering
only them does not guarantee full security, but are often considered since
they are the only realistic attacks under present technology.

In general, in intercept and resend attacks (IRA), E first measures incom-
ing qubit in some basis and after learning result of the measurement prepares
a corresponding state which she sends to B. Ideally (for E of course) she
would like to learn what state was sent and resend exactly the same state to
B in order not to be detected.

In BB84, two basis are used for communication, basis 1:|↔⟩, |↕⟩, and
basis 2: |↗↙⟩, |↖↘⟩. During transmission E does not know which basis she
should measure in since this is revealed only after all qubits has been sent.
Consider two strategies she may choose:

1. Measurement in a randomly chosen basis – with probability 1/2, E
measures either in |↔⟩, |↕⟩ or in a |↗↙⟩, |↖↘⟩ basis

2. Measurement in an intermediate basis – every time E measures in
|22.5◦⟩, |112.5◦⟩, which is an basis “in between” two basis used in BB84

Let us calculate what is the E error rate in each of this attacks and what
QBER this attacks cause in the A to B communication.

Random basis In half of the cases E will measure in correct basis, hence
will learn the state and transmit the state without any disturbance. In
the second half, she will measure in the wrong basis. Since |⟨↔|↗↙⟩2 =
|⟨↔|↖↘⟩2 = 1/2 and |⟨↕|↗↙⟩2 = |⟨↕|↖↘⟩2 = 1/2, she will obtain a correct
measurement result with probability 1/2. She will resend, a state in the
wrong basis, however, and consequently B has 1/2 probability of registering
an error in communication even though his basis is set according with that
of A. Summarizing B on average will observe qubit error rate (QBER)
QBER = 1/4. Probability that E will measure an incorrect bit sent by A
is eE = 1/2 · 1/2 = 1/4, hence errors will be the same as between A and
B. Analyzing the above attack we can conclude that once A and B measure
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QBER ≥ 1/4 they should abort their communication since E in principle
could have the same all smaller bit error rate as they have.

Intermediate basis attack Using intermediate basis, probability that E
measures a wrong bit value is

eE = q = |⟨22.5◦|↕⟩|2 = 1/4(2 −
√

2) ≃ 0.146. (4.2)

Notice that this error is smaller than average error in random basis attack.
Such an attack induces again QBER = 2q(1 − q) = 1/4. We see that the
situation is even worse from the point of view of A and B than in the random
basis attack. Analyzing random basis attack we have concluded that once
QBER ≥ 25% the protocol is not secure. Can we now get a tighter estimation
of the QBER borderline above which the protocol is insecure?

It is possible if we generalize E attack in a way that E attack only a r
fraction of the flying qubits. If this is the case only this fraction will get
disturbed so the QBER will be lower. Additionally E will simply have to
guess the values of the bits she had not measured. The attack results in:

QBER = r/4, eE = rq + (1 − r)/2 (4.3)

Asking when eE ≤ QBER we find that this corresponds to r ≥ 2/(1 +
√

2)
and QBER ≥ 1/[2(1 +

√
2)] ≈ 20.7%. Hence whenever A and B find the

QBER ≥ 20.7% their protocol is certainly not secure.

4.2.2 General attacks

As mentioned before, proving security requires analysis of the most general
attacks allowed by quantum mechanics and identifying bounds on the amount
of information obtainable by E for a given level of disturbance introduced
in A and B communication. We will discuss this issue in more detail in
Chapter ???. For the moment we just mention the final result which states
that the protocol is secure if QBER ≤ 11%. We therefore see that the
requirement is realistic and can be met in practical implementation of QKD,
which is the reason why quantum key distribution is becoming more and
more a commercial product than just an academic topic.
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4.3 B92 protocol

A natural question arises: if two nonorthogonal states cannot be perfectly
distinguished, then maybe one can construct a QKD protocol using only two
states instead of four as used in BB84. Amazingly, this is indeed possible
and was realized by Bennett in 1992.

A sends either |↔⟩, or |↗↙⟩. B measures either in |↔⟩, |↕⟩ or in |↗↙⟩, |↖↘⟩
basis. Unlike in BB84 he does not communicate the basis he used, but
rather informs A about the cases in which he measured |↕⟩ or |↖↘⟩ (without
specifying which of them). This is an information that tells A that in this run
B had a basis incompatible with the one she used. Hence if she denotes by
0 and 1 the cases when she sends |↔⟩ and |↗↙⟩ respectively, and B denotes
by 0 and 1 the cases when he used basis |↗↙⟩, |↖↘⟩ and |↔⟩, |↕⟩, their bits
will be perfectly correlated. Other events when B measured |↔⟩ or |↗↙⟩ are
discarded.

Notice also that there was no information revealed to an eavesdropper
when B informed A about positions at which he measured |↕⟩ or |↖↘⟩. More-
over non-perfect distinguishability of nonorthogonal states forces E to induce
errors whenever she wants to learn something and thus makes the protocol
secure.

4.3.1 Investigate the security of B92 protocol under two different attacks: (i) E
perfroms measures randomly in one of the basis |↔⟩, |↕⟩ or |↗↙⟩, |↖↘⟩, (ii) E
performs minimal-error discrimination measurement (see Chapter ???). In
each case try to get the tightest condition on QBER above which the protocol
is not secure against a given attack (take into account the possibility that
only a fraction of qubits is being attacked).

4.3.2 Six states protocol (6S). BB84 protocol may be naturally generalized to a
six-state protocol where we introduce a third basis |�⟩, |	⟩. A sends each
of six states randomly with equal probabilities, while B measures randomly
in one of the three basis. B again announces the basis he measured in and
if the basis is not compatible with that of A the data is discarded. Analyze
the security of the protocol under (i) random basis attack, (ii) intermediate
basis attack — note that an intermediate basis attack should be an attack
in which E measures in a fixed basis that has no bias towards any of the
three basis used in the protocol. Does such a basis exist? — think of the
states used in 6S using the Bloch sphere picture.
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4.3.3 In B92 protocol we can in principle use two arbitrary non-orthogonal states,
e.g. |↔⟩, |α⟩, where |α⟩ is the linear polarization at an angle α with respect
to the horizontal direction. How the usefulness of the protocol will change
with the change of α from 0◦ to 90◦. In what situations one should choose
α closer to 0◦ and in which situation α closer to 90◦.

4.3.4 SARG04 protocol. A protocol propose in 2004 is a seemingly innocent varia-
tion to BB84 protocol, but has some advantages in realistic implementation
in QKD. A again sends randomly one of four states used in BB84, and B
measures randomly in either horizontal-vertical or diagonal basis. However,
instead of revealing the basis at the sifting stage, A announces publicly one
of four pairs {|↔⟩, |↗↙⟩}, {|↔⟩, |↖↘⟩}, {|↕⟩, |↗↙⟩}, {|↕⟩, |↖↘⟩}. The announced
pair contains a state send by A but it is not revealed which one. The con-
vention is that |↗↙⟩, |↖↘⟩ are assigned logical value 0 while |PolH⟩, |PolV ⟩
logical value 1. To understand how secret key can be generated consider
situation in which A sends |↔⟩ and announces the pair {|↔⟩, |↗↙⟩}, with
probability 1/2 B measures in horizontal-vertical basis and he gets |↔⟩. He
is not sure, however which state from the announced pair caused this results
so he discard it. With probability 1/2 he measures in the diagonal basis in
which case half of the times he gets |↗↙⟩ and half of the time he gets |↖↘⟩.
Only in this last case he is sure that the state send by A was |↔⟩ and he
writes down the bit value 0.

What portion of the bits is discarded. Analyze the security of the protocol
under random basis attacks. If the pairs of states had been announced before
sending the qubit, could E perform a more powerful intercept and resend
attack?
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Chapter 5

Practical quantum
cryptography

Even though the security of a theoretical quantum cryptographic protocol is
guaranteed by the laws of quantum mechanics it is far from obvious whether
a particular implementations of the protocol is secure. For an optical imple-
mentation of a standard quantum key distribution (QKD) protocol such as
BB84, we need three main components:

1. photon sources

2. optical channels

3. photon detectors

Ideally, we would like to have true single photon sources on demand with
high repetition rates (around few GHz), optical channels transmitting pho-
ton state faithfully with 100% efficiency and perfect detectors which click if
and only if they encounter a photon. None of these ideal elements exists.
Moreover, what we have at our disposal with current technology is still far
from that.

5.1 Optical components

5.1.1 Photon sources

Although there are single photon sources being intensely developed using
different physical hardware: nonlinear crystals, quantum dots, single atoms,
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ions, etc. . . , non if this technologies provides an efficient single photon source
easy to use for practical purposes. That is why most of QKD realization are
based on the use of faint laser pulses. The advantage is that faint laser pulses
are easy to prepare as one only needs to attenuate on ordinary laser pulse to
the desired level. The drawback is that these are not strictly speaking single
photon pulses. Photon number distribution in a laser pulse is governed by
the Poissonian statistics, and the probability of n photons present in a pulse
reads:

pn =
n̄n

n!
e−n̄, (5.1)

where n̄ is the mean number of photons in a pulse. There will always be
a non-zero probability of generating multi-photon pulses. This significantly
undermines QKD security since an eavesdropper E can in theory take one
photon from a multi-photon pulse, store it, send the remaining photons undis-
turbed to B and then wait until the measurement basis are announced by
A and B. Knowing the proper measurement basis E can measure the pho-
ton stored and learn the bit of the key without introducing any disturbance.
We should mention at this point that the E cannot apply this strategy to
single photon pulses as this would require producing a faithful copy of an
unknown quantum state — an operation forbidden by the so called quantum
no-cloning theorem, see Section.???.

This clearly shows, that A and B need to make sure that multi-photon
events are rare and take them into account in the security analysis. Consider
an attenuated laser pulse with n̄≪ 1. In this case

p1 ≈ n̄, pn≥2 ≈ n̄2/2, pn≥2/p1 ≈ n̄/2. (5.2)

In other words if we want the ratio of multi photon event to single photon
events to be low we need to assure that n̄ is very small as well, which means
that very often there will be no photon in a pulse send by the laser and
therefore the efficiency of QKD will drop. We will discuss this issue more
quantitatively in Section.???

5.1.2 Optical channels

The main difficulty in transmitting photons from A to B using single photons
or faint laser pulses is light attenuation. In standard optical fiber telecommu-
nication this problem is solved by setting up a network of optical amplifiers
compensating for the loss of the signal amplitude along the way. As already
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mentioned this is not possible in the quantum regime due to the no-cloning
theorem, since amplification is then equivalent to producing many copies of
an unknown quantum state, see Section.???.

The intensity of light that traveled a distance l through a medium with
the attenuation coefficient α drops exponentially according to:

I(l) = I(0)10−αl (5.3)

where α conventionally is written using units of dB/km. α = 10 dB/km
corresponds to intensity dropping 10 times over the length of 1km, α =
20 dB/km corresponds to intensity dropping 100 times, etc.

The two most popular choices of optical channels for QKD are free space
communication and optical fibers.

Free space Assuming the weather is good, free space provides relatively
low loss transmission with α < 0.1dB/km for wavelengths in 780nm−850nm
and 1520nm − 1600nm windows. The drawback is that one needs to see
the target and make assure that the beam does not broaden to much due
to diffraction and atmospheric fluctuations. Nowadays, one of the hottest
topics along these lines is to make the first earth to satellite QKD.

Optical fibers Optical fibers technology is the base of modern telecommu-
nication which is the reason that a lot of high quality optical components are
available commercially. It is therefore tempting to make use of the existing
telecom infrastructure to perform practical QKD. There are two difficulties
on the way to realize a large scale QKD network. One of them is loss, which
in commercially available fibers is 0.34 dB/km for 1330nm and 0.2 dB/km
for 1550nm. Other wavelengths suffer significantly larger losses and are prac-
tically never used for optical fiber communication. The other issue is related
with the fact the silica based materials which the fibers are made of are bire-
fringent. More importantly the birefringence is sensitive to environmental
temperature fluctuations and fiber stress. That is why the birefringence fluc-
tuates along the fiber and if not controlled or compensated results typically in
a completely random light polarization at the output. Encoding information
in polarization degrees of freedom of a photon is therefore highly non-trivial
and alternative approaches based on time-bin encoding have become more
popular, see Section.???.
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5.1.3 Single photon detectors

The most popular devices able to detect single photons are the avalanche
photo diodes (APD). A photon hits a semiconductor and via the photoelec-
tric effect causes an electron to escape. The electron is then subject to
external electric field which makes it accelerate and allows is to to knock
other electrons free. This process continues causing a macroscopic current
flow in the end. As such APDs are not able to distinguish single photon
from multi-photon events. The basic parameters of APDs are their: quan-
tum efficiency, η , which is the probability of detecting a photon that enters
the device; dark count rate, δ, is the number of false events per second, i.e.
clicks that are not caused by an incoming photon, but rather by thermal
fluctuations or background noise; count rate; the maximal number of events
registered per second. This in particular tells us how fast the detector resets
itself to the ground state after a photon detection.

Si APD Silicon based APDs are designed to detect photons in the wave-
length range 400nm− 1000nm. Typically, their quantum efficiency η ≥ 60%,
while the dark count rate at −30◦C is δ ≈ 100 Hz. The maximal count rates
are around 15MHz.

InGaAS APD Silicon APDs are not suitable for detecting telecom wave-
length photons (1330nm, 1550nm), hence other devices need to be used for
this purpose. Most of them requires much stronger cooling and are usually
not as efficient as Si APDs. A typical InGaAs APD has η ≈ 10%. It does
not operate continuously and requires gating. Operating at −100◦C with a
count rate of 0.1MHz, it suffers the dark count rate at the level of 100 Hz.

5.2 Time-bin phase encoding

Due to birefringence fluctuations, polarization encoding is not the easiest one
to implement when performing QKD via optical fibers. Fortunately, we know
from Chapter.??? that one can make use of the dual-rail implementation of
a qubit. We can rephrase the BB84 protocol in the language of the dual-rail
implementation.

Consider the setup depicted in Fig. ??. We denote by |0⟩, |1⟩ the states
corresponding to the photon traveling in the upper, lower arm respectively. A
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p1

ϕA ϕB p0

Figure 5.1: The simplest but impractical implementation of the BB84 pro-
tocol in the dual-rail implementation.

prepares one of the four states (eiφ)A|0⟩ + |1⟩)/
√

2 by randomly choosing the
phase delay φA to be {0, π, π/2, 3/2π}. As in the polarization BB84 protocol,
A chooses between the two basis: {0, π} or {π/2, 3/2π}, where each of the
states in the basis encodes 0 and 1 respectively. The four states send by A lie
on the equator of the Bloch sphere and in the polarization encoding would
correspond to |↔⟩, |↕⟩, |	⟩, |�⟩.

By setting φB to 0 or −π/2, B chooses to measure the photon in {0, π}
or {π/2, 3π/2} basis. B ascribes the value of the registered bit according to
the measurement results, 0 or 1. Since the probabilities of the detector clicks
read

p0 = sin2

(
φA + φB

2

)
, p1 = cos2

(
φA + φB

2

)
(5.4)

this protocol is equivalent to the BB84.

Nevertheless, this implementation is not practical. It requires keeping the
optical length difference between the arms of a many km long interferometer
stable up to a fraction of the wavelength—less the micron. This is hardly
possible as temperature and stress fluctuations in the fiber will cause the
relative phase delay to vary in an uncontrollable manner on a much larger
scale. One of the solutions to the problem is to make sure that the two
“paths” of the photon experience the same phase fluctuations and thus the
relative phase remains well defined.

Consider a modified setup depicted in Fig. ??. Compared with the pre-
vious implementation, now A introduces additionally controlled large delay
τ in the upper arm (larger than the length of the pulse). Delay τ introduces
a new degree of freedom for the state of the photon, time of arrival. We will
adopt the notation where |i, t⟩ describes a photon traveling through the i-th
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p1

ϕA
ϕB p0

τ ττ

Figure 5.2: A practical implementation of the BB84 protocol using the time-
bin phase encoding.

arm of the interferometer in the time slot t. Subsequent state preparation
steps at the A laboratory transform the photon state as follows:

|1, t0⟩ →
1√
2

(|0, t0⟩ + |1, t0⟩) →
1√
2

(
eiφA|0, t0 + τ⟩ + |1, t0⟩

)
→

→ 1

2

(
eiφA|0, t0 + τ⟩ + |0, t0⟩ + eiφA|1, t0 + τ⟩ − |1, t0⟩

) (5.5)

Only the upper output path of the A laboratory is connected via the optical
channel to B. Two last terms in Eq. (5.5) correspond to cases when the
photon goes to the lower output. These events are discarded. Therefore, the
preparation process succeeds with probability 1/2 and the conditional output
state is:

|ψ⟩A =
1√
2

(
eiφA|0, t0 + τ⟩ + |0, t0⟩

)
. (5.6)

What we have achieved with this scheme, is the encoding of the BB84 states
into the time-bin qubit, where the two distinguishable states correspond to
the photon traveling in the earlier or in the later time slot.

At the receiving station B performs analogous transformation of the state,
with the same large delay loop τ in order to overlap the two time-bin com-
ponents on the beam-splitter and make the relative phase between the time
bins translate to photon detection probabilities. Going through the B setup,
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the final photon state just before entering the detectors reads:

|ψ⟩B =
1

2
√

2

[
ei(φ)A+φB) (|0, t0 + 2τ⟩ − |1, t0 + 2τ⟩) − (|0, t0⟩ + |1, t0⟩)+

+|1, t0 + τ⟩
(
eiφB − eiφA

)
− |2, t0 + τ⟩

(
eiφA + eiφB

)]
(5.7)

Terms corresponding to the photon arriving at times t0 or t0 + 2τ carry
no information on the phase φA. Hence, are useless for B and should be
discarded. This happens with probability 1/2. The remaining terms cause
the detectors to click at time t+ τ with probabilities:

p0 = sin2

(
φA − φB

2

)
, p1 = cos2

(
φA − φB

2

)
. (5.8)

Comparing the above formulas with Eq. (5.4) we see that we retrieve the
original BB84 protocol provided we replace φB → −φB.

From the implementation point of view this proposal requires only sta-
bilization of interferometers in the LABs which is feasible. Thanks to the
fact that the later and earlier pulses travel through the same optical channel
at the time difference ( ns) much smaller than the characteristic time phase
delay fluctuations in the optical channel ( s) the relative phase formation is
preserved. The drawback of this proposal is the 25% drop in the transmis-
sion rate due to the conditional preparation and rejecting the measurement
results that happened in t0 and t0 + 2τ time slots.

5.3 Multi-photon pulses and the BB84 secu-

rity

We analyze here how the QBER threshold for secure key distribution via
BB84 is reduced due to the presence of multiphoton pulses at the A side.
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Chapter 6

Composite systems

6.1 Two qubits

Suppose that we are dealing with two distinguishable qubits — these can
be for example polarizations of two photons travelling in opposite directions
— and we would like to characterize their joint state. For convenience, let
us denote the qubits with indices A and B. If the photon A is prepared
in a polarization state |ψ⟩A = ψ0|↔⟩ + ψ1|↕⟩ and the photon B in a state
|χ⟩A = χ0|↔⟩+χ1|↕⟩, their combined state is obtained by an operation called
by mathematicians the tensor product and denoted with a symbol ⊗ that is
linear with respect to each of its arguments:

|ψ⟩A ⊗ |χ⟩B = ψ0χ0|↔↔⟩ + ψ0χ1|↔↕⟩ + ψ1χ0|↕↔⟩ + ψ1χ1|↕↕⟩. (6.1)

Here on the right hand side we used a shorthand notation writing |↔↔⟩
instead of |↔⟩A ⊗ |↔⟩B, etc. Note that the four states appearing on the
right hand side are fully distinguishable: it is sufficient to measure each
photon in the rectilinear basis. Therefore we can think of these four states
as the orthonormal basis for the composite system of two qubits. In a fixed
basis, we can think of the tensor product as an operation producing one
four-component vector from a pair of two-component vectors according to
the recipe:

|ψ⟩A ⊗ |χ⟩B ≡
(
ψ0

ψ1

)
⊗
(
χ0

χ1

)
=

ψ0

(
χ0

χ1

)
ψ1

(
χ0

χ1

)
 =


ψ0χ0

ψ0χ1

ψ1χ0

ψ1χ1

 (6.2)
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Of course, the order of the vectors in the tensor product matters — the two
systems can be physically completely different. This definition has straight-
forward generalization to arbitrary dimensions of systems A and B, but we
will stay with qubits for the sake of simplicity.

The scalar product between two product state vectors is calculated system-
wise according to:(

A⟨ψ| ⊗ B ⟨χ|
)(
|ψ′⟩A ⊗ |χ′⟩B

)
= ⟨ψ|ψ′⟩⟨χ|χ′⟩ (6.3)

For example, suppose that two photons are prepared in a state |ψ⟩A ⊗ |χ⟩B
are measured in the bases | ± a⟩A and | ± b⟩A respectively. The probability
of detecting the first photon in the state |a⟩A and the second one in the state
|b⟩B is be given by:∣∣(

A⟨a| ⊗ B⟨b|
)(
|ψ⟩A ⊗ |χ⟩B

)∣∣2 =
∣∣⟨a|ψ⟩∣∣2∣∣⟨b|χ⟩∣∣2 (6.4)

and it factorizes into a product of probabilities for individual subsystems.
Therefore the measurement outcomes are totally uncorrelated.

What is really exciting about composite systems is that the complete
class of all superposition states

|Ψ⟩AB =
∑

i,j=↔,↕

Ψij|ij⟩AB (6.5)

is much broader than product states of the form given in Eq. (6.1). As an
example, let us consider a two-component superposition called the singlet
state:

|Ψ−⟩ =
1√
2

(
|↔↕⟩ − |↕↔⟩

)
(6.6)

For this state the probability of detecting the first photon in the state |a⟩
and the second photon in the state |b⟩ reads:

p(a,b) =
∣∣(
A⟨a| ⊗ B⟨b|

)
|Ψ−⟩AB

∣∣2 =
1

4
(1 − a · b). (6.7)

We leave this result as an exercise. Note that p(a,b)+p(−a,b)+p(a,−b)+
p(−a,−b) = 1 as it should be. Clearly, the expression in Eq. (6.7) does
not factorize. The probability of detecting both the photons in the identical
polarizations is zero. What if we are interested in the polarization of only one
of the photons, say A? We should sum over possible results for the second
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photon. This yields p(a) = p(a,b) + p(a,−b) = 1
2
. This is reasonable:

results of the measurement of the photon A do not depend on the polarizer
settings used to measure photon B. Finally, suppose that the first photon
was observed in the polarization a. What is the conditional probability that
the second photon will be detected in the state b? This can be written
formally as:

p(b|a) =
1

2
(1 − a · b) =

∣∣⟨b| − a⟩
∣∣2, (6.8)

i.e. photon B behaves as if it was conditionally prepared in the state | − a⟩.
We will see in the next section that this leads to one of most striking results
in quantum mechanics.

6.2 Bell’s inequalities

A new game, played by two remote parties, Alice and Bob. At a given
instance of time, Alice and Bob are asked one of two questions: X or X ′ for
Alice, Y or Y ′ for Bob. Questions are equiprobable and uncorrelated between
Alice and Bob. Alice and Bob have to answer yes or no, but they do not
have time to find out which question the other party was asked. Payoff: +e4
when Alice and Bob give identical answers for combinations of questions XY ,
XY ′, X ′Y and −e4 for X ′Y ′, and otherwise for opposite answers. What is
the maximum average payoff per a single round of the game? An obvious
strategy: always say yes. Average payoff is +e2. Can they do better? Not
if we remain on the ground of classical physics.

Let us introduce a variable A = ±1 that specifies the yes/no answer for
question X, etc. The payoff averaged over many rounds of the game is given
by:

W = ⟨AB⟩ + ⟨AB′⟩ + ⟨A′B⟩ − ⟨A′B′⟩ = ⟨A(B +B′) + A′(B −B′)⟩ (6.9)

The second form gives as an answer: for every realization, one of the ex-
pressions in round parentheses is zero, and the other one is ±2. Because
|A| = |A′| = 1, this implies that |W| ≤ 2.

Suppose now that Alice and Bob use the following strategy. For every
round of the game they perform polarization measurements on a pair of
qubits prepared in a singlet state |Ψ−⟩. Of course, for every round they use
a fresh pair. The pay-off for the pair XY will be given by e4×C(a,b), where

C(a,b) = p(a,b) − p(−a,b) − p(a,−b) + p(−a,−b) = −a · b, (6.10)
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where we explicitly used Eq. (6.7). Thus the pay-off averaged over all four
pair of questions, expressed in euros, is given by:

W = C(a,b) + C(a,b′) + C(a′,b) − C(a′,b′) (6.11)

Let us now take the orientations of the polarizers defined by the following
Bloch vectors:

X : a =

0
0
1

 , X ′ : a′ =

1
0
0

 , Y : b =
1√
2

−1
0
−1

 , Y ′ : b =
1√
2

 1
0
−1

 .

(6.12)
It is easy to calculate that for this choice of measurements W = 2

√
2.

This results carries a very profound message about the quantum world.
In the derivation of the bound |W| ≤ 2 being an example of Bell’s inequal-
ity, we made two assumptions: (i) answers to both the questions are well
defined in every round, even though only one of them is asked; (ii) the two
parties were not able to find out what question the other party was asked.
Applied to polarization measurements, the first means that results of mea-
surements are elements of objective physical reality. The second assumption
is about locality, i.e. impossibility of superluminal communication. Theories
that satisfy both these assumptions are said to satisfy local realism. Clearly,
quantum mechanics does not belong to this class. What does it mean? One
interpretion is there is some sort of instantaneous action at arbitrary large
distances, i.e. outcome of one measurement depends on the setting of the
other apparatus. Note however that we cannot read out this setting. Just
looking at the results of our apparatus, we get completely random answers.
This “nonlocality” reveals itself only when comparing measurement results
at the two locations. The second one is that measurement results were not
defined at all before photons entered the respective apparatuses. Opera-
tionally, the question about measurement outcomes for measurements a and
a′ is meaningless, as there is no way to perform both of them on the same
qubit at once.

This tells us that the statistical character of the quantum theory. We
have seen randomness in measurement results. One might suspect that there
exist some variables that actually strictly define all the results, but we cannot
access them. The correlation function such as C(a,b)

C(a,b) =

∫
dλP (λ)A(a;λ)B(b;λ) (6.13)
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where P (λ) is a proper, positive definite probability distribution The locality
is ensured by the fact that A depends only on a and B only on b. In such
a scenario, λ are called local hidden variables. Bell’s inequalities show that
this model cannot explain correlations observed for the singlet state.

One final remark: observing correlations is nothing strange and it does
not imply superluminal propagation (shoes from one pair send to different
galaxies). What is crucial is that the randomness cannot be modelled by
expression 6.13. Sometimes this incompatibility is called quantum nonlocal-
ity. This phrase is common in the literature, but it is somewhat misleading,
because it does not imply that quantum mechanics is in any way nonlocal.

6.2.1 Show that Bell’s inequalities are valid also if local realities satisfy less strin-
gent conditions −1 ≤ A(a;λ) ≤ 1 and −1 ≤ B(a;λ) ≤ 1. Hint: use the
identity

⟨A′B⟩ − ⟨A′B′⟩ =
∫

dλP (λ)[A′(λ)B(λ)−A′(λ)B′(λ)]

=

∫
dλP (λ)A′(λ)B(λ)[1±A(λ)B′(λ)]−

∫
dλP (λ)A′(λ)B′(λ)[1±A(λ)B(Λ)]

where for simplicity we denoted A(λ) = A(a;λ), A′(λ) = A(a′;λ) and simi-
larly for Bob’s measurements.

6.3 Correlations

Although we have calculated directly the joint probability p(a,b) defined in
Eq. Eq:SingletProb, it is instructive to repeat the calculation using operator
identities. This is a good opportunity to review properties of the tensor
product applied to operators. First, let us write p(a,b) as:

p(a,b) = ⟨Ψ−|
(
|a⟩ ⊗ |b⟩

)(
⟨a| ⊗ ⟨b|

)
|Ψ−⟩ (6.14)

The projection onto a product vector can be equivalently written as a tensor
product of two projectors:(

|a⟩ ⊗ |b⟩
)(
⟨a| ⊗ ⟨b|

)
= |a⟩ ⟨a| ⊗ |b⟩ ⟨b| (6.15)
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where the tensor product for two general operators Â and B̂ is defined as:
Tensor product of operators:

(Â⊗ B̂)|Ψ⟩ =
∑
i,j=0,1

Ψij

(
Â|i⟩A

)
⊗
(
B̂|j⟩B

)
(6.16)

Of course, we also have (Â ⊗ B̂)(Â′ ⊗ B̂′) = (ÂÂ′) ⊗ (B̂B̂′). If we write
operators as matrices, it is easy to see that in the representation used in
Eq. (6.2) we have:

Â⊗ B̂ ≡

A00

(
B00 B01

B10 B11

)
A01

(
B00 B01

B10 B11

)
A10

(
B00 B01

B10 B11

)
A11

(
B00 B01

B10 B11

)
 (6.17)

Notationally, this means that each entry in the matrix representing the oper-
ator Â is multiplied by a replica of the matrix corresponding to the opearator
B̂. Correlation function C(a,b) calculated for the state |Ψ−⟩ can be written
as:

C(a,b) = ⟨Ψ−|
(
|a⟩ ⟨a| − | − a⟩ ⟨−a|

)
⊗
(
|b⟩ ⟨b| − | − b⟩ ⟨−b|

)
|Ψ⟩

= ⟨Ψ−|(a · σ̂) ⊗ (b · σ̂)|Ψ−⟩ (6.18)

This can be written as a trace over the composite system (which we will
denote by the subscript AB):

C(a,b) = TrAB{[(a · σ̂) ⊗ (b · σ̂)]|Ψ−⟩ ⟨Ψ−|} (6.19)

where trace is summation over four terms.
An interesting expression (direct calculation):

|Ψ−⟩ ⟨Ψ−| =
1

4
(1̂⊗ 1̂− σ̂1 ⊗ σ̂1 − σ̂2 ⊗ σ̂2 − σ̂3 ⊗ σ̂3) (6.20)

The trace of a tensor product over the composite system can be written as:
TrAB(Â⊗ B̂) = (TrAÂ)(TrBB̂).

Now using trace properties of density matrix yields Eq. (6.10).

6.3.1 The Bell’s combination can be written as an expectation value of an operator
Ŵ =. Find the maximum and the minimum eigenvalue of this operator.
Hint: calculate Ŵ 2.
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6.3.2 The swap operator Ŝ acting on two systems of equal dimension is defined as
Ŝ(|ψ⟩ ⊗ |χ⟩) = |χ⟩ ⊗ |ψ⟩ for any two state vectors |ψ⟩ and |χ⟩. Verify that
for a two-qubit system Ŝ = 1̂⊗ 1̂− 2|Ψ−⟩ ⟨Ψ−|.

6.3.3 Show that Tr[Ŝ(Â⊗ B̂)] = Tr(ÂB̂).

6.4 Mixed states

Quantum mechanics can predict only probabilities of different measurement
outcomes to occur. In order to compare these predictions with experiment,
we need to perform measurements on identically prepared systems. So far
we assumed that all the systems have been prepared in the same state |ψ⟩.
But this does not have to be the case. The preparing party may prepare
the system in a state |ψ1⟩ with probability w1, etc. We assume that the
preparations are random and independent. If we are now interested in the
expectation value of a certain operator, say Â, we should average it over
possible preparations. Such an average can be written as:∑

n

wn⟨ψn|Â|ψn⟩ =
∑
n

wnTr
(
Â|ψn⟩ ⟨ψn|

)
= Tr

(
Âϱ̂
)

(6.21)

where

ϱ̂ =
∑
n

wn|ψn⟩ ⟨ψn| (6.22)

is called the density operator. This object contains all the information neces-
sary to calculate expectation values for a statistical ensemble and it is much
simpler than specifying all the state vectors and corresponding probabilities.
States that are described a state vector, i.e. for which ϱ̂ = |ψ⟩ ⟨ψ| are called
pure states. A density operator that cannot be represented in this form of a
rank-one projector corresponds to a mixed state.

Properties: hermitian, Trϱ̂ = 1, ϱ̂ ≥ 0. Corresponds to a pure state iff
ϱ̂ = ϱ̂2.

The set of all density operators can be very nicely visualized for a single
qubit. We have seen that all pure states can be represented as a Bloch
sphere of unit radius. Consider now a statistical ensemble with states |ψn⟩
characterized by Bloch vectors sn. Using the result of Exercise 3.1.4, the
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density operator is then given by:

ϱ̂ =
1

2

∑
n

wn(1̂ + sn · σ̂) =
1

2
(1̂ + s · σ̂) (6.23)

where s =
∑

nwnsn is a weighted sum of Bloch vectors in the ensemble.
Thus the interior of the Bloch sphere corresponds to mixed states. The
Bloch sphere for a density operator ϱ̂ can be calculated as s = Tr(ϱ̂σ̂).

A completely mixed qubit state:

1

2
(|↔⟩⟨↔| + |↕⟩ ⟨↕|) =

1

2
(|↗↙⟩⟨↗↙| + |↖↘⟩⟨↖↘|) =

1

2
1̂. (6.24)

Note that we cannot distinguish between these two ensembles.

6.4.1 Show that a qubit density matrix characterized with a Bloch vector s has
eigenvectors given by | ± s/|s|⟩.

6.5 Separability

What is so special about the state |Ψ−⟩? It is easier to say what states of two
subsystems will not be very interesting. First, any product state |ψ⟩A⊗|χ⟩B.
We will call them product states. More generally, any statistical mixture of
product states:

ϱ̂ =
∑
n

wn|ψn⟩A⟨ψn| ⊗ |χn⟩B ⟨χn|. (6.25)

In the case of two qubits, for states of this form the correlation function for
joint polarization measurement C can be written as:

C(a,b) =
∑
n

wn⟨ψn|σ̂a|ψn⟩⟨χn|σ̂b|χn⟩ (6.26)

which satisfies all the assumptions made in the derivation of Bell’s inequal-
ities. States of the form (6.25) are called separable. States that are not
separable are entangled. We will see in the next chapters that they are be-
hind effects such as dense coding, teleportation, etc.
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How to find out whether a given state ϱ̂ is separable or not? A general
density operator can be written in a specific basis as:

ϱ̂ =
∑

i,j,k,l=0,1

ϱik,jl|ik⟩⟨jl| =
∑

i,j,k,l=0,1

ϱik,jl|i⟩A⟨j| ⊗ |k⟩B⟨l| (6.27)

where ϱik,jl = ⟨ik|ϱ̂|jl⟩. Let us consider partial transposition with the sub-
system B in this basis, which changes |k⟩B ⟨l| onto |l⟩B⟨k|. This operation
will be denoted by Γ (which looks like half of T ). Explicitly,

ϱ̂Γ =
∑

i,j,k,l=0,1

ϱik,jl|i⟩A⟨j| ⊗ |l⟩B⟨k| =
∑

i,j,k,l=0,1

ϱil,jk|i⟩A⟨j| ⊗ |k⟩B⟨l| (6.28)

Obviously, if Trϱ̂ = 1 then also Tr(ϱ̂Γ) = 1. It is easy to see from Eq. (6.25)
that if ϱ̂ is separable, then ϱ̂Γ is positive definite, and therefore is also a valid
density operator. The reason for that is that if |χn⟩B⟨χn| is a single-qubit

density matrix, then of course
(
|χn⟩B ⟨χn|

)T
also is. Thus we have a necessary

condition for separability. It turns out that for two qubits this condition is
also sufficient. But the proof is much less straightforward and we will skip it
here.

6.5.1 Consider a family of states ϱ̂p = p|Ψ−⟩ ⟨Ψ−| + 1−p
4 1̂ ⊗ 1̂, where 0 ≤ p ≤ 1.

Find the ranges of p for which the Bell’s inequality is violated and the PPT
criterion is not satisfied. Are they identical?

6.5.2 What transformation of the Bloch sphere corresponds to the transposition
of a qubit density matrix?

6.5.3 Calculate explicitly the statistical mixture
∫
da |a⟩ ⟨a| ⊗ |a⟩ ⟨a|, where∫

da =
1

4π

∫ π

0
dθ sin θ

∫ 2π

0
dϕ. (6.29)
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Chapter 7

Entanglement

7.1 Dense coding

Consider four maximally entangled states:

|Ψ±⟩ =
1√
2

(
|01⟩ ± |10⟩

)
, |Φ±⟩ =

1√
2

(
|00⟩ ± |11⟩

)
(7.1)

Easy to verify that these four states are mutually orthogonal. But we can
transform them by operations on just a single qubit:

(σ̂1 ⊗ 1̂)|Φ+⟩ = |Ψ+⟩
(σ̂2 ⊗ 1̂)|Φ+⟩ = i|Ψ−⟩ (7.2)

(σ̂3 ⊗ 1̂)|Φ+⟩ = |Φ−⟩

Protocol: suppose that Alice and Bob share a pair of qubits prepared initially
in the state |Φ+⟩. Alice applies one of four transformations 1̂, σ̂1, σ̂2, and
σ̂3 and sends her qubit to Bob. Clearly, this way she can transmit two bits
of information. It seems that we have found a way to encode two bits of
classical information into one qubit. But we should keep in mind that these
two qubits must have been prepared in a joint state that did not have the
product form. Therefore qubits must have had a common origin and one
qubit must have been exchanged between Alice and Bob. Interestingly, it
could have been sent from Bob to Alice, or from Alice to Bob — in both
cases, even before Alice has learnt the message she wanted to communicate
to Bob. This does not have any counterpart in classical communication.
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Dense coding would not be possible with a product state, and by a
straightforward extension with separable states. There is something spe-
cial in non-separable states that enables us to play tricks such as violation of
Bell’s inequalities or dense coding. This feature can be thought of as a new
resource in quantum information processing — namely, entanglement. The
phenomenon of entanglement can be most conveniently discussed within the
paradigm of distant laboratories. Suppose that Alice and Bob have qubits,
each one of them prepared separately in well defined state. They can use lo-
cal operations and classical communication (LOCC) — clearly, all they can
produce by these means is a separable state. To share an entangled state,
Alice’s and Bob’s systems must have been prepared jointly and then dis-
tributed to the parties. One distributed, entanglement cannot be increased
by LOCC.

We have seen that any of the Bell states is equivalent when it comes to
applications - the reason for this is that one can transform between them
by LOCC (which happens to be just a unitary on one of the subsytems).
How to characterize entanglement? Procedure is easy for pure states. Let us
think about probability amplitudes as a square matrix. Such a matrix can
be subjected to singular value decomposition:

Ψij =
∑
k

U∗
ikλkVkj (7.3)

where Uik and Vkj form unitary matrices and λk are real and non-negative.
Let us introduce:

|uk⟩ =
∑
i

U∗
ik|i⟩ = Û †|k⟩, |vk⟩ =

∑
j

Vkj|j⟩ = V̂ |k⟩ (7.4)

This allows us to write:

|Ψ⟩ =
∑
k

λk|uk⟩ ⊗ |vk⟩ =
(
Û † ⊗ V̂

)(∑
k

λk|k⟩ ⊗ |k⟩

)
. (7.5)

Thus any pure state can be brought by LOCC to the form
∑

k λk|k⟩ ⊗ |k⟩,
with nonnegative λk. This is called Schmidt decomposition and works in any
dimension. For a pair of qubits we have λ0|00⟩ + λ1|11⟩, and because of the
normalization constraint λ20 + λ1 we have only one free parameter. When
λ0 = λ1 = 1/

√
2 we’ve got a maximally entangled state. When either λ0 or
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λ1 is zero, a product state. What inbetween? Partial entanglement. We will
discuss later what can we do with it.

7.1.1 Try to violate Bell’s inequalities with a partly entangled two-qubit pure
state.

7.2 Remote state preparation

Let us go back to the scalar product which appeared in Eq. (6.7), but we
will consider here a general pure bipartite state |Ψ⟩AB =

∑
ij Ψij|i⟩A ⊗ |j⟩B.

It will be convenient to write here

|a⟩A = α0|0⟩A + α1|1⟩A, |b⟩B = β0|0⟩B + β1|1⟩B
We can split the calculation of the scalar product A⟨a|⊗B ⟨b||Ψ⟩AB into two
steps. A partial scalar product A⟨a|Ψ⟩AB can be thought of as certain state
vector for the subsytem B. We will denote it as |ψ̃(a)⟩B. Easy to find an
explicit expression:

|ψ̃(a)⟩B = A⟨a|Ψ⟩AB =
∑
ij

Ψij A⟨a|i⟩A|j⟩B =
∑
j

(∑
i

α∗
iΨij

)
|j⟩B (7.6)

The joint probability can now be written as:

p(a,b) =
∣∣⟨b|ψ̃(a)⟩

∣∣2 = ⟨ψ̃(a)|
(
|b⟩ ⟨b|

)
|ψ̃(a)⟩ (7.7)

The marginal probability of detecting qubit A in the state |a⟩ is:

p(a) = p(a,b)+p(a,−b) = ⟨ψ̃(a)|
(
|b⟩ ⟨b|+| − b⟩ ⟨−b|

)
|ψ̃(a)⟩ = ⟨ψ̃(a)|ψ̃(a)⟩

(7.8)
Thus the state |ψ̃(a)⟩B is not normalized, but its squared norm has a well
defined meaning: it is the probability that the result a has been obtained.
This result is valid for an arbitrary measurement applied by Bob, which we
leave as Exercise 7.2.2, which makes sense: Alice’s probabilities should not
depend on Bob’s action (if we do not know their result). The conditional
probability obtained from Eq. (7.7) reads:

p(b|a) =
p(a,b)

p(a)
=

⟨ψ̃(a)|
(
|b⟩ ⟨b|

)
|ψ̃(a)⟩

⟨ψ̃(a)|ψ̃(a)⟩
(7.9)
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Thus if Bob’s is interested in the statistics only for the cases for which Alice
obtained the result a, he can calculate these taking the state |ψ̃(a)⟩/

√
p(a).

In particular for the singlet state:

|ψ̃−(a)⟩B =
1√
2

(
α∗
0|1⟩B − α∗

1|0⟩B
)

(7.10)

Its squared norm is 1/2. Interesting: this state is orthogonal to |a⟩.
Conditional states are a source of misundestanding — they suggest that a

measurement at one location instantaneously changes the state of the other
particle. But this is an overinterpretation of the mathematical formalism!
What matters are results of measurements, and here causality is not violated.

Suppose that two systems have been prepared in an arbitrary joint state
ϱ̂:

ϱ̂ =
∑
ijkl

ϱik,jl|i⟩A⟨j| ⊗ |k⟩B⟨l|. (7.11)

Alice applies a measurement Âr while Bob applies measurement B̂s. The
joint probability is given by pr,s = Tr(ϱ̂Âr ⊗ B̂s). If we have access only to
Alice’s results then the marginal probability pr =

∑
s pr,s reads:

pr = TrAB[ϱ̂(Âr ⊗ 1̂B)] =
∑
ijkl

ϱik,jlTrA
(
|i⟩A⟨j|Âr

)
TrB

(
|k⟩B ⟨l|

)
. (7.12)

where we have used
∑

s B̂s = 1B. Notice that the resulting formula does
not depend on the type of measurement performed by Bob. Obviously,
TrB

(
|k⟩B⟨l|

)
= δkl. This enables us to write pr = TrA

(
ϱ̂AÂr

)
, where

ϱ̂A =
∑
ijk

ϱik,jk|i⟩A⟨j| (7.13)

is called the reduced density matrix of the subsystem A. Summation over the
index k in the above formula is simply the partial trace over the subsystem
B, therefore we can also write ϱ̂A = TrBϱ̂.

Analogously, we will also have ϱ̂B = TrAϱ̂. Let us consider two qubits
prepared in a state |Ψ⟩ and perform the trace of the subsystem A in the basis
| ± a⟩A. We see immediately that:

ϱ̂B = |ψ̃(a)⟩B⟨ψ̃(a)| + |ψ̃(−a)⟩B ⟨ψ̃(−a)| (7.14)

Interpretation: if Alice’s outcome is unknown, then Bob’s subsystem is de-
scribed by ϱ̂B. If we know the result, then the normalized state is |ψ̃(±a)⟩/

√
p(±a).

Statistical mixture of these states with weights p(±a) reproduces Eq. (7.14).
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Example: the singlet state Among two-qubit entangled states the sin-
glet state

|Ψ−⟩ =
1√
2

(|01⟩ − |10⟩) (7.15)

is the most intriguing of all. It has a unique property that it remains in-
variant under the application of the same unitary operation to both qubits:
U ⊗ U |Ψ−⟩ = |Ψ−⟩. This implies that we may write the singlet state in the
same form but using different basis vectors. If we return to the polariza-
tion notation, this implies in particular that the three apparently different
formulas

1√
2

(|↔↕⟩ − |↕↔⟩) =
1√
2

(|↗↙↖↘⟩ − |↖↘↗↙⟩) =
1√
2

(|�	⟩ − |	�⟩) (7.16)

describe the same state |Ψ−⟩.
Imagine now that |Ψ−⟩ state is shared by Alice and Bob. Alice may

decide to measure her qubit in either {|↔⟩, |↕⟩}, {|↗↙⟩, |↖↘⟩} or {|�⟩, |	⟩}
basis. Due to the properties of the singlet state, the conditional state of
Bob will always be the complementary state to the one measured by Alice,
hinting us to call it an example of remote state preparation. By choosing
to measure her qubit in e.g. {|↔⟩, |↕⟩} basis, Alice causes the state at the
Bob’s site to be either {|↔⟩ or |↕⟩}, etc. In this sense Alice may decide
what kind of polarization state she wishes Bob should have, whether it be
one of {|↔⟩ or |↕⟩}, one of {|↗↙⟩, |↖↘⟩} or one of {|�⟩, |	⟩}. If Bob was able
to distinguish between these three cases without communication from Alice,
we would have to admit that instantaneous communication at a distance
is possible. Fortunately (or sadly. . . ) this is not the case. Even though
Alice chooses the measurement basis, she does not choose the measurement
outcome. For the singlet state the two possible outcomes are equally probable
for every basis. Therefore irrespectively on the measurement basis choice, the
state on the Bob’s site on average is the maximally mixed state, since:

1 = (|↔⟩⟨↔| + |↕⟩|↕⟩) = (|↗↙⟩⟨↗↙| + |↖↘⟩|↖↘⟩) = (|�⟩⟨�| + |	⟩|	⟩)
(7.17)

and as such Bob is not able to tell which measurement basis Alice had chosen.
Even though entanglement properties of the singlet state do not allow

for instantaneous communication, they may be used in practical applications
such as e.g. quantum teleportation described in the next section.
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7.2.1 Consider the most general two-qubit density matrix ρAB =
∑1

ik,jl=0 ρ
ik
jl |i⟩A⟨j|⊗

|k⟩B ⟨l| which is written explicitly as:

ρAB =


ρ0000, ρ

00
01, ρ

00
10, ρ

00
11

ρ0100, ρ
01
01, ρ

01
10, ρ

01
11

ρ1000, ρ
10
01, ρ

10
10, ρ

10
11

ρ1100, ρ
11
01, ρ

11
10, ρ

11
11

 (7.18)

Calculate the reduce density matrix ρA = TrB(ρAB), and formulate a simple
operational method to calculate it given the full matrix explicitly.

7.2.2 Suppose that Alice projects onto | ± a⟩, while Bob performs a measurement
B̂r. Verify that the probability of Alice obtaining the result +a while Bob’s
outcome can be any is

∑
r p(a, r) = ⟨ψ̃(a)|ψ̃(a)⟩. Further, the conditional

probability for result r on Bob’s side given that Alice has obtained +a can
be expressed as, using Eq. (6.27):

p(r|a) = ⟨ψ̃(a)|B̂r|ψ̃(a)⟩
⟨ψ̃(a)|ψ̃(a)⟩

(7.19)

7.2.3 Show that indeed the singlet state is invariant under application of the same
unitary operation to both systems, i.e.: U ⊗ U |Ψ−⟩ = |Ψ−⟩.

7.3 Teleportation

Imagine that you want to teleport an unknown quantum state of a physical
system to a distant place without physically sending the actual system to
this place. Recall the Star-Trek teleporter device, where an object to be
teleported is transformed to pure energy (light?), then beamed to a distant
placed and than rematerialize at the final spot. Authors as well as fans of
the series had a serious puzzle how to reconcile faithful teleportation with
fuzzy nature of the quantum states, and in particular their non perfect dis-
tinguishability. One could think that the teleporter simply scans all the
atoms of the object in order to read out its quantum state and then uses
this information to recreate the object at the final stage of the process. We
have learned however, that non-orthogonal quantum states are fundamentally
non-distinguishable and as such the read-out process will never be perfect.
Therefore, we cannot really be sure in what quantum state the object to be
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teleported was initially and as such the final state will in general differ from
the original. It seems that the there is no way out, and this is probably what
authors of the series though when they referred to enigmatic “Heisenberg
compensators” allowing for temporal violation of the rules of quantum me-
chanics in order to make the teleportation process possible. A few years have
passed, and in 1993 physicists realized that the quantum state teleportation
is possible within the laws of quantum mechanics and the necessary resource
for this is entanglement.

To understand how this is possible, let us consider now a more modest
task of teleporting an unknown state of a single qubit Imagine you are Alice
and you receive a single qubit in a unknown state |ψ⟩ = α0|0⟩ + α1|1⟩. Your
goal is to reproduce its state in a distant Bob’s laboratory without physically
sending the qubit there. Clearly, due to impossibility of discriminating non-
orthogonal states you cannot simply measure the qubit and give Bob an
instruction on how to reproduce the state in his laboratory. However, assume
that you and Bob share additionally two qubits in a maximally entangled
state, e.g. |Ψ−⟩. Therefore, the initial state of the three qubits can be
written as |ψ⟩1⊗|Ψ−⟩23, where qubits 1, 2 are in the Alice’s laboratory while
the qubit 3 is in possession of Bob.

The key step to understand how the teleportation is possible is to notice
that the input state

|ψ⟩1 ⊗ |Ψ−⟩23 = (α0|0⟩ + α1|1⟩) ⊗
1√
2

(|01⟩ − |10⟩) =

=
1√
2

(α0|001⟩ + α1|101⟩ − α0|010⟩ − α1|110⟩)
(7.20)

can be rewritten in an equivalent form:

1

2
[−|Ψ−⟩ ⊗ (α0|0⟩ + α1|1⟩) − |Ψ+⟩ ⊗ (α0|0⟩ − α1|1⟩) +

+|Φ−⟩ ⊗ (α0|1⟩ + α1|0⟩) + |Φ+⟩ ⊗ (α0|1⟩ − α1|0⟩)] .
(7.21)

In order to realize the teleportation, Alice measures her two qubit in the Bell
basis: {|Ψi⟩} where |Ψ1⟩ = |Ψ−⟩, |Ψ2⟩ = |Ψ+⟩, |Ψ3⟩ = |Φ−⟩, |Ψ4⟩ = |Φ+⟩.
From Eq. (7.21) it is clear that all four measurement outcomes are equally
probable and the conditional states of the third qubit are respectively:

|ψ̃(1)⟩ =
1

2
(α0|0⟩ + α1|1⟩) , |ψ̃(2)⟩ =

1

2
(α0|0⟩ − α1|1⟩) ,

|ψ̃(3)⟩ =
1

2
(α0|1⟩ + α1|0⟩) , |ψ̃(4)⟩ =

1

2
(α0|1⟩ − α1|0⟩) .

(7.22)
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Only the first of these four states is the original state to be teleported. Never-
theless, once Bob learns Alice’s measurement outcome i, he can apply a local
operation Ui to his qubit in order to recover the original state. Depending
on the measurement outcome the required operation Ui is:

U1 = 1, U2 = σz, U3 = σx, U4 = iσy. (7.23)

After this the teleportation protocol is complete and the state of the qubit in
Bob’s laboratory is |ψ⟩. We may write the teleportation protocol in a consise
mathematical form as:

4∑
i=1

Ui|ψ̃(i)⟩3 = |ψ⟩3, |ψ̃(i)⟩3 = 12⟨Ψi| (|ψ⟩1 ⊗ |Ψ−⟩23) , (7.24)

where |ψ̃(i)⟩3 is a state of qubit 3 conditioned on Alice obtaining the mea-
surement outcome i in her Bell measurement on qubits 1 and 2.

The essential part of the protocol is communicating the measurement
result from Alice to Bob. Until Bob learns the measurement result, he cannot
apply his local operations and the teleportation process cannot be regarded
as complete. Notice, that in the case Bob is ignorant about the result of
Alices measurement the average state of his qubit is:

4∑
i=1

|ψ̃(i)⟩⟨ψ̃(i)| =
1

2
1 (7.25)

and carries no information on the teleported state. Only when the measure-
ment results is learned by Bob and the correcting operations Ui applied we
can claim that the state of the qubit has been teleported to Bob. In this
sense teleportation process is not instantaneous, but is limited by the speed
of classical communication of the result i hence the speed of light.

It is also worth pointing out that neither Alice nor Bob learns anything
about the teleported state during the teleportation process. Moreover, the
information carried by the original state is completely destroyed due to the
Bell measurement by Alice, and hence the state is indeed teleported and not
cloned. This is in accordance with the no-cloning theorem forbidding cloning
of unknown quantum states that we will discuss in Sec.???.

7.3.1 Show that (α0|0⟩ + α1|1⟩)⊗ |Ψ−⟩ can be rewritten as in Eq.(7.21)
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7.3.2 Formulate the teleportation protocol, but this time assuming Alice and Bob
share |Φ+⟩, rather then |Ψ−⟩ Bell state.

7.4 No-cloning and the impossibility of su-

perluminal communication

Event though quantum mechanics allow for a remote state preparation using
entangled states, the stochastic nature of the quantum measurement does
not allow to exploit this feature for instantaneous communication. When
analyzing the properties of the singlet state in Sec.??? we have observed
that by choosing her measurement basis Alice chooses the basis from which
a state is randomly chosen at Bob’s site. If Bob was able to determine
what measurement basis Alice had chosen the instantaneous communication
would be possible. In our example, Bob would need to be able to distinguish
whether he got of |↔⟩, |↕⟩ or one of |↗↙⟩, |↖↘⟩. Since both states in each basis
are equally probable the average density matrix is 1/2 irrespectively of the
measurement basis chosen by Alice.

Nevertheless, it instructive to push further and consider at least in our
imagination some strategies that could in principle distinguish between these
two cases. One of such strategies is to use a cloning machine. Imagine that we
have a cloning machine that is capable of produce two copies out of a single
copy of an unknown quantum state. In order to describe a quantum cloning
machine in a rigorous way consider the Hilbert space H = H1 ⊗ H2 ⊗ HX ,
where H1 is the space supporting the state of a system to be copied, H2

supports the states of the system which is our “blank page”, and HX supports
all other degrees of freedom including the copying machine and the rest of the
universe. We say that the operation Ucloning (according to quantum theory
should be unitary) performs cloning of a state |ψ⟩ iff:

Ucloning|ψ⟩ ⊗ |0⟩ ⊗ |X0⟩ = |ψ⟩ ⊗ |ψ⟩ ⊗ |Xψ⟩. (7.26)

In other words should produce a state |ψ⟩ in both systems 1 and 2 while
the remaining degrees of freedom can change depending on the cloned state.
Notice that the output state is a product state – there is no entanglement
between subsystems. It has to be so, otherwise clones when inspected inde-
pendently would be in mixed states.
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If such a machine existed then Bob could apply it to his qubit and pro-
duce two, or even arbitrary many copies of the state. Assume that Bob has
produced N perfect copies of his state, so he has |ψ⟩⊗N at his disposal. If so,
then returning to our hypothetical superluminal communication protocol his
goal would amount to distinguish whether he has one of {|↔⟩⊗N , |↕⟩⊗N} or
one of {|↗↙⟩⊗N , |↖↘⟩⊗N}. But now, his average density matrices are different
whenever N¿1:

1

2

(
|↔⟩⟨↔|⊗N + |↔⟩⟨↔|⊗N

)
̸= 1

2

(
|↗↙⟩⟨↗↙|⊗N + |↖↘⟩⟨↖↘|⊗N

)
. (7.27)

which means that Bob will see the difference between events in which Alice
had chosen one or the other measurement basis. In particular if N → ∞
the four states at Bobs site become orthogonal (limN→∞ ⟨↔|↗↙⟩N = 0) and
hence could be discriminated perfectly. This observation is another argument
that quantum cloning must be forbidden by the laws of quantum mechanics,
since we have proven in Sec. that perfect discrimination of nonorthogonal
states. If cloning was possible we could produce arbitrary number of copies
of non-orthogonal states and then would be able to discriminate them per-
fectly, violating the fundamental bounds derived in Sec.???. The following
no-cloning theorem shows explicitly that the cloning task is impossible.

No cloning theorem There is no deterministic cloning transformation
(unitary) performing cloning for two nonorthogonal state.

Proof. Let |ψ1⟩, |ψ2⟩ be two different nonorthogonal states: 0 < |⟨ψ1|ψ2⟩| <
1. Assume cloning is possible:

U |ψ1⟩ ⊗ |0⟩ ⊗ |X0⟩ = |ψ1⟩ ⊗ |ψ1⟩ ⊗ |Xψ1⟩ (7.28)

U |ψ2⟩ ⊗ |0⟩ ⊗ |X0⟩ = |ψ2⟩ ⊗ |ψ2⟩ ⊗ |Xψ2⟩. (7.29)

Thanks to unitarity the scalar product of the input states should be equal
to the scalar product of the output states:

⟨ψ1|ψ2⟩⟨0|0⟩⟨X0|X0⟩ = ⟨ψ1|ψ2⟩⟨ψ1|ψ2⟩⟨Xψ1 |Xψ2⟩ (7.30)

this leads to:
⟨ψ1|ψ2⟩(1 − ⟨ψ1|ψ2⟩⟨Xψ1 |Xψ2⟩) = 0 (7.31)

which is only possible for ⟨ψ1|ψ2⟩ = 0 or ⟨ψ1|ψ2⟩ = 0. Hence, we arrive at a
contradiction and conclude that cloning of nonorthogonal states is impossible.
�
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Even though perfect cloning of non-orthogonal states is impossible, ap-
proximate cloning operations find its application in analyzing the security of
quantum key distribution.

7.5 Entanglement based quantum cryptogra-

phy

While the standard BB84 protocol does not make use of entangled states it
is possible to formulate an equivalent protocol that employs entanglement.
Imagine that instead of sending one of four states form Alice to Bob, we
assume that Alice and Bob share N pairs of qubits each in the maximally
entangled state |Φ+⟩. Alice randomly measures her qubit in either {|↔⟩, |↕⟩}
or {|↗↙⟩, |↖↘⟩}. It is easy to see that the conditional states of Bob will
correspond to the state measured by Alice and as such Bob will obtain each of
the four states with probability 1/4 just as in the original BB84 protocol. As
in the original BB84 protocol Bob measures his qubit randomly in one of the
two basis, and all the subsequent steps of basis reconciliation, error correction
and privacy amplification remain unchanged. The main conceptual difference
here is the symmetry between Alice and Bob, you can no longer tell who is the
sender and who is the receiver, and in particular who generated the random
key. The random key is generated as a result of measurements by Alice and
Bob, and it does not matter who measures his/her qubit first.

Entanglement based cryptography has an appealing interpretation if we
recall the violation of Bell inequalities by two-qubit entangled states. Since
we know that e.g. |Φ+⟩ violates Bell inequalities this implies that there no
hidden parameters that predetermine the measurement outcomes of Alice
and Bob. In this sense we can say that the bits of the secret key that
Alice and Bob register did not exist before their measurements. Hence the
knowledge on them is not available to other parties. We can even allow the
potential eavesdropper to produce an entangled state for us. This is still
secure provide we make sure that we indeed have a state which is sufficiently
strongly entangled as e.g. |Φ+⟩.

7.5.1 Imagine that instead of an idea state |Φ+⟩, Alice and Bob share a noisy state
of the form:

ρAB = (1− η)|Φ+⟩⟨Φ+|+ η1/4 (7.32)
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where η is the noise parameter.

• Calculate QBER as a function of η

• Above what η Bell inequalitites are no longer violated.

• The corresponding value of QBER is a good estimate of the QBER
threshold above which security of quantum key distribution is not guar-
anteed. Compare it with the values we have obtained using simple
intercept and resend strategies.
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Chapter 8

Channels

8.1 Which way?

Let us go back to a single photon in Mach-Zehnder discussed in Sec. 2.3.
Let us denote the state of the photon in the upper path as |0⟩A, in the
lower path as |1⟩A. After the first beam splitter, the state of the photon is
|+⟩A = (|0⟩A + |1⟩A)/

√
2. Suppose that we would like to find out which path

the photon has taken, but without destroying it. Here is an idea: let us take
a second qubit, labeled with a subscript E, and introduce an interaction by
the following unitary transformation:

Û |i⟩A|j⟩E = (−1)ij|i⟩A|j⟩E, i, j = 0, 1. (8.1)

It is seen that if the qubit A is the state |0⟩A nothing changes, while if the
qubit is in the state |1⟩A the phase of the ancillary qubit state |1⟩E is flipped.

If the qubit E was initially prepared in the state |0⟩E nothing happes.
But if we take |+⟩E as the initial state then:

|Ψ⟩AE = Û
(
|+⟩A|+⟩E

)
=

1√
2

(
|0⟩A|+⟩E + |1⟩A|−⟩E

)
(8.2)

It is seen that measuring the qubit E in the basis |+⟩, |−⟩ tells us which path
the photon has taken. Did we have to give up anything? The interaction has
changed the state of the qubit A. It is now described by a density matrix

ϱ̂′A = TrE
(
|Ψ⟩AE ⟨Ψ|

)
=

1

2

(
|0⟩A⟨0| + |1⟩A⟨1|

)
. (8.3)
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This state is invariant with respect to the phase shift and the second beam
splitter: the probabilities of detecting the photon at one or another port
of the interferometer are now 1/2 and are independent of ϕ! By gaining
which-path ingormation we erased interference fringes.

In contrast, if the qubit E was intially prepared in the state |0⟩E, then
nothing would have changed. This means that we would still see interference
fringes, but the state of the qubit E remains independent whether the photon
took upper or lower path in the interferometer. Let us take more generally
|eini⟩E = |ϑ⟩, where |ϑ⟩ = cosϑ|0⟩ + sinϑ|1⟩. Evolution transforms into:

Û
(
|+⟩A|eini⟩E

)
=

1√
2

(
|0⟩A|e0⟩E + |1⟩A|e1⟩E

)
. (8.4)

where |e0⟩ = |ϑ⟩ and |e1⟩ = | − ϑ⟩. Let us quantify distinguishability of the
ancilla qubit in terms of the pay-off, which we not must be less or equal than

P ≤
√

1 − |⟨e0|e1⟩|2 (8.5)

What about fringes? The reduced density matrix written in the |0⟩, |1⟩ basis
is now:

ϱ̂′A =
1

2

(
1 ⟨e1|e0⟩

⟨e0|e1⟩ 1

)
(8.6)

Modulation is customarily characterized with the help of visibility:

V =
pmax − pmin

pmax + pmin

= |⟨e0|e1⟩| (8.7)

We immediately see that

P2 + V 2 ≤ 1. (8.8)

[Phys. Rev. Lett. by Englert in 1996].

8.1.1 Derive transformation of an arbitrary density matrix under the operation
described above. How is the Bloch sphere transformed?
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8.2 Quantum operations

The scenario considered in the preceding section is much more general. Sup-
pose that a system A is prepared initially in a state ϱ̂A, and the auxiliary
system in |eini⟩E, and then are subjected to a joint unitary evolution Û .
Properties of the subsystem A after the evolution are described by a reduced
density matrix:

ϱ̂′A = TrE
[
Û
(
ϱ̂A ⊗ |eini⟩E ⟨eini|

)
Û †] =

∑
i

(
E⟨ei|Û |eini⟩E

)
ϱ̂A
(
E⟨eini|Û †|ei⟩E

)
(8.9)

where in the second form we introduced an orthonormal basis |ei⟩E over which
the trace operation is performed. An operator acting on a joint system AE
sandwiched between a bra and a ket corresponding to one of the subsystems
yields an operator acting in on states of the remaining subsystem — this can
be seen using matrix representation and we leave it as an exercise. Let us
denote:

K̂i = E⟨ei|Û |eini⟩E (8.10)

which allows us to write ϱ̂′A =
∑

i K̂iϱ̂AK̂
†
i . These are called Kraus operators.

Individual terms in this sum also have physical meaning. Suppose that after
the interaction we perform a measurement Âr on the subsystem A and a
projective measurement in the basis |ei⟩ on the subsystem E. The joint
probability can be written as:

pri = Tr
[(
Âr ⊗ |ei⟩E ⟨ei|

)
Û
(
ϱ̂A ⊗ |eini⟩E ⟨eini|

)
Û †] = TrA

[
Âr
(
K̂iϱ̂AK̂

†
i

)]
(8.11)

Here K̂iϱ̂AK̂
†
i can be thought as the conditional density matrix describing A

provided that an outcome i was measured on E. The trace of this operator
is equal the probability of obtaining i, pi = TrA

(
K̂iϱ̂AK̂

†
i

)
. This can be

seen immediately from the above equation by taking 1̂A in place of Âr. The
conditional probability distributions for a measurement r is:

p(r|i) =
TrA
[
Âr
(
K̂iϱ̂AK̂

†
i

)]
TrA
(
K̂iϱ̂AK̂

†
i

) (8.12)

The family K̂i defines a transformation of the subsystem A. Secondly,
it defines a measurement on the subsystem A: pi = Tr(ϱ̂AK̂

†
i K̂i). But it

also tells us what happens to the system after a measurement: obtaining the
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outcome i leaves the subsystem A in the (unnormalized) state K̂iϱ̂AK̂
†
i . It

may happen that the measuring apparatus “glues” together several outcomes.
Then the conditional density matrix would be a sum of K̂iϱ̂AK̂

†
i over a certain

subset of is.
Lastly: do we need to define the initial and final states of E and the

interaction Û? What conditions must be satisfied by K̂is? We would like
trace to be preserved. This leads to a condition [exercise]:∑

i

K̂†
i K̂i = 1̂, (8.13)

and this is the only requirement!
Several observations: a given transformation of the density matrix can be

represented by different families of operators K̂i. For example, they depend
on the measurement performed on the ancilla subsystem. Different measure-
ments can yield different amounts of information, but they will introduce the
same disturbance.

Given a measurement M̂r, we can associate an operation K̂r =
√
M̂r (well

defined, as M̂r are positive). In particular, if we take rank-one projectors,
M̂i = |i⟩ ⟨i|, then also K̂r = |i⟩ ⟨i|. This is sometimes called collapse of the
state vector: after obtaining outcome i the system ends in the state |i⟩. But
it does not necessarily have to be that way. Kraus operators K̂r = Ûi|i⟩ ⟨i|
where Ûi can be chosen independently for each i would also induce the same
projective measurement. What happens to the system after measurement
depends on the actual specific interaction!

8.2.1 Calculate Kraus operators for the which-way experiment discussed in the
preceding section for measurements in the 0/1 basis and the ± basis.

8.3 Complete positivity

The problem of physical transformations of a quantum state can be ap-
proached from a more abstract perspective. In general such transformations
will be described by a certain map Λ(ϱ̂). It is natural to require linearity
which warrants proper action on statistical ensembles. Further, we impose
trace preservation: if Trϱ̂ = 1, then also Tr[Λ(ϱ̂)] = 1. Finally, we require
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that if ϱ̂ is positive, then also Λ(ϱ̂) is positive. This condition is called pos-
itivity of the map Λ. Is this a complete set of conditions which guarantees
that Λ describes a transformation that can be realized physically?

Let us consider the case of a single qubit. The action of a map Λ on a
general density matrix can be written using the Bloch vector as:

Λ(ϱ̂) =
1

2
[Λ(1̂) + s1Λ(σ̂1) + s2Λ(σ̂2) + s3Λ(σ̂3)]. (8.14)

Thus, owing to the linearity of Λ it is sufficient to know its action on 1̂ and
Pauli matrices. Let us start by considering a simple case:

Λ(1̂) = 1̂, Λ(σ̂i) = ηiσ̂i, i = 1, 2, 3. (8.15)

The trace preserving property is satisfied. To make sure that hermitian
matrices are mapped onto hermitian, we require that all three ηi’s are real.
Finally, to guarantee positivity, if s has norm less or equal to one, then also

the vector

η1s1η2s2
η3s3

 should have norm not exceeding one. This is satisfied if

− 1 ≤ ηi ≤ 1, i = 1, 2, 3. (8.16)

Thus the set of all vectors η that guarantees positivity of Λ forms a cube.
This is quite puzzling. For example η1 = η2 = η3 = −1 would transform any
pure state onto an orthogonal one. This is not a unitary transformation, we
have seen that unitaries correspond to proper rotations of the Bloch sphere.

It turns out that the positivity condition is not sufficient for a map to be
physical. Suppose the qubit under consideration is a part of a bigger system,
and we subject the qubit A to a map Λ, while we leave the subsystem B
intact. Such a procedure is described by a trivial extension to a map Λ ⊗ I,
where I denotes the identity map on the subsystem B. The catch is that
positivity of Λ does not automatically imply positivity of Λ ⊗ I! As an
example, let us take B to be also a qubit and consider action of Λ on the
singlet state |Ψ−⟩AB⟨Ψ−|. The result is:

(Λ⊗I)(|Ψ−⟩AB⟨Ψ−|) =
1

4

(
1̂⊗ 1̂−η1σ̂1⊗ σ̂1−η2σ̂2⊗ σ̂2−η3σ̂3⊗ σ̂3

)
. (8.17)

The operator on the right hand side is positive, if η is within a tetrahedron
[exercise].
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In general:
Λ(1̂) = 1̂ + a · σ̂ (8.18)

and
Λ(σi) =

∑
j

Lijσj (8.19)

(1̂ does not appear in the above sum as otherwise trace would not be pre-
served. Maps for which a = 0 are called unital as the maximally mixed
state is preserved. In this case we can apply singular value decomposition to
L which is a proper rotation, diagonal matrix and another proper rotation.
Elements of the diagonal matrix have to satisfy the “tetrahedron” conditions.

8.3.1 Time evolution of a qubit density matrix is given by:

dϱ̂

dt
= −γ

2
(σ̂+σ̂−ϱ̂+ ϱ̂σ̂+σ̂− − 2σ̂−ϱ̂σ̂−) (8.20)

where σ̂− = |1⟩⟨0|. Assuming a general initial state find ϱ̂(t), corresponding
transformation of the Bloch sphere, and an exemplary set of Kraus operators.
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Chapter 9

Classical information theory

9.1 Data compression

Suppose that we need to encode a message composed of eight different sym-
bols. The most straightforward is to use three bits. We do not need three
bits if some of the letters do not appear at all, but that’s trivial. What if
some letters appear with lower probability than others? However, let these
messages appear with different probabilities. Can we do better than that?
Example in the third column of Table 9.1. Codewords of variable length.
Average number of bits:

1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

16
· 4 + 4 · 1

64
· 6 = 2

Decoding is straightforward. The wisdom that more frequent letters should
have shorter codewords has been exploited by Morse. Notice that thanks
to the encoding each of the bits in a message is equally likely to be 0 or 1,
irrespectively of the preceding or succeeding bit values. This is the essence
of the compression. With each incoming bit the receiver learns the maximal
possible amount of information since he has not bias to expect 1 rather then
0 or vice versa. If we had used the standard encoding where each letter is
encoded in three bits this would be not the case.

Can we do even better than that? Suppose that symbols are statistically
independent. It turns out that it is not possible. The average length is
bounded from below by a quantity called Shannon entropy. A symbol can
be treated as a random variable X which can assume one of values xi ∈ X
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A 1
2

0
B 1

4
10

C 1
8

110
D 1

8
1110

E 1
64

111100
F 1

64
111101

G 1
64

111110
H 1

64
111111

Table 9.1: Exemplary coding

with probabilities pi = p(xi). Shannon entropy is defined as:

H(X) =
∑
i

pi log2

1

pi
= −

∑
i

pi log2 pi (9.1)

An easy calculation shows that for our example H(X) = 2. Thus our code is
as good as it can get. Below we provide an intuitive argument why H(X) is
a proper measure of “compressibility” of a message.

Consider N independent realizations of random variable X distributed
according to p(x) probability distribution. For large N , i.e. long sequences,
the key notion is that of a typical sequence. It is clear from the law of large
numbers that for larger N we will most likely encounter a symbol x approx-
imately Np(x) times in the sequence. Without going into technicalities, a
sequence were each of the symbols x appear approximately Np(x) we refer to
as a typical sequence. Since a symbol x appears at Np(x) places, the proba-
bility that we obtain a given typical sequence (with fixed order of symbols)
is:

p
(N)
typical ≈

∏
x

p(x)Np(x) = 2N
∑

x p(x) log2 p(x) = 2−NH(X). (9.2)

Notice the already familiar formula for the Shannon entropy appearing in the
exponent. What does it have to do with the compressibility of a message? As
mentioned before, for long sequence we will almost always generate a typical
sequences. This implies that the sum of probabilities of all typical sequences
is approximately 1. However, as should be clear from Eq. (9.2) each typical
sequence has roughly the same probability. Hence if by Ntypical we denote
the number of typical sequences we have:

N (N)
typicalp

(N)
typical ≈ 1 ⇒ N (N)

typical ≈ 2NH(X). (9.3)
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In other words since there are 2NH(X) typical N symbol sequences it is in
principle possible to label them using NH(X) bits. Moreover, as for long se-
quences sequences that are not typical will almost never happen, it is enough
to transmit the labels of typical sequences and practically all information will
be safely transmitted. This is the intuitive argument why the Shannon en-
tropy is a useful measure of compressibility of the message. Of course, apart
from a theoretical argument, one needs to find a practical way in which to
encode the symbols, one of simple but quite efficient solutions is the Huffman
coding (see exercise 9.1.2).

Consider a random variable X with |X | possible values. What probability
distribution will yield the maximal value of H(X)?. The maximum entropy
will correspond to the “most random“ distribution, i.e. p(x) = 1/|X |, in
which case H(X) = log2 |H|. This can be proven as follows. Function h(t) =
−t log2 t is concave, which implies that for any wi ≥ 0 that sum up to one
and any arguments ti we have:

∑
i

wih(ti) ≤ h

(∑
i

witi

)
. (9.4)

Making use of this property we can write:

1

|X |
H(X) =

∑
x

1

|X |
h[p(x)] ≤ h

(
1

|X |
∑
x

p(x)

)
=

1

|X |
log2 |X |. (9.5)

Suppose that we have two random variables X = xi and Y = yj charac-
terized by a joint probability distribution p(xi, yj). The joint entropy of the
two variables is defined as:

H(X, Y ) = −
∑
ij

p(xi, yj) log2 p(xi, yj)

If the two variables are statistically independent then p(xi, yj) = p(xi)p(yj)
and:

H(X, Y ) = −
∑
ij

p(xi)p(yj)[log2 p(xi) + log2 p(yj)] = H(X) + H(Y ) (9.6)

Shannon entropy is additive. A very important property. In particular for N
indpendent realizations of X we have H(XN) = NH(X).
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9.1.1 Show that the Shannon entropy H(X) is always positive

9.1.2 Apply the Huffman coding to a message consisting of 6 different symbols
appearing with probabilities p(x) = (0.25, 0.25, 0.2, 0.1, 0.1, 0.1). Compare
the average number of bits used per symbol with the Shannon entropy. How
the result would change if you applied Huffman coding to pairs of symbols?

9.1.3 Count the number of typical sequences by considering all possible ordering
of the symbols assuming a given symbol x appears Np(x) times, and taking
the limit of large N . Try to rederive in this way the 2NH(X) formula.

9.2 Channel capacity

Let us consider a channel which transforms the input symbol x into the
output symbol y. Let p(y|x) be the conditional probability describing the
action of the channel. Consider N independent uses if the channel and ask
what is the amount of information we can transmit without errors. This
quantity will depend on the way the channel transmits the symbols i.e. p(y|x)
as well as on our encoding scheme i.e. the way we choose the input symbols
x.

Let us define the conditional entropy of random variable Y provided the
input symbol was x:

H(Y |x) = −
∑
y

p(y|x) log2 p(y|x). (9.7)

Intuitively, this quantity tells us how uncertain is the value of symbol y for
a fixed input symbol x. If input symbols are send with probability p(x) then
on average the conditional entropy reads:

H(Y |X) =
∑
x

p(x)H(Y |x) = −
∑
x,y

p(x)p(y|x) log2 p(y|x). (9.8)

We can interpret this quantity as: “how random is Y provided we know X”.
In other words: the more noisy is the channel the bigger is H(Y |X).

Let us now try to give an operational interpretation of these quantities in
terms of information transmission through the channel. Consider a sequence
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of N independent realizations of the input random variable X. We again
restrict our analysis to typical sequences as the non-typical sequence are
negligible in the limit of large N . In a typical sequence, each value x will
appear approximately Np(x) times. Consider a given value x0 for a moment.
When send through the channel we will get at the output Np(x0) symbols
y distributed according to the probability distribution p(y|x0). Provided
Np(x0) is large we can again apply the typical sequence argument and say
that at the output we may expect 2Np(x0)H(Y |x0) typical sequences. We can
interpret this as the number of “typical errors” that could happen to a string
of symbols x0. Finally, taking into account all possible values x0 we can say
that the number of typical sequences at the output that arise from a given
typical sequence {x}N at the input is equal to:

N {x}N→Y N

typical ≈ 2
∑

xNp(x)H(Y |x) = 2NH(Y |X). (9.9)

On the other hand the number of typical sequences that appear at the output
irrespectively of the input sequence is 2NH(Y ). If we want to encode informa-
tion in sequences that can be decoded unambiguously from a typical output
string we cannot encode more codewords than:

NXN→Y N

error free codewords ≈
2NH(X)

2NH(Y |X)
= 2NI(X:Y ), (9.10)

where the quantity
I(X : Y ) = H(Y ) −H(Y |X) (9.11)

is called the mutual information. The mutual information may interpreted
as the reduction of entropy of the variable Y thanks to learning the value
of variable X. Clearly it reflects how strongly X and Y are correlated. and
hence it is no surprise that it appeared in the formula for the number of
codewords we can faithfully transmit through a channel. Since the number
of codewords is 2NI(X:Y ), the mutual information can be interpreted as a
number of logical bits that can be transmitted faithfully per single use of the
channel.

I(X : Y ) depends both on the channel, i.e. p(y|x), as well as on the input
encoding described by p(x). If we ask for maximal transmission rate we are
free to optimize over the input probability distribution. This is captured by
the notion of channel capacity:

C = max
p(x)

I(X : Y ) (9.12)
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which gives the maximal amount of logical bits that can be transmitted per
single use of the channel.

9.2.1 Calculate joint and marginal entropies for

Y \ X A B C D

A 0 0 0 1
4

B 1
4

1
4 0 0

C 0 0 1
4 0

Show that H(X) = H(X,Y ), which means that X tells us everything about
Y , but H(Y ) < H(X,Y ).

9.2.2 When H(X) = H(X,Y )? In words: when the knowledge of X tells us
everything about Y , and we do not get any new information by learning Y .

9.2.3 Find the capacity of the binary noisy channel where p(0|0) = p(1|1) = p,
p(0|1) = p(1|0) = 1− p.

9.2.4 Find the capacity of noisy channel where errors are signaled by a third
output symbol “e”, i.e. p(0|0) = p(1|1) = p, p(e|0) = p(e|1) = 1− p.

9.3 Application to quantum key distribution
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Chapter 10

Communication

10.1 Von Neumann entropy

In the previous chapter we learnt how to quantify uncertainty in the context
of information transmission. What about communication using quantum
systems? The basic quantity in this context is the von Neumann entropy
S(ϱ̂) defined as:

S(ϱ̂) = −Tr(ϱ̂ log2 ϱ̂). (10.1)

It is easy to see by calculating the right hand side in the basis of eigenvectors
|ui⟩ that von Neumann entropy is equal to the Shannon entropy of its eigen-
values. Obviously, S(ϱ̂) = 0 if and only if ϱ̂ is a pure state. Von Neumann
entropy is invariant with respect to unitary transformations of the density
matrix, S(Û ϱ̂Û †) = S(ϱ̂)

Operational meaning: the statistical ensemble representation is not unique,
in general:

ϱ̂ =
∑
i

wi|ψi⟩ ⟨ψi|. (10.2)

For any such representation, H({wi}) ≥ S(ϱ̂). Thus, von Neumann entropy
is the minimum Shannon entropy associated with the probability distribution
of any statistical ensemble. For a proof, see Bengtsson and Życzkowski.

Alternative: suppose that we perform a measurement composed of rank-1
projectors M̂r. It can be also shown that H({pr}) ≥ S(ϱ̂).

Classically, entropy of two variables is always larger than the entropy of a
single one. This does not hold for Shannon entropy. A maximally entangled
state of two qubits is an obvious counterexample.
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10.2 Holevo bound

Suppose that Alice want to communicate a classical message. She can pre-
pare a physical system in a state chosen from a discrete set {ϱ̂x}, and she
chooses state ϱ̂x with a probability p(x). Bob applies a measurement M̂y.
Channel capacity is defined by the joint distribution p(x, y) = p(y|x)p(x),
where p(y|x) = Tr(M̂yϱ̂x). If the states overlap, our intuition is that they
cannot be distinguished too well at the output. For a given ensemble, there
should be an upper bound in the form of the Holevo quantity:

I(X : Y ) ≤ S

(∑
x

p(x)ϱ̂x

)
−
∑
x

p(x)S(ϱ̂x) (10.3)

If we use pure states, the second term is zero. In general, for a d-dimensional
system we obtain: I(A : B) ≤ log2 d. Non-orthogonal states don’t help in
sending classical information.

10.3 Eavesdropping

Before we pass to the proof of Holevo bound, we will use it to analyze the
security of BB84.

In Sec. 8.1 we have seen how to gain partial information about whether
the qubit has been prepared in the state |0⟩ or |1⟩. The side effect was that
a superposition |+⟩ was perturbed. This is what is behind the security of
the BB84 protocol: an attempt to gain information in the 0/1 basis results
in errors in the +/- basis — and otherwise. This can be seen by changing
the basis of the qubit A from

|0⟩A|ϑ⟩E → |0⟩A|ϑ⟩E, |1⟩A|ϑ⟩E → |1⟩A| − ϑ⟩E (10.4)

to:

|+⟩A|ϑ⟩E → cosϑ|+⟩A|0⟩E + sinϑ|−⟩A|1⟩E, (10.5)

|−⟩A|ϑ⟩E → cosϑ|−⟩A|0⟩E + sinϑ|+⟩A|1⟩E (10.6)

Here is an idea for eavesdropping: after gaining information in the basis
0/1 let us introduce a second ancilla in a state |ϑ′⟩E′ and try to gain in-
formation in the basis ±. This means that we extend the above equations
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to:

|+⟩A|ϑ⟩E|ϑ′⟩E′ → cosϑ|+⟩A|0⟩E|ϑ′⟩E′ + sinϑ|−⟩A|1⟩E| − ϑ′⟩E′ (10.7)

|−⟩A|ϑ⟩E|ϑ′⟩E′ → cosϑ|−⟩A|0⟩E| − ϑ′⟩E′ + sinϑ|+⟩A|1⟩E|ϑ′⟩E′ (10.8)

We can return to the 0/1 basis, which gives:

|0⟩A|ϑ⟩E|ϑ′⟩E′ → cosϑ′|0⟩A|ϑ⟩E|0⟩E′ + sinϑ′|1⟩A|ϑ⟩E|1⟩E′ (10.9)

|1⟩A|ϑ⟩E|ϑ′⟩E′ → cosϑ′|1⟩A| − ϑ⟩E|0⟩E′ + sinϑ′|0⟩A| − ϑ⟩E|1⟩E′ (10.10)

The above two sets of equations describe the same physical transformation,
but depending on what information we want to obtain it is easier to use one
or another representation. If Eve wants to gain information in the 0/1 basis
about the state sent by Alice she simply tries to distinguish states |ϑ⟩E and
| − ϑ⟩E of the qubit E. If she want to gain information in the ± basis, she
tries to discriminate state |ϑ′⟩E′ and | − ϑ′⟩E′ of the qubit E ′. But she also
needs to measure qubit E in the basis 0/1 and make assignment accordingly.

Error rate in the 0, 1 basis: Qz = sin2 ϑ, in the ± basis Qx = sin2 ϑ′.
Average error assuming that the two bases are equiprobable: Q = 1

2
(Qx+Qy).

Consequently mutual information between Alice and Bob: IAB = 1 −H(Q).
Eve’s information from Holevo’s bound: IAE = 1

2
[H(Qx) + H(Qz)] ≤ H(Q)

— symmetric eavesdropping is optimal from Eve’s point of view if she wants
to keep the quantum bit error rate fixed at the value Q.

A sufficient information for security:

K = IAB − IAE ≥ 0. (10.11)

In our case 1 − 2H(Q) ≥ 0, which gives Q ≈ 11%.

10.3.1 Derive transformation of the Bloch sphere of the qubit A induced by the
eavesdropping procedure described above.

10.4 Proof

The proof will be based on strong subadditivity: for a tripartite system de-
scribed by a joint density matrix ϱ̂ABC the following inequality holds:

S(ϱ̂ABC) + S(ϱ̂B) ≤ S(ϱ̂AB) + S(ϱ̂BC). (10.12)
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Here ϱ̂AB is the reduced density matrix for the subsystems AB and analo-
gously for indices BC and B.

Let Q denote the quantum system used by Alice to communicate classical
information to Bob. We will assume that Alice chooses an ensemble of states
ϱ̂i with corresponding probabilities pi. We will write this strategy in a fully
quantum mechanical form by introducing another system A whose orthogonal
pure states, denoted as |ai⟩, serve Alice as “flags” that signal which state has
been actually sent. The combined average initial state of AQ can be written
as a formula:

ϱ̂iniAQ =
∑
x

p(x)|ax⟩ ⟨ax| ⊗ ϱ̂x

which states that the flag |ai⟩ is classically correlated in a one-to-one way with
a state ϱ̂i transmitted to Bob, and that this pair is used with a probability
pi. It is easy to see that:

ϱ̂iniQ = TrA(ϱ̂iniAQ) =
∑
x

p(x)ϱ̂i, ϱ̂iniA = TrQ(ϱ̂iniAQ) =
∑
x

p(x)|ax⟩ ⟨ax|.

The second identity implies that the Shannon entropy of the distribution
{pi}, denoted here as H(A), is equal to S(ϱ̂iniA ). An easy calculation, left as
Exercise ??, shows that the entropy of the state ϱ̂iniAQ is given by:

S(ϱ̂iniAQ) = H(A) +
∑
x

p(x)S(ϱ̂x). (10.13)

Bob, having received the system Q from Alice, performs a generalized
measurement. As discussed in Sec. ??, such a measurement can be viewed
as a unitary interaction ÛQB with a probe system B and prepared initially
in a state |bini⟩. If we introduce a certain orthonormal basis {|br⟩} for the
system B, the state of QB after the interaction can be written as:

ÛQB(ϱ̂⊗ |bini⟩ ⟨bini|) =
∑
yy′

B̂yϱ̂B̂y′ ⊗ |by⟩⟨by′|

where B̂y = ⟨by|ÛQB|bini⟩ and we assumed that the system Q is prepared
initially in a pure state |ψ⟩. The procedure described so far may leave the
system B in a superposition of different states |by⟩. However, for a proper
projective measurement in the basis {|by⟩} we would like B to end up in
a statistical mixture of states |by⟩. We can accomplish this by introducing
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another system B′ that is a replica of B and requiring that Bob’s action
results in the following unitary transformation:

|ψ⟩ ⊗ |bini⟩ ⊗ |bini⟩ → (By|ψ⟩) ⊗ |by⟩ ⊗ |by⟩B′ .

It is then easy to verify that the reduced final density matrix of the system
B can be written as

∑
y Tr(B†

yByϱ̂)|by⟩ ⟨by|, where Tr(B†
yByϱ̂) is the standard

probability of obtaining the measurement outcome r given input state |ψ⟩.
The state of the combined systems after Bob’s measurement is given by:

ϱ̂AQBB′ =
∑
xyy′

p(x)|ax⟩ ⟨ax| ⊗ (B̂yϱ̂xB̂
†
y′) ⊗ |by⟩⟨by′| ⊗ |by⟩⟨by′ |

and once we trace over the auxiliary system B′ it reduces to:

ϱ̂AQB = TrB′(ϱ̂AQBB′) =
∑
xy

p(x)|ax⟩⟨ax| ⊗ (Byϱ̂xB
†
y) ⊗ |by⟩⟨by|

The reduced density matrix ϱ̂AB has the form:

ϱ̂AB = TrQB′(ϱ̂AQBB′) =
∑
xy

p(y|x)p(x)|ax⟩⟨ax| ⊗ |by⟩⟨by|

that is a statistical mixture of mutually orthogonal and thus distinguishable
states |ai⟩ ⊗ |br⟩ with probabilities p(y|x)p(x). These probabilities specify
that Alice chooses an xth symbol and Bob measures y. The von Neumann
entropy of ϱ̂AB is equal to the joint Shannon information H(A,B) of the
probability distribution p(y|x)p(x). Furthermore, the Shannon entropyH(Y )
of Bob’s outcomes is given by the von Neumann entropy S(ϱ̂B).

We now have all the ingredients to prove the Holevo theorem. We will
apply the strong subadditivity property specified in Eq. (10.12) to the final
state after Bob’s interaction, taking as A and B the systems described above,
and C = QB′. Because a unitary evolution does not change the entropy of a
density matrix:

S(ϱ̂AQBB′) = S(ϱ̂iniAQ⊗|bini⟩⟨bini|⊗|bini⟩⟨bini|) = S(ϱ̂iniAQ) = H(A)+
∑
x

pxS(ϱ̂x).

as the systems B and B′ are initially uncorrelated with AQ and pure, and in
the last step we used Eq. (10.13). For the same reason, S(ϱ̂QBB′) = S(ϱ̂iniQ ) =
S (
∑

x p(x)ϱ̂x). The remaining two entropies appearing in the inequality
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(10.12) are S(ϱ̂B) = H(Y ) and S(ϱ̂AB) = H(X, Y ). Inserting all these values
yields:

H(X) +
∑
x

p(x)S(ϱ̂x) +H(Y ) ≤ H(X,Y ) + S

(∑
x

pxϱ̂x

)

which after a trivial rearrangement is the Holevo bound.
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