Chapter 4

Frequentist approach

We adopt the frequentist approach here,
and consider a family of probability distribu-
tions pg(z) parameterized by an unknown pa-
rameter 6. For simplicity of presentation we
first focus on single-parameter estimation and
will generalize our results to multi-parameter
case in section 4.3.

4.1 Optimal unbiased estima-
tor

In order to provide an intuition into the prob-
lem of determining the optimal estimator let
us start with a simple example.

Example 4.1 Consider N identically and indepen-
dently distributed (i.i.d.) random variables: = =
(z1,...,2N), where z; = @ + w; and w; ~ N(0,0?)
is a normally distributed random variable with mean
0 and variance 0. As a result z; ~ N (0,0%). More
explicitly, we can write the joint probability of observ-
ing measurement events x as

po(x) =po(z1)----- po(TN), (4.1)
where ‘
(0) = e 5 (42)
o\ Ti) = e 20 .
P V2ro?

Assume we observe a given sequence of events:
(z1,...,2zn). What will be the optimal way to es-
timate 67 Natural guess is that we should take the
average 0(z) = >, xi/N, but can we prove this is the
optimal choice?

In what follows, we will quantify the op-
timality of an estimator 6 using its mean
squared distance from the true value of the

parameter:

A2 = /dx (6x) ) pole). (43

Since within the frequentist framework the pa-
rameter 6 is unknown but fixed, we have to
specify some constraints on the class of esti-
mators we will be considering. Notice, that
otherwise there is no fundamental limit on
precision of estimator as we might define the
estimator 6(z) = 6y to be a constant function
and if we are lucky and 6y = 6 we have an es-
timator with zero uncertainty. Of course, it is
clear that such estimators are useless in prac-
tice. We will therefore require form our es-
timators to satisfy the unbiasedness condition
which excludes the above mentioned patholog-
ical cases.

Definition 4.1 (Unbiased estimator). We
say that an estimator 6 is unbiased, if and
only if for all 6:

)= [ai@m@ =0 @
which is equivalent to saying that on average
the estimator returns the true value for all val-
ues of parameter 6.

The goal of estimation theory can now be
formulated as the task of determining the un-
biased estimator that provides the minimum
variance the minimum variance unbiased es-
timator. Interestingly it might happen that
such an estimator does not exist, in the sense
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that there is no single estimator that is opti-
mal for the whole range of parameters 0 (see
Problem 77).

Recalling that the frequentist approach as-
sumes a fixed but unknown parameter, it is
typical that we deal with situation where we
known roughly the parameter value to be
around some value 6y and want to estimate
it precisely staying within some small inter-
val around it. It is therefore useful to in-
troduce a weaker condition of local unbiased-
ness, which will actually be sufficient to derive
all the bounds that will follow, and moreover
there will be no issue of nonexistence of mini-
mal variance locally unbiased estimator.

Definition 4.2 (locally unbiased estmator).
We say that an estimator 6 is locall unbiased
at 0 = 6, if and only if

(0)g—g, = / dz 0(z)pg, (z) = 6y,  (4.5)
@ = [ dzé(x dpL(:n) =
(4.6)

which means that we only expect the esti-
mator to track the true parameter up to the
first order around a given value of parameter

0 = 6.

Example 4.1 (continued) Considering the same
gaussian example as before, we see that indeed the pro-
posed estimator 6(a) >, xi/N is unbiased, whereas
its uncertainty reads:

(5%

The question remains if this is the minimal possible
variance?

(4.7)

4.2 Cramér-Rao bound

We would like now to derive a lower bound
on variance of any unbiased (locally) estima-
tor, the so called Cramér-Rao (CR) bound.
Thanks to this once we are able to show that
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a given estimator saturates the bound we will
be sure that it is optimal.

Theorem 4.1 (Cramér-Rao bound). Let
pe(x) be a family of probability distributions.
Provided py(x) satisfies some regularity condi-
tions (see the proof), precision of any locally

unbiased estimator 6 is lower bounded by:

1

i
P
where pg(z) = dpg(gx), and I is called the
Fisher Information (FI). For simplicity of no-

tation we have replaced 6y with 6.

A2) >

Proof. We assume

/. dz 0(x)pe(z) = 1, (4.9)

/dxﬁe(ﬂf) =0,

where the first condition is the local unbiasedness con-
dition, while the second is the formal requirement for
regularity of pg(z) (if pe(x) is regular we may enter
with the integral under the derivative and trivially sat-
isty this condition)—see Problem ?7? to see an example
of the model where this regularity assumption is not
satisfied and there is no lower bound on uncertainty
of the estimator.
Consider the following chain of inequalities

(4.10)

A% F = / dapo ) (8(x) —0)" / dr Z(@c)) -
[ [Vo) (56) - 0)] - [ ( p;i%) g
([ ae (5 -0) pe<x>)2 =1 (4

where we have used the Cauchy-Schwarz (C-S) in-
equality and utilized the local unbiasedness and regu-
larity conditions in the last step.

Remark. One can encounter different but
equivalent formulas for the FI:

F = ((dlogpo(e))”) = — (i logpo(x) ).
(4.12)

The FI is additive for
Let p((;u)(iﬂl,:m) =

) (@)p (z2), then FUD = FO 4 FE).

Additivity of FI.
product distributions.



4.3. MULTI-PARAMETER CASE

This is the justification for referring to this
quantity as information. In particular, given
N iid. random variables z;, FN) = NF,
where F' is the FI for single random variable,
and in such cases the CR bound yields

_ 1

— 4.1
A= < (4.13)

showing the expected 1/N decrease in estima-
tion variance as the number of repetitions of
experiment increases.

Example 4.1 (continued) Let us calculate the FI for
the Gaussian example studied in this chapter. Since
we deal with N i.i.d. random variables, we can imme-
diately say that F®") = NF, where F is the FI for

the Gaussian pg(z) = ﬁe’<”"e)2/2"27 and equals
F = 1/0?. Hence we obtain
A% > ~ (4.14)

demonstrating that indeed the estimator considered
before is optimal. In general an estimator that satu-
rates the CR bound is called efficient.

Condition for saturability of the CR
bound. Recalling the derivation of the CR
bound, we see that the saturation of the
CR bound is equivalent to saturation of the
Cauchy-Schwarz inequality which is equiva-
lent to:

Po(x)

Vpo(z)

A(0)

pa(@)(6(x) - 6) = (4.15)

or equivalently

;9 log pg(x) = A(0) (9(3:) - 0) ,  (4.16)
where A(6) is arbitrary function. One can
check the the above condition indeed holds for
the exemplary Gaussian model we discussed in
this section, provided we set 0(x) = 3, z;/N,
AO) = N/o2.

4.3 Multi-parameter case

We now consider a general situation where
we want to estimate multiple parameters 6 =
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(61,02, ...,0p). The object which is a natural
generalization of the estimator variance is the
estimator covariance matrix C:

Cij = /d:IZpg(:II) (91(1’) — 01) ((%(l’) — 9]‘) .

(4.17)
Diagonal elements represent the variances of
estimators of a particular parameter, while
off-diagonal terms represent potential correla-
tions between estimation of different param-
eters. The multi-parameter generalization of
the CR bound is a matrix inequality bounding
the C matrix with the FI matrix.

Theorem 4.2 (Multi-parameter CR bound).

0ipe(x)0;pe()

Cc>rF! , By = /dx o)

(4.18)
where [ is the FI matrix and 9; denote differ-
entiation with respect to 6; parameter. The
above matrix inequality should be understood
in the sense that C — F~! is a positive semi-
definite matrix.

Proof. We assume regularity and local unbiasedness

conditions, which in the multiparameter case am-
mount to:

/dm éz(w)ajpe($) = 57;]', (4.19)

/daz Oipe(T) = (4.20)

Let us choose some vectors w and v of length P and
write

wlCwvTFv = /dx szpg é
/dw Z Z,'pe—’)PG()Uj, _
/ de an/po(w)(é ()-0) Z Vo (@) (0 (2)~0)w;
da’ v ’pe l a'pe( /)
/ Z Vpe(z') 57 /pe(a’

< U dz (Z wi(Bi() _0)> (Z Ui/ai/pe(x)ﬂ -

(4.21)
where in the last step we have used the local unbi-
asedness as well as regularity conditions. Choosing

)—0)(0; (z)—0)w;

(w'v)?,
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w = Fv, we get:

v FCFv - v Fo > (v Fo)?, (4.22)

v FCFv > v Fo. (4.23)

Since the above inequality is valid for arbitrary v, this
implies

FCF>F=C>F ! (4.24)

where the final result we have obtained by acting on
both sides with F~'. B

Remark. From the derived bound it follows
in particular that: A20~z > (”‘__1)2‘2‘ > (”‘_n‘)_l,
and the last inequality is in general strict
if | contains nonzero off-diagonal elements.

To see this consider: 1 = e?ﬁ\/ﬁei Cgs
eiT[FeoeiT[F_*lei, where e; is the basis vector
with 1 at i-th position and zeros elsewhere.
This inequality leads to (F~1); > 1/F;.

4.4 Maximum likelihood esti-
mator
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