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Figure 4.1: Maximum likelihood estimator

w = Fv, we get:
v 'FCFv - v Fo > (v Fv)?,
v FCFv > v Fu.

(4.22)
(4.23)

Since the above inequality is valid for arbitrary v, this
implies

FCF>F=C>F", (4.24)
where the final result we have obtained by acting on
both sides with F~'. W

Remark. From the derived bound it follows
in particular that: A20; > (F~H > (Fiu)~h,
and the last inequality is in general strict
if | contains nonzero off-diagonal elements.

To see this consider: 1 = eiT\/f\/ﬁei CSS
eiT[Feoe;fF[F_lei, where e; is the basis vector
with 1 at ¢-th position and zeros elsewhere.
This inequality leads to (F~1); > 1/F;;.

4.4 Maximum likelihood esti-

mator

Typically, we will encounter situations when
there is no unbiased estimator that strictly
saturates the CR bound for the parameter we
We are therefore looking
for some universally applicable recipe to find
a good estimator.

want to estimate.

Definition 4.3 (Maximum likelihood (ML)

estimator). Given a probabilistic model,
po(x), the ML estimator is defined as:
Oui () = argmax,|[l,(6)], (4.25)

where 1,(0) = pg(x) is the likelihood function,
for which 0 is the argument.

In other words, given observed event x we
look for such a parameter 6 for which prob-
ability pg(x) (or equivalently the likelihood
[,(0)) is maximal—the event is most likely,
see Fig. 77. The position of the maximum
corresponds to Oy, ().
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Remark. In practice, since [,(6) will often
be represented as product of many terms (as
in e.g. repeated experiment scenarios), it is
much more efficient and stable numerically to
maximize log[l,(0)] (the log-likelihood func-
tion), as products will turn into sums, and
since the log function is monotonic the posi-

tion of the maximum will remain unchanged.

Example 4.2 Consider our Gaussian example,

N
1 — :E-fé)/o'2
lo(0) = po(a) = ——5 [[e ™ . (4.26)
vV 271’0’2N i=1

For a given o we look for the maximum of [. The

condition

d d
— = ivalently — 1 =
depg(a:) 0, or equivalently T ogpo(xz) =0
(4.27)
implies:

O () = % Z ;. (4.28)

We see that the ML estimator is actually the same
simple estimator we have proven before to be efficient.

The above apparent coincidence of the ML
estimator and the efficient estimator is a gen-
eral feature. Note that the CR bound satura-
bility condition (4.16) implies that if we take
6 such that f—elogpg(:r:) = 0, i.e. extremum
of the log likelihood function, then the actual
efficient estimator f(x) = 6 = fy(x) (un-
less A(6) = 0, which corresponds to a trivial
case of FI equal to zero), so indeed the ML
estimator is the efficient estimator.

We will now prove the most important the-
orem of classical estimation theory, namely
the asymptotic efficiency of the ML estima-
tor, which means that the ML estimator will
asymptotically saturate the CR bound in a
model with large number of identical and in-
dependent repetitions of the experiment. We
will need the following Lemma:

Lemma 4.1. Let p;(x), p2(x) be two proba-
bility distributions, then

~—

D(p1|p2) _/déﬂpl(l’) log p;(x >0, (4.29)

p2(x

~—

where D(p1|p2) is called the relative entropy.
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Proof. The log function is concave, which
means that log(> ", wit;) > >, wit;, for w; >
0, >, w =1 Settlng tw = zfg g wy = p1(x)
and utilizing the concavity of the log function
we get

p2() /
dzpi(x)lo <lo dzpo(z) =0,
[tz (o 222 < 10g [ ar (o)
(4.30)
which ends the proof. O

We are now ready to prove the main theo-
rem.

Theorem 4.3. Let

po(x) =po(x1) - -+ po(TN), (4.31)

represent the joint probability distribution for
N independent repetitions of an experiment.
The ML estimator will be asymptotically un-
biased and efficient in the limit N — oo, which
formally means:

1
O, NN(GO’FN>

where 6y is the true value of the parameter
and F is the FI corresponding to a single ex-
periment py(x;) at 0 = 6.

(4.32)

Proof. We start by making some technical as-
sumptions concerning the regularity of pg(z).
We assume that that log pp(z) has derivatives
up to order 2 and (9plogpy(xz)) = 0. The
proof consists of two parts. First we prove
asymptotic unbiasedness and then efficiency.

Asymptotic unbiasedness. Let 0 be an esti-
mator. Let us divide the log-likelihood func-
tion at @ by N:

1 -
le(g) logpg Zlogpg ;).

(4.33)

By the law of large numbers, for almost every

sequence x, we get
N—o00

%l‘”(é)—> da pg, (x) log pj(z) (4.34)
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where 6 is the true value. Using Lemma 4.1
we get

[ dwpuy(a)togpye) < [ dopay ) oy ()

(4.35)
This shows that the argument 6 for which we
obtain the maximum of [;(0), i.e. the ML
estimator, in the asymptotic limit N — oo
will correspond to the true value.

Asymptotic efficiency. We will start by in-
voking the mean value theorem, which states
that assuming Ay < 6 (the order here is not
important) there exist 6y < 0 < 0 such that:

dlogpp(x) | _ M) )
a0 0—d do 6=y _ d“log pg(x)
6 — 6 de?
(4.36)
If = Oy, then dl%‘g"(x) _ =0 therefore
O=0mr,
we get
dlogpy(e)|  _ dPlogpy(@)| 5
46 66, de2 i 0—vmML)-
(4.37)
Let us now consider:
iig&i fzd@m%
N de? d6? -
(4.38)

We know that éML N_)—Oo> 0y and hence

0 ]\H—OO> fp. We can therefore write:

1 d*logpg(z)|  Now lz d* log py(:)
N o d? |, N4 d6?
d*log pg ()
_ =—-F (4
< a2 |, (439)

Let us define a random variable £, which is a
sum of N i.i.d variables, as follows:

1 dlogpy(x)
JN o

&=

0=06o

dlogpg x;)
v ?D

(4.40)

0=0o

0=09
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Note that (¢) = 0, while the second moment

reads:
2
9:90 ) > N

/1 dlog pg(x;)
- (3 (5 e
2
) >:F. (4.41)
0=0¢

1
By the central limit theorem this implies that

1 d log po(z;)
v
E~N(0,F). As a result

dlogdjég(w) NF
g . Py = 10=by | A
HML 90 d2log pe(x) N <O’ N2F2>
W e (4.42)
so finally:
Our, ~ N (0o, (NF) ™), (4.43)

which shows that asymptotically the max-
imum likelihood estimator is normally dis-
tributed and saturates the CR bound. A pri-
ori, it is not clear, however, how large N need
to be taken to saturate the bound up to some
give accuracy. This depends on the details of
the model. O
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