Chapter 6

Quantum frequentist estimation

In order to better grasp the intuitions be-
hind the theory that will be developed in this
chapter let us be guided by the following sim-
ple example.

Example 6.1 Consider a single qubit system, and the
family of states

1
V2

parameterized by an angle 6 € [0,27]. In the Bloch
sphere picture these states correspond to states on the
equator. Assume we are given N copies of the state
so that

o) = == (10) +€”|1)), (6.1)

po = (I%) (o)™ . (6.2)

We want to know how to choose the optimal mea-
surement and estimator in order to estimate 6 with
the lowest uncertainty possible. Consider two exem-
plary measurements, corresponding to the following
choices of basis, a) {|0),]|1)}, b) {|+),|—)}, where
|£) = (|0) £ [1))/v/2. In case of measurement a)
we see that pe(0) = 1/2, pe(1) = 1/2, so that the
measurements results do not carry any information on
the parameter 6. On the other hand, measurement b)
leads to probability distributions pe (&) = |{(+|we)|* =
1(1 £ cos ). which seems much more reasonable. We
can caluclate the correspondin FI for this measure-
ment which yields:

po 1 (dpe<+>)2 L] (dpe())2 1
po(+) \ df po(—=) \ df '
(6.3)
As a result given N copies, FN) = N, and the CR
bound implies that A%0 > 1/N.

The question is whether this measurement is opti-
mal, or maybe some other measurement could result
in higher FI? Note that we have just considered mea-
surements on a single qubit, while in principle given
N copies one could consider also collective measure-
ments on all NV copies simultaneously. Might that be
helpful? In the following sections we will develop tools
that will allow us to answer these questions.

In this chapter we will pursue the frequen-
tist approach and try to find a fundamental
lower bound on achievable estimation uncer-
tainty. The following theorem is a generaliza-
tion of the classical Cramér-Rao bound and
we first focus on the single-parameter case.

6.1 Quantum Cramér-Rao

bound

Theorem 6.1 (Quantum Cramér-Rao

bound). Given a family of states py, arbi-

trary measurements and locally unbiased

estimators the estimation variance is lower
bounded by:

~ 1

A% > —

il FQ)

m

Fisher information

(6.4)

where Fg is the quantu
(QFI) that is defined as

Fo = Tr(pgh3), (6.5)
where Ay is the symmetric logarithmic deriva-
tive (SLD) operator defined implicitly via the
following equation

dpo _ 1

10— 5 DNero+ polo). (6.6)

Proof. First note, that the SLD operator de-
fined in the theorem can be written explicitly

if one consider it in the pg eigenbasis. Let
po = >_; Ailei)(ei| then according to defining
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equation for SLD we have:

1
—glei) = 5(eil (poho + Aopo) le;) =

= — (>\z<ez|A0|€J> + <€i|A9|€j>>‘j) :

5 (6.7)

As a result we get an explicit formula for the
SLD operator:

d
2(eil 7 le;)

ilAolej) =
<e‘ 9|€]> /\i+/\j

(6.8)
Since pg is hermitian, then from the above for-
mula it in particular follows that Ay is also a
hermitian operator.

Consider a measurement {II,} and the cor-
responding probability distribution pg(x) =
Tr(ppll,). We want to derive an upper bound
on the resulting Fisher information valid for
arbitrary measurements:

don 112
o= o | Te(1, %)
= xr— =
T‘I‘(prg)
1 2
_ /dx [Tr [5T1.(Agps + polo)]]
Tr(Mzpg)
Let us just focus on the term in the enumera-
tor. Since all pg, I, Ag are hermitian we may
equivalently write

(6.9)

1
‘Tr |:2HZ‘(A6’p9 + peAe)} ‘ =

1
Tr (2[HzAap9 + (Ha:AePo)T]> ‘ =
= |ReTr (HzAgpg)’ < ]Tr (H$A9p9)| . (6.10)

We now make use of the Cauchy-Schwarz in-
equality with respect to the Hilbert-Schmidt
matrix scalar product:

‘T‘r(ABT)‘2 < Tr (ATA) Tv (BTB) . (6.11)

where we set A = /Il;\/pg, B = 1l Ag\/po
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and obtain:

| Tr (I Agpg)|* < Tr(ppTle) Tr(y/poAoTLs Ag+/Po)-

(6.12)
Substituting this inequality to (6.10) and (6.9)
we finally arrive at:

F< /dx Tr(peAgIlAg) = Tr(ppA}) = Fo,

(6.13)
where we have made use of the completeness
property of measurement operators II,. This
way we have proved that whatever measure-
ment is chosen F' < Fp. Making use of the
classical CR bound we therefore obtain

A% > L

— > —. 14
- F FQ (6 )

O]

Remark. Note that in the classical case,

dpgéx) _ dlogd];g(a:)pg(x) (6.15)
so the object that multiplies the probability
distribution and yields its derivative is the log-
arithmic derivative. The Ay is therefore the
operator analog of the logarithmic derivative.
Due to non-commutativity this choice is not
unique and hence the name SLD indicates that
we define it in a symmetric way. It is possi-
ble to define e.g. right logarithmic derivative
(RLD) via (11%09 = pp(x)AL, and the derivation
of the CR bound will also be valid. Still in
general the RLD does not exist (notice that
it will only exist if the kernel of % is the
same as the kernel od py(x)). Moreover, even
if it exists, it may be shown that in the single
parameter case the resulting bound is never
tighter than the one based on the SLD. In
multi-parameter case, however, it might hap-
pen that RLD provides a tighter bound, see
Sec. 6.4 for more information.

Additivity of the QFI Similarly to the
FI the QFT is additive. Consider a family of
states of a bipartite system that are products
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of states of individual systems:

(12) _

o =V @ ). (6.16)

Let Aél), Aé2) be SLD operators corresponding

(1) (2)

to p,~ and py "~ respectively. Then:

dpl?
de

) ap?
= g5 ©P0 + ol a9

2

d6
1
(APAD + oPAD) @ 42+
o e -
(A7 @1+ 10AP) o @ o+ o,
(6.17)

N | —

from which we see that the SLD for the joined
state equals

Agm)

—AVe1+10AY.  (6.18)

Consequently the QFI reads:

12 12 12
FC(Q) (((9 )A( ))

— Tr(pVAD?) + Tr(pP AP+
FaTr(pOAY) - T (P AR) —

1 2
FY + FS), (6.19)
where we have used the fact that Tr(pgAg) =
Tréee = 0.

In particular, when we consider N copies
of a quantum state pga]v’ the resulting QFI

reads FC(QN) = NFg, where Fg is the QFI cor-
responding to the single state py.

Pure state case Consider a special case
where the states in which the parameter is en-
coded are pure, pg = |g)(¢g|. In this case the
SLD operator may be written explicitly as

Ao =2 (Io) (ol + o) (il ), (6.20)

45
where |1)g) = dw@‘». Let us check this:
5 (Aol g + 4} (gl o) =
|0) (Wol+[0) (ol +((dhal1ba) +(tale)) [tbo) (o] =

where we have used the identity 0 =

dWolbo) — (s)glypo) + (tolto).
The resulting QFI reads:

= Tr (|4g) (10p|AZ) =
=4 (<¢9|¢9>2 + (talbg)?

(ol Aflvo) =
+ (olis) + | (Wolvo))

(6.22)

Since (1hglbe) + (volthg) = 0, if we square it,
we obtain the following identity:

(Wo|vb0)>+(alve) >+ (Walta)|> = —[(toliba) .
(6.23)
Substituting this to (6.22) we finally arrive at:
Fo =4 ({Wolio) — (dolw) 2) . (6.24)
The above formula has a very intuitive inter-
pretation. There is more information on the
parameter accessible in the state the bigger is
the derivative |t). Still, since states are any-
way normalized, the real change has to hap-
pen in the direction perpendicular to the state
itself, and that is why we need to substitute
the component representing the change in the
direction of the state itself.

Note, that while in the derivation we have
used an explicit formula for the SLD, the SLD
for pure states is not a unique operator. In
general only for full rank state the SLD is
uniquely defined via (6.7), otherwise we may
always add terms that are outside of the sup-
port of the py and this will still lead to the
correct formula for the derivative.

Remark (Time-Energy uncertainty relation).
Consider the problem of estimating the time
of evolution of a quantum state evolving under
a known Hamitonian. Formally consider the
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family of states:

) = e My, (6.25)

where now it is time ¢ which is the parameter
to be estimated. As this is a pure state model
we can easily calculate QFI using [?] and get

Fo = 5 (W) — (G| H w0 )
(6.26)
which is proportional to the variance of the
Hamiltonian on the state. The QCR bound
now takes the form

2

AN’ H > %, (6.27)
which may be viewed as a formal statement
of the time-energy uncertainty relation. The
fact that there is no time operator in quantum
mechanics does not cause any problem here,
since A%t is the variance of an estimator and
not of an operator.

Example 6.1 (continued) Let us calculate the QFI
information for the qubit model. First note that

) = ie?|1)/v/2, hence

11
Fo=4(--7) =1
o=1(373)

Given N copies the QFI equals Fg\f> = N, and hence

the QCR bound implies that A%0 = 1/N. Note that
this is the same value we have obtained, when we
calculated FI for the measurement in |£) basis. It
implies that this measurement is indeed optimal (one
can check that actually any measurement in the basis
where vectors lie in the equatorial plane of the Bloch
sphere will be optimal, so this choice was not unique).

(6.28)

This observation has some far reaching conse-
quences. As a by product we have also proven, that
collective measurements are not necessary to achieve
the optimal precision—mnote that QFI for N copies
p?N is just NV times QFTI for a single copy, and hence
we can find a measurement on a single copy that makes
the corresponding FI equal to QFI of the state, it im-
plies that if we repeat the measurement on N copies
we will get N times larger FI, and as result the same
value as QF1I for the N copy state—note that that the
derivation of the quantum CR bound allowed for arbi-
trary measurements, so when considered for the p®V
we have taken into account the possibility of collective
measurements.

QUANTUM FREQUENTIST ESTIMATION

Saturability of the quantum CR bound
In the single qubit example from previous sec-
tion we have seen that there was a simple mea-
surement for which the corresponding FI was
equal to the QFI. Inspecting the derivation of
the QCR bound, we see that in order to sat-
urate the Cauchy-Schwarz inequality we need
to satisfy

V Hm\//79 — )\m \V HxAO\/p7%

where A, is some proportionality constant.
Moreover, iff A is real then inequalitiy (6.10)
will also be saturated. This can be seen as
follows:

(6.29)

’ReTr(HmAgpg)’ = ]ReTr(m\/me/HzAQM)] =

[ReA, Tr(y/po AL Agy/p)|-

Note that the operator under the trace is her-
mitian so the trace is real. Hence if and only
if A € R we can remove Re without changing
the value of the expression.

Let Ap = >, ly|z)(z| be the eigendecom-
position of Ag so that |z) form orthonormal
eigenbasis. Now, let us consider a measure-
ment which corresponds to a projection mea-
surement in the eigenbasis of the SLD oper-
ator: II, = |x)(x|. Note that since this is a
projective measurement /I, = II,. We have:

|2) (2 Aer/po = Lol ) (2] /o,

and hence indeed we satisfy all saturability
conditions provided we set A, = 1/1,.

(6.30)

(6.31)

Remark. Even though we have proven that
there always exist a projective measurement
for which FI equals to QFI, we need to keep
in mind that we still need to satisfy the clas-
sical requirement of existence of the estimator
that satisfies the classical CR bound in order
to claim that actually the QCR bound is sat-
urated. In particular even if there is a sin-
gle copy measurement for which FI equals the
QFT it does not mean we can saturate QCR
bound using single copy measurements. We
may still need in general to have many repeti-
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ions of the experiment (many copies of a quan-
tum state) to really be sure that the estimator
that asymptotically saturates the CR bound
(e.g. max-likelihood estimator) exists.

6.2 Multi-parameter case

Let us now consider a multi-parameter esti-
mation problem, where the family of states
pe is parametrized by K real parameters 8 =
{61,...,0K}. Similarly as in the classical case
the following multiparameter generalization of
the CR bound holds.

Theorem 6.2 (Multiparameter quantum
Cramér-Rao bound). Given a family of states
po, 0 ={01,...,0k}, the following matrix in-
equality holds:

C>Fg, (6.32)
where C is the K x K covariance matrix cor-
responding to estimation involving any locally
unbiased estimators and arbitrary measure-
ments and [ is the QFI matrix defined as:

1
(FQ)y; = 5Trlpe(Ae,ide,j + NojNe,i)]
(6.33)
where Ag; is the SLD corresponding to pa-
rameter 6;:
dpg 1

0 — 3 (peloi + No.ipe) -

(6.34)

Proof. The proof utilizes the same steps that
could be found in earlier derivations of the sin-
gle parameter quantum CR bound and multi-
parameter classical CR bound. We provide
the proof below, without comments as we ba-
sically repeat the steps that were employed in

47

the earlier proofs:
2
oTFo — /d:n [ viReTr(Il:Ag,ipe)l” _
TTIOBHQ: o

/d:z T (Y, villoAg,ipe)|? <
TrpBHCU

/d Tr(pelly)Tr <Z@'j UinMAe,ivHvaer,j@)
X

Tr(IOBHz)
= Z viTr (pgAg,ile,j) vj =
ij

=vTFgu. (6.35)
O

Remark. In the multiparameter case the
QCR is not in general saturable. This is due
to the fact that different SLDs corresponding
to different parameters might not commute,
so it is not clear whether there exist a sin-
gle measurement that provides the optimal FI
for all the parameters simultaneously. In fact,
tighter bounds exist that are more informa-
tive and take into account the necessary trade-
offs due to incompatibility of measurements
which are optimal for different parameters, see
Sec. 6.4.

6.3 Natural metric in the
space of quantum states

Bures metric Since the QFI is a measure
of distinguishability of quantum states we may
employ it as a natural measure of distance be-
tween quantum states. Let us define infinites-
imal distance between states p and p + dp as:

1
dp(p,p+dp)* = [ Tr(pdA?),  (6.36)
where dA is defined via:
1
dp = i(dAp—i—pdA). (6.37)

dp is called the Bures distance and the result-
ing metric in the space of quantum states is
called the Bures metric. When restricted to
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pure states, the Bures metric is refered to as
the Fubini-Study metric.

Fidelity In quantum information theory a
commonly used measure of similarity of two
quantum states is the so called fidelity. Given
two pure states |11), |[12) the fidelity is defined
as:

F(lw), l2)) = [(wrlea)]? (6.38)

and may be interpreted as the probability of
observing state |11) as state [i)2) or vice versa.

Fidelity is generalized to mixed states using
the following formula:

Flp1,p2) = max |(¢1]iha)]?,

6.39
[¢1),]%2) ( )

where [¢;) € H®H g are purifications of states
pi: pi = Tre|vi)(;|, where E represents an-
cillary Hilbert space used for purification.

Theorem 6.3 (Uhlman theorem). An ex-
plicit formula for the fidelity between two
mixed states reads:

Flpr:p2) = (Tx[y/p1v/pal)?,
where |A| = VATA.

(6.40)

Proof. Let [1;) € Hg ® HE be purifications
of p;. We can rewrite each |1;) as a matrix
A;, such that (A;)F = 1, 11, were k, [ represent
indices corresponding to spaces H and Hpg.
Then p; = Tre;) (Yi| = AiAZT- Now,

F(p1, p2) = max |Te(ABN %, p; = AiA:-r.

A1,A2
(6.41)
Note that changing a purification for a given
p corresponds to replacing A — AU, where
U is a unitary. Let us now consider the polar
decomposition of A;, A; = \/p;U;, and observe
that

T (Ar4d) | = 1T (Vorth Ul v ) | =
T (Vorv/pithUd) | < Tely/piy/pal. (6.42)

QUANTUM FREQUENTIST ESTIMATION

Note that the above inequality can be sat-
urated if we choose purifications such that
UUS = 1.

In the above derivation we have used the
property that for any hermitian matrix A and
unitary U, |Tr(AU)| < Tr|A|. This can be
seen as follows. Let A = ). a;|)(i| be eigen-
decomposition of A. Since trace is basis inde-
pendent we can perform it using the basis |i):
|Tr(AU)| = |>;ai(i|U]i)|. Absolute value
of any matrix element of a unitray matrix is

smaller or equal to 1. Hence |}, a;(i|U|i)| <
| 225 ail <32 lasl = TrlA. O

Relation between the Fidelity and the
QFI We now prove a theorem that provides
a link between the fidelity and the QFI, by
showing that infinitesimal change in the fi-
delity when a quantum state is changed is pro-
portional to the QFI.

Theorem 6.4. For two infinitesimally close
states PO, PY+do,

1
.F(pg,p9+d9) =1- ZFQ(pg)dQQ + O(dgg).
(6.43)

Proof. Consider:

F(po, po+as) = Tr[/pe (po + pod0) /ps])
= Tr [pj + V/Popo/pedd] , (6.44)

where we have made a replacement pgiqp =
po + pedf. We now want to expand the above
quantity up to the second order in df. Since
we deal with operators we have to be careful.
We write:

T [0 + v/Pape/pedd] = po+Ado+Bd6’+0(d6®),

(6.45)
where A and B are operators we want to deter-
mine now. Let us take square of the both sides
of the above equations and compare terms in
the leading orders in df. As a result we obtain
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the following equations:

po A+ Ape = \/pap/po (6.46)
A? + pgB + Bpy = 0. (6.47)

Solving the above equations in the eigenbasis
of pg =, pili)(i| we get:

Aij = VPP po,ij — Tr(A) =0, (6.48)

Pi +pj
while
B — 2ok AwAr _
== =
Pi + Dy
1 VPiPj +/PkPj . .
- Z —7 : 00,ik 0,k -
Di + pj B DPi + Pk Dk + Py
(6.49)
As a result
Pk . 2
TrB = — —" gl 6.50
> sl (650)

ik
Note that from the definition of the SLD,

Poik = 3Mok(pi + pi), and hence TrB =
—%TrpgAg = —%FQ. So we get

1
V' F(po; po+ap) =1 — gFQdGQ +0(d6?)
(6.51)

which yields the desired theorem when
squared. O



