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Nonlinear Gibbs measure and Bose gases at positive temperature

Nonlinear Gibbs measure and Bose gases at positive tempera-

ture

by PHAN THANH NAM (Munich)

A central problem in mathematical physics is to understand the Bose-Einstein phase transition
at the critical temperature from first principles. Most of the existing works focus on Bose
gases at zero or very low temperature, where complete condensation is expected. Recently,
with Mathieu Lewin and Nicolas Rougerie, we initiated a study of equilibrium Bose gases by
approaching the critical temperature from above. It is interesting that we obtain, in a mean-
field limit, a superposition state of Bose-Einstein condensates in terms of the nonlinear Gibbs
measure.

1 Introduction

Since the first experimental realizations of the Bose-Einstein condensation in 1995 [12, 28], it
has been a central problem in mathematical physics to understand the macroscopic behaviors
of Bose gases from first principles (i.e. from the many-body Schrödinger Hamiltonian). In
particular, while the phase transition at the critical temperature has been understood for the
ideal gas from the pioneer work of Bose and Einstein in 1924 [7, 17], extending the analysis to
realistic interacting gases remains a major open problem.

From the standard setting in physics, it would be desirable to consider the Bose gases in the
thermodynamic limit, but this is very difficult. On the other hand, in the last decades substantial
progress has been made in the mean-field limit: this is the situation when the interaction is
sufficiently weak such that the interaction energy is comparable to the kinetic energy, leading
to well-defined effective theories in the large particle number limit. Among several impressive
results, let us mention the rigorous derivations of the non-linear Schrödinger/Gross-Pitaevskii
equation in 2000s by Lieb-Seiringer-Yngvason for the ground state [42, 40] and by Erdős-
Schlein-Yau [18] for the dynamics. Refinements of the non-linear Schrödinger description, i.e.
Bogoliubov’s approximation [6], have also been derived recently, see [47, 24, 38, 15, 4] for the
low-lying eigenfunctions and [25, 37, 5, 9] for the dynamics. We refer to [41, 46, 22, 45, 32, 2]
for reviews.

So far most of the existing works focus on zero or very low temperature states of the Bose
gas (well below the Bose-Einstein critical temperature), for which the complete condensation
is expected. In 2015, with Lewin and Rougerie [34] we initiated a study of equilibrium Bose
gases at above the critical temperature, with the new result being that a convex combination
of Bose-Einstein condensates emerges in terms of the Gibbs measure based on the nonlinear
Schrödinger energy functional.

The nonlinear Gibbs measure have played a central role in constructive quantum field theory
in 1970s, starting from the work of Nelson [44], Glimm-Jaffe [21] and Guerra-Rosen-Simon
[26] (see [48, 21, 14] for reviews). Since the works of Lebowitz-Rose-Speer [31], Bourgain
[8] and Burq-Thomann-Tzvetkov [10] in 1990s, the Gibbs measure has become a popular tool
to study the Cauchy theory for nonlinear Schrödinger equations (or more generally nonlinear
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dispersive equations) with low-regular data. The Gibbs measure also serves in the background
of the recent studies of nonlinear stochastic PDEs, see e.g. Prato-Debussche [13], Lörinczi-
Gubinelli [43] and Hairer [27].

What makes the nonlinear Gibbs measure both useful and difficult is that the measure is
very singular - it is supported on distributions with low regularity. On the other hand, the linear
quantum problem (from first principles) is perfectly regular but it involves noncommutative
operators. The derivation of the Gibbs measure from the many-body quantum problem thus
requires a rigorous semiclassical analysis in infinite dimensions.

In [34] we could solve the problem only in one dimension. Higher dimensional cases
turned out to be extremely difficult, due to the need of subtle renormalization procedures. In
2016, Fröhlich-Knowles-Schlein-Sohinger came up with a groundbreaking work [19] where
they derived the renormalized Gibbs measure from a modified quantum model in 2D and 3D.
But the question was not solved fully. Very recently, we managed to resolve the full problem
in 2D [36]. The 3D case, which is most physically interesting, remains open. The details of the
progress will be discussed below.

Mathematical setting. We consider a Bose gas in a domain Ω ⊂ Rd described by the grand-
canonical Hamiltonian

Hλ =

ˆ
Ω

a∗x(h− ν)axdx+
λ

2

x

Ω×Ω

a∗xa
∗
yw(x− y)axaydxdy

on the bosonic Fock space

F = C⊕ L2(Ω)⊕ . . .⊕ L2
sym(Ωn)⊕ . . . .

Here h > 0 is a self-adjoint operator with compact resolvent (the reader might think of the
case h = −∆ + const in a bounded domain with appropriate boundary conditions, or h =
−∆ + V (x) in Rd), ν ∈ R a chemical potential, and λ ≥ 0 a coupling constant used to adjust
the strength of the interaction (the case λ = 0 corresponds to the idea gas). The field operators
a∗x, ax are the usual creation/annihilation operators on Fock space which satisfy the canonical
commutation relations

[ax, ay] = 0 = [a∗x, a
∗
y] = 0, [ax, a

∗
y] = δ(x− y).

We assume that the interaction is repulsive, i.e. w ≥ 0, so that Hλ can be defined as a positive
self-adjoint operator on Fock space by Friedrichs method.

The equilibrium state of the Bose gas at a positive temperature T > 0 is

Γλ = Z−1
λ exp (−Hλ/T ) , Zλ = Tr [exp (−Hλ/T )] . (1.1)

This so-called Gibbs state is the minimizer of the free-energy functional

Fλ,T [Γ] = Tr [HλΓ] + TTr[Γ log Γ]

over all quantum states Γ on the Fock space (i.e. Γ ≥ 0, TrΓ = 1). We are interested in the
large temperature/mean-field limit

T →∞, λ = T−1 ,
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which allows us to rewrite

Hλ

T
=

ˆ
Ω

b∗x(−∆x − ν)bx dx+
1

2

x

Ω×Ω

b∗xb
∗
yw(x− y)bxby dx dy

with bx = ax/
√
T . Since the new field operators commute in the large T limit, the formal

semiclassical approximation suggests to replace the quantum fields by classical fields, i.e. to
replace operators bx, b∗x by functions u(x), u(x). This results in a probability measure formally
given by

dµ(u) = “z−1e−EH[u] du”

with the nonlinear Hartree/Schrödinger energy functional

EH[u] =

ˆ
Ω

u(x)(hx − ν)u(x) dx+
1

2

x

Ω×Ω

|u(x)|2w(x− y)|u(y)|2 dx dy.

In fact, the so-obtained Gibbs measure µ is supported outside the energy space of the
Schrödinger functional, namely EH[u] is infinity µ-almost surely. The proper definition of µ
is nontrivial, but it has been well understood since 1970s. The main issue in our study is to
relate the quantum Gibbs state to the classical Gibbs measure in a rigorous manner.

2 The ideal gas
Let us consider the non-interacting case λ = 0. Since h > 0 has compact resolvent, its has
eigenvalues λj → ∞ with eigenfunctions uj’s. The free Gibbs measure (with ν = 0) is the
infinite-dimensional Gaussian measure

dµ0(u) = “z−1
0 e−〈u,hu〉 du” =

∞⊗
j=1

(
λj
π
e−λj |αj |

2

dαj

)
, αj = 〈uj, u〉.

Here dαj is the usual Lebesgue measure on C ' R2. By [50, Lemma 1], µ0 is well-defined
uniquely if its cylindrical projection µ0,K on VK = Span(u1, ..., uK) satisfies the tightness
condition

lim
R→∞

sup
K
µ0,K

(
{u ∈ VK : ‖u‖ ≥ R}

)
= 0.

This condition is verified in the (possibly negative) Sobolev space

H1−p =

{
u =

∞∑
j=1

αjuj :
∞∑
j=1

λ1−p
j |αj|2 <∞

}

provided that [h−p] < ∞ for some p ≥ 1. By contrast, if Tr[h−q] = ∞, then µ0 is supported
outside H1−q, i.e. µ0(H1−q) = 0. This zero-one law follows from Fernique’s theorem.

For examples, if h = −∆ + const on a bounded domain Ω ⊂ Rd, then µ0 is supported on
Hs for any s < 1− d/2 (in particular, s < 0 if d ≥ 2). If h = −∆ + |x|2 (harmonic oscillator),
then µ0 is supported on the negative Sobolev spaces Hs with s < 1− d ≤ 0.
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There is a one-to-one correspondence between h and µ0 via the formula [34, Lemma 3.3]

k! (h−1)⊗k =

ˆ
|u⊗k〉〈u⊗k| dµ0(u), ∀k ≥ 0.

Here for any u, |u⊗k〉〈u⊗k| is only a bounded operator from (H1−p)⊗k to (Hp−1)⊗k. However,
averaging over the measure µ0 results in a bounded (indeed compact) operator on the original
Hilbert space H = L2(Ω).

Now we turn to the quantum Gibbs state. The free Gibbs state

Γ0 = Z−1
0 exp (−H0/T )

is a quasi-free state and Wick’s theorem tells us that

− logZ0 = Tr log(1− e−h/T )

and

Γ
(k)
0 =

(
1

eh/T − 1

)⊗k
(projected on the symmetric subspace). Recall that for every quantum state Γ on Fock space
and for every k ≥ 1, Γ(k) is a trace class operator on L2

sym(Ωk) with kernel

Γ(k)(x1, ..., xk; y1, ..., yk) = (k!)−1Tr
[
a∗x1

...a∗xkay1 ...aykΓ
]
.

Thus the free Gibbs state can be related to the free Gibbs measure in the large T limit:

k!

T k
Γ

(k)
0 −→

T→∞
k! (h−1)⊗k =

ˆ
|u⊗k〉〈u⊗k| dµ0(u).

The convergence holds strongly in the Schatten space Sp by dominated convergence. Our goal
is to derive a similar convergence for the interacting gas.

3 Interacting gas in one-dimension
A natural candidate for the interacting Gibbs measure (with ν = 0) is

dµ(u) = “z−1e−EH[u]du” = “z−1e−I[u]e−〈u,hu〉du” = z−1
r e−I[u]dµ0(u) , (3.1)

where
I[u] =

1

2

x

Ω2

|u(x)|2w(x− y)|u(y)|2 dxdy ≥ 0.

In fact, µ is well-defined in this way if I[u] is finite on a set of µ0-positive measure.

For example [34], if h = −∆ + const on a bounded interval Ω ⊂ R and w = w1 +w2 with
0 ≤ w1 ∈ L∞ and w2 a positive measure with finite mass, then I[u] is finite µ0-almost surely
since ˆ

I[u]dµ0(u) =
1

2
Tr[wh−1 ⊗ h−1] <∞.
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(The trace is taken over symmetric subspace.)
The convergence of the interacting Gibbs state Γλ in (1.1) to the so-defined Gibbs measure

µ in (3.1) is the content of the following result [34, Theorem 5.3]. Here we omit the chemical
potential ν (it is absorbed into h).

Theorem 3.1 (Trace class case). Let h > 0 and w ≥ 0 satisfy

Tr[h−1] + Tr[w h−1 ⊗ h−1] <∞. (3.2)

Then in the limit T = λ−1 →∞, we have the convergence of the relative partition function

Zλ
Z0

→ zr :=

ˆ
e−I[u]dµ0(u) ∈ (0, 1]

and the convergence of reduced density matrices

k!

T k
Γ

(k)
λ,T →

ˆ
H

|u⊗k〉〈u⊗k| dµ(u), ∀k ≥ 1

strongly in trace-class.

When H is a finite-dimensional space, a version of this theorem was proved by Gottlieb
[23] (see also [29, 45]). Extending the result to infinite dimensions requires a completely new
proof which we explain below.

Variational approach. Our strategy in [34] is based on Gibbs’ variational principle. More
precisely, if we take the free Gibbs state Γ0 as a reference state, then Γλ is the unique minimizer
for the relative free energy functional

− log
Zλ
Z0

=
Fλ,T (Γλ)−F0,T (Γ0)

T
= inf

Γ≥0
TrFΓ=1

(
H(Γ,Γ0) + T−2Tr[wΓ

(2)
λ ]
)

with the relative entropy

H(Γ,Γ′) = TrF
(
Γ(log Γ− log Γ′)

)
≥ 0.

Similarly, the Gibbs measure µ is the unique minimizer for the problem

− log zr = inf
ν probability measure

(
Hcl(ν, µ0) +

ˆ
I[u] dν(u)

)
with the classical relative entropy

Hcl(ν, ν
′) :=

ˆ
dν

dν ′
(u) log

(
dν

dν ′
(u)

)
dν ′(u) ≥ 0.

Our task is to relate the quantum variational problem to the classical one. The upper bound

lim sup
T→∞

(
− log

Zλ
Z0

)
≤ − log zr
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follows from a suitable trial state and well-known techniques for semiclassical analysis in finite-
dimensions [39, 49]. The matching lower bound is much more challenging.

De Finetti measure. A variant of the quantum de Finetti theorem in Fock space [34, Theo-
rem 4.2] (whose proof goes back to the analysis of [1, 33]) states that if a sequence of quantum
states {Γn} satisfies the a priori bound

lim sup
Tn→∞

Tr
∣∣∣Γ(k)

n

T kn

∣∣∣p <∞, ∀k ≥ 1, (3.3)

then up to a subsequence of Tn, there exists a Borel probability measure ν on H1−p such that

k!

T kn
Γ(k)
n ⇀

ˆ
H1−p
|u⊗k〉〈u⊗k| dν(u)

weakly-∗ in Schatten space Sp for every k ≥ 1. The measure ν is called the de Finetti measure
(or Wigner measure) of the quantum states {Γn} with scale T−1

n .
For example, from the direct analysis for the ideal gas, we know that the free Gibbs measure

µ0 is the de Finetti measure of the free Gibbs states Γ0 with scale T−1. Moreover, we can check
that the interacting Gibbs states {Γλn} satisfy the a priori bound (3.3) with p = 1, thanks to
the trace-class condition (3.2). In fact, the reduced density matrices can be connected to the
particle number operator on Fock space

N =

ˆ
Ω

a∗xaxdx

via the formula

Tr[Γ
(k)
λ ] = Tr

[(N
k

)
Γλ

]
=

1

k!
Tr [N (N − 1)...(N − k + 1)Γλ] .

Therefore, the desired estimate (3.3) with p = 1 is equivalent to a uniform bound on Tr[(N /T )kΓλ],
which can be derived from the corresponding bound on the free Gibbs states using the mono-
tonicity Hλ ≥ H0 and the fact that N commutes with all relevant operators.

Thus up to a subsequence Tn →∞, there exists a de Finetti measure ν such that

k!

T kn
Γ

(k)
λn
⇀

ˆ
|u⊗k〉〈u⊗k| dν(u), ∀k ≥ 1

weakly-* in trace class.

Lower bounds. From the weak convergence of the two-particle density matrices Γ
(2)
λn

, it is
fairly easy to prove

lim inf
n→∞

T−2
n Tr

[
wΓ

(2)
λn

]
≥ 1

2

ˆ
〈u⊗2, w u⊗2〉 dν(u) =

ˆ
I[u]dν(u)

by some sort of Fatou’s lemma.

8 IAMP News Bulletin, January 2019



Nonlinear Gibbs measure and Bose gases at positive temperature

Moreover, it turns out that the de Finetti measure is linked nicely with the relative entropy
via a Berezin-Lieb-type inequality [34, Theorem 7.1], whose proof goes back to techniques
in [3, 39, 49]. In particular, we have

lim inf
n→∞

H(Γλn ,Γ0) ≥ Hcl(ν, µ0).

Thus from the variational formulas we find that

lim inf
n→∞

(
− log

Zλn
Z0

)
≥ Hcl(ν, µ0) +

ˆ
I[u] dν(u) ≥ − log zr.

Conclusion. Combining the upper bound and the matching lower bound, we obtain the con-
vergence of the relative partition function and also conclude that ν = µ (the interacting Gibbs
measure). We can remove the dependence on the subsequence Tn since the limiting objects
are unique. We still have to work to upgrade the weak convergence of density matrices to the
strong convergence, but let us skip the details.

From the above proof, we see that the expectation of the particle number Tr[NΓλ] is pro-
portional to T , and hence the choice of the coupling constant λ = T−1 in front of the interaction
term really places us in the mean-field limit. When h−1 is not trace class (as below), the ex-
pectation of the particle number of the Gibbs state grows much faster than T and the situation
becomes much more complicated.

4 Interacting gas in higher dimensions
Now we consider the case when Tr[h−p] < ∞ for some p > 1 (but not for p = 1), which is
relevant when h = −∆ + V (x) in higher dimensions.

Renormalized Gibbs measure. When h−1 is not trace class, the simple definition of the
interacting Gibbs measure in (3.1) does not work since I[u] is infinity µ0-almost surely for any
nontrivial smooth function w (since µ0 is supported on negative Sobolev spaces). However, it
is well-known how to define the interacting Gibbs measure by renormalization.

The basic idea, going back to Nelson [44], is that although the mass
´
|u|2 is infinity µ0-

almost surely, this infinity is the same for almost every u. The renormalized interaction energy
measure is thus defined formally by

D[u] = “
1

2

x

Ω2

(
|u(x)|2 −

〈
|u(x)|2

〉
µ0

)
w(x− y)

(
|u(y)|2 −

〈
|u(y)|2

〉
µ0

)
dxdy”

where 〈·〉µ0 denotes the expectation in the free Gibbs measure µ0. This formula can be made
rigorous by replacing

|u(x)|2 −
〈
|u(x)|2

〉
µ0

; |PKu(x)|2 −
〈
|PKu(x)|2

〉
µ0

with PK = 1(h ≤ K) and then taking the limit K →∞.
The renormalized interacting Gibbs measure is defined by

dµ(u) := z−1
r e−D[u]dµ0(u).
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When the interaction potential w is of positive type, i.e. its Fourier transform ŵ is nonnegative,
the renormalized interaction energy D[u] is nonnegative and µ is a probability measure on the
same space of µ0.

Renormalized quantum model. By taking into account the quantum analogue of the renor-
malized interaction, we arrive at the Hamiltonian

Hλ =

ˆ
Ω

axhxaxdx+
λ

2

x

Ω2

(a∗xax − %0(x))w(x− y)(a∗yay − %0(y)) dxdy

=

ˆ
Ω

ax(hx − ν)axdx+ λ
x

Ω2

a∗xa
∗
yw(x− y)axaydxdy + E

with %0(x) = Tr[a∗xaxΓ0] the density of the free Gibbs state and

ν := λ
[
(w ∗ %0)(x)− w(0)

2

]
. (4.1)

(E is an energy shift which is not relevant to the associated Gibbs state.)
Let us focus on the homogeneous gas, when h = −∆ + κ on the torus Ω = Td (with κ > 0

fixed), the free density

%0 =
∑

k∈(2πZ)d

1

e
|k|2+κ
T − 1

is independent of x (by the translation invariance). Thus ν defined in (4.1) is a constant, which
plays the role of an adjusted chemical potential to compensate the divergence of the interactions
(it is proportional to log T if d = 2, and

√
T if d = 3).

We expect that the Gibbs state Γλ = Z−1
λ e−Hλ/T converges to the so-defined renormalized

Gibbs measure µ for d = 2, 3. In fact, we have succeeded in treating the two dimensional case
in [36].

Theorem 4.1 (Homogeneous gas). Let h = −∆ + κ on the torus T2 with a constant κ > 0.
Let w : T2 → R be an even function satisfying

0 ≤ ŵ(k),
∑

k∈(2πZ)2

ŵ(k) (1 + |k|α) <∞ for some α > 0.

In the limit T = λ−1 →∞ we have Zλ/Z0 → zr ∈ (0, 1] and for all k ≥ 1,

k!

T k
Γ

(k)
λ →

ˆ
|u⊗k〉〈u⊗k|dµ(u)

strongly in Schatten space Sp for any p > 1. Moreover, for k = 1 we have

1

T

(
Γ

(1)
λ − Γ

(1)
0

)
→
ˆ
|u〉〈u|

(
dµ(u)− dµ0(u)

)
strongly in trace-class.
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The proof of Theorem 4.1 is a big jump in difficulty in comparison to Theorem 3.1. Con-
ceptually, now the Gibbs measure is very singular (outside the L2 space) and the semiclassical
limit becomes really complicated. Technically, the chemical potential ν diverges to infinity as
T →∞, ruling out the compactness arguments we used previously for Theorem 3.1.

Thus we have to develop quantitative estimates. It is known that the quantum de Finetti
Theorem can be made quantitative: if the one-body Hilbert space is restricted to be finite-
dimensional, then the error depends linearly on the dimension [11]. Therefore, we need to
project our states to finite dimensional subspaces. Controlling the projection error is the main
challenge and it requires new correlation estimates.

Localization of quantum variances. Let us take the spectral projections

P = 1(h ≤ Λ), Q = 1(h > Λ)

for some energy cut-off Λ. We are after an estimate of the form〈(
〈NQ − 〈NQ〉Γ0

)2
〉

Γλ

≤ o(T 2), NQ =

ˆ
Ω

a∗xQxaxdx. (4.2)

This is a simplified version of what we need to localize the renormalized interaction energy to
the low energy modes (indeed we will decompose the interaction potential w in Fourier space
and need a version of (4.2) with Q replaced by Qeik·xQ for any k ∈ (2πZ)2, but let us skip this
technical detail). Heuristically, (4.2) means that in the high energy modes, the particles move
too fast and the effect of the interaction becomes negligible. Thus the larger Λ, the smaller the
localization error. On the other hand, Λ cannot be too large, since we need TrP � T to control
the error of the quantitative quantum de Finetti theorem.

In turns out that in the eligible range of Λ, the expectation of particle number in the high
energy modes 〈NQ〉Γλ grows much faster than T . Therefore, to verify (4.2) it is important to
take the cancelation by 〈NQ〉Γ0 into account. The justification of (4.2) needs several new ideas.

Step 1. Our first key estimate is the operator inequality

Tr

∣∣∣∣∣hαΓ
(1)
λ − Γ

(1)
0

T
hα

∣∣∣∣∣ ≤ Cα ,

which confirms the physical intuition that the free and interacting Gibbs states do not differ
much in the high energy modes. This bound follows from the Feynman-Hellmann principle
and a new inequality for the relative entropy. More precisely, by using a perturbation of the
variational principle defining the free Gibbs state with h replaced by h− A, we obtain

Tr
(
A
(
Γ

(1)
λ − Γ

(1)
0

))
≤ H(Γλ,Γ0) + Tr

(
A

(
1

eh−A − 1
− 1

eh − 1

))
for any one-body self-adjoint operator A satisfying A ≤ ch with some constant c < 1. This
implies the desired result by an appropriate choice of A and a Klein-type inequality.

Consequently, we deduce an easier version of (4.2):

|〈NQ〉Γλ − 〈NQ〉Γ0| ≤ o(T ).
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What makes (4.2) much more difficult than the latter estimate is the fact that the Feynman-
Hellmann principle does not work with two-body perturbations (two-body perturbations, with
a minus sign, may easily destroy the positivity of the Hamiltonian).

Step 2. Our key idea in this step is to reduce two-body estimates to a one-body estimate. More
precisely, we rewrite (4.2) as the true variance estimate〈(

〈NQ − 〈NQ〉Γλ
)2
〉

Γλ

≤ o(T 2) ,

thanks to the previous step, and then approximate the variance by the linear response of NQ:

T−2

〈∣∣∣NQ − 〈NQ〉Γλ∣∣∣2〉
Γλ

= T−1∂ε

(
〈NQ〉Γλ,ε

)
|ε=0

+ o(1) , (4.3)

where

Γλ,ε := Z−1
λ,ε exp

(
− 1

T
(Hλ − εNQ)

)
.

If NQ is replaced by an observable A which commutes with Hλ, then we have exactly [30]

T−2〈|A− 〈A〉Γλ|2〉Γλ = T−1∂ε
(
〈A〉Γλ,ε

)
|ε=0

.

Of course, NQ does not commute with Hλ and we have to work to establish (4.3). Nev-
ertheless, the commutator is small in our semiclassical limit, allowing us to control the error
in (4.3) as soon as Tr[h−p] < ∞ for some p < 3/2. This technical condition holds in 2D but
barely fails in 3D.

Step 3. Now the right side of (4.3) is the derivative of a one-body term. In principle, this can
be estimated using Taylor’s expansion

g(ε) = g(0) + g′(0)ε+
ε2

2
g′′(θε)

(i.e. we can control g′(0) by g(ε) − g(0) and g′′). What saves the day is that a rough estimate
for the second derivative is sufficient for our purpose.

The localization method just discussed allows us to obtain the convergence of the relative
partition function. The convergence of reduced density matrices follows from the various esti-
mates developed to prove the energy convergence, plus Pinsker inequalities.

5 Extension to inhomogeneous gas
For the homogeneous gas in Theorem 4.1, the translation invariance simplifies the analysis
greatly. Now we turn to the inhomogeneous case. Let us consider the case h = −∆ + V with
a trapping potential V on Rd.

In one dimension and in many physically interesting cases (e.g. the harmonic oscillator
V (x) = |x|2), although h−1 fails to be trace class and µ0 is not supported on L2, it turns out
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that µ0 is supported on L4 and the bare interaction energy I[u] is still finite µ0-almost surely.
Thus the interacting Gibbs measure is well-defined without renormalization and the problem
has been solved in [35].

In higher dimensions, the renormalized Gibbs measure can be defined similarly to the ho-
mogeneous case, but now it is more subtle to define the quantum model. When h is not trans-
lation invariant, the free density

%0(x) = Γ
(1)
0 (x;x) =

1

eh/T − 1
(x;x)

depends on x, and hence the counter term ν defined in (4.1) is not just a chemical potential.
This means that Γ0 is not the right reference state to study Γλ.

As discussed by Fröhlich-Knowles-Schlein-Sohinger [19], this issue can be fixed as fol-
lows. By changing the reference state to the Gibbs state associated with a general one-body
potential VT , we arrive at the Hamiltonian

Hλ =

ˆ
Ω

ax(−∆x + VT (x)− λ(w ∗ %VT0 )(x))axdx+
λ

2

x

Ω2

a∗xa
∗
yw(x− y)axaydxdy ,

where %VT0 (x) is the density of the new free Gibbs state

%VT0 (x) = (e
−∆+VT

T − 1)−1(x;x).

(We ignore the unimportant factor w(0)/2 and the energy shift.) The above Hamiltonian coin-
cides with the physical Hamiltonian

Hλ =

ˆ
Ω

a∗x(−∆x + V (x)− ν)axdx+
λ

2

x

Ω×Ω

a∗xa
∗
yw(x− y)axaydxdy

for some chemical potential ν ∈ R if

VT − λw ∗ %VT0 = V − ν. (5.1)

This nonlinear equation has been solved in [19] by a fixed point argument.
As explained later in [36], the counter-term problem (5.1) also emerges from the equilib-

rium state of the nonlinear Hartree free energy functional

F rH[γ] := Tr [(−∆ + V − ν)γ] +
λ

2

x
γ(x;x)w(x− y)γ(y; y) dx dy

− TTr [(1 + γ) log(1 + γ)− γ log γ] ,

which is deduced from the free energy functional of quasi-free states (the exchange term is
unimportant and ignored). This reduced functional has a unique minimizer over all trace class
operators γ ≥ 0, which solves the self-consistent equation

γrH =

{
exp

(−∆ + V − ν + λργrH ∗ w
T

)
− 1

}−1

, ρΓrH(x) = γrH(x;x).
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Consequently, the function VT := λργrH ∗ w + V − ν solves the counter-term problem (5.1).
It turns out that the limit V∞ = limT→∞ VT exists [19] and it will be the correct renormal-

ized potential showing up in the limiting Gibbs measure. We have the following simplified
version of [36, Theorem 3.4].

Theorem 5.1 (Inhomogeneous gas). Let h = −∆ + V on L2(R2) with V growing sufficiently
fast at infinity (e.g. V (x) = |x|s with s ≥ 51). Let w be an even function satisfying

0 ≤ ŵ(k),

ˆ
R2

ŵ(k)
(
1 + |k|1/2

)
dk <∞,

ˆ
R2

|w(x)|V (x)2 dx <∞.

Consider the Gibbs state Γλ = Z−1
λ e−Hλ/T with the chemical potential ν = λŵ(0)%κ0 − κ for a

large, fixed constant κ > 0. Then when T = λ−1 →∞, for all k ≥ 1,

k!

T k
Γ

(k)
λ →

ˆ
|u⊗k〉〈u⊗k|dµ(u) (5.2)

strongly in the Hilbert-Schmidt topology. Here µ is the renormalized interacting Gibbs measure
associated with w and h∞ = −∆ + V∞, with V∞ be the limit of the counter-term potential in
(5.1).

In general V∞ is different from V , but this is unavoidable (if we want to obtain the potential
V in the limiting measure µ, we need to change the potential in the quantum problem). Our
growth condition on V is not optimal and we expect that the result holds as soon as h−1 is a
Hilbert-Schmidt operator.

The proof of Theorem 5.1 is based on the same strategy in the homogeneous case, plus extra
techniques to deal with the inhomogeneity and the faster divergence of the chemical potential
ν (which is now a polynomial divergence in T instead of the logarithmic one).

6 Concluding remarks
Another approach. In parallel to our study [34, 35, 36], Fröhlich-Knowles-Schlein-Sohinger
made an important contribution [19] to the subject via a completely different method. Instead of
using the variational approach, they computed directly the reduced density matrices of quantum
states using Borel summation method for divergent series. In this way, they recovered the result
in one dimension (see also [20] for an investigation of the time-dependent problem). They also
proved (5.2) in the 2D and 3D cases, but with the modified quantum state

Γηλ =
1

Zηλ
exp

(
− η

2T
H0

)
exp

(
−Hλ − 2ηH0

T

)
exp

(
− η

2T
H0

)
(6.1)

for a fixed parameter 0 < η < 1.
If operators H0 and Hλ would commute, the above state would coincide with the normal

Gibbs state. However, this is not the case and the modification brought by η gains a crucial
commutativity which is important for the perturbative expansion. Nevertheless, the modifi-
cation disappears in the limit (since all classical objects commute), and the resulting Gibbs
measure is the same as in Theorem 5.1.

14 IAMP News Bulletin, January 2019



Nonlinear Gibbs measure and Bose gases at positive temperature

In our approach, we treat the normal Gibbs state by gaining some commutativity via new
correlation estimates, but we can control the limit only in 2D so far.

Connection to thermodynamic limit. By scaling we can reformulate our result to the thermo-
dynamic limit with a fixed temperature.

Let us consider the ideal Bose gas with h = −∆ − νL on a torus [0, L]d with L → ∞. By
choosing the chemical potential

νL = −κL−2

with fixed κ > 0, the density of the free Gibbs state at a fixed temperature T0 > 0 is

ρ0(L) =
Tr[NΓ0]

Ld
=

1

Ld

∑
k∈2πZd

1

e
k2+κ

L2T0 − 1
.

When L becomes large, ρ0(L) converges to

ρc(T0) =

{
+∞ in d = 1, 2

(T0)d/2
´
R3

1

e|2πk|2−1
dk in d = 3.

which is exactly the critical density for the Bose-Einstein phase transition with respect to the
temperature T0. Thus in our setting, we are approaching the critical density from below. Equiv-
alently, we can fix the density and approach the critical temperature from above.

In the 2D interacting case, the chemical potential in the torus [0, L]2 behaves as

ŵ(0)
log(L2T0)

L2
− κ

L2
,

which converges to 0 slightly slower than that of the ideal gas. Thus our result quantifies the
effect of the interaction at the Bose-Einstein phase transition in the coupled limit L → ∞,
νL → 0 and gives raise to the renormalized Gibbs measure. We expect that similar results hold
in 3D (with log(L2T0) replaced by L

√
T0), which is very interesting but still out of reach of our

methods.
Finally, let us mention the recent important result of Deuchert-Seiringer-Yngvason [16] on

the Bose-Einstein transition in a combined thermodynamic and Gross-Pitaevskii limit in 3D.
They approached the critical density faster than that in our setting, and obtained the Bose-
Einstein condensation of the interacting gas with the same transition temperature and conden-
sate fraction as the ideal gas.

Hopefully, the recent developments in the mean-field/dilute Bose gas will provide crucial
insights to the rigorous understanding of the Bose-Einstein condensation for interacting Bose
gases in the true thermodynamic limit.
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Random growth models: shape and convergence rate1

by MICHAEL DAMRON (Atlanta)

Random growth models are fundamental objects in modern probability theory, have given rise
to new mathematics, and have numerous applications, including tumor growth and fluid flow
in porous media. In this article, we introduce some of the typical models and the basic ana-
lytical questions and properties, like existence of asymptotic shapes, fluctuations of infection
times, and relations to particle systems. We then specialize to models built on percolation
(first-passage percolation and last-passage percolation), giving a self-contained treatment of
the shape theorem, and describing conjectured and proven properties of asymptotic shapes. We
finish by discussing the rate of convergence to the limit shape, along with definitions of scaling
exponents and a sketch of the proof of the KPZ scaling relation.

1 Introduction
1.1 Some typical growth models

The typical setting for a random growth model is as follows. An infection sits at a vertex v
of a connected graph G = (V,E) with vertex set V and edge set E. It spreads along the
edges according to some random rules, and each vertex of the graph is eventually infected. The
infection takes time T (v, w) <∞ to infect a vertex w, and at time t, the infected set of vertices
is

B(t) = {x ∈ V : T (v, x) ≤ t}.

Eden model. One of the simplest examples is the Eden model, introduced by Eden [19] in ’61,
which gives a simplified version of cell reproduction. Eden considered the two-dimensional
square lattice Z2 with its nearest-neighbor edges, but we could consider any graph, say the
d-dimensional cubic lattice Zd = {x = (x1, . . . , xd) : xi ∈ Z for all i} with the edges Ed =
{{x, y} : x, y ∈ Zd, ‖x− y‖1 = 1}, where ‖x‖1 =

∑
i |xi| is the `1-norm. We begin with a cell

occupying the site 0 = (0, . . . , 0), so our occupied set at time 0 is S0 = {0}. At time n ≥ 1,
we consider the edge boundary of Sn−1

∂eSn−1 = {{x, y} ∈ Ed : x ∈ Sn−1, y /∈ Sn−1}

and select some edge en = {xn, yn} uniformly at random from it. Last, put Sn = Sn−1 ∪
{xn, yn}. (Strictly speaking, what we describe here is a variant of the Eden model, as the
original model’s rule is to add one vertex from the boundary uniformly at random. Our rule
effectively adds a vertex with probability proportional to the number of edges connecting it to
the current cluster.)

1This work was done with support from an NSF CAREER grant. It is an abridgment, with permission from
the American Mathematical Society, of Michael Damron, “Random growth models: Shape and convergence rate”
to appear in [15].
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In the Eden model, our cluster of cells Sn−1 replicates on the boundary (uniformly at ran-
dom) and produces a new cell directly outside of Sn−1 to form our new cluster Sn. It turns out
that ∪nSn is all of Zd, and so the infection time from 0 to x (the first value of n such that Sn
contains x) is finite. The Eden model can be rephrased in a larger framework, first-passage per-
colation (FPP), which we will meet soon. As a consequence, one can show a “shape theorem”
for Sn: after proper scaling, Sn approaches a limiting shape. Although our rule appears not to
bias any direction, the limit shape is not expected to be rotationally invariant (not a Euclidean
ball). This is proved for high dimensions (see [27, 7] and Section 2.1 below).
Diffusion-limited aggregation. In the Eden model, we select a boundary vertex yn by pick-
ing a boundary edge uniformly at random. We could change this selection rule, and pick yn
according to some other distribution. In diffusion-limited-aggregation (DLA), introduced in
[43], we select yn according to the “harmonic measure from infinity.” Roughly speaking, this
corresponds to the hitting distribution of a random walk on the boundary of Sn started from
a far away point. In this way we again obtain a sequence of growing sets (Sn). Since the
DLA model is notoriously hard to analyze, a simplified version, internal DLA (IDLA) was
introduced in [37], where the selection rule is more straightforward. We begin again with
S0 = {0}. At time n, we run a simple symmetric random walk started at 0, and set yn (our
selected vertex) to be the first vertex adjacent to Sn−1 that the random walk touches. Pre-
cisely, at time n, we let X(n)

1 , X
(n)
2 , . . . be an i.i.d. sequence of random vectors taking values

P(X
(n)
i = ±ej) = 1/(2d) for i ≥ 1, j = 1, . . . , d, where (ej) are the j standard basis vectors

of Rd, set

Y
(n)

0 = 0, and Y (n)
i =

i∑
k=1

X
(n)
k for i ≥ 1,

and let yn be the first element in the sequence Y (n)
0 , Y

(n)
1 , Y

(n)
2 , . . . that is not in Sn−1. There is

no shape theorem proved for DLA, but there is one for IDLA [30] (convergence to a Euclidean
ball), and even the rate of convergence to the shape is known [23].
First-passage percolation. FPP can be seen as a generalization of the Eden model, and was
introduced [22] by Hammersley and Welsh in ’65. In FPP, the infection spreads across edges
according to explicit speeds. We let (te)e∈Ed be a collection of i.i.d. nonnegative random vari-
ables. The variable te is thought of as the passage time of an edge; that is, the amount of time
it takes for an infection to cross the edge. A path Γ is a sequence of edges e0, . . . , en such that
each pair ei and ei+1 shares an endpoint, and the passage time of such a Γ is T (Γ) =

∑n
k=0 tek .

The infection takes the path of minimal passage time, so we set the infection time, or passage
time, from x to y, vertices in Zd, to be

T (x, y) = inf
Γ:x→y

T (Γ),

where the infimum is over paths Γ starting at x and ending at y. (It is known that under general
assumptions, for instance if P(te = 0) < pc, where pc is the d-dimensional bond percolation
threshold, then there is a unique minimizing path — a geodesic — from x to y. However,
for some distributions with P(t0 = 0) = pc in dimensions d ≥ 3, existence of geodesics is
unknown.) In FPP, there is a shape theorem, but the limiting shape depends on the distribution
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of the (te)’s. Very little is known about the limit shapes for various distributions, apart from
them being convex, compact, and having the symmetries of Zd. As we will see, it is expected
that for most distributions, the limit shape is strictly convex, and certainly not a polygon, but
strict convexity is not proved for any distribution, and there are only some two-dimensional
examples of limit shapes that are not polygons. For a recent survey on FPP, see [6].

If the weights (te) have (rate 1) exponential distribution, the evolution of the ball B(t) as t
grows can be shown to be exactly the same as the evolution of the sets (Sn) in the Eden model.
More precisely, using the “memoryless property” of the exponential distribution, one can show
that the growth of B(t) is the same as in the following algorithm: begin with B(0) = {0} and
assign i.i.d. exponential random variables to the edges in the set ∂eB(0). If τ1 is the minimum
of these variables, and it is assigned to edge e = {x, y}, then set B(t) = B(0) for t ∈ [0, τ1)
andB(τ1) = B(0)∪{x, y}. Next, generate new i.i.d. exponential random variables assigned to
the edges in ∂eB(τ1), and set τ ′2 to be the minimum of these variables, with τ2 = τ1 + τ ′2. Once
again, setB(t) = B(τ1) for t ∈ [τ1, τ2) andB(τ2) = B(τ1)∪{x′, y′}, where {x′, y′} is the edge
in ∂eB(τ1) with minimal weight. We continue, and at each step, we sample i.i.d. exponentials
for the boundary edges of our current set, choose the minimal weight edge (of weight τ ), and
add its endpoints into our set after we wait for time τ . Since the location of the minimum
is uniformly distributed on the boundary, the sequence of sets B(0), B(τ1), B(τ2), . . . has the
same distribution as the sequence of sets in the Eden model. There is no such representation of
the DLA models in terms of FPP.
Last-passage percolation. LPP is a modification of FPP, introduced because of its relationship
to the TASEP particle system. The typical setting is Zd, and one places i.i.d. nonnegative ran-
dom variables (weights) (tv)v∈Zd on the vertices. A path Γ is a sequence of vertices v0, . . . , vn
such that ‖vi − vi+1‖1 = 1 for all i, and one assigns the passage time T (Γ) =

∑n
k=0 tvk , as

in FPP. The difference now is that in LPP we define the passage time between two vertices as
the maximal passage time of any path between them. Of course this will generally be infinity
unless we restrict ourselves to a finite set of paths, so we consider oriented paths; that is, paths
such that all the coordinates of the vi’s are nondecreasing (written vi ≤ vi+1). So for any v ≤ w,
we set the infection time T (v, w) to be the maximal passage time of any oriented path from v to
w. Once again there is a shape theorem; however, unlike in FPP, the limiting shape is generally
compact but not convex. In two dimensions, it is believed that the boundary of the limit shape
is the graph of a strictly concave function, but this is again not known. In LPP, however, it is
known that the limit shape is not a polygon. For a survey of LPP, see [34].

1.2 Main questions

As we mentioned many times in the last section, a fundamental object of study in random
growth models is the limit shape. In a certain sense to be described in the next section, we will
have almost surely B(t)/t→ B, where B is the limit shape and B(t) is the set of infected sites
at time t. Directly related to the limit shape are the following two questions.
(1) Set of limit shapes. What does the limit shape look like? Are there explicit descriptions?
Is it a Euclidean ball? Is it the `1 or `∞ ball? In models (like FPP and LPP) where many limit
shapes can arise, what is the collection of all possible limit shapes? What is the dependence in
FPP and LPP of the limit shape on the weight distribution?
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(2) Convergence to the limit. What is the convergence rate to the limit shape? Precisely, what
is the set of functions f(t) such that one has (t− f(t))B ⊂ B(t) ⊂ (t+ f(t))B for t large?

We will focus here on these two questions, but we also mention some of the questions from
the other articles in [15].
(3) Distributional limits of passage times. Letting T (x, y) be the infection time of y started
at x, are there functions a(x) and b(x) such that

T (0, x)− a(x)

b(x)
⇒ X

as ‖x‖1 →∞ for some nondegenerate limiting distribution X? In two-dimensional FPP/LPP-
type models, the answer is expected (and proved in a couple of cases) to be yes, and X should
have the Tracy-Widom distribution from random matrix theory. b(x) should be the order of
fluctuations of T (0, x), and embedded in this question is obviously the question: what is the
order of fluctuations of T (0, x)? In the DLA model, fluctuations are of significantly lower order
than in FPP/LPP-type models. Work on these questions has led into concentration of measure,
particle systems, integrable probability and exactly solvable systems.
(4) Structure of geodesics. Optimal infection paths are called geodesics. What is the structure
of the set of all geodesics? How different are geodesics from straight lines? Infinite geodesics
are infinite paths all whose segments are geodesics. How many infinite geodesics are there?
Are there doubly-infinite geodesics? These questions are all related to Busemann functions in
metric geometry.

The existence (or nonexistence) of doubly-infinite geodesics mentioned above is directly
related to the number of ground states of disordered ferromagnetic spin models. We explain
the connection to the disordered Ising ferromagnet, which is a variant of the usual Ising model
from statistical mechanics. We consider dimension two, and define the dual lattice (Z2

∗, E2
∗ ) =

(Z2, E2) + (1/2, 1/2), which is the usual two-dimensional lattice shifted by (1/2, 1/2). Each
“dual edge” e∗ in E2

∗ bisects a unique edge e in E2, so we say that e∗ is the edge dual to e.
Define a “spin configuration” σ = (σx)x∈Z2

∗ to be an assignment of +1 and −1 to every dual
vertex; that is, σ is an element of {−1,+1}Z2

∗ . The interactions between spins are given by
“couplings,” which are variables assigned to the edges. Accordingly, let (Jx,y){x,y}∈E2

∗ be a
family of independent random variables which are almost surely positive. For any σ and any
finite S ⊂ Z2

∗, we define the random energy of σ relative to the couplings and the set S as

HS(σ) = −
∑

{x,y}∈E2
∗ ,x∈S

Jx,yσxσy.

For the standard disordered Ising ferromagnet, the couplings (Jx,y) are typically chosen
to be identically distributed. In this case, it is of great interest to determine the structure and
number of ground states for the model. Precisely, a configuration σ is called a ground state
for the couplings (Jx,y) if for each configuration σ̃ such that σ̃x 6= σx for only finitely many
x, one has HS(σ) ≤ HS(σ̃) for all finite S ⊂ Z2

∗. One can think of a ground state as a local
minimizer of the energy functional. It is not known how many ground states there are for a given
realization of couplings, but it is believed that in this two-dimensional model (and sufficiently

IAMP News Bulletin, January 2019 23



Michael Damron

low-dimensional analogues), there should be only two almost surely. These two are the all-plus
and all-minus states.

If there exists a nonconstant ground state σ for couplings (Jx,y), then we can compare it
to the all-plus ground state σ+. We claim that σ and σ+ cannot have any finite regions of
disagreement: there is no finite S such that σx = −1 for all x ∈ S and σy = +1 for all y ∈ ∂S
(here ∂S refers to the set of vertices in Sc with a neighbor in S). Indeed, if there were such an
S, we could apply the energy minimization property to S to find that HS(σ) = 0. However,
as long as the couplings are continuously distributed, one can argue that almost surely, there
are no finite S with HS(σ) = 0 for some σ. This justifies the claim; from it we see that
any nonconstant ground state must have a two-sided and circuitless original lattice path of
edges whose dual edges {x, y} satisfy σx 6= σy. That is, any nonconstant ground state can be
associated to at least one such doubly-infinite path.

Conversely, one can construct nonconstant ground states if one assumes existence of doubly-
infinite geodesics in a related FPP model. Namely, given couplings (Jx,y) as above, associ-
ated to the edges of the dual lattice, one defines a passage-time configuration (te) by setting
te = Jx,y, where {x, y} is the unique edge dual to e. Supposing that there is a doubly-infinite
geodesic Γ (this is a doubly-infinite path each of whose subpaths is an optimizing path for T )
in this configuration, one can set σx = +1 for all x on one side of Γ and −1 for all x on the
other side of Γ, and such σ will be a nonconstant ground state for (Jx,y).

The relation between ground states and geodesics allows one to carry results between the
two models. For example, if one can rule out existence of doubly-infinite geodesics in FPP
models, one can deduce nonexistence of nonconstant ground states for the associated spin mod-
els.

2 Limit shapes
For the rest of the article, we focus on the first two main growth model questions (limit shapes
and convergence rate), and only in the context of FPP and LPP. First we will describe results
from FPP including shape theorems and properties of limit shapes. Afterward, we switch to
LPP to show which results are similar (shape theorems) and which are different (non-polygonal
shapes and exactly solvable cases).

2.1 FPP

We begin with the shape theorem in FPP. First let’s recall the model. We are given the d-
dimensional cubic lattice Zd with the set of its nearest-neighbor edges Ed. We place i.i.d.
nonnegative random variables (edge-weights) (te)e∈Ed with common distribution function F
on the edges. A path is a sequence (v0, e0, v1, e1, . . . , en−1, vn) of vertices and edges such that
ei has endpoints vi and vi+1. The passage time of a path Γ is T (Γ) =

∑n−1
k=0 tek and the passage

time between vertices x, y ∈ Zd is

T (x, y) = inf
Γ:x→y

T (Γ),

where the infimum is over all paths from x to y.
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Shape theorem in FPP If P(te = 0) = 0 then T is almost surely a metric on Zd, as it is
nonnegative, one has T (x, y) = 0 only when x = y, and T satisfies the triangle inequality
T (x, y) ≤ T (x, z) + T (z, y). (When edge-weights can be zero, T is a pseudometric.) For
convenience, we also extend T to real points; that is, for x ∈ Rd, we set [x] to be the unique
point in Zd with x ∈ [x] + [0, 1)d. Then the shape theorem is a type law of large numbers for
the set

B(t) = {x ∈ Rd : T (0, x) ≤ t},
saying that B(t)/t approaches a limiting set B.

In the statement of the shape theorem below, pc = pc(d) is the threshold for Bernoulli bond
percolation on Zd and can be defined as follows. Let Pp be the probability measure under which
edge-weights are Bernoulli with parameter 1− p: Pp(te = 0) = p and Pp(te = 1) = 1− p.
Putting

θ(p) = Pp(0 is in an infinite self-avoiding path of edges e with te = 0),

one can then use a coupling argument to show that θ is nondecreasing in p. Therefore the
number

pc = sup{p ∈ [0, 1] : θ(p) = 0}
has the properties θ(p) > 0 for p > pc and θ(p) = 0 for p < pc. It is an important result
that pc ∈ (0, 1) for all dimensions d ≥ 2, and we can quickly argue at least that pc > 0. (The
argument for pc < 1 can be found in [20], for example.). Write An for the event that there is an
edge self-avoiding path starting from 0 with n edges e, all satisfying te = 0. Then for any n,

θ(p) ≤ Pp(An) ≤
∑

γ:#γ=n

Pp(te = 0 for all e ∈ γ),

where the sum is over all self-avoiding paths γ starting from 0 with n edges. Each such γ
satisfies Pp(te = 0 for all e ∈ γ) = p#γ , and since there are at most 2d(2d − 1)n many such
paths with n edges (we first choose an edge touching 0, and then at every subsequent step
choose an adjacent edge we have not chosen before), we obtain θ(p) ≤ 2d(2d − 1)npn. This
converges to 0 if p < 1/(2d− 1), and so pc ≥ 1/(2d− 1).

Returning to the shape theorem, the condition P(te = 0) < pc below is there to ensure that
there are not so many zero-weight edges that T (0, x) will grow sublinearly in x. (This occurs
for P(te = 0) ≥ pc.)

Theorem 2.1. (Richardson [39], Cox-Durrett [12], Kesten [27]).
Assume that Emin{t1, . . . , t2d}d < ∞, where ti are i.i.d. copies of te and P(te = 0) < pc.
There exists a deterministic, convex, compact set in Rd, symmetric about the axes and with
nonempty interior, such that for any ε > 0,

P ((1− ε)B ⊂ B(t)/t ⊂ (1 + ε)B for all large t) = 1.

There is also a version for translation ergodic distributions by Boivin [8], first done in less
generality by Derriennic, as reported in [27, (9.25)]. One can show that the above is equivalent
to: there is a norm g on Rd such that B is the unit ball of g, and

lim sup
x→∞

|T (0, x)− g(x)|
‖x‖1

= 0 almost surely.
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This can be thought of as T (0, x) = g(x) + o(‖x‖1) as x ∈ Rd → ∞. We will take this
approach in the proof: build the norm g and then show the limsup statement above.

Proof of shape theorem. The idea of the proof is to first show “radial” convergence; that is, for
a fixed x ∈ Zd, to show that

g(x) := lim
n

T (0, nx)

n
exists.

To do this, we appeal to the subadditive ergodic theorem. Then we “patch” together conver-
gence in many different directions x to get a uniform convergence. We can see quickly that this
limit should at least exist when we take expectations, since by invariance under lattice transla-
tions, ET (x, y) = ET (x + z, y + z) for all x, y, z ∈ Zd, and so by the triangle inequality, for
0 ≤ m ≤ n,

ET (0, nx) ≤ ET (0,mx) + ET (mx, nx) = ET (0,mx) + ET (0, (n−m)x).

Thus the sequence (an) given by an = ET (0, nx) is subadditive and an/n must have a limit
from the following standard argument (usually referred to as Fekete’s lemma): for fixed k and
all n ≥ k,

an ≤ ak + an−k ≤ · · · ≤ bn/kcak + an−bn/kck.

Since n− bn/kck is bounded as n→∞, we divide by n to obtain

lim sup
n

an/n ≤ lim sup
n

bn/kc
n

ak = ak/k.

This is true for all k, so

lim sup
n

an/n ≤ inf
k
ak/k ≤ lim inf

k
ak/k,

meaning limn an/n exists and equals infk ak/k.
To show the limit without expectation is much harder, and we will have to appeal to some

machinery that was invented specifically for this problem. Liggett’s version [32, Theorem 1.10]
of Kingman’s subadditive ergodic theorem states:

Theorem 2.2. Let {Xm,n : 0 ≤ m < n} is an array of random variables satisfying the
following assumptions:

1. for each n, E|X0,n| <∞ and EX0,n ≥ −cn for some constant c > 0,

2. X0,n ≤ X0,m +Xm,n for 0 < m < n,

3. for each m ≥ 0, the sequence {Xm+1,m+k+1 : k ≥ 1} is equal in distribution to the
sequence {Xm,m+k : k ≥ 1}, and

4. for each k ≥ 1, {Xnk,(n+1)k : n ≥ 1} is a stationary ergodic process.
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Then g := limn
1
n
EX0,n = infn

1
n
EX0,n exists, and

lim
n

1

n
X0,n = g a.s. and in L1.

We apply this theorem for a fixed x ∈ Zd to the sequence Xm,n = T (mx, nx). Item 2
holds by the triangle inequality, whereas 3 and 4 hold by invariance of the environment under
integer translations. In item 1 we can take any c > 0, since T ≥ 0 a.s. The only thing
to check is that ET (0, nx) < ∞ for each n. By subadditivity, and symmetry, it suffices to
check that ET (0, e1) < ∞. To do this, we construct any 2d edge-disjoint deterministic paths
γ1, . . . , γ2d from 0 to e1 and note ET (0, e1) ≤ Emin{T (γ1), . . . , T (γ2d)}. Now we can check
the following result from [12]:

Lemma 2.3. If Emin{t1, . . . , t2d} <∞ for i.i.d. edge-weights ti, then one has
Emin{T (γ1), . . . , T (γ2d)} <∞.

Proof. Let k be the maximal number of edges of any γi and note that for each i, P (T (γi) ≥ λ) ≤
kP(te ≥ λ/k), so that if we put M = min{T (γ1), . . . , T (γ2d)},

P(M ≥ λ) =
2d∏
i=1

P(T (γi) ≥ λ) ≤ k2d (P(te ≥ λ/k))2d = k2dP (min{t1, . . . , t2d} ≥ λ/k) .

Therefore

EM =

ˆ ∞
0

P(M ≥ λ) dλ ≤ k2d

ˆ ∞
0

P (min{t1, . . . , t2d} ≥ λ/k) dλ <∞.

By the subadditive ergodic theorem, then, we define

g(x) = lim
n

T (0, nx)

n
,

which is a.s. constant. We next extend g to Qd by taking such a rational x and letting m ∈ N
be such that mx is an integer point. Then set

g(x) = lim
n

T (0,mnx)

mn
=

1

m
lim
n

T (0, n(mx))

n
=

1

m
g(mx).

g thus defined on Qd satisfies the following properties: for x, y ∈ Qd,

1. g(x+ y) ≤ g(x) + g(y),

2. g is uniformly continuous on bounded sets,

3. for q ∈ Q, g(qx) = |q|g(x),

4. g is symmetric about the axes.
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Item 1 follows from the triangle inequality for T , and 4 follows from symmetries of the edge
weights. Item 3 is an easy exercise, and 2 follows from 1: for h = (h1, . . . , hd),

|g(z)− g(z + h)| ≤ max{g(h), g(−h)} = g(h) = g(h1e1 + · · ·+ hded)

≤ g(e1)(|h1|+ · · ·+ |hd|) ≤ ‖h‖1ET (0, e1).

Then g has a continuous extension to Rd. The above properties extend to real arguments, so g
is a seminorm. (A norm, except it could have g(x) = 0 for some x 6= 0.) It is a result of Kesten
[27, Theorem 6.1] that g is a norm exactly when P(te = 0) < pc.

Now that we have “radial” convergence to a norm g, we need to patch together convergence
in every direction to a type of uniform convergence. Here we do this under the unnecessary but
simplifying assumption:

P(te ∈ [a, b]) = 1, where 0 < a < b <∞.

This implies T (0, x), g(x) ∈ [a‖x‖1, b‖x‖1] for x ∈ Zd. So define the event

Ω′ = {te ∈ [a, b] for all e} ∩
{

lim
n

T (0, nx)

n
= g(x) for all x ∈ Zd

}
.

Note that on the above event we actually have

lim
α→∞

T (0, αx)

α
= g(x) for all x ∈ Zd. (2.1)

(Here α is real instead of just being an integer.) The reason is that we can bound∣∣∣∣T (0, αx)

α
− g(x)

∣∣∣∣
≤
∣∣∣∣T (0, bαcx)

bαc − T (0, αx)

bαc

∣∣∣∣+

∣∣∣∣T (0, αx)

bαc − T (0, αx)

α

∣∣∣∣+

∣∣∣∣T (0, bαcx)

bαc − g(x)

∣∣∣∣
≤ T (bαcx, αx)

bαc + T (0, αx)

∣∣∣∣ 1

bαc −
1

α

∣∣∣∣+

∣∣∣∣T (0, bαcx)

bαc − g(x)

∣∣∣∣ .
By the assumed inequality te ≤ b, the first two terms go to zero as α → ∞. The last term
approaches zero because of condition of the second intersected event in the definition of Ω′.

Fix ω ∈ Ω′, a set which has probability one, for the rest of the argument. We will show the
equivalent statement

lim sup
x→∞

|T (0, x)− g(x)|
‖x‖1

= 0,

so suppose it fails: for some ε > 0, there is a sequence (xn) going to infinity such that

|T (0, xn)− g(xn)| ≥ ε‖xn‖1 for all n.

We may assume by compactness that xn/‖xn‖1 → z for some z with ‖z‖1 = 1. We will show
that for some x in a nearby direction to z, one cannot have T (0, nx)/n→ g(x). (See Figure 2.1
for an illustration.)

28 IAMP News Bulletin, January 2019



Random growth models: shape and convergence rate

Figure 2.1: Illustration of the argument given in the proof of the shape theorem. The points
xn
‖xn‖1 , z, and x

‖x‖1 are all of `1-norm 1 and within `1-distance 2δ of each other. The point
x is chosen in Zd so that we have radial convergence of T (0, nx)/n to g(x) in this direction.
Because xn is close in direction to x, and our weights are bounded between a and b, the passage
time T (0, xn) cannot be too different (on a linear scale) than the passage time from 0 to the
“nearby point” x

‖x‖1‖xn‖1. The latter passage time is controlled, since it is from 0 to a multiple
of x, so this prohibits the sequence T (0, xn) from fluctuating too much.

Fix δ ∈
(
0, ε

4b+1

)
and choose x ∈ Zd such that

∥∥∥ x
‖x‖1 − z

∥∥∥
1
< δ, so that for n large,∥∥∥∥ xn

‖xn‖1

− x

‖x‖1

∥∥∥∥
1

< 2δ.

We will compare the passage time from 0 to xn to the passage time to the “nearby” point
‖xn‖1x/‖x‖1. Then

|T (0, xn)− g(xn)|

≤
∣∣∣∣T (0, xn)− T

(
0, ‖xn‖1

x

‖x‖1

)∣∣∣∣+

∣∣∣∣T (0, ‖xn‖1
x

‖x‖1

)
− g

(
‖xn‖1

x

‖x‖1

)∣∣∣∣
+

∣∣∣∣g(‖xn‖1
x

‖x‖1

)
− g(xn)

∣∣∣∣ .
The first and last terms are bounded by

b

∥∥∥∥‖xn‖1
x

‖x‖1

− xn
∥∥∥∥

1

= b‖xn‖1

∥∥∥∥ x

‖x‖1

− xn
‖xn‖1

∥∥∥∥
1

< 2bδ‖xn‖1.
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However since we have radial convergence in direction x, (2.1) gives

T

(
0, ‖xn‖1

x

‖x‖1

)
= g

(
‖xn‖1

x

‖x‖1

)
+ o(‖xn‖1),

so for n large, the second term is bounded by δ‖xn‖1. In total, ε‖xn‖1 ≤ |T (0, xn)− g(xn)| ≤
(4b+ 1)δ‖xn‖1 < ε‖xn‖1, a contradiction.

High dimensions In FPP, the shape theorem gives that B is convex, compact, with nonempty
interior, and with all the symmetries of Zd. Many different sets have this property, in particular
all the `p balls for p ∈ [1,∞]. So the shape theorem allows in principle a cube (`∞ ball) and
a diamond (`1 ball), and therefore says nothing about strict convexity, flat edges, corners, or
whether the shape is a polygon.

For (te) that are i.i.d. and, say, continuous, the following properties are expected for B.
(1) B is strictly convex. That is, for any distinct x, y ∈ B and λ ∈ (0, 1) the point λx+(1−λ)y
is in the interior of B. Thus B should have no flat facets (like a polygon has).
(2) B has no “corners.” That is, the boundary of B should be differentiable. One way to say
this is in terms of supporting hyperplanes. A hyperplane in Rd is a set of the form {x =
(x1, . . . , xd) : x · y = a} for some y ∈ Rd and a ∈ R (where ‘·’ is the standard dot product
x · y =

∑d
i=1 xiyi). A hyperplane H is supporting for B at z ∈ ∂B if H contains z but B

intersects at most one component of Hc. By the Hahn-Banach Theorem, since B is convex and
bounded, each z ∈ ∂B has a supporting hyperplane. We say that ∂B is differentiable if each
z ∈ ∂B has exactly one supporting hyperplane.
(3) Combining the above two cases, but weaker, the set B should not be a polygon. To state this
precisely, we say that B should have infinitely many extreme points. An extreme point x ∈ B
is not on the interior of any line segment with endpoints in B. Precisely, whenever we write
x = λz + (1 − λ)y with z, y ∈ B and λ ∈ (0, 1), we have z = y. So B has infinitely many
extreme points.
(4) The boundary ∂B should have uniformly positive curvature. In other words, near every
boundary point, the boundary should locally look like the boundary of a Euclidean ball with
bounded radius.

Here we state the main high-dimensional asymptotic result: for distributions with no atom
at 0 but with 0 in the support (like exponential), for high dimensions, the limit shape is not an `p

ball for p = 1, 2,∞. Since we saw that the Eden model is equivalent to FPP with exponential
weights, this shows the same result for the Eden model in high dimensions. For the statement,
we define the balls D,B,C to be the `1, `2, and `∞-balls of radius g(e1)−1. We will also make
the following assumptions from [7]: for some a ≥ 0,

Ete <∞, F (0) = 0, and
∣∣∣∣P(te ≤ x)

x
− a
∣∣∣∣ = O(| log x|−1) as x ↓ 0. (2.2)

The following theorem is from Auffinger-Tang [7], which weakens various assumptions
(widens the class of distributions in particular) of the work of previous authors. Some earlier
work was done by Kesten [27], Dhar [16], Couronné-Enriquez-Gerin [11], and Martinsson
[36].
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Theorem 2.4. Assume (2.2). For all large d, in FPP on Zd with fixed weights (te), one has
D ⊂ B ⊂ C and B 6= B,C, or D.

The proof proceeds by showing the asymptotic

lim
d→∞

g(e1)d

log d
=

1

2a
.

For example, ifB were the `1-ball, one would have for e = (1, . . . , 1), g(e) = dg(1/d, . . . , 1/d) =
dg(e1) ∼ log d

2a
. However one can show that g(e) ≤ C for some constant C. In fact, com-

bining the work of Martinsson [36] and Couronné-Enriquez-Gerin [11], one can show that
limd→∞ g(e) exists for the exponential distribution and is related to the nonzero solution of
cothα = α.

It is not hard to give the bound g(e) ≤ 1 for exponential weights. Construct a path γ with
vertices x0, x1, . . . as follows: set x0 = 0 and for n ≥ 0, starting from xn, take the minimal-
weight edge of the d different edges leading in directions e1, . . . , ed (the positive coordinate
directions) and call its endpoint xn+1. If X1, X2, . . . are the weights of the first edge, second
edge, and so on, then Xi is the minimum of d i.i.d. exponential random variables, so is an
exponential with mean 1/d. Thus putting Hn = {x = (x1, . . . , xd) :

∑
i xi = n} one obtains

ET (0, Hn) ≤∑n
i=1 EXi = n/d. But one can show using the shape theorem that

g(e) = lim
n

ET (0, ne)

n
= lim

n

ET (0, Hdn)

n
≤ lim

n

∑nd
i=1 EXi

n
= 1 .

Flat edges. A main question in FPP is: which compact convex sets are realizable as limit
shapes? The question above is completely open in the i.i.d. setting. Interestingly, though, this
is solved by Häggström and Meester ’95 [21] in the case of stationary (not necessarily i.i.d.)
passage times. The following result shows that there are ergodic models of FPP whose limit
shapes are polygons or Euclidean balls. Therefore conjectured properties from the i.i.d. setting
like strict convexity are not true in such generality.

Theorem 2.5 (Hággström-Meester). Any non-empty compact, convex set C that has the sym-
metries of Zd is a limit shape for some FPP model with weights distributed according to a
stationary (under translations of Zd) and ergodic measure.

The previous section focused on high dimensions. What can we say about low dimensions?
For one special class of distributions, Durrett and Liggett [18] were able to say much more:
that the limit shape is not strictly convex. Of course, we believe strict convexity in the contin-
uous weight case, so these distributions have atoms. Their “flat edge” result holds for higher
dimensions as well, but we can give a precise description of it in two dimensions, and further
work has been done by Marchand [33], Zhang [45, 46], and Auffinger-Damron [2].

Recalling that F is the distribution of our weights, letMp be the set of distributions F that
satisfy the following:

• F (x) = 0 for all x < 1 and F (1) = p ≥ ~pc, where ~pc is the two-dimensional oriented
bond percolation threshold (approximately .70548), and

´
x dF (x) = Ete <∞.
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In [18], it was shown that if F ∈ Mp then the limit shape B has some flat edges. The
precise location of these edges was found in [33]. To describe this, write B1 for the closed `1

unit ball, B1 = {(x, y) ∈ R2 : |x|+ |y| ≤ 1}, and write int B1 for its interior. For p > ~pc let
αp be the asymptotic speed of oriented percolation (see [17]), define the points

Mp =

(
1

2
− αp√

2
,
1

2
+
αp√

2

)
and Np =

(
1

2
+
αp√

2
,
1

2
− αp√

2

)
(2.3)

and let [Mp, Np] be the line segment in R2 with endpoints Mp and Np. For symmetry reasons,
the following theorem is stated only for the first quadrant.

Theorem 2.6 (Durrett-Liggett [18], Marchand [33]). Let F ∈ Mp in two dimensions. Then
B ⊂ B1. Also,

1. If p < ~pc then B ⊂ int B1.

2. If p > ~pc then B ∩ [0,∞)2 ∩ ∂B1 = [Mp, Np].

3. If p = ~pc then B ∩ [0,∞)2 ∩ ∂B1 = (1/2, 1/2).

The angles corresponding to points in the line segment [Mp, Np] are said to be in the perco-
lation cone. The existence of a flat edge for the limit shape can be explained heuristically. The
definition of the oriented percolation threshold ~pc is as follows, taking Pp to be the distribution
of i.i.d. edge-weights (ηe) on E2 with probability p to be 1 and 1− p to be 2:

~pc = sup{p : Pp(∃ infinite oriented path Γ with ηe = 1 for e ∈ Γ) = 0}.

(Here, oriented means as usual that the vertices of the path, in order, have non-decreasing
coordinates.) By monotonicity of the probability in p, one has that for p > ~pc, if F ∈Mp, then
there is positive probability of existence of an infinite oriented path of all 1-weights starting
from 0. In fact one can even show the stronger statement that for any angle θ in the percolation
cone, there is positive probability for an infinite oriented path of 1-weights starting from 0 and
going in direction θ (the angles of the vertices on the path converge to θ). Since no edge-
weights have value below 1, any finite segment of such an infinite path must be a minimizing
path (geodesic). But distance along these geodesics correspond to the `1-distance on Z2, so
in such directions, the limit shape must correspond to the `1-ball. It is important to point out
that it is unknown (but expected to be false) whether there are other distributions whose limit
shapes have flat edges. Even in the case ofMp, the flat part of the percolation cone ends at Mp

and Np; however, that does not exclude the limit shape from having further flat spots. This is
not expected though.

Let βp := 1/2 + αp/
√

2, that is, define βp as the x coordinate of Np. Convexity and sym-
metry of the limit shape imply that 1/g(e1) ≥ βp. A non-trivial statement about the edge of the
percolation cone came in 2002 when Marchand [33, Theorem 1.4] proved that this inequality
is in fact strict: 1/g(e1) > 1/2 + αp/

√
2. In other words, Marchand’s result says that the line

that goes through Np and is orthogonal to the e1-axis is not a tangent line of ∂B. The following
theorem builds on Marchand’s result and technique and says that at the edge of the percolation
cone, one cannot have a corner.
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Theorem 2.7 (Auffinger-Damron [2]). Let F ∈ Mp for p ∈ [~pc, 1). The boundary ∂B is
differentiable at Mp and Np.

The above theorem implies that any distribution in Mp has a non-polygonal limit shape.
The first example of a non-polygonal limit shape was discovered by Damron-Hochman [13],
where it was also shown that for any ε > 0, there exist i.i.d. distributions of (te) for which the
extreme points of the corresponding limit shape are ε-dense in the boundary.

2.2 LPP

LPP is defined similarly to FPP, but taking the maximum over oriented paths, instead of the
infimum over all paths. On Zd, we assign i.i.d. site-weights (tv)v∈Zd with common distribution
F . These weights no longer need to be nonnegative, but for simplicity we will take them
to be so. An oriented path Γ with vertices x0, x1, . . . , xn has the property that xi ≤ xi+1

coordinatewise. By convention, we identify the path Γ with its vertices, but we exclude the
initial point. The passage time of such a path is T (Γ) =

∑n
k=0 tvk , and the last-passage time

T (x, y) between vertices x ≤ y is

T (x, y) = max
Γ:x→y

T (Γ),

where the maximum is over oriented paths from x to y. Note that there are only finitely many
paths under consideration, so we can take a maximum. It is important to note that when x, y do
not satisfy x ≤ y or y ≤ x, then T (x, y) is not defined. Also, by convention, T (x, x) = 0 for
all x.

Due to directedness of the model and the fact that we are taking a maximum, T has some-
what different properties than those in FPP. One still has for x ≤ y, T (x, y) ≥ 0 and if tv > 0
for all v, then T (x, y) > 0 when x 6= y. Due to excluding the initial point from all our paths,
we have a super-additivity property of T that corresponds to the triangle inequality in FPP:

for x ≤ y ≤ z, T (x, z) ≥ T (x, y) + T (y, z).

Due to this super-additivity, the limiting shape in LPP is not convex, since the corresponding
“shape function” g will be super-additive. For its definition, we again appeal to the subadditive
ergodic theorem, noting that −T is subadditive. The only difficulty is to come up with condi-
tions under which the limit is finite. The following version of “radial convergence” for T to a
limit comes from Martin [34].

Theorem 2.8. Suppose that
ˆ ∞

0

(1− F (x))1/d dx <∞. (2.4)

Then for each x ≥ 0 in Rd, the following (deterministic) limit exists a.s. and in L1:

g(x) = lim
n

T (0, [nx])

n
<∞,
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where [nx] is the point of Zd with nx ∈ [nx] + [0, 1)d. The function g is continuous on {x :
x ≥ 0} (including at the boundaries), satisfies g(x + y) ≥ g(x) + g(y), is invariant under
permutations of the coordinates, and g(ax) = ag(x) for a ≥ 0.

Although Etv < ∞ is sufficient to guarantee that ET (0, x) < ∞ for all x ≥ 0 (just bound
T (0, x) above by the sum of all weights ty with 0 ≤ y ≤ x), the subadditive ergodic theorem
this time gives

g(x) = sup
n≥1

ET (0, nx)

n
,

and to deduce that g(x) < ∞, we need to know that the means ET (0, nx) do not grow faster
than linearly. The corresponding issue in FPP is that the means ET (0, nx) do not grow sublin-
early, which is guaranteed by F (0) < pc. Here the corresponding condition is not on F (0) but,
as we are in LPP, it is on the tail of F , and is the integrability condition (2.4).

As in FPP, one can upgrade radial convergence to a sort of shape theorem [34]. As before,
put B = {x ≥ 0 : g(x) ≤ 1}.

Theorem 2.9 (LPP shape theorem). Assume (2.4) and put B(t) = {x ≥ 0 : T (0, x) ≤ t}. For
any ε > 0, one has

P ((1− ε)B ⊂ B(t)/t ⊂ (1 + ε)B for all large t) = 1.

Near the boundary Just as in FPP, not much is known about the limiting shape B. It is
expected as before to have differentiable boundary (at least when the weights are continuous)
with positive curvature, and certainly not to be a polygon. The flat edge result from FPP
carries over to LPP: the analogous condition on our distribution F is F (1) = 1, F (1−) =
1− p, where p > ~pc. Such distributions F of weights tv have P(tv > 1) = 0 but P(tv = 1) =
p > ~pc. The value c is the highest weight of an edge, and any oriented path of all c-weights
will be an optimal infection path. Thus again in the percolation cone, the boundary of the limit
shape will agree with that of the `1-ball.

Somewhat surprisingly, in two dimensions, the limit shape is shown not to be a polygon
for most distributions. This is in contrast to the situation in FPP, where this is only known for
distributions inMp. The LPP result is a corollary of a “universality” of the shape function g
near the boundary. The following result, proved by Martin [35], shows that the asymptotics of
g near the boundary of the quarter plane {x : x ≥ 0} are explicit, and only depend on the mean
and variance of F . From these asymptotics we can extract non-polygonality of the limit shape.

Theorem 2.10. Consider d = 2. Write µ for the mean of F and σ2 for the variance of F . If F
satisfies (2.4), then g(1, a) = µ+ 2σ

√
a+ o(

√
a) as a ↓ 0.

Here, g(1, a) is the function g evaluated at the point (1, a), and as a ↓ 0, this point
approaches the boundary of the quarter plane. Note that g(1, 0) = µ, since the passage
time from 0 to ne1 must be achieved along the one oriented path connecting these points,
and its passage time is the sum of n + 1 i.i.d. random variables with distribution F . Thus
the law of large numbers gives the value of g at (1, 0). Therefore the above result says
g(e1 + ae2)− g(e1) = 2σ

√
a+ o(

√
a) as a ↓ 0.
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To see that the above result implies that the limit shape is not a polygon, suppose for a
contradiction that the limit shape is a polygon. Then it must have finitely many extreme points,
and the boundary of the shape between the extreme points consists of straight line segments. If
the limit shape is a triangle, then by symmetry, g must be a multiple of the `1-norm, but then
g(e1 + ae2) − g(e1) = a for a > 0 and the above asymptotics are violated. Otherwise, there
is a closest extreme point w to the point (1, a), and the limit shape boundary must be a line
segment between w and (1, a). In this case, g(e1 + ae2) − g(e1) = ca for some real c and a
small enough. But this again violates the above asymptotics.

Exactly solvable cases in two dimensions The most famous case of LPP is when the distri-
bution F of the site-weights is exponential in two dimensions. Here, there is a direct mapping
from the growth of B(t) to a particle system called the Totally Asymmetric Simple Exclusion
Process (TASEP). TASEP is defined loosely as follows. We imagine that at each site z of Z
with z ≤ 0, there sits a particle at time 0. Associated to each particle is a Poisson process,
and when the process increments, the particle attempts to move to the site directly to the right.
If there is already a particle there, the move is suppressed, and the particle stays in its current
location. The particle that is initially at site 0 is allowed to move unrestricted (since there are
never any particles to the right of it), but the other particles may sometimes be blocked by par-
ticles to their rights. Our convention is that the particle at 0 immediately moves to the right at
time zero. That is, at time zero, there is a particle at site 1, and particles at sites −k for k ≥ 1.

What is the relation between TASEP and LPP with exponential weights? To begin, the
procession of the first particle in TASEP is the same as the infection in LPP along the positive
e1-axis from 0. Indeed, the infection appears at site 0 at time 0, just as the first particle in
TASEP moves to the right. It then infects e1 after an independent exponential time, just as the
same particle in TASEP moves again to the right. Generally, the infection time from 0 to ne1

is achieved through the path that proceeds directly down the positive e1-axis, and occurs when
the first particle in TASEP reaches site n+ 1.

-6 -5 -4 -3 -2 -1  0

Figure 2.2: Illustration of the correspondence between LPP and TASEP. In the left (LPP), the
infection has moved 4 steps to the right on the e1-axis, and so on the right (TASEP) first particle
has moved four steps to the right, from 0 to 4. Similarly, the infection has taken three steps at
the second level, and the second particle has moved three steps to the right from −1 to 2. Last,
the third TASEP particle has taken one step from −2 to −1.
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At the second level, the infection of site e2 occurs an independent exponential time after the
infection appears at 0. This corresponds to the second particle in TASEP moving into the space
left open after the first particle moves. Generally, the n-th step of the k-th particle in TASEP
corresponds to the site ke2 + (n − 1)e1 being infected from 0. To see this, we can derive the
following relation in LPP: for x1, x2 > 0, one has

T (0, (x1, x2)) = t(x1,x2) + max {T (0, (x1 − 1, x2)), T (0, x1, x2 − 1)} .

This is because the infection from 0 reaches (x1, x2) through either (x1− 1, x2) or (x1, x2− 1)
(whichever is infected last), and after the one of these sites with maximal passage time from 0
is infected, (x1, x2) must wait t(x1,x2) additional time. Similarly, in TASEP, for the k-th particle
to make its n-th step, it must wait an independent exponential time after both of the following
events occur: (a) the k − 1-st particle makes its n-th step and (b) the k-th particle makes its
n− 1-st step. See Figure 2.2 for an example.

Because of this coupling, we can represent the passage times in LPP in terms of “currents”
in TASEP. For example, T (0, (n, n)) = time for the n-th particle to make its n+ 1-st step. But
this is exactly the time needed for n particles to pass through the origin. Thus if we define ct as
the “current through zero at time n”; that is, the number of particles having passed through 0
by time t, one has T (0, (n, n)) ≤ t ⇔ ct ≥ n. In ’81, in a pioneering work, Rost [40] showed
exact asymptotics for variables like this current, and this translates directly to an exact formula
for the limit shape in exponential LPP.

Theorem 2.11. Let (tv) be exponentially distributed with mean 1. Then g(x) = g(x1, x2) =
(
√
x1 +

√
x2)2. The limit shape boundary is{

(x, y) ∈ R2 : x, y ≥ 0 and
√
x+
√
y = 1

}
.

So we can see directly that the limit shape is not a polygon, contains no flat segments, and
has no “corners.” In the case of geometrically distributed weights with parameter p [10, 24, 41],
there is an exact formula as well, showing

g(x1, x2) =
1

p
(x1 + x2 + 2

√
x1x2(1− p)).

In both of these cases, finer asymptotics are available [25] by relating the law of the passage
time to the largest eigenvalue of a random matrix ensemble. Specifically for x = (x1, x2) with
x1 > 0 and x2 > 0,

T (0, nx)− ng(x)

n1/3
⇒ Z as n→∞

for a nondegenerate variable Z. This shows that the fluctuations of T about g are of or-
der n1/3, and this is expected for general distributions in both LPP and FPP in two dimen-
sions. Unfortunately, despite decades of work, the best available bounds in the general case for
|T (0, nx)− ng(x)| are of order

√
n.

3 Rate of convergence and scaling exponents
In this section, we restrict to the case of FPP, although similar theorems are provable in LPP.
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3.1 Decomposition of error and strengthened shape theorems in FPP

The question we address here is: is it possible to improve the shape theorem to one with
ε that depends on t? In other words, can we find εt such that εt ↓ 0 quickly and so that
P ((1− εt)B ⊂ B(t)/t ⊂ (1 + εt)B for all large t) = 1? This is a question about the rate of
convergence in the shape theorem. Restating it in terms of the norm g, we can ask the question
in the following form: writing T (0, x) = g(x) + o(‖x‖), how large is the term o(‖x‖)? The
standard way to study this is to decompose

o(‖x‖) = [T (0, x)− ET (0, x)] + [ET (0, x)− g(x)]

into a random fluctuation term and a nonrandom fluctuation term.
The random fluctuation term is typically analyzed using techniques from concentration of

measure — many techniques (transportation inequalities, entropy methods, influence inequal-
ities, isoperimetry, etc.) have been developed to study deviations of a function f(X1, X2, . . .)
of independent variables (Xn) away from its mean or its median. Despite all these methods,
however, current bounds on the first term are far from the predictions.

The nonrandom term is purely deterministic, and can be written as

‖x‖
[
ET (0, x)

‖x‖ − g
(

x

‖x‖

)]
≥ 0.

The term in the parenthesis is of the form ET (0, nx)/n − g(x) for x on the unit circle. We
have seen that for x ∈ Zd, the sequence (ET (0, nx)) is subadditive and so, when divided by
n, converges. So quantifying this nonrandom error is really a problem of estimating the rate of
convergence of an/n to its limit for a subadditive sequence (an). Unfortunately there are no
general methods for this, but in the context of lattice models (like FPP), techniques have been
developed to bound these nonrandom fluctuations in terms of the random ones. Specifically, if
one has a concentration inequality of the form

P (T (0, x)− ET (0, x) < −λ‖x‖α) ≤ exp
(
−Cλβ

)
, λ ≥ 0

for constants C, α, β > 0, then one can show an upper bound of the type

ET (0, x)− g(x) ≤ C‖x‖α(log ‖x‖)δ,

implying that nonrandom fluctuations should be no larger than random fluctuations. Indeed,
using Gaussian concentration inequalities, one has the following version of Alexander’s [1]
result from Damron-Kubota [14].

Theorem 3.1. Assume that Emin{t1, . . . , td}2 < ∞ and P(te = 0) < pc. Then for some
C > 0, one has

g(x) ≤ ET (0, x) ≤ g(x) + C
√
‖x‖ log ‖x‖ for all ‖x‖ > 1.

On the other hand, evidence from [5] implies that random fluctuations should be no larger
than nonrandom fluctuations. Therefore if we posit the existence of exponents such that

T (0, x)− ET (0, x) ∼ ‖x‖χ and ET (0, x)− g(x) ∼ ‖x‖γ
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then one should have χ = γ. (Note that Theorem 3.1 is a version of γ ≤ 1/2. Also, since the
first term is random, it may be measured as Var T (0, x) ∼ ‖x‖2χ or in terms of a concentration
inequality.) Unfortunately this is far from the state of art, as under various general assumptions
(exponential moments for the passage times, for instance), the best existing bounds are

0 ≤ χ ≤ 1/2 and − 1/2 ≤ γ ≤ 1/2.

(Under strong assumptions on existence of a fluctuation exponent χ < 1/2, one can show χ = γ
[5].) As is proved for exactly solvable models of LPP, we believe that in two dimensions,
χ = γ = 1/3. It is reasonable to expect that these (equal) numbers decrease strictly with
dimension, and approach 0 as dimension tends to infinity.

In summary, we have a strengthened shape theorem of the following type. Some improve-
ments to the assumptions have been made by Tessera [42] and Damron-Kubota [14] more
recently, in particular generally replacing the log with

√
log. The term

√
t comes from the

bounds χ, γ ≤ 1/2.

Theorem 3.2 (Rate of convergence bound in the shape theorem). Assume that Eeαte < ∞ for
some α > 0. There is C > 0 such that

P
(

(t− C
√
t log t)B ⊂ B(t) ⊂ (t+ C

√
t log t) for all large t

)
= 1.

It is reasonable to believe, as we saw above, that a stronger shape theorem may hold, with√
t replaced by tχ = tγ for the fluctuation exponents explained above.

3.2 Scaling exponents and the KPZ relation

There are no accepted definitions of the exponents χ and γ from the last section. One can
define, as in [5], directional p-fluctuation exponents (p ≥ 1) in direction x ∈ Zd as

χ
p
(x) = lim inf

n→∞

log ‖T (0, nx)− ET (0, nx)‖p
log n

and

χp(x) = lim sup
n→∞

log ‖T (0, nx)− ET (0, nx)‖p
log n

,

where ‖X‖p = (E|X|p)1/p, and nonrandom fluctuation exponents

γ(x) = lim inf
n→∞

log(ET (0, nx)− g(nx))

log n
and γ(x) = lim sup

n→∞

log(ET (0, nx)− g(nx))

log n
.

At the moment, it is not known if χ
p
(x) = χp(x) for any p or x generally, or if γ(x) = γ(x).

We can precisely state the bounds from the last section in terms of these exponents: it is known,
combining work of Alexander [1], Kesten [28], and Auffinger-Damron-Hanson [5] that under
an exponential moment assumption (this can be weakened in various cases),

0 ≤ χ
p
(x) ≤ χp(x) ≤ 1/2 for all p ≥ 1 and x 6= 0
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and
−1 ≤ γ(x) and − 1/2 ≤ γ(x) ≤ 1/2 for all x 6= 0.

Our lack of information on the model leads to other (stronger) direction-independent defini-
tions. We will present these below while discussing the so-called KPZ scaling relation.

The last exponent we need is the “wandering exponent,” which measures the maximal dis-
placement of the (random) geodesics from Euclidean straight lines. Following Chatterjee [9],
for any nonzero x, let D(0, x) be the maximal Euclidean distance between any point on a
geodesic (minimizing path for T ) from 0 to x and the line segment connecting 0 and x. It is
reasonable to believe that

ED(0, x) ∼ ‖x‖ξ

for some (dimension-dependent) ξ = ξ(d). The predictions are that in two dimensions, ξ =
2/3, that ξ decreases with d to 1/2, but might always be > 1/2. In fact, these statements can
be read directly off of the similar predictions for χ, along with the conjectured KPZ scaling
relation

χ = 2ξ − 1.

This relation is expected to be “universal.” That is, it does not depend on the distribution of
the te’s, and does not even depend on the dimension d, as long as the distribution of the te’s is
reasonable, say with no atoms, and has enough moments. There are heuristic arguments from
physics for this relation in [29], but to date, there is no proof that is valid under only edge-
weight assumptions. One major difficulty is that there is no accepted definition of exponents.
For instance, the exponents χp and χ

p
defined above always exist, but unless one can show they

are equal, they are not so helpful. Furthermore, the current bounds on the exponent ξ depend
even on which definition is taken! In Newman-Piza [38] and Licea-Newman-Piza [31], the
only work giving general bounds on ξ, one has versions of

ξ ≥ 1/(d+ 1), ξ ≥ 1/2, ξ ≥ 3/5, and ξ ≤ 3/4,

depending on the definition of ξ. For example, the first bound is valid for a quite general
definition of ξ, the second for a point-to-line geodesic wandering exponent, the third for a more
restricted point-to-line exponent, and the fourth only in directions of “positive curvature” of the
limiting shape. So, for instance, it is not even known at this point if ED(0, ne1) = o(n).

Newman-Piza provided the first rigorous argument for the inequality χ ≥ 2ξ − 1, and it
is essentially from this inequality and the known bound χ ≤ 1/2 that they derive ξ ≤ 3/4.
It took another 16 years for a rigorous argument, due to Chatterjee, for the other inequality,
χ ≤ 2ξ − 1, even under strong assumptions of existence of exponents. A couple of months
later, a simplified proof due to Auffinger-Damron [4] appeared, which removed a technical
assumption on the valid class of distributions. We stress though that these inequalities are still
conditional: they assume existence of exponents χ and ξ.

Below we will give a proof sketch for the KPZ relation. We begin with Chatterjee’s expo-
nents.

Definition 3.3. χu is the smallest number such that for any χ′ > χu, there exists α > 0 such
that

sup
x 6=0

E exp

(
α
|T (0, x)− ET (0, x)|

‖x‖χ′
)
<∞,
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and χ` is the largest number such that for any χ′′ < χ`, one has

inf
x 6=0

Var T (0, x)

‖x‖2χ′′
> 0.

ξu is the smallest number such that for any ξ′ > ξu, there exists β > 0 such that

sup
x 6=0

E exp

(
β
D(0, x)

‖x‖ξ′
)
<∞

and ξ` is the largest number such that for any ξ′′ < ξ`,

inf
x6=0

ED(0, x)

‖x‖ξ′′ > 0.

There are two important things to notice about these definitions. First, they are not direc-
tional, as they all take supremum or infimum over all directions x. So, for instance, if we
assume that χu = χ` (as we will in the theorem below), then we are assuming that random fluc-
tuations are the same in all directions, which rules out the case of the classMp from Section 2.1
(see [46] for more details). For continuous distributions, though, this should be true. Next, the
upper exponents are somewhat stronger than we might want, as they incorporate information
about exponential concentration of the variables T (0, x) and D(0, x). In other words, these
definitions imply (by an application of Markov’s inequality for the exponential): for χ′ > χu,
there exists C1, c2 > 0 such that for all x

P
(
|T (0, x)− ET (0, x)| > ‖x‖χ′

)
≤ C1 exp (−‖x‖c2) ,

and for ξ′ > ξu, there are C3, c4 such that for all x,

P
(
D(0, x) ≥ ‖x‖ξ′

)
≤ C3 exp (−‖x‖c4) . (3.1)

In fact, by using Alexander’s technique (as shown in [9]), the first inequality can be upgraded
to

P
(
|T (0, x)− g(x)| > ‖x‖χ′

)
≤ C1 exp (−‖x‖c2) . (3.2)

Now we state the KPZ relation that has been rigorously proved to date, combining the
results of Chatterjee [9] and Auffinger-Damron [4].

Theorem 3.4 (Scaling relation). Assume that P(te = 0) < pc. Then if χ := χ` = χu and
ξ := ξ` = ξu, one has χ = 2ξ − 1.

The above relation has been extended to a positive temperature model, directed polymers
in a random environment [3]. Next, curvature exponents κ for the boundary of the limit shape
have been defined in [4], and it is believed that κ = 2. This corresponds to a boundary which
is locally like Euclidean ball. For other curvature exponents, arguments from [4] suggest that a
different relation holds: χ = κξ − (κ − 1). Last, versions of this relation have been proved in
two dimensions in the exactly solvable version of LPP and other continuum models, where it
is known that χ = 1/3 and ξ = 2/3. In fact, the argument of [4] for the upper bound on χ is
similar to the one by Wüthrich [44] and later by Johansson [26].
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Sketch of proof of Theorem 3.4. We will give the proofs in the e1 direction for simplicity. For
the lower bound, suppose for a contradiction that ξ > 1+χ

2
and choose ξ′ ∈

(
1+χ

2
, ξ
)
. We will

show that
P(D(0, ne1) > nξ

′
) ≤ e−n

c

(3.3)

for some c > 0. This itself suggests a contradiction, since ξ′ < ξ. A more careful argument
would actually give ED(0, ne1) = O(nξ

′
), which contradicts ξ′ < ξ = ξ`.

To show (3.3), put L to be the line segment connecting 0 and ne1, and consider the set
S = {x ∈ Zd : ‖x − u‖ < nξ

′ for some u ∈ L}, with ∂S = {y ∈ Zd \ S : ‖y − x‖1 =
1 for some x ∈ S}. If D(0, ne1) > nξ

′ , then there is z ∈ ∂S such that z is on a geodesic from
0 to ne1, and so Az = {T (0, ne1) = T (0, z) + T (z, ne1)} occurs. Therefore P(D(0, ne1) >
nξ
′
) ≤∑z∈∂S P(Az). One can now show that there is c > 0 depending on χ′ such that

P(Az) ≤ e−n
c

for all z ∈ ∂S. (3.4)

Summing over all z, we then obtain (3.3).

Figure 3.1: Illustration of the argument for the inequality χ ≥ 2ξ − 1. S is the set of vertices
within distance nξ′ of L, the line segment connecting 0 and ne1, and its boundary ∂S contains
z. The idea is to show that with high probability, the passage time from 0 to ne1 through z
is larger than the passage time through (n/2)e1. When this occurs, z cannot be on a geodesic
from 0 to ne1.

We will not show (3.4) for all z, but only for z = (n/2)e1 + nξ
′
e2, which may not be an

integer point, but we will pretend it is, to avoid notational complexity. In this case, ifAz occurs,
we write

0 ≥ T (0, ne1)− T (0, (n/2)e1)− T ((n/2)e1, ne1)

= [T (0, z)− T (0, (n/2)e1)] + [T (z, ne1)− T ((n/2)e1, ne1)] . (3.5)

(See Figure 3.1.) These bracketed terms have the same distribution, so we will only bound one
of them. Write w = (n/2)e1 and estimate

T (0, z)− T (0, w) = g(z)− g(w) + [T (0, z)− g(z)] + [T (0, w)− g(w)] . (3.6)
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To estimate g(z)− g(w), we write it as

g
(

(n/2)e1 + nξ
′
e2

)
− g((n/2)e1) =

n

2

[
g

(
e1 +

2nξ
′

n
e2

)
− g(e1)

]
.

Here we must use information about the limit shape, namely that in certain directions it is
known to have “positive curvature.” It is known (see [9]) that there exists a point on the limit
shape boundary near which the boundary is locally positively curved, and instead of doing
the argument in that direction, we assume this condition in direction e1. It amounts to the
statement that there exist δ, c1 > 0 such that if v is a vector with ‖v‖ < δ and v ⊥ e1, then
g(e1 + v)− g(e1) ≥ c1‖v‖2. We apply this in the above equation with v = 2nξ

′

n
e2. This is less

than δ in norm for n large because we may assume that ξ′ < 1. (If not, then ξ ≥ 1, and in
this case, the KPZ inequality reads χ ≥ 1, which is false, as known exponential concentration
bounds imply that χ ≤ 1/2.) So we obtain

g(z)− g(w) ≥ c1
n

2

(
2nξ

′

n

)2

= c2n
2ξ′−1.

Returning to (3.6), we obtain T (0, z)−T (0, w) ≥ c2n
2ξ′−1+[T (0, z)−g(z)]+[T (0, w)−g(w)].

The same development works for the other term of (3.5), and we find that if Az occurs, then

0 ≥ [T (0, z)− g(z)] + [T (0, w)− g(w)] + [T (z, ne1)− g(ne1 − z)]

+ [T (w, ne1)− g(ne1 − w)] + 2c2n
2ξ′−1.

This means that at least one of the four bracketed terms is at least (c2/2)n2ξ′−1 in absolute
value. Thus using symmetry,

P(Az) ≤ 2P(|T (0, z)− g(z)| ≥ (c2/2)n2ξ′−1) + 2P(|T (0, w)− g(w)| ≥ (c2/2)n2ξ′−1).

By our choice of ξ′, we have 2ξ′ − 1 > χ. We have assumed exponential concentration above
scale χ′ (see (3.2)), so these probabilities are (stretched) exponentially small in n. In other
words, each one is smaller than e−nc for some c > 0. This shows (3.4) and completes the
sketch of the bound χ ≥ 2ξ − 1.

We turn to the other inequality, χ ≤ 2ξ − 1. For technical reasons, we assume that χ > 0;
the other case can be proved using a different argument [9]. Suppose it is false and chose
χ′, χ′′, ξ′ such that

2ξ − 1 < 2ξ′ − 1 < χ′ < χ < χ′′. (3.7)

We define the variable δT , which first appeared in Licea-Newman-Piza [31]: δT = T − T ′,
where T = T (0, ne1) and T ′ = T (nξ

′
e2, ne1 + nξ

′
e2). Because ξ′ > ξ, these passage times

are nearly independent, as they are with high probability equal to two passage times restricted
to disjoint sets of edges (“tubes” of width nξ′/2 centered on the straight lines connecting their
endpoints). Using the exponential concentration assumption onD(0, ne1) (from (3.1)), we then
obtain if T ′′ is an independent copy of T ,

Var T =
1

2
E(T − T ′′)2 ≤ C3E(T − T ′)2.
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Figure 3.2: Illustration of the argument for the inequality χ ≤ 2ξ − 1. The path that connects
nξ
′
e2 to ne1 + nξ

′
e2 through w (its first intersection with H1) and z is a geodesic. The path that

connects 0 to ne1 through w and z is a possibly suboptimal path, and this produces inequality
(3.9).

Since χ′ < χ, we find
n2χ′ ≤ C4E(T − T ′)2. (3.8)

The next step is to upper bound (T −T ′)2. Let w be the first intersection of a geodesic from
nξ
′
e2 to nξ′e2 +ne1 with the hyperplane H1 = {y : y · e1 = nβ} (for some β < 1 but very close

to 1), and let z be the first intersection of this geodesic with the hyperplane {y : y ·e1 = n−nβ}.
Note that

T = T (0, ne1) ≤ T (0, w) + T (w, z) + T (z, ne1)

= T (0, w)− T (nξ
′
e2, w) + T (nξ

′
e2, ne1 + nξ

′
e2)

+ T (z, ne1)− T (z, ne1 + nξ
′
e2),

so that

T − T ′ ≤
[
T (0, w)− T (nξ

′
e2, w)

]
+
[
T (z, ne1)− T (z, ne1 + nξ

′
e2)
]
. (3.9)

With (exponentially) high probability, w and z are not further than distance C5n
ξ′ from the

e1-axis, since ξ′ > ξ (see (3.1)). So using symmetry, we obtain with high probability

T − T ′ ≤ A+B,

where A and B have the same distribution as

D = max
{
|T (0, w)− T (nξ

′
e2, w)| : w ∈ H1, |w · e2| ≤ C5n

ξ′
}
.

IAMP News Bulletin, January 2019 43



Michael Damron

Reversing the roles of T and T ′, we obtain the same inequality for T ′ − T , and so

E(T − T ′)2 ≤ C6ED2.

We last have to bound ED2. This is a maximum over many different passage times (to all
w ∈ H1 with ‖w‖ ≤ C5n

ξ′). However, since we have assumed that the fluctuation exponent χ
exists in a strong sense (there is exponential concentration — see (3.2)), it is possible to replace
this maximum with simply one passage time, and ED2 will increase by only a logarithmic
factor. Thus we can write

E(T − T ′)2 ≤ C7(log n)E
[
T (0, w)− T (nξ

′
e2, w)

]2

, (3.10)

where w = nβe1 + nξ
′
e2. As in the proof of the other inequality, we decompose this difference

as

T (0, w)− T (nξ
′
e2, w) = [T (0, w)− ET (0, w)]− [T (nξ

′
e2, w)− ET (nξ

′
e2, w)]

+ [ET (0, w)− g(w)]− [ET (nξ
′
e2, w)− g(w − nξ′e2)]

+ g(w)− g(w − nξ′e2).

And once again, our exponential concentration assumption (3.2) allows us to upper bound all
the terms in the first two lines (with high probability) by ‖w‖χ′′ . If ξ ≥ 1, then our main
inequality χ ≤ 2ξ − 1 is simply χ ≤ 2ξ − 1, where 2ξ − 1 is ≥ 1, and we already know this to
be true (as χ ≤ 1/2), so we can assume that ξ < 1. In this case, we can also enforce

ξ < ξ′ < β < 1, (3.11)

and we obtain that ‖w‖ = ‖nβe1 + nξ
′
e2‖ ≤ C8n

β . Therefore from (3.8) and (3.10),

n2χ′ ≤ C9(log n)
(
C10n

βχ′′ + g(w)− g
(
w − nξ′e2

))2

. (3.12)

Again, we analyze the difference in g by mandating a curvature assumption. We calculate

g(w) + g(w − nξ′e2) = g
(
nβe1 + nξ

′
e2

)
− g(nβe1) = nβ

(
g
(
e1 + nξ

′−βe2

)
− g(e1)

)
.

Our curvature condition here is the opposite of that in the previous inequality χ ≤ 2ξ − 1.
That is, we assume that there are C11, δ > 0 such that if u satisfies ‖u‖ < δ and u ⊥ e1, then
g(e1 + u) − g(e1) ≤ C11‖u‖2. Fortunately since the limit shape is convex, one can show that
this inequality holds in almost every direction, so we will assume it in the e1 direction, as it is
written. Since ξ′ < β, one has nξ′−β < δ for large n, and we obtain

g(w)− g(w − nξ′e2) ≤ C11n
βn2ξ′−2β′ = C11n

2ξ′−β.

Last, we plug this back into (3.12) for n2χ′ ≤ C9(log n)(C10n
2βχ′′ +C11n

2(2ξ′−β)). This is true
for all n large, so

2χ′ ≤ max {2βχ′′, 2(2ξ′ − β)} .
This holds for all β, χ′, χ′′, ξ′ satisfying (3.7) and (3.11).

So take χ′′ ↓ χ and χ′ ↑ χ for fixed β, ξ′ for

2χ ≤ max{2βχ, 2(2ξ′ − β)}.
As β < 1, we find χ ≤ 2ξ′ − β. Now take β ↑ 1 and ξ′ ↓ ξ to obtain χ ≤ 2ξ − 1.
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Review of

Ludwig Faddeev Memorial Volume. A Life in Mathematical Physics.

Editors: M-L. Ge, A. J. Niemi, K. K. Phua and L. A. Takhtajan.

by JAN DEREZINSKI (Warsaw)

Ludwig Faddeev (1934-2017) was one of the greatest and most versatile mathematical
physicists of the 20th century. World Scientific published recently a volume commemorating
his life and scientific work.

The volume starts with a few short personal memories about Ludwig written by researchers
that knew him and were influenced by him. Mathematical physics of the late 20th century
has a very curious history. Ludwig was one of the central players in this history. Therefore,
I found these texts very interesting. For instance, I learned a few facts and anecdotes from
the contribution by Daniel Sternheimer. I also enjoyed a short text by Frank Wilczek, who
described the reception of Faddeev-Popov ghosts in the high energy physics community in the
early 70’s.

Most of the volume consists of research articles devoted to various areas related to Ludwig’s
scientific work. They give a broad panorama of modern mathematical physics. For obvious
reasons I will not comment on all 21 contributions contained in the volume. Let me describe
briefly the content of a few of them.

D. R. Yafaev: “Analytic Scattering Theory for Jacobi Operators and Bernstein-Szegö
Asymptotics of Orthogonal Operators”.

Tridiagonal one-sidedly infinite matrices define linear operators on l2 called Jacobi opera-
tors. They can be viewed as discrete versions of Sturm-Liouville operators on a half-line, (also
called Schrödinger operators on a half-line).

In this elegant and readable article, Dima Yafaev investigates scattering theory for Ja-
cobi operators. In many respects it is similar to the (well-known) scattering theory for one-
dimensional Schrödinger operators. As Dima wrote, “The theory of [1-dimensional Schrödinger
operators with short-range potentials] is to a large extent due to L. Faddeev”.

Many properties familiar from the context of Schrödinger operators have close counterparts
in the context of Jacobi operators. For instance, the short-range condition for perturbations is
essentially the same and the existence of wave operators follows by the same argument in both
cases.

Each Jacobi operator determines the so-called 3-term recurrence relation for a certain fam-
ily of orthogonal polynomials. Therefore, results about Jacobi operators can be translated into
results on orthogonal polynomials.

C.-T. Chan, A. Mironov, A. Morozov, and A. Sleptsov: “Orthogonal Polynomials in Math-
ematical Physics”.

I was surprised to learn that orthogonal polynomials “were originally introduced in the
19th century in a place, which may look strange from today’s perspectives: in the theory of
continued fraction, which is now far away from mainstreams in mathematical physics”. Of
course, orthogonal polynomials have many other applications.
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In this article the authors sketch the theory of orthogonal polynomials on several levels.
First they discuss their general theory. They stress the importance of the three-term relation sat-
isfied by orthogonal polynomials (a concept, which I have already mentioned when discussing
Yafaev’s contribution).

Then they discuss some special classes of polynomials. The best known one is the class
of the so-called classical polynomials. This class consists of Jacobi polynomials, which con-
stitute the generic case, and Hermite and Laguerre polynomials, which are limits of Jacobi
polynomials. Following Tom Koornwinder, the authors propose to call them the very classical
polynomials, since there exists a much wider class that deserves the name classical polyno-
mials. All of them can be expressed in terms of generalized hypergeometric series or basic
hypergeometric series. In this class the generic case consists of the so-called Askey-Wilson
polynomials. Their classification goes under the name of the Askey scheme. They satisfy either
differential or difference equations.

Orthogonal polynomials have various applications in mathematical physics. Apart from the
obvious ones, known to every student of physics, there are interesting applications to conformal
field theory and matrix models, which the authors briefly discuss.

A. R. Its and A. Prokhorov: “On some Hamiltonian Properties of the Isomonodromic Tau
Functions”.

One of the most intriguing families of special functions is the family of Painlevé functions.
They are solutions of one of 6 types of 2nd order nonlinear equations called Painlevé equations.
The article of Its and Prokhorov systematically describes the theory that underlies these equa-
tions. Each of 6 Painlevé equations is related to a certain system of linear equations for two
unknowns with up to 4 singularities on the Riemann sphere. Isomonodromy deformation equa-
tion for each of these systems can be written as a commuting system of Hamiltonian equations
in appropriate Darboux coordinates. A central role in this analysis is played by the so-called
Jimbo-Miwa-Ueno τ function, which is an analytic function on the universal covering of the
parameter space. The authors show that if we adopt the Hamiltonian framework, then the τ
function is closely related to the classical action for Painlevé equations.

A. S. Cattaneo, P. Mnev and N. Reshetikin: “Poisson Sigma Model and Semiclassical
Quantization of Integrable Systems”.

The starting point of this article is a symplectic manifold with a prequantization line bun-
dle and a real polarization, so that one can use the formalism of geometric quantization. They
consider two quantum integrable systems, transversal to one another. The semiclassical asymp-
totics of the scalar product of eigenfunctions of these two systems can be elegantly expressed
in terms of the classical data. This scalar product depends on an arbitrary phase factor. This ar-
bitrariness disappears when one considers the transition probability (the square of the absolute
value of the scalar product), or more generally, the so-called cyclic amplitudes. The authors
propose to rewrite cyclic amplitudes in terms of a path integral of a certain natural Poisson
sigma model. The model has gauge invariance, and therefore to compute its path integrals one
needs to use the Batalin-Vilkoviski formalism.

The authors consider also the famous Kontsevich’s star product which yields a deformation
quantization on an arbitrary Poisson manifold. They show how to express Kontsevich’s star
product in terms of path integrals of essentially the same Poisson sigma model.
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J. Fröhlich: “Chiral Anomaly, Topological Field Theory and Novel States of Matter”
Most of the article is devoted to 2-dimensional systems in an external magnetic field. In

low temperatures such systems exhibit a striking property: their conductance has many plateaux
that correspond to fractional charges. This is the famous fractional Hall effect.

Jürg Fröhlich sketches an explanation of this phenomenon involving an effective Chern-
Simons theory supported at the boundary of the sample. He argues that vertex operators should
correspond to “quantum numbers” belonging to an A-, D- or E-root lattice. This leads to
concrete predictions of the Hall conductivity. The author argues that these predictions closely
match the experimental data.

The author also discusses 3-dimensional systems. Various concepts, coming mostly from
high energy physics, lead to interesting implications for solid state physics. Let me mention
some of these concepts: the topological term ~E · ~B, an axion field à la Pecei-Quinn, axion
domain walls and a “Mott transition” from an insulator to a state with non-vanishing bulk
conductivity.

∗ ∗ ∗

The editors wrote in the Preface: “Ludwig Faddeev (...) believed that mathematical, and
in particular geometrical beauty must be considered an essential feature of any theoretical de-
scription of Nature that is correct”. The articles contained in this volume (including those that I
did not describe in my review) show that mathematical beauty is indeed an important ingredient
of mathematical physics.

Let me quote the editors once again: “Ludwig Faddeev was a scientific giant whose impact
significantly extends from pure mathematics to theoretical physics”. In fact, Ludwig made
significant contributions to many areas, including a few about which there are no articles in
the memorial volume. The topics covered in the volume are mostly related to the later period
of Ludwig’s research. I would like to use this occasion to describe three topics of his (early)
research that are not reflected in the memorial volume, and which I find important.

1. Faddeev equations and the quantum 3-body problem.
The Faddeev equations [8] express the resolvent of the 3-body Schrödinger operator in

terms of resolvents of its 2-body subsystems. They are especially useful when we want to study
the boundary value of the resolvent at the real line. These boundary values play an important
role in scattering theory, e.g. they are the main ingredient of the well-known expressions for
scattering amplitudes.

N -body systems possess an interesting and physically relevant scattering theory. The ex-
istence of wave operators for various channels is quite easy to prove and was known already
in the 60’s. Their asymptotic completeness was an open problem for a long time. [8] con-
tained the first proof of asymptotic completeness for 3 body systems. The proof was based on
the so-called stationary approach, whose main tool is the study of the boundary values of the
resolvent. Unfortunately, Faddeev’s proof needed rather strong assumptions, including some
implicit assumptions on the subsystems. Later on improved proofs of asymptotic completeness
following Faddeev’s strategy appeared, e.g. Hagedorn’s proof for 4-body systems [9]. To my
knowledge, all of them required implicit assumptions about subsystems, except for the proof
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contained in the unpublished PhD thesis [12] of M. Loss under direction of I. M. Sigal about
3-body systems with rather restrictive conditions on the potentials.

Later on mathematical physicists working on N -body scattering theory turned away from
from the stationary method, and hence also from Faddeev equations and their generalizations.
The time-dependent approach, which does need complicated resolvent equations, lead finally
to a proof of asymptotic completeness for any number of particles, also in the presence of long-
range potentials. Among the main contributors, let me mention Enss, Mourre, Sigal, Soffer,
Graf and myself, see [4] and references therein.

The Faddeev equations, even if they turned out not to be as useful for the proof of asymp-
totic completeness as originally expected, are important. They are in fact often used by prac-
titioners, especially in nuclear physics. Unfortunately, in recent years they rarely appear in
the rigorous literature. I expect they will come back to mathematical physics, since they are a
natural tool to study e.g. scattering amplitudes of three-body systems.

2. Quantum 3-body problem with point interactions.
Physicists often prefer to use point interactions instead of potentials—they involve only one

parameter, which is more convenient to fit to experimental data.
For 2-body systems point interactions are well understood. In dimension 1 they can be

viewed as the delta function multiplied by a coupling constant. In dimension 2 and 3 the delta
function needs to be renormalized, and the interaction depends on one parameter called the
scattering length. In dimension 4 and more there are no point interactions at all.

Ter-Martirosyan and Skornyakov proposed a Hamiltonian for 3 particles with point interac-
tions in 3 dimensions. Unfortunately, this Hamiltonian turns out to have non-zero defficiency
indices. Physically, this absence of self-adjointness is a consequence of triple collisions. Fad-
deev and Minlos [14, 15] showed that every self-adjoint extension of this Hamiltonian has a
sequence of negative eigenvalues going down to −∞, and thus is not bounded from below.

N -body point interactions have been a subject of interesting research also in recent years.
The main direction of investigations seems to be finding additional conditions on the parti-
cles that guarantee the boundedness from below. For instance, one can consider two identical
fermions of mass 1 together with a third particle of a different species of mass m. This Hamil-
tonian has several distinct qualitative behaviors (“phases”) depending on the value of m and of
the scattering length. In most, but not all, of these phases, this Hamiltonian is either self-adjoint
and bounded from below or has bounded from below self-adjoint extensions. Let me list a few
recent references on N -body point interactions: [13, 3, 17, 18].

In my opinionN -body Hamiltonians with point interactions are interesting and worth study-
ing also when they are not bounded from below. Boundedness from below is not a necessary
condition for physical relevance: after all, quantum systems in a lab are often unstable, e.g.
they live for a few miliseconds. Such a short lifetime is often enough to study their properties.
The Faddeev equations and their generalizations are probably a natural tool in the analysis of
such Hamiltonians.

3. The infrared problem in QED.
The infrared problem in quantum physics has two aspects. One aspect is the long range of

the Coulomb potential. As a result, the usual definition of the scattering operator fails. It is
well understood how to fix this problem in the setting of the Schrödinger equation, even for
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N -body systems: One needs to modify the free evolution by adding an appropriate logarithmic
modification. This construction goes back to Dollard [6] and leads to a well-defined scattering
operator

The other problem is the appearance of non-Fock representations of canonical commutation
relations in asymptotic states. Figuratively speaking, the electron is accompanied with a “cloud
of soft photons”. This is also well understood in simple examples, where the photon field is
quantized and the electric current is classical. This goes back to an old work of Bloch and
Nordsiek [1]

Faddeev and Kulish [10] proposed an asymptotic condition for QED that combines a Dollard-
type modified dynamics and non-Fock representations of the photon field. This is an interesting
proposal, even though to my understanding it is not fully rigorous.

There exist some attempts to understand the infrared problem in toy models of quantum
field theory, which are not Poincaré covariant. These models include the so-called nonrelativis-
tic QED, the massless Pauli-Fierz and Nelson model [2, 5, 7, 16].

Fully relativistic interacting models can be defined in the perturbative setting by the Epstein-
Glaser method. This method involves two steps: the first solves the ultraviolet problem by
constructing the S-matrix as a formal power series in distributions smeared out with a cou-
pling function vanishing at infinity. Taking the limit of a constant coupling function is called
the adiabatic limit. The adiabatic limit is relatively easy for massive particles. For massless
theories only the so-called weak adiabatic limit is known, see a recent paper by Duch [11]
and references therein. A more satisfactory understanding of asymptotic states, scattering am-
plitudes and cross-sections would involve the so-called strong adiabatic limit. Unfortunately,
the strong adiabatic limit seems much more difficult—one cannot even formulate it without
imposing some kind of asymptotic conditions in the spirit of Faddeev-Kulish.

Acknowledgement. The financial support of the National Science Center, Poland, under the grant
UMO-2014/15/B/ST1/00126, is gratefully acknowledged.
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Conference Announcement

QMath14: Mathematical Results in Quantum Physics

The international conference QMath14: Mathematical Results in Quantum Physics will be
held at the Department of Mathematics, Aarhus University, during August 12-16, 2019. The
international advisory board consists of László Erdős (IST, Austria), Pavel Exner (Academy of
Sciences, Czech Republic), Søren Fournais (Aarhus University, Denmark), Claude-Alain Pillet
(University of Toulon, France), and Jan Philip Solovej (University of Copenhagen, Denmark).
Local organizers are Søren Fournais and Jacob Schach Møller from Aarhus University, and
Horia Cornean from Aalborg University.

This will be the fourteenth edition of a series of conferences on Mathematical Results in
Quantum Theory (or QMath) initiated in 1987 by Pavel Exner and Petr Šeba.

Throughout the years, the main goal of these meetings has been to not only gather people
with a strong interest in mathematical quantum mechanics, but also to create a forum where
one can discuss and explore new quantum phenomena and develop new tools when the standard
ones fail or become outdated.

Together with the Spectral Days and the Congress of IAMP, the QMath series has been one
of the three major events regularly organized under the auspices of the International Association
of Mathematical Physics.

There will be five main topical fields covered by the conference:

1. Spectral and scattering theory of one-particle deterministic Schrödinger operators;

2. Quantum information including entanglement issues and quantum computing;

3. Many-particle systems including self-interactions and interaction with external radiation
fields;

4. Random ergodic large systems including spectral and dynamical localization;

5. Condensed matter theory including topological effects and quantum transport.

Each topic will have a dedicated Special Session consisting of several invited and contributed
talks. The eleven plenary speakers who have already accepted the invitation are top specialists
in their fields and work in recognized universities spread on three continents. Their names and
affiliations can be consulted on the event’s homepage, see the link above.
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Announcement: IUPAP conference funding

We expect between 150 and 200 participants, with the hope that many of them would be
junior researchers. In this respect we plan to organize an introductory mini-course (tutorial)
in Quantum Information Theory, a field which has not been central to the previous QMath
conferences but which has experienced an explosive development during the last decade.

The mini-course will take place on Monday morning and will be given by David Perez-
Garcia (UCM, Madrid). The actual program of the conference will start on Monday after lunch
and end on Friday at noon. We will have two plenary talks every day, followed by invited
speakers and contributed talks in the various special sessions. There will also be a poster
session.

There will be a conference fee of 1250 DKK (Early Registration Fee, approx EUR 170),
which will cover the cost of conference materials, coffee breaks, and lunches.

Most of the conference related practical information is available on the conference home-
page. More tourism and travel info about Aarhus can be found at Visit Aarhus.

We hope to see many of you in Aarhus in August 2019.

On behalf of the organizing committee

Søren Fournais

Announcement: IUPAP conference funding

The deadline for applications for IUPAP (International Union of Pure and Applied Physics)
support for conferences to be held in 2020 is June 1, 2019.

Please consult the IUPAP policies and guidelines for conference support when preparing your
application (see http://iupap.org/sponsored-conferences/conference-policies).
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Recent conference announcements

Stochastic and Analytic Methods in Mathematical Physics

Sept. 2-7, 2019. Yerevan, Armenia.

This conference is partially supported by IAMP.

http://math.sci.am/conference/sammp2019

Quantum Random Walks, Quantum Graphs and their Spectra in Mathematics, Com-
puter Science and Physics.

This conference is partially supported by IAMP.

Aug. 4-9, 2019. Lake Como School of Advanced Studies, Italy.

Mathematics of interacting QFT models

July 1-5, 2019. University of York, UK.

This conference is partially supported by IAMP.

Integrable Probability Summer School

May 27- June 8, 2019. University of Virginia, Charlottesville Virginia, USA.

Deadline for applications: March 1, 2019.

http://vipss.int-prob.org/

Mathematical Physics at the Crossings

Celebrating the 65th Brithday of George Hagedorn.

This conference is partially supported by IAMP.

May 20-24, 2019. Virginia Tech, USA.

http://www.math.vt.edu/HagedornFest/

From Quantum to Classical

April 22-26, 2019. CIRM, Luminy, France.

This conference is partially supported by IAMP.
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https://conferences.cirm-math.fr/1982.html

Algebraic and Geometric Aspects in Quantum Field Theory

April 16-18, 2019. Freiburg im Breisgau, Germany

http://home.mathematik.uni-freiburg.de/murro/AGAQFT/index.html

Open positions

Full Professorship in Mathematical Physics at Heidelberg University

The Department of Mathematics and Computer Science and the Department of Physics and
Astronomy of Heidelberg University invite applications for a tenured Professorship (W3) in
Mathematical Physics. This professorship has been established in the context of the new
cluster of excellence STRUCTURES, within the framework of the German Excellence Strategy,
and it is to play a major role in connecting research in the two departments and establishing the
interdisciplinary academic environment of the cluster of excellence.

Applicants should have made important, internationally recognized contributions to mathe-
matical physics. Special attention will be given to candidates who can demonstrate their ability
to enhance and complement the existing ties between mathematics and physics at Heidelberg
University, in particular between analysis/stochastics and complex classical or quantum sys-
tems.

The new professor will be a member of the Department of Mathematics and Computer
Science or the Department of Physics and Astronomy, depending on his/her profile and pref-
erences, and will be co-opted to the respective other department. The successful candidate is
expected to teach on all levels in his/her department and to contribute specialized courses aimed
at students of both departments.

Prerequisites for application are a university degree and (in accordance with Article 47 of
the Higher Education Law of the State of Baden-Württemberg) a habilitation, a successfully
evaluated junior professorship or equivalent qualifications.

The faculty intends to increase the number of women in teaching and research; women
are therefore expressly invited to apply. Disabled persons with the same qualifications will be
given preference.

Applications including curriculum vitae, description of scientific interests, list of publica-
tions (no reprints), and a record of teaching activities should be submitted electronically only
(preferably as a single pdf file) until March 28, 2019, to Dekan der Fakultät für Physik und As-
tronomie, Universität Heidelberg, Im Neuenheimer Feld 226, D-69120 Heidelberg, Germany,
dekanat@physik.uni-heidelberg.de. Applications should include an exposé, which describes
concepts for interdisciplinary cooperation and a research plan.

For further information, please contact Manfred Salmhofer, salmhofer@uni-heidelberg.de.
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News from the IAMP Executive Committee

Several PhD positions at Bielefeld University

The German-Korean International Research Training Group (IRTG) 2235 “Searching for the
regular in the irregular: Analysis of singular and random systems” funded by the Deutsche
Forschungsgemeinschaft (DFG), offers several PhD positions at Bielefeld University, starting
April 1, 2019.

The IRTG is a joint research program established by the Faculty of Mathematics at Bielefeld
University, Germany, and the Department of Mathematical Sciences at Seoul National Univer-
sity, South Korea. In a truly international and competitive environment, doctoral students will
study singular and random systems.

The IRTG concentrates on advanced techniques from the mathematical field of Analysis
together with latest developments in neighboring fields such as Mathematical Physics, Geome-
try, and Probability Theory. The focus will be on the mathematical analysis of problems which
generically exhibit singular features or randomness. The topics include nonlinear wave equa-
tions, integro-differential equations, oscillator models, random matrices, generalized Dirichlet
and magnetic energy forms, analysis on manifolds and fractal metric spaces. The IRTG of-
fers a structured course program in English and a six-months research stay at Seoul National
University. Deadline for applications is Jan. 31, 2019.

More details on the position, the required qualification and the application procedure, please
see

https://irtg.math.uni-bielefeld.de/doctoral_positions/open

One postdoctoral position in Mathematical Quantum Field Theory at Aarhus University
and Aalborg University

The Department of Mathematics at Aarhus University and the Department of Mathematical Sci-
ences at Aalborg University invite applications for one postdoctoral position in Mathematical
Physics funded by the Independent Research Fund Denmark via the project grant Mathematical
Aspects of Ultraviolet Renormalization.

The position is for 31 months and is available from the first of April 2019. In 2020, the
successful candidate will work at Aalborg University while he or she will spend the remaining
part of the employment period at Aarhus University.

Applicants should have a PhD degree in Mathematics or Theoretical Physics obtained at
most 4 years before the actual starting date of the position. The research project is located in
the intersection of mathematical quantum field theory, spectral theory, and stochastic analysis,
and applicants are expected to show corresponding research promise.

Applications including a cover letter, a curriculum vitae, and a list of publications should be
send as one pdf file to Jacob Moller (jacob@math.au.dk) or Oliver Matte (oliver@math.aau.dk).
2-3 letters of recommendation should be send separately. The deadline for applications is 15
February 2019.
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Postdoctoral Fellowship in Combinatorial and Algebraic Structures in Prague

The Center of Advanced Applied Sciences of the Czech Technical University in Prague an-
nounces a postdoctoral position in mathematics in the research team Combinatorial and alge-
braic structures. The position is for one year, starting on April 1st, 2019 (the precise date is
negotiable), with the possibility of extension to a second year upon mutual agreement. The
gross salary is approximately 45 000 CZK monthly before tax. There are no teaching duties
associated with the position.

Applicants should have a PhD in mathematics, mathematical physics or theoretical com-
puter science (or equivalent) obtained preferably after January 1, 2014. They must show strong
research potential in at least one of the following fields: algebraic number theory and its appli-
cation in nonstandard numeration systems, combinatorics on words and symbolic dynamical
systems, structure theory of Lie algebras, their representations and applications to integrable
systems.

An experience in the project topic area is an advantage but not necessary. The applications
including 1. curriculum vitae (including list of publications), 2. brief research statement (past,
current and future interests), 3. two letters of recommendation; should be sent by e-mail to
Edita Pelantová (edita.pelantova@fjfi.cvut.cz) and Libor Snobl (Libor.Snobl@fjfi.cvut.cz). All
documents should be submitted as pdf files. The letters of recommendation should be sent
directly by the persons providing the reference. Complete application packages should be de-
livered before February 15, 2019; applications submitted later will be taken into consideration
only if no suitable candidate is found among the candidates applying in due time. For any
further information about the position please contact Edita Pelantová and Libor Snobl at the
e-mail addresses above.

PhD position available in Grenoble

Principal Investigator: Nicolas Rougerie
Project: ERC Starting grant CORFRONMAT
Duration: 3 years, starting in the fall of 2019

Description: Applications are invited for a CNRS PhD position in mathematical physics. The
position is based in Grenoble, at the “Laboratoire de Physique et Modélisation des Milieux
Condensés” and is funded by the ERC strating grant “Correlated frontiers of many-body quan-
tum mathematics and condensed matter physics”.

We search for candidates with a strong research potential, preferably with a background in
one or several of the following fields: Functional analysis, Spectral theory, Partial differential
equations, Many-body quantum mechanics, Condensed matter physics.

Suggested research topics include but are not limited to: The many-body problem for quan-
tum particles with fractional statistics (anyons), rigorous studies of fractional quantum Hall
states, mean-field limits of bosonic equilibrium states.
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Financial conditions: The salary is approximatively 1300E after tax per month. The doctoral
researcher will have access to funding for travel. The successful candidate will not have any
teaching obligations, but can (and will be encouraged to) apply at the Université Grenoble-
Alpes for a part-time teaching position.

Applications: Deadline for the first call of the application is April 2019. We reserve the right to
leave the position open, to extend the application period and to consider candidates who have
not submitted applications during the application period. Applications should be submitted
by email to Nicolas Rougerie (nicolas.rougerie@lpmmc.cnrs.fr). Please provide: CV, a short
letter explaining your motivations. An internship within the ERC project (e.g. in the context of
a master thesis) is also a possibility during the spring of 2019.

For more information on these positions and for an updated list of academic job announcements
in mathematical physics and related fields visit

http://www.iamp.org/page.php?page=page_positions

Benjamin Schlein (IAMP Secretary)
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