Chapter 2

(Generalized measurements

Figure 2.1: Stern-Gerlach experiment

2.1 Stern-Gerlach experiment

In order to understand the need of introducing
the concept of generalized measurement, let us
start with a detailed analysis of a model of the
Stern-Gerlach experiment, see Fig. 2.2. Con-
sider a spin % particle, initial state of which is
given by:

) = [s) © 1)z,

where |s) represents a general spin state of the
particle, while |¢), is its spatial wave func-
tion, which for the purpose of this model we
restrict to represent solely the z coordinate
degree of freedom. The particle travels in the
x direction (the movement in the x direction
we treat classically) and enters a nonuniform
magnetic field at the origin of the coordinate
frame, which can be approximated as !:

(2.1)

—

B =~ (B + kz)é.. (2.2)
The Hamiltonian that describes the interac-
tion of the particle with the magnetic field is
given by

H=—ué- B, (2.3)

!This is just an approximation, since according
to Maxwell’s equations magnetic field has to satisfy
VB = 0, while these field clearly does not satisfy this
condition. In reality we would need to take into ac-
count other magnetic field components to satisfy the
divergence-free requirement
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where G = [0, 0y, 0] is a vector of Pauli ma-
trices. We assume that the interaction lasts
for a short time 6t during which the particle
goes through the magnetic field. After this
time the interaction is not present anymore.
In order to further simplify the formulas we
will set By = 0. Before the interaction takes
place, the initial state of the particle corre-
sponds to

|s) = cxl+5): + e =35)s,
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where the general spin state is written in terms
of states with a definite spin projection on the
z axis, while the initial spatial wave function
is assumed to be gaussian with a mean devia-
tion o. In what follows we will for simplicity
denote |£) := |£1).. Let us evolve the state
for time 6t under the action of Hamiltonian
H (we ignore particle free evolution, on the
grounds that 0t is sufficiently small):

(2.4)

_iH5t

[W(6t)) =e™ n |v) =
ct|H)¢+) +e—[=)e-), (2.6)
where
lpx) = é/#?/dze_:ﬂz . @2)
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In order to interpret the above states, let us
write them in the momentum representation:

_ (w¥ip)?

iolp), (2.8)

lp+) = Q/#—U%/dpe

where 0, = % is the width of the gaussian

wave packet in the momentum representation,
while dp = pkdt represents the momentum
kick experienced by the particle.

We see that as a result of the evolution, the
spin and spatial degrees of freedom become
entangled and the particle experiences a mo-
mentum kick that depends on the projection
of its spin on the z axis. If we now measure
the momentum of the particle we will learn
some information on the spin state

Let us assume we have performed an ideal
projective measurement of the momentum of
the particle 2. The probability of obtaining
result p can be calculated using the following
formula (watch out for a slight abuse of nota-
tion...):

p(p) = (L(8)[1 & [p){pl|¥ (1)),

where the identity reminds us that we do not
measure the spin states of the particle directly.
Explicitly it reads:

(2.9)

) ) _<p—5§>2 ) _(p+a§>2
p(p) = Vono? |C+| € RCEEE S |C—| € b
(2.10)

We see that the probability distribution is
given solely in terms of the spin degrees of
freedom parameters and the measurement re-
sult p.

The idea of the generalized measurement
formalism is to forget the details of the
whole interaction between the measured sys-
tem (here the spin degree of freedom) and the
measuring device (here the spatial degree of

2In a real Stern-Gerlach experiment, we let the par-
ticle evolve for some time ¢, and then measure the po-
sition when the particle hits the screen. If the time ¢
is long enough this will be equivalent to the measure-
ment of the momentum of the particle—see Problem
2.1
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Figure 2.2: Conceptual scheme of a general-
ized measurement

freedom), and express the resulting probabil-
ity distribution in the form:

p(p) = (s[lpls), (2.11)

where II,, are the respective measurement op-
erators, which need not in general be projec-
tive operators. Still they need to be positive
(in order for the probaility distribution to be
positive) and sum up to identity [dpII, = 1.
In our case the corresponding operators are
easy to find and read explicitly:

_ (p—5§)2
20
_ 1 (& p 0
Hp T V2mo2 _(p+op)? (212)
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when written in the {|+),|—)} basis.

Note that in case dp < o0, the measurement
provide us with almost no information, while
in the opposite case the measurement results
are highly informative regarding the spin in-
formation

2.2 Mathematical formulation

Inspired by the Stern-Gerlach example, we are
now ready to present the general formulation
of the concept of generalized measurements.
Consider two quantum systems: the sys-
tem to be measured (S) and the measuring
device (M). The general idea of a general-
ized measurement, is to let the system inter-
act with the measuring device, after which
the measurement device state is read out us-
ing a standard projective measurement. Ini-
tially, the system and the measurement device
are uncorrelated and their state is given by,
psym = ps®|0)(0| s, where we assumed (with-
out loss of generality, as we may always purify
the measuring device system to a larger space)
that the M is prepared initially in a pure state.
As a result of a unitary interaction of the two
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systems the final state reads:

Psar = UpsmUT. (2.13)
Finally, a measurement, projecting the state
of M onto a {|i)ar} basis (P = |i){(i|a) is
performed resulting in the probability distri-
bution:

p(i) = Troar (Plogr Ls @ Py) =
= Trsn (Uﬂs ®0)(0[nUT 1 ® |i>(i|) =
= Trs(psll), (2.14)

where TI; = 2 (0|U" 1 ® P; U|0)y;. II; are
generalized measurement operators, which in
general need not be projective operators. Still
from the above construction if follows that
they satisfy positivity ( II; > 0) and complete-
ness (D, II; = 1) conditions.

Any set of operators, {II;} such that II; > 0,
> ;I = 1 is called a positive operator valued
measure (POVM), since we may regard it as
an operator which when traced with the den-
sity matrix generates a measure in the space
of events i. We have seen above, that the in-
teraction of a quantum system with a measur-
ing system followed by the projective measure-
ment of the latter results in an effective de-
scription of the measurement using a POVM.

The question, which is essential for the
whole field of quantum estimation theory, is
whether for any given POVM there is a phys-
ical realization, in the sense of a particular
form of interaction between S and M and a
particular measurement that results in the ef-
fective probability distribution described by
this POVM. The answer is yes, and it is known
under the name of Naimark dilation theorem.
We provide the finite-dimensional case proof
below.

Let {I;}, ¢ = 1,... K be a POVM, II; €
L(Cq). We will show, that there exist a uni-
tary U € L(Cq.x) and a projective measure-
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ment P; on Cg such that,
Vs Tr(psll;) = Tr(Ups @ [0)(0[UT 1 ® P;).
(2.15)
Let us define
Uly) @ [0) = Zw vy el  (2.16)

Note, that there is no problem in taking a
square root from II; as it is a positive oper-
ator. Note also, that if this U is a legitimate
unitary operation, then when accompanied by
the projection P; = |i)(i|, realizes the required
POVM. Consider the above operation U act-
ing on two different input states. U preserves
scalar products between the states, as

(ZW' ® WE) Z VL) @ 1)
(@] ZH ) =

The above property is not in itself a suffi-
cient condition for unitarity (it is necessary),
since we only defined the map on a subset of
state in the whole Hilbert space Cq.xc (the sub-
set of states of the form [¢) ® |0)). In other
words, we have shown, that if we write U as
a matrix, then the d columns are legitimate
columns take from a unitary matrix they are
orthonormal to each other. As such, we may
always perform a completion of the matrix
to a full unitary matrix by adding additional
orhtogonal vectors until we get all the columns
which constitute the the whole orthonormal
basis. This ends the proof H.

(@) (2.17)

Is U in the above construction unique? No.
We could as well take:

Uly) ©0) = Zw_w @ i), (218)

where V; are unitaries. This unitaries, may
be understood as rotations of the post-
measurement state—they do not affect the
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probabilities of obtaining different measure-
ment results.

2.3 Post-measurement state

If instead of just calculating the proba-
bilites, we wanted to write down the post-
measurement state itself, we need to go back
to the representation of the generalized mea-
surement as a subsequent interaction with the
measuring device and a projective measure-
ment on it. Given measurement result ¢ the
joined output state of the S and M subsys-
tems reads:
pinr =1® P plop 1© P =

1@ )| Up@|0)0|UT 1® |i){i]. (2.19)

Tracing out the M subsystem we get the con-
ditional state

(i) _

ps = (i|U10)ps (O|UT|i) = KipK],  (2.20)

where we have introduced the so called Kraus
operators K; = (i|U|0) (note that this is a
partial scalar product, that leaves an operator
acting on the S system). This state is subnor-
malized and its trace gives the probability of
obtaining result i:

p(i) = Tr(pd) = Te(KipsK]) =
= Tr(ps K] K;) = Tr(psThi) = p(i), (2.21)

where we have used the property that II; =
KJ K;. If we insist on writing a normalized

conditional state, we should write pfg(l) /Di.
Note, that given II; the corresponding K;
are determined only up to a unitary: K; =
ViV/1II, where V; can be arbitrary unitary. This
represents that fact, that after the measure-
ment result is obtained, one may freely rotate
the state depending on the measurement re-
sults, and this freedom does not appear in the
statistics of the measurement results.
Recalling the example of the Stern-Gerlach
experiment, one can see that in the limit
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0p < o, the II, operators are practically pro-
portional to identity. This implies that the
while we get very little information about the
spin, the spin state is also almost not dis-
turbed at all. We refer to such a regime as
the weak measurement regime. In the oppo-
site case where we obtain a lot of information
but at the same time disturb the state we say
we deal with a strong measurement.

2.4 Decoherence and
pletely positive maps

com-

Imagine now a situation in which, in the above
described protocol, we forget to register the
actual measurement result. We can regard
this situation in a spirit, that we simply do
not have access to the readout of the mea-
surement performed on the subsystem M, or
in other words that M should be treated as in-
accessible environment with which our system
S interacts. In such a situation, the output
state of the system S is obtained by simply
tracing out the joined state of S and M over
subsystem M, and reads:

ps = Try <Uﬂs ® |0) <0|UT> = KipsK].

(2.22)
The above formula has a clear intuitional
meaning. This is a mixture of different condi-
tional states corresponding to different mea-
surement results i, representing the fact that
we have no knowledge of the actual value of ¢
and hence we are forced to consider the mix-
ture only.

The above formula represents a general
structure of a quantum channel. Kraus op-
erators, K;, can be arbitrary operators (not
necessary unitary, hermitian,...), but in or-
der to guarantee the trace-preservation con-
dition they need to satisfy: ), K;r K; = 1.
Note that, the condition of preservation the
positivity of the density matrix is automati-
cally satisfied, as for any positve operator P,
KUKT is positive as well. Hence the above
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transformation is a positive linear map, i.e.
it transforms positive operators into positive
operators. In fact, it is a completely positive
(CP) map, which means that even when the
map is trivially extended to larger space it re-
mains positive.

The evolution of a quantum state described
by Eq. (2.22) is in general no longer unitary,
and may in particular generate mixed states
out of pure input states, and lead to the so
called decoherence of quantum states. To see
it, let us go back to the Stern-Gerlach ex-
ample. Immediately, after the interaction the
output state is given by Eq. (2.6). Let us cal-
culate the corresponding reduced density ma-
trix of the S (spin) system:

ps(0t) = Tras (|4(60)) (4 (68)]) =

leg |? che_(p—|o4)
ooy e | 22

where M now corresponds to the spatial de-
gree of freedom, and the reduced density ma-
trix is written in the {|+),|—)} basis. Com-
paring the above formula, with the density
matrix of the input spin state:

[ et? e
|8><5|_[c*_c+ o (2.24)

we see that while the diagonal elements re-
main unchanged, the off-diagonal elements
are being suppressed the more the more or-
thogonal (distinguishable) are states |¢4)—
the process which we call decoherence. In
other words, the more the environment (in
this case spatial degrees of freedom) get the
information on the spin state of the system
the stronger the resulting decoherence pro-
cess. Note, that decoherence process dis-
tinguishes a preferred basis, of the so-called
pointer states (in this case |t) states), which
are not affected by the decoherence process,
but superposition of these states are affected,
and in the extreme case are transformed into
mixtures of pointer states.



