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a b s t r a c t 

We provide evidence that catastrophic bifurcation breakdowns or transitions, preceded 

by early warning signs such as flickering phenomena, are present on notoriously unpre- 

dictable financial markets. For this we construct robust indicators of catastrophic dynam- 

ical slowing down and apply these to identify hallmarks of dynamical catastrophic bifur- 

cation transitions. This is done using daily closing index records for the representative ex- 

amples of financial markets of small and mid to large capitalisations experiencing a spec- 

ulative bubble induced by the worldwide financial crisis of 2007-08. 

© 2016 Elsevier Ltd. All rights reserved. 
1. Introduction 

Discontinuous phase transitions in complex systems to- 

gether with critical phenomena are topics of canonical 

importance in statistical thermodynamics [3,11,19,28,47,50] . 

Much as in liquid gas or magnetic systems, during the evo- 

lution of complex systems undergoing such phase transi- 

tions, one may observe catastrophic breakdowns preceded 
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by flickering phenomenon. These types of discontinuous 

or critical dynamics are generic illustrations of how small 

changes can lead to dramatic consequences. Such regime 

shifts occur as a sophisticated non-trivial phenomenon 

caused by a catastrophic bifurcation. This means that a 

catastrophe or tipping point [5,20,50] exists, at which a 

sudden shift of the system to a contrasting regime may 

occur. 1 

Arguably, the effects of the critical and catastrophic 

slowing down are the most refined indicators of whether a 

system is approaching a critical point or a tipping point – a 
1 For instance, such sudden shifts (or jump discontinuities) of magne- 

tization plotted versus the magnetic field were already found in critical 

fields, in our earlier work [27] , where we studied the influence of lattice 

ordering on diffusion properties. 
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2 The index WIG (Warszawski Indeks Giełdowy) is the main index of 

the Warsaw Stock Exchange, which is of a small size. 
tipping point being a synonym for a catastrophic threshold,

located at a catastrophic bifurcation transition [6,8,9,17,34] .

The problem of whether early-warning signals in the form

of critical or catastrophic slowing down phenomena such

as those observed in multiple physical systems [28,47] are

present on financial markets was posed by Scheffer et al.

[48] . Recently, an original approach was put forward by

Haldane and May [18] , which models banking networks as

a banking ecosystem by analogy with nature’s ecosystems.

Such an approach can offer a valid insight into the finan-

cial sector [22,29] . Indeed, one of the most important at-

tainments of the catastrophe theory in the context of eco-

nomics appears to be in encompassing the concept of com-

plexity. This viewpoint has already been adopted within

various economical sectors [1,4,16,46,57–59] . 

The classification of crises as bifurcations between a

stable regime and a novel regime provides a first step to-

wards indentifying signatures which could be used for pre-

diction ( [50] and refs. therein). Hence, the problem of the

existence of tipping points in financial markets is a heav-

ily researched area. This is because the discovery of pre-

dictability, inevitably leads to its elimination, according to

one of the most fundamental financial market paradigms.

This paradigm states that as a profit can be made (for in-

stance, from predictability), the financial market gradually

annihilates such an arbitrage opportunity. Yet, the complex

behaviour of financial markets, together with their evolu-

tionary character, continues to prove that it is inherently

difficult to identify predictive markers. This in effect posits

that such an arbitrage opportunity is routinely present on

financial markets and manifested in emergent collective

behaviours. 

Recently, the economists Nawrocki and Vaga used non-

linear analysis of time series of returns to describe bifur-

cations on financial markets [51] . Our approach, presented

here, is based on the linear and bilinear analysis of de-

trended indices of quotations. This is because in our case

we describe the linear expansion of the stochastic dynamic

equation in the vicinity of an equilibrium state (stable or

unstable) of the system. Hence, the two approaches should

be understood to be complementary. In either case, the

existence of the bifurcation transition is not contrary to

the above-mentioned market paradigm because, to make a

definite prediction, the specific moment of transition must

be known. However, such a moment is uncertain (as it is a

random variable). 

There is a well-known controversy, which is the prime

inspiration for our work, concerning two-state transitions

on financial markets. Namely, Plerou et al. [36,37] observed

two-phase behaviour on financial markets by using empir-

ical transactions and quotes within the intraday data for

the 116 most actively traded US stocks during the two-year

period of 1994–1995. By examining the fluctuation of vol-

ume imbalance, that is by using some conditional proba-

bility distribution of the volume imbalance, they found a

change in this distribution from uni- to bimodal. This cor-

responds with a market shift from an equilibrium to an

out-of-equilibrium state, where these two different states

were interpreted as distinct phases. 

In contradiction, Potters and Bouchaud [38] pointed out

that the two-phase behaviour of the above-mentioned con-
ditional distribution is a direct consequence of generic sta-

tistical properties of the volume traded, and is not a real

two-phase phenomenon. In their work on the trading vol-

ume, [33] indicated that the bifurcation phenomenon is an

artefact of the distribution of trade sizes, which follows a

power-law distribution with an exponent belonging to the

Lévy stable domain. Further, very recently, Filimonov and

Sornette [13] suggested that the trend switching phenom-

ena in financial markets considered in [39–44,53] has a

spurious character. They argued that this character stems

from the selection of price peaks, which imposes a condi-

tion on the statistics of price change and of trade volumes,

skewing their distributions. 

Nevertheless, the two-phase phenomenon was again

examined in the DAX financial index in [60] , using mi-

nority games and dynamic herding models. They found

that this phenomenon is a significant characteristic of fi-

nancial dynamics, independent of volatility clustering. Fur-

thermore, Jiang et al. [21] observed the bifurcation phe-

nomenon for the Hang-Seng index as non-universal and re-

quiring specific conditions. 

The principal goal of our work is to identify and de-

scribe the main empirical facts indicating the existence of

possible catastrophic bifurcation transitions (CBT) in stock

markets of small and mid to large capitalisations. In this

work, we consider the bifurcation phenomenon by utilizing

the concept of bistability [55] and focusing our attention

on the unconditional or joint properties of the catastrophic

bifurcation. We further develop and evaluate a number of

principal metrics associated with catastrophic bifurcation

transitions. Several of them have been previously posed

and considered for financial markets ( [2,14,23,30,32,45,49]

and refs. therein). In particular, we identify hallmarks of

the catastrophic bifurcation transition by verifying rele-

vant fundamental indicators, for WIG, 2 DAX, and DJIA daily

speculative bubbles on the Warsaw Stock Exchange, Frank-

furter Wertpapierbörse, and New York Stock Exchange.

That is, we consider the stock markets’ speculative bubbles

during the 2007-08 worldwide financial crisis for, respec-

tively, small and mid to large capitalisations (cf. Fig. 1 ). 

We concentrate on the analysis of daily financial mar-

ket data, as we consider that daily data is the most repre-

sentative as it contains evidence of both the high and the

low-frequency trading. That is, daily closing data has an

intermediate character containing information both from

the intraday trading and from the less frequent, longer-

term interday trading span. In addition, because of the ex-

istence of well-known intraday patterns, detrending pro-

cedures are better established for the daily data than for

the intraday case. Both the bullish and the bearish sides

of the peaks considered are detrended using a generalised

exponential (or Mittag-Leffler function) decorated by oscil-

latory behaviour (for details see Appendix A ). This is be-

cause such a function better fits the peaks considered in

this work than the commonly used log-periodic function

[10,12,54] . 
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Fig. 1. Well-formed empirical peaks (the bubbles defined by erratic 

curves) of: (a) WIG index beginning on 6 February, 2004 (the –269th 

( = 24 80–274 9)) trading day (td) on the Warsaw Stock Exchange) and end- 

ing on 18 May, 2009 (the 1326th( = 4075–2749) td), (b) DAX index be- 

ginning on 6 February, 2004 (the -269th( = 24 80–274 9) td) trading day 

(td) on the Frankfurter Wertpapierbörse and ending on 18 May, 2009 

(the 1326th ( = 4075–2749) td), and (c) DJIA index beginning on 16 March, 

2005 (the 27251st td on the New York Stock Exchange) and ending on 9 

June, 2009 (the 28315th td). The solid curves represent the best theoreti- 

cal long-term (multi-year) trend [25] , defined by Eq. (A.1) , found from the 

fit to the bull market (left-hand side of the peak). The thin solid vertical 

line denotes the position of the local maximum placed for: (a) 2006-05- 

05 (the 576th( = 3325–2749) td); (b) 26 April, 2006 (the 676th( = 11676–

110 0 0) td); and (c) 14 February, 2007 (the 483rd( = 27733–27250) td). 

These maxima belong to the zigzags marked by the circles. These zigzags 

are emphasized by the inset plots, as they are the main subject of interest 

to us. Strongly oscillating trends (also solid curves) for bear markets (the 

right-hand side of the peaks) are plotted only for completeness. 
The content of the paper is as follows. Section 2 is 

devoted to the empirical analysis of daily data originat- 

ing from three typical stock markets of small, mid and 

large capitalisations. In Section 3 , we explain how indica- 

tors arise when the system approaches a catastrophic bi- 

furcation threshold. Section 4 contains concluding remarks. 

Detailed supplementary methodological considerations are 

presented in the appendices. 

2. Analysis of empirical data 

2.1. Time series and detrending 

The conceptual strategy of our approach is separately to 

consider the deterministic components of both the trend 

and the drift effects, which makes viable the analysis of 

determinism contained in the empirical time series. We 

also assume that the detrending of the time series elimi- 

nates non-stationarity. 

The analysis of empirical data we perform on the bub- 

bles (peaks) of WIG, DAX and DJIA indices covers the 

2007-08 worldwide financial crisis (cf. the erratic curves in 

Fig. 1 (a), (b), (c)). The shapes of WIG, DAX, and DJIA peaks 

are strikingly similar. This suggests an underlying generic 

dynamical behaviour of European stock market evolution. 

In particular, the shape of bull markets (or booms) repre- 

sented by the left-hand side of these peaks appears to be 

typical on stock exchanges of small to large capitalisations, 

as they contain very characteristic zigzags (denoted by cir- 

cles). These bull markets are the principal subject of inter- 

est to us. 

In order to model the deterministic long-term (multi- 

year) trend of these empirical bull markets – an ob- 

servable long-term deterministic pattern in the empir- 

ical data caused by the herd effect, 3 we here use 

an easily interpretable relaxation function defined by 

Eq. (A.1) , which is a solution to a dynamic equation 

describing the relaxation of a viscoelastic market (‘biopoly- 

mer’) (cf. Appendix A and [26] ). 

The trend and the drift each have different physi- 

cal origins and operate at various time horizons, which 

makes their determination and analysis tractable. However, 

a generic problem of the decomposition of the determinis- 

tic part of time series for trend and drift components in a 

unique way is beyond the scope of this work and remains 

an open problem. Instead, we accept some level of trend 

(here given, by Eq. (A.1) – see Appendix A for details) if 

the coefficient of determination R 2 and the P-value assume 

the best values in comparison with the corresponding ones 

obtained from the fits of alternative trend functions. 4 
3 Trend (e.g. the price trend) results from the feedback mechanism be- 

tween traders and the market, which can therefore be considered to be a 

complex self-organizing system [24] and refs. therein. 
4 A complementary popular candidate for the trend, also having a well- 

interpreted physical origin, is the log-periodic oscillation ( [24] and refs. 

therein). However, for empirical bull markets in our data, it is worse than 

the fit of the trend model used by us, which has a smaller R 2 (expressed, 

as usual, as the ratio of the explained (theoretical) variance to the sam- 

ple variance). Notably, R 2 is the measure of concordance most often used. 

Unfortunately, all hitherto known trends are nonuniversal and can be ap- 

plied only to well-defined long-term bubbles. Also trends given in the 
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Fig. 2. The detrended time-dependent index WIG (the time series of WIG or the process x t measured in points [p]), which constitutes the basis for further 

considerations. The characteristic date when the process x t assumes its largest value is denoted by the vertical dashed line. The same date also defines the 

position of the index WIG’s local maximum (cf. Fig. 1 (a)). The remaining indices (DAX and DJIA) show analogous behaviour and therefore, they are not 

presented in the figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By subtracting the trend (A.1) , we obtain the detrended

time series (cf. Fig. 2 ) consisting of the deterministic drift

and noise – the extraction of the drift component from the

time series and its systematic analysis are essential for our

purpose. 

2.2. Variance of detrended time series 

For our three different time series, the time depen-

dence of sufficiently sensitive estimators of variance, de-

fined within the moving (or scanning) time window of one

month width (or twenty trading days 5 ) is shown in Fig. 3 .

That is, we obtained these estimators from the correspond-

ing separate scans of the empirical time series. These scans

were made by using the above-mentioned time window of

fixed width and also a fixed scanning time step (again of

one trading month). Indeed, within this window the vari-

ance estimator was calculated separately for each temporal

position of the time window. 

Notably, the variance estimators of time series show a

sudden strong increase in the range of downturns (marked

by the circles in Fig. 1 ), creating local peaks of these esti-

mators in the form of spikes (cf. three plots in Fig. 3 ). The

centres of these spikes are indicated in the plots by the

vertical dashed lines. The existence of a spike is one of the

principal empirical symptoms of a catastrophic (or possi-

bly even critical) slowing down. Henceforth in the text, we

refer to these spikes as catastrophic spikes. 

Catastrophic spikes are preceded by well-formed lo-

cal peaks of variance estimators of much smaller ampli-

tude (cf. Fig. 3 ). This behaviour clearly manifests the so-
form of polynomials, quite often used in econometry, result in worse 

statistic characteristics of the fits in our data. 
5 Twenty trading days is considered to be one trading month. The risk- 

free period of the Central Bank is likewise one month. 
called flickering phenomenon [48] . This effect can hap-

pen, for instance, if the system enters the intermediate

bistable (bifurcation) region placed between two tipping

points. Subsequently, the system stochastically moves up

and down, either between the basins of attraction of two

alternative attractors, or between an attractor and a re-

peller. The two possibilities are defined by stable/stable or

stable/unstable pairs of equilibrium states. Such behaviour

can also be considered to be an early warning of catastro-

phe. The flickering of the variance estimator (although less

intense), together with intermittencies shrinking in time, is

observed for even earlier time intervals (cf. the upper plot

in Fig. 3 ). The flickering phenomenon is considered in de-

tail in Sections. 2.3 and 2.4 . 

2.3. Recovery rate 

As typical behaviour, Fig. 4 plots detrended time se-

ries element or process x t against the preceding de-

trended time series one, x t−1 , for instance, for the (de-

trended) time-dependent WIG index. Two plots of short

(one-month) subseries of essentially different empirical

data sets are shown in Fig. 4 as an example. Each sub-

series consists of 20 successive pairs of elements (x t−1 , x t )

extending from t = 502 to t = 521 [td-2749] 6 trading days

(black circles) and from t = 542 to t = 561 [td-2749] trad-

ing days (red inverted triangles), respectively. The slopes of

the straight lines, fitted separately to both data sets, give

two different values of the linear or the first-order autore-

gression coefficient AR (1). Hence, these slopes give values

of coefficient λ = AR (1) − 1 , where λ is a derivative of the
6 This notation means that the origin of coordinates of plot (a) is 

shifted by 2749 [td] relative to the beginning of quotation on the Warsaw 

Stock Exchange. Analogous situations concern German Stock Exchange 

(plot (b)) and NYSE (plot (c)) 
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Fig. 3. Plots of the variance estimators of the detrended indices – time 

series of WIG, DAX and DJIA (these time series are shown in the three 

corresponding plots in Fig. 2 ). Here, the time ranges from 2005-04-15 to 

2006-11-15 for WIG (plot (a)), from 2005-08-18 to 2006-10-19 for DAX 

(plot (b)), and from 2006-07-21 to 2007-05-09 for DJIA (plot (c)). The ver- 

tical dashed lines denote the positions of the spikes’ centres. 

Fig. 4. The detrended successive WIG time series x t vs. x t−1 for twenty 

pairs (or one month) ranging from t = 502 to 5 21 [td-2749] (black cir- 

cles and fitted black dotted-dashed straight line) and from t = 542 to 561 

[td-2749] (red inverted triangles and fitted red solid straight line) time 

steps. The slopes of the fitted curves, i.e. autoregressive coefficient of the 

first-order AR (1), almost equal 0.65 and 0.95, respectively. These results 

give −λ ≈ 0 . 35 and −λ ≈ 0 . 05 , respectively. (See also plot (a) in Fig. 5 .) 

Furthermore, respective values of the shift coefficient or autoregressive 

coefficient of the zero-order b = A (0) , although relatively small, are well 

distinguishable in the inset plot at x t−1 = 0 . For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web 

version of this article. 

 

 

 

nonlinear drift term, f ( x t ; P ) (here P is a driving or con- 

trol parameter), over the time series variable, x t , at a fixed 

point x ∗, present in the linearized discrete stochastic dy- 

namic Eqs. (B.6) and (B.7) . This linearization is a generic 

property of the system which has a fixed point or contains 

an equilibrium (stable or unstable). These equations are 

valid in the vicinity of any fixed point, in particular, in the 

vicinity of the most interesting tipping point (or the catas- 

trophic bifurcation threshold – cf. Appendix B ). Further- 

more, different values of the shift coefficient b(= A (0) , be- 

ing a zero-order autoregression coefficient), although rela- 

tively small, are well distinguishable in the inset plot. 

From the fits mentioned above, AR (1) coefficient almost 

equal to 0.95 is found (cf. the slope of the red solid straight 

line, shown in Fig. 4 , fitted to the red inverted triangles –

this corresponds to the time interval ranging from t = 542 

to t = 561 [td-2749] shown in Fig. 5 (a)) for the subseries 
immediately before the catastrophic bifurcation threshold 

(marked by the dashed vertical straight lines plotted in 

Figs. 2 , 3 and 6 , and by thin vertical lines in Fig. 1 ). In

Fig. 5 (a) this slope gives the −λ represented by the blue 

dot with error bar placed at time t = 561 [td-2749] on 

the left-hand side of the catastrophic bifurcation threshold. 

The black dashed straight line is shown for comparison in 

Fig. 4 , having a distinctly lower slope AR (1) ≈ 0.65, which 

corresponds to the time interval ranging from t = 502 to 

t = 521 [td-2749]. Hence, the corresponding −λ ≈ 0 . 35 is 

represented in the same figure by the blue dot with the 

error bar placed at time t = 521 [td-2749], also on the left- 

hand side of the catastrophic bifurcation threshold. The 

origin of the red dots (without error bars) obtained using 

a complementary approach is described below. 

In Appendix B , we prove that the autocorrelation func- 

tion of the h th order, ACF ( h ), is expressed by the for-

mula given in the second row in (B.10) . In fact, we here

study a particular case of ACF (1) = AR (1) by a method 

complementary to that used above for the analysis of the 

coefficient AR (1). Namely, we apply the usual estimator, 

ACF EST (1), of ACF (1) for a given month (which is our time 

window where λ is an almost constant value), 

ACF EST (1) = 

1 

V ar(x t ) 

1 

T 

×
[ ( 

T ∑ 

t=1 

x t x t+1 

) 

− 1 

T 

( 

T ∑ 

t=1 

x t 

) ( 

T ∑ 

t=1 

x t+1 

) ] 

, 

(1) 

where T = 20 . Using this estimator, −λ is calculated and 

presented in Fig. 5 by the red dots (without error bars), 

which almost everywhere fall within the error bars, thus 

their time dependence is qualitatively similar, as expected. 

This result, together with the corresponding one for the 
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Fig. 5. The recovery rate −λ(≥ 0) vs. time calculated by using two dif- 

ferent formulas: (i) −λ = 1 − AR (1) (blue dots with error bars) and (ii) 

−λ = 1 − ACF (1) (red dots without error bars). The two curves have sim- 

ilar shapes in time (they are concave where data resolution equals 2 [td] 

to make the plots better visible) having local minima for −λ ≈ 0 . 0 . As 

these minima are reached from their positive sides, such a behaviour 

leads to the slowing down of the system’s return to the stable equilibrium 

(see Appendix B for details). The vertical dashed lines denote in plots (a), 

(b), and (c) (as usual) the position of tipping points. For interpretation of 

the references to colour in this figure legend, the reader is referred to the 

web version of this article. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Empirical curves (small red circles joined by the segments of red 

lines presented in plots (a), (b), and (c)), representing the (mechanical) 

equilibrium states defined by the values of x ∗(= −b/λ) vs. time (in trad- 

ing days, td), where b and λ were obtained from the empirical data 

for WIG, DAX, and DJIA (cf. Figs. 4 and 5 ). The flickering phenomenon, 

present prior to the catastrophic bifurcation threshold, is illustrated by 

the red curve directed by arrows which oscillate up and down between 

red empirical data points located alternately on the dotted and solid black 

curves. This threshold is marked by the dashed vertical line indicated by 

an arrow termed ‘At’. The upper segment of the backward-folded curve is 

the solid one – initially red with dots and then black. It is indicated by 

the arrow termed ‘Before’ and drawn schematically until the right tipping 

point denoted by the character ‘x’ (placed one day before the catastrophic 

bifurcation threshold). This upper segment is identified as a sequence of 

stable (mechanical) equilibrium states of the type x ∗1 ′′ (see Appendix C 

and Figs. 8–11 for details). The segment (denoted by the dotted curve) 

placed in the bistable region between two tipping points (the left tip- 

ping point is also denoted by the character ‘x’) consists of a sequence of 

unstable (mechanical) equilibrium states of the type x ∗1 ′ (see Appendix C 

and Figs. 8–11 for details). The lower segment (also denoted by the solid 

curve - initially black and then red) placed after the left tipping point is 

identified as a complementary sequence of the stable (mechanical) equi- 

librium states, here of x ∗1 type (its part after the catastrophic bifurcation 

threshold is indicated by the arrow and termed ‘After’; see Appendix C 

and Figs. 8–11 for details). Remarkably, the dotted curve can be smoothly 

plotted between the two tipping points and over the empirical points. (An 

explanation about the construction of the backward folded curve is given 

in paragraph 2.4 ). For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article. 
coefficient AR (1) (shown by blue dots with error bars

in the same figure), is necessary to calculate equilibrium

states (stable and unstable) defined in the next paragraph

by the set of x ∗ values. 

The empirical data shown in Fig. 5 provide the recovery

rate, −λ, “smiles” with heights of minimums equal zero

(to a good approximation). Notably, the most significant

result is that the minimum of both curves is located at

the same place, having (to good approximation) the same

height. Some small differences between the two curves can

(from this point of view) be neglected, particularly as we

can roughly expect that red dots have error bars of the

same order as blue dots. Indeed, the minimum of −λ is

the source of a slowing down effect (see Appendix B for

details). This effect is one of the necessary requirements
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Fig. 7. Three complementary plots concerning the same region placed be- 

fore the first tipping point of the backward-folded curve (or empirical 

data, for instance, for DAX) denoted in Fig. 6 (b) by the character ‘x’. The 

(mechanical) equilibrium point 1 ′′ (= x ∗1 ′′ ) = 421.009, shown in the upper 

plot (a) as the single root of the equation f (x ; P) = 0 , is obtained directly 

from the empirical data (– the ordinate of this root shown in Fig. 6 (b) 

is the time = 665 [td-110 0 0]). The upper plot (a) shows the dependence 

of the force f ( x ; P ) (present in Eqs. (B.1) and (C.2) ) vs. x for the values of 

(relative) coefficients a 1 / a 0 = 1179.81, a 2 / a 0 = 278390 and a 3 / a 0 = -4.00948 ×
10 8 obtained in the C.4 (‘Case before the bistable region’) and common to 

all the plots (a), (b), and (c). In the middle plot (b) the corresponding 

potential, U ( x ; P ), is shown where the point 1” is the sole stable equilib- 

rium. In the bottom plot (c), the equilibrium probability distribution, Pr ( x ; 

P ), given by Eq. (B.5) , is shown. Notably, variable x equals x ∗ only if x be- 

comes a root of f . For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article. 

Fig. 8. Three complementary plots concerning the same bifurcation 

(bistable) region (denoted by the arrow ‘Before’ in Fig. 6 (b)) ahead 

of the catastrophic bifurcation threshold, denoted there by the vertical 

dashed straight line. The (mechanical) equilibrium points x ∗1 = -626.473, 

x ∗1 ′ = -488.308 and x ∗1 ′′ = 278 . 92 , as roots of equation f (x ; P) = 0 (see 

Appendix C for details), are obtained directly from the empirical data 

(or backward-folded curve) shown there. The ordinates of these points 

(shown in Fig. 6 (b)) are times = 669, 670, and 671 [td-110 0 0], respec- 

tively. The upper plot (a) shows the dependence of the force, f ( x ; P ), 

(present in Eq. (B.1) ) vs. x for the values of the relative coefficients a 1 / a 0 = 

835.861, a 2 / a 0 = -5022.94 and a 3 / a 0 = -8.53249 × 10 7 obtained in the C.2 

(‘Case of the bistable region’) common to all the plots (a)–(c). In the mid- 

dle plot (b) the corresponding bistable potential, U ( x ; P ), is shown. The 

points 1 and 1 ′ ′ are stable equilibria, while 1 ′ is an unstable one (hence, 

�x 1 , 1 ′′ = 905 . 393 ). In the bottom plot (c) the bistable equilibrium prob- 

ability distribution, Pr ( x ; P ), given by Eq. (B.5) is shown. The inset plots 

better visualize the behaviour of f, U and Pr vs. x in a very restricted re- 

gion containing the points 1 and 1 ′ . Notably, variable x equals x ∗ only if x 

becomes a root of f . For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article. 
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Fig. 9. Three complementary plots concerning the same bifurcation 

(bistable) region at the catastrophic bifurcation threshold; the region 

is denoted by the arrow ‘At’ in Fig. 6 (b). All the curves are plotted 

for the same values of the relative coefficients a 1 /a 0 = −456 . 67 , a 2 /a 0 = 

21359 . 70 and a 3 /a 0 = 7 . 87066 × 10 6 derived in C.1 (‘Case of the catas- 

trophic bifurcation transition’) from the zeros of the f ( x ; P ) curve. Ap- 

parently, the curve f / | a 0 | vs. x in the upper plot (a) has a single twofold 

root x ∗1 ′ = x ∗1 ′′ = 278 . 92 (– the ordinate of this root shown in Fig. 6 (b) is 

the time = 675 [td-110 0 0]). This root, being the second tipping point, 

is denoted in Fig. 6 by the character ‘x’ and placed in the immediate 

vicinity of the threshold. The first root x ∗1 = −101 . 17 is given directly by 

the empirical point placed on the threshold shown in Fig. 6 (b) (hence, 

�x 1 , 1 ′′ = 380 . 09 ). In the middle plot (b) the corresponding bistable poten- 

tial, U ( x ; P ), is shown (for the same relative coefficients as for the upper 

plot). The points 1 and 1 ′ ′ are stable equilibria. In the bottom plot (c) the 

bistable equilibrium probability distribution, Pr ( x ; P ), given by Eq. (B.5) , 

is shown. The inset plots better visualize the behaviour of f, U and Pr vs. 

x in a very restricted region containing the point 1 ′ ′ . Notably, variable x 

equals x ∗ only if x becomes a root of f . For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version 

of this article. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(or signatures) for the existence of a phase transition, in

particular, of the catastrophic bifurcation type. 

Our approach is justified by assuming that λ is a piece-

wise, almost constant function of time, i.e., it is an almost

fixed quantity for the monthly set of empirical data points.

We assume the same for the shift coefficient b considered

below. Hence, λ and b are slowly varying functions of time

(counted in months) in comparison with the process x t
(counted in days). The difference in these two time scales

plays a basic role in our considerations. 

2.4. Empirical catastrophic bifurcation transitions 

The shift coefficient b relates to the recovery rate −λ(>

0) and fixed point (root) x ∗ through the key equality b =
−λx ∗ (see the second Equation in (B.7) ). Hence, x ∗ is plot-

ted vs. time in Fig. 6 for three typical indices: (a) WIG, (b)

DAX, and (c) DJIA. Apparently, sufficiently far before the

catastrophic bifurcation threshold (denoted by the vertical

dashed straight lines in plots (a), (b), and (c)) and after it,

the spontaneous reduction of error bars of the curve x ∗ vs.

time ( t ) is observed together with the smoothing out of

two substantially extended segments of this curve denoted

by the terms ‘Before’ and ’After’, which can be identified

as two evolving separable equilibrium states of the system.

The significant jumps of empirical data points (leading to

system instability) are seen solely within the region be-

tween these two. The range of instability is defined for plot

(a) by empirical points placed between time t = 557 and

t = 565 , for plot (b) between time t = 670 and t = 674 ,

and for plot (c) between time t = 471 and t = 482 . These

empirical facts are apparently of a rather universal nature,

as they are consistently observed on typical stock markets

of small, mid and large capitalisations. 

The structure of the unstable region enables us to out-

line the backward folded curve – both its stable and un-

stable segments – which exposes the so-called flickering

phenomenon. Positions of both tipping points (denoted by

the character ‘x’) are defined solely schematically (in crude

approximation) to better indicate the folding effect. Al-

though the location of the right tipping point is defined

with one-day precision, the location of the left tipping

point has about three days’ uncertainty. The vertical un-

certainty of both tipping points can be assumed to be no

greater than about 20 0 0 to preserve the smooth character

of the backward folded curve. That is, all backward folded

curves, which could be drawn to serve as non-analytical

eye guides, should be topologically equivalent. Therefore,

it is possible to construct the backward folded eye-guide

curves together with their tipping points as they are suffi-

ciently limited by the spatial constraints. 

As indicated above, the precise location of the tipping

points is of no importance to us. What is important is

solely the specific structure (shape) of the backward-folded

curve, which propels the dynamics over the unstable re-

gion. Indeed, the unstable segment of this curve consists of

a sequence of states responsible for the flickering phenom-

ena that is, for large oscillations across these states – in the

case of the absence of an unstable segment, the flickering

phenomena would be suppressed. 
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Fig. 10. Three complementary plots concerning the same region after the 

bifurcation (bistable) threshold (denoted by the vertical dashed straight 

line); the region was denoted in Fig. 6 (b) by the arrow ‘After’. All 

the curves were plotted for the same values of the relative coefficients 

a 1 /a 0 = −456 . 67 , a 2 /a 0 = 41709 . 50 and a 3 /a 0 = 6 . 1682 × 10 6 derived in 

C.3 (‘Case after the catastrophic bifurcation transition’) from the zeros of 

f ( x ; P ) curve obtained from the empirical data shown in Fig. 6 (b). The 

curve f / | a 0 | vs. x in the upper plot (a) has a single root x ∗1 = −75 . 39 (–

the ordinate of this root shown in Fig. 6 (b) is the time = 680 [td-110 0 0]). 

In the middle plot (b) the corresponding potential, U ( x ; P ), is shown. Point 

1 is a stable equilibrium. In the bottom plot (c), the equilibrium probabil- 

ity distribution, Pr ( x ; P ), given by Eq. (B.5) , is shown. Notably, variable x 

equals x ∗ only if x becomes a root of f . For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version 

of this article. 

Fig. 11. A comprehensive three-dimensional schematic view showing the 

origin of the flat backward-folded curve x ∗ vs. P placed on a (semi- 

transparent) green plane. This backward-folded curve originated as a sec- 

tion of the green plane with the wavy blue surface. The points denoted by 

1 and 1 ′ ′ (white circles) are stable mechanical equilibria located, respec- 

tively, on the left and right segments of this curve. The points denoted 

by 1 ′ (also white circles) are unstable mechanical equilibria located on 

the backward-folded segment of this curve. The catastrophic bifurcation 

transition from the equilibrium state 1 ′ ′ to 1 is indicated by the long red 

arrow. These particular points are placed on the catastrophic bifurcation 

curve (thicker than all other curves) located on the wavy blue surface. 

Note, that the singular behaviour of the schematic backward-folded curve 

in the vicinity of the catastrophic bifurcation threshold (cf. in plots (a), 

(b), (c) in Fig. 6 ) is absent here. The impact of the noise ηt on the states 

x t and x ∗t is not visualized here. Notably, variable x becomes x ∗ only if x 

becomes a root of f . For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article. 
Flickering is well pronounced in Fig. 6 , ahead of the 

negative catastrophic spikes evident in plots (a), (b), and 

(c) and defining the bistable regime. This flickering phe- 

nomenon appears within the bistable region, where the se- 

quence of unstable (intermediate) states or roots { x ∗
1 ′ } (see 

Appendix B and Appendix C for details) placed on the hy- 

pothetic (dotted) curve causes the system to bounce be- 

tween these states and the sequence of stable states { x ∗
1 
} 

indicated on the hypothetical lower (solid) curve. Indeed, 

this bounce effect can cause, for instance, oscillations in the 

variance ahead of the spikes shown in plots (a), (b), and (c) 

in Fig. 3 . We consider the existence of the flickering phe- 

nomenon and subsequent spike between two rather flat 

sequences of states as a possible result of a catastrophic 

bifurcation transition. This is discussed in detail in B.3 (see 

Eq. (B.13) ). It should be emphasized that the three-phase 

sequence observed: ‘equilibrium–instability (or flickering)–

equlibrium’ during the system evolution is essential for the 

formulation of a sound conjecture of the bistability or dy- 

namic bifurcation. 

The results shown in Fig. 6 constitute the basis for fur- 

ther discussion because they suggest that bifurcations or 

bistabilities on financial markets can exist. Thus, they vali- 

date considering the trajectory of x ∗( t ) as extrema (minima 

or maxima) of a hypothetical ’mechanical’ potential curve 

(drawn in the third dimension, i.e. along the third (verti- 

cal) additional axis which can be attached to plots (a), (b), 

and (c) in Fig. 6 ). 
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7 Notably, the upper plot indicates that the maximal value of discon- 

tinuity of the recovery rate −λ should exist at the bifurcation threshold. 

However, this value is too small to be recognized (as statistical errors are 

too large); cf. plots in Fig. 5 . 
3. Mechanical-like view 

Following the article by [17] and by using basic results

presented in Fig. 6 , we provide a quantitative description

founded on the mechanical-like picture of a ball moving

in the potential landscape. We consider snapshot picto-

rial views of different states of the system on the path-

way to regime change illustrated by a sequence of prop-

erly chosen Figs. 7–11 . This pathway is defined by depen-

dence x ∗ = x ∗(P ) , where the driving (hidden) parameter

P is, by definition, a slowly-varying function of time (see

Appendix C for a detailed expression). The point x ∗ is a

root of equation f (x ; P ) = 0 – see the respective zeros 1,

1 ′ or/and 1 ′ ′ shown (by small black circles) in the upper

plots (a) of the force f ( x ; P ) vs. x in Figs. 7–10 , and also the

sequence of points 1, 1 ′ and 1 ′ ′ (white circles) present in

the summary of Fig. 11 . In the middle plots (b) the poten-

tial U ( x ; P ) vs. x is shown, indicating that the points 1, 1 ′ ′
are stable, while point 1 ′ is unstable. Finally, in the bottom

plots (c), the equilibrium probability distribution, Pr ( x ; P )

given by Eq. (B.5) is shown versus x . Figs. 8 and 9 show the

most significant results of our work, namely both a bifur-

cation (cf. Fig. 8 ) and a catastrophic bifurcation (cf. Fig. 9 )

observed in empirical financial time series. 

Let us examine the pathway to regime change with

greater care. When time increases, the system passes suc-

cessive states defined by the values of x ∗, well pronounced

in Fig. 6 . The initial characteristic state defined by a sin-

gle value of x ∗ is shown in Fig. 7 . It represents the re-

gion ahead of the bifurcation. The central objective of in-

terest to us is defined in Fig. 8 by the three different val-

ues of x ∗. The borders of the bifurcation region, limited by

tipping points, are denoted in the plots in Fig. 6 by the

character ‘x’. The arrows show the possible transitions be-

tween the equilibrium points. The third, extremely inter-

esting case of the catastrophic bifurcation transition is pre-

sented in Fig. 9 . For this case, the points 1 ′ and 1 ′ ′ coin-

cide. The point x ∗
1 ′′ is represented in Fig. 6 by the second

character ‘x’. In this case, the possible transition between

the points 1 ′ ′ and 1 is shown schematically by the arrow

in Fig. 11 . The last (fourth) case, illustrated by Fig. 10 , is

similar to the first one, as again it is defined by a single

root, namely by 1. 

Notably, the two segments of the folded backward

curve x ∗( P ) containing the points 1 and 1 ′ ′ (cf. Fig. 11 ) rep-

resent stable equilibria, while the third backward segment

in between, containing the points of the 1 ′ type, represents

an unstable equilibrium. If the system is driven slightly

away from the stable equilibrium it will return to this

state with the relaxation time τ (P ) = −1 /λ(P ) (cf. consid-

erations in Appendix B in particular Eq. (B.9) ). Otherwise,

the system driven from the unstable equilibrium will move

away (to one of the two stable equilibria). In fact, the back-

ward segment of the curve x ∗( P ) (denoted by the dashed

backward curves in the plots in Fig. 6 ) represents a border

or a repelling threshold between the corresponding basins

of attraction of the two alternative stable states (defined by

the lower and the upper branches of the backward-folded

curves, marked in the same figures by the solid curves). 

In this work, we focus mainly on the analysis of sta-

ble equilibria. Two of them are the tipping points at which
a tiny perturbation (spontaneous or systematic) can pro-

duce a sudden large transition (indicated, e.g. for the sec-

ond tipping point, by a long arrow in Fig. 11 ). It should

be noted that only in the vicinity of the stable equilibria,

that is for the points placed on the lower or the upper

branches of the folded curve, the variance of the detrended

time series diverges according to a power-law (cf. Expres-

sion (B.11) in Appendix B ). This is a direct consequence of

the catastrophic slowing down (CSD), which can be well

detected before the actual occurrence of the catastrophic

transition. This divergence can be intuitively understood as

follows. As the return time diverges, the impact of a shock

does not decay (see solution Eq. (B.9) ), and its accumulat-

ing effect increases the variance. Hence, CSD reduces the

ability of the system to follow the fluctuations [48] . 

We explain in this Section how indicators (or early

warnings) arise when the system approaches the regime

shift or the catastrophic bifurcation transition (threshold).

It is sufficient to consider the linear early warnings such

as variance, recovery time, reddened power spectra and re-

lated quantities in the framework of the linearized theory

defined by Eqs. (B.6) and (B.7) . It is convenient to consider

the nonlinear indicators (such as a non-vanishing skew-

ness) by the approach based on the nonlinear and asym-

metric part of the force f ( x ; P ) (present in the first equality

in (B.1) ) and on its asymmetric potential U ( x ; P ) (present in

the second equality in (B.1) ), both in the immediate vicin-

ity of the regime shift – cf. plots in Fig. 9 concerning the

case at the catastrophic bifurcation threshold. 7 This is one

of the simplest viewpoints considered, for instance, in the

article by Guttal and Jayaprakash [17] . 

4. Concluding remarks 

Following the supposition in [29] concerning the pos-

sibility of the existence of bifurcation transitions, in par-

ticular catastrophic ones, on financial markets, we have

studied the principal and most significant indicators of

such transitions on stock exchanges of small and mid to

large capitalisations. Other indicators (not visualized in this

work) relating to properties of noise also confirm this sup-

position. All these indicators consistently show that the

thresholds presented in Figs. 3, 5, 6 , and 9 should be iden-

tified as signatures of a catastrophic bifurcation transition.

It was a noteworthy surprise in our analysis that the catas-

trophic bifurcation threshold itself constitutes a consistent

indicator in daily empirical data obtained from various

stock exchanges. As we have observed, such a threshold

– serving as an early indicator – is noticeable for several

months before the global crash. 

The basic results of this work consist of the well-

established observations that: (i) λ is a negative quantity,

and (ii) recovery rate −λ vanishes when the system ap-

proaches the catastrophic bifurcation threshold (cf. Fig. 5 ).

This vanishing effect (together with the result mentioned

below, concerning the shift parameter b ) permits us to for-
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Table A.1 

Values of fit parameters of the trend for WIG bull 

market ( R 2 = 0 . 9986 ). 

Parameter Value Standard deviation 

t c 892 [ td ] 73 [ td ] 

τ 105 [ td ] 420 [ td ] 

α 0.57 0.23 

ω 0 . 0041 [ td −1 ] 0 . 0 0 05 [ td −1 ] 

�ω 0.0 0.0 

Table A.2 

Values of fit coefficients of the trend for WIG bull 

market ( R 2 = 0 . 9986 ). 

Coefficient Value [p] Standard deviation [p] 

X 0 + X 1 60081 85273 

X 1 −8659 2352 

Table A.3 

Values of fit parameters of the trend for WIG bear 

market ( R 2 = 0 . 9985 ). 

Parameter Value Standard deviation 

t c 810 [ td ] 0 [ td ] 

τ 272 [ td ] 20 [ td ] 

α 1.562 0.025 

ω 0 . 0431 [ td −1 ] 0 . 0 0 05 [ td −1 ] 

�ω 0.0065 0.0 0 04 

Table A.4 

Values of fit coefficients of the trend for WIG bear 

market ( R 2 = 0 . 9985 ). 

Coefficient Value [p] Standard deviation [p] 

X 0 + X 1 41963 334 

X 1 −2528 269 

Table A.5 

Values of fit parameters of the trend for DAX bull mar- 

ket ( R 2 = 0 . 9985 ). 

Parameter Value Standard deviation 

t c 969 [ td ] 1 [ td ] 

τ 426 [ td ] 391 [ td ] 

α 0.52 0.03 

ω 0 . 00362 [ td −1 ] 0 . 0 0 0 04 ; [ td −1 ] 

�ω 0.0065 0.0 0 04 

Table A.6 

Values of fit coefficients of the trend for DAX bull 

market ( R 2 = 0 . 9985 ). 

Coefficient Value [p] Standard deviation [p] 

X 0 + X 1 4698 82 

X 1 −763 35 
mulate the hypothesis that the underlying phenomenon is 

a catastrophic (but not critical) slowing down. The signif- 

icance of this result is furthermore underlined by the fact 

that λ is a fundamental quantity which (as we are able to 

prove) enters all other linear indicators and also partici- 

pates in non-linear ones. 

Apart from λ, we have also identified the shift param- 

eter b (cf. Fig. 4 and, in particular, the insert figure pre- 

sented there). Hence, we have been able to present an em- 

pirical trajectory consisting of fixed points x ∗ plotted vs. 

trading time t , and directly observe the catastrophic bifur- 

cation transition preceded by the flickering phenomenon 

(cf. plots in Figs. 6 ). Furthermore, we have found that 

each catastrophic bifurcation transition is preceded by a 

singularity-like anti-peak, which appears to be a super- 

extreme event (see again the plots in Figs. 6 ). As a con- 

sequence, we have been able to construct a mechanical- 

like view of the bifurcation transitions, resulting in a bi- 

modal shape of the (unconditional) equilibrium statistics 8 

(see Figs. 8 and 9 for details). 

Our contribution opens possibilities for numerous ap- 

plications, for instance for forecasting, market risk analy- 

sis and financial market management. In addition, the ap- 

proach stimulating our present work is derived in part 

from ecology [17,48,50,52] , where sometimes an ecosystem 

undergoes a catastrophic regime shift (in the sense of the 

Réne Thom catastrophe theory [17] over a relatively short 

period of time. Hence, this opens the possibility for the 

methodological elements of our work to be applicable in 

such domains. Nevertheless, a word of warning is in place 

here, as one can easily deceive oneself by seeing deter- 

ministic dynamics at work in random data with a certain 

structure, as demonstrated for example in [31] . Criteria for 

validating the emergent nature of such structures can pre- 

vent this kind of over-interpretation, and devising such cri- 

teria constituted the main goal of this work. 
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Appendix A. Detrending procedure 

In order to model the long-term trend of the time se- 

ries presented in Fig. 1 , we used the following relaxation 

function of time t : 

X (| t − t c | ) = (X 0 + X 1 ) E α

(
−
( | t − t c | 

τ

)α)
−X 1 cos (ω | t − t c | ) cos (�ω | t − t c | ) , 
X 0 , α, τ, t c > 0 , (A.1) 

separately valid both for the bullish and the bearish sides 

of a given well-formed market bubble. (Predictions of For- 

mula (A.1) are shown in Fig. 1 using solid lines.) Here, 
8 We can say that this observation is seen even better for WIG and DJIA 

than for DAX. 
we have ω, �ω � 1, as this is required in the theoreti- 

cal derivation of the above equation; see [25] for details. 

All the parameters with the corresponding fitted values are 

listed in Tables A .1–A .12 . 
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Table A.7 

Values of fit parameters of the trend for DAX bear 

market ( R 2 = 0 . 9977 ). 

Parameter Value Standard deviation 

t c 968 [ td ] 0 [ td ] 

τ 426 [ td ] 72 [ td ] 

α 1.12 0.03 

ω 0 . 0089 [ td −1 ] 0 . 0 0 01 ; [ td −1 ] 

�ω 0.0246 0.0 0 01 

Table A.8 

Values of fit coefficients of the trend for DAX bear 

market ( R 2 = 0 . 9977 ). 

Coefficient Value [p] Standard deviation [p] 

X 0 + X 1 5464 70 

X 1 −847 36 

Table A.9 

Values of fit parameters of the trend for DJIA bull 

market ( R 2 = 0 . 9996 ). 

Parameter Value Standard deviation 

t c 627 [ td ] 3 [ td ] 

τ 333 [ td ] 38 [ td ] 

α 1.29 0.02 

ω 0 . 0107 [ td −1 ] 0 . 0 0 02 ; [ td −1 ] 

�ω 0.0220 0.0 0 02 

Table A.10 

Values of fit coefficients of the trend for DJIA bull 

market ( R 2 = 0 . 9996 ). 

Coefficient Value [p] Standard deviation [p] 

X 0 + X 1 3486 40 

X 1 −332 28 

Table A.11 

Values of fit parameters of the trend for DJIA bear 

market ( R 2 = 0 . 9971 ). 

Parameter Value Standard deviation 

t c 640 [ td ] 0 [ td ] 

τ 165 [ td ] 191 [ td ] 

α 1.938 0.575 

ω 0 . 030 [ td −1 ] 0 . 070 ; [ td −1 ] 

�ω 0.040 0.070 

Table A.12 

Values of fit coefficients of the trend for DJIA bear 

market ( R 2 = 0 . 9971 ). 

Parameter Value [p] Standard deviation [p] 

X 0 + X 1 4010 110 

X 1 −866 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 Here, δ is the Kronecker delta, while t indexes trading days within a 

given trading month (consisting of twenty-one trading days). The trading 

month is our time window, where λ is approximately constant. 
The Mittag-Leffler function E α( . . . ) is defined as follows

[35] : 

E α

(
−
( | t − t c | 

τ

)α)
= 

∞ ∑ 

n =0 

(−1) n 

�(1 + αn ) 

( | t − t c | 
τ

)αn 

. (A.2)

Here t c denotes the localization of the turning point where

the market changes its state from bullish to bearish, τ
plays the role of the relaxation time of the order of one

year, and α is the shape exponent. All the values of param-

eters and coefficients describing this function for indexes

of WIG, DAX, and DJIA bull markets and bear markets are

listed in the Tables. A .1–A .12 . Notably, the coefficient of

determination, R 2 , is in no case smaller than R 2 = 0 . 9971 .

The value of R 2 close to 1 indicates that (A.1) is a prop-

erly selected trend. However, such a selection does not

exclude the possibility of the existence of a deterministic

drift component in the detrended time series. We model

the detrended time series entailing this component to-

gether with the additive noise in Appendix B . This is done

using the first-order difference equation of the stochastic

dynamics (B.1) , and in particular, locally in the vicinity of

a fixed point using Eq. (B.7) . 

The trend function (A.1) consists of two different com-

ponents: (i) the main component based on the Mittag-

Leffler function monotonically increasing for t ≤ t c and

monotonically decreasing in the opposite case, and (ii) the

higher-order oscillating component (the amplitude X 1 of

which is of the order of 10% of the amplitude of the

main component X 0 + X 1 ). As required, the trend func-

tion obtained in this way mainly exhibits the long-term

slowly-varying super-exponential growth, which precedes

the speculation-induced crash. 

The trend we use is a function that we derived earlier

as a rheological model of fractional dynamics of financial

markets ( [25] ). This model introduces the hypothesis that

stock markets behave like a viscoelastic biopolymer. That

is, they are elastic (i.e., they immediately respond) if the

impact of an external force on a stock market is sufficiently

strong. But they are more like a liquid (plastic) material in

the case of a weak external force. That is, financial markets

behave analogically to a non-Newtonian liquid. 

Among the fit parameters and coefficients for a given

index (see Tables. A .1–A .12 ), there always exists at least

one (characterizing the bull market or bear market) which

is burdened by a large standard deviation. In this way the

system is protected from arbitrage. 

Appendix B. Catastrophic slowing down 

In this Appendix, we consider linear indicators of the

catastrophic slowing down or regime shift such as: (i)

recovery rate and time, (ii) variance, and (iii) reddened

power spectra. 

Let us suppose that detrended time-dependent time se-

ries x t 
def . = X(t) − Trend (t) , where Trend( t ) is the trend ex-

pressed by Eq. (A.1) , obeys the first-order difference equa-

tion of the stochastic dynamics 

x t+1 − x t = f (x t ; P ) + η t = −∂U(x t ; P ) 

∂x t 
+ ηt , (B.1)

where U plays the role of a mechanical potential, the ad-

ditive noise or stochastic force η t , t = 0 , 1 , 2 , . . . , is a δ-

correlated 

9 (0, σ 2 ) random variable. P is a slowly varying
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10 The set of variables y t , t = 0 , 1 , 2 , . . . , is also called the first-order au- 

toregressive time series. 
11 This figure is the result of the linear transformation ( 1 + λ ⇒ −λ) of 

Fig. 5 . The empirical data points in Fig. 5 are credible, as they come from 

two independent sources, providing mutually consistent results. 
driving (control, in general a vector) parameter, the precise 

definition of which is given in Appendix C . 

In the spirit of the time dependent Ginzburg-Landau 

theory of phase transition ( [50] ), we can assume that 

the potential U ( x ; P ) is a polynomial of the fourth-order 

(hence, force f is a polynomial of the third-order, cf. 

Appendix C ). Now, our goal is to determine coefficients 

of this polynomial from the properly detrended empirical 

data. For instance, in Figs. 7–10 plots of force f , in poten- 

tial U , and equilibrium probability Pr vs. detrended time 

series (variable) x are already shown (using solid lines) for 

different values of parameter P . Furthermore, in the com- 

prehensive Fig. 11 , the plots of f are grouped into a three- 

dimensional visualisation. 

Our goal is to utilize potential U ( x ; P ) in the construc- 

tion of an unconditional equilibrium distribution, Pr ( x ; P ), 

of the detrended time series and present how both quanti- 

ties evolve across bistable forms. This will provide a signa- 

ture of a genuine (and not spurious or artificial) bifurcation 

transition. 

B1. Equilibrium distribution of detrended time series 

The differential formulation directly results from Eq. 

(B.1) . Its basic ingredient is the Langevin dynamics [50,55] , 

taking the form of the massless stochastic dynamic equa- 

tion 

∂x t 

∂t 
= −∂U(x t ; P ) 

∂x t 
+ ηt . (B.2) 

This equation is equivalent to the quasilinear (according to 

van Kampen’s terminology, [55] ) Fokker-Planck equation 

∂P r(x, t; P ) 

∂t 
= −∂ j(x, t; P ) 

∂x 
, (B.3) 

which is a form of the continuity equation (a conservation 

law) for the probability density of the current, i.e. the de- 

trended time series Pr ( x, t ; P ), where the current density is 

given by the constitutive equation 

j(x, t; P ) = f (x ; P ) P r(x, t; P ) − σ 2 

2 

∂P r(x, t; P ) 

∂x 
. (B.4) 

The equilibrium (time-independent) solution of Eq. 

(B.3) (obtained directly from the requirement that no 

current is present in the system, (i.e. by assuming that 

j(x, t) = 0 in Eq. (B.4) ) is given by 

P r(x ; P ) ∼ 2 

σ 2 
exp 

(
− 2 

σ 2 
U(x ; P ) 

)
, (B.5) 

where potential U ( x ; P ) already appeared in Eqs. (B.1) and 

(B.2) . 

The long-term, slowly-varying evolution of the above 

given distribution shown in Figs. 7–10 as U ( x ; P ) versus 

P was found from empirical data (see Appendix C for de- 

tails). Indeed, the unconditional equilibrium distribution 

(B.5) exhibits the expected bistable shape slightly before 

(see Fig. 8 ) and at the catastrophic bifurcation transition, 

that is within the bifurcation region (see Fig. 9 ). 

B2. Analysis of the linear stability 

In this section, we study the linear stability of the equi- 

librium, that is we consider the relaxation of the system 
which was slightly knocked out of equilibrium [56] . The 

equilibrium of the system is defined by the roots (or fixed 

points) of the function f ( x ; P ). In Sec. 3 , we argue that

these roots can be viewed as the mechanical-like equilib- 

ria. 

The linear expansion of f ( x ; P ) at the fixed point x ∗,

gives 

y t+1 − y t = f (x ∗(P ) ; P ) + λ y t + η t = λ y t + η t 

⇔ y t+1 = AR (1) y t + η t (B.6) 

as, by the definition of a root, f ( x ∗( P ); P ) vanishes. We

will use the following notation: (i) for the displacement 

from an equilibrium 

10 or the (non-normalized) order pa- 

rameter y t = x t − x ∗(P ) , t = 0 , 1 , 2 , . . . , and (ii) for rate

λ(x ∗(P ) ; P ) = 

∂ f (x ;P) 
∂x 

| x = x ∗(P) . The autoregressive coefficient 

of the first-order AR (1) = 1 + λ. 

The formula in the second line of Eq. B.6 , rewritten in 

the form 

x t+1 = (1 + λ) x t + b + η t , b(= A (0)) = −λ x ∗, (B.7) 

makes it possible to obtain the recovery rate −λ(> 0) and 

fixed point x ∗ vs. trading days from the fits to empiri- 

cal data represented by successive sample regression plots, 

such as shown, for instance, in Fig. 4 . 

Each plot in this figure consists of 20 points of daily 

observations (i.e. covering a single month) at the closing, 

which appears to be the optimal number for observing the 

slowing down to zero of the recovery rates shown in the 

plots in Fig. 5 11 with a satisfactory resolution. The error 

bar of each individual point placed in these plots comes 

from the above-mentioned fits as a standard deviation of 

the straight line slope. (The corresponding points with- 

out error bars were found independently from Expression 

(1) ). Obviously, these fits also give the straight line shift b 

vs. trading days. The resulting combined quantity −b/λ is 

presented in plots in Fig. 6 vs. trading days. We obtain a 

surprisingly small statistical error for these fits. However, 

we tacitly assumed that coefficients λ and b were slowly- 

varying functions of trading days. These fits constitute the 

empirical basis for our further considerations. 

The solution of Eq. (B.6) is 

y t = (1 + λ) t y 0 + (1 + λ) t−1 
t−1 ∑ 

τ=0 

ητ (1 + λ) −τ

≈ exp (λt) 

[
y 0 + 

∫ t 

0 

ητ exp (−λτ ) dτ

]
(B.8) 

and (as 〈 ητ 〉 = 0) its average 

〈 y t 〉 = (1 + λ) t y 0 ≈ exp (λt) y 0 , (B.9) 

where the first equality in (B.8) is valid for t ≥ 1 (for t = 0

the solution y t=0 = y 0 ). The second approximate equality in 

(B.8) is valid solely for the case of | λ| � 1 and t 
 1, that

is for the immediate vicinity of the threshold (shown in 
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Figs. 2, 3 , and 5 by the vertical dashed straight lines) and

for a sufficiently long time. 

From Eq. (B.9) , it follows that a given equilibrium state

is stable (i.e., 〈 y t → ∞ 

〉 → 0 for y 0 � = 0 and 〈 y t 〉 = 0 for

y 0 = 0 ) if and only if 12 | 1 + λ | < 1 ⇔ −2 < λ < 0 ; other-

wise it is unstable. Hence, the local minima of the poten-

tial curve (e.g., points 1 and 1 ′ ′ in the bottom plot in Fig. 8 )

define stable equilibria, while the local maximum of the

potential curve (e.g., point 1 ′ again in the bottom plot in

Fig. 8 ) define the unstable equilibrium. The most relevant

states of the system are stable equilibrium points x ∗1 and

x ∗
1 ′′ shown in Fig. 9 and in Fig. 11 (where they are con-

nected by the arrow), as they define the border of the bi-

furcation region. Hence, they are referred to as the catas-

trophic bifurcation points or tipping points. The quantity

τ
def . = −1 /λ can be interpreted as the relaxation (recovery

or return) time solely for the stable (mechanical) equilib-

ria. This is the characteristic time for the system to return

to the equilibrium state after being knocked out of it. 

B3. Generic properties of the first-order autoregressive time 

series 

It is well-known [7,15] that particularly useful quanti-

ties, i.e. variance, covariance and autocorrelation function,

as well as the power spectrum, are related. We calculate

them by exploiting an exact solution given by the first

equality in (B.8) . 
Firstly, we calculate the covariance, 

ov (y t y t+ h ) = 〈 y t y t+ h 〉 − 〈 y t 〉 〈 y t+ h 〉 = (1 + λ) | h | V ar(y t ) = 

Cov (x t x t+ h ) = (1 + λ) | h | V ar(x t ) 

⇔ AC F (h ) = 

C ov (y t y t+ h ) 
V ar(y t ) 

= 

Cov (x t x t+ h ) 
V ar(x t ) 

= (1 + λ) | h | 

⇒ ACF (h ) ≈ exp (λ | h | ) , 
h = 0 , ±1 , ±2 , . . . , (B.10)

where variance Var ( y t ) is given (after straightforward cal-

culations) by the formula 

 ar(y t ) = 

〈
y 2 t 

〉
− 〈 y t 〉 2 = V ar(x t ) 

= V ar(y 0 )(1 + λ) 2 t − 1 

λ(2 + λ) 

[
1 − (1 + λ) 2 t 

]
σ 2

(B.11

where the notation 〈 . . . 〉 denotes an average over the noise

and the initial conditions (within the statistical ensemble

of solutions y t given by Eq. (B.8) ). The resultant equality in

(B.10) is obeyed for | λ| � 1. Furthermore, at a short-time

limit, i.e., for 2 t � N 

−1 , Var ( y t ) simplifies into the form 

 ar(y t ) ≈ V ar(y 0 )(1 + 2 λt) + tσ 2 ≈ V ar(y 0 ) + σ 2 t. (B.12)

For the asymptotic time limit, i.e., for t → ∞ , Eq. (B.11)

reduces (for fixed λ) to the form 

 ar(y t ) ≈ − σ 2 

λ(2 + λ) 
, (B.13)
12 We observed that for our empirical data a more restrictive inequality 

−1 < λ < 0 is obeyed. 

 

 

 

which diverges for vanishing λ. We hypothesise that by

taking into account the flickering phenomenon we will ob-

tain a significant increase in the variance within the bi-

furcation region. In general, the analytical calculation of

variance requires the solution of the nonlinear Eq. (B.1)

for f , given, in our case, by the polynomial (defined fur-

ther in the text by Eq. (C.2) ), which remains an unsolved

challenge. 

The coefficient 1 + λ (present, for instance, in (B.10) ) is

the lag-1 autocorrelation function, which can be found di-

rectly from the empirical data (cf. Fig. 5 ). Apparently, it

does not depend on the variance. 

It can be easily proven by using Solution (B.8) that any

odd moment of the variable y t asymptotically vanishes.

Hence, from Eq. (B.11) , we find that within the linear the-

ory, the skewness also vanishes. 

Furthermore, it can be easily verified (by using Solu-

tion (B.8) ) that the excess kurtosis vanishes if variables y 0
and η t are drawn from some Gaussian distributions. That

is, within the scope of the linear theory (i.e. in the vicin-

ity of the threshold) the distribution of variable y t can be

Gaussian, of variance given by Expression (B.11) and cen-

tred around the mean value 〈 y t 〉 = y 0 (1 + λ) t . 

Appendix C. Approximation of force f by the 

third-order polynomial 

Let us assume that the potential U , used in Eq. (B.1) , is

defined by the fourth-order polynomial 

(x ; P ) = A 0 x 
4 + A 1 x 

3 + A 2 x 
2 + A 3 x + A 4 , (C.1)

where A l , l = 0 , 1 , . . . , 4 , are its real coefficients related to

the (combined) parameter P – this relation is considered

further in this Section. Moreover, we can assume that the

coefficient A 0 > 0. This is dictated by the empirical data

shown in Fig. 6 , where the sequence of states (roots) x ∗
1 ′′ 

and x ∗
1 

placed respectively on the upper and lower seg-

ments of the backward folded curves are considered as

the stable (mechanical) equilibrium states. Both these roots

have opposite signs, which results in the corresponding

signs of the coefficients. 

According to the definition of potential (see Eq. (B.1) ),

force f is a polynomial of one order of magnitude lower 

f (x ; P ) = a 0 x 
3 + a 1 x 

2 + a 2 x + a 3 , (C.2)

here coefficients a 4 −l = −l A 4 −l , l = 1 , . . . , 4 , where a 0 < 0. 

Below, we consider following characteristic cases: (a)

the catastrophic bifurcation transition at catastrophic bi-

furcation threshold (regarding Fig. 9 ), (b) the transition

before the catastrophic bifurcation transition (but within

bistable region regarding Fig. 8 ), (c) the transition present

after it (regarding Fig. 10 ) , and (d) the analogous transi-

tion present before the bistable region (regarding Fig. 7 ). 

The aim of this Section is to express the coefficients of

the polynomial (C.2) in terms of the roots of this polyno-

mial. These roots can be easily extracted from empirical

data shown in Fig. 6 . Using these coefficients, we are able

to plot the force and potential curves (see Figs. 7–10 for

details) and give a mechanical interpretation to the catas-

trophic bifurcation transition. 
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C1. Case of the catastrophic bifurcation transition 

Let us focus on the case (a) (presented in Fig. 9 ) con- 

cerning the catastrophic bifurcation transition. This means 

that the coefficients a l , l = 0 , . . . , 3 , should provide a cor- 

responding parameterisation, which results in a curve f ( x ; 

P ) vs. x in the form shown in Fig. 9 . (We relate these coef- 

ficients to the parameter P at the end of this Section.) 

Now, we can provide the detailed goals of this case. 

They are as follows: 

(i) derivation of the root x ∗
1 

and twofold root x ∗
1 ′′ of the 

polynomial (C.2) and hence calculation, for instance, of 

the catastrophic bifurcation jump, �x ∗
1 , 1 ′′ = x ∗

1 ′′ − x ∗
1 
, as 

a function of polynomial coefficients, 

ii) the solution of the inverse problem, that is derivation 

of the relative parameters a 1 / a 0 , a 2 / a 0 , and a 3 / a 0 by

means of roots x ∗1 and x ∗
1 ′′ , which can be obtained from 

the empirical data shown in Fig. 6 . 

Notably, the catastrophic bifurcation transition 1 ′ ′ ⇒ 1 

(cf. the upper plot in Fig. 9 and the transition denoted by 

the arrow in Fig. 11 ) beginning at the point 1 ′ ′ – which is 

not only the largest (twofold) root of polynomial f but it 

also provides the position of its local maximum; hence, it 

is an inflection point of the curve U vs. x (cf. upper and 

middle plots in Fig. 9 ). Considering the canonical represen- 

tation 

1 

a 0 
f (x ; P ) = (x − x ∗1 )(x − x ∗1 ′′ ) 

2 , (C.3) 

and utilizing Eq. (C.2) , we obtain 

∂ f (x ; P ) 

∂x 
| x = x 0 , x ∗

1 ′′ = 0 ⇔ 3 x ∗ 2 
0 , 1 ′′ + 2 

a 1 
a 0 

x ∗0 , 1 ′′ + 

a 2 
a 0 

= 0 , 

⇔ x ∗1 = 

1 

2 

(3 x ∗0 − x ∗1 ′′ ) , (C.4) 

where x ∗0 is the first inflection point of the curve U vs. x 

(see the middle plot in Fig. 9 ) and it is the local minimum 

of the curve f vs. x (see the upper plot in Fig. 9 ). However, 

this point is not explicitly shown there. 

From Eqs. (C.4) and Eq. (C.3) , we obtain 

x ∗0 , 1 ′′ = x f 
ip 

∓ 1 

3 

√ 

D , D 

def . = 

(
a 1 
a 0 

)2 

− 3 

a 2 
a 0 

, 

x ∗1 = x f 
ip 

− 2 

3 

√ 

D , (C.5) 

where for the first upper equation sign − represents the 

location of the minimum x ∗
0 
, the sign + represents the lo- 

cation of the root x ∗
1 ′′ , and we assumed D > 0 as both real 

roots of Eq. (C.4) should exist. Besides, we can easily de- 

rive (from the vanishing of the second derivative f over x ) 

that x 
f 
ip 

, present in (C.5) , is the inflection point of f (cf. the 

upper plot in Fig. 9 ), 

∂ 2 f (x ; P ) 

∂x 2 
| 
x = x f 

ip 

= 0 ⇔ x f 
ip 

= −1 

3 

a 1 
a 0 

. (C.6) 

As follows from Eq. (C.5) , both extrema x ∗
0 

and x ∗
1 ′′ are lo- 

cated symmetrically on either sides of the inflection point 

x ip . That is the position x ∗
0 

of the minimum is located on 

the left-hand side, while the position of the root x ∗
1 ′′ is on 
the right-hand side, both being at the same distance from 

the position of the inflection point. 

From Eqs. (C.5) , we obtain the catastrophic bifurcation 

jump in the form of 

�x ∗1 , 1 ′′ = 

√ 

D = 

1 

2 a 0 

∂ 2 f (x ; P ) 

∂x 2 
| x = x ∗

1 ′′ , (C.7) 

which can be easily determined from the curves plotted in 

Fig. 9 . Moreover, the latter equality means that taking into 

account the quadratic term in the expansion of (B.1) vs. x t 
could be a promising approach. A step, based on empiri- 

cal data, beyond the linear approximation utilized in the 

derivation of Eq. (B.6) , could provide more detailed infor- 

mation, e.g., concerning autocorrelation in the vicinity of 

the catastrophic bifurcation transition. 

From Eqs. (C.5) and (C.6) , we derive the solution of the 

inverse problem in the form, 

a 1 
a 0 

= −(2 x ∗1 ′′ + x ∗1 ) ≤ 0 , 

a 2 
a 0 

= x ∗1 ′′ ( x 
∗
1 ′′ + 2 x ∗1 ) ≥ 0 , (C.8) 

together with the constraint for the relative free parame- 

ter 

a 3 
a 0 

= −x ∗1 (x ∗1 ′′ ) 
2 ≥ 0 . (C.9) 

The latter relation makes the above procedure self- 

consistent. 

By identifying the roots x ∗1 = −101 . 17 and x ∗
1 ′′ = 278 . 92

from the empirical data shown in Fig. 6 (b) as the right tip- 

ping point and the one placed on the bifurcation threshold, 

respectively, we derive the relative parameters in question 

a 1 /a 0 = −456 . 67 , a 2 /a 0 = 21359 . 70 and a 3 /a 0 = 7 . 870 6 6 ×
10 6 . Thus, we obtained the unique values of parameters 

without any fitting routine, i.e. the parameters are not the 

fitting ones. In addition, the three inequalities given above 

lead to the following ones: a 1 ≥ 0, a 2 ≤ 0, a 3 ≤ 0. The bot- 

tom plots shown in Figs. 8–11 tacitly assume that the pa- 

rameter P monotonically depends on time (counted on a 

monthly time scale) at least in the vicinity of the CBT. The 

vector parameter P consists, in our case, of only two inde- 

pendent components, e.g., x ∗1 and x ∗
1 ′′ . This is sufficient to 

perform stochastic simulation at the catastrophic transition 

point. 

C2. Case of the bistable region 

The case considered here (i.e., the case represented by 

Fig. 8 ) is a generalisation of the one discussed in the sub- 

section above. That is, we consider a variable x placed 

inside the bifurcation region, where three different real 

roots exist (cf. backward-folded curves shown in Fig. 6 and 

schematically shown in Fig. 11 ). 

The goal of this subsection is analogous to that con- 

sidered above, i.e., to extract coefficients of the polyno- 

mial (C.2) by using its roots found from the empirical 

data (shown in the above mentioned figures). By assum- 

ing that the polynomial (C.2) has three real different roots 

and by comparing Eq. (C.2) with its multiplicative form 
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1 
a 0 

f (x ; P ) = 

(
x − x ∗

1 

)(
x − x ∗

1 ′ 
)(

x − x ∗
1 ′′ 

)
, we obtain the rela-

tions sought for the coefficients of the polynomial 

a 1 
a 0 

= −(x ∗1 ′′ + x ∗1 ′ + x ∗1 ) , 

a 2 
a 0 

= x ∗1 ′ x 
∗
1 ′′ + x ∗1 x 

∗
1 ′′ + x ∗1 x 

∗
1 ′ , 

a 3 
a 0 

= −x ∗1 x 
∗
1 ′ x 

∗
1 ′′ . (C.10)

The equations above are a generalization of the corre-

sponding Eqs. (C.8) and (C.9) , as we obtain these by insert-

ing x ∗
1 ′ = x ∗

1 ′′ in Eqs. (C.10) . 

Fig. 8 was constructed by using coefficients obtained

from Eqs. (C.10) by introducing into their right-hand

sides, the following empirical values of the roots:

x ∗
1 

= −626 . 473 , x ∗
1 ′ = −488 . 308 , x ∗

1 ′′ = 278 . 92 , taken,

for instance, from the backward-folded curve shown

in Fig. 6 (b). From (C.10) , we obtain the unique values

of the relative parameters: a 1 /a 0 = 835 . 861 , a 2 /a 0 =
−5022 . 94 , a 3 /a 0 = −8 . 53249 × 10 8 . Apparently, this sit-

uation is analogous to the previous one (considered the

above). 

C3. Case after the catastrophic bifurcation transition 

For this case (represented by Fig. 10 ), we have an in-

sufficient amount of empirical data for a unique solution,

as only a single real root x ∗
1 

can be identified (roots x ∗
1 ′ 

and x ∗
1 ′′ are the complex conjugates). Hence, we deal only

with a single relation between the coefficients of the poly-

nomial 

1 

a 0 
f (x ∗1 ; P ) = −( x ∗1 ) 

3 − a 1 
a 0 

( x ∗1 ) 
2 − x ∗1 

a 2 
a 0 

− a 3 
a 0 

= 0 , (C.11)

which makes the ratio of the parameters a 3 / a 0 depen-

dent on x ∗1 , a 1 / a 0 , and a 2 / a 0 . Therefore, the driving vector

parameter can be defined as P = (x ∗
1 
, a 1 /a 0 , a 2 /a 0 ) , where

relative parameters a 1 / a 0 and a 2 / a 0 are free. For instance,

in Fig. 10 we show plots for the root x ∗1 = −75 . 3875 ,

as well as the ratios of the parameters a 1 /a 0 = −456 . 67 ,

a 2 /a 0 = 41709 . 50 , and a 3 /a 0 = 6 . 1682 × 10 6 . 

C4. Case before the bistable region 

We deal with an analogous situation as given above if x

is placed before the catastrophic bifurcation region and (si-

multaneously) outside of the bistable region. Then, we are

again dealing with a single real root, e.g., x ∗
1 ′′ = 421 . 009 ,

while the roots x 1 and x ∗
1 ′ are complex conjugates. For

instance, in Fig. 7 we show plots for the ratios of the

parameters a 1 /a 0 = 1179 . 81 , a 2 /a 0 = 278390 and a 3 /a 0 =
−4 . 00948 × 10 8 . 

Fortunately, the cases represented by Figs. 7 and 10 , and

defined by two free relative parameters a 1 / a 0 and a 2 / a 0 ,

are not particularly interesting because the regions con-

cerned are outside the most interesting bistable regime. 

References 

[1] Albert R , Barabási A-L . Statistical mechanics of complex networks.
Rev Mod Phys 2001;74:47–97 . 

[2] . In: Albeverio S, Jentsch V, Kantz H, editors. Extreme events in na-
ture and society. Berlin: Springer-Verlag; 2006 . 
[3] Badii R , Politi A . Complexity. Hierarchical structures and scaling in
physics. Cambridge: Cambridge Univ. Press; 1997 . 

[4] Barunik J , Vosvrda M . Can a stochastic cusp catastrophe model ex-
plain stock market crashes? J Econ Dyn Control 2009;33:1824–36 . 

[5] Bełej M , Kulesza S . Real estate market under catastrophic change.
Acta Phys Pol 2013;123:497–501 . 

[6] Brock WA , Carpenter SR , Scheffer M . Regime shifts, environmental

signals, uncertainty and policy choice. In: Norberg J, Cumming G,
editors. A theoretical framework for analyzing social-ecological sys-

tems. New York: Columbia Univ. Press; 2006. p. 180–206 . 
[7] Brockwell PJ , Davis RA . Time series: theory and methods,. Berlin:

Springer-Verlag; 1991 . 
[8] Carpenter SR , Brock WA . Rising variance: a leading indicator of eco-

logical transitions. Ecol Lett 2006;9:308–15 . 
[9] Carpenter SR , Brock WA , Cole JJ , Kitchell JF , Pace ML . Leading indica-

tors of trophic cascaders. Ecol Lett 2008;11:128–38 . 

[10] Chang G , Feigenbaum J . A bayesian analysis of log-periodic precur-
sors to financial crashes. Quant Finance 2006;6:15–36 . 

[11] Dorogovtsev SN , Goltsev AV , Mendes JFF . Critical phenomena in
complex networks. Rev Mod Phys 2008;80:1275–335 . 

[12] Fantazzini D , Geraskin P . Everything you always wanted to know
about log-periodic power laws for bubble modelling but were afraid

to ask. Eur J Finance 2013;19:366–91 . 

[13] Filimonov V , Sornette D . Spurious trend switching phenomena in fi-
nancial markets. Eur Phys J B 2012;85(155/1-5) . 

[14] Fry JM . Exogenous and endogenous market crashes as phase transi-
tions in complex financial systems. EPJ B 85 2012;405 . 

[15] Fuller WA . Introduction to statistical time series. Canada: J. Wiley &
Sons, Inc.; 1976 . 

[16] Gottinger H-W . Complexity and catastrophe, applications of dynamic

system theory. In: Kýn O, Schrettl W, editors. On the stability of con-
temporary economic systems: proceedings of the third Reisenburg

Symposium. Göttingen: Vandenhoeck & Ruprecht; 1979. p. 422–38 . 
[17] Guttal V , Jayaprakash C . Changing skewness: an early warning signal

of regime shifts in ecosystems. Ecol Lett 2008;11:450–60 . 
[18] Haldane AG , May RM . Systemic risk in banking ecosystems. Nature

2011;469:351–5 . 

[19] Hohenberg P , Halperin B . Theory of dynamic critical phenomena. Rev
Mod Phys 1977;59:435–79 . 

[20] Jakimowicz A . Catastrophes and chaos in business cycle theory. Acta
Phys Pol A 2010;117:640–6 . 

[21] Jiang SM , Cai SM , Shou T , Zhou PL . Note on two-phase phenomena
in financial markets. Chin Phys Lett 2008;25(6):2319–22 . 

[22] Johnson N . Proposing policy by analogy is risky. Nature

2011;469 . 302–302 
[23] Johnson NF , Hui PJ . Financial market complexity. Oxford: Oxford

Univ. Press; 2007 . 
[24] Paul W , Baschnagel J . Stochastic processes. From physics to finance.

Berlin: Springer-Verlag; 1999 . 
[25] Kozłowska M , Kasprzak A , Kutner R . Fractional market model and

its verification on the warsaw stock exchange. Int J Mod Phys C

2008;19:453–69 . 
[26] Kozłowska M , Kutner R . Singular dynamics of various macroeco-

nomic sectors. Acta Phys Pol 2010;117:630–6 . 
[27] Kutner R , Binder K , Kehr KW . Diffusion in concentrated lattice gases.

v. particles with repulsive nearest-neighbor interaction on the face–
centered-cubic lattice. Phys Rev B 1983;28:1846–58 . 

[28] Landau DP , Binder K . A guide to Monte Carlo simulations in statisti-
cal physics. Cambridge: Cambridge Univ. Press; 20 0 0 . 

[29] Lux T . Network theory is sorely required. Nature 2011;469 . 303–303 

[30] Malevergne Y , Sornette D . Extreme financial risks. From dependence
to risk management. Berlin: Springer-Verlag; 2006 . 

[31] Mandelbrot B , Wallis J . Computer experiments with fractional gaus-
sian noises. Water Resour Res 1969;5:228–67 . 

[32] Mantegna RN , Stanley HE . An Introduction to econophysics. Correla-
tions and complexity in finance. Cambridge: Cambridge Univ. Press;

20 0 0 . 

[33] Matia K , Yamasaki K . Statistical properties of demand fluctuation in
the financial market,. Quant Finance 2005;5(6):513–17 . 

[34] McSharry PE , Smith LA , Tarassenko L , Martinerie J , Quyen MLV ,
Baulc M , et al. Prediction of epileptic seizures: are nonlinear meth-

ods relevant? Nat Med, Lett Editor 2003;9(3):241–2 . 
[35] Metzler R , Klafter J . The random walk’s guide to anomalous diffu-

sion: a fractional dynamics approach,. Phys Rep 20 0 0;339:1–77 . 

[36] Plerou V , Gopikrishnan P , Stanley HE . Two phase behaviour of finan-
cial markets. Nature 2003;421:129–30 . 

[37] Plerou V , Gopikrishnan P , Stanley HE . Two phase behaviour and the
distribution of volume. Quant Finance 2005;5:519–21 . 

http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0001
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0001
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0001
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0002
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0003
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0003
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0003
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0004
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0004
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0004
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0005
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0005
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0005
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0006
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0006
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0006
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0006
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0007
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0007
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0007
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0008
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0008
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0008
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0009
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0009
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0009
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0009
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0009
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0009
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0010
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0010
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0010
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0011
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0011
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0011
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0011
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0013
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0013
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0013
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0014
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0014
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0014
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0015
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0015
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0016
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0016
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0018
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0018
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0019
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0019
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0019
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0020
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0020
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0020
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0021
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0021
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0021
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0022
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0022
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0023
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0023
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0023
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0023
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0023
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0024
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0024
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0025
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0025
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0025
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0027
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0027
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0027
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0028
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0028
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0028
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0028
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0029
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0029
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0029
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0032
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0032
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0032
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0032
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0033
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0033
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0033
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0034
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0034
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0035
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0035
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0035
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0036
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0036
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0036
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0037
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0037
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0037
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0038
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0038
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0038
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0039
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0039
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0039
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0039
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0039
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0039
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0039
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0039
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0040
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0040
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0040
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0041
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0041
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0041
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0041
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0042
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0042
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0042
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0042


142 M. Kozłowska et al. / Chaos, Solitons and Fractals 88 (2016) 126–142 

 

 

 

[38] Potters M., Bouchaud J.-P.. Comment on ”two-phase behavior of fi- 
nancial markets. 2003. ArXiv.cond-mat/0304514v1. 

[39] Preis T . Econophysics: complex correlations and trend switchings in 
financial time series. Eur Phys J ST 2011;194(1):5–86 . 

[40] Preis T , Schneider JJ , Stanley HE . Switching phenomena in financial 
markets. PNAS 2011;108(19):7674–8 . 

[41] Preis T , Stanley HE . Switching phenomena in a system with no 

switches. J Stat Phys 2010;138(1-3):431–46 . 
[42] Preis T , Stanley HE . Trend switching processes in financial markets. 

In: Takayasu M, Watanabe T, Takayasu H, editors. Econophysics ap- 
proaches to large-scale business data and financial crisis. Tokyo: 

Springer-Verlag; 2010. p. 3–26 . 
[43] Preis T , Stanley HE . Bubble trouble. Phys World 2011;24:29–32 . 

[44] Preis T , Stanley HE . How to characterize trend switching pro- 
cesses in financial markets. Bull Asia Pacific Cent Theor Phys 

20 09;23:18–23 . 20 09 

[45] Roehner BM . Patterns of speculation. A Study observational econo- 
physics. Cambridge: Cambridge Univ. Press; 2002 . 

[46] Rosser JB Jr . Implications for teaching macroeconomics of com- 
plex dynamics. Dept. Economics, James Madison Univ., Harrisonburg; 

2004 . 
[47] Schadschneider A , Chowdhury D , Nishinari K . Stochastic transport in 

complex systems. From molecules to vehicles. Amsterdam: Elsevier; 

2011 . 
[48] Scheffer M , Bascompte J , Brock WA , Brovkin V , Carpenter SR , 

Dakos V , et al. Early-warning signals for critical transitions. Nature 
2009;461:53–9 . 
[49] Sornette D . Why stock markets crash. Princeton and Oxford: Prince- 
ton Univ. Press; 2003 . 

[50] Sornette D . Critical Phenomena in Natural Sciences. Chaos, fractals, 
selforganization and disorder: concepts and tools. Springer series in 

synergetics. 2nd ed. Heidelberg: Springer-Verlag; 2004 . 
[51] Nawrocki D , Vaga T . A bifurcation model of market returns. Quant 

Finance 2014;14(3):509–28 . 

[52] Sornette D . Dragon-kings, black swans and the prediction of crises. 
Int J Terraspace Eng 2009;2:1–17 . 

[53] Stanley HE , Buldyrev SV , Franzese G , Havlin S , Mallamace F , Kumar P ,
et al. Correlated randomness and switching phenomena. Physica A 

2010;389:2880–93 . 
[54] Vandewalle N , Ausloos M , Boveroux P , Minguet A . Visualizing the

log-periodic pattern before crashes,. Eur J Phys B 1999;9:355–9 . 
[55] van Kampen NG . Stochastic processes in physics and chemistry. Am- 

sterdam: North-Holland; 1987 . 

[56] Wissel C . A universal law of the characteristic return time near 
thresholds, 65. Berlin: Oecologia; 1984. p. 101–7 . 

[57] Zeeman EC . On the unstable behavior of stock exchanges. J Math 
Econ 1 1974:39–49 . 

[58] Zeeman EC . Catastrophe theory: selected papers, 1972-77. Bull Amer 
Math Soc (N S) 1978;84:1360–8 . Errata, Bull. Amer. Math. Soc. (N. S. 

) 1, 6 81–6 81 (1979) 

[59] Zeeman EC . Evolution of catastrophe theory. Understanding catastro- 
phe,. Cambridge: Cambridge Univ. Press; 1992 . 

[60] Zheng B , Qiu T , Ren F . Two-phase phenomena, minority games, and
herding. Phys Rev E 2004;69(046115/1-6) . 

http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0043
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0043
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0044
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0044
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0044
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0044
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0045
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0045
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0045
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0046
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0046
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0046
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0047
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0047
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0047
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0048
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0048
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0048
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0049
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0049
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0050
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0050
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0051
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0051
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0051
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0051
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0052
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0052
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0052
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0052
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0052
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0052
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0052
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0052
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0053
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0053
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0054
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0054
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0055
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0055
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0055
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0056
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0056
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0057
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0057
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0057
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0057
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0057
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0057
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0057
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0057
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0058
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0058
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0058
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0058
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0058
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0059
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0059
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0062
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0062
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0063
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0063
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0064
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0064
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0065
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0065
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0066
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0066
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0066
http://refhub.elsevier.com/S0960-0779(16)30084-4/sbref0066

	Dynamic bifurcations on financial markets
	1 Introduction
	2 Analysis of empirical data
	2.1 Time series and detrending
	2.2 Variance of detrended time series
	2.3 Recovery rate
	2.4 Empirical catastrophic bifurcation transitions

	3 Mechanical-like view
	4 Concluding remarks
	 Acknowledgments
	Appendix A Detrending procedure
	Appendix B Catastrophic slowing down
	B1 Equilibrium distribution of detrended time series
	B2 Analysis of the linear stability
	B3 Generic properties of the first-order autoregressive time series

	Appendix C Approximation of force f by the third-order polynomial
	C1 Case of the catastrophic bifurcation transition
	C2 Case of the bistable region
	C3 Case after the catastrophic bifurcation transition
	C4 Case before the bistable region

	 References


