
Quantum Optics 2019/2020, Problem set 5, 17.11.2020

Problem 1 According to statistical mechanics the thermal state of a quantum system is de�ned as:

ρT =
1

Tr(e−
Ĥ
kT )

e−
Ĥ
kT

where Ĥ is the Hamiltonian of the system. Consider a thermal state of light in a single mode with
corresponding frequency ω.

a) Show that the thermal state has a form:

ρT = (1− e−ξ)
∑
n

e−nξ|n〉〈n|,

where ξ = ~ω
kT
, and |n〉 represents the n photon state.

b) Show that the expected photon number in the thermal state reads: n̄ = 1
eξ−1

c) Prove that the thermal state can be equivalently written as:

ρT =
1

πn̄

∫
d2α e−

|α|2
n̄ |α〉〈α|.

Comment on the limit n̄→ 0.

d) Inspecting the above formula, would you call the thermal state a classical state?

Problem 2 The squeezing operator is de�ned as:

Ŝ(r, θ) = e
1
2(ξ∗â2−ξâ†2),

where ξ = reiθ. Prove the following identities that show how the squeezing operator transforms anihilation
and creation operators in the Heisenberg picture:

Ŝ†âŜ = â cosh(r)− â† sinh(r)eiθ

Ŝ†â†Ŝ = â† cosh(r)− â sinh(r)e−iθ.

Show that analogous transformations for quadrature operators q̂ = (â+ â†)/
√

2, p̂ = (â− â†)/(i
√

2) read:

Ŝ†q̂Ŝ = q̂[cosh(r)− sinh(r) cos(θ)]− p̂ sinh(r) sin(θ).

Ŝ†p̂†Ŝ = −q̂ sinh(r) sin(θ) + p̂[cosh(r) + sinh(r) cos(θ)].



Problem 3 Consider a single standing wave mode with frequency ω in an a�ective 1D cavity (along the
z axis) of volume V , where the mode function is proportional to sin kz, k = ω/c. Consider a squeezed
vacuum state in this mode de�ned as:

|r, 0〉 = Ŝ(r, 0)|0〉.

a) Compute the time variation of the expectation value of the electric �eld at z0 = π/(2k).

b) Compute the time variation of the variance the electric �eld at z0.

c) Compute the mean number of photons in the state.

Click to see the answer:

a) 〈Ê(t, z0)〉 = 0

b) 〈Ê(t, z0)
2〉 = ~ω

ε0V

[
cosh2 r + sinh2 r − cos(2ωt) sinh(2r)

]
c) n̄ = sinh2(r) (hint: it is simplest to compute it using the Heisenberg picture)

Problem 4 Show that a squeezed vacuum state, when expanded in the Fock basis, reads:

|r, θ〉 = Ŝ(r, θ)|0〉 =
1√

cosh(r)

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimθ[tanh(r)]m|2m〉.

Click to see the hint:

Start from the property â|0〉 = 0. From this it follows: Ŝâ|0〉 = 0. Now insert identity and get:
ŜâŜ†Ŝ|0〉 = 0. So we have: ŜâŜ†|r, θ〉 = 0. Using the facts proven in Problem 2 we can write [â cosh(r) +
â† sinh(r)eiθ]|r, θ〉 = 0. This should allow us to obtain a recursion relation for the coe�cients of the state
|r, θ〉 =

∑∞
n=0 cn|n〉.

It may also help to use the following Taylor expansion: (1− z)−1/2 = 1 +
∑∞

m=0
(2m−1)!!
(2m)!!

zm

Problem 5 (a bit tedious, but worth it) Consider the Mach-Zhender interferometer as in Problem
4 in Probelm Set 4, and consider the situation in which apart from a coherent state |α〉 sent into the
upper input port, one sends a squeezed vacuum state at the other (typically unused) input port of the
interferometer, so the input state reads: |ψ〉 = |α〉 ⊗ |r, 0〉.

Find the formula for the precision of estimating the phase delay between the arms of the interferometer,
which is based on measuring photon number di�erence at the output ports of the interferometer (for this
you need to �nd the expectation value and the variance of the observable Â = â†2â2 − â

†
1â1, and use the

linear error propagation formula).
Do you see some potential advantage of this scheme compared to the situation when all the light is

send just as coherent state at the input?



Click to see the answer:

〈A〉 =
(
|α|2 − sinh2 r

)
cosϕ,

∆2A = cos2 ϕ

(
|α|2 +

1

2
sinh2(2r)

)
+ sin2 ϕ

(
|α|2 cosh(2r) + Re(α2) sinh(2r) + sinh2 r

)
Now since the phase of α does not enter into the 〈A〉 we can choose it in a way to minimize the variance
∆2A. Assuming r > 0 (squeezing in q direction), we should choose it such that Re(α2) = |α|2 (coherent
state is shifted in the positive direction of the q axis). For this choice:

∆2A = cos2 ϕ

(
|α|2 +

1

2
sinh2(2r)

)
+ sin2 ϕ

(
|α|2e−2r + sinh2 r

)
.

The corresponding precision:

∆ϕ =

√
∆2A∣∣∣d〈A〉
dϕ

∣∣∣ =

√
cot2 ϕ[|α|2 + 1

2
sinh2(2r)] + |α|2e−2r + sinh2 r

||α|2 − sinh2 r|
.

The uncertainty of estimation will be the smallest at ϕ = π/2, ϕ = 3/2π in which case:

∆ϕ =

√
|α|2e−2r + sinh2 r

||α|2 − sinh2 r|
.

In case of small squeezing and strong coherent light (|α|2e−2r � sinh2 r), we can approximate the above
formula as:

∆ϕ ≈ e−r

|α|
≈ e−r√

n̄
.

Where in the last transition, we have used the fact that in this approximation basically all the photons are
in the coherent state so n̄ = |α|2. We see that thanks to squeezing we can reduce the uncertainty below
that of the purely coherent case!!! (this was possible as we e�ectively obtained a subshot noise statistics
of the photon number di�erence at the output).


