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Abstract

The problem of excessive losses is significant in economic theory and investment
practice, as well as for random processes analysis. One of the recently discovered
characteristics of losses and profits on financial markets, which was discovered
by Bogachev, Bunde, Ludescher, and Tsallis and is not entirely explained yet, is
the universality of the distribution of times between losses (or profits) exceeding
a given threshold value. In other words, this distribution does not depend on
the underlying asset type or the time resolution of data, but rather only depends
on the particular threshold height. Interestingly, similar results were obtained,
e.g., in geophysical time series (describing the earthquakes exceeding a particular
magnitude). In this thesis I present a thorough description of this universality,
employing two complementary approaches: (i) an analytical approach, based on
the extreme value theory (EVT) and the continuous-time random walk (CTRW)
model, and (ii) a numerical approach, based on the Potts model from statistical
mechanics. The thesis makes original contributions to the field of knowledge with
the following: (i) an analytical model of the aforementioned universality, with a
thorough empirical verification for losses and some proposed applications to value-
at-risk simulation, profits description, and geophysical data description, and (ii)
an agent-based spin model of financial markets with the novel interpretation of the
spin variable (as regards financial-market models), reproducing the main empirical
stylized facts, such as the shape of a usual and an absolute-value autocorrelation
function of the returns as well as the distribution of times between superthresh-
old losses. These results extend the knowledge and understanding of stochastic
processes, agent-based modeling, financial markets and geophysical systems.
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1

Introduction

The first chapter of the present thesis is intended to prepare the reader to com-
prehend its essential content. First, some initial remarks about the whole field
are provided (Sec. 1.1), then the problem under consideration is formulated and
placed in a broader scientific context, with several terms that are used later in the
thesis being introduced (Sec. 1.2), and finally the framework of the whole thesis
is presented (Sec. 1.3).

1.1 Econophysics

The traditional goal of physics until the 20th century was to explain the basic
properties of matter. By this means, physicists managed to describe the natural
processes and phenomena occurring on all existing scales, from the quantum level
to the level of the whole universe. Social scientists, in turn, were concerned with
issues regarding human interactions that, to a certain extent, are independent of
the physical environment in which they occur1.

However, there were always some common characteristics that physicists shared
with social scientists, e.g. (after Borrill and Tesfatsion (2011); cf. Jovanovic and
Schinckus (2017))

• an interest in understanding the complicated interactions of entities com-
posed of more elementary entities, behaving in accordance with potentially
simpler rules;

1Based on Borrill and Tesfatsion (2011).
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8 1. INTRODUCTION

• the need to account for multiple observers with different perspectives on
reality, measurements of whom necessarily entail perturbative interactions
with persistent (information flow) traces;

• systems of interest that can display what social scientists refer to as “path
dependencies”, i.e., dependencies on historical conditions.

In the second half of the 20th century, physicists filled the gap between physics
and the social sciences, and today two main research fields that use the meth-
ods, methodologies and ideas of physics for the description of social interactions,
namely econophysics and sociophysics, do in fact exist, as kinds of hybrid sciences.

As regards econophysics, it is already a fairly well-developed branch of the
physical sciences that applies some of the ideas, models and methods of physics
to economic and financial phenomena (Schinckus, 2016; Jovanovic and Schinckus,
2017). The methods from statistical physics (Stauffer, 2000), the physics of com-
plex systems (as the economy or its parts can be treated as large complex systems,
see Kwapień and Drożdż (2012) and refs. therein), the physics of random walks
(Scalas, 2006), or chaos theory (Grech and Mazur, 2004; Grech and Pamuła, 2008;
Oświęcimka et al., 2013) have been widely explored by econophysicists, with great
success (see also Sec. 1.1.1 below).

The history of modern econophysics began in the last decade of the 20th cen-
tury with the works of such physicists as Rosario N. Mantegna (Italy), H. Eugene
Stanley (USA) (Mantegna et al., 1995), Didier Sornette (Switzerland) and Jean-
Philippe Bouchaud (France) (Sornette et al., 1996). The name of this interdisci-
plinary field was coined over 20 years ago by Stanley et al. (1996a)2. However,
the connections between the physical and economic sciences are much older. Eco-
nomics, despite belonging to the family of the social sciences, always had strong
connections with mathematics and some similarities with physics. Suffice it to say
that the first statistical model of financial markets, made by the French mathe-
matician, Louis Bachelier, at the turn of the century (Bachelier, 1900), contained
an equivalent of the physical model of Brownian motions that was introduced
five years later by Albert Einstein and, independently, six years later by Marian
Smoluchowski (Einstein, 1905; Smoluchowski, 1906)3.

When it comes to the present day, according to Schinckus (2016); Jovanovic
and Schinckus (2017), econophysics is developing within, roughly speaking, three
basic “streams”, reflecting the ways of conceptualizing micro-macro interaction:

2Compare with Schinckus (2016); Jovanovic and Schinckus (2017).
3For more information about the “prehistory” of physical economics and its contributors,

such as Vilfredo Pareto or Benoît Mandelbrot, see e.g., Sornette (2014); Roehner (2002).
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(i) statistical econophysics (or the original econophysics) that seeks some sta-
tistical macropatterns in the macroscale empirical data (cf. Part I of the present
thesis); (ii) bottom-up agent-based econophysics reproducing the observed macro-
order from simulations based on some assumed microscale mechanics (cf. Part II);
and (iii) top-down agent-based econophysics, which determines the parameters of
the aforementioned micromechanics from certain macroscale observations.

1.1.1 Main achievements

The dialogue between some distant scientific fields has frequently yielded sig-
nificant results4. Econophysicists, despite the fact their research field has only
formally existed for two decades, can also boast of their first successes, as listed
below (after Daniel and Sornette (2010)):

• scaling, power laws, “universality” discovered on markets (Mantegna et al.,
1995; Cont et al., 1997; Mandelbrot and Stewart, 1998; Gopikrishnan et al.,
1999; Stanley, 1999);

• the theory of large price fluctuations (Gabaix et al., 2003);

• agent-based models, induction, evolutionary models (Lux and Marchesi,
1999; Cont and Bouchaud, 2000b; Farmer, 2002; Arthur, 2006);

• the option theory for incomplete markets (Bouchaud and Sornette, 1994;
Bouchaud and Potters, 2003);

• interest rate curves (Bouchaud et al., 1999; Santa-Clara and Sornette, 2001);

• minority games (Challet et al., 2013);

• the theory of Zipf law and its economic consequences (Gabaix, 1999, 2011;
Saichev et al., 2009);

• the theory of bubbles and crashes (Lux and Sornette, 2002; Sornette, 2003);

• the randommatrix theory applied to the covariance of market returns (Laloux
et al., 1999);

• the methods and models of dependence between financial assets, and in
particular network theory (Malevergne et al., 2003).

4For instance, artificial skin is the fruit of collaboration between surgeon and material re-
searcher from MIT. See Burke et al. (1981).
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In addition to the above, one of the latest significant achievements includes sys-
temic risk issues (Haldane and May, 2011; Helbing, 2013; Smaga et al., 2016).
The list is clearly impressive and testifies to the importance of econophysics as a
branch of the physical sciences, though many questions within its field of interest
still remain open. One of them, being a subject of this thesis, is presented in the
next section (1.2).

1.2 The problem formulation

Financial markets are one of the most important components of the economy,
since they constitute a “circulatory system” for all other markets, by providing
them with money. Most typical examples of such markets are the New York
Stock Exchange (NYSE), the foreign exchange market (Forex) and the Chicago
Board of Trade (CBOT). Their role nowadays is rapidly increasing. More and
more people are trying their hand at investing in various assets, from classic (but
still, risky) stocks to rare and exotic financial assets, such as freight or weather
derivatives5. Obviously, financial markets are interesting not only due to the
possibility of earning money, but also from a scientific point of view.

A fundamental characteristic of the financial markets, and of markets in gen-
eral, is the activity of the investors operating on them. Obviously, any activity
is inherently associated with a risk; however, the bigger the risk, the higher the
expected profits from the investment are. Therefore the profits, as well as losses
(i.e., negative profits; the more risk we take, the larger both of them can be)
are unavoidable features of any well-functioning market. Analysis of profits and
losses (so-called risk analysis) is a key issue for any investor and many market
researchers. The present thesis is devoted to a phenomenological analy-
sis of excessive losses and profits on financial markets, employing the
advanced methods of statistical physics. Profit and loss are treated here as
random variables. The thesis is based mainly on the papers Denys et al. (2013,
2014, 2016a,b), concerning its two essential parts (see Sec. 1.3).

A significant question in the analysis of losses in financial-market time series,
closely related to the economic concept of value at risk (see Sec. 2.1.2 of the next
chapter), is the description of the time distance between the subsequent losses of
a particular magnitude, i.e., extending some given threshold value. The goal of
the present thesis is to present a consistent description of this problem
based on – and then also confirmed by – the empirical data.

5Contracts in which payoff depends on the costs of transporting goods or weather conditions.
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Figure 1.1: The relative IBM daily returns Xi for the periods January 2000–June
2010 (the upper part) and August 27–October 23, 2002 (the lower part). The
red line is a threshold Q = −0.037 or −3.7%, corresponding to the mean quantile
time between losses RQ = 70 (cf. its definition in Sec. 3.2, Chapter 3). The arrows
represent the interevent times, defined in Sec. 1.2. Reprinted from Ludescher et al.
(2011).

Particularly, the thesis concerns the universality discovered in empirical data
by Bogachev, Bunde, Ludescher, and Tsallis (Bogachev and Bunde, 2008, 2009;
Ludescher et al., 2011; Ludescher and Bunde, 2014) related to the appearance of
excessive profits and losses. They have shown that in a financial time series of
market returns6 the shape of the distribution of times, ∆Qt, between profits or
losses7 which exceeds some fixed threshold value, Q (cf. Fig. 1.1), depends only
on this threshold, but not, e.g., on an underlying asset type or the time resolution
of data, as is shown in Fig. 1.2.

6That is, relative changes of price of a particular asset.
7That is, positive or negative returns.
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Figure 1.2: The empirical distributions, ψQ(∆Qt), of interevent times, ∆Qt (col-
ored marks) for the relative daily price returns of sixteen typical financial assets
in the period 1962–2010 (on the left) and for time scales from minutes to days
for NASDAQ between March 16, 2004 and June 5, 2006 (on the right). The solid
black curves are q-exponential fits (cf. Eq. (3) in Ludescher et al. (2011) and Sec.
1.2.1). Reprinted from Ludescher et al. (2011) and Ludescher and Bunde (2014).

This type of empirical-data property, i.e., when the data can be described
by one single curve, is called data collapse. Actually, in this case the collapse is
partial, as it possesses one “degree of freedom”, which is the value of the threshold
Q or, alternatively, a mean value, RQ, of the times between losses greater than
Q (see Ludescher et al. (2011) and Sec. 3.2 in Chapter 3). The times ∆Qt are
later on referred to as interevent times8, and their distribution, ψQ(∆Qt), is called
interevent-time distribution or statistics.

The universality mentioned above constitutes one of the most recently noticed
stylized facts, that is, characteristic empirical features of economic data9. Thus,
this thesis is based on essential empirical findings that were discovered less than
ten years ago. Moreover, similar results were also obtained in geophysical data for
the times between earthquakes exceeding a particular magnitude on the Richter
scale (Corral, 2004, 2003), or biological data for the intervals between the same
nucleotides (A-A, C-C, G-G, T-T) in the DNA sequence (Bogachev et al., 2014;

8The term “interevent time” can be found in the source literature under such names as
“pausing time”, “waiting time”, “intertransaction time”, “intertrade time”, or “interoccurrence
time” in different versions of the CTRW formalism (Kehr et al., 1981; Bogachev et al., 2007;
Perelló et al., 2008; Kasprzak et al., 2010; Gubiec and Kutner, 2010; Sandev et al., 2015).

9For more information about stylized facts on financial markets, see e.g., Cont (2001).
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Tsallis, 2016). Therefore, the direct purpose of the thesis is a universalized
description of large number of empirical data coming from economic
as well as noneconomic sources, and concerning the interevent-time
universality.

The research questions for the present thesis are as follows:

1. How to describe the aforementioned universality analytically/numerically?

2. Is the model of cunning agents (presented initially in Denys et al. (2013)
for the numerical description of financial-market characteristics) able to de-
scribe the aforementioned stylized fact?

3. What are the differences (if any) between the description of excessive profits
and excessive losses?

4. Can we create a formalism that is able to cover nonfinancial data?

My research hypotheses (corresponding to the above questions) are as follows:

1. The aforementioned analytical and (complementary) numerical description
of the problem can be provided under the methods of statistical physics.

2. The numerical description can be provided by the model of cunning agents.

3. Excessive profits can be described in the same way as excessive losses.

4. The developed formalism may also be applied, in the spirit of interdisci-
plinarity, to the description of geophysical interevent-time universality, pre-
sented by Corral (2004, 2003).

The general aim of the thesis is to study the universality of the
interevent-time distribution with the methods of statistical physics,
while the specific purpose is to provide an analytical and numerical de-
scription of the phenomenon that would be as fundamental as possible,
then to verify this description with the available empirical data, and
finally to interpret the obtained results.

Obviously, finding a good analytical or numerical description of the problem,
apart from the scientific importance, could have practical application, for example
in investing or insurance (to know how much time is going to elapse before the
next loss of a particular magnitude), or in disaster management (to know when
to expect the next severe earthquake).
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1.2.1 The current state of knowledge

Studies on the universal features of varied markets are the mainstream of econo-
physics and its initial field of interest. The work of Mantegna (1991)10, based on
the Milan Stock Exchange, proved that the statistics of price changes (which are
similar to market returns) for contemporary indices and stocks are described, in
most time scales, by a Lévy distribution instead of a canonical Gaussian distri-
bution (cf. Feller (2008)). Hereby, power laws with all their consequences (e.g.,
breaking of the central limit theorem, scaling laws, hierarchies, etc.) were intro-
duced to market studies. One of the most important works of Mantegna et al.
(1995) indicated the existence of data collapse in financial-market data, for the
S&P500 index11; its extension to the Asiatic markets was provided by Wang and
Hui (2001). Finally, more exact and systematic analysis was provided by Kiyono
et al. (2006). The authors have shown that the central limit theorem is obeyed far
away from market crashes12, but it is broken in time periods containing a crash
(and the preceding market bubble13). Consequently, a generalization of the central
limit theorem, which allows a divergence of a variance of returns, is required.

As far as the description of interevent times between excessive profits or losses
is concerned, Bogachev and Bunde (2008) first used the mean interevent discrete
time, RQ (see Sec. 3.2 in Chapter 3) as a control variable that provides a universal
description of empirical-data collapse. The same authors (Bogachev and Bunde,
2009) proposed a risk-estimation method for interevent times. Ludescher et al.
(2011) provided a semiempirical formula for interevent-time statistics, based on
Tsallis q-exponential functions (predictions of this are shown in Fig. 1.2). Lude-
scher and Bunde (2014) confirmed that interevent times constitute a universal
stochastic measurement of market activity on time scales that range from min-
utes to months (cf. the right part of Fig. 1.2).

As regards the q-exponential formula for interevent-time statistics, the authors
have not provided a derivation of their analytical result. According to Tsallis
(2016) the parameters of the q-exponential fits have their origin in the microscopic
dynamics of the system, similarly to how the parameters of the planets’ ellipses
in the Solar System depend on their history. However, this comparison appears

10Preceded by the pioneering work of Mandelbrot (1963).
11Standard & Poor’s 500, in the United States, a stock market index that tracks 500 publicly

traded domestic companies. It is considered by many investors to be the best overall measure-
ment of American stock market performance (after Encyclopædia Britannica).

12That is, sudden dramatic declines of stock prices; cf. Grech and Mazur (2004); Czarnecki
et al. (2008).

13That is, trade in assets at prices that strongly deviate from the assets’ intrinsic values.
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to be inexact, as intuitively, the phenomenon of interevent times should depend
more on the current state of the market than on its history.

A competing description of interevent times, for using q exponentials, was pro-
vided in a systematic way by Perelló et al. (2008) under the assumptions of the
stochastic model of a continuous-time random walk (or CTRW, see Sec. 2.2 in the
next chapter), being a reinterpreted and generalized random-walk valley model.
The model, in its canonical version, was created for a description of non-Debye, in-
cluding the power-law, relaxation of photocurrents in amorphous materials (Scher
and Montroll, 1975; Pfister and Scher, 1978; Haus and Kehr, 1987; Weiss, 2005)
or organic light emitting diodes (Campbell et al., 1997). Reinterpreted versions of
CTRW formalism have been applied to the description of many other phenomena,
including processes with memory, e.g., on financial markets – it is a significant
trend in econophysics (Scalas, 2006; Kutner and Masoliver, 2017). By the use of
the CTRW model, it was shown that the multifractal structure of the interevent
times on financial markets (Perelló et al., 2008; Kasprzak et al., 2010) and a
single-step memory in the order-book dynamics (Gubiec and Kutner, 2010) are
foundational in the analysis of double-auction market activity.

However, the description of the excessive losses provided by Perelló et al. (2008)
was made under the assumption of the exponential distribution of the market
returns, which is not always true, and without an extensive empirical-data com-
parison. Therefore, we still need a convincing and complete explanation
of the interevent-time universality, which is as simple as possible, and
analytical as well as numerical. The proposition of such an explanation
is presented in the present thesis.

1.3 The thesis framework and scope
The description of the interevent-time universality presented above is provided
here through two complementary approaches, corresponding to the two subsequent
parts of the thesis.

The analytical approach, based on the continuous-time random walk model
(CTRW) and the extreme value theory (EVT), and an alternative to the one
based on the Tsallis q-exponential function from Ludescher et al. (2011) is dis-
cussed in the first part of the thesis. In Chapter 2 some introduction to the
CTRW and EVT is given, while in Chapter 3 an analytical model of interevent
times, based on these two approaches, is presented. The analytical model
of interevent times, together with its empirical verification and pro-
posed applications, constitute an original contribution to the field of
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knowledge presented in the first part of the thesis. These results are
based on the papers Denys et al. (2016a) and Denys et al. (2016b).

The numerical approach, based on agent-based modeling and the Potts model
from statistical mechanics is discussed in the second part of the thesis. First, in
Chapter 4 the concept of agent-based modeling is outlined and some significant
economic and econophysical models are presented. Secondly, in Chapter 5 our own
agent-based model of financial markets is described, with particular emphasis on
its suitability to reproduce the interevent-time universality depicted in Sec. 1.2.
The model, using a novel spin-value interpretation and reproducing,
i.a., the empirical shapes of the autocorrelation function of market
returns and absolute returns, as well as the interevent-time universality,
constitutes an original contribution to the field of knowledge presented
in the second part of the thesis. The model description is based on the papers
Denys et al. (2013) and Denys et al. (2014).

Finally, in Chapter 6 some concluding remarks and a review of the whole work,
together with some perspectives for further research, are provided. Additionally,
Appendix presents a derivation of the final formula of the analytical model from
Chapter 3.

As will be seen, the available empirical data of interevent times are analyzed
in the thesis from the viewpoint of stochastic processes (specifically, the CTRW
model; see Part I) and agent-based models (that provide slightly better insight
into microscopy; see Part II). In other words, we have two views on the same
empirical data. Thus, the present thesis concerns both statistical econophysics
(Part I) as well as bottom-up agent-based econophysics (Part II; cf. Sec. 1.1).



Part I

CTRW approach





2

Selected issues of extreme value
theory and continuous-time random
walk formalism1

This chapter is intended to be a mathematical introduction to the subsequent one
(Chapter 3) presenting a key model of this thesis, namely the model of interevent-
time superstatistics. It contains the main assumptions and results of the extreme
value theory (Sec. 2.1) and the continuous-time random walk model (Sec. 2.2),
which are necessary to create the model of superstatistics. This introduction
should provide a better understanding of the relevant model and put the problem
I address in a broader statistical context.

2.1 Statistics of extremes

A broad range of real systems is characterized by relatively rare extreme events,
which may dominate their long-term behavior. Frequently, some central and fluc-
tuating values are insufficient for their satisfactory description. For such cases one
may consider a statistics of extreme values. This is a significant field of interest
for scientists, e.g., mathematicians, physicists, geophysicists, economists, or so-
ciologists (Scher and Montroll, 1975; Metzler and Klafter, 2000; Sornette, 2002;
Zumofen et al., 2012). As far as physics is concerned, the studies on the statis-
tics of extreme events have involved e.g., self-organized fluctuations and critical
phenomena (Bak et al., 1987), material fracture, disordered systems at low tem-

1Based on Kozłowska and Kutner (2005); Kutner (2016).
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peratures, or turbulence (see Moreira et al. (2002) and refs. therein). Once we
know the extreme-event statistics, we are able to calculate risk estimators, which
are especially useful for the prediction of earthquakes (Sornette and Sornette,
1989), changes in climate conditions or floods (Albeverio et al., 2006), as well as
financial crashes (Kozłowska et al., 2016). Recently, the statistics of extremes
have also been applied also in network science (Moreira et al., 2002).

Extreme value theory (or theory of extreme values, EVT) is a branch of statis-
tics that deals with extreme events. The foundation of this theory lies in the
extremal types theorem (or three types theorem), which states that the statistics of
maximal or minimal value from a set of independent and identically distributed
random variables has to be exclusively one of three possible distribution types,
namely the Gumbel, Fréchet, or Weibull distribution (see below for the details).
These distributions, described overall by the generalized extreme-value distribution
(GEVD), are commonly used in economics (and particularly in risk management,
finance, or insurance), hydrology, material sciences, telecommunications, and in
many other fields where we deal with extreme events.

A central question of the extreme value theory is to characterize the maximum
value xmaxn := max{xi}i=1,...,n from a set of realizations xi of some random variable
X in a stochastic process2. An example of such a maximum value, relevant for
this thesis, may be the biggest price change of some financial asset in a fixed time
period. In the frame of EVT, the circumscription of xmax value is accomplished
by providing a probability distribution P (xmax = Λ) of xmax, where Λ indicates
some arbitrary threshold.

2.1.1 The maximum limit theorem

The pillar of EVT is the maximum limit theorem or the Fisher–Tippett–Gnedenko
theorem (Fisher and Tippett, 1928; Gnedenko, 1943). For a continuous random
variable it takes the form:

Theorem 1 (Maximum limit theorem) Let (x1, x2, . . . , xn) be a sequence of
n independent and identically distributed continuous random variables and xmaxn =
max(x1, x2, . . . , xn). If there exists a sequence of constants an > 0 and bn, n =
1, 2, . . ., such that (xmaxn −bn)/an has a nondegenerate limit cumulative distribution
G as n→∞, i.e.,

lim
n→∞

P

(
xmaxn − bn

an
6 y

)
= G(y), (2.1)

2We assume here that this variable is continuous.
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then
G(y) = exp(−(1 + γy)−1/γ), 1 + γy > 0, (2.2)

and the parameter γ determines the shape of the tail of the cumulative distribution
given above. This distribution, called the generalized extreme-value distribution
(GEVD), belongs to one of the following classes (or types):

(i) Gumbel distribution (type I, γ = 0):

G(y) = exp (− exp (−y)) , y ∈ R. (2.3)

(ii) Fréchet distribution (type II, γ > 0):

G(y) =

{
0, y 6 0,

exp
(
−y−1/γ

)
, y > 0.

(2.4)

(iii) Weibull distribution (type III, γ < 0)3:

G(y) =

{
exp

(
− (−y)−1/γ

)
, y < 0,

0, y > 0.
(2.5)

Obviously, the functions given above are CDFs (cumulative density functions) of
the aforementioned probability distributions. The Weibull and the Fréchet func-
tions, although having very similar forms, provide distributions with essentially
different shapes, due to the opposite sign of their shape exponents γ.

Once we know the GEVD and the three possible distributions it comprises, a
basic task of EVT is to determine the parameters a, b and the shape parameter γ
from the empirical data.

2.1.2 Value at risk and generalized extreme-value distribution

One of the most significant outcomes of the extreme value theory is the calculation
of value at risk (VaR), a common measure of the risk in a particular investment.

Value at risk, V aR, is generally defined as the maximum loss one can consent
in the investment. In practice, this value is specified using a probability p of loss

3This is in fact a so-called inverse Weibull distribution. The usual Weibull distribution
represents the statistics of the minimal value.
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not exceeding this (threshold) value. In other words, when we set the confidence
level at 1− α, we can write

F (V aR1−α) = P(x 6 V aR1−α) = 1− α, (2.6)

where F is a cumulative distribution function of losses.
We can easily determine the CDF of the extreme value now, bearing in mind

that we consider only the values of random variable x not exceeding the threshold
value V aR1−α. Namely, for n large enough, from Theorem 1,

G

(
V aR1−α − b

a

)
≈ P

(
xmaxn − bn

an
6
V aR1−α − b

a

)
≈ P(xmaxn 6 V aR1−α) =

=
n∏
i=1

P(xi 6 V aR1−α) = [P(x 6 V aR1−α)]n = (1− α)n,

(2.7)

where a = limn→∞ an and b = limn→∞ bn. Clearly, the use of nth power in the
final result is a consequence of the fact that each of the n� 1 values drawn from
the sequence (x1, . . . , xn) has to be less than the set threshold value V aR1−α.
Substituting (2.2) to the left side of the above equation results in, after some
simple transformations, the final formula:

V aR1−α ≈ b+
a

γ

(
(−n ln(1− α))−γ − 1

)
. (2.8)

2.2 The continuous-time random walk model4

The continuous-time random walk (CTRW) model was introduced by Montroll
and Weiss (1965) to describe anomalous diffusion, a generalization of an ordinary
diffusion process with nonlinear time dependence of variance. Experiments made
by Scharfe (1970), Gill (1972) and Pfister (1974) demonstrated the existence of
anomalous diffusion in amorphous solids. The well-known valley model proposed
by Scher and Montroll (1975) describes successful random jumps of a particle
between regularly distributed potential wells of different depths using CTRW
formalism (cf. Fig. 2.1). Their approach have been extended to the interevent-
time description (Perelló et al., 2008; Kasprzak et al., 2010; Kasprzak, 2010)
considered in this thesis. In this case, the amount of loss is an analog of the
potential well depth. Some other applications of the CTRW model in finance

4Based on Weiss (2005); Metzler and Klafter (2000).
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Figure 2.1: The wandering of a particle (represented schematically by black circle)
in a valley potential (the schematic navy curve) with no external field. The particle
makes jumps over the barrier of the potential (see the curved arrows). Taken from
Kasprzak (2010).

were presented e.g., in Scalas et al. (2000); Mainardi et al. (2000); Gubiec (2011);
Wiliński (2014). The canonical version of the CTRW model was also applied in
description of aging of glasses (Monthus and Bouchaud, 1996; Barkai and Cheng,
2003), hydrology (Boano et al., 2007; Klages et al., 2008), or earthquakes studies
(Helmstetter and Sornette, 2002). Despite being 55 years old, the model is still
of significant interest (cf. Fig. 2.2 and Kutner and Masoliver (2017)).

The main advantage of the CTRW model is its ability to describe a random
walk at any moment of time. Actually, the introduction of the formalism pos-
sessing such characteristics is a milestone in the description of random processes.
It broaden the scope of possible processes from Gaussian ones (with the central
limit theorem preserved) to a wide range of non-Gaussian processes, in particular
processes with memory and Lévy processes (Metzler and Klafter, 2000).

The basic assumption of the model is that both the jump lengths x and the
times between succeeding jumps t are drawn from a joint probability distribution,
ψ(x, t). Hence, the distribution of jumps is

p(x) =

∫ ∞
0

ψ(x, t) dt, (2.9)

while the waiting-time distribution

ψ(t) =

∫ ∞
−∞

ψ(x, t) dx. (2.10)
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Figure 2.2: CTRW citations from 1978 to 2015 in semi-log scale (based on the
information from the Web of Science).

In the following, we assume the random variables x and t are independent, that is,
the jump vectors and the time intervals between jumps are uncorrelated. Hence,
the joint distribution factorizes,

ψ(x, t) = ψ(t)p(x). (2.11)

This version of the CTRW model is sometimes called a decoupled CTRW.
Using relation (2.11) one can obtain the probability P(x, t) of a wandering

particle being located in the position x at time t. Although obtaining a general
expression for P(x, t) in a closed form is impossible, we can consider, instead, the
Laplace–Fourier transform of it, P̂(k, s), which is much more useful.

Namely, if we assume that pn(x) is the PDF (probability density function) of
x after n jumps, we may represent P(x, t) as an infinite series,

P(x, t) =
∞∑
n=0

pn(x)

∫ t

0

ψn(τ)Ψ(t− τ) dτ, (2.12)

where ψn(τ) is the probability that the nth jump occurred in time τ , while the
CCDF (complementary cumulative density function) Ψ(t − τ) =

∫∞
t−τ ψ(t′) dt′

assures us that there was no other jump until t > τ . Remarkably, the CTRW is
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a non-Markovian model in general; the only exception is a negative exponential
case, i.e.,

ψ(t) =
1

T
exp

(
− t

T

)
, (2.13)

where T is the mean interevent time. When condition (2.13) is fulfilled, the
probability of the next jump does not depend on the particle’s wandering history
(a process without a memory; cf. Eq. (3.10) from the next chapter).

The Laplace–Fourier transform of Eq. (2.12) is

P̂(k, s) =
1− ψ̂(s)

s

∞∑
n=0

p̂n(k)ψn(s) =
1− ψ̂(s)

s[1− p̂(k)ψ̂(s)]
, (2.14)

as, from the definition of the characteristic function, p̂n(k) = p̂n(k) and ψ̂n(s) =
ψ̂n(s). This formula may be used to derive the Laplace transform of the moments5.

∗ ∗ ∗

The continuous-time random walk model given above and the highlights of
the extreme value theory are used in the next chapter (3) to derive the analytical
model of interevent times in financial and nonfinancial time series. This is a
basic achievement of this thesis and its first original contribution to the field of
knowledge.

5However, formula (2.14) is nonstationary, as exactly at t = 0 the particle jumps to x = 0.
To make it stationary we may introduce an individual separate waiting-time distribution for the
first jump. For more details see Gubiec (2011) and refs. therein.
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3

An analytical model of interevent
times1

3.1 Introduction

A goal of the present chapter is to provide a consistent analytical description of
the problem of interevent times formulated in Chapter 1 and to verify it thor-
oughly using empirical data. The chapter constitutes the most significant part
of the thesis. The model was presented previously in Denys et al. (2016a,b) as
an alternative to the approach based on the Tsallis q-exponential functions from
Ludescher et al. (2011).

The overall strategy of our approach is to combine in one expression two
basic statistics, known from market time-series analysis: (i) the return distribu-
tion and (ii) the waiting-time or pause-time distribution being an element of the
continuous-time random walk formalism (Pfister and Scher, 1978; Haus and Kehr,
1987; Kutner and Świtała, 2003; Sandev et al., 2015). In the following descrip-
tion a statistical concept of the convolution of distributions to derive the desired
formula for a joint statistics is used. In fact, the only assumption required by
this derivation is a condition linking the relaxation time and the cumulative dis-
tribution function of returns. This yields an analytical formula for the “universal”
statistics of interevent times between excessive losses on financial markets.

In Sec. 3.2 a short presentation of the quantities used in our considerations
and the empirical data employed to verify our approach is made. In Sec. 3.3 the
central equation of the model is derived, then in Sec. 3.4 the formalism is developed

1Based on Denys et al. (2016b).
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the predictions of which are compared with the corresponding empirical financial
data. Additionally, in Sec. 3.5 some applications for the model are proposed.
Finally, in Sec. 3.6, conclusions are given. Thus, the first, analytical part of the
interevent-times description is presented.

3.2 Data and grounds

For excessive profits and losses the data drawn directly from Bogachev and Bunde
(2008); Ludescher et al. (2011); Ludescher and Bunde (2014) were used, where
excessive profits are defined as those greater than the positive fixed threshold Q,
while excessive losses – as those below the negative threshold −Q. Successively,
the mean interevent (discrete or step) time RQ between the losses (or profits)
measured in the units of the relevant time-series resolution, is given by(

RQ

τ

)−1

= P (−ε 6 −Q) =

∫ −Q
−∞

D(−ε) dε, (3.1)

where τ is an arbitrary calibration time (we extract it from the empirical-data
fit, cf. Eq. (3.4) and Fig. 3.1), while D(ε) is the returns distribution. In the
subsequent considerations the “−” sign in the above equation is neglected, i.e., for
the sake of simplicity, the losses are treated as positive quantities:

P (−ε 6 −Q) = P (ε > Q) =

∫ ∞
Q

D(ε) dε. (3.2)

Thus, using Eqs. (3.1) and (3.2), we can write

D(ε) = −
d
(
RQ
τ

)−1

dQ
|Q=ε. (3.3)

Subsequently, the mean interevent discrete time, RQ, is used as an aggregated
basic variable of the model.

3.2.1 The distribution of losses versus empirical data

To find the distribution of returns, D(ε), the empirical data shown in Fig. 3.1
were used. We found the following functions capable of describing the empirical
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Figure 3.1: Mean interevent discrete time RQ vs. threshold Q for four typical
classes of indices: the USD/GBP exchange rate (black circles), S&P500 index (red
squares), IBM stock (green rhomboids), and WTI (or crude oil, blue triangles)
between January 2000 and June 2010 (taken from Fig. 2 in Ludescher et al.
(2011)). The predictions of q-Weibull distribution (the upper branch of Eq. (4)),
q-exponential distribution (the middle branch), and the usual Weibull distribution
(the bottom branch) are given (see legends). The q-exponential andWeibull curves
only slightly differ from the most accurate q-Weibull one. However, none of them
are able to reproduce the weak wavy behavior of the data.

data:

RQ

τ
=


(

exp
−(Q/ε̄′)η

q′

)−1

,

exp
Q/ε̄
q ,

exp ((Q/ε̄)η) ,

(3.4)

where τ is an irrelevant calibration time or scale factor of RQ axis that differs
for different branches, exp

Q/ε̄
q = (1 + (1 − q)Q/ε̄)

1
(1−q) , and q′ = 1

2−q , q < 2,
ε̄′ = ε̄q′1/η, ε̄, η > 0. The functions given in Eq. (3.4) are q-Weibull (the upper
branch), q-exponential (the middle branch), and usual Weibull (the lower branch)
cumulative distribution functions. Notably, q-exponential and Weibull functions
are only slightly less accurate for modeling the empirical data than the q-Weibull
one. The parameters of the fits are listed in Tabs. 3.1-3.3.
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Index/Par. q η ε̄ τ
USD/GBP 1.1529 ± 0.0085 1.2670 ± 0.0266 0.0041 ± 0.0000 2.3131 ± 0.0333
S&P500 1.3150 ± 0.0195 1.6202 ± 0.0869 0.0051 ± 0.0001 2.4504 ± 0.0689
IBM 1.2548 ± 0.0106 1.4983 ± 0.0398 0.0086 ± 0.0001 2.1187 ± 0.0267
WTI 1.2088 ± 0.0224 1.2280 ± 0.0637 0.0131 ± 0.0003 2.0885 ± 0.0516

Table 3.1: The values of q, η, ε̄, and τ from the fit of the top branch of Eq. (3.4)
to the empirical data from Fig. 3.1.

Index/Par. q ε̄ τ
USD/GBP 0.9370 ± 0.0051 0.0040 ± 0.0001 1.9619 ± 0.0302
S&P500 0.8353 ± 0.0114 0.0048 ± 0.0002 1.8354 ± 0.0646
IBM 0.8969 ± 0.0094 0.0086 ± 0.0002 1.7404 ± 0.0414
WTI 0.8639 ± 0.0086 0.0146 ± 0.0004 1.9155 ± 0.0343

Table 3.2: The values of q, ε̄, and τ from the fit of the middle branch of Eq. (3.4)
to the empirical data from Fig. 3.1.

Index/Par. η ε̄ τ
USD/GBP 0.8756 ± 0.0156 0.0037 ± 0.0003 1.7918 ± 0.0277
S&P500 0.6981 ± 0.0292 0.0035 ± 0.0005 1.3923 ± 0.0569
IBM 0.8246 ± 0.0236 0.0078 ± 0.0007 1.5791 ± 0.0346
WTI 0.7855 ± 0.0182 0.0131 ± 0.0008 1.7150 ± 0.0273

Table 3.3: The values of η, ε̄, and τ from the fit of the bottom branch of Eq. (3.4)
to the empirical data from Fig. 3.1.
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The CDFs from Eq. (3.4) correspond to the following density functions,

D(ε) =


η
ε̄′ (

ε
ε̄′ )

η−1

1−(1−q′)(ε/ε̄′)η exp
−(ε/ε̄′)η

q′ ,

1
ε̄

(
exp

ε/ε̄
q

)−(2−q)
,

η
ε̄

(
ε
ε̄

)η−1
exp (− (ε/ε̄)η) ,

(3.5)

obtained by using Eq. (3.3) and being, obviously, q-Weibull, q-exponential, and
usual Weibull PDFs, going from the top down to the bottom. It is worth mention-
ing that the q-Weibull distribution in the upper branch tends toward the usual
Weibull distribution when q → 1, and the q-exponential distribution in the mid-
dle becomes usual exponential then. Incidentally, we found a usual exponential
distribution function providing significantly worse fit than the three mentioned
here.

Fig. 3.2 shows the three probability distribution functions for the obtained
distribution parameters from Tabs. 3.1-3.3. Ultimately, we used a two-point2
Weibull distribution to study the dependence between successive interevent times,
as multivariate q distributions do not exist. Incidentally, in Franke et al. (2004)
the usual Weibull distribution is used to describe the statistics of interevent times
between subsequent transactions for a given asset.

3.2.2 The justification for using Weibull distribution

In this subsection the question of why the usual single-variable Weibull distri-
bution is almost indistinguishable from q-Weibull and q-exponential ones is ex-
plained.

As was shown in Sec. 2.1.1 in the previous chapter (2), the cumulative dis-
tribution function of extreme values must be Gumbel, Fréchet, or Weibull CDF.
Nevertheless, we verified that only the Weibull one3 agrees with the empirical data
shown in Fig. 3.1. When η < 1, as in the case of our fits (cf. Tab. 3.3), the Weibull
distribution for ε/ε̄ � 1 is a stretched-exponentially truncated decreasing power
law (Tsallis, 2016).

Notably, our random variable ε is actually an increment of an underlying
stochastic process. For the Weibull distribution, the relative mean 〈ε〉

ε̄
= 1

η
Γ(1/η)

2In the thesis I use interchangeably the forms (“one-”) “two-point”, “two-particle”, or “two-
variable”.

3Sometimes called a type III excessive loss (Tsallis, 1988; Mandelbrot and Stewart, 1998;
Ivanov et al., 2004).
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Figure 3.2: The probability distribution functions D(ε) vs. losses ε corresponding
to the CDF-fits from Fig. 3.1. The q-Weibull (a), q-exponential (b), and Weibull
(c) distributions differs only slightly, mainly for small losses. Notably, in the
interesting range of ε, q exponentials are almost identical to Weibull distribution.



3.3. THE MAIN FORMULA AND SUPERSCALING 33

and the relative variance σ2

〈ε〉2 = 〈ε2〉−〈ε〉2
〈ε〉2 = (2η Γ(2/η)

Γ2(1/η)
− 1) depend only on the

exponent η, thus, for fixed η they are universal quantities. According to Bertin
and Clusel (2006), the Fisher–Tippett–Gnedenko theorem may be extended to
the case of strongly dependent random variables.

Now, I will define the conditional mean interevent discrete time, RQ(RQ0),
that is, RQ value calculated only for the time intervals preceded by an interval
equal to RQ0 . When multivariate q functions are not found4, a bivariate Weibull
distribution is used for this purpose. Since

RQ(RQ0)

τ
=

(∫ ∞
Q

D(ε|Q0) dε

)−1

(3.6)

and the conditional distribution D(ε|Q0) is given by

D(ε|Q0)
def.
=

∫∞
Q0
D(ε, ε0) dε0∫∞

Q0
D(ε0) dε0

=
RQ0

τ

∫ ∞
Q0

D(ε, ε0) dε0 (3.7)

(we used single-variate and bivariate distributions), from Eq. (5.1) in Lee (1979)
and Eqs. (3.6) and (3.7) we obtain

RQ(RQ0)

τ
=

(
RQ0

τ

)−1

× exp

(((
ln

(
RQ

τ

))1/γ

+

(
ln

(
RQ0

τ

))1/γ
)γ)

, (3.8)

where parameter γ can be taken from the empirical-data fit, as in Fig. 3.3. No-
tably, the nonunitary value of γ exponent informs us about a possible dependence
between interevent times. It is evident that all the well-fitted curves in Fig.
3.3, except the Brent quotes for RQ = 30, reveal such a dependence (cf. Tab.
3.4). Since we could not obtain this result using q functions, we found the usual
Weibull distribution better to use for the purpose of describing interevent times
and, furthermore, for the description of returns on financial markets.

3.3 The main formula and superscaling
Now, I derive a closed form of the distribution ψ±Q(∆Qt) of interevent times ∆Qt.
I use a complex-statistics (or superstatistics) form of this distribution,

ψ±Q(∆Qt) =

∫∞
Q
ψ±Q(∆Qt|ε)D(ε) dε∫∞

Q
D(ε) dε

= −
∫∞
Q
ψ±Q(∆Qt|ε) d

(∫∞
ε
D(ε′) dε′

)∫∞
Q
D(ε) dε

. (3.9)

4For more details see Eq. (5.1) in Montroll and Weiss (1965).
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Figure 3.3: The relative conditional mean interevent discrete time RQ(RQ0)/RQ

vs. RQ0/RQ for four varied indices (see legends) and RQ = 10 (on the left) and 30
(on the right). Empirical data drawn from Fig. 7 in Bogachev and Bunde (2008).
Solid lines are fits of Eq. (3.8).

I assume that the conditional distribution, ψ±Q(∆Qt|ε)5, takes an exponential form,

ψ±Q(∆Qt|ε) =
1

τ±Q (ε)
exp

(
− ∆Qt

τ±Q (ε)

)
, (3.10)

with some relaxation time τ±Q (ε) defined as the mean time-distance from the last
loss extending the threshold Q to the next such loss of a magnitude equal to
ε (cf. Eq. (2.13) from the previous chapter). The sign “±” in the superscript
of the above equations includes the cases of monotonically increasing (for +) or
monotonically decreasing (for −) relaxation time, i.e., when larger losses are less
frequent (an expanding hierarchy of the interevent times) or when volatility clus-
tering occurs, respectively. In practice, both of these effects may occur. Moreover,
in τ±Q (ε) we place the necessary dependence between ε and ∆Qt, averaged over all
possible preceding losses extending the threshold Q. The exponential form of the
conditional distribution (3.10) does not exclude a statistical dependence between
successful interevent (continuous) times.

5Here, the condition means that the subsequent loss is exactly ε.
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RQ = 10 RQ = 30
Index/Par. γ τ γ τ
DJIA 1.30 0.1 1.50 0.01
IBM 1.40 0.01 1.30 0.01
GBP/USD 1.37 0.001 1.27 1.0
Brent 1.25 0.0001 1.02 1.10

Table 3.4: The values of γ and τ from the fit of Eq. (3.8) to the empirical data
from Fig. 3.3 (with an accuracy of about 10%).

Under the following assumption, linking the point and the cumulative quanti-
ties, (

τ±Q (0)

τ±Q (ε)

)±α±Q
=

∫ ∞
ε

D(ε′) dε′ =

(
RQ=ε

τ

)−1

, α±Q > 0, (3.11)

from Eqs. (3.9) and (3.10) we obtain the final formula,

ψ±Q(∆Qt) =
1

τ±Q (Q)

α±Q(
∆Qt

τ±Q (Q)

)1±α±Q
Γ±

(
1± α±Q,

∆Qt

τ±Q (Q)

)
, (3.12)

where Γ±
(

1± α±Q,
∆Qt

τ±Q (Q)

)
denotes the lower (for “+”) and upper (for “−”) in-

complete gamma functions, respectively, and no specific form of D(ε) and τ±Q (ε)
is assumed (see Appendix for details). Incidentally, the implicit assumption of
the derivation given above is that ε > Q is the maximal loss in the considered
time period of the conditional distribution, Eq. (3.10). That justifies the use of
the cumulative quantities instead of the usual ones after the first “=” sign in Eq.
(3.11).

Actually, an analogous formula was obtained in Kasprzak (2010) (cf. Eq. (2.60)
therein), where an exponential form of the distribution of losses, D(ε), was as-
sumed. But as it was mentioned in Sec. 3.2.1, exponential distribution is not
sufficient to describe the whole dependence RQ vs. Q. Therefore, the achieve-
ment of this thesis that constitutes an original contribution to the field
of knowledge, is the derivation of the formula given above without as-
suming any specific distribution of losses. We found, however, the Weibull
distribution to be the most appropriate for its known multivariate forms (see Sec.
3.2.2). Another original achievement of the thesis is the overall sys-
tematic comparison of the predictions of the formula given above with
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empirical data (see Sec. 3.4) and the suggestion of some possible ap-
plications of the model that go beyond economics (see Sec. 3.5), which
confirms the usefulness and versatility of our approach.

The conjecture (3.11), that we need to derive formula (3.12), links the re-
laxation time τ±Q (ε) and the distribution of losses. Actually, the existence of a
dependence between these two is intuitively comprehensible. The mean time be-
tween two losses of a particular height should depend somehow on how often
such losses occur, i.e., on their distribution function. However, one has also to
remember the nontrivial Q-dependence in the relaxation time. That is to say, the
threshold Q “cuts off” all the losses below it, thus they do not affect the value of
τ±Q (ε) (unlike the losses larger than Q).

To satisfy Eq. (3.11) one should find a suitable integration exponent α±Q, which
allows us to transform Eq. (3.9) into a useful form (3.12). This exponent makes
the left-hand side of Eq. (3.11) a Q-independent quantity and, consequently, the
integration in Eq. (3.9) feasible (see Appendix for a detailed derivation). From
Eq. (3.4) one obtains

τ±Q (ε)

τ±Q (0)
=


(

exp
−(ε/ε̄′)η

q′

)∓1/α±Q
, for q-Weibull pdf,(

exp
ε/ε̄
q

)±1/α±Q
, for q-exp pdf,

(exp ((ε/ε̄)η))
±1/α±Q , for Weibull pdf.

(3.13)

If we assume that the relaxation time τ±Q (ε) is a stretched exponential (the form
typical for relaxation phenomena in disordered systems), namely

τ±Q (ε)

τ±Q (0)
= exp

(
±(B±Qε)

η
)
, (3.14)

then, from Eq. (3.13), we obtain

α±Q =


1

(B±Q ε̄
′)η
, for q-Weibull pdf,

1
B±Q ε̄

, for q-exp pdf,
1

(B±Q ε̄)
η , for Weibull pdf,

(3.15)

where in the upper and the middle branch |1−q′| � 1 and |1−q| � 1, respectively
(cf. Tabs. 3.1 and 3.2)6.

6Taking (for a more consistent approach) expq instead of the usual exp would strongly com-
plicate the view.
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The stretched-exponential relaxation time assumed in Eq. (3.14) is a straight-
forward generalization of the simple exponential one that is used in the canoni-
cal version of the CTRW valley model of anomalous photocurrent relaxation in
amorphous films (Scher and Montroll, 1975; Pfister and Scher, 1978; Weiss, 2005;
Schulz and Barkai, 2015) with BQ playing the role of inverse temperature (cf. the
description of its scaling with Q in Sec. 3.3.1) and the mean valley depth ε̄. In
Eq. (3.13), in the upper and lower branches, we assumed the same exponent η as
in Eqs. (3.4) and (3.5) to reduce the number of free parameters (the law of parsi-
mony) and derive our final formula (3.12). In the canonical version of the CTRW
exponent η = 1, and we use the usual exponential distribution in accordance
with the Hoff–Arrhenius law of the thermally activated over-barrier transitions
and with the Vogel–Tammann–Fulcher law of diffusion and transport in glasses.
Thus, ε̄, ε̄′, η and B±Q form the α±Q dynamic exponent, as shown in Eq. (3.15).
This exponent defines the long-time behavior of the superstatistics ψ±Q(∆Qt) and,
together with relaxation time, govern its full evolution (cf. Eq. (3.12)).

Below, I give the asymptotic forms of Eq. (3.12). For the “+” case they are as
follows. For ∆Qt

τ+
Q (Q)

� 1 the superstatistics takes a power-law form,

ψ+
Q(∆Qt) ≈

1

τ+
Q (Q)

α+
Q(

∆Qt

τ+
Q (Q)

)1+α+
Q

Γ+(1 + α+
Q). (3.16)

For ∆Qt

τ+
Q (Q)

� 1 it takes an exponential form,

ψ+
Q(∆Qt) ≈

1

τ+
Q (Q)

α+
Q

1 + α+
Q

exp

(
−

1 + α+
Q

2 + α+
Q

∆Qt

τ+
Q (Q)

)
. (3.17)

For α+
Q � 1 it becomes α+

Q-independent exponential,

ψ+
Q(∆Qt) ≈

1

τ+
Q (Q)

exp
(
−∆Qt/τ

+
Q (Q)

)
, (3.18)

consistently with Eq. (3.17).
For the “−” case, when ∆Qt

τ−Q (Q)
� 1, Eq. (3.12) reduces to a power law truncated

by the upper incomplete gamma function Γ−
(

1− α−Q,
∆Qt

τ−Q (Q)

)
. For ∆Qt

τ−Q (Q)
� 1 and
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α−Q < 1 it becomes a pure short-time power law, namely

ψ−Q(∆Qt) ≈
1

τ−Q (Q)

α−Q(
∆Qt

τ−Q (Q)

)1−α−Q
Γ−(1− α−Q). (3.19)

3.3.1 Superscaling

In this subsection a scaling hypothesis for lnRQ or Q as possible scaling vari-
ables (related by a one-to-one correspondence (3.4)) is formulated. I provide
the evidence for the sole RQ- or, alternatively, Q-dependence of our central for-
mula (3.12), making it a universal one. Ludescher et al. (2011) have shown this
dependence empirically in their description of interevent times by q-exponential
functions. To prove it analytically here, the following hypothesis,

B±Q = Qζ ×


B

1/η
± /ε̄′1+ζ , for q-Weibull pdf,

B±/ε̄
1+ζ , for q-exp pdf,

B
1/η
± /ε̄1+ζ , for Weibull pdf,

(3.20)

is formulated, where B± > 0 and ζ > 0 are Q-independent control parameters.
Consequently, from Eqs. (3.4) and (3.15) we obtain the scaling of scaling ex-

ponent α±Q (or the superscaling), namely

1

α±Q
= B± ×



(
− lnq′

(
RQ
τ

)−1
)ζ

, for q-Weibull pdf,

lnζq

(
RQ
τ

)
, for q-exp pdf,

lnζ
(
RQ
τ

)
, for Weibull pdf,

(3.21)

with the universal superscaling exponent ζ. From Eq. (3.11) a useful relation

ln

(
τ±Q (Q)

τ±Q (0)

)
= ± 1

α±Q
ln

(
RQ

τ

)
(3.22)

is obtained. Hereby, I subordinated all quantities we use, i.e., B±Q ,
1
α±Q

, and
τ±Q (Q)

τ±Q (0)
,

to the single control variable RQ/τ . In the next section (3.4) I compare these
expressions with the empirical data (e.g., for IBM). Additionally, I consider an
RQ-dependence of τ±Q (0).
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Fig. 3.4(a) Fig. 3.4(b) Fig. 3.4(c) Fig. 3.4(d)
RQ αQ τQ(Q) αQ τQ(Q) αQ τQ(Q) αQ τQ(Q)
2 5.0 1.15 14.0 1.27 7.8 1.256 12.2 1.34
5 3.8 3.12 2.4 2.79 3.0 2.85 3.0 2.85
10 2.0 4.58 1.9 4.6 2.0 4.39 2.20 5.09
30 · · 1.08 5.55 1.2 5.67 1.1 5.51
70 · · 0.55 5.39 0.5 3.5 0.5 4.08

Table 3.5: The values of αQ and τQ(Q) for the empirical-data fits of Eq. (3.12)
shown in Fig. 3.4 (with an accuracy of about 5%).

RQ Q αQ τQ(Q)
2 0.0014 1000 1.4286
5 0.0093 3.0 3.33
10 0.0164 1.9 5.0
30 0.0289 0.95 4.55
70 0.0393 0.47 3.85

Table 3.6: The values of αQ and τQ(Q) for the IBM empirical-data fit of Eq. (3.12)
shown in Fig. 3.5 (with an accuracy of about 1%).

3.4 Empirical verification of the model

In this section I compare the predictions of our model with the empirical data
from Bogachev and Bunde (2008); Ludescher et al. (2011); Ludescher and Bunde
(2014). I consider only the “+” case herein; the “−” case is considered in Sec. 3.5.
The “±” sign is omitted herein for the simplicity.

Fig. 3.4 shows the desirable data collapse for the fixed values of the control
variable RQ. Tab. 3.5 presents the values of the relevant parameters for this figure.
Fig. 3.5 shows the individual fit, for example, for the typical IBM company with
parameters given in Tab. 3.6. For RQ > 5 and ∆Qt > 30 the power-law relaxation
of ψQ(∆Qt) is clearly seen. Moreover, the inset plot for RQ = 2 reveals the
exponential decay of ψQ(∆Qt) for this value of RQ, as expected for large αQ (cf.
Tab. 3.6 and Eq. (3.18)).

We used (a quantile) RQ value as the control variable, since it is more conve-
nient to use here than the mean interevent time 〈∆Qt〉. Consequently, from Eqs.
(3.9) and (3.10), the lower branch of Eq. (3.5) (a Weibull distribution case), and



40 3. AN ANALYTICAL MODEL OF INTEREVENT TIMES

●
●

●

●

●
● ●

●

●

● ● ●
●

●

●

●

□
□

□

□

□

□ □ □
□

□

□

□ □ □
□

□

□

□

● Bank of England
□ East India Company

1 5 10 50 100 500 1000
10-5

10-4

0.001

0.010

0.100

1

10

100

○
○

○
○
○
○
○○

○
○○

○ ○ ○ ○
○

○

○

○

○ ○ ○
○

○
○

○

○

○ ○ ○
○

○
○

○

○

○ ○
○

○
○

○
○

○

□
□ □ □□□□□□

□□

□ □ □ □
□

□

□
□

□ □ □
□

□
□

□

□

□ □ □
□

□
□

□

□

□ □ □
□

□
□

□
□

◇
◇

◇ ◇◇◇◇◇◇◇◇

◇ ◇ ◇ ◇
◇

◇
◇

◇

◇ ◇ ◇
◇

◇
◇

◇
◇

◇ ◇ ◇
◇

◇
◇

◇

◇

◇ ◇ ◇
◇

◇
◇

◇

◇

△
△

△ △△△△△△△△△

△ △ △ △
△

△

△

△

△ △ △
△

△
△

△

△

△ △ △
△

△
△

△

△

△
△ △ △

△
△

△

△

⊲
⊲ ⊲ ⊲ ⊲⊲⊲

⊲⊲
⊲⊲
⊲⊲⊲

⊲ ⊲ ⊲ ⊲
⊲

⊲
⊲

⊲

⊲ ⊲ ⊲
⊲

⊲
⊲

⊲

⊲

⊲ ⊲
⊲

⊲
⊲

⊲
⊲

⊲

⊲ ⊲
⊲

⊲
⊲

⊲ ⊲
⊲

▽ ▽ ▽ ▽▽▽
▽
▽▽
▽

▽ ▽ ▽ ▽
▽

▽
▽

▽

▽ ▽ ▽
▽

▽
▽

▽

▽ ▽ ▽
▽

▽
▽

▽

▽

▽ ▽ ▽

▽
▽

▽ ▽

▽

⊳
⊳

⊳ ⊳ ⊳⊳⊳
⊳⊳⊳

⊳
⊳⊳

⊳ ⊳ ⊳
⊳

⊳
⊳

⊳

⊳

⊳ ⊳ ⊳
⊳

⊳
⊳

⊳

⊳

⊳ ⊳
⊳

⊳
⊳

⊳ ⊳

⊳

⊳ ⊳
⊳

⊳
⊳

⊳ ⊳

⊳

+
+ + +++++++

+ + +
+

+
+

+

+

+ + +
+

+
+

+

+ + +
+

+
+

+

+

+ + +
+

+
+

+
+

×
× × ××

××
××
×××

× × × ×
×

×

×

×

× × ×
×

×
×

×

× × ×
×

×
×

×

×

×
× ×

×
×

×
×

×

✶
✶ ✶

✶
✶
✶
✶
✶✶✶

✶ ✶ ✶ ✶
✶

✶

✶

✶ ✶ ✶
✶

✶

✶

✶

✶

✶ ✶
✶

✶
✶

✶
✶

✶

✶
✶ ✶ ✶

✶
✶

✶

✶

○
○

○ ○
○○○○○○○

○
○ ○

○
○

○
○

○

○ ○ ○
○

○

○

○

○ ○ ○
○

○

○

○

○

○
○ ○

○
○

○

○

○

□
□ □ □□□□□□□□

□ □ □
□

□
□

□
□

□

□ □ □
□

□

□

□

□ □ □
□

□
□

□

□ □
□ □

□ □
□

□

◇ ◇ ◇ ◇◇◇◇
◇
◇◇
◇◇◇

◇ ◇ ◇ ◇
◇

◇

◇
◇

◇ ◇ ◇
◇

◇

◇

◇

◇ ◇ ◇ ◇
◇

◇

◇

◇

◇ ◇ ◇
◇

◇
◇

◇

◇

△ △ △ △△△△
△△△△△

△ △ △ △
△

△

△
△

△

△ △ △
△

△

△

△

△
△ △

△
△

△

△

△

△
△ △

△ △
△

△

△

⊲ ⊲ ⊲ ⊲ ⊲
⊲⊲
⊲⊲⊲

⊲⊲

⊲ ⊲ ⊲
⊲

⊲
⊲

⊲
⊲

⊲

⊲ ⊲ ⊲
⊲

⊲

⊲

⊲

⊲

⊲ ⊲ ⊲ ⊲
⊲

⊲

⊲

⊲

⊲ ⊲
⊲ ⊲

⊲ ⊲
⊲

⊲

▽ ▽ ▽ ▽▽▽
▽
▽▽

▽ ▽ ▽ ▽
▽

▽
▽

▽

▽

▽ ▽ ▽
▽

▽

▽

▽

▽ ▽ ▽
▽

▽
▽

▽

▽

▽
▽ ▽ ▽

▽
▽

▽

▽

○ IBM
□ BA
◇GE
△ KO

⊲ DJI
▽ FTSE
⊳ NASDAQ
+ S&P 500

× BRENT
✶WTI
○ ARA
□ SING

◇DKK
△ GBP
⊲ YEN
▽ SWF

1 5 10 50 100 500 1000

10-7

10-5

0.001

0.100

10

1000

◦ ◦ ◦ ◦◦◦◦◦◦◦
◦

◦

◦ ◦ ◦ ◦◦◦◦◦◦◦ ◦
◦

◦
◦

◦
◦

◦ ◦ ◦ ◦◦◦◦◦◦◦ ◦ ◦ ◦
◦

◦
◦

◦

◦

◦ ◦ ◦ ◦◦◦◦◦◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

◦
◦

◦ ◦ ◦ ◦◦◦◦◦◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦

□ □ □ □□□□□□
□
□

□

□ □ □ □□□□□□□ □
□

□
□

□

□ □ □ □□□□□□□ □ □
□

□
□

□

□
□

□ □ □ □□□□□□□ □ □ □ □ □
□

□
□

□
□

□ □ □ □□□□□□□ □ □ □ □ □ □ □
□

□
□

◇ ◇ ◇ ◇◇◇◇
◇◇
◇
◇

◇

◇ ◇ ◇ ◇◇◇◇◇◇◇ ◇
◇

◇
◇

◇

◇ ◇ ◇ ◇◇◇◇◇◇◇ ◇ ◇
◇

◇
◇

◇ ◇

◇ ◇ ◇ ◇◇◇◇◇◇◇ ◇ ◇ ◇ ◇ ◇
◇

◇
◇

◇

◇ ◇ ◇ ◇◇◇◇◇◇◇ ◇ ◇ ◇ ◇ ◇ ◇
◇ ◇

◇
◇

△ △ △ △△△△△△△
△

△ △ △ △△△△△△△ △
△

△

△

△ △ △ △△△△△△△ △ △
△

△
△

△

△ △ △ △△△△△△△ △ △ △ △ △
△

△
△

△ △ △ △△△△△△△ △ △ △ △ △
△ △

△
△

✶
✶ ✶ ✶ ✶✶✶

✶✶✶

✶

✶

✶
✶ ✶ ✶ ✶✶✶✶✶✶ ✶

✶
✶

✶

✶

✶ ✶ ✶ ✶ ✶✶✶✶✶✶ ✶
✶ ✶

✶
✶

✶ ✶
✶

✶ ✶ ✶ ✶ ✶✶
✶
✶
✶✶ ✶

✶ ✶
✶

✶ ✶
✶ ✶

✶ ✶

✶ ✶ ✶ ✶ ✶✶
✶✶

✶
✶

✶ ✶
✶ ✶

✶
✶ ✶ ✶

✶ ✶

◦ 1 min
□ 2 min
◇ 10 min
△ 1 hour
✶ 1 day

1 5 10 50 100 500 1000
10-7

10-5

0.001

0.100

10

1000

105

◦
◦ ◦ ◦◦◦◦◦◦◦

◦

◦

◦ ◦ ◦ ◦◦◦◦◦◦◦ ◦
◦

◦
◦

◦
◦

◦ ◦ ◦ ◦◦◦◦◦◦◦ ◦ ◦
◦

◦
◦

◦
◦

◦

◦ ◦ ◦ ◦◦◦◦◦◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

◦
◦

◦ ◦ ◦ ◦◦◦◦◦◦◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

◦
□

□ □ □□□□□□
□

□

□

□ □ □ □□□□□□□ □
□

□

□

□

□

□ □ □ □□□□□□□ □
□

□
□

□

□
□

□

□ □ □ □□□□□□□ □ □ □
□

□
□

□
□

□

□ □ □ □□□□□□□ □ □ □ □ □ □ □
□

□
□

◇
◇ ◇ ◇◇◇◇◇

◇◇
◇

◇
◇ ◇ ◇◇◇◇◇◇◇ ◇

◇
◇

◇
◇

◇ ◇ ◇ ◇◇◇◇◇◇◇ ◇
◇

◇
◇

◇

◇
◇

◇ ◇ ◇ ◇◇◇◇◇◇◇ ◇ ◇ ◇ ◇
◇

◇
◇

◇

◇

◇ ◇ ◇ ◇◇◇
◇◇◇◇ ◇ ◇ ◇ ◇ ◇

◇ ◇ ◇

◇ ◇△
△ △ △△△△△△△

△

△ △ △ △△△△△△△ △
△

△
△

△

△

△ △ △ △△△△△△△ △
△

△
△

△
△

△
△

△ △ △ △△△△△△△ △ △
△

△
△

△
△ △

△ △

△ △ △ △△△△△△△ △ △ △
△

△ △ △ △
△ △

⊲ ⊲ ⊲ ⊲ ⊲⊲⊲⊲⊲⊲ ⊲
⊲

⊲
⊲

⊲

⊲

⊲ ⊲ ⊲ ⊲ ⊲⊲⊲⊲⊲⊲ ⊲
⊲

⊲
⊲

⊲
⊲

⊲

⊲

⊲ ⊲ ⊲ ⊲ ⊲⊲⊲⊲⊲⊲ ⊲ ⊲ ⊲
⊲

⊲
⊲

⊲ ⊲

⊲

⊲

⊲ ⊲ ⊲ ⊲ ⊲⊲⊲⊲⊲⊲ ⊲ ⊲ ⊲ ⊲
⊲ ⊲ ⊲ ⊲

⊲
⊲

▽ ▽ ▽ ▽▽▽▽▽▽▽ ▽
▽

▽
▽

▽

▽

▽ ▽ ▽ ▽▽▽▽▽▽▽ ▽
▽

▽
▽

▽
▽

▽

▽ ▽ ▽ ▽▽▽▽▽▽▽ ▽ ▽
▽

▽ ▽
▽ ▽

▽

▽
▽

▽
▽ ▽ ▽▽▽▽▽▽▽ ▽ ▽ ▽ ▽ ▽

▽ ▽ ▽
▽ ▽

⊳ ⊳ ⊳ ⊳ ⊳⊳⊳⊳⊳⊳
⊳

⊳
⊳

⊳

⊳
⊳

⊳ ⊳ ⊳ ⊳ ⊳⊳⊳⊳⊳⊳ ⊳
⊳

⊳
⊳

⊳
⊳

⊳
⊳

⊳ ⊳ ⊳ ⊳ ⊳⊳⊳⊳⊳⊳ ⊳ ⊳
⊳

⊳ ⊳
⊳

⊳
⊳

⊳
⊳

⊳ ⊳ ⊳ ⊳ ⊳⊳⊳⊳⊳⊳ ⊳ ⊳
⊳ ⊳ ⊳

⊳ ⊳ ⊳
⊳ ⊳

+ + + +++++++ +
+

+

+

+

+ + + +++++++ +
+

+
+

+
+

+

+ + + +++++++ + +
+

+ +
+ +

+

+
+

+ + + +++++++ + +
+ +

+ +
+ +

+ +

× × × ××××××× ×
×

×
×

×

×
◦NASDAQ
□DJI
◇RUI
△RUA
⊲ BA
▽GE
⊳ IBM
+ KO

1 5 10 50 100 500 1000
10-7

10-5

0.001

0.100

10

1000
(d)

(b)(a)

(c)

R  =2

R  =2 R  =2

R  =2

Q Q

Q Q

5 5

5 5

10 10

10 10

30

30 30

70 70

70

ΔQt

Ψ
Q
(Δ
Q
t)
[a
rb
.u
ni
ts
]

Figure 3.4: The empirical statistics of interevent times (colored marks) for: (a) the
monthly returns of the Bank of England and the East India Company, 1709–1823,
(b) the relative daily price returns for varied quotes, 1962–2010, (c) NASDAQ
between March 16, 2004 and June 5, 2006, different time ranges, (d) the detrended
minute-by-minute typical examples of financial data for different RQ values (in the
corresponding units) indicated on the plots. The black solid curves are fits of our
theoretical superstatistics, ψQ(∆Qt) vs. ∆Qt, Eq. (3.12). The gray dashed curves
are the relevant q-exponential fits, Eq. (3) in Ludescher et al. (2011). Empirical
data taken from Ludescher et al. (2011); Ludescher and Bunde (2014).
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Figure 3.5: Empirical interevent-time statistics for the daily returns of IBM, 1962–
2010 (empty circles), in log-log scale for RQ = 2, 5, 10, 30, 70 (in units of days).
The black solid curves are fits of our theoretical superstatistics, Eq. (3.12). The
gray dashed curves are the relevant q-exponential fits, Eq. (3) in Ludescher et al.
(2011). The inset is the plot for RQ = 2 in a semilog scale, to show the exponential
decay in this case. Empirical data taken from Ludescher et al. (2011).

Eq. (3.14) we obtain

〈(∆Qt)
m〉 =

∫ ∞
0

(∆Qt)
m ψQ(∆Qt) d(∆Qt) = (τQ(Q))mGQ,m, m = 0, 1, 2, . . . ,

(3.23)
where the key factor of the mth moment of variable ∆Qt is

GQ,m =
m!

1−m/αQ
. (3.24)

The value of the mth moment is finite only for αQ > m, otherwise it is infinite7.
In contrast, quantity RQ is always finite for its quantile (not momentum) origin.

7See, e.g., Kutner (1999b); Kutner and Regulski (1999); Kutner and Świtała (2003); Bel and
Barkai (2005, 2006) for more information concerning infinite moments in random-walk models.



42 3. AN ANALYTICAL MODEL OF INTEREVENT TIMES

PDF B ζ
q-Weibull 0.27194 ± 0.06850 1.0037 ± 0.1459
q-exp 0.1572 ± 0.0586 1.6912 ± 0.2626
Weibull 0.1028 ± 0.0446 2.2590 ± 0.3393

Table 3.7: The universal parameters B and ζ from the fit of the dependence BQ

vs. Q given by Eq. (3.21) to the empirical data presented in Fig. 3.6(a) for IBM.

Parameters L R
as 0.435 −0.019
bs 0.79 5.161

Table 3.8: The parameters as, bs; s = L,R of the linear regressions τQ(Q) vs. RQ

for IBM, shown in Fig. 3.6(b) (with the accuracy about 1%).

For instance, for IBM the first moment, 〈∆Qt〉, is finite only when RQ 6 10 (cf.
Tab. 3.6) and in like manner for the other indices (cf. Tab. 3.5).

Fig. 3.6 presents the empirical-data confirmation of the superscaling hypothesis
formulated in Sec. 3.3.1, for example, for IBM. In Fig. 3.6(a) the predictions of
Eq. (3.21) are fitted to the 1/αQ values obtained from the third column of Tab.
3.6. The resulting values of the fit parameters B and ζ are given in Tab. 3.7 (the
values of the corresponding calibration parameter τ are given in Tabs. 3.1-3.3).
The inset plot presents the agreement between Eq. (3.20) and the empirical data
transformed by Eq. (3.15). Fig. 3.6(b) presents relationship τQ(Q) vs. RQ(Q) from
Tab. 3.6 in the form of two straight lines (or a broken line). Tab. 3.8 gives the
parameters of this regression. Therefore, we can treat τQ(Q) as a composition of
two linear functions of RQ. The inset plot in the lower part of Fig. 3.6 compares
the theoretical and empirical values of τQ(0) obtained using Eq. (3.22).

In this way, I proved such an RQ-dependence of the superstatistics ψQ(∆Qt)
that describes the data collapse presented in Figs. 3.4 and 3.5. As I mentioned in
Sec. 3.2.2, the usual Weibull, as well as q-Weibull and q-exponential distributions
are able to describe single-variable empirical results. Therefore, both the extreme
value theory approach and the nonextensive q-function viewpoint (the result of
long-term dependence) represented by these functions, may be closely related.
Indeed, they may be “two sides of the same coin”, linked by means of a certain
fluctuation–dissipation relation. However, as mentioned in Sec. 3.2.1, the bivariate
q distributions do not exist, hence it is better to use the usual Weibull distribution
here, which explains the observed dependence between the interevent times shown
in Sec. 3.2.2.
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Figure 3.6: The dependence between 1/αQ (a) and τQ(Q) (b) vs. RQ for IBM.
The empirical data for the main plots (black circles) are taken from Tab. 3.6.
Theoretical predictions (solid curves) are obtained by (a) the fit of Eq. (3.21) to
the empirical data (see Tab. 3.7 for the parameters) and (b) the linear regressions
τQ(Q) = asRQ + bs, where s = L and s = R are the left-hand and right-hand side
straight lines, respectively; RQ > −bR/aR and τQ=0(0) = aLτ + bL as RQ=0 = τ
(see Tab. 3.8 for the corresponding values of the parameters). The inset plots
show: (a) dependence BQ vs. Q and (b) τQ(0) vs. RQ (b) for Weibull PDF (black
circles and solid lines), q-exponential PDF (empty squares and dashed lines) and
q-Weibull PDF (crosses and dotted lines) with the parameters of these PDFs taken
from Tabs. 3.1-3.3 for IBM. The indirect empirical data for these plots (circles,
squares, and crosses) are obtained from (a) Eq. (3.15) and (b) Eq. (3.22) with αQ
and τQ(Q) taken from Tab. 3.6. The theoretical predictions for the inset plots are
given by solid curves, with B and ζ taken from Tab. 3.7 for (a) and as, bs for (b)
(needed for τQ(Q) values) taken from Tab. 3.8.
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3.5 Exemplary applications of our model
The approach presented above may be applied to a broad spectrum of threshold
phenomena, not only in finance, but also in other fields, such as geophysics, to
describe some seismic data (see Sec. 3.5.3). As is shown in this section, these
applications are both practically and theoretically significant.

3.5.1 An application to risk estimation

The importance of the interevent-time distribution ψ±Q(∆Qt) in financial engineer-
ing is that it enables risk calculation. The crucial quantity here is the risk function
W±
Q (t; ∆t), defined as a conditional probability that the next loss exceeding the

threshold Q will occur within the time interval t if the last such loss occurred
t time units ago. Bogachev et al. (2007) have shown that the relation between
W±
Q (t; ∆t) and ψ±Q(∆Qt) is given by

W±
Q (t; ∆t) =

∫ t+∆t

t
ψ±Q(∆Qt) d∆Qt∫∞

t
ψ±Q(∆Qt) d∆Qt

. (3.25)

Substituting ψ±Q(∆Qt) from Eq. (3.12) and calculating the above given integrals,
we obtain

W±
Q (t; ∆t) = 1−

Γ±(1±α±Q,(t+∆t)/τ±Q (Q))

((t+∆t)/τ±Q (Q))
±α±

Q

± exp

(
− t+∆t
τ±Q (Q)

)
Γ±(1±α±Q,t/τ

±
Q (Q))

(t/τ±Q (Q))
±α±

Q

± exp

(
− t
τ±Q (Q)

) . (3.26)

The above given formula includes both the “+” and the “−” case; however, only
the “+”-sign case is considered herein, as it covers all the previous empirical data.
For this case, the asymptotic forms of Eq. (3.26) are

W+
Q (t; ∆t) ≈ α+

Q

∆t

t
, min

(
t

τ+
Q (Q)

,
t

∆t

)
� 1 (3.27)

and

W+
Q (t; ∆t) ≈

α+
Q

1 + α+
Q

∆t

τ+
Q (Q)

,
t+ ∆t

τ+
Q (Q)

� 1, (3.28)

that is, a universal Zipf law for long times and a time-independent value for short
times, respectively.
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Figure 3.7: Comparisons of two risk functions: Weibull-based, given by Eq. (3.26)
(solid curves) and q-exponential-based, given by Eq. (6a) from Ludescher et al.
(2011) (dashed curves). On the left: W±

Q (t; ∆t) vs. t for RQ = 70; ∆t = 0.1, 1,
and 5 (blue, black, and red line, respectively). Dotted straight asymptotes are
given by Eqs. (3.27) and (3.28). On the right: W±

Q (t; ∆t) vs. RQ for ∆t = 1 and
t = 120, 600 (red and green line, respectively). The dotted horizontal line stands
for probability p = 0.01. Remarkably, for a fixed W+

Q a longer t implies a smaller
RQ value (cf. the position of small circles and triangles).

Fig. 3.7 presents the behavior of the risk function. The monotonic decreasing
of the risk function versus time t at fixed ∆t and RQ is shown in the left part, while
versus RQ at fixed ∆t and t is shown in the right part. Additionally, predictions
of an alternative risk function, proposed earlier by Ludescher et al. (2011), are
shown. It can be seen that the above given asymptotic behaviors are preserved
by both functions.

The risk function obtained above may be used for some numerical computa-
tions. Here, it is shown how to use it for a value-at-risk (VaR) simulation. The
concept of VaR is presented in Sec. 2.1.2, Chapter 2. The algorithm of the numer-
ical sampling on the basis of a given risk function was circumscribed by Bogachev
and Bunde (2009); Ludescher et al. (2011). The version of this algorithm given
below is taken from Denys et al. (2016b).
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First, we calculate the zero-order threshold value Q from Eqs. (3.1), (3.2), and
(3.4). We set P (ε > Q) = p to obtain

Q =


ε̄′ (− lnq′ p)

1/η ,

ε̄ lnq

(
1
p

)
,

ε̄ (− ln p)1/η ,

(3.29)

where lnq(. . .) is a q logarithm (the inverse of a q-exponential function). Then we
set initially |V aR| = Q.

Next, we draw time t from the distribution ψ+
Q(t = ∆Qt), Eq. (3.12). Using

t and the current Q we calculate W+
Q (t; ∆t) from Eq. (3.26) and check if it falls

into the range p ±∆p, ∆p � p. If that is true, we set |V aR| = Q and draw the
next value of t from ψ+

Q(t = ∆Qt) for this Q, etc. When the value of risk function
W+
Q (t; ∆t) is outside the range p±∆p, we multiply Q by factor 1±γ where γ � 1,

“+” for W+
Q (t; ∆t) > p + ∆p and “−” for W+

Q (t; ∆t) < p − ∆p. We repeat this
step n+ + n− times until Q′ = Q(1 + γ)n+(1 − γ)n− and the drawn time t (once
for a given time step) give the value of the risk function within the range p±∆p.
Then the new |V aR| = Q′, and we use it as an initial value for the next step.

By this means we obtain the |V aR| series in time, that is, at (t + ∆t)-s.
An exemplary outcome of the algorithm presented above is shown in Fig. 3.8.
Remarkably, the |V aR| series obtained in the frame of our approach contains
values all below the initial |V aR|, Eq. (3.29). Thus, our approach appears to
reduce the estimated |V aR| value. The algorithm from Bogachev and Bunde
(2009); Ludescher et al. (2011) did not possess this property (cf. e.g., Fig. 6 from
Ludescher et al. (2011)).

3.5.2 The application to profit analysis

The empirical-data collapse presented in Sec. 3.4 relates to the empirical data of
losses, confirming the usefulness of our model. Since our derivation is symmetric
(i.e., stable against the change of the loss sign), the question arises of how it applies
to the analysis of profits. In this variant of the model we consider excessive profits
instead of excessive losses, only by changing the interpretation of variable Q to be
the threshold for profits instead of losses. Therefore, the final result is analogous
to those for the losses, i.e., it is also given by Eq. (3.12). An application of these
superstatistics to profit analysis is presented in Fig. 3.9.

Nevertheless, the symmetry between profits and losses turns out to be only
functional, not literal. The reason is that the control parameters αQ and τQ(Q)
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Figure 3.8: Weibull-based (black circles and solid segments) and q-exponential-
based (blue triangles and dashed segments) simulation of |V aR|, obtained using
Eq. (3.26) for ∆t = 0.1, 1− p = 0.99 and the time range as in Fig. 6 in Ludescher
et al. (2011) (IBM quotations between 2002 and 2008). The horizontal dotted
lines and the single empty circle and triangle for |V aR| ≈ 0.05 are the zero-order
|V aR|-s for Weibull (black) and q-exponential (blue) case, i.e., with no dependence
between interevent times assumed. Two pairs of dashed-dotted horizontal lines
stand for empirical long-range spreads for Weibull (black) and q-exponential (blue)
PDF.

appear to be different than in the case of losses. We cannot say anything definite
here though, because the statistical errors in the empirical data that we used are
too large. For instance, we obtained (cf. Tabs. 3.5 and 3.6 for excessive losses)
1.70 6 α+

Q 6 3.10 and 0.10 6 τ+
Q (Q) 6 0.25 for RQ = 10, 0.90 6 α+

Q 6 1.50

and 0.12 6 τ+
Q (Q) 6 0.35 for RQ = 30, and finally 0.60 6 α+

Q 6 1.10 and
0.08 6 τ+

Q (Q) 6 0.36 for RQ = 70, i.e., the fairly extended ranges. Therefore,
we also cannot verify the universality addressed in this chapter in the case of the
excessive profits.

3.5.3 A geophysical application

Our model concerns the times between events on financial markets. However,
nothing stands in the way of extending the range of its applicability to some
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Figure 3.9: The interevent-time statistics for profits obtained for daily returns
of various assets from various markets, e.g., the stock exchange, forex, or the
resource market. The black solid curves are fits of our theoretical superstatistics,
Eq. (3.12). The gray dashed curves on (a), (b), and (c) are the relevant exemplary
q-exponential fits, Eq. (3) in Ludescher et al. (2011), shown for a comparison.
Empirical data (discrete marks with bars) taken from Bogachev and Bunde (2008).

nonfinancial noises, such as geophysical ones, known for their similarity to financial
data (Sornette, 2002).

The widely used Gutenberg–Richter law determines the frequency of earth-
quakes with a magnitude greater than the threshold Q in the form of an expo-
nential function (Corral, 2004). The exponential distribution as the underlying
statistics (or a Weibull distribution with exponent η = 1, cf. Denys et al. (2016b))
may be used likewise to derive our superstatistics, Eq. (3.12). The Gutenberg–
Richter law is, actually, the reversed lower branch of Eq. (3.4) with η = 1, i.e.,
the exponential case.

Therefore, taking into account (i) the large volatility clustering (avalanches of
earthquakes or aftershock sequences), and (ii) the small volatility clustering (weak
aftershock sequences), we proposed the following superposition of two interevent-
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Figure 3.10: The rescaled statistics of interevent times (from 2 min to about
1.5 years) between earthquakes exceeding the threshold from 1.5 to 7.5 on the
Richter scale (small circles) for (a) the NEIC worldwide catalog for regions with
L > 180◦, 1973–2002, (b) NEIC with L 6 90◦, 1973–2002, (c) Southern California
1984–2001, 1988–1991, and 1995–1998, (d) Northern California 1998–2002, (e)
Japan 1995–1998 and New Zealand 1996–2001, (f) Spain 1993–1997, New Madrid
1975–2002, and Great Britain 1991–2001. The data are spread vertically for a
better view. The black solid curves are fits of our superposition formula (3.30).
Empirical data taken from Corral (2004).

time superstatistics,

ψtotQ (∆Qt) = w−Qψ
−
Q(∆Qt) +w+

Qψ
+
Q(∆Qt), w

−
Q +w+

Q = 1, w−Q > 0, w+
Q > 0. (3.30)

Fig. 3.10 shows that the above given formula describes the empirical data of
earthquakes on different time scales well. Moreover, the data collapse for different
regions and threshold values is clearly visible. Tab. 3.9 presents the values of the
parameters of the fits for Fig. 3.10.

Both parts of the superposition (3.30) are necessary to describe the empirical
data; however, w−Q and α−Q cannot be determined precisely as α−Q is too small.
What is more, we did not observe a Q-dependence of exponent α±Q and τ±Q (Q).
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Region w−Q/w
+
Q α−Q;α+

Q τ−Q (Q); τ+
Q (Q)

a 90/9 0.001; 7.0 1.0; 1.0
b 1000/1 0.00001; 7.0 1.0; 1.0
c 11000/9 0.00001; 7.0 1.0; 1.0
d 1400/1 0.00001; 7.0 1.0; 1.0
e 20/12 0.005; 6.0 1.0; 0.8
f 80/11 0.001; 4.0 1.0; 0.7

Table 3.9: Values of the fit parameters w±Q, α
±
Q, τ

±
Q (Q) from Eq. (3.30) for Fig.

3.10 (with an accuracy of about 5%).

Actually, each region (a)–(f) in Fig. 3.10 may be characterized by a single value
of α±Q and τ±Q (Q) (cf. Tab. 3.9). Thus, from Eq. (3.14) and the lower branches of
Eqs. (3.15) and (3.20) for the decreasing ζ, we obtain

α±Q = (B±)−1;
τ±Q (Q)

τ±Q (0)
= exp

(
±B±

Q

ε̄

)
(3.31)

with a constraint
τ±Q (0) ∝ exp

(
∓B±

Q

ε̄

)
. (3.32)

Formula (3.30) reproduces the seismic empirical-data scalings in Fig. 3.10 well,
since it contains two power laws: the term ψ−Q is responsible for the Omori law
for short interevent times (Fujiwara, 2013; Corral, 2004), while the term ψ+

Q is
responsible for a power law driven by Pareto-Lévy exponents greater than 2 for
long interevent times.

Hereby, I have shown three exemplary applications of our model. The range
of other possible ones is much larger; one may consider, e.g., some astrophysical
or biological (genomic) noises that we have not examined yet (cf. Tsallis (2016)).

3.6 The conclusions of Part I
In the first part of the thesis I analyzed empirical data by means of a stochastic
continuous-time random walk (CTRW) process and the extreme value theory
(EVT). In this way I derived a key conjecture (3.11) that enabled us to obtain
a general form of the interevent-time statistics in a closed analytical form (3.12),
independent of the particular form of losses (or profits) distribution. The obtained
formula is most characteristic due to its factorized form: the first universal factor
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is a power law, and the second dedicated factor strongly depends on the character
of the stochastic process. For a process where larger losses (or profits) turn out to
be less likely, it stabilizes the power law asymptotically. In the reverse situation, it
acts as truncating factor, stabilizing an entire distribution only for short interevent
times.

It needs to be highlighted that the obtained formula (3.12) can be derived
using, for instance, a Weibull distribution and two q distributions (i.e., an expo-
nential one and a Weibull one) as an underlying return distribution (q exponentials
were used earlier by Ludescher et al. (2011) directly as the interevent-time distri-
bution functions – cf. Sec. 1.2.1 in Chapter 1). These distributions describe the
output empirical data of returns shown in Fig. 3.1 particularly well. It should
be noted that condition (3.11) is a kind of a single-particle filter that permits a
whole class of models instead of the single (particular) one.

The approach mentioned above provided the foundations for making the next
step, i.e., constructing a two-particle filter, based on copulas, in other words,
joint cumulative distribution functions. Thereby, the conditional quantile mean
interevent-time range (3.8), based on the Weibull copula, was built.

Unfortunately, copulas for q Weibull and q exponential distributions are as yet
unknown (which does not mean that they do not exist). Therefore, a construction
of the corresponding two-particle distribution is impossible in these cases, though
it is not required for obtaining the appropriate final result, and on the “external”,
one-particle level we cannot distinguish the right from the alternative approaches:
the Weibull one and the q-function one. Notwithstanding that, formula (3.8)
obtained using a two-variable Weibull distribution, describes the empirical data
well – cf. Fig. 3.3. Ipso facto an approach was proposed that allows the selection
of physical models required for the description of empirical data and, thereby, to
better understand the phenomena occurring on varied financial markets and on
different time scales.

I proved that the extreme value theory, together with a dependence between
the events, are sufficient to describe the relevant threshold phenomena. Moreover,
I found that the scaling shape exponent of our superstatistics scales itself (a
“superscaling”). However, the profound physical meaning of this scaling requires
some further studies.

Our approach opens extremely significant practical applications concerning
risk dynamics. It may be used to calculate a dynamic risk function and, subse-
quently, to simulate a time series of value at risk (VaR), a quantity commonly
used in financial risk analysis for the estimation of risk investment. This opens
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up opportunities to apply our model in economic theory and teaching, as well as
the possibility of some practical investment or insurance applications.

I demonstrated a functional (not literal) balance between excessive profits and
losses, that is, the interevent statistics for profits may be described by the same
superstatistics formula (3.12) but with different parameter values. The simple
extension of our approach, i.e., employing a superposition of two superstatistics,
also provides a satisfactory description of empirical seismic data collapse, giving
our work an interdisciplinary character. In the future, this may allow the occur-
rence of an earthquake to be modeled and maybe even predicted. On top of that,
as we shall see in Part II, the results of our analytical model may be reproduced
by means of an agent-based approach.

The model presented in this chapter is an analog of the canonical one-
dimensional CTRW valley model with the valley depth being the magnitude of
the loss (or profit). Our ψQ(∆Qt) statistics, Eq. (3.12), stands for the distribution
of times between jumps and the PDF for finding a given particle at time lag ∆Qt
in the adjacent valley with a depth ε > Q. This analogy with the CTRW valley
model leads to the assumed form of integration exponent α±Q, Eq. (3.15), and
subsequently, to the above mentioned superscaling. The superscaling, in turn, is
the way in which we obtain required the universality of formula (3.12)8.

Furthermore, we extended the canonical CTRW view, assuming a Weibull
relaxation time instead of a canonical exponential one, but obtaining a decreasing
power-law of ψQ(∆Qt) for ∆Qt� 1 as before. Although we are able to construct
ψQ(∆Qt) for excessive losses and excessive profits separately, to develop a full
CTRW formalism for financial markets we would have to consider both losses and
profits simultaneously, which still remains a challenge.

The formalism I presented in this chapter reduces a broad range of empirical
data to the use of a single control variable, pointing out the universality contained
therein. This universality may lead us, finally, to find some deeper laws of market
behavior. It is our hope that this work will constitute a strong contribution to
the studies on the universal properties of financial markets.

After a presentation of the analytical description of times between excessive
events, in Part II a numerical agent-based approach to this matter is presented.
Thereby, the description of the phenomenon considered in this thesis becomes
more complete and comprehensive.

8However, the meaning of the superscaling exponent ζ from Eq. (3.20) still remains unknown.
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Simulations in the frame of
agent-based models





4

Canonical agent-based models of
financial markets

We wish to emphasize that the aim of simulations is not to provide better
‘curve fitting’ to experimental data than does analytic theory. The goal
is to create an understanding of physical properties and processes which
is as complete as possible, making use of the perfect control of ‘experi-
mental’ conditions in the ‘computer experiment’ and of the possibility to
examine every aspect of system configurations in detail.

– Landau and Binder (2014), p. 5-6

4.1 The concept of agent-based models

In this part of the thesis a complementary point of view for interevent-time uni-
versality is provided, by means of so-called agent-based models that open the pos-
sibility of describing the phenomena and processes occurring on financial markets
at ab initio level.

Market modeling is one of the main challenges of modern economics, especially
after the world wide financial crisis of 2007-08. This is also a canonical branch
of econophysics (Cont, 2001; Bouchaud et al., 2008; Sornette, 2014; Schinckus,
2016). The main purpose of market models is to reveal the laws and underlying
processes of market behavior, especially during bull- or bear-market periods. Such
models enable us to make some predictions about markets, or at least to specify
some signatures or warnings of upcoming changes that are signaled by the market
data.

55
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One of the central parts of economic and econophysical market modeling is the
approach based on the agent-based models (ABMs), also called computational eco-
nomic models. Nowadays, ABMs are widely exploited in economics (Farmer and
Foley, 2009), sociology (Macy and Willer, 2002) and the environmental sciences
(Billari, 2006). The concept of agent-based modeling is based on the connection
between the micro- and macroscale activities of complex systems. The microscale
is represented by a single agent, i.e., the basic element of ABM. It can be a single
voter, an investor, a whole company, or even a whole country. The macroscale,
or the considered complex system, can be a nation (e.g., in election modeling,
Sznajd-Weron and Sznajd (2000)), a crowd (in evacuation models, Schadschnei-
der et al. (2011)), a group of social networking service users (see, e.g., Bollen et al.
(2011)), and last but not least, a market, which is the subject of the considerations
presented in this part of the thesis.

Clearly, the possible range of ABM applications is wide, inspiring, and promis-
ing. A whole separate issue, which could have an impact on the final results, is
the topology of a network (preferably realistic) assumed in a particular ABM
(Newman, 2003; Rahmandad and Sterman, 2008; Alfarano and Milaković, 2009;
Dorogovtsev, 2010; Kwapień and Drożdż, 2012; Dorogovtsev and Mendes, 2013;
Raducha and Gubiec, 2016). Remarkably, the ABM approach constitutes a bridge
between social science and physics, as we can consider agents in the model as a
collection of particles in a physical system, with a wide range of statistical physics
methods at our disposal. Besides simulations of varied social processes and some
prediction making, ABMs frequently allow us to “look inside the black box” and
understand the laws behind social and economic phenomena, such as the forma-
tion and bursting of stock market bubbles (see, e.g., Sec. 4.2).

This chapter presents several examples of financial-market agent-based models
starting from the late eighties until today (cf. Samanidou et al. (2007); Cristelli
et al. (2011); Sornette (2014)). Similarly to Chapter 2 from Part I, this chapter
is also intended to be a preparation for reading the subsequent one (Chapter 5),
where our second model of interevent times, i.e., the numerical model of cunning
agents, is presented. The main purpose of this chapter is to outline the idea of
agent-based models and place the description of the cunning-agents model in a
broader historical context.

In Secs. 4.2 and 4.3 the pioneering ABM works are presented, then, in Secs.
4.4 and 4.5, the well-known Lux–Marchesi and Cont–Bouchaud models are shown.
In Secs. 4.6 and 4.7 the econophysical idea of the Ising-model market application
is discussed and two relevant models are presented. In Sec. 4.8 an alternative
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attempt to reproduce the interevent-time distribution by an ABM (for that pre-
sented in Chapter 5) is shown. Finally, in Sec. 4.9, conclusions are given.

4.2 The Kim–Markowitz multiagent model1

The model by Kim and Markowitz (1989) is considered to be the first modern
multiagent model of financial markets (Samanidou et al., 2007). Performing their
microsimulation study, the authors were motivated by the stock market crash of
19th October 1987 (so-called Black Monday) when the Dow Jones Industrial Aver-
age index decreased by more than 20% over a single day. Because the occurrence
of this exceptional crash could not be caused only by exogenous information, Kim
and Markowitz concentrated on some noninformational factors in their research.
Their main concept was to exploit portfolio insurance strategies on the market.

In the Kim–Markowitz (KM) model we consider two groups of investors, (i)
the rebalancers and (ii) the portfolio insurers, each trading in two assets, i.e.,
stocks and cash. The total interest rate on the market is equal to 0. The wealth
w of each agent at time step t is given by the formula

w(t) = q(t)p(t) + c(t), (4.1)

where q(t) is the number of stocks, p(t) is their price at time step t, while c(t) is
the amount of cash that the agent holds at t. The main purpose of the investment
in the case of rebalancers is to maintain a balanced portfolio with an equal amount
of stocks and cash, i.e.,

q(t)p(t) = c(t) = 0.5w(t). (4.2)

Rebalancers stabilize the market: when prices increase, they raise their supply or
reduce their demand, and vice versa in the case of a price decrease.

The second group of investors, the portfolio insurers, focuses on keeping some
minimal wealth f , called the floor, at a specified date of insurance expiration,
according to the constant proportion portfolio insurance (CPPI) method by Black
and Jones (1987). The method is based on keeping a proportion of the asset value
(called the cushion) constant and the difference s between the current value of
the portfolio w and the floor f . This strategy can therefore be expressed as

q(t)p(t) = ks(t), (4.3)

where s(t) = w(t)− f , and the multiplier k is chosen greater than 1, which allows
portfolio insurers to benefit from a possible price increase.

1Based on Samanidou et al. (2007).
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When the prices decrease, the wealth of the portfolio insurers also decreases,
but not lower than the bottom value f . In the case of a bear market, the fraction
of risky assets in their portfolio is close to zero and they possess only riskless
cash of a value equal to f (to good approximation), which is the minimal value
of their portfolio (providing that the trading frequency is high enough). This
kind of investment strategy has an effect similar to put options. The portfolio
insurance strategy, contrary to the strategy of rebalancers, leads to destabilization
of the financial market, as portfolio insurers buy stocks during a bull market and
sell them during a bear market. The magnitude of this destabilizing effect is
proportional to the value of the multiple k.

The evolution of the stock price and the trading volume in the model is a result
of demand and supply changes. From time to time, investors have an opportunity
to change their portfolio (i.e., when a given investor is drawn). They compute the
price forecast piest(t) for their assets according to following rules:

1. If only buy orders (asks) exist, the estimated price is 101% of the highest
ask price.

2. If only sell orders (bids) exist, the estimate is 99% of the lowest bid price.

3. If both asks and bids exist, the estimate is an average between the highest
ask and the lowest bid from the previous period.

4. If there are no orders on the market, the estimate is equal to the previous
trading price.

For rebalancers, if the estimated ratio between stocks and assets is higher
(smaller) than the desirable 0.5, they place, respectively, a sale (buy) order with
the price pibid(t) = 0.99piest(t) for the sale (or piask(t) = 1.01piest(t) for the purchase).
Similarly, portfolio insurers place a sale (buy) order with the above values of the
price when the estimated ratio between stocks and cushion is higher (smaller) than
the desirable value k (however, some deviations from the target value, within a
precisely defined range, were tolerated, cf. Samanidou et al. (2007)). These orders
are matched with each other in the model order book, i.e., if there is a counter-
offer that matches the already placed one, the orders are executed immediately
with the price of the counter-offer. If the matching offer does not exist, the order
is put on a list to be filled later, when the relevant counter-offer comes. If some
orders are still open at the end of the trading day, the agents who placed them can
reevaluate their portfolio structure and place a new order. When this is completed
and all the agents had a chance to trade, the trading day finishes. Agents who
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Figure 4.1: Daily price changes in the Kim–Markowitz model with different num-
bers of CPPI agents: 0 (dashed-dotted line), 50 (solid line), and 75 (dashed line)
among a total number of 150 agents. The oscillation amplitude increases with the
increasing CPPI agents fraction. Taken from Samanidou et al. (2007).

have lost all their wealth (their cash plus the value of stocks) are eliminated from
further trading.

The original simulations by Kim and Markowitz started with rebalancers hav-
ing more or less stocks than in the state of equilibrium. The influence of an
exogenous market was incorporated by random flows of cash for each investor
imitating deposits and withdrawals, wherein the average amount of the deposit
was higher than the average withdrawal amount.

The simulation made by Kim and Markowitz demonstrated that portfolio in-
surance strategies destabilize the financial markets (see Fig. 4.1). It was the most
important result of their approach and also an important voice in the academic
discussion on the causes of the 1987 crash. Although the model rather does not
reproduce the empirical scaling laws (Samanidou, 2000), it was not created to do
that. In fact, it is a representative example of developing an approach dedicated
to describing a specific problem, and in this role works satisfactorily. Further-
more, the model was, in those days, pioneering and should be treated as such in
all kinds of assessments and rankings.
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4.3 The Levy–Levy–Solomon financial-market model2

Unlike the Kim–Markowitz model, the example considered next, the fruit of col-
laboration between economists and physicists from Hebrew University, is much
simpler in terms of the assumed microscopy of agents activity. Such an approach
is characteristic for econophysical agent-based models rather than economic ones.
The model was initially presented in Levy et al. (1994) with some later improve-
ments (see Samanidou et al. (2007) for refs.).

4.3.1 The model description

The Levy–Levy–Solomon (LLS) model consists of a set of n interacting investors.
At the beginning of the simulation, each investor has the same initial wealth, W ,
divided individually into shares and bonds (no other forms of wealth, especially
cash, are allowed). If we denote the share of stocks in the ith investor’s portfolio
as Xi, we can decompose his wealth Wi(t+ 1) in the following way,

Wi(t+ 1) = XiWi(t)︸ ︷︷ ︸
sum of shares

+ (1−Xi)Wi(t)︸ ︷︷ ︸
sum of bonds

, (4.4)

where t is time. The initial share of stocks is the same for each investor. The
supply of shares in the model, NA, is assumed constant. The bonds earn a fixed
interest rate r, while the stocks return H(t) is a composition of the price p(t)
changes and the dividend payment D(t), namely

H(t) =
p(t)− p(t− 1) +D(t)

p(t− 1)
. (4.5)

The utility function U , specifying the preferences of investors3, is assumed to
be logarithmic in the basic version of the model, i.e., U(W (t+ 1)) = lnW (t+ 1),
and therefore the law of diminishing marginal utility is fulfilled therein, and the
investors are risk-averse. Moreover, the utility function in this form results in a
wealth-independent optimal ratio of stocks in the investor’s portfolio, and there-
fore the share of stocks is constant.

Investors in the model form groups defined by the memory length k, i.e.,
investors from group G form the expected value of their returns in the future based
on their k last total stock returns, namely, H(t− k + 1), H(t− k + 2), . . . , H(t).

2Based on Samanidou et al. (2007).
3For more details about utility function and expected utility function see Varian (1999).
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Each of the remembered k returns is expected to reappear with a probability equal
to 1/k in the next period. The corresponding expected utility function takes the
form

EU(XG
i ) =

1

k

{
t−k+1∑
j=t

ln [(1−XG
i )Wi(t)(1 + r) +XG

i Wi(t)(1 +H(j))]

}
, (4.6)

where XG
i is the share of stocks for the ith investor, belonging to group G. There-

fore the maximization formula for this function is

f(XG
i ) =

∂EU(XG
i )

XG
i

=
t−k+1∑
j=t

1

XG
i + 1+r

H(j)−r
= 0. (4.7)

The limits for the share of stocks in the investor’s portfolio, imposed by the
authors, are 0.01 (lower) and 0.99 (upper). Moreover, neither short-selling nor
loans taking is allowed. So far, the model seems to be perfectly deterministic.
However, the authors incorporated some randomness into it, that is, after the
optimum share XG

i calculation for the ith investor, a noise term from the normal
distribution, εi, is added to the result. This term stands for an individual demand
or supply of each investor and represents, e.g., the investor’s own beliefs or emo-
tions. In Levy et al. (1994) this term has a physical interpretation as a result of
the market “temperature”. The stock price and, therefore, the new return value
in each time step is determined from the aggregated demand of all the investors.
Finally, the oldest return in the investors’ memory vanishes and this new one is
added there.

4.3.2 Results

Some selected results of the model are shown in Figs. 4.2 and 4.3. In the case
of only one group of investors, the price in the model changes periodically with
strong growths and drops, where the length of a cycle depends on the parameter
k (Fig. 4.2). The growths mentioned above are caused by a positive feedback
effect, when the price increases encourage investors to buy more stocks (as in their
memory span some new positive returns are appearing and the possible negative
old ones are vanishing) which causes further price increases, etc. When the share
of stocks in the investors’ portfolios is close to the maximal value, further price
growth becomes impossible, and because the price is high, the dividend yield D/p
is relatively small, so the price growth stops. In this case, after k time steps with
small values of return, when the previous higher values disappear from the memory
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Figure 4.2: Sample price fluctuations in the LLS model with a single group of
traders and a logarithmic utility function. The cyclical behavior of the series can
be clearly seen. Taken from Samanidou et al. (2007).

span of the investors, even a slight decrease of the price (possible because of the
presence of the noise term εi in the model) can be an incentive to the emergence
of a crash caused by negative feedback, in the same way as the rapid growth was
previously caused by the positive feedback effect. If that occurs, the share of
stocks in the investors’ portfolios drops to the minimal value, the price is then
low and, consequently, the dividend yield is relatively high, which is an incentive
for new rapid growth, and thus the cycle closes.

When the simulation includes two groups of investors with different memory
spans k, the aforementioned periodicity is still possible, but for some values of
memory spans some other dynamic patterns occur, which is associated with the
interaction of both groups investing on the market. In the presence of three or
more investor groups some other irregularities appear, shown in Fig. 4.3 (for three
groups with k = 10, 141, 256 and n = 100 investors)4. The long-run results of the
model are sensitive to the initial conditions, i.e., the drawn initial “history” of the
agents. Depending on the particular drawing, either the group with k = 256 or
k = 141 may dominate on the market.

4However, the behavior becomes periodical again as n increases (Hellthaler, 1996).
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Figure 4.3: The development of wealth distribution in a simulation of the LLS
model for three groups with k = 10, 141, and 256. In this case the group with
k = 141 dominates the market. Taken from Samanidou et al. (2007).

Despite the variety of possible results it gives, the LLS model does not repro-
duce power-law return statistics (they are simply Gaussian) and the shape of the
autocorrelation function of absolute returns (which quickly decays to zero as the
autocorrelation of raw returns (Zschischang, 2000)). However, some other related
models by these authors reproduce the desirable scaling laws (Levy and Solomon,
1996). As the time unit in the model is not precisely defined – it could be a day
as well as a month – the Gaussian statistics of returns that the model yields can
be correct even if we assume that this concerns the case of a larger time scale,
although the underlying mechanism of this result is different than in real markets
(Samanidou et al., 2007).

4.4 The Lux–Marchesi model of speculations5

4.4.1 The model description

The next model, presented for the first time in Lux and Marchesi (1999), is based
on the concept of mutual exchange and interaction between different groups of

5Based on Samanidou et al. (2007).
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investors and the process of price adjustments with a demand-supply imbalance.
In the Lux–Marchesi (LM) model, we consider an artificial market with N agents
(investors), nc of which are the noise traders (or chartists), while nf are the
fundamentalists, holding nc + nf = N (cf. Kim–Markowitz’s portfolio insurers
and rebalancers from Sec. 4.2). A group of n+ noise traders are optimists, while
n− of them are pessimists, holding n+ + n− = nc. There are two values of price,
the market price, p, and the fundamental value, pf .

Chartists’ opinion-changing

Noise traders change their opinions (or moods) from pessimistic to optimistic and
vice versa with the probabilities π+−∆t and π−+∆t, respectively, where ∆t is
considered a (small) time interval and

π+− = v1
nc
N

exp(U1),
π−+ = v1

nc
N

exp(−U1),

U1 = α1x+ α2

v1

dp
dt

1
p
,

(4.8)

where x = n+−n−
nc

is an average chartist’s opinion and dp
dt

1
p
is a current price trend.

It can be seen that πab is the probability of transition between states a and b,
herein, an optimistic and a pessimistic state. The coefficients v1, π1, and π2 are
some adjustment parameters specifying, respectively, the frequency of opinion
changes, the importance of overall opinion, and the importance of the current
trend in the agents’ opinion-shifts (parameter α2 is normalized by v1, because the
trend is considered over the average time interval, cf. Samanidou et al. (2007)).
The term nc/N is a fraction of the noise traders among all the investors.

Chartist-fundamentalist conversions

As above, changing groups between noise traders and fundamentalists is based on
transition probabilities, namely

π+f = v2
n+

N
exp(U2,1), πf+ = v2

nf
N

exp(−U+,f ), (4.9)

π−f = v2
n−
N

exp(U2,2), πf− = v2
nf
N

exp(−U−,f ), (4.10)

where

U+,f = α3

{
r + 1

v2

dp
dt

p
−R− s ·

∣∣∣∣pf − pp

∣∣∣∣
}
, (4.11)
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U−,f = α3

{
R−

r + 1
v2

dp
dt

p
− s ·

∣∣∣∣pf − pp

∣∣∣∣
}
. (4.12)

Quantities U+,f and U−,f are the differences of profits made by chartists (opti-
mistic or pessimistic, respectively) and fundamentalists, with coefficient α3 stand-
ing for an investor’s sensitivity to profit changes. The first terms in U+,f and U−,f
represent the profit of noise traders from the optimistic and pessimistic groups,
respectively, while the second term is profit earned by the fundamentalists. The
parameter v2 stands for the speed of an investor’s trading strategy verification.
Excess profit (in comparison with some alternative investments with the rate of
return per asset equal to R) made by chartists consists of a nominal dividend, r,
and the revenue from the price change dp

dt
, divided by the market price p to give an

average gain from one asset. The order of the terms – the term described above
and the R term – in the excess profit calculation depends on the mood of the
chartists, i.e., whether they gain from asset price increases (for optimistic ones)
or falls (for the pessimistic) as it is clearly seen in the above formulas. On the
other hand, the second part of the U functions or the fundamentalists’ profit con-
sists of the absolute deviation between the actual and fundamental price, p and
pf , representing their potential revenue from arbitrage strategy. The factor s < 1
stands for the uncertainty of the fundamentalists’ profit size, as it occurs only in
the unsettled future, in contrast to the immediate noise traders’ profit. Moreover,
the fundamentalists’ gain does not contain the dividend r, because we assume
they anticipate it as the source of alternative investments, namely r/pf = R, and
the corresponding terms cancel out.

Price changes

The price change in the LM model is an endogenous market response to an im-
balance of demand and supply. The difference between demand and supply in
the model, called the excess demand, ED, is defined as a sum of the component
excess demands EDc and EDf for the chartists and fundamentalists, respectively,
where

EDc = (n+ − n−)tc and EDf = nf · γ
pf − p
p

. (4.13)

For the chartists, EDc is proportional to the difference between the number of
optimists and pessimists, as they provide demand and supply, respectively; tc
denotes an average trading volume per transaction. For fundamentalists, in turn,
EDf is proportional to deviations between actual and fundamental price, with
the coefficient γ standing for the strength of the response.
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Like the conversions between the groups of investors, price adjustments are also
defined using some transition probabilities. Specifically, if a percentage of a price
increases (↑) or decreases (↓) during a certain time, ∆t, fulfills ∆p = ±0.001p, the
corresponding transition probabilities are

π↑p = max[0, β(ED + µ)] or π↓p = −min[β(ED + µ), 0], (4.14)

respectively, with parameter β quantifying the speed of the price adjustment6 and
parameter µ establishing some additional stimulus for an increase (or decrease)
of the price, even if the overall excess demand ED is negative (or positive).

Price changes in the model influence investors’ decisions, namely, when the
price goes up, pessimistic noise traders are likely to move into the optimistic
group and inversely, when the price goes down, optimists tend to change their
mood to the pessimistic one. Price changes also affect the length of pf−p interval,
specifying the strength of fundamentalists’ beliefs, or alternatively the chartists’
force. In turn, the changes mentioned above affect the size of the excess demand
and, consequently, the price, and the circle closes.

As for the fundamental price, to eliminate the possibility that some of the
stylized facts result from exogenous factors, Lux and Marchesi assumed that the
fundamental price pf follows an exponential Brownian motion (Ross, 2014), i.e.,
its logarithm follows a Brownian motion, ln pf (t) − ln pf (t− 1) = εt, where εt ∼
N (0, σε) and N denotes a Gaussian distribution.

Some additional assumptions

To ensure a Poisson type dynamics with asynchronous investors’ strategies and
opinions updating in the model, one has to make some additional assumptions.
For instance, in order to prevent artificial synchronizations during the simulation,
appropriately small increments of time should be chosen7. Similarly, to prevent
the system from falling into “absorbing state”, i.e., either nc = 0, nf = N , or
nc = N, nf = 0, some bounds for the minimal/maximal number of chartists and
fundamentalists should be set (cf. Sec. 5.2.2 from the next chapter).

4.4.2 Results

Volatility clustering, power-law distributions of returns, or the long-term autocor-
relation of absolute returns are the real-market characteristics covered by the LM

6Actually, one obtains dp/ dt
p = β · ED.

7For more information see Samanidou et al. (2007) and refs. therein.
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Figure 4.4: Returns (on the top) and the corresponding ratio of chartists on the
market (at the bottom) in an example simulation of the LM model. The mutual
dependence of these two is clearly visible. Taken from Samanidou et al. (2007).

model. Strong interconnection between the chartists number and the amplitude
of price changes in the model (cf. Fig. 4.4) indicates that they are actually re-
sponsible for large fluctuations on the market (cf. a similar influence of portfolio
insurers on the market in the Kim–Markowitz model, Sec. 4.2).

It is noteworthy that the LM model has a feature of self-stability, since the
number of noise traders self-reduces after a period of large fluctuations. This is
a result of frequent transitions to the fundamentalist group in such conditions, as
their potential profits are high then.

The Lux–Marchesi model was thoroughly investigated by a number of re-
searchers in a large number of publications, proving its usefulness and capabilities
(cf. Samanidou et al. (2007) and refs. therein). Although the model is indeed
comprehensive and able to reproduce or even explain many real-market charac-
teristics, the large number of independent parameters used by the authors remains
its major disadvantage in further studies.
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4.5 The Cont–Bouchaud percolation model8

In contrast to the previous model by Lux and Marchesi, the one presented next
is rather simple and has a small number of free parameters. The main concept
used in the Cont–Bouchaud (CB) model (Cont and Bouchaud, 2000a) is the per-
colation phenomenon known from physics, chemistry, material science, and also
mathematics. Recently, percolation models have been widely used in econophys-
ical financial-market modeling (Stauffer, 2001), however, percolation theory was
created to explain a chemical phenomenon of polymer gelation, occuring, e.g.,
when an egg is cooked (Flory, 1941). The father of the theory was the 1974 Nobel
laureate in chemistry Paul Flory. Thereafter the theory was applied in many dif-
ferent issues, from strictly technical ones, such as coal-dust filters (Broadbent and
Hammersley, 1957) to extremely abstract ones, such as the origin of life (Kauff-
man, 1993).

In the percolation-model approach, we consider a large lattice with each of the
sites either occupied with some probability, p, or empty, with probability 1 − p.
Each group of occupied neighbors in the lattice form a cluster. The mass of a
cluster, s, is defined as the number of occupied sites which belong to it. If the
mass of a cluster increases with a positive power with the lattice size, we call it an
infinite cluster. As the probability p increases, at some level pc between 0 and 1
the first infinite cluster appears. For a large lattice that is isotropic enough, when
p > pc, there is exactly one infinite cluster, filling the fraction p∞ of this lattice,
while for p < pc the infinite cluster does not appear. For p = pc, an incipience
of the infinite cluster in the form of a fractal occurs. When p falls, approaching
to pc value from above, the fraction p∞ disappears proportionally to (p − pc)

β,
where the critical exponent β (0 < β < 1) is increasing with the dimension d of
the lattice.

Taking into account the percolation model methodology, Cont and Bouchaud
considered the lattices9 (or markets) where each occupied site represents the
trader, while the clusters represent groups of traders who make collective de-
cisions. At each time step t, a cluster trades with the probability 2a, otherwise it
sleeps with the probability 1−2a. The trading can be either buying or selling (usu-
ally each case with the probability a), where the amount of trade is proportional
to the size s of a cluster. The market price p is proportional to the exponential
function of the difference between the overall supply and demand on the market.

8Based on Samanidou et al. (2007).
9In further studies, the assumed dimension d of the lattice were between 2 and 7, cf. Stauffer

(2001).
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Figure 4.5: The averaged distribution of price changes in the Cont–Bouchaud
model for simulations with 301 × 301 square lattice (black pluses). The dashed
curve is the Student-t distribution (see de Souza and Tsallis (1997)). The cut-off
for large values of price change results from the finite size effect. Taken from
Samanidou et al. (2007).

As for the concentration value p, it can be constant, varying between 0 and 1, or
between 0 and pc.

The model in practice generates either a power-law or Gaussian-tailed distri-
butions of price changes, depending on whether the activity parameter a is small
or close to the largest possible value 1/2, respectively. The exponent of the afore-
mentioned power-law for d = 2 or 3 (which seems to be a realistic case) is, for
the cumulative distribution, close to desired three (cf. Fig. 4.5). Other stylized
facts that CB model and its modifications reproduce are, i.a., volatility clustering,
positive trading volume and returns correlations, asymmetry between the sharp
peaks of price and its flat valleys, and oscillations of price close to logperiodic
ones10. The model was successfully applied in the studies on triple correlations
between the Tokyo, Frankfurt and New York markets (Schulze, 2002) as well as
on the effects of a small Tobin tax on all transactions (Ehrenstein, 2002).

10See Stauffer (2001) for more details. For the information about logperiodicity on financial
markets see, e.g., Drożdż et al. (2003).
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The approach by Cont and Bouchaud11, i.e., to take a physical model (in this
case the percolation model) and reuse it for a certain economic issue by making
some reinterpretation of its quantities, is widely used in econophysics, as opposed
to the classical economic approach, where in creating a model we start with strictly
economic, real-life basis and assumptions. Nevertheless, although the CB model
and its further improvements provide many interesting results resembling some
of the empirical ones, these results are mostly obtained by making very specific
assumptions. This calls into question the utility of the model and its potential to
provide an explanation of empirical findings that is “independent of microscopic
details”, as Stanley et al. (1996b) postulate in their econophysics manifesto (cf.
Samanidou et al. (2007)).

4.6 The Iori model

4.6.1 Ising-based network models – introduction12

The Ising model, commonly used in varied branches of physics over the last cen-
tury, was introduced by the German physicist, Wilhelm Lenz, in 1920, as a model
of ferromagnetism, and named after his student Ernst Ising who solved it for the
one-dimensional case (Ising, 1925). The Norwegian-born American physicist and
chemist, Lars Onsager, found the analytical two-dimensional solution in zero field
(Onsager, 1944). Higher-dimensional cases, and also the case of nonzero field in
two dimensions are still unsolved analytically, yet we have certain numerical meth-
ods to make some approximate calculations (cf. Münkel et al. (1993)). The model
is, basically, some finite number of elements with some finite number of possible
states interacting with each other. In the original version these elements were
magnetic moments, or spins. Spins are arranged in a kind of graph, or network,
with links between some of them.

In the basic version of the Ising model only two possible states of each spin
are assumed, denoted by +1 or −1 (for ferromagnetic material they represent one
of the two possible directions in the material that the single spin can point in,
e.g., “up” or “down”). Spins only interact with their nearest neighbors that have
a tendency to self-arrangement, i.e., to form a structure where all of them are
point in the same direction. On the other hand, they are also punched out of this
state, due to the nonzero temperature of the crystal. This tension between the

11The conclusions in this paragraph are written on the basis of Samanidou et al. (2007).
12With the help of Sornette (2014).
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ordering and disordering forces in the model yields a nontrivial system behavior,
with phase transition and bifurcation for two or more dimensions.

Incidentally, if the network is not regular, but node degrees vary according
to some given distribution, the usual coordination number of the network has to
be replaced by the mean coordination number to maintain the results mentioned
above. The derivation of the result remains the same; however, the critical tem-
perature changes. This approach is called the mean field approximation (Weiss,
1907). If we want the results to be more precise, we can extend this view by mak-
ing some small amendments13. In this way, the Ising model on a regular network
can be replaced by a model with an irregular network.

Aside from the physics of magnetic materials, the applications of the Ising
model and its generalizations in physics of ill-condensed matter (Mézard et al.,
1987) and neurobiology (Hopfield, 1982) are well-known. The application of Ising-
based models in social science was initiated by the German physicist, Wolfgang
Weidlich (Weidlich, 1971). His pioneering work started the development of quan-
titative sociology in the 1970s.

In its socioeconomic version, the Ising model describes, in a simple way, the
competition between the ordering social interactions and the disordering individ-
ual conclusions, opinions and emotions of each separate unit. The link between
physical and socioeconomical modeling is constituted here by economic discrete
choice models (Bierlaire, 1998). Discrete choice models consider entities making
decisions by choosing between a set of alternatives (e.g., between two political
parties to vote for or some financial assets to buy or sell). Combining this ap-
proach with the Ising model, we obtain a model where each spin represents a
single entity: an investor, a voter, a company, etc. and his/her current state (or
alternatively the change of this state, see Chapter 5) is somehow related with the
decision he actually makes.

Furthermore, some psychological justification for socioeconomical reinterpre-
tation of the Ising model, with respect to microscopic interactions, is provided
by the information integration theory (IIT) of Anderson (1962). The theory de-
termines how the information from multiple sources influences the final decision
of a given entity and constitutes some alternative for the traditional economic
approach based on a concept of utility maximization, as it allows the decisions
of the entity to be irrational, unlike in the traditional approach, which assumes
fully rational behavior. This quality is suitable for the behavior of investors on a
financial market as they frequently act in conditions of stress and with the neces-

13See also Aleksiejuk et al. (2002); Dorogovtsev et al. (2002, 2008) for information about the
dependence between assumed network topology and the Ising model results.
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sity of making a quick decision, which is certainly not favorable for any rational
movements.

In the spirit of IIT, the states of the neighbors of a given spin in the Ising
model influence its current state in the same way as the investor’s final decision
is a derivative of his colleagues’ advice (related somehow to their own investment
decisions; cf. Anderson and Shanteau (1970)). In the Ising model, the influence of
others on a given spin is additive, due to the cumulative character of the energy,
and this is actually also the basic case considered in the theory of information
integration, that is, if we denote the jth stimulus by sj and its importance (a
weight) by wj, the overall response R (that can be used then for making a decision)
is given by14

R = C +
∑
j

wjsj, (4.15)

where C is a constant that stands for a response-bias. Moreover, the concept of
weighting information deriving from different sources (as, e.g., less or more reliable
or important for the entity) present in the IIT is also used by econophysicists in
their financial Ising-like models (Zhou and Sornette, 2007; Lipski and Kutner,
2013).

The above presented analogy between the Ising model and the financial mar-
kets is quite obvious and produces behavior such as spontaneous symmetry break-
ing or phase transitions in the artificial social systems under consideration, to-
gether with a great number of statistical physics methods that one can adapt15.

4.6.2 The model assumptions and results16

The first Ising-based market model presented here is the Iori model, which is
well-known in econophysics (Iori, 1999). In the model we consider a square lattice
L × L, where each node i = 1, . . . , L2 stands for an agent, or investor (cf. the
lattice of traders in the Cont–Bouchaud model, Sec. 4.5). The links between
the nodes are the social (business) links between investors. Each agent interacts
only with its four nearest neighbors on the lattice, wherein periodical boundary
conditions apply (the agents at the upper edge of the lattice influence those at
the lower edge, and similarly for the left and the right edge). In other words, the
interaction matrix in the model has a torus-like topology.

14Compare with Eqs. (4.17), (4.26), and (5.1).
15For more information about financial application of the Ising model see, e.g., Dvořák (2012);

Sornette (2014).
16Based on Iori (1999); Denys (2011).
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At the beginning of the simulation, every agent has the same initial capital,
consisting of two values: the cash Mi(0) and Ni(0) stock units. At each time
step t a given agent, i, undertakes one of three possible actions, represented by a
three-state spin variable Si(t): buying one unit of the stock (Si(t) = +1), selling
it (−1) or remaining inactive (0). The decision the agent makes is limited by his
capital (i.e., the agent may not be able to buy or sell stock because of a lack of
cash or stocks in his portfolio) and by a condition that he can buy or sell only
one unit of stock in each time step.

Aside from the traders, the role of market maker also features in the model.
Its job is the execution of orders and price adjustment. The market maker also
starts the trading with an initial amount of money and stocks, varying in time and
limiting its transaction capabilities, although its investment decision at a given
time step t is not limited to one unit of stock, as with other investors.

Decision-making by agents

Each agent, i, makes its decision at time step t basing on three factors:

1. The aggregated opinion of its four nearest neighbors interacting with it,
where each component is represented by the term Sj(t̃) (j is the number
of agents with whom the ith agent interacts). Variable t̃ means the time
between the beginning and the end of a given time period t, in other words
the presence of the variable t̃ tells us that changes occur instantaneously,
one after another, not all at the end of the time period t.

2. Its own individual opinion about market conditions, represented by factor
νi(t), which is a stochastic variable from the uniform distribution on the
interval [−1, 1].

3. The overall signal ε(t), which is the same for all agents, representing exoge-
nous market information and analogous to an external field in the classical
version of the Ising model.

Thus, the decision making formula is:

Si(t̃) = 1 if Yi(t̃) > ξi(t),
Si(t̃) = 0 if −ξi(t) < Yi(t̃) < ξi(t),
Si(t̃) = −1 if Yi(t̃) 6 −ξi(t),

(4.16)
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where ξi(t) is the activation threshold, specific for each agent i, and Yi(t̃) is an
aggregated signal for this agent, given by

Yi(t̃) =
∑
〈i,j〉

JijSj(t̃) + Aνi(t) +Bε(t). (4.17)

In the above formula Jij is an interaction matrix (specifying the influence of the
jth neighbor’s decision Sj on the ith agent; 〈i, j〉 means that the sum is made
over the nearest neighbors), while coefficients A and B measure the strength of
the agent’s individual opinion and the exogenous information, respectively (cf.
Eqs. (5.1) and (5.2) from the next chapter).

The activation threshold ξi(t) forms a kind of trading friction, and can be
interpreted, e.g., as some transaction cost (in a broad sense). The signal Yi(t̃) has
to exceed this threshold if the agent trades. Values ξi(t) are initiated by random
variables from the Gaussian distribution, with the standard deviation σξ(0) and
the mean equal to 0. From one trading period to another these values evolve for
each agent proportionally to the stock price movements. The author of the model
assumed that the interaction matrix is symmetrical.

The volume and the price

When the process of decision making comes to an end, the traders together with
the market maker submit their orders and trading at a single price takes place.
The market maker looks at the aggregated demand, D(t), and supply, Z(t), for
stocks at time t,

D(t) =
∑

i:Si(t)>0

Si(t), Z(t) = −
∑

i:Si(t)<0

Si(t), (4.18)

together with the volume V (t) = Z(t) + D(t), and then adjusts the price P
according to the formula

P (t+ 1) = P (t)

(
D(t)

Z(t)

)α
, (4.19)

where
α = a

V (t)

L2
, (4.20)

with some proportionality coefficient a and L2 being the number of agents and,
simultaneously, the maximal number of stocks that could be traded at each time
step.



4.7. THE BORNHOLDT SPIN MODEL 75

The logarithmic return r(t) and the market volatility σ(t) are defined as fol-
lows:

r(t) = ln
P (t+ 1)

P (t)
, σ(t) = |r(t)|. (4.21)

The influence of the price change on the threshold value in the subsequent time
step is assumed as

ξi(t+ 1) =
P (t+ 1)

P (t)
ξi(t). (4.22)

Evidently, full symmetry between buying and selling activity is preserved.

Results

The author of the model reproduced the main stylized facts gathered from real fi-
nancial markets, as volatility clustering of returns and positive correlation between
volatility and trading volume (cf. Fig. 4.6), the power-law decay of autocorrelation
function of volatility (i.e., the absolute returns), or fat-tailed return statistics. We
must, however, note that these results were achieved for specific parameters of
the simulation only.

4.7 The Bornholdt spin model17

The Bornholdt model was presented for the first time in Bornholdt (2001), and
then developed in Kaizoji et al. (2002). The model is useful to describe the price
changes of an asset in short intervals, e.g., during a single day.

4.7.1 Market participants in the model

Fundamentalists

Similarly as in the Kim–Markowitz (Sec. 4.2) and Lux–Marchesi (Sec. 4.4) mod-
els, in the Bornholdt model there are two types of market participant (or agent),
namely, we considerm fundamentalists and n interacting traders (or noise traders).
Fundamentalists only respond to price changes. They know the fundamental value
of stock, p∗(t), and if the actual price, p(t), is below that value, they buy stocks,
regarding them as undervalued. In the opposite case, i.e., if p(t) > p∗(t), the

17Based on Kaizoji et al. (2002); Denys (2011).
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Figure 4.6: Returns and trading volume from the Iori model simulation. A corre-
lation between both can be clearly seen. Taken from Iori (1999).

fundamentalists sell stocks as overvalued and therefore risky assets. Thus, their
collective buy/sell order is given by

xF (t) = am(ln p∗(t)− ln p(t)), (4.23)

where factor a determines the strength of the fundamentalists’ reaction to a given
interval between the fundamental and the market price of an asset.

Interacting traders

With regard to the interacting traders, each of them, i, is assigned to the spin
variable si, i = 1, . . . , n. The spin variable can take one of two values, depending
on whether the trader buys (si = +1) or sells (−1) the stock at the moment.

We consider the following strategy of the ith agent:

si(t+ 1) = +1 with probability p = 1
1+exp(−2βhi(t))

or
si(t+ 1) = −1 with probability 1− p, (4.24)

where hi(t) is the local field of the spin model, specifying the strategy of ith trader,
while parameter β is an analog of an inverse temperature.
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The decision that an interacting trader makes depends on two crucial fac-
tors: (i) the local and (ii) the global information. The local information is consti-
tuted by the behavior of the neighboring (i.e., acquaintance) agents. We assume
that each trader is influenced only by its nearest neighbors in an accordingly
defined neighborhood. On the other hand, the global information depends on
whether the trader belongs to themajority, or theminority group of buyers/sellers
at a given time step, and on the size of those groups. The asymmetry in the size
of the majority and minority groups is defined by an absolute value of the mag-
netization, |M(t)|, where

M(t) =
1

n

n∑
i=1

si(t). (4.25)

Obviously, the purpose of interacting traders is to increase their capital by
trading. They know that if they want to do this, they have to be in the majority
group, though this is not sufficient for an enlargement of the majority group in
the next period. On the other hand, traders in the majority group expect that
the larger the value |M(t)| is, the harder the further enlargement of this group
will be. Because of this, interacting traders from the majority group move to
the minority group from time to time, to avoid capital loss after a market crash,
which is more likely when the majority group is large. In other words, the larger
the majority group is, the more traders from that group tend to avoid risk. On
top of that, the traders from the minority group can also move to the majority
group in order to increase their capital, and the larger the majority group is, the
more likely they are to take this risk.

To sum up, the larger the value |M(t)| is, the larger the probability for inter-
acting traders to change the group is, regardless of whether it is the majority or
the minority group. In accordance with Bornholdt (2001), the local field hi(t),
taking into account the interactions depicted above, can be given by

hi(t) =
m∑
j=1

JijSj(t)− αSj(t)|M(t)|, (4.26)

where α > 0. The first term corresponds to local information, with the nearest
neighbors’ influence Jij = J , and Jij = 0 for other couples.

In the model we assume that excessive demand for stocks for interacting traders
can be approximated according to the formula

xI(t) = bnM(t), (4.27)

where b is the number of stocks the agent buys or sells at each time step.
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4.7.2 Market price and volume. Results.

The authors of the model assumed the existence of a clearing system on the mar-
ket, i.e., there are market makers participating in the market game and adjusting
the market price to their clearing value. The transaction is made when a certain
buy order and a certain sell order equalize. Therefore, the equality of supply and
demand can be written as

xF (t) + xI(t) = am[ln p∗(t)− ln p(t)] + bnM(t) = 0. (4.28)

Hence, we can calculate the stock price:

ln p(t) = ln p∗(t) + λM(t), λ =
bn

am
, (4.29)

and the volume:
V (t) = bn

1 + |M(t)|
2

. (4.30)

According to Eq. (4.29) the situation of the market may be one of the following:

• If M(t) = 0, the market price p(t) is equal to the fundamental value p∗(t).

• If M(t) > 0, the market price p(t) exceeds the fundamental value p∗(t) (a
bull market case).

• If M(t) < 0, the market price p(t) is below the fundamental value p∗(t) (a
bear market case).

Using Eq. (4.29) we can also calculate the logarithmic rate of return, r(t), in the
Bornholdt model:

r(t) = ln p(t)− ln p(t− 1) = (ln p∗(t)− ln p∗(t− 1)) +λ(M(t)−M(t− 1)). (4.31)

Let us assume that only fundamentalists participate in the market game. Ob-
viously, the market price p(t) then is always equal to the fundamental price p∗(t),
and therefore the efficient-market hypothesis works18. The efficient market model
by Malkiel and Fama (1970) predicts then that the fundamental value p∗(t) follows
a random walk. Since the continuous limit of a random walk is the Wiener pro-
cess, the probability density of the logarithmic return r(t) = ln p(t) − ln p(t − 1)
is represented by a Gaussian distribution. Unfortunately, in real markets we

18According to the efficient market hypothesis, the value of a given asset in each moment fully
reflects all available associated information, cf. Fama (1970).
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observe significant deviations from this distribution. The Bornholdt model, how-
ever, anticipates these deviations, due to the existence of both fundamentalists
and interacting traders on the market. Thus in this model, interacting traders are
responsible for the non-Gaussian behavior of the market, including the possibility
of bull or bear markets occurring. Incidentally, the authors of the model assumed
for simplicity that the fundamental price is constant in time.

The Bornholdt model reproduces many major real-market stylized facts, e.g.,
power-law return distributions, volatility clustering (cf. Fig. 4.7), a positive cor-
relation between volatility and volume, and self-similarity between volatilities on
various time scales. However, the shape of the absolute-return autocorrelaton
function is not a desired power law.

4.8 The Gontis et al. model of interevent times19

Although the models circumscribed above are all interesting and valuable for
investigating the properties of financial markets, none of them was used to model
the interevent-time statistics, presented in Chapter 1 and then carefully examined
in Part I of the present thesis. In 2014 for this purpose we used our agent-
based model (Denys et al. (2014); see Sec. 5.3.3 in the next chapter for details)
and it was, to the best of our knowledge, the first successful attempt in this
regard. However, then also Gontis et al. (2016) presented that their model (Gontis
and Kononovicius, 2014) reproduces the stylized fact of universal interevent-time
distribution on the markets. This section presents their approach as another
possible agent-based description of this universality.

4.8.1 The model description

The aim of Gontis and his collaborators was to create a model capable of repro-
ducing financial-market stylized facts, in particular the characteristics of volatility.
The authors defined volatility as an absolute-return fluctuation in a given time
scale. The model is substantially a composition of two concepts: (i) the ARCH-like
model approach, and (ii) the agent-based modeling approach.

A logarithmic return rδ(t) in the model is given by

rδ(t) = σ(t)ω(t), (4.32)

19Based on Gontis et al. (2016).
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Figure 4.7: On the top: logarithmic returns in the Bornholdt model. In the
middle: the corresponding magnetization M(t). On the bottom: for the purposes
of comparison, daily logreturns for DJI between 1896 and 1996. Taken from
Kaizoji et al. (2002).
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where ω(t) stands for an exogenous noise, assumed for simplicity as Gaussian,
while σ(t) is an (endogenous) volatility, derived from the underlying agent-based
model, i.e.,

σ(t) = b0(1 + a0|p(t)|), (4.33)

where p(t) is a logarithmic ratio between the market price P (t) and the funda-
mental value Pf from the ABM, a0 is an endogenous dynamics impact factor, and
b0 stands for the normalization.

The agent-based model used by the authors is a three-state model, where the
state value, namely f, o, or p, stands for the trading strategy of each agent, i.e.,
fundamental, optimistic, and pessimistic, respectively. Fundamental traders, as
usual, look at the fundamental value, Pf , and assume that the actual price will
be equal to it. Optimistic and pessimistic traders are those who always buy or
sell stocks, respectively. Together, they form a group of chartists with the chartist
strategy (denoted by c)20. In other words,

EDf = nf [lnPf − lnP (t)], EDc = r0(no − np) = r0ncξ, (4.34)

where EDf and EDc are excess demands for fundamentalists and chartists, re-
spectively (cf. Sec. 4.4.1), ni is the number of participants in market group i, r0 is
some impact coefficient for chartists, while ξ = no−np

nc
is the average market mood.

Hence, we obtain

p(t) = ln
P (t)

Pf
= r0

nc
nf
ξ = r0

1− nf
nf

ξ. (4.35)

The transitions from the i to j trading group are made according to transition
probabilities,

µij = σij + hijnj, (4.36)

where hij measures the influence of peers, while σij is an “individual” part. In
the simplified version of the model there is no distinction between optimistic and
pessimistic chartists, i.e., σop = σpo = σcc and σpf = σof = σcf . We assume that
the chartists exchange with themselves with a frequency H times larger than the
one for the fundamentalists, i.e., hop = Hhfc = Hh, and fundamentalists do not
distinguish between optimistic and pessimistic chartists, i.e., σfp = σfo = σfc/2
and hfp = hfo = h. Additionally, the authors assumed that H � 1, σcc �
σcf , and σcc � σfc to incorporate the long-term vs. short-term strategies of the
fundamentalists vs. chartists, respectively.

20Compare with some similar investor groups from Secs. 4.2, 4.4, and 4.7.
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Using the assumptions above, one can describe the behavior of the system
with the following stochastic differential equations:

dnf =
(1− nf )εcf − nfεfc

τ(nf )
dts +

√
2nf (1− nf )

τ(nf )
dWf , (4.37a)

dξ = −2Hεccξ

τ(nf )
dts +

√
2H(1− ξ2)

τ(nf )
dWξ, (4.37b)

where we used the scaled parameters εcf = σcf/h, εfc = σfc/h, εcc = σcc/(Hh),
and ts = ht, the interevent time τ(nf ) and the (independent) Wiener processes
Wf ,Wξ. The interevent time is assumed as

τ(nf ) =

(
1 + aτ

∣∣∣∣1− nfnf

∣∣∣∣)−α , (4.38)

where aτ and α are certain parameters.
The whole model, defined by Eqs. (4.32), (4.33), (4.35), (4.37a-b) and (4.38),

is similar to the nonlinear stochastic GARCH(1,1) model (Bollerslev, 1986); how-
ever, using ABM instead of a stochastic model provides a better connection be-
tween the model parameters and the real-world market parameters. Addition-
ally, the authors introduced some extensions to the above picture, linking en-
dogenous and exogenous changes (e.g., the signs of chartist-mood change and
exogenous noise ω) to better reproduce some stylized facts. Moreover, param-
eter b0 was changing day by day, according to the empirical daily pattern, i.e.,
b0(t) = b0 exp [−(t mod 1− 0.5)2/w2] + 0.5, where w specifies the amplitude of
b0 changes.

4.8.2 Results

Aside from reconstructing the main stylized facts of power-law market-return
statistics and spectral density on varied time scales from minutes to days (cf.
Gontis and Kononovicius (2014); Gontis et al. (2016)), the authors also claim
to reproduce the shape of the interevent-time statistics on NYSE and Forex for
various values of the threshold parameter q and various time scales (cf. Fig. 4.8).
Apart from the unconditional distributions, the conditional ones are also covered
by the model (cf. Gontis et al. (2016)).

The work by Gontis and his collaborators is an original attempt to reconstruct
interevent-time market statistics. Nonetheless, in their study the authors used a
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Figure 4.8: Comparison of the theoretical (derived from the Gontis model, black
solid lines) and empirical interevent-time distributions for intra-day (upper four
plots), daily (the middle ones) and monthly (the bottom ones) normalized returns
for NYSE stocks (blue circles) and Forex USD/EUR quotes (red pluses) and for
different values of the threshold parameter q written in the heading of each plot.
The returns are measured in units of their standard deviation (specific for a given
asset). The last plot, (d) in the bottom set for the monthly returns, presents
the comparison of four theoretical (model) statistics for q = 1.5, 2.0, 3.0, 5.0. For
such a large a time scale, the distribution of returns approaches to an exponential
function (cf. Fig. 3.4(a) in Chapter 3). Taken from Gontis et al. (2016).
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scaled statistics that is supposed to be universal, independent of the threshold
value, q (Yamasaki et al., 2005). Such an approach seems to be controversial,
since the mean value of the interevent time, used therein as a scaling factor, may
not exist at all (cf. Eqs. (3.23) and (3.24) in Chapter 3 together with the discussion
therein). Actually, it can be understood directly from the paper, as the obtained
statistics of interevent times has a power-law tail with slope 3/2. For such an
exponent, neither the mean nor the higher moments exist (cf. Eqs. (3.16), (3.23),
and (3.24) in the previous chapter), which calls into question the appropriateness
of the method used.

Therefore the approach that we used in this matter in Denys et al. (2016a,b)
(see Chapter 3 of the present thesis), namely analysing the mean quantile in-
terevent time RQ instead of the ordinary momentum mean and also the distinction
between the interevent-time statistics with disparate values of RQ, seems to be
appropriate and more coherent than the approach outlined in this section. When
examining the usefulness of our agent-based model for reproducing interevent-
time statistics (see Denys et al. (2014) and Sec. 5.3.3 with Fig. 5.12 in the next
chapter) it is crucial that we do not rescale it, and thus allow the possibility of an
infinite mean or higher moments of the underlying return statistics.

4.9 Discussion

In the present chapter some selected agent-based models of financial markets were
discussed. Starting from the pioneering models of Kim and Markowitz (1989);
Levy et al. (1994) and the even more well-known works of Lux and Marchesi
(1999); Cont and Bouchaud (2000a), we went on to talk about some Ising-like
econophysical models by Iori (1999); Bornholdt (2001); Kaizoji et al. (2002), to
finish on Gontis et al. (2016) work that was another attempt, after Denys et al.
(2014), to reproduce interevent-time distribution by ABM. The purpose of the
review made in this chapter was to familiarize the readers with the idea of agent-
based modeling in finance and to prepare them for reading the next chapter (5),
dedicated to our agent-based model proposed in Denys et al. (2013).

All the authors of the presented models aimed to reproduce some character-
istics of financial markets. Frequently they divided the model investors into two
basic groups, the first which stabilizes the market (rebalancers or fundamentalists)
and the second which destabilizes it (portfolio insurers, noise traders, interacting
traders, or chartists ; cf. Secs. 4.2, 4.4, 4.7, and 4.8). The latter group is usually
indicated as the cause of fat-tailed distributions of returns on the markets.
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It is evident that the vast majority of main financial-market stylized facts have
already been covered by the presented models, e.g., the time series of returns with
volatility clustering and the aforementioned fat-tailed statistics, the short-range
correlation of the normal (raw) values of returns together with the long-range
correlation of their absolute values, the positive correlation between returns and
trading volume, and more.

These results are quite promising, however, a model capable of describing,
at least superficially, the whole market and enabling some straightforward predic-
tions, in the way that Einstein’s relativity theory predicted the motion of Mercury,
still does not exist. What is worse, it might never be created, when we consider
the nature of the market, in particular its derivation from human beings, with all
their complex mental structure, the cultural and social interactions between them
and, moreover, the variety of possible forms of the market as such, which is only
limited by the limits of human creativity. In this regard, the market is not a sin-
gle concept, but rather a collective term, with only few permanent features, and
a multiplicity of possible alterations. However, one should always bear in mind
how many “impossibilities” from the past are possible nowadays, just to mention
airplanes and spaceflights. As someone once said, only those who attempt the
absurd will achieve the impossible.

Furthermore, in this chapter I mentioned and have shown, at least roughly,
the difference between economic and econophysical ABMs. Generally speaking,
economists start from more actual, economic foundations to finish with economic
results and conclusions, while econophysicists, in contrast, rather take a physical
model (as the percolation model in the case of Cont–Bouchaud work from Sec. 4.5)
and, by drawing certain analogies and reinterpreting some quantities, convert it to
a model of economic reality. Furthermore, a general tendency among physicists,
as opposed to economists, is that they create models to be as simple as possible,
usually using fewer variables, but also neglecting some factors they consider less
important. In other words, economic models are often closer to reality but farther
from understanding, while the econophysical ones – inversely.

Both philosophies seem to have their advantages and disadvantages. Economic
concreteness and accuracy may be useful, but may also lead to the situation where
the model becomes too complicated, due to the large number of parameters it uses;
there is also a well-known fact that the more parameters we have, the easier the
fit to the empirical data is, even if the model itself does not correspond to reality.
On the other hand, econophysical models, although usually simpler and more
transparent, may not correspond to reality either, as they are built on analogies
with the physical world that, actually, might be incomplete and sometimes simply
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naive. Therefore both economists and physicists have to be very careful developing
their models, because it is easy to create something that, although it reproduces
the empirical findings, in fact misses the reality.

Despite all the critical comments above, as was shown with the example of
the works of Kim–Markowitz, Cont–Bouchaud, or Lux–Marchesi, agent-based
financial-market modeling can tell us a lot about the real causes of some ob-
served market data properties. The main reasons for this applicability are (i)
their nature, i.e., being a complex system in silico, and (ii) a closer relation of
their parameters to real-world scenarios and real human behavior, as compared
to pure stochastic models (Gontis et al., 2016). The former property is all the
more important since many properties of complex systems, not excluding finan-
cial markets, are considered to come from so-called emergent phenomena, such
as when a system of individuals behaves differently than it would if the behavior
resulted from the simple addition of the behavior of each individual21.

∗ ∗ ∗

After the summary of agent-based models of financial markets made in this
chapter, in the next chapter (5), the model that we proposed in 2013, and success-
fully examined for reproducing interevent-time statistics a year later, is presented.

21For more information see, e.g., Kwapień and Drożdż (2012) (a holistic view of emergent
phenomena and physics) and Axelrod (1997a) or PNAS 99 suppl 3 (2002) (ABM considerations).
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The financial-market model of
cunning agents1

5.1 Introduction
As was shown in Chapter 4, agent-based modeling inspired by the Ising and Potts
models play a key role in studies on financial markets. Works based on the Potts
model and some of its modifications are significantly fruitful (Lux and Marchesi,
1999; Iori, 1999; Kaizoji et al., 2002; Sornette, 2004; Zhou and Sornette, 2007;
Denys, 2011). Although we still do not possess a convincing overall model of
financial markets and, crucially, even the causes of some market properties are
not entirely understood yet, the promising results so far have encouraged us to
make further studies.

The model presented in this chapter is based on the threshold model of fi-
nancial markets by Sieczka and Hołyst (2008). Our model is in fact essentially
a reinterpretation that aims to make it more suited for the description of real
markets. The reasons why we chose the Sieczka–Hołyst (SH) model are as follows
(cf. Denys et al. (2013)):

(i) It contains a threshold mechanism, which is well-established in psychology

(ii) It considers the interaction between agents as well as the uncertainty in their
activity caused by informational noise.

(iii) It assumes the strength of the interaction, which strongly depends on the
macroscopic state of the system.

1Based on Denys et al. (2013, 2014).
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(iv) The SH model is sensitive to concrete types of emotion which each agent sub-
ordinates during the stock market evolution (Czaplicka et al., 2010; Kwapień
and Drożdż, 2012).

Nevertheless, the SH model contains a fundamental inconsistency, namely buy-
ing (selling) the stocks by the agents does not lead to a price increase (decrease).
There is even the extreme possibility that all the agents can buy (sell) the stocks
at a given time step, but the corresponding price does not change at all. This
forced us to make our reinterpretation of the SH model.

In such an approach, the price can change if and only if the spin values are
changed. This protects the model from the paradox mentioned above. Specifically,
the investment decision in our model is defined as the change of the spin variable
of a given agent. In previous works, the spin variable was interpreted directly
as an investment decision (e.g., the purchase of a certain number of stocks) that
repeats at the successive time steps when this variable remains unchanged. The
changes of this variable, in turn, could be interpreted as the beginning another
decision being executed at the successive time steps (e.g., selling stocks). That
is, previously a communicated opinion was identified solely with the (temporary)
investment decision, not the (durable) market state of an investor (cf. Zhou and
Sornette (2007)).

The present approach (which cannot be simply reduced to the previous one)
appears to be more intuitive and reasonable, as the actual state of a spin is
here identified with the actual market state of the corresponding agent, while
the action (investment decision) is connected with the change of the state, as
expected. Actually, such a property characterizes some epidemic models where the
contagion is a change in the state of an agent, from susceptible to infected (Pastor-
Satorras and Vespignani, 2001; Moreno et al., 2002), or the models of cultural
patterns where the pattern adoption also requires a change of state (Axelrod,
1997b; Raducha and Gubiec, 2016). Nevertheless, to the best of our knowledge,
this approach is novel in the frame of Ising-based econophysical modeling (cf. Sec.
5 in Sornette (2014) and refs. therein) and therefore the investment decision
defined as the change of a spin variable, not the plain value of this
variable, constitutes the next significant contribution to the field of
knowledge presented in this thesis.

What is more, the irrational component in our model is provided by the (dis-
crete) Weierstrass–Mandelbrot noise (Kutner, 1999a) as opposed to the (contin-
uous) Gaussian one that is frequently used for this purpose (Zhou and Sornette,
2007; Sieczka and Hołyst, 2008). This allowed us to model some stronger emotions
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of agents occurring together with gentler ones. The details of our reinterpretation
and the assumptions of the model are given in Sec. 5.2.

The question arises of whether the approach sketched above allows us to re-
produce the main stylized facts from financial markets (see Chapter 1), in par-
ticular those as significant as the interevent-time statistics, carefully examined in
Chapter 3. In Sec. 5.3 it is shown that the numerical simulations of our model give
results consistent with a wide range of empirical financial-market data. Finally,
in Sec. 5.4, a summary is given.

5.2 The model description

We considerN agents (or traders) on a square lattice n×n, N = n2, represented by
a three-state spin variable si = 0,±1, i = 1, . . . , N . Most directly, si is interpreted
as the current market state of the ith agent, +1 when it has bought some stocks
(that is, it has the long position open), −1 when it has sold some stocks (that is,
it has the short position open), and 0 if it is neutral. One can also consider this
value of si as advice that the ith agent gives to its nearest neighbors at a given
time step, when they ask it whether to buy stocks or sell them. Value si = +1
is the advice to buy, si = −1 is the advice to sell, while si = 0 is simply a lack
of advice or the advice to wait or stay inactive. Taking into consideration the
above comments, one may conclude that the agents are imitating themselves, in
an affirmative sense, that is, by giving mutual examples to themselves.

On the other hand, when, for instance, ith agent advises the others to buy
stocks (si = +1), it cannot buy them by itself, as the value of its spin variable
cannot increase, but can only decrease or remain unchanged. And vice versa for
si = −1, that is, the agent who advises others to sell is only able to buy them
now or at least remain inactive. This effect ensures a negative coupling between
subsequent values of a given spin variable. However, for si = 0 the agent can
both buy or sell stocks, since it occupies a neutral position. For the reason given
above, the model was called the model of cunning agents (Denys et al., 2014).

In each time period t, we draw a spin a predetermined number of times. The
drawn spin, si(t), i = 1, 2, . . . , N , is updated according to the social impact rule

si(t) = sgnλ|M(t−1)|

[
N∑
j=1

Jijsj(t) + εi(t)

]
, (5.1)
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where

sgnq(x) =


+1 if x > q,
0 if −q 6 x < q,
−1 if x < −q.

(5.2)

and the constant λ is positive. The exchange coefficient Jij = J > 0 if j is one
of the four nearest neighbors of i and Jij = 0 otherwise, to ensure the (nonnega-
tive) nearest-neighbor interaction. The noise term εi(t) is added to include some
individual opinions or emotions of agents that accompany their decisions.

The magnetization, M(t), is given conventionally by the following average,

M(t) =
1

N

N∑
i=1

si(t), (5.3)

and indicates the overall market state.
The threshold value λ|M(t)| in Eq. (5.1) is a crucial one with regard to the

model mechanics. If the impact of neighbors plus the opinion/emotion of the ith
agent is lower than this value, the agent switches to neutral si = 0. A large value
of magnetization, corresponding to the large dominance of one of the two – short
or long – positions occupied by the agents, at fixed λ yields a large threshold
value and a high probability of switching to neutral position. In other words, the
suspicion of the agents is high in this case. This is understandable, since such a
strong imbalance on the market is rather considered as dubious and unsafe.

The spin value si is updating according to Eq. (5.1) immediately, i.e., its
neighbors “see” its new value just after it was drawn. We introduce the notion
of a round as N spin drawings, enabling each trader on average one chance to
change its state and forming a single time step. The round is an equivalent of a
1MCS/spin from dynamical Monte Carlo simulations2.

Notably, Eq. (5.1) has a completely different interpretation from all the coun-
terparts used earlier (cf., e.g., Eqs. (4.16)-(4.17), from the Iori model or (4.26)
from the Bornholdt model in the previous chapter). Namely, this formula con-
cerns the state of an agent, not its activity. Regarding the activity of an agent,
it is defined as a change of its spin, that is, di(t) = si(t) − si(t − 1) is an agent
demand for di > 0 or supply (a negative demand) for di < 0. Therefore the agent’s
activity consists of two subsequent different values of the spin variable si. The
agent declares a demand when si increases during a given round, or alternatively
offers a supply when si decreases. This change, di, can take magnitude 1 (e.g., for
a jump from 0 to −1) or 2 (for a jump from −1 to +1 or from +1 to −1), which

2Consequently, a single drawing is an equivalent of 1MCS.
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is its largest possible value and simultaneously the largest possible single-agent
supply or demand for the stocks in a single round. We assume the agent’s supply
or demand is realized at once, in the same round, and the given agent buys or
sells some stocks3.

Evidently, after the purchase or the sale, the agent becomes an advocate of
the decision it made and may encourage its neighbors to do the same. Actually, it
is also in its best interest, as the one who purchased wants the price to increase,
and this is realized when more agents buy, and vice versa in the case of a sale.
In this way the mechanism of mutual imitation works. The cycle of the agents’
activity and communication is repeated.

To sum up, the model corresponds to the real-world, where investors buy or
sell stocks imitating the past behavior of their colleagues, and the more balanced
the market situation is, the more willingly they do it.

This reinterpretation of the spin variable prevents the model market from the
paradox mentioned in Sec. 5.1, where the price does not change, although all
the agents buy (or sell) stocks. Additionally, this approach provides a desired
correlation between the return volatility and the trading volume in the model.
Another essential consequence of this approach is that the threshold slows down
both the fast increase and decrease of the price, providing a specific price damping,
which cannot itself induce a change in the trend, nor even any oscillations.

5.2.1 The noise in the model

In our simulations we predominantly used the noise from theWeierstrass–Mandelbrot
(WM) probability distribution (cf. Kutner (1999a) and refs. therein):

p(x) =

(
1− 1

K

) ∞∑
j=0

1

Kj
· 1

2
δ(|x| − b0b

j), K, b > 1, b0 > 0. (5.4)

The reasons for using this distribution are as follows:

(i) Emotions on the market are sometimes very strong; therefore the power-law
tails of WM distribution may be more useful to describe these emotions than
a simple Gaussian one.

3In a real-life situation, a purchase of a stock is always associated with the sale of another
stock of the same asset by another investor. In our model, we simplify that view, neglecting
this feature (i.e., we assume an unlimited market liquidity or consider only a part of the whole
market), similarly as in many other econophysical financial-market models – cf. Chapter 4.
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(ii) WM distribution enables the control of its variance and exponent. The
variance may take varied finite values and also be infinite; the distribution
may take both Lévy and non-Lévy forms asymptotically.

WM distribution is a discrete one, having spikes at x = ±b0b
j, j = 0, 1, 2, . . . Its

variance is given by

σ2 = b2
0

1− 1/K

1− b2/K
for b2/K < 1; (5.5)

otherwise, it is infinite.
One can easily prove that for |x| � 1/ ln b Eq. (5.4) takes the approximated

form

p(x) =
1− 1/K

lnK

bβ0
|x|1+β

, (5.6)

where β = lnK
ln b

, and the variance of the above given approximate PDF is finite
only for β > 2; otherwise, it is infinite.

Although Eq. (5.6) represents a power-law distribution, only the part of it
nonexceeding the maximal range [−(4J +λ); 4J +λ] is essential for the dynamics
of the system. Inside this range, spin value si can vary between −1, 0, and +1.
Above its right border, si can only take value +1, while below its left border it
can only take value −1. The reason for such behavior is the threshold character
of the social impact function (5.1).

5.2.2 Some additional formulas and assumptions

After Barro (1972), in ABMs we usually consider the logarithmic return, r, pro-
portional to the properly defined excess demand ED (cf. Eqs. (4.13), (4.14), and
(4.34) from Chapter 4 together with the discussion therein). In our model this
feature can be written as

rτ (t) = lnP (t)− lnP (t− τ) =
1

Λ
EDτ (t), (5.7)

where P is price,

EDτ (t) =
N∑
i=1

[si(t)− si(t− τ)] = N [M(t)−M(t− τ)], (5.8)

and τ is delayed time in units of rounds (for τ = 1 we have r1 ≡ r), while the
coefficient Λ can be interpreted as the market depth. It is worth noting that
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the excess demand EDτ (t) 6= 0 only if the state of at least one agent changes.
Naturally, the changes of states may cancel each other, leaving the excess demand
unchanged. Thus, the price P changes if and only if the magnetizationM changes,
i.e., when there is an imbalance between the overall demand and supply on the
market, as in a real-life situation.

To cope with an occasional trapping of the system into the fully ferromagnetic
state, when all agents have the same value of their spin variables, either +1 or −1
(this can be interpreted as a fully illiquid market; cf. similar problem for the Lux–
Marchesi model, at the end of Sec. 4.4.1 from the previous chapter, and Fig. 5.1
below for some illustration of this behavior), we introduced an exogenous factor
to act as a market maker. It abruptly restores the system to a paramagnetic state
with randomly oriented spins. After that, we continue the computations until the
next such reset4.

5.3 The model results and comparing them with
empirical data

5.3.1 Basic results

After Sieczka and Hołyst (2008) we set the lattice size N = 32×32 = 1024 agents
and at the beginning of the simulation we drew a random configuration of the spin
values. During the simulation, the magnetization frequently tended to fluctuate
around a fixed value (cf. inset plot in Fig. 5.2). We found this value can change
during the simulation and the magnetization jumps from one equilibrium value
to another (degeneration of the equilibrium state) with the set of possible values
clearly specified for the simulation of a particular lattice size n×n. Such behavior
is a result of the tendency of the system to fall into steady states, defined by the
symmetry of the lattice, in this case two-dimensional square symmetry. Such
steady states are quite stable, so the system can persist in each of them for a long
time (see Fig. 5.3).

For an increasing value of the threshold parameter λ, a phase transition be-
tween walk- and noise-like behavior of the magnetization evolution occurs (cf.
Fig. 5.4).

4The convergence to a fully ordered state is not a question of preponderance of one of the
fractions (−1, 0, or +1). When there is an even drawing for each of these values, there are still
many restarts. See (Pinto et al., 2014) for some other attempt to avoid such ordering behavior
in the Ising model.
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Figure 5.1: Illustration of the fast convergence of the system to a fully paramag-
netic state. From left to right, up to down: frames 1, 6, 11, 21, 201, 351, 501, 784
of the example simulation (for parameters J = 1, λ = 2, K = 5, b = 2, b0 = 0.2).
The spin values are: +1 (white), 0 (gray), and −1 (black). It can be seen that
the neutral position (spin value 0, gray) is taken by a relatively small number of
traders.

Return statistics from the model simulation reveal power-law tails for varied
values of time lag τ , as in Fig. 5.5. Because the noise, εi, is cut off by values
−(4J + λ) on the left and 4J + λ on the right (cf. Eqs. (5.1) and (5.2)), for
parameters as in Fig. 5.5 only components with j = 0, 1, 2, 3, 4 are significant
values in the sum in Eq. (5.4). For most values of τ , the distributions reveal
explicit power-law tails with the exponent close to 1 + β, where β = lnK/ ln b =
ln 5/ ln 2 = 2.322. In other words, they reproduce the statistics from Eq. (5.6),
even despite the aforementioned cut-off of the noise and the fact that the range
[−(4J+λ), 4J+λ] is narrower than its equivalent in the SH model. Only for large
values of τ does the power-law character of the statistics break down, nevertheless,
fat tails still occur, as opposed to the SH model, where the authors obtained
convergence to Gaussian tails for the largest values of τ .
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Figure 5.2: A sample magnetization run for the model simulation for parameters
J = 1, λ = 1, K = 5, b = 2, b0 = 0.2 with the abrupt transitions from the
ferromagnetic to paramagnetic state visible at the beginning (approximately the
first 10 000 time steps). Inset: the zoom for t between 20 000 and 70 000.

The autocorrelation function5 of absolute returns in the model are slowly de-
caying, and they frequently resemble an exponentially truncated power-law func-
tion (cf. Fig. 5.6), which is consistent with empirical findings (Arneodo et al.,
1998; Raberto et al., 2002; Lillo et al., 2004; Cont, 2007).

5.3.2 Empirical-data comparison

As was indicated in Sec. 5.1, the model is capable of reproducing a wide range of
empirical results. Firstly, return variograms with volatility clustering resemble the
real-market ones (Fig. 5.7). Secondly, cumulative absolute-return distributions for
stock markets of essentially different capitalizations, with varying slope of tails
are reproduced quite well by our model (by varying few driven parameters; Fig.
5.8). As presented in Fig. 5.8d, the model distributions show some nontrivial
structures for larger values of time lag τ . Fortunately, they agree quite well with
the empirical data within their attainable range. A distribution comparison for a

5Due to the fact that time in our model is discrete (measured in units of rounds), the
autocorrelation function is defined as C(x(t), x(t + ∆t)) = 〈(x(t)−µ)(x(t+∆t)−µ)〉

〈(x(t)−µ)2〉 ; µ = 〈x(t)〉.
Thus, the length of time intervals between subsequent returns is not taken into consideration,
herein.
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Figure 5.3: Illustration of the system falling to a steady state. From left to right,
up to down: frames 2954, 2959, 2989, 3259, 3849, 4549, 6049, and 9999 of the
example simulation (for the parameters J = 1, λ = 2, K = 5, b = 2, b0 = 0.2). The
white color indicates spin value +1, gray for 0, and black for −1.

Figure 5.4: Phase transition of the magnetization evolution characteristics for
parameters J = 1, K = 5, b = 2, b0 = 0.2, and λ = 2.2 (on the left) and 2.3 (on
the right).
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Figure 5.5: Numerical statistics of returns rτ (t) for J = 1, λ = 1, K = 5, b =
2, b0 = 0.2, and different τ (see the legend). For viewing purposes, the returns are
rescaled by their standard deviations and the histograms are shifted upward with
successive powers of 10. Power-law (solid line), Gaussian (denoted as normal;
dotted line) and exponential (dashed line) functions fitted to selected histograms
are shown. An exponent for the power law is 3.322 = 1 +β (see the text for more
details).

full range of the return values (i.e., positive and negative) is shown in Fig. 5.9. It
is evident that our model reproduces both the absolute and usual market-return
statistics.

Also, the behavior of the returns’ autocorrelation function is reproduced well
within the frame of our approach. In case of raw (not absolute) returns, the
empirical autocorrelation function is usually fast decaying with only initial values
significant. For short time resolutions (i.e., for so-called tick data) for time lag τ =
1 it is expected to be negative due to the antipersistent character of the financial
time series on short time scales, related to the bid-ask bounce effect (Arneodo
et al., 1998; Cont, 2001; Gubiec and Kutner, 2010; Preis, 2011). Substantially,
this behavior characterizes the autocorrelation function from our model shown in
Fig. 5.10.
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Figure 5.6: The autocorrelation function of absolute returns for J = 1, λ = 1, K =
5, b = 2, b0 = 0.21 on log-log and (inset) lin-log scale (black pluses). The green
solid line is the fit of an exponentially truncated power-law function.

Figure 5.7: Returns in time for (on the left) an example run of the cunning-agents
model simulation for the parameters J = 1, λ = 1, K = 5, b = 2, b0 = 0.2, and (on
the right) PSI20 settlement prices from 24 January 2000 to 24 May 2013 (taken
from Pascoal and Monteiro (2014)).
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Figure 5.8: (a)-(c) A comparison between cumulative distributions of absolute re-
turns for the model and real-market data (matching by the trial and error method
with a fit accuracy of about 10%). The theoretical results are shown by markers
connected by segments (in red), while the empirical results are denoted by mark-
ers connected by dashed curves (in black). (a) For the American S&P500 index,
J = 1, λ = 2.2, K = 6.5, b = 2, b0 = 0.2, τ = 1. (b) For the German DAX,
J = 1, λ = 2.1, K = 6.5, b = 2, b0 = 0.2, τ = 4. (c) For the Polish WIG20, J = 1,
λ = 2.2, K = 5, b = 2, b0 = 0.25, τ = 2. The green straight lines in plots (a)-(c)
denote a power law driven by exponents equal to 4.0, 3.5, and 4.5, respectively.
(d) For instance, the model statistics for different values of τ (see the legend for
details) but for other parameters the same as in (c). Dashed single curves show
Gaussian predictions. Empirical data reprinted from Drożdż et al. (2007).
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Figure 5.9: The distribution of one-minute returns for the S&P500 index from
January 1984 to December 1989 (black empty circles and solid segments) and the
model returns r1 for 500 000 time steps, J = 1, λ = 1, K = 5, b = 2, b0 = 0.2
(red pluses and solid segments). Additionally, the solid line shows symmetrical
Lévy stable distribution, while the dotted line shows Gaussian distribution. It can
be seen that the empirical distribution is reproduced by our model in the entire
range of returns (matching was done by the trial and error method, with the fit
accuracy of about 10%). Empirical data reprinted from Mantegna et al. (1995).

Comparison of the case of the absolute-return autocorrelation function is
shown in Fig. 5.11. Evidently, the shapes of the numerical and the empirical
curve are very similar; also the slopes of the tails of both autocorrelation func-
tions agree quite well with each other. Although similar results regarding the
usual as well as the absolute-return autocorrelation function were obtained previ-
ously by other authors, I have not found the actual reproduction of either of them
by an agent-based model, which would comprise the initial significant negative
value of the first one as well as the power law until the 103 time step for the
second one, as in our model (cf. Arthur et al. (1996); Farmer (1999); Iori (1999);
Lux and Marchesi (1999); Bouchaud (2000); Giardina et al. (2001); Izumi and
Ueda (2001); Jefferies et al. (2001); LeBaron (2001); Raberto et al. (2001); Tay
and Linn (2001); Farmer and Joshi (2002); Hommes (2002); Tesfatsion (2002);
Giardina and Bouchaud (2003); Alfarano et al. (2005); Kozłowska et al. (2006);
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Figure 5.10: The autocorrelation function of returns in the cunning-agents model
for the parameters J = 1, λ = 1, K = 5, b = 2, b0 = 0.2. The dashed horizontal
line stands for ordinate zero.

LeBaron (2006); Mizuno et al. (2006); Preis et al. (2006); Cont (2007); Zhou and
Sornette (2007); Chiarella et al. (2009); Tedeschi et al. (2009); Feng et al. (2012);
Thurner et al. (2012)).

5.3.3 Interevent-times description6

As shown previously in this section, the main stylized facts from financial mar-
kets are already reproduced well by the cunning-agents model. Additionally, Fig.
5.12 shows a comparison of our model predictions with the formula (3.12) for a
distribution of the interevent times from Chapter 3. It is clear that the numerical
predictions of the cunning-agents model agree with the superstatistics model as
well as with the empirical data.

To the best of our knowledge, this comparison, presented initially
in Denys et al. (2014), was the first successful attempt at reproduc-
ing the universality discovered in Ludescher and Bunde (2014) by a
microscopic, agent-based model and, together with the successful re-
production of the empirical return autocorrelation (cf. Sec. 5.3.2), it
constitutes the next significant contribution to the field of knowledge
presented in this thesis. This description was made a year before the descrip-
tion by Gontis et al. (2016) (cf. Sec. 4.8 in the previous chapter) and it appears to

6Based on (Denys et al., 2014).
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Figure 5.11: The autocorrelation function of absolute returns for S&P500 (green
points) and of |r1(t)| from our model (red points) for J = 1, λ = 2.1, K = 6.5,
b = 2.1, and b0 = 0.2. Given that the trading day on the NYSE lasts 6.5 h, a
single time step, herein (i.e., τ = 1) calibrates as approximately 1 min. Empirical
data, including the dashed curve drawn with a rough estimation, reprinted from
Stanley et al. (2010).

also be more coherent, for we used the mean quantile interevent time RQ instead
of the ordinary momentum mean to distinguish between different thresholds of
the interevent-time statistics. Moreover, we did not rescale the statistics, taking
into account the possibility of infinite moments.

Furthermore, this is a confirmation of the correctness of both models, i.e., the
numerical agent-based model of financial markets presented in this chapter and
the analytical superstatistics model of the interevent times presented in Chapter 3,
or at least evidence of their mutual agreement.

5.4 Summary

The present chapter concerned an agent-based model of financial markets based
on the Potts model known from statistical physics. The model is in fact a reinter-
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Figure 5.12: Superstatistics, ψQ(∆Qt), vs. interevent time, ∆Qt, in log-log scale
for example simulation data from our model (full colored squares) for RQ =
2, 5, 10, 30, 70 and τ = 103 [rounds] (estimated equivalent of a single trading day),
and for the parameters J = 1, λ = 2, K = 5, b = 2, b0 = 0.2 (hence, the Pareto ex-
ponent β = lnK/ ln b > 2, cf. Eqs. (5.4) and (5.6)). The inset is plot of ψQ(∆Qt)
vs. ∆Qt in semilogarithmic scale for RQ = 2. The black solid curves are predic-
tions of our formula (3.12) with the parameters of the fits the same as in Fig.
3.5 (see Tab. 3.6), while the dashed curves are q-exponential fits. Additionally,
empty colored circles are the empirical data taken from Ludescher et al. (2011).
Matching was done by the trial and error method with the fit accuracy of about
10%. Compare with Fig. 3.5.
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pretation of the Sieczka–Hołyst threshold model of financial markets, namely, we
changed the meaning of the spin variable, leaving the mathematics unchanged.
The spin value in the reinterpretation stands for the current market state of an
agent, i.e., whether it took short or long position, or is neutral at the moment; it
does not stand for its action (buying, selling, or staying inactive) as in the original
version. As in the SH model, this value is then passed to the neighboring agents
as advice or an example that a given agent gives them. In turn, the action in
this approach is defined by a change of the spin. Thereby, we secure the model
against the paradox from the original version of the SH model, where everybody
buys stocks but the corresponding price does not change.

The approach outlined above, i.e., the spin variable being rather the
agent’s state than its action, is novel in terms of the models of market
game and constitutes an original contribution to econophysical market
modeling7. Indeed, I separated opinion and decision, which hitherto have been
generally dealt with together. In this way, I connected the concepts of opinion
and decision modeling within the model of cunning agents. Such an approach
resembles the one from some sociophysical models, where the spin frequently
stands for an agent’s opinion, which is rather a state (cf. Grabowski and Kosiński
(2006)). One may conclude that in this approach the decision is more difficult,
since it requires change of the state, and thus the model is more “passive” than
the prevailing Ising-like market models.

Furthermore, to take into account the possibility of some intense emotions
in the model, we used the Weierstrass–Mandelbrot noise in the agents’ activity,
instead of the canonical Gaussian one. We verified that, despite the presence
of a threshold in the model, the results obtained for Gaussian and Weierstrass–
Mandelbrot noises are quite different. For instance, for the WM distribution
we obtained a power-law return and absolute-return statistics for (almost) the
whole time-resolution range, while for the normal distribution the corresponding
range is significantly shorter. We presume that this difference is caused by a
dissimilarity between both noises within the maximal range of their impact (for
results presented in Sec. 5.3 it was [−(4J + λ), 4J + λ], where λ is the maximal
threshold value, and J is the strength of the nearest neighbors’ interaction). The
discreteness of the WM distribution may also affect the results somehow.

We simulated the dynamics of the agents’ activities and for the output data
obtained from these simulations we calculated some basic quantities, such as the
statistics (histograms) or autocorrelation function of both returns and absolute

7However, this approach appears to be natural and understandable, since the state of a spin
indicates the state of an investor and the action is associated with the change of this state.
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returns (Sec. 5.3.1). We compared the results of the simulations with the corre-
sponding empirical data and obtained a good agreement (Sec. 5.3.2). Particularly,
we reproduced the shape of both the usual and absolute-value autocorrelation
function, as well as the interevent-time distribution considered in this thesis. To
the best of our knowledge, the interevent-time statistics comparison
was the first successful one for an agent-based model (cf. Sec. 5.3.3),
which constitutes another original contribution to the field of knowl-
edge presented herein.

What is more, the comparison of the model predictions with the interevent-
time empirical data (cf. Fig. 5.12) was made without rescaling the relevant statis-
tics. Ipso facto we allowed a mean value of the interevent time to be infinite, which
distinguishes our approach from that used later in Gontis et al. (2016) (based on
Yamasaki et al. (2005)) and makes it better suited to market reality. The recon-
struction of varied essential stylized facts, notably autocorrelation-function shapes
and interevent-time statistics, confirms the legitimacy of our approach. On top of
this, I have not found in the literature the actual reproduction of either the usual
or absolute-value autocorrelation function by an agent-based model, comprising
the initial significant negative value of the first one (for short time scales) as well
as power-law decay until the 103 time step for the second one, which our model
provides (cf. Arthur et al. (1996); Farmer (1999); Iori (1999); Lux and Marchesi
(1999); Bouchaud (2000); Giardina et al. (2001); Izumi and Ueda (2001); Jefferies
et al. (2001); LeBaron (2001); Raberto et al. (2001); Tay and Linn (2001); Farmer
and Joshi (2002); Hommes (2002); Tesfatsion (2002); Giardina and Bouchaud
(2003); Alfarano et al. (2005); Kozłowska et al. (2006); LeBaron (2006); Mizuno
et al. (2006); Preis et al. (2006); Cont (2007); Zhou and Sornette (2007); Chiarella
et al. (2009); Tedeschi et al. (2009); Feng et al. (2012); Thurner et al. (2012)).

Extension of our approach to some more realistic topologies of the social net-
work, as well as some other noises assumed, appears to be possible. It would be
particularly interesting to incorporate order-book mechanics into the model and
to observe its influence on the results. Evidently, the model in the present version
is perfectly symmetrical, therefore breaking this symmetry would be desirable. Fi-
nally, some other modifications and generalizations of the basic version, adjusting
it to the market reality, would be appreciated as well.

Furthermore, the role of abrupt transitions in the model mechanics shall be
thoroughly considered. Some reasonable possibility to dispose of them without
losing the obtained market similarities would be welcome. Another interesting
question is how the presence of the threshold in the model, in particular the limit
for the noise influence on an agent’s state established by it, affects the shape of
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statistics and autocorrelation of returns, e.g., their exponential cut-off at their
very end. Regarding the Weierstrass–Mandelbrot noise, the interesting question
would be explaining the observed β-dependence of the results, i.a., the shape of
return statistics, and their behavior as the time scale of the returns, τ , increases.

∗ ∗ ∗

To conclude, the presentation of the numerical cunning-agents model made in
this chapter, after the essential analytical model of superstatistics presented in
Chapter 3, accomplishes the overall description of the interevent-time statistics
in the present thesis. In the next chapter (6) a number of final comments are
provided in order to summarize the whole picture presented up to this point.
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Final remarks

After a detailed description of the problem of interevent times on financial markets
and in geophysical data, the last chapter of this thesis provides a comparison of
the goal given in the introduction with the actual results presented in the body of
the thesis (Sec. 6.1). At the end, some possible further research directions related
to the problems concerned herein are sketched (Sec. 6.2).

6.1 Conclusions
The goal of the thesis, presented in Chapter 1, was to provide a consistent de-
scription of the problem of the times between excessive events, that is, extending
a positive threshold. This description had to be achieved under two complemen-
tary approaches: (i) analytical and (ii) numerical. The goal was achieved in the
manner described below.

• First, I derived an analytical, closed form for the distribution of interevent
times. My approach is founded on the extreme value theory (EVT) and the
continuous-time random walk (CTRW) valley model (Scher and Montroll,
1975; Pfister and Scher, 1978; Weiss, 2005; Schulz and Barkai, 2015), rein-
terpreted and extended for this purpose to the case of stretched-exponential
relaxation time.

• I used the bivariate Weibull distribution to consider the dependence of sub-
sequent interevent times.

• I demonstrated that both the shape exponent αQ and the relaxation time τQ
present in the final formula depend only on the threshold Q, which leads to
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the collapse observed in the empirical data. Therefore, the obtained formula
may be treated as “universal”.

• I verified that the formula describes data collapse observed for a wide range
of financial data for different assets (stocks, indices, currencies, or goods)
and time scales (minutes, hours, days, and months).

• In this way I showed that considering extreme events together with some
dependence between them is sufficient for describing the observed threshold
phenomena.

This description, presented previously in Denys et al. (2016a,b), is more ap-
propriate than the one based on the Tsallis q-exponential function given recently
in Ludescher et al. (2011), though the single-variable return distribution in the
form of a q exponential is also taken into consideration here. Our approach is rea-
sonable, as we have a complete derivation of the final formula. The derivation,
without assuming any specific form of an underlying distribution of
the returns1, together with a thorough empirical-data comparison and
some propositions for application in economics and geophysics, consti-
tutes an original contribution to the field of knowledge presented in
the first part of the thesis. Moreover, the description of geophysical data
mentioned above gives our work an interdisciplinary character.

• Secondly, using a three-state two-dimensional Potts model known from sta-
tistical physics, reinterpreted as agent-based numerical model of financial
markets.

• Spins in the model, si, are investors (“spinsons”) imitating their nearest
neighbors on a model social network by taking similar market positions,
that is, long position for si = +1, a short one for si = −1, and a neutral
state for si = 0.

• The actual investment decision is in this case the change of the spin variable,
di(t) = si(t)− si(t− 1), which is intuitively understandable.

To the best of our knowledge, such interpretation of a spin variable, as a
market state, rather than the activity of an investor, is different to the interpre-
tation assumed beforehand in financial-market ABMs (cf. Kwapień and Drożdż

1However, we used the Weibull distribution as a reference case in our further considerations,
for its bivariate forms known – cf. Sec. 3.2.2 from Chapter 3.
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(2012); Sornette (2014); Tsallis (2016)) and it constitutes the key concept of the
model. This novelty, together with the successful empirical comparisons
with the usual and absolute-value return autocorrelation2 and with
interevent-time distributions (cf. Sec. 5.3.3 in the previous chapter),
is another original contribution to the field of knowledge, presented in
the second part of the thesis.

Additionally, the comparison of the numerical results with the interevent-time
statistics confirms the consistency of both our models, i.e., the analytical one
and the numerical one (cf. Denys et al. (2014)). However, as first and higher
moments of interevent times, ∆Qt, may not exist, our approach, i.e., taking the
quantile mean RQ instead of the usual first moment as a control variable, appears
to be more relevant than the competitive, subsequent description by Gontis et al.
(2016).

In this way, both aims of the thesis were fulfilled, extending the
knowledge and understanding of stochastic processes, agent-based mod-
eling, financial markets and geophysical systems.

Incidentally, both models – the analytical and the numerical ones – are based
on the concept of a threshold value. However, in the case of the analytical model
(Chapter 3) the threshold is used as a crucial control variable, distinguishing
significant events from unimportant ones and specifying the shape of the resultant
superstatistics of interevent times. As regards the numerical case (Chapter 5), we
use a threshold at a microscopic level of agent interaction, to determine whether
its neighbors’ impact together with its own beliefs are sufficient to convince it
to buy or sell some stocks. Therefore, both thresholds, though having different
senses, are used to determine the relevance of some information that we possess,
which is typical for socio- and econophysical considerations.

2I have not found the actual reproduction of either the usual or absolute-value autocorrelation
function by an ABM with the initial significant negative value of the usual one (for short time
scales) as well as power-law decay until 103 time step for the absolute one, which are provided
by our model; cf. Arthur et al. (1996); Farmer (1999); Iori (1999); Lux and Marchesi (1999);
Bouchaud (2000); Giardina et al. (2001); Izumi and Ueda (2001); Jefferies et al. (2001); LeBaron
(2001); Raberto et al. (2001); Tay and Linn (2001); Farmer and Joshi (2002); Hommes (2002);
Tesfatsion (2002); Giardina and Bouchaud (2003); Alfarano et al. (2005); Kozłowska et al. (2006);
LeBaron (2006); Mizuno et al. (2006); Preis et al. (2006); Cont (2007); Zhou and Sornette (2007);
Chiarella et al. (2009); Tedeschi et al. (2009); Feng et al. (2012); Thurner et al. (2012).
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6.2 Future work

The work summarized above opens the way for some further studies that could
extend the present view. As for the analytical model, the observed superscaling
of the scaling exponent indicates that there may exist some additional level of
classifying relaxation processes in systems; however the deeper physical meaning
of this is still not well understood.

Moreover, we actually obtained a complete formalism for calculating the super-
statistics (cf. Eq. (3.9)), where using (i) different forms of conditional distribution
ψQ(∆Qt|ε) and (ii) the conjecture linking the relaxation time τQ(ε) and the mean
discrete interevent time RQ, required for a specific purpose, we may obtain varied
forms of the final formula, not only the one presented in this thesis, Eq. (3.12).

Substantially, our work distinguishes a whole class of potential interevent-time
models, however, there is no evidence that the model presented here is a unique
one. In other words, our work narrows the scope of possible solutions of the
problem instead of indicating the single one.

It is evident that we managed to show here not only the single-variable descrip-
tion, but also the two-variable one, by using the bivariate Weibull distribution.
The next step would be to consider some trivariate distributions, in order to de-
termine the narrowest PDF class that we could apply. Generally speaking, one
may consider the correlations between some distant interevent times; possibly in
this way we could justify the key conjecture linking the relaxation time and the
return distribution used in our model, Eq. (3.11).

The possible application of our analytical approach for simulating a value-at-
risk time series (see Sec. 3.5.1 from Chapter 3) is only a preproposal; the actual
use of our model in insurance or investment practice requires works confirming its
usefulness in some specific cases. The profit analysis that was outlined here (Sec.
3.5.2) should be extended to data of much better accuracy than the ones that we
actually used, e.g., to accurately determine the parameters of fits and examine an
equivalent of our superscaling (the scaling of scaling exponent) hypothesis for the
case of profits.

Additionally, the geophysical data fit (Sec. 3.5.3) could be better than the
one obtained; it may require reconsidering the assumptions that we made and
possibly propose a modification of the current version. Actually, since the essential
concept of the model does not indicate any specific kind of the represented data,
the possible applications to biological and physical noises, and some other kinds
of noises, appears to be feasible, but the geophysical-application case shows that
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each of them would probably require a whole separate study to adjust the specific
assumptions of the model to each particular case.

Regarding the numerical model, in addition to the remarks already made (see
Sec. 5.4 from Chapter 5), one could attempt to reconstruct the multifractal spectra
of a real-life return time series, as the model has not been analyzed in this matter
yet (cf. Grech and Czarnecki (2009)). As for analytical work, it would be a
challenge to solve the three-state Potts model used in our approach and obtain
the result in a closed form. Consequently, it might enable us to calculate the value
of the superscaling exponent ζ present in our analytical model (cf. Secs. 3.3.1 and
3.4 from Chapter 3). In this way, we would obtain this (macroscopic) quantity
using the microscopic assumptions of our ABM. In the long run, the goal for the
cunning-agents model would be the Holy Grail of market modeling, namely the
prediction of market behavior, or at least a partial one.

To sum up, the thesis contains a number of innovative results combining both
fundamental considerations and their applications, thus it may be useful for some
large establishments operating on markets that deal, on a daily basis, with the key
problem of excessive losses (e.g., insurance companies or financial institutions).
Although the description of the problem of interevent times given in this thesis
may be extended and improved, a general direction was actually indicated. The
further studies required might be able to answer, at least partially, a fundamental
question of the ab initio laws of market economy.
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Appendix

Derivation of interevent-time
distribution1

To derive the distribution ψ±Q(∆Qt) we use the second part of Eq. (3.9), i.e.,

ψ±Q(∆Qt) = −
∫∞
Q
ψ±Q(∆Qt|ε) d

(∫∞
ε
D(ε′) dε′

)∫∞
Q
D(ε) dε

,

and based on Eq. (3.11) we rewrite it as follows,

ψ±Q(∆Qt) =
1

z(Q)

1

τQ(0)
I±Q , (1)

where auxiliary variable

z = z(ε)
def.
=

∫ ∞
ε

D(ε′) dε′, (2)

and integral

I±Q
def.
=

∫ τR−1
Q

0

z±1/α±Q exp

(
−z±1/α±Q

∆Qt

τ±Q (0)

)
dz

=
1

1± 1/α±Q

∫ τR−1
Q

0

exp

(
−z±1/α±Q

∆Qt

τ±Q (0)

)
d
(
z1±1/α±Q

)
. (3)

1Based on Appendix in Denys et al. (2016b).
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From the identity

d
(
z1±1/α±Q

)
= d

(
z±1/α±Q

∆Qt

τ±Q (0)

)α±Q(1/α±Q±1)

×

(
τ±Q (0)

∆Qt

)1±1/α±Q

(4)

and Eqs. (1) and (2) we obtain the final formula,

ψ±Q(∆Qt) =
1

τ±Q (Q)

α±Q(
∆Qt/τ

±
Q (Q)

)1±α±Q
× Γ±

(
1± α±Q,

∆Qt

τ±Q (Q)

)
, (5)

where

Γ+

(
1 + α+

Q,
∆Qt

τ+
Q (Q)

)
=

∫ ∆Qt

τ+
Q

(Q)

0

uα
+
Q exp(−u) du (6)

is the lower incomplete gamma function with

u
def.
= z1/α+

Q
∆Qt

τ+
Q (0)

(7)

taken and, complementary,

Γ−

(
1− α−Q,

∆Qt

τ−Q (Q)

)
=

∫ ∞
∆Qt

τ−
Q

(Q)

u−α
−
Q exp(−u) du (8)

is the upper incomplete gamma function with

u
def.
= z−1/α−Q

∆Qt

τ−Q (0)
(9)

taken. Hence, we use the relation

d
(
u1±α±Q

)
= (1± α±Q)u±α

±
Q du (10)

in both “+” and “−” cases.
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