
Quantum Optics 2019/2020, Problem set 7, 11.12.2020

Prologue Consider a two-slit interferometric experiment as depicted below:

During the lecture, we have computed the inteference patter on the screen by expressing the electric �eld
operator at the screen Ê(~r, t) as a linear combination of electric �eld operators at positions ~r1, ~r2 at
appropriately delayed times t1 = t− |~r1 − ~r|/c, t2 = t− |~r2 − ~r|/c:

Ê(+)(~r, t) = K1Ê
(+)(~r1, t1) +K2Ê

(+)(~r2, t2),

where Ki are some constant related with the classical propagation of light from the slits to the screen,
the exact form of which is not relevant for our considerations, and for simplicity we set K1 = K2. We
then acted with these operators on state |ψ〉, which was a quantum state of light where all the light was

present only in the single plane wave mode associated with a wave vector ~k0. Hence, when looking at the
expression for the electric �eld operator (assuming discretized modes)

Ê(~r, t) =
∑
~k

√
~ωk
2ε0V

â~ke
i(~k~r−ωkt),

then, e�ectively, when calculating the average intensity on the screen, only the term corresponding to
~k = ~k0 contributed. We observed that interference pattern appears irrespectively of the character of the
state |ψ〉 (be it a coherent, or a Fock state,...) and the mean intensity on the screen is proportional to:

〈Î(~r, t)〉 ∝ (1 + cos[~k0(~r1 − ~r2)− ωk0(t1 − t2)]).

Problem 1 Consider now the case when instead of a single pure state of light |α〉~k0 in a well de�ned
plane wave mode we deal with a mixed state:

ρ =

∫
dωL(ω)ρω,

where ρω = |α〉ω〈α| represents a state of light where we have a coherent state in a plane wave mode

corresponding to a wave vector ~kω = ω/c~ez, where ~ez is a unit vector which points in the z direction
(direction perpendicular to the screen)�formally we should write the state state |ψ〉ω as |0〉 ⊗ |0〉 ⊗
|α〉ω ⊗ |0〉 ⊗ · · · ⊗ |0〉 to represent the fact that all other modes are in vacuum state. This corresponds to



the situation, that we have a mixture of coherent states corresponding to plane wave modes of di�erent
frequencies, but all propagating in the same direction. In this expression L(ω) represents the probability
of having a given frequency mode occupied. We will take it to be the Lorenzian distribution

L(ω) =
1

π

γ

(ω − ω0)2 + γ2
,

where γ is the width parameter of the distribution. Write explicitly the normalized �rst order coherence
function for this state g(1)(~r1, t1, ~r2, t2). To simplify the formulas, you may assume that ω0 � γ (width of
the Lorenzian is much smaller than the mean value) which allows us to approximate integrals:∫

dω ωL(ω)eiωt ≈ ω0

∫
dω L(ω)eiωt.

Note that we cannot replace ω with ω0 in the exponent, as this is a fast oscillating term, and this would
be legitimate only if we additionally assumed that t � γ, which we do not want to do. Ignoring the
proportionality constants, write an expression for the intensity pattern observed on the screen.

Click to see the answer:

g(1)(r1, t1, r2, t2) = e−γ|t1−t2|+iω0(t1−t2), I(~r, t) ∝ [1 + e−γ|t1−t2| cos(ω0(t1 − t2))]
In this way we see how a time incoherent source yields imperfect interferometric fringes.

Introduction to Problems 2 and 3 We can look at the Young two-slit interferometric experiment
from a slightly di�erent perspective, in which we evolve the state through the two slit barrier rather than
evolving back the �eld operators to act on the state before it hits the barrier. Recall our discussion on the
spatio-temporally localized modes long time ago. Let us introduce anihilation operators b̂(j, ky, kz) that
represent discrete set of modes localized in the x direction, at some point x = j × δx, where δx represents
the characteristic width of the mode�the exact form of this mode will not be relevant. Note that these
modes will still correspond to plane wave modes in the other directions. For simplicity we �x the size
of the screen in the x direction to l and also assume that its size correspond to the boundaries of the
�nite volume in which we quantized the e-m �eld (so that the plane wave modes to not stretch outside
the barrier). As such we will have L = l/δx localized modes and index j will go from −L/2 to L/2 We
can approximately express â~k0 in terms of localized mode anihiliation operators as follows (note that this
transformation between the anihiliation operators corresponding to di�erent mode set should be unitary
to preserve commutaiton relations)

â~k0 ≈
1√
L

L/2∑
j=−L/2

eik0,xjδxb̂(j, k0,y, k0,z)

where k0,i denote appropriate coordinates of vector ~k0
Imagine we have a state in the plane wave mode ~k0 given in general as:

|ψ〉 = f
(
â~k0 , â

†
~k0

)
|0〉.

When we replace creation and anihliation operators â with the corresponding b̂ operators we will express
the state in terms of x-localized modes.

|ψ〉 = f(
1√
L

∑
j

eik0,xxb̂(x, k0,y, k0,z),
1√
L

∑
j

eik0,xxb̂(x, k0,y, k0,z))|0〉.



In this approach the e�ect of the blocking screen is very intuitive as its e�ect is the absorbtion of
photons in all the modes except the ones for which x = x1 and x = x2. This absorbtion can be regarded as
a photon number measurement in all the modes except the ones in x1 and x2, where after the measurement
all the modes measured are replaced with vacuum states. In this way we will obtain an e�ective state ρ′

describing the state of light after the light passed through the barrier, where all other modes except modes
x1 and x2 are in vacuum state.

As a result, when we are computing the expected intensity on the screen we will express the electric
�eld operator Ê(~r) again as

Ê(+)(~r, t) = K[Ê(+)(~r1, t1) + Ê(+)(~r2, t2)],

where now, the electric �eld operators at points ~ri will be given in terms of new anihilation operators:

Ê(+)(~ri, ti) ∝ b̂(xi, k0,y, k0,z)e
i(k0,yyi+k0,zzi)−iωti + irrelevant contributions from other orthogonal modes.

(Note that in our approximate treatment we assume that all the modes correspond to the same frequency

ω = |~k0|c = k0c so that everything is time stationary and we do not have to consider issues related with ω
variations). For simplicity we set yi = 0, zi = 0 so �nally, restricting just to relevant modes we can write

Ê(+)(~r, t) ∝ b1e
−iωt1 + b2e

−iωt2 ,

where b1, b2 denote the anihilation operators corresponding to the relevant `slit modes', and as before
ti = t− |~r1 − ~r|/c. Equivalently we can write:

Ê(+)(~r, t) ∝ b1e
is1k0 + b2e

is2k0 ,

where si = |~r1 − ~r| are respective distances from the slits to the point on the screen where intensity is
measured.

Problem 2 Assuming the state before the barrier is |ψ〉 write explicitly what equivalent state ρ′ one
would have in the `two slit modes' approach described above in case:

a) |ψ〉 = |α〉~k0 is a coherent state.

b) |ψ〉 = |1〉~k0 is a single photon state.

Convince yourself that you will obtain the same predictions regarding the interference pattern as in the
approach presented during the lecture.

Additionally, compute the interference pattern in case someone prepared a state that correspond
|ψ′〉 = |1〉1 ⊗ |1〉2 so two single photon states in localized slit modes 1 and 2. Comment.

Click to see the answer:

a) Since in the new localized mode description the coherent state becomes a product of coherent states
in the new modes, the action of the absorbing screen amounts just to replacing coherent states in
other modes than x1 and x2 with vacuum states, and hence rho′ = |ψ′〉〈ψ′|, |ψ′〉 = |αeik0,xx1/

√
L〉1⊗

|αeik0,xx2/
√
L〉2



b) When we rewrite the single photon state in the new modes we get:

|ψ〉 = a†k0 |0〉 =
1√
L

∑
j

e−ik0,xjδxb̂†j|0〉.

Inspecting this state we see that photon hits the barrier with probability (L− 2)/L and in this case
the remaining modes x1, x2 will be in the vacuum state |0〉 ⊗ |0〉. If, however, the screen does not
absorb the photon then (probability 2/L) we are left we a state which after normalization reads:
|ψ′〉 = 1√

2

(
e0ik0,xx1|1〉 ⊗ |0〉+ e0ik0,xx2 |0〉 ⊗ |1〉

)
So �nally we can write the e�ective state of light in

the two modes as:

ρ′ =
L− 2

L
|0〉〈0| ⊗ |0〉〈0|+ 2

L
|ψ′〉〈ψ′|.

In case of |ψ′〉 = |1〉1 ⊗ |1〉2 there will be no interference fringes.

Problem 3 Please read the introduction before Problem 2. Consider the state in the two-slit localized
modes to be

|ψ′〉 = |1〉1 ⊗ |1〉2.

When discussing �rst order coherence this state was shown in Problem 2 to yield no interference fringes.
Consider now, an experiment in which we detect coincidences, when two photons simultaneously hit the
screen at two di�erent positions ~r′1 and ~r

′
2. Up to a multiplicative factor, compute second order coherence

function for the light hitting the screen:

G(2)(~r′1, ~r
′
2, t, t;~r

′
1, ~r
′
2, t, t) = 〈ψ′|E(−)(~r′1, t)E

(−)(~r′2, t)E
(+)(~r′2, t)E

(+(~r′1, t)|ψ′〉

where ~r′i denote points on the screen, and according to the discussion before Problem 2, the electric �eld
operators at the screen are related with the slit modes anihliation operators as:

E(+)(~r′i, t) ∝ b̂1e
ik0s1i + b̂2e

ik0s2i ,

where sij is the distance from slit i to point on the screen ~r′j where a detection happens. The computed G(2)

function is proportional to the probability of observing two photons detected simultaneously at positions
~r′1 and ~r

′
2.

Can one interpret the obtained result as some kind of interference fringes?

Click to see the answer: G(2) ∝ 1+ cos[k0(s11 + s22− s21− s12)]. Note that if we �x the position of one
of the detected photons e.g. ~r′1 we �x s11− s21 and then the probability of detecing the second photon will
oscilate as 1 + cos[k0(const + s22 − s12)] so with respect to the probability of detecting photon at ~r′2 this
will behave exactly like in the standard interference pattern.


