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Group-theoretical origin of symmetries of
hypergeometric class equations and functions
Abstract: We show that properties of hypergeometric class equations and functions
become transparent if we derive them from appropriate second-order differential
equations with constant coefficients. More precisely, properties of the hypergeometric
and Gegenbauer equation can be derived from generalized symmetries of the Laplace
equation in 4, respectively, 3 dimension. Properties of the confluent, respectively,
Hermite equation can be derived from generalized symmetries of the heat equation
in 2, respectively, 1 dimension. Finally, the theory of the 1F1 equation (equivalent to
the Bessel equation) follows from the symmetries of the Helmholtz equation in 2 di-
mensions. All these symmetries become very simple when viewed on the level of the
6- or 5-dimensional ambient space.

Crucial role is playedby theLie algebra of generalized symmetries of these second-
order PDEs, its Cartan algebra, the set of roots and theWeyl group. Standard hyperge-
ometric class functions are special solutions of these PDEs diagonalizing the Cartan
algebra. Recurrence relations of these functions correspond to the roots. Their discrete
symmetries correspond to the elements of the Weyl group.
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1 Introduction
These lecture notes are devoted to the properties of the following equations:

the Gauss hypergeometric equation, called also the 2F1 equation,

(w(1 − w)𝜕2w + (c − (a + b + 1)w)𝜕w − ab)F(w) = 0; (1)

the Gegenbauer equation

((1 − w2)𝜕2w − (a + b + 1)w𝜕w − ab)F(w) = 0; (2)
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4 | J. Dereziński

Kummer’s confluent equation, called also the 1F1 equation,

(w𝜕2w + (c − w)𝜕w − a)F(w) = 0; (3)

the Hermite equation

(𝜕2w − 2w𝜕w − 2a)F(w) = 0; (4)

and the 0F1 equation (equivalent to the better known Bessel equation; see, e. g., [9])

(w𝜕2w + c𝜕w − 1)F(w) = 0. (5)

Here,w is a complex variable, 𝜕w is the differentiation with respect tow, and a, b, c are
arbitrary complex parameters.

These equations are typical representatives of the so-called hypergeometric class
equations [40]. (Nikiforov and Uvarov call them hypergeometric type equations; fol-
lowing [46], we prefer in this context to use theword class, reserving type for narrower
families of equations).We refer the reader to Section 2, where we discuss the terminol-
ogy concerning hypergeometric class equations and functions that we use.

The equations (1)–(5) and their solutions belong to the most natural objects of
mathematics and often appear in applications [16, 38, 54].

The aim of these notes is to elucidate themathematical structure of a large class of
identities satisfied by hypergeometric class equations and functions. We believe that
our approach brings order and transparency to this subject, usually considered to be
complicated and messy.

We will restrict ourselves to generic parameters a, b, c. We will not discuss special
properties of two distinguished classes of parameters, when additional identities are
true:
(1) the polynomial case (which corresponds to negative integer values of a);
(2) the degenerate case (which corresponds to integer values of c).

The notes are to a large extent based on [9] and [10], with some additions and improve-
ments.

1.1 From second-order PDEs with constant coefficients to
hypergeometric class equations

In our approach, each of the equations (1)–(5) is derived from a certain complex
second-order PDE with constant coefficients. The identities satisfied by this PDE and
their solutions are very straightforward—they look obvious and symmetric. After an
appropriate change of variables, we derive (1)–(5) and identities satisfied by their
solutions. They look much more complicated and messy.
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Group-theoretical origin of symmetries of hypergeometric class equations | 5

We will argue that the main source of these identities are generalized symmetries
of the parent PDE. Let us briefly recall this concept.

Suppose that we are given an equation

𝒦f = 0, (6)

where𝒦 is a linear differential operator. Let g be a Lie algebra andG a group equipped
with pairs of representations

g ∋ B 󳨃→ B♭,B#, (7a)

G ∋ α 󳨃→ α♭, α#, (7b)

where (7a) has its values in first-order differential operators and (7b) in point transfor-
mations with multipliers. We say that (7a) and (7b) are generalized symmetries of (6)
if

B♭𝒦 = 𝒦B#, (8a)

respectively, α♭𝒦 = 𝒦α#. (8b)

Note that (8a), respectively, (8b) imply that B# and α# preserve the space of solutions
of (6).

We will omit the word “generalized” if B# = B♭ and α♭ = α#.
We can distinguish 3 kinds of PDEswith constant coefficients in complex domain.

Belowwe list these PDEs, together with the Lie algebra and group of their generalized
symmetries:
(1) The Laplace equation on ℂn

Δnf = 0, n > 2. (9)

The orthogonal Lie algebra and group in n+2 dimensions, denoted so(n+2, ℂ), re-
spectively, O(n+2, ℂ), both acting conformally in n dimensions. (For n = 1, 2 there
are additional conformal symmetries.)

(2) The heat equation on ℂn−2 ⊕ ℂ:

(Δn−2 + 2𝜕s)f = 0. (10)

The Schrödinger Lie algebra and group in n−2 dimensions, denoted sch(n−2, ℂ),
respectively, Sch(n−2, ℂ).

(3) The Helmholtz equation on ℂn−1,

(Δn−1 − 1)f = 0. (11)

The affine orthogonal Lie algebra and group in n−1 dimensions, denoted
aso(n−1, ℂ), respectively, AO(n−1, ℂ).
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6 | J. Dereziński

(The reason for the strange choice of dimensions in (10) and (11) will be explained
later.)

The basic idea of our approach is as follows. Let us start from the equation (6),
where 𝒦 is appropriately chosen from among (9), (10) and (11). In the Lie algebra of
its generalized symmetries, we fix a certain maximal commutative algebra, which we
will call the “Cartan algebra.” Operators that are eigenvectors of the adjoint action of
the “Cartan algebra” will be called “root operators.”

In the group of generalized symmetrieswefix a subgroup,whichwe call the “Weyl
group.” It is chosen in such a way, that its adjoint action fixes the “Cartan algebra.”

Note that in some cases the Lie algebra of symmetries is simple, and then the
names Cartan algebra, root operators amd Weyl symmetries correspond to the stan-
dard names. In other cases, the Lie algebra is not semisimple, and then the names
are less standard—this is the reason for the quotation marks that we use above. In the
sequel, we drop the quotation marks.

Let us fix a basis of the Cartan algebra N1, . . . ,Nk . Suppose that the dimension of
the underlying space is by 1 greater than the dimension of the Cartan algebra. Then
we introduce new variables, say w, u1, . . . , uk such that Ni = ui𝜕ui .

Substituting a function of the form

f = uα11 ⋅ ⋅ ⋅ u
αk
k F(w), (12)

to the equation (6), and using

Niu
αi = αiu

αi (13)

we obtain the equation

ℱα1 ,...,αkF = 0, (14)

which coincides with one of the equations (1)–(5). The eigenvalues of the Cartan op-
erators become the parameters of this equation.

Root operators shift the Cartan elements, typically by 1 or −1 (like the well-known
creation and annihilation operators). Therefore, root operators inserted into the rela-
tions (8a) lead to transmutation relations for (1)–(5).

Similarly, elements of the Weyl group permute Cartan elements or change their
signs. Therefore,Weyl symmetries inserted into (8b) lead to discrete symmetries of (1)–
(5).

Of course, one can apply (8b) to elements of G other than Weyl symmetries, ob-
taining interesting integral and addition identities for hypergeometric class functions.
They are, however, outside of the scope of these notes.

There are five second-order PDE with constant coefficients where we can perform
this procedure. They are all listed in the following table:
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Group-theoretical origin of symmetries of hypergeometric class equations | 7

PDE Lie algebra dimension of
Cartan algebra

discrete
symmetries

equation

Δ4 so(6,ℂ) 3 cube 2F1
Δ3 so(5,ℂ) 2 square Gegenbauer
Δ2 + 2𝜕t sch(2,ℂ) 2 ℤ2 × ℤ2 1F1 or 2F0
Δ1 + 2𝜕t sch(1,ℂ) 1 ℤ4 Hermite
Δ2 − 1 aso(2,ℂ) 1 ℤ2 0F1

Note that some other second-order PDEs have too few variables to be in the above list:
this is the case of Δ1 and Δ2. Others have too many variables: one can try to perform
the above procedure, however, it leads to a differential equation in more than one
variable.

1.2 Conformal invariance of the Laplace equation

The key tool of our approach is the conformal invariance of the Laplace equation. Let
us sketch a derivation of this invariance. For simplicity, we restrict our attention to the
complex case, for which we do not need to distinguish between various signatures of
the metric tensor.

In order to derive the conformal invariance of the Laplacian on ℂn, or on other
complex manifolds with maximal conformal symmetry, it is convenient to start from
the so-called ambient space ℂn+2, where the actions of so(n+2, ℂ) and O(n+2, ℂ) are
obvious. In the next step, these actions are restricted to the null quadric, and finally to
the projective null quadric. Thus the dimension of the manifold goes down from n+2
to n. The null quadric can be viewed as a line bundle over the projective null quadric.
By choosing an appropriate section, we can identify the projective null quadric, or at
least its open dense subset, with the flat space ℂn or some other complex manifolds
with a complex Riemannian structure, e. g., the product of two spheres. The Lie alge-
bra so(n+2, ℂ) and the group O(n+2, ℂ) act conformally on these manifolds.

What is more interesting, the above construction leads to a definition of an in-
variantly defined operator, which we denote Δ⬦, transforming functions on the null
quadric homogeneous of degree 1 − n

2 onto functions homogeneous of degree −1 − n
2 .

After fixing a section, this operator can be identified with the conformal Laplacian
on the corresponding complex Riemannian manifold of dimension n. For instance,
one obtains the Laplacian Δn on ℂn. The representations of so(n+2, ℂ) and O(n+2, ℂ)
on the level of the ambient space were true symmetries of Δn+2. After the reduc-
tion to n dimensions, they become generalized symmetries of the conformal Lapla-
cian.

The fact that conformal transformations of the Euclidean space are generalized
symmetries of the Laplace equation was apparently known already to Lord Kelvin. Its
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8 | J. Dereziński

explanation in terms of the null quadric first appeared in [6], and is discussed, e. g., in
[8]. The reduction of Δn+2 to Δn mentioned above, is based on a beautiful idea of Dirac
in [11], which was later rediscovered, e. g., in [21, 15]; see a discussion by Eastwood
[12].

The construction indicated above gives a rather special class of (pseudo-)Rie-
mannian manifolds—those having a conformal group of maximal dimension; see,
e. g., [14].However, conformal invariance canbegeneralized to arbitrary (pseudo-)Rie-
mannian manifolds. In fact, the Laplace–Beltrami operator plus an appropriate mul-
tiple of the scalar curvature, sometimes called the Yamabe Laplacian, is invariant in
a generalized sense with respect to conformal maps; see, e. g., [47, 42].

1.3 The Schrödinger Lie algebra and Lie algebra as generalized
symmetries of the Heat equation

The heat equation (10) possesses a large Lie algebra and group of generalized symme-
tries, which in the complex case, as we already indicated, we denote by sch(n−2, ℂ)
and Sch(n−2, ℂ). Apparently, they were known already to Lie [29]. They were redis-
covered (in the essentially equivalent context of the free Schrödinger equation) by
Schrödinger [45]. They were then studied, e. g., in [19, 39].

By adding an additional variable, one can consider the heat equation as the
Laplace equation acting on functions with an exponential dependence on one of the
variables. This allows us to express generalized symmetries of (10) by generalized
symmetries of (9). They can be identified as a subalgebra of so(n+2, ℂ), respectively, a
subgroup of O(n+2, ℂ) consisting of elements commuting with a certain distinguished
element of so(n+2, ℂ).

1.4 Affine orthogonal group and algebra as symmetries of the
Helmholtz equation

Recall that the affine orthogonal group AO(n−1, ℂ) is generated by rotations and
translations of ℂn−1. It is obvious that elements of AO(n−1, ℂ) commute with the
Helmholtz operator Δn−1 − 1. The same is true concerning the affine orthogonal Lie
algebra aso(n−1, ℂ). Therefore, they are symmetries of the Helmholtz equation (11).

The Helmholtz equation is conceptually simpler than the Laplace and heat equa-
tions, because all generalized symmetries are true symmetries.

Note that one can embed the symmetries of the Helmholtz equation in confor-
mal symmetries of the Laplace equation, similarly as was done with the heat equa-
tion. In fact, aso(n−1, ℂ) is a subalgebra of so(n+2, ℂ), and AO(n−1, ℂ) is a subgroup
of O(n+2, ℂ).
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Group-theoretical origin of symmetries of hypergeometric class equations | 9

1.5 Factorization relations

Another important class of identities satisfied by hypergeometric class operators are
factorizations [22]. They come in pairs. They are identities of the form

ℱ1 = 𝒜−𝒜+ + c1, (15a)

ℱ2 = 𝒜+𝒜− + c2, (15b)

where 𝒜+, 𝒜− are first-order differential operators, c1, c2 are numbers and ℱ1, ℱ2 are
operators coming from (1)–(5) with slightly shifted parameters.

The number of such factorizations is the same as the number of roots of the Lie
algebra of generalized symmetries. They can be derived from certain identities in the
enveloping algebra. They are closely related to theCasimir operators of its subalgebras.

Factorizations imply transmutation relations. In fact, it is easy to see that (15b) and
(15a) imply

𝒜−ℱ2 = (ℱ1 + c2 − c1)𝒜−, (16a)

𝒜+ℱ1 = (ℱ2 + c1 − c2)𝒜+. (16b)

Note that (16a) implies that the operator 𝒜− maps the kernel of ℱ2 to the kernel
of ℱ1 + c2 − c1. Similarly, (16b) implies that the operator 𝒜+ maps the kernel of ℱ1
to the kernel of ℱ2 + c1 − c2. The above construction is usually called the Darboux
transformation.

1.6 Standard solutions of hypergeometric class equations

So far we discussed only identities satisfied by the operators corresponding to the
equations (1)–(5). The approach discussed in these notes is also helpful in deriving
and classifying the identities for their solutions.

The equations (1)–(5) have at least 1 and at most 3 singular points on the Riemann
sphere. One can typically find two solutions with a simple behavior at each of these
points. We call them standard solutions. (If it is a regular-singular point, then the so-
lutions are given by convergent power series, otherwise we have to use other methods
to define them.) The discrete symmetries map standard solutions on standard solu-
tions. The best known example of this method of generating solutions is Kummer’s
table [28], which lists various possible expressions for solutions of the hypergeomet-
ric equation.

1.7 Recurrence relations of hypergeometric class functions

All transmutation relations have the form

𝒜ℱ1 = ℱ2𝒜, (17)
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where 𝒜 is a first-order differential operator and ℱ1, ℱ2 is a pair of hypergeometric
class operators of the same type. Typically, some parameters of ℱ2 differ from the cor-
responding parameters of ℱ1 by ±1. Clearly, if a function F1 solves ℱ1F1 = 0, then𝒜F1
solves ℱ2𝒜F1 = 0.

It turns out that if F1 is a standard solution of ℱ1, then 𝒜F1 is proportional to one
of standard solutions of ℱ2, say F2. Thus we obtain an identity

𝒜F1 = aF2, (18)

called a recurrence relation, or a contiguity relation.
The recurrence relation (18) is fixed by the transmutation relation (17) except for

the coefficient a. In practice it is not difficult to determine a.

1.8 From wave packets to integral representations

Hypergeometric class functions possess integral representations, where integrands
are elementary functions. We show that integral representations come from certain
natural solutions of the parent second-order PDE, which at the same time are eigen-
functions of Cartan operators. It will be convenient to have a name for this kind of
solutions—we will call them wave packets.

Let us describe how to construct wave packets for the Laplace equation. It is easy
to see that each function depending only on variables from an isotropic subspace is
harmonic, that is, satisfies the Laplace equation. By assuming that the function is ho-
mogeneous in appropriate variables we can make sure that it is an eigenfunction of
Cartan operators.

Unfortunately, the above class of functions is too narrow for our purposes. There
is still another construction that can be applied:we can rotate a function and integrate
it (“smear it out”) with respect to a weight. This procedure does not destroy the har-
monicity. By choosing the weight appropriately, we can make sure that the resulting
wavepacket is an eigenfunctionof Cartanoperators. (The “smearingout” is essentially
a generalization of the Fourier (or Mellin) transformation to the complex domain.)

After substituting special coordinates to a wave packet, we obtain a function of
the form (12) with F solving (14), and having the form of an integral of an elementary
function.

Wave packets for the heat andHelmholtz equation can be derived fromwave pack-
ets for the Laplace equation.

1.9 Plan of the lecture notes

In Section 2, we give a concise introduction to hypergeometric class equations and
functions. One can view this section as an extension of the Introduction, concentrated
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Group-theoretical origin of symmetries of hypergeometric class equations | 11

on the terminology and classification of equations and functions we consider in these
notes.

The remaining sections can be divided into two categories. The first category con-
sists of Sections 3, 4 and 7. They have a general character and are devoted to basic ge-
ometric analysis in any dimension. The most important one among them is Section 4,
devoted to the conformal invariance of the Laplace equation. Of comparable impor-
tance is Section 7, where the Schrödinger Lie algebra and group are introduced. In
Subsections 3.10–3.13, we explain how to construct “wave packets.” No special func-
tions appear in Sections 3, 4 and 7. They can be read independently of the rest of the
notes.

The second category consists of Sections 5, 6, 8, 9 and 10. They are devoted to a
detailed analysis of equations (1), (2), (3), (4), respectively, (5). Typically, each section
starts with the ambient space corresponding to the second-order PDE from the left
column of the table in Subsection 1.1. In the ambient space, these symmetries are very
easy to describe. Then we reduce the dimension and introduce special coordinates,
which leads to the equation in the right column of the table.

We made serious efforts to make Sections 5, 6, 8, 9 and 10 as parallel as possible.
There is a one to one correspondence between most subsections in all of these five
sections.We try to use a uniform terminology and analogous conventions. This makes
our text somewhat repetitive—we believe that this is helpful to the reader. Note also
that these sections are to a large extent independent of one another.

We use various (minor but helpful) ideas to make our presentation as short and
transparent as possible. One of them is the use of two kinds of parameters. The param-
eters that appear in (1), (2), (3), (4) and (5), denoted a, b, c, are called classical param-
eters. They are convenient when one defines kFm functions by power series. However,
in most of our text we prefer to use a different set of parameters, denoted by Greek
letters α, β, μ, θ, λ. They are much more convenient when we describe symmetries.

Another helpful idea is a consistent use of split coordinates in ℂn or ℝn. In these
coordinates, root operators and Weyl symmetries have an especially simple form.

The notes are full of long lists of identities. We are convinced that most of them
are easy to understand and appreciate without much effort. Typically, they are highly
symmetric and parallel to one another.

We hesitated whether to use the complex or real setting for these notes. The com-
plex setting was used, e. g., in [10]. It offers undoubtedly some simplifications: there
is no need to consider various signatures of the scalar product. However, the com-
plex setting can also be problematic: analytic functions are often multivalued, which
causes issues with some global constructions. Therefore, in these notes, except for
the Introduction, we use the real setting as the basic one. At the same time, we keep in
mind that all our formulas have obvious analytic continuations to appropriate com-
plex domains.

In most of our notes, we do not make explicit the signature of the scalar product
in our notation for Lie algebras and groups. For example, by writing so(n), we mean
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so(q, p) for some n = q + p or so(n, ℂ). Specifying each time the signature would be
overly pedantic, especially since we usually want to complexify all objects, so that the
signature loses its importance.

1.10 Comparison with literature

The literature about hypergeometric class functions is enormous—after all it is one of
the oldest subjects of mathematics. Let usmention, e. g., the books [4, 46, 1, 13, 20, 31,
41, 43, 54].

The relationship of special functions to Lie groups and algebras was noticed long
time ago. For instance, the papers by Weisner [52, 53] from the 50’s describe Lie alge-
bras associated with Bessel and Hermite functions.

The idea of studying hypergeometric class equations with the help of Lie algebras
was developed further by Miller. His early book [33] considers mostly small Lie alge-
bras/Lie groups, typically sl(2, ℂ)/SL(2, ℂ) and their contractions, and applies them
to obtain various identities about hypergeometric class functions. These Lie algebras
have 1-dimensional Cartan algebras and a single pair of roots. This kind of analysis
is able to explain only a single pair of transmutation relations for each equation. To
explain bigger families of transmutation relations, one needs larger Lie algebras.

A Lie algebra strictly larger than sl(2, ℂ) is so(4, ℂ). There exists a large literature
on the relation of the hypergeometric equation with so(4, ℂ) and its real forms; see,
e. g., [24, 25]. This Lie algebra is however still too small to account for all symmetries
of the hypergeometric equation—its Cartan algebra is only 2-dimensional, whereas the
equation has three parameters.

An explanation of symmetries of the Gegenbauer equation in terms of so(5, ℂ) and
of the hypergeometric equation in terms of so(6, ℂ) ≃ sl(4, ℂ)was first given byMiller;
see [36], and especially [37].

Miller and Kalnins wrote a series of papers where they studied the symmetry ap-
proach to separation of variables for various second-order partial differential equa-
tions, such as the Laplace and wave equation; see, e. g., [23]. A large part of this re-
search is summed up in the book by Miller [35]. As an important consequence of this
study, one obtains detailed information about symmetries of hypergeometric class
equations.

Themain tool thatweuse to describe properties of hypergeometric class functions
are generalized symmetries of second-order linear PDEs. Their theory is described in
another book by Miller [34], and further developed in [35].

A topic that is extensively treated in the literature on the relation of special func-
tions to group theory, such as [49, 51, 33, 50], is derivation of various addition for-
mulas. Addition formulas say that a certain special function can be written as a sum,
often infinite, of some related functions. As we mentioned above, they are outside of
the scope of this text—we concentrate on the simplest identities.
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Group-theoretical origin of symmetries of hypergeometric class equations | 13

The relationship of Kummer’s tablewith the group of symmetries of a cube (which
is theWeyl group of so(6, ℂ)) was discussed in [30]. A recent paper, where symmetries
of the hypergeometric equation play an important role is [27].

The use of transmutation relations as a tool to derive recurrence relations for hy-
pergeometric class functions is well known and can be found, e. g., in the book by
Nikiforov–Uvarov [40], in the books byMiller [33] or in older works such as [48, 52, 53].

There exist various generalizations of hypergeometric class functions. Let usmen-
tion the class of𝒜-hypergeometric functions, which provides a natural generalization
of the usual hypergeometric function tomany-variable situations [5, 7]. Saito [44] con-
siders generalized symmetries in the framework of𝒜-hypergeometric functions.

Another direction of generalizations of hypergeometric functions is the family of
Gel’fand–Kapranov–Zelevinsky hypergeometric functions [17, 18]. Similar construc-
tions were explored by Aomoto and others [2, 3, 32]. The main idea is to generalize in-
tegral representations of hypergeometric functions, rather than hypergeometric equa-
tions. There exist also interesting confluent versions of these functions [26].

A systematic presentation and derivation of symmetries of hypergeometric class
equations and functions from second-order PDEswith constant coefficients was given
in [9] and [10]. These papers consistently use Lie-algebraic parameters, describe trans-
mutation relations, discrete symmetries and factorizations. [9] describes integral rep-
resentations and recurrence relations. [10] concentrates on the study of hypergeomet-
ric class operators, leaving out the properties of hypergeometric class functions.

These lecture notes are to a large extent based on [9] and [10]. There are some
corrections and minor changes of conventions. There are also some additions. A sys-
tematic derivation of all integral representations from “wave packets” in higher di-
mensions seems to be new.

There are a number of topics related to the hypergeometric class equation that we
do not touch. Let us mention the question whether hypergeometric functions can be
expressed in terms of algebraic functions. This topic, in the context of 𝒜-hypergeo-
metric functions was considered, e. g., in the interesting papers [5, 7].

We stick to a rather limited class of equations and functions (1)–(5). They have
a surprisingly rich structure, which often seems to be lost in more general classes.
Nevertheless, it is natural to ask how far one can generalize the ideas of these notes
to other equations and functions, such as higher hypergeometric functions,multivari-
able hypergeometric functions,Heun functions,q-hypergeometric functions, Painlevé
equations.

2 Hypergeometric class equations

In this short section, we fix our terminology concerning hypergeometric class equa-
tions and functions.
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2.1 Remarks on notation
Weuse 𝜕w for the operator of differentiation in the variablew. Wewill understand that
the operator 𝜕w acts on the whole expression on its right:

𝜕wf (w)g(w) = 𝜕w(f (w)g(w)). (19)

If wewant to restrict the action of 𝜕w to the term immediately to the right, wewill write
f (w),w, or simply f 󸀠(w).

We use lhs and rhs as the abbreviations for the left-hand side and right-hand side.

2.2 Generalized hypergeometric series
For a ∈ ℂ and j ∈ ℕ, we define the Pochhammer symbol

(a)j := a(a + 1) ⋅ ⋅ ⋅ (a + j − 1).

For a1, . . . , ak ∈ ℂ, c1, . . . , cm ∈ ℂ\{0, −1, −2, . . . }, we define the kFm generalized
hypergeometric series, or for brevity the kFm series:

kFm(a1, . . . , ak ; c1, . . . , cm;w) :=
∞

∑
j=0

(a1)j ⋅ ⋅ ⋅ (ak)jwj

(c1)j ⋅ ⋅ ⋅ (cm)jj!
. (20)

By the d’Alembert criterion,
(1) ifm + 1 > k, the series (20) is convergent for w ∈ ℂ;
(2) ifm + 1 = k, the series (20) is convergent for |w| < 1;
(3) if m + 1 < k, the series (20) is divergent, however, sometimes a certain function

can be naturally associated with (20).

The corresponding analytic function will be called the kFm function.
The zeroth-order term of the series (20) is 1. A different normalization of (20) is

often useful:

kFm(a1, . . . , ak ; c1, . . . , cm;w) := kFm(a1, . . . , ak ; c1, . . . , cm;w)
Γ(c1) ⋅ ⋅ ⋅ Γ(cm)

=
∞

∑
j=0

(a1)j ⋅ ⋅ ⋅ (ak)jwj

Γ(c1 + j) ⋅ ⋅ ⋅ Γ(cm + j)j!
. (21)

In (21), we do not have to restrict the values of c1, . . . , cm ∈ ℂ.

2.3 Generalized hypergeometric equations
Theorem 2.1. The kFm function (20) solves the differential equation

(c1 + w𝜕w) ⋅ ⋅ ⋅ (cm + w𝜕w)𝜕wF(a1, . . . , ak ; c1, . . . , cm;w)
= (a1 + w𝜕w) ⋅ ⋅ ⋅ (ak + w𝜕w)F(a1, . . . , ak ; c1, . . . , cm;w). (22)
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Proof. We check that both the lhs and rhs of (22) are equal to

a1 ⋅ ⋅ ⋅ akF(a1 + 1, . . . , ak + 1; c1, . . . , cm;w).

We will call (22) the kℱm equation. It has the order max(k,m + 1). Below we list all
kFm functions with equations of the order at most 2.
– The 2F1 function or the Gauss hypergeometric function

F(a, b; c;w) =
∞

∑
n=0

(a)n(b)n
n!(c)n

wn.

The series is convergent for |w| < 1, and it extends to a multivalued function on
a covering of ℂ\{0, 1}. It is a solution of the Gauss hypergeometric equation or the
2ℱ1 equation

(w(1 − w)𝜕2w + (c − (a + b + 1)w)𝜕w − ab)f (w) = 0.

– The 1F1 function or Kummer’s confluent function

F(a; c;w) =
∞

∑
n=0

(a)n
n!(c)n

wn.

The series is convergent for all w ∈ ℂ. It is a solution of Kummer’s confluent equa-
tion or the 1ℱ1 equation

(w𝜕2w + (c − w)𝜕w − a)f (w) = 0.

– The 0F1 function

F(−; c;w) = F(c;w) =
∞

∑
n=0

1
n!(c)n

wn.

The series is convergent for all w ∈ ℂ. It is a solution of the 0ℱ1 equation (related
to the Bessel equation)

(w𝜕2w + c𝜕w − 1)f (w) = 0.

– The 2F0 function
For argw ̸= 0, we define

F(a, b; −;w) := lim
c→∞

F(a, b; c; cw).

It extends to an analytic function on the universal cover of ℂ\{0} with a branch
point of an infinite order at 0. It has the following divergent but asymptotic ex-
pansion:

F(a, b; −;w) ∼
∞

∑
n=0

(a)n(b)n
n!

wn, | argw − π| < π − ϵ, ϵ > 0.
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16 | J. Dereziński

It is a solution of the 2ℱ0 equation

(w2𝜕2w + (−1 + (a + b + 1)w)𝜕w + ab)f (w) = 0.

By a simple transformation described in Subsection 8.10, it is equivalent to the
1ℱ1 equation.

– The 1F0 function or the power function

F(a; −;w) = (1 − w)−a =
∞

∑
n=0

(a)n
n!

wn.

It solves

((w − 1)𝜕w − a)f (w) = 0.

– The 0F0 function or the exponential function

F(−; −;w) = ew =
∞

∑
n=0

1
n!
wn.

It solves

(𝜕w − 1)f (w) = 0.

2.4 Hypergeometric class equations

Following [40], equations of the form

(σ(w)𝜕2w + τ(w)𝜕w + η)f (w) = 0, (23)

where

σ is a polynomial of degree ≤ 2, (24a)
τ is a polynomial of degree ≤ 1, (24b)
η is a number, (24c)

will be called hypergeometric class equations. Solutions of (23) will go under the name
of hypergeometric class functions. Operators σ(w)𝜕2w + τ(w)𝜕w +ηwith σ, τ, η satisfying
(24) will be called hypergeometric class operators.

Let us review basic classes of hypergeometric class equations. We will always as-
sume thatσ(w) ̸= 0. Every classwill be simplifiedbydividingbya constant and, except
for (32), by an affine change of the complex variable w.

The 2ℱ1 or Gauss hypergeometric equation

(w(1 − w)𝜕2w + (c − (a + b + 1)w)𝜕w − ab)f (w) = 0. (25)
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Group-theoretical origin of symmetries of hypergeometric class equations | 17

The 2F0 equation

(w2𝜕2w + (−1 + (1 + a + b)w)𝜕w + ab)f (w) = 0. (26)

The 1ℱ1 or Kummer’s confluent equation

(w𝜕2w + (c − w)𝜕w − a)f (w) = 0. (27)

The 0ℱ1 equation

(w𝜕2w + c𝜕w − 1)f (w) = 0. (28)

The Hermite equation

(𝜕2w − 2w𝜕w − 2a)f (w) = 0. (29)

Second-order Euler equation

(w2𝜕2w + bw𝜕w + a)f (w) = 0. (30)

First-order Euler equation for the derivative

(w𝜕2w + c𝜕w)f (w) = 0. (31)

Second-order equation with constant coefficients

(𝜕2w + c𝜕w + a)f (w) = 0. (32)

Note that the equations (30), (31) and (32) are elementary. The remaining ones
(25), (26), (27), (28) and (29) are the subject of these lecture notes. This is why they
are contained in the list (1)–(5) given at the beginning of these notes. (Actually, (26) is
not explicitly mentioned in this list, however, it is equivalent to (27), so that these two
equations are treated together.) This list contains also

The Gegenbauer equation

((1 − w2)𝜕2w − (a + b + 1)w𝜕w − ab)f (w) = 0, (33)

which can be reduced to a subclass of 2ℱ1 equations by a simple affine transforma-
tion. Its distinguishing property is the invariance with respect to the reflection. The
Gegenbauer equation has special properties, which justify its separate treatment.
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3 (Pseudo-)Euclidean spaces
In this section, we introduce basic terminology and notation related to Lie algebras
and groups acting on functions on ℝn or, more generally, on manifolds. Lie algebras
will be usually represented as first-order differential operators. Lie groups will typi-
cally act as point transformations times multipliers.

Wewill discuss various operators related to (pseudo-)orthogonal Lie algebras and
groups. In particular, we will introduce a convenient notation to describe their Cartan
algebras, root operators and Weyl groups. We will also discuss briefly the Laplacian
and the Casimir operator.

We will describe some special classes of harmonic functions—solutions of the
Laplace equation. Of particular importance will be solutions that at the same time
are eigenfunctions of the Cartan algebra. This construction will involve a contour in-
tegral, which can be viewed as amodification of the Fourier or Mellin transformation.
These solutions will be informally called wave packets.

Finally, in the last subsection we will show how to construct a harmonic function
in n−1 dimension from a harmonic function in n dimensions.

3.1 Basic notation
We will write ℝ× for ℝ\{0}, ℝ+ for ]0,∞[ and ℝ− for ]−∞,0[. We write ℂ× for ℂ\{0}.

We will treat ℝn as a (real) subspace of ℂn. If possible, we will often extend func-
tions from real domains to holomorphic functions on complex domains.

In the following two subsections, Ω,Ω1,Ω2 are open subsets ofℝn, or more gener-
ally, manifolds.

Often it is advantageous to consider a similar formalism where Ω,Ω1,Ω2 are open
subsets of ℂn, or more generally, complex manifolds. We will usually stick to the ter-
minology typical for the real case. The reader can easily translate it to the complex
picture, if needed.

3.2 Point transformations with multipliers
Let α : Ω1 → Ω2 be a diffeomorphism. The transport of functions by the map α will be
also denoted by α.1 More precisely, for f ∈ C∞(Ω1) we define αf ∈ C∞(Ω2) by

(αf )(y) := f (α−1(y)).

Ifm ∈ C∞(Ω2), then we have a mapmα : C∞(Ω1) → C∞(Ω2) given by

(mαf )(y) := m(y)f (α−1(y)). (34)

Transformations of the form (34) will be called point transformations with a multiplier.

1 An alternative notation used often in mathematical literature for the transport by α is α∗ or (α∗)−1.
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Group-theoretical origin of symmetries of hypergeometric class equations | 19

Clearly, transformations of the form (34) with Ω = Ω1 = Ω2 and m everywhere
nonzero form a group.

3.3 First-order differential operators

A vector field X on Ω will be identified with the differential operator

Xf (y) = ∑
i
Xi(y)𝜕yi f (y), f ∈ C∞(Ω),

where Xi ∈ C∞(Ω), i = 1, . . . , n. More generally, we will often use first-order differential
operators

(X +M)f (y) := ∑
i
Xi(y)𝜕yi f (y) +M(y)f (y), (35)

whereM ∈ C∞(Ω). Clearly, the set of operators of the form (35) is a Lie algebra.
Let α : Ω1 → Ω2 be a diffeomorphism. If X is a vector field on Ω1, then α(X) is the

vector field on Ω2 defined as

α(X) := αXα−1.

3.4 Affine linear transformations

The general linear group is denoted GL(ℝn). It has a natural extension AGL(ℝn) :=
ℝn ⋊ GL(ℝn) called the affine general linear group. (w, α) ∈ AGL(ℝn) acts on ℝn by

ℝn ∋ y 󳨃→ w + αy ∈ ℝn.

The permutation group Sn can be naturally identified with a subgroup of GL(ℝn).
If π ∈ Sn, then

(πy)i := yπ
−1
i .

On the level of functions, we have

πf (y1, . . . , yn) = f (yπ1 , . . . , yπn).

The Lie algebra gl(ℝn) represented by vector fields on ℝn is spanned by yi𝜕yj .
The Lie algebra agl(ℝn) := ℝn ⋊ gl(ℝn) is spanned by gl(ℝn) and by 𝜕yi .
A special element of gl(ℝn) is the generator of dilations, known also as the Euler

vector field,

An :=
n
∑
i=1

yi𝜕yi . (36)

We will often use the complex versions of the above groups, with ℝ replaced
with ℂ. We will write GL(n) and gl(n), where the choice of the field follows from the
context.
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3.5 (Pseudo-)orthogonal group

Apseudo-Euclidean space isℝn equippedwith a symmetric nondegeneraten×nmatrix
g = [gij]. g defines the scalar product of vectors x, y ∈ ℝn and the square of a vector
x ∈ ℝn:

⟨x|y⟩ := ∑
ij
xigijy

j, ⟨x|x⟩ = ∑
ij
xigijx

j.

The matrix [gij] will denote the inverse of [gij].
We will denote by 𝕊n−1(R) the sphere in ℝn of squared radius R ∈ ℝ:

𝕊n−1(R) := {y ∈ ℝn : ⟨y|y⟩ = R}. (37)

We will write 𝕊n−1 := 𝕊n−1(1).
Actually, 𝕊n−1 is the usual sphere only for the Euclidean signature. For non-

Euclidean spaces it is a hyperboloid. Usually we will keep a uniform notation for all
signatures. Occasionally, if we want to stress that 𝕊n−1 has a specific signature, it will
be denoted 𝕊q,p−1, where the signature of the ambient space is (q, p) (see (40)).

We also introduce the null quadric

𝒱n−1 := 𝕊n−1(0)\{0}. (38)

The (pseudo-)orthogonal and the special (pseudo-)orthogonal group of g are de-
fined as

O(g) := {α ∈ GL(n) : ⟨αy|αx⟩ = ⟨y|x⟩, y, x ∈ ℝn},
SO(g) := {α ∈ O(g) : det α = 1}.

We also have the affine (special) orthogonal group AO(g) := ℝn ⋊ ←(g), ASO(g) :=
ℝn ⋊ SO(g).

It is easy to see that thepseudo-orthogonal Lie algebra, representedby vector fields
on ℝn, can be defined by

so(g) := {B ∈ gl(n) : B⟨y|y⟩ = 0}.

For i, j = 1, . . . , n, define

Bij := ∑
k
(giky

k𝜕yj − gjky
k𝜕yi).

{Bij : i < j} is a basis of so(g). Clearly, Bij = −Bji and Bii = 0.
The affine pseudo-orthogonal Lie algebra aso(g) := ℝn ⋊ so(g) is spanned by 𝜕yi

and so(g).
We will often use the complex versions of the above groups and Lie algebras. In

the real formalism, we have to distinguish between various signatures of g—in the
complex formalism there is only one signature and we can drop the prefix pseudo.
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3.6 Invariant operators

Consider a pseudo-Euclidean space ℝn. We define the Laplacian and the Casimir op-
erator

Δn :=
n
∑
i,j=1

gij𝜕yi𝜕yj ,

𝒞n :=
1
2

n
∑

i,j,k,l=1
gikgjlBijBkl.

The above definitions do not depend on the choice of a basis. Δn commuteswith AO(g)
and aso(g). 𝒞n commutes with O(g) and so(g).

Note the identity

⟨y|y⟩Δn = A
2
n + (n − 2)An + 𝒞n, (39)

where An is defined in (36).

3.7 Orthonormal coordinates

Suppose that q + p = n. Every scalar product of signature (q, p) can be brought to the
form

⟨y|y⟩ = −
q
∑
i=1

y2i +
q+p
∑
j=q+1

y2j . (40)

so(g) has a basis consisting of

Bij = −yi𝜕yj + yj𝜕yi , 1 ≤ i < j ≤ q; (41a)

Bij = yi𝜕yj + yj𝜕yi , 1 ≤ i ≤ q, q < j ≤ n; (41b)

Bij = yi𝜕yj − yj𝜕yi , q < i < j ≤ n. (41c)

The Laplacian and the Casimir operator are

Δn = − ∑
1≤i≤q
𝜕2yi + ∑

q<j≤n
𝜕2yj , (42)

𝒞n = ∑
1≤i<j≤q

B2ij + ∑
q<i<j≤n

B2ij − ∑
1≤i≤q,
q<j≤n

B2ij. (43)

We will rarely use orthonormal coordinates.
In the context of the signature (q, p), the standard notation for the orthogonal

groups/Lie algebras is O(q, p), AO(q, p), so(q, p), aso(q, p). We will however often
use the notation O(n), AO(n), so(n), aso(n), without specifying the signature of the
quadratic form, and even allowing for an arbitrary choice of the field (ℝ or ℂ).
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3.8 Split coordinates

Suppose that 2m = n. (m,m)will be called the split signature. If the scalar product has
such a signature, we can find coordinates such that

⟨y|y⟩ =
m
∑
i=1

2y−iyi. (44)

We will say that (44) is a scalar product in split coordinates.
so(2m) has a basis consisting of

Ni := B−ii = −y−i𝜕y−i + yi𝜕yi , j = 1, . . . ,m, (45a)
Bij = y−i𝜕yj − y−j𝜕yi , 1 ≤ |i| < |j| ≤ m. (45b)

The subalgebra of so(2m) spanned by (45a) is maximal commutative. It is called
the Cartan algebra of so(2m). (45b) are its root operators. They satisfy

[Nk ,Bij] = −(sgn(i)δk,|i| + sgn(j)δk,|j|)Bij.

The Laplacian and the Casimir operator are

Δ2m =
m
∑
i=1

2𝜕y−i𝜕yi , (46)

𝒞2m = ∑
1≤|i|<|j|≤m

BijB−i−j −
m
∑
i=1

N2
i . (47)

Supposenow that 2m+1 = n. In this case, (m,m+1)will be called the split signature.
Every scalar product of such signature can be brought to the form

⟨y|y⟩ = y20 +
m
∑
i=1

2y−iyi. (48)

We will say that (48) is a scalar product in split coordinates.
so(2m + 1) has then a basis consisting of the above described basis of so(2m) and

B0j = y0𝜕yj − y−j𝜕y0 , |j| = 1, . . . ,m. (49)

The additional roots satisfy

[Nk ,B0j] = −sgn(j)δk,|j|B0j. (50)

The subalgebra spanned by (45a) is still maximal commutative in so(2m+1). It is called
a Cartan algebra of so(2m + 1).
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We have

Δ2m+1 = 𝜕
2
y0 +

m
∑
i=1

2𝜕y−i𝜕yi , (51)

𝒞2m+1 =
m
∑
|i|=1

B0iB0−i + ∑
1≤|i|<|j|≤m

BijB−i−j −
m
∑
i=1

N2
i . (52)

In the real case, we will most often consider the split signature, both in even and
odd dimensions. In both real and complex cases, we will usually prefer split coordi-
nates. We will often write (44) and (48) in the form

⟨y|y⟩ = ∑
|i|≤m

y−iyi, (53)

where it is understood that i ∈ {−m, . . . , −1, 1, . . . ,m} in the even case and i ∈ {−m, . . . , −1,
0, 1, . . . ,m} in the odd case.

3.9 Weyl group

In this subsection, we introduce a certain finite subgroup of O(n), which will be called
the Weyl group. We will also introduce a notation for elements of these groups. The
reader is referred to Subsections 5.1 and 6.1, for examples of application of this nota-
tion.Wewill assume that the signature is split and split coordinates have been chosen.

Consider first dimension 2m. Permutations of {−1, . . . , −m}∪{1, . . . ,m} that preserve
the pairs {−1, 1}, . . . {−m,m} define elements of O(2m). They form a group that we will
denote Dm. It is isomorphic to ℤm2 ⋊ Sm. It is the Weyl group of O(2m).

The flip interchanging −i, i will be denoted τi. The flips τi, with i = 1, . . . ,m, gener-
ate a subgroup of Dm isomorphic to ℤm2 .

To every π ∈ Sm there corresponds an element of Dm denoted σπ , that permutes
pairs (−i, i). We have

σπf (y−1, y1, . . . , y−m, ym) := f (y−π1 , yπ1 , . . . , y−πm , yπm ). (54)

Let ϵ = (ϵ1, . . . , ϵm) and ϵ1, . . . , ϵm ∈ {1, −1}. We will write ϵπ as the shorthand for
ϵ1π1, . . . , ϵmπm. We will use the notation

σϵπ := σπ ∏
ϵj=−1

τj. (55)

We have

σϵπBijσ
−1
ϵπ = Bϵiπi ,ϵjπj ; σϵπNjσ−1ϵπ = ϵjNπj .
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Usingℝ2m+1 = ℝ⊕ℝ2m, we embedDm in O(2m+1).We also introduce τ0 ∈ O(2m+1)
given by

τ0f (y0, y−1, y1, . . . , y−m, ym) := f (−y0, y−1, y1, . . . , y−m, ym). (56)

Clearly, τ0 commutes with Dm. The group Bm is defined as the group generated by Dm
and τ0. It is isomorphic to ℤ2 × ℤm2 ⋊ Sm. It is the Weyl group of O(2m + 1).

We set

τϵπ := τ0σϵπ .

We have

τϵπB0jτ
−1
ϵπ = −B0,ϵjπj , τϵπBijτ

−1
ϵπ = Bϵiπi ,ϵjπj , τϵπNjτ

−1
ϵπ = ϵjNπj .

3.10 Harmonic functions

Suppose that ℝn is equipped with a scalar product. We say that a function F on ℝn is
harmonic if

ΔnF = 0. (57)

Proposition 3.1. Let e1, . . . ek ∈ ℝn satisfy

⟨ei|ej⟩ = 0, 1 ≤ i, j ≤ k.

In other words, assume that e1, . . . , ek span an isotropic subspace ofℝn. Let f be a func-
tion of k variables. Then

F(z) := f (⟨e1|z⟩, . . . , ⟨ek |z⟩)

is harmonic.

For instance, consider ℝn with a split scalar product, where n = 2m or n = 2m + 1.
Then any function f (y1, . . . , ym) is harmonic, for instance,

Fα1 ,...αm := y
α1
1 ⋅ ⋅ ⋅ y

αm
m , (58)

which in addition satisfies

NjFα1 ,...αm = αjFα1 ,...αm . (59)

Harmonic functions satisfying in addition the eigenvalue equations (59) will play
an important role in our approach. Unfortunately, functions of the form (58) consti-
tute a rather narrow class. We need more general harmonic functions, which we will
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call wave packets. They are obtained by smearing a rotated (58) with an appropriate
weight, so that it is an eigenfunction of Cartan operators. This construction will be ex-
plained in the Subsections 3.11–3.13. It is essentially a version of the Fourier (orMellin)
transformation, possibly with a deformed complex contour of integration.

Note that the aim of Subsections 3.11 and 3.12 is to provide motivation, based on
the concept of the Fourier transformation, for Subsection 3.13,which contains the con-
struction that will be used in what follows.

3.11 Eigenfunctions of angular momentum I

Suppose that ℝn = ℝ2 ⊕ ℝn−2, where we write z = (x, y, z󸀠) ∈ ℝn and

⟨x, y, z󸀠󵄨󵄨󵄨󵄨x, y, z
󸀠⟩ = x2 + y2 + ⟨z󸀠󵄨󵄨󵄨󵄨z

󸀠⟩.

Set

N1 := −i(x𝜕y − y𝜕x).

Letm ∈ ℤ. Consider a function f (x, y, z󸀠). Then

Fm(x, y, z
󸀠) :=

1
2π

2π

∫
0

f (cosϕx − sinϕy, sinϕx + cosϕy, z󸀠)e−imϕ dϕ, (60)

satisfies N1Fm(x, y, z
󸀠) = mFm(x, y, z

󸀠). (61)

Note that if f is harmonic, then so is Fm. This construction is essentially the Fourier
transformation.

Introduce complex coordinates

z±1 :=
1
√2
(x ± iy). (62)

We will write f (z−1, z1, z󸀠) = f (x, y, z󸀠), Fm(z−1, z1, z󸀠) = F(x, y, z󸀠). The operator N1 takes
the familiar form

N1 = −z−1𝜕z−1 + z1𝜕z1 , (63)

and the metric becomes

⟨z−1, z1, z
󸀠󵄨󵄨󵄨󵄨z−1, z1, z

󸀠⟩ = 2z−1z1 + ⟨z
󸀠󵄨󵄨󵄨󵄨z
󸀠⟩. (64)

Then (60) and (61) can be rewritten as

Fm(z−1, z1, z
󸀠) :=

1
2πi
∫
γ

f (τ−1z−1, τz1, z
󸀠)τ−m−1 dτ, (65)

N1Fm(z−1, z1, z
󸀠) = mFm(z−1, z1, z

󸀠), (66)

where γ is the closed contour [0, 2π[ ∋ ϕ 󳨃→ τ = eiϕ.
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3.12 Eigenfunctions of angular momentum II

We again consider ℝn = ℝ2 ⊕ ℝn−2, but we change the signature of the metric. We
assume that the scalar product is given by

⟨z−1, z1, z
󸀠󵄨󵄨󵄨󵄨z−1, z1, z

󸀠⟩ = 2z−1z1 + ⟨z
󸀠󵄨󵄨󵄨󵄨z
󸀠⟩. (67)

We start from a function f (z−1, z1, z󸀠). We would like to construct an eigenfunction of
N1 with a generic eigenvalue α, and not only with integer eigenvalues as (65). To do
this, we repeat a similar procedure as in the previous subsection. Now, however, we
need to integrate over a half-line, so we need conditions at the ends: we assume that

f (τ−1z−1, τz1, z
󸀠)τ−α󵄨󵄨󵄨󵄨

τ=∞
τ=0 = 0. (68)

We set

Fα :=
1
2πi

∞

∫
0

f (τ−1z−1, τz1, z
󸀠)τ−α−1 dτ. (69)

Then, with N1 given by (63),

N1Fα(z−1, z1, z
󸀠) = αFα(z−1, z1, z

󸀠). (70)

Indeed,

𝜕τf (τ
−1z−1, τz1, z

󸀠)τ−α

= −αf (τ−1z−1, τz1, z
󸀠)τ−α−1

− τ−2z−1𝜕1f (τ
−1z−1, τz1, z

󸀠)τ−α + z1𝜕2f (τ
−1z−1, τz1, z

󸀠)τ−α

= (−α − z−1𝜕z−1 + z1𝜕z1 )f (τ
−1z−1, τz1, z

󸀠)τ−α−1.

Hence

0 = 1
2πi

∞

∫
0

dτ𝜕τf (τ
−1z−1, τz1, z

󸀠)τ−α = (−α + N1)Fα. (71)

Note that Fα is the Mellin transform of τ 󳨃→ f (τ−1z−1, τz1, z󸀠). If f is harmonic, then
so is Fα.

3.13 Eigenfunctions of angular momentum III

Assume now that z−1, z1, z󸀠 are complex variables and f is holomorphic. Then we can
formulate a result that includes (61) and (70), allowing for a greater flexibility of the
choice of the contour of integration.
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Proposition 3.2. Suppose that ]0, 1[ ∋ s
γ
󳨃→ τ(s) is a contour on the Riemann surface of

τ 󳨃→ f (τ−1z−1, τz1, z
󸀠)τ−α

that satisfies

f (τ−1z−1, τz1, z
󸀠)τ−α󵄨󵄨󵄨󵄨

τ(1)
τ(0) = 0. (72)

Then

Fα :=
1
2πi
∫
γ

f (τ−1z−1, τz1, z
󸀠)τ−α−1 dτ (73)

solves

N1Fα = αFα.

Proof. We repeat the arguments of the previous subsection, where we replace [0,∞[
with γ.

3.14 Dimensional reduction

In this subsection, we describe how to construct harmonic functions in n − 1 dimen-
sions out of a harmonic function in n dimensions.

Suppose that ℝn is equipped with the scalar product

⟨z−1, z1, z
󸀠󵄨󵄨󵄨󵄨z−1, z1, z

󸀠⟩n = 2z−1z1 + ⟨z
󸀠󵄨󵄨󵄨󵄨z
󸀠⟩n−2.

As usual, we write

N1 = −z−1𝜕z−1 + z1𝜕z1 , (74)

Δn = 2𝜕z−1𝜕z1 + Δn−2. (75)

Introduce new variables and the Laplacian in n−1 dimensions.

z0 : = √2z−1z1, u := √
z1
z−1
, (76)

Δn−1 := 𝜕
2
z0 + Δn−2. (77)

In the new variables,

N1 = u𝜕u, (78)

Δn = 𝜕
2
z0 +

1
z0
𝜕z0 −

1
z20
(u𝜕u)

2 + Δn−2. (79)
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Consequently,

z
1
2
0Δnz
− 12
0 = −

1
z20
(N1 −

1
2
)(N1 +

1
2
) + Δn−1. (80)

Therefore, if we set

F±(z0, u, z
󸀠) = u±

1
2 z−

1
2

0 f±(z0, z
󸀠), (81)

then

N1F± = ±
1
2
F±, (82)

z
1
2
0 u
∓ 12 ΔnF± = Δn−1f±. (83)

Hence, the n − 1-dimensional Laplace equation Δn−1f = 0 is essentially equivalent to
the n-dimensional Laplace equation ΔnF = 0 restricted to the eigenspace of N1 = ±

1
2 .

4 Conformal invariance of the Laplacian

Conformal manifolds are manifolds equipped with a conformal structure—a pseudo-
Euclidean metric defined up to a positive multiplier. Conformal transformations are
transformations that preserve the conformal structure.

Themain objects of this section areprojective null quadrics. Theypossess anatural
conformal structure with an exceptionally large group of conformal transformations.
In fact, on the n+2 dimensional pseudo-Euclidean ambient spacewehave the obvious
action of the pseudo-orthogonal Lie algebra and group. This action is inherited by the
n + 1 dimensional null quadric 𝒱, and then by its n-dimensional projectivization 𝒴.
One can view 𝒴 as the base of the line bundle 𝒱 → 𝒴. By choosing a section γ of
this bundle, we can equip 𝒴 with a pseudo-Riemannian structure. Choosing various
sections defines metrics that differ only by a positive multiple—thus 𝒴 has a natural
conformal structure. If the signature of the ambient space is (q + 1, p + 1), then the
signature of 𝒴 is (q, p).

We discuss a few examples of pseudo-Riemannian manifolds conformally equiv-
alent to 𝒴 or to its open dense subset. The main example is the flat pseudo-Euclidean
space. Another example is the product of two spheres 𝕊q × 𝕊p, which is conformally
equivalent to the entire 𝒴 of signature (q, p).

Especially simple and important are the low dimensional cases: in 1 dimension
𝒴 ≃ 𝕊1 and in 2 dimensions 𝒴 ≃ 𝕊1 × 𝕊1. One should however remark that the di-
mensions 1 and 2 are somewhat special—in these dimensions, the full conformal Lie
algebra is infinite dimensional, and the above construction gives only its subalgebra.

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 10.02.20 14:06



Group-theoretical origin of symmetries of hypergeometric class equations | 29

Conformal transformations are generalized symmetries of the Laplacian. One can
see this with help of a beautiful argument that goes back to Dirac. Its first step is the
construction of a certain geometrically defined operator denoted Δ⬦n+2, that transforms
functions on 𝒱 homogeneous of degree 1 − n

2 into functions homogeneous of degree
−1− n2 . After fixing a section γ of the line bundle 𝒱 → 𝒴, we can identify the somewhat
abstract operator Δ⬦n+2 with a concrete operator Δ

γ
n+2 acting on functions on γ(𝒴). This

operator turns out to be the Yamabe Laplace–Beltrami operator for the corresponding
pseudo-Riemannian structure.

On the n + 2-dimensional ambient space the Laplacian Δn+2 obviously commutes
with the pseudo-orthogonal Lie algebra and group. On the level of γ(𝒴), this commu-
tation becomes a transmutation of Δγn+2 with two different representations—one cor-
responding to the degree 1 − n

2 , the other corresponding to the degree −1 −
n
2 .

At the end of this section, we consider in more detail the conformal action of the
pseudo-orthogonal Lie algebra and group corresponding to the degree of homogene-
ity η on the flat pseudo-Euclidean space. In particular, we compute the representa-
tions for all elements of thepseudo-orthogonal Lie algebra. For thepseudo-orthogonal
group, we compute the representations of Weyl symmetries.

4.1 Pseudo-Riemannian manifolds

We say that amanifold𝒴 is pseudo-Riemannian if it is equippedwith a nondegenerate
symmetric covariant 2-tensor

𝒴 ∋ y 󳨃→ g(y) = [gij(y)],

called themetric tensor. For any vector field Y , it defines a function g(Y ,Y) ∈ C∞(𝒴):

𝒴 ∋ y 󳨃→ g(Y ,Y)(y) := gij(y)Y
i(y)Y j(y).

Let α be a diffeomorphism of 𝒴. As is well known, the tensor g can be transported
by α. More precisely, α∗(g) is defined by

α∗(g)(Y ,Y) := g(α(Y), α(Y)),

where Y is an arbitrary vector field. We say that α is isometric if α∗g = g.
Let X be a vector field. The Lie derivative in the direction of X can be applied to

the tensor g. More precisely, ℒXg is defined by

(ℒXg)(Y ,Y) := g([X,Y],Y) + g(Y , [X,Y]).

We say that a vector field X is Killing if ℒXg = 0.
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4.2 Conformal manifolds

We say that the metric tensor g1 is conformally equivalent to g if there exists a positive
functionm ∈ C∞(𝒴) such that

m(y)g(y) = g1(y).

Clearly, the conformal equivalence is an equivalence relation in the set of metric ten-
sors. We say that a manifold 𝒴 is equipped with a conformal structure, if it is equipped
with an equivalence class of conformally equivalent metric tensors.

We say that a diffeomorphism α is conformal if for some metric tensor g in the
conformal class of 𝒴, α∗g is conformally equivalent to g. Clearly, this is equivalent to
saying that for all g in the conformal class of 𝒴, α∗g is conformally equivalent to g.

We say that a vector field X is conformal Killing if for any metric tensors from the
conformal class of 𝒴 there existsM ∈ C∞(𝒴) such that

ℒXg = Mg. (84)

Clearly, if (84) is true for one metric tensor g from the conformal class of 𝒴, it is true
for all metric tensors conformally equivalent to g.

4.3 Projective null quadric

Consider a pseudo-Euclidean vector space (ℝn+2, g) of signature (q + 1, p + 1), which
we will call the ambient space. Recall that

𝒱n+1 := {z ∈ ℝn+2 : ⟨z|z⟩ = 0, z ̸= 0},

is the null quadric. For simplicity, we will often write 𝒱 for 𝒱n+1.
The scaling, that is the action of ℝ×, preserves 𝒱. Let 𝒴 := 𝒱/ℝ× be the projective

null quadric. We obtain a line bundle 𝒱 → 𝒴 with the base 𝒴 and the fiber ℝ×.
Let 𝒴i be an open subset of 𝒴 and 𝒱i be the corresponding open subset of 𝒱. Let

𝒴i ∋ y 󳨃→ γi(y) ∈ 𝒱i

be a section of the bundle 𝒱i → 𝒴i, that is a smooth map satisfying y = ℝ×γi(y). Let gγi
be the metric tensor g restricted to γi(𝒴i) transported to 𝒴i.

It is easy to prove the following fact.

Proposition 4.1. Let γi, i = 1, 2, be sections of 𝒱i → 𝒴i. Then gγi are metrics on 𝒴i of
signature (q, p). The metrics gγ1 and gγ2 restricted to 𝒴1 ∩𝒴2 are conformally equivalent.

Proposition 4.1 equips 𝒴 with a conformal structure.
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Choosing a section in the bundle 𝒱 → 𝒴 endows𝒴 with the structure of a pseudo-
Riemannianmanifold. For some special sections, we obtain in particular various sym-
metric spaces together with an explicit description of their conformal structure. In fol-
lowing subsections, we present a few examples of this construction.

Instead of𝒴 one can consider ̃𝒴 := 𝒱/ℝ+.Weobtain a bundle𝒱 → ̃𝒴 withfibreℝ+,
which has similar properties as the bundle 𝒱 → 𝒴. It is a double covering of 𝒴, which
means that we have a canonical 2 − 1 surjection ̃𝒴 → 𝒴.

Let γ be a section of 𝒱 → 𝒴. Every y ∈ 𝒴 equalsℝ×γ(y), and hence it is the disjoint
union of ỹ+ := ℝ+γ(y) and ỹ− := ℝ−γ(y). Clearly, {ỹ+, ỹ−} ⊂ ̃𝒴 is the preimage of y under
the canonical covering. Let us set

γ̃(ỹ+) := γ(y), γ̃(ỹ−) := −γ(y). (85)

Then γ̃ is a section of the bundle𝒱 → ̃𝒴.Withhelp of γ̃wecan equip ̃𝒴 with ametric g̃ ̃γ.
Obviously, if 𝒴 is equipped with the metric gγ, the canonical surjection ̃𝒴 → 𝒴 is
isometric.

Wewould like to treat𝒴 as the principal object, since it has a direct generalization
to the complex case. However, for some purposes ̃𝒴 is preferable.

4.4 Projective null quadric as a compactification of a
pseudo-Euclidean space

Consider a pseudo-Euclidean space (ℝn, gn) of signature (q, p) embedded in the
pseudo-Euclidean space (ℝn+2, gn+2) of signature (q + 1, p + 1). We assume that the
square of a vector (z󸀠, z−, z+) ∈ ℝn+2 = ℝn ⊕ ℝ2 is

⟨z󸀠, z−, z+
󵄨󵄨󵄨󵄨z
󸀠, z−, z+⟩n+2 := ⟨z

󸀠󵄨󵄨󵄨󵄨z
󸀠⟩n + 2z+z−.

Set

𝒱0 := {(z
󸀠, z−, z+) ∈ 𝒱 : z− ̸= 0}, 𝒴0 := 𝒱0/ℝ

×.

𝒴0 is dense and open in 𝒴.
We have a bijection and a section

𝒴0 ∋ ℝ
× [[

[

y
1
− ⟨y|y⟩n2

]]

]

↔ y∈

ℝn

󳨃→ [[

[

y
1
− ⟨y|y⟩n2

]]

]

∈ 𝒱0. (86)

Thus ℝn is identified with 𝒴0. The metric on 𝒴0 given by the above section coincides
with theoriginalmetric onℝn.Wehave thus embeddedℝnwith its conformal structure
as a dense open subset of 𝒴.
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4.5 Projective null quadric as a sphere/compactification of a
hyperboloid

Consider a Euclidean space (ℝn+1, gn+1) embedded in a pseudo-Euclidean space
(ℝn+2, gn+2) of signature (1, n + 1). We assume that the square of a vector (z󸀠, z0) ∈
ℝn+1 ⊕ ℝ = ℝn+2 is

⟨z󸀠, z0
󵄨󵄨󵄨󵄨z
󸀠, z0⟩n+2 = ⟨z

󸀠󵄨󵄨󵄨󵄨z
󸀠⟩n+1 − z

2
0.

Recall that

𝕊n := {ω ∈ ℝn+1 : ⟨ω|ω⟩ = 1}

is the unit sphere of dimension n.
We have a bijection and a section

𝒴 ∋ ℝ× [
ω
1
] ↔ y∈

𝕊n

󳨃→ [
ω
1
] ∈ 𝒱 . (87)

Thus 𝕊n is identifiedwith𝒴. Themetric on𝒴 given by the above section coincideswith
the usual metric on 𝕊n.
̃𝒴 is in this case simply the disjoint sum of two copies of 𝕊n.

The above construction can be repeated with minor changes for a general sig-
nature. Indeed, let the signature of (ℝn+1, gn+1) be (q, p + 1), so that the signature of
(ℝn+2, gn+2) is (q + 1, p + 1). Set

𝒱0 := {(z
󸀠, z0) ∈ 𝒱 : z0 ̸= 0}, 𝒴0 := 𝒱0/ℝ

×.

We have then the bijection and section

𝒴0 ∋ ℝ
× [

ω
1
] ↔ ω∈

𝕊q,p

󳨃→ [
ω
1
] ∈ 𝒱0. (88)

Note that now instead of the unit Euclidean sphere we have the unit hyperboloid of
signature (q, p), which has been identified with 𝒴0, a dense open subset of 𝒴.

4.6 Projective null quadric as the Cartesian product of spheres

Consider now the space ℝn+2 of signature (q + 1, p + 1). The square of a vector ( ⃗t, x⃗) =
(t0, . . . , tq, x0, . . . , xp) is defined as

⟨ ⃗t, x⃗| ⃗t, x⃗⟩ := −t20 − ⋅ ⋅ ⋅ − t
2
q + x

2
0 + ⋅ ⋅ ⋅ + x

2
p. (89)
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Note that 𝕊q × 𝕊p is contained in 𝒱. It is easy to see that the map

𝒴 ∋ ℝ×(ρ⃗, ω⃗) 󳨃→(ρ⃗, ω⃗) ∈ 𝕊q × 𝕊p ⊂ 𝒱 , (90)

is a double covering. Indeed, we easily see that the map is onto and

ℝ×(ρ⃗, ω⃗) = ℝ×(−ρ⃗, −ω⃗).

Thus

𝒴 ≃ 𝕊q × 𝕊p/ℤ2, ̃𝒴 ≃ 𝕊
q × 𝕊p.

The map (90) can be interpreted as a section of 𝒱 → ̃𝒴. The corresponding metric
tensor on 𝒴 is minus the standard metric tensor on 𝕊q plus the standard metric tensor
on 𝕊p. Its signature is (q, p).

Again, similarly as in the previous subsection, the above construction can be gen-
eralized. Indeed, replace (89) with

⟨ ⃗t, x⃗| ⃗t, x⃗⟩ := − t20 − ⋅ ⋅ ⋅ − t
2
q1 + t

2
q1+1 + ⋅ ⋅ ⋅ + t

2
q1+p1

+ x20 + ⋅ ⋅ ⋅ + x
2
p1 − x

2
p1+1 − ⋅ ⋅ ⋅ x

2
p2+q2 .

We then obtain a map

𝒴 ∋ ℝ×(ρ⃗, ω⃗) 󳨃→(ρ⃗, ω⃗) ∈ 𝕊p1 ,q1 × 𝕊q2 ,p2 ⊂ 𝒱 . (91)

Unlike (90), the map (91) is in general not onto—it doubly covers only an open dense
subset of 𝒴.

4.7 Dimension n = 1

Consider now the dimension n = 1 in more detail. The ambient space is ℝ3 with the
split scalar product

⟨z|z⟩ = z20 + 2z−1z+1.

The 1-dimensional projective quadric is isomorphic to 𝕊1 or, what is the same, the
1-dimensional projective space:

𝒴1 ≃ 𝕊1 ≃ ℝ ∪ {∞} = P1ℝ.

Indeed, it is easy to see that

ϕ : ℝ ∪ {∞} → 𝒴1
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defined by

ϕ(s) := (s, 1, − 1
2
s2)ℝ×, s ∈ ℝ;

ϕ(∞) := (1,0,0)ℝ×

is a homeomorphism.
The group O(1, 2) acts on P1ℝ by homographies (Möbius transformations).
The Lie algebra so(1, 2) is spanned by

B0,1, B0,−1, N1,

with the commutation relations

[B0,1,B0,−1] = N1,

[B0,1,N1] = B0,1,

[B0,−1,N1] = −B0,−1.

Appying (52) withm = 1, we obtain its Casimir operator:

𝒞3 = 2B0,1B0,−1 − N
2
1 − N1 (92a)

= 2B0,−1B0,1 − N
2
1 + N1. (92b)

4.8 Dimension n = 2

Consider finally the dimension n = 2 in the signature (1, 1). The ambient space is ℝ4

with the split scalar product

⟨z|z⟩ = 2z−1z+1 + 2z−2z+2.

The 2-dimensional projective quadric is isomorphic to the product of two circles:

𝒴2 ≃ P1ℝ × P1ℝ.

Indeed, define

ϕ : (ℝ ∪ {∞}) × (ℝ ∪ {∞}) → 𝒴2

by

ϕ(t, s) := (−ts, 1, t, s)ℝ×, (93a)

ϕ(∞, s) := (−s,0, 1,0)ℝ×, (93b)
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ϕ(t,∞) := (−t,0,0, 1)ℝ×, (93c)

ϕ(∞,∞) := (−1,0,0,0)ℝ×, (93d)

where t, s ∈ ℝ. We easily check that ϕ is a homeomorphism. In fact, rewriting (93a) as

ϕ(t, s) = (−s, 1
t
, 1, s

t
)ℝ×

= (−t, 1
s
,
t
s
, 1)ℝ×

= (−1, 1
ts
,
1
s
,
1
t
)ℝ×,

we see the continuity of ϕ at (93b), (93c), respectively, (93d).
The Lie algebra so(2, 2) is spanned by

N1, N2, B1,2, B1,−2, B−1,2, B−1,−2.

Applying (52) withm = 2, we obtain its Casimir operator:

𝒞4 = 2B1,2B−1,−2 + 2B1,−2B−1,2 − N
2
1 − N

2
2 − 2N1.

As is well known, so(2, 2) decomposes into a direct sum of two copies of so(1, 2).
Concretely,

so(2, 2) = so+(1, 2) ⊕ so−(1, 2),

where so+(1, 2), respectively, so−(1, 2), both isomorphic to so(1, 2), are spanned by

B1,2, B−1,−2, N1 + N2; respectively, B1,−2, B−1,2, N1 − N2.

They have the commutation relations

[
B1,2
√2
,
B−1,−2
√2
] =

N1 + N2
2
, [

B1,−2
√2
,
B−1,2
√2
] =

N1 − N2
2
,

[
N1 + N2

2
,
B−1,−2
√2
] =

B−1,−2
√2
, [

N1 − N2
2
,
B−1,2
√2
] =

B−1,2
√2
,

[
N1 + N2

2
,
B1,2
√2
] = −

B1,2
√2
; [

N1 − N2
2
,
B1,−2
√2
] = −2

B1,−2
√2
.

The corresponding Casimir operators are

𝒞+3 = B1,2B−1,−2 −
1
4
(N1 + N2)

2 −
1
2
N1 −

1
2
N2

= B−1,−2B1,2 −
1
4
(N1 + N2)

2 +
1
2
N1 +

1
2
N2,
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𝒞−3 = B1,−2B−1,2 −
1
4
(N1 − N2)

2 −
1
2
N1 +

1
2
N2

= B−1,2B1,−2 −
1
4
(N1 − N2)

2 +
1
2
N1 −

1
2
N2.

Thus

𝒞4 = 2𝒞
+
3 + 2𝒞

−
3 .

In the enveloping algebra of so(2, 2), the operators 𝒞+3 and 𝒞−3 are distinct. They
satisfy α(𝒞−) = 𝒞+ for α ∈ O(2, 2)\SO(2, 2), for instance for α = τi, i = 1, 2.

However, inside the associative algebra of differential operators on ℝ4 we have
the identity

B1,2B−1,−2 − B−1,2B1,−2 = N1N2 + N1,

which implies

𝒞+3 = 𝒞
−
3

inside this algebra. Therefore, represented in the algebra of differential operators we
have

𝒞4 = 4B1,2B−1,−2 − (N1 + N2)
2 − 2N1 − 2N2 (94a)

= 4B−1,−2B1,2 − (N1 + N2)
2 + 2N1 + 2N2 (94b)

= 4B1,−2B−1,2 − (N1 − N2)
2 − 2N1 + 2N2 (94c)

= 4B−1,2B1,−2 − (N1 − N2)
2 + 2N1 − 2N2. (94d)

4.9 Conformal invariance of the projective null quadric

Obviously, O(n+2) and so(n+2) preserve𝒱. They commutewith the scaling (the action
of ℝ×). Therefore, we obtain the action on 𝒴 = 𝒱/ℝ×, which we denote as follows:

so(n + 2) ∋ B 󳨃→ B⬦, (95a)
O(n + 2) ∋ α 󳨃→ α⬦. (95b)

Clearly, the vector fieldsB⬦ are conformal Killing and the diffeomorphisms α⬦ are con-
formal.

Let η ∈ ℂ. We define Λη
+(𝒱) to be the set of smooth functions on 𝒱 (positively)

homogeneous of degree η, that is, satisfying

f (ty) = tηf (y), t > 0, y ∈ 𝒱 .

Clearly, B ∈ so(n + 2) and α ∈ O(n + 2) preserve Λη
+(𝒱). We will denote by

B⬦,η, respectively, α⬦,η the restriction of B, respectively, α to Λη
+(𝒱). Thus we have
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representations

so(n + 2) ∋ B 󳨃→ B⬦,η, (96a)
O(n + 2) ∋ α 󳨃→ α⬦,η, (96b)

acting on Λη
+(𝒴).

Clearly, Λ0
+(𝒱) can be identified with C∞( ̃𝒴). Moreover, (95a), respectively, (95b)

coincide with (96a), respectively, (96b) for η = 0.
If η ∈ ℤ, one can use another concept of homogeneity. We define Λη(𝒱) to be the

set of smooth functions on 𝒱 satisfying

f (ty) = tηf (y), t ̸= 0, y ∈ 𝒱 .

The properties of Λη(𝒱) are similar to Λη
+(𝒱), except that Λ

0(𝒱) can be identified with
C∞(𝒴).

4.10 Laplacian on homogeneous functions

The following theorem according to Eastwood [12] goes back to Dirac [11]. We find it
curious because it allows in some situations to restrict a second-order differential op-
erator to a submanifold.

Theorem 4.2. Let Ω ⊂ ℝn+2 be an open conical set. Let K ∈ C∞(Ω) be homogeneous of
degree 1 − n

2 such that

K|𝒱∩Ω = 0.

Then

Δn+2K|𝒱∩Ω = 0.

Before we give two proofs of this theorem, let us describe some of its conse-
quences.

Let k ∈ Λ1− n2
+ (𝒱). We can always findΩ, a conical neighborhood of 𝒱, andK ∈ 𝒜(Ω)

homogeneous of degree 1 − n
2 such that

k = K|𝒱 .

Note that Δn+2K is homogeneous of degree −1 − n
2 . We set

Δ⬦n+2k := Δn+2K|𝒱 . (97)

By Theorem 4.2, the above definition (97) does not depend on the choice of Ω and K.
We have thus defined a map

Δ⬦n+2 : Λ
1− n2
+ (𝒱) → Λ−1−

n
2

+ (𝒱). (98)
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Obviously,

BΔn+2 = Δn+2B, B ∈ so(n + 2), (99a)
αΔn+2 = Δn+2α, α ∈ O(n + 2). (99b)

Restricting (99) to Λ1− n2
+ (𝒱), we obtain

B⬦,−1−
n
2 Δ⬦n+2 = Δ

⬦
n+2B
⬦,1− n2 , B ∈ so(n + 2), (100a)

α⬦,−1−
n
2 Δ⬦n+2 = Δ

⬦
n+2α
⬦,1− n2 , α ∈ O(n + 2). (100b)

1st proof of Theorem 4.2. We use the decompositionℝn+2 = ℝn ⊕ℝ2 described in Sub-
section 4.4, with the distinguished coordinates denoted z−, z+. We denote the square
of a vector, the Laplacian, the Casimir, respectively, the generator of dilations onℝn+2

by Rn+2, Δn+2, 𝒞n+2, respectively, An+2. Similarly, we denote the square of a vector, the
Laplacian, the Casimir, respectively, the generator of dilations on ℝn by Rn, Δn, 𝒞n,
respectively, An. We will also write

Nm+1 := z+𝜕z+ − z−𝜕z− .

We have

Rn+2 = Rn + 2z+z−,
Δn+2 = Δn + 2𝜕z+𝜕z− ,

An+2 = An + z+𝜕z+ + z−𝜕z− .

The following identity is a consequence of (39):

RnΔn+2 = RnΔn + (Rn+2 − 2z+z−)2𝜕z+𝜕z−

= 𝒞n + (An − 1 +
n
2
)
2
− (

n
2
− 1)

2

+ Rn+22𝜕z+𝜕z− − (z+𝜕z+ + z−𝜕z− )
2 + N2

m+1

= Rn+22𝜕z+𝜕z−

+ (An − 1 +
n
2
− z+𝜕z+ − z−𝜕z−)(An+2 − 1 +

n
2
)

− (
n
2
− 1)

2
+ 𝒞n + N

2
m+1. (101)

( n2 − 1)
2 is a scalar. 𝒞n and N2

m+1 are polynomials in elements of so(n + 2), which are
tangent to 𝒱. Therefore, all operators in the last line of (101) can be restricted to 𝒱. The
operatorAn+2−1+

n
2 vanishes on functions in Λ

1− n2
+ (Ω). The operator Rn+22𝜕z+𝜕z− is zero

when restricted to 𝒱 (because Rn+2 vanishes on 𝒱).
Therefore, if K is homogeneous of degree 1− n2 vanishing on 𝒱, then RnΔn+2K van-

ishes on𝒱.We are free to choose different coordinateswhich give differentRn’s. There-
fore, we can conclude that Δn+2K vanishes on 𝒱.
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Corollary 4.3. Using the operator Δ⬦n+2, we can write

RnΔ
⬦
n+2 = −(

n
2
− 1)

2
+ 𝒞⬦,1−

n
2

n + (N⬦,1−
n
2

m+1 )
2. (102)

Second proof of Theorem 4.2. We use the decompositionℝn+2 = ℝn+1 ⊕ℝwith the dis-
tinguished variable denoted by z0, as in Subsection 4.5. We denote the square of a
vector, the Laplacian, the Casimir, respectively, the generator of dilations on ℝn+1 by
Rn+1, Δn+1, 𝒞n+1, respectively, An+1. We have

Rn+2 = Rn+1 + z
2
0,

An+2 = An+1 + z0𝜕z0 ,

Δn+2 = Δn+1 + 𝜕
2
z0 .

We have the following identity:

Rn+1Δn+2 = Rn+1Δn+1 + (Rn+2 − z
2
0)𝜕

2
z0

= 𝒞n+1 + (An+1 +
n − 1
2
)
2
− (

n − 1
2
)
2

+ Rn+2𝜕
2
z0 − (z0𝜕z0 −

1
2
)
2
+ (

1
2
)
2

= Rn+2𝜕
2
z0 + (An+1 +

n
2
− z0𝜕z0)(An+2 +

n
2
− 1)

− (
n
2
− 1)n

2
+ 𝒞n+1. (103)

Then we argue similarly as in the first proof.

Corollary 4.4. Using the operator Δ⬦n+2, we can write

Rn+1Δ
⬦
n+2 = −(

n
2
− 1)n

2
+ 𝒞⬦,1−

n
2

n+1 . (104)

4.11 Fixing a section

For nonzero η, in order to identify functions from Λη
+(𝒱) with functions on ̃𝒴 we need

to fix a section of the line bundle 𝒱 → ̃𝒴. Let us describe this in detail.
Let 𝒱0 be an open homogeneous subset of 𝒱 and ̃𝒴0 := 𝒱0/ℝ+. Consider a section

γ : ̃𝒴0 → 𝒱0. We then have the obvious identification ψγ,η : Λη
+(𝒱0) → C∞( ̃𝒴0): for

k ∈ Λη
+(𝒱0) we set

(ψγ,ηk)(y) := k(γ(y)), y ∈ ̃𝒴0. (105)
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The map ψγ,η is bijective and we can introduce its inverse, denoted ϕγ,η, defined
for any f ∈ C∞( ̃𝒴0) by

(ϕγ,ηf )(sγ(y)) = sηf (y), s ∈ ℝ+, y ∈ ̃𝒴0. (106)

Let B ∈ so(n + 2) and α ∈ O(n + 2). As usual, B and α are interpreted as transfor-
mations acting on functions onℝn+2. Both B and α preserve Λη

+(𝒱0). Therefore, we can
define

Bγ,η := ψγ,ηBϕγ,η, (107a)
αγ,η := ψγ,ηαϕγ,η. (107b)

Bγ,η is a first-order differential operator on ̃𝒴0. αγ,η maps C∞( ̃𝒴0 ∩ (α⬦)−1( ̃𝒴0)) onto
C∞( ̃𝒴0 ∩ α⬦( ̃𝒴0)).

It is easy to see that for any B ∈ so(n + 2) and α ∈ O(n + 2) there existMB ∈ C∞( ̃𝒴0)
andmα ∈ C∞( ̃𝒴0 ∩ α⬦( ̃𝒴0)) such that

B⬦,ηf (y) = B⬦f (y) + ηMB(y)f (y), (108a)
α⬦,ηf (y) = mη

α(y)α
⬦f (y). (108b)

We define also

Δγn+2 := ψ
γ,−1− n2 Δ⬦n+2ϕ

γ,1− n2 . (109)

This is a second-order differential operator on ̃𝒴0. It satisfies

Bγ,−1−
n
2 Δγn+2 = Δ

γ
n+2B

γ,1− n2 , B ∈ so(n + 2), (110a)

αγ,−1−
n
2 Δγn+2 = Δ

γ
n+2α

γ,1− n2 , α ∈ O(n + 2). (110b)

Note that for even n the numbers ±1− n2 are integers. Therefore, Λ
±1− n2 (𝒱) are well-

defined. In the above construction, we can then use 𝒴 instead of its double cover ̃𝒴.
We also do not have problems in the complex case.

For odd n, the numbers ±1 − n
2 are not integers, and so Λ±1−

n
2 (𝒱) are ill defined.

Therefore, we have to use Λ±1−
n
2

+ (𝒱) and ̃𝒴.

4.12 Conformal invariance of the flat Laplacian

In this subsection, we illustrate the somewhat abstract theory of the previous subsec-
tions with the example of the flat section described in (86). Recall that the flat section
identifies an open subset of 𝒴 withℝn. Therefore, we obtain an action of so(n+ 2) and
O(n + 2) on ℝn. As a result, we will obtain the invariance of the Laplacian on the flat
pseudo-Euclidean spacewith respect to conformal transformations. The results of this
subsection will be needed for our discussion of symmetries of the heat equation.

We will use the notation of (107a) and (107b), where instead of γ we write “fl”, for
the flat section. We will describe conformal symmetries on two levels:
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(a) the ambient space ℝn+2

(b) the space ℝn.

We will use the split coordinates, that is, z ∈ ℝn+2 and y ∈ ℝn have the square

⟨z|z⟩ = ∑
|j|≤m+1

z−jzj, (111a)

⟨y|y⟩ = ∑
|j|≤m

y−jyj. (111b)

As a rule, if a given operator does not depend on η, we omit the subscript η.
Derivation of all the following identities will be sketched in Subsection 4.13.

Cartan algebra of so(n + 2)
Cartan operators of so(n), i = 1, . . . ,m:

Ni = −z−i𝜕z−i + zi𝜕zi , (112a)

N fl
i = −y−i𝜕y−i + yi𝜕yi . (112b)

Generator of dilations:

Nm+1 = −z−m−1𝜕z−m−1 + zm+1𝜕zm+1 , (113a)

N fl,η
m+1 = ∑

|i|≤m
yi𝜕yi − η = An − η. (113b)

Root operators
Roots of so(n), |i| < |j| ≤ m:

Bi,j = z−i𝜕zj − z−j𝜕zi , (114a)

Bfli,j = y−i𝜕yj − y−j𝜕yi . (114b)

Generators of translations, |j| ≤ m:

Bm+1,j = z−m−1𝜕zj − z−j𝜕zm+1 , (115a)

Bflm+1,j = 𝜕yj . (115b)

Generators of special conformal transformations, |j| ≤ m:

B−m−1,j = zm+1𝜕zj − z−j𝜕z−m−1 , (116a)

Bfl,η−m−1,j = −
1
2
⟨y|y⟩𝜕yj + y−j ∑

|i|≤m
yi𝜕yi − ηy−j. (116b)
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Weyl symmetries
We will write K for a function on ℝn+2 and f for a function on ℝn. We only give some
typical elements that generate the whole Weyl group.

Reflection in the 0th coordinate (for odd n):

τ0K(z0, . . . ) = K(−z0, . . . ), (117a)

τfl0 f (y0, . . . ) = f (−y0, . . . ). (117b)

Flips, j = 1, . . . ,m:

τjK(. . . , z−j, zj, . . . , z−m−1, zm+1)

= K(. . . , zj, z−j, . . . , z−m−1, zm+1), (118a)

τflj f (. . . , y−j, yj, . . . ) = f (. . . yj, y−j, . . . ). (118b)

Inversion:

τm+1K(. . . , z−m−1, zm+1) = K(. . . , zm+1, z−m−1), (119a)

τfl,ηm+1f (y) = (−
⟨y|y⟩
2
)
η
f(− 2y
⟨y|y⟩
). (119b)

Permutations, π ∈ Sm:

σπK(. . . , z−j, zj, . . . , z−m−1, zm+1)

= K(. . . , z−πj , zπj , . . . , z−m−1, zm+1), (120a)

σflπ f (. . . , y−j, yj, . . . ) = f (. . . y−πj , yπj , . . . ). (120b)

Special conformal transformations, j = 1, . . . ,m:

σ(j,m+1)K(z−1, z1, . . . , z−j, zj, . . . , z−m−1, zm+1)

= K(z−1, z1, . . . , z−m−1, zm+1, . . . , z−j, zj), (121a)

σfl,η(j,m+1)f (y−1, y1, . . . , y−j, yj, . . . )

= yη−jf(
y−1
y−j
,
y1
y−j
, . . . ,

1
y−j
, −
⟨y|y⟩
2y−j
. . . ). (121b)

Laplacian

Δn+2 = ∑
|i|≤m+1
𝜕zi𝜕z−i , (122a)

Δfln+2 = ∑
|i|≤m
𝜕yi𝜕y−i = Δn. (122b)
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We have the representations on functions on ℝn:

so(n + 2) ∋ B 󳨃→ Bfl,η, (123a)
O(n + 2) ∋ α 󳨃→ αfl,η. (123b)

They yield generalized symmetries:

Bfl,
−2−n
2 Δn = ΔnB

fl, 2−n2 , B ∈ so(n + 2), (124a)

αfl,
−2−n
2 Δn = Δnα

fl, 2−n2 , α ∈ O(n + 2). (124b)

4.13 Computations
Below we sketch explicit computations that lead to the formulas from the previous
subsection. Consider ℝn × ℝ× × ℝ (defined by z−m−1 ̸= 0), which is an open dense
subset of ℝn+2. Clearly, 𝒱0 is contained in ℝn × ℝ× × ℝ.

We will write Λη(ℝn ×ℝ× ×ℝ) for the space of functions homogeneous of degree η
on ℝn × ℝ× × ℝ.

Instead of using themapsϕfl,η andψfl,η, as in (106) and (105), we will prefer Φfl,η :
C∞(ℝn) → Λη(ℝn × ℝ× × ℝ) and Ψfl,η : Λη(ℝn × ℝ× × ℝ) → C∞(ℝn) defined below.

For K ∈ Λη(ℝn × ℝ× × ℝ), we define Ψfl,ηK ∈ C∞(ℝn) by

(Ψfl,ηK)(y) = K(y, 1, − ⟨y|y⟩
2
), y ∈ ℝn.

Let f ∈ C∞(ℝn). Then there exists a unique function inΛη(ℝn×ℝ××ℝ) that extends
f and does not depend on zm+1. It is given by

(Φfl,ηf )(z, z−m−1, zm+1) := z
η
−m−1f(

z
z−m−1
), z ∈ ℝn.

The map Ψfl,η is a left inverse of Φfl,η:

Ψfl,ηΦfl,η = ι,

where ι denotes the identity. Clearly,

Φfl,ηf |𝒱0
= ϕfl,ηf ,

Ψfl,ηK = ψfl,η(K|𝒱0
).

Moreover, functions in Λη(ℝn × ℝ× × ℝ) restricted to 𝒱0 are in Λη(𝒱0). Therefore,

Bfl,η = Ψfl,ηBΦfl,η, B ∈ so(ℝn+2),
αfl,η = Ψfl,ηαΦfl,η, α ∈ O(ℝn+2).
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(Note that α,B preserve Λη(ℝn × ℝ× × ℝ).) Note also that

Δfln+2 = Ψ
fl,ηΔn+2Φ

fl,η = Δn.

In practice, the above idea can be implemented by the following change of coor-
dinates on ℝn+2:

yi :=
zi

z−m−1
, |i| ≤ m,

R := ∑
|i|≤m+1

ziz−i,

p := z−m−1.

The inverse transformation is

zi = pyi, |i| ≤ m,

zm+1 =
1
2
(
R
p
− p ∑
|i|≤m

yiy−i),

z−m−1 = p

The derivatives are equal to

𝜕zi = z
−1
−m−1𝜕yi + 2z−i𝜕R, |i| ≤ m,

𝜕zm+1 = 2z−m−1𝜕R,

𝜕z−m−1 = 𝜕p − z
−2
−m−1 ∑
|i|≤m

zi𝜕yi + 2zm+1𝜕R.

Note that these coordinates are defined onℝn ×ℝ× ×ℝ. The set 𝒱0 is given by the
condition R = 0. The flat section is given by p = 1.

For a function y 󳨃→ f (y), we have

(Φfl,ηf )(y,R, p) = pηf (y).

For a function (y,R, p) 󳨃→ K(y,R, p), we have

(Ψfl,ηK)(y) = K(y, 1,0).

Note also that on Λη(ℝn × ℝ× × ℝ) we have

p𝜕p + 2R𝜕R = η.
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5 Laplacian in 4 dimensions and the hypergeometric
equation

The goal of this section is to derive the 2ℱ1 equation together with its symmetries from
the Laplacian in 4 dimensions, or actually from the Laplacian in 6 dimensions, if one
takes into account the ambient space. Let us describe themain steps of this derivation:
(1) We start from the 4 + 2 = 6 dimensional ambient space, with the obvious repre-

sentations of so(6) and O(6), and the Laplacian Δ6.
(2) As explained in Subsection 4.9,we introduce the representations so(6) ∋ B 󳨃→ B⬦,η

and O(6) ∋ α 󳨃→ α⬦,η. Besides, as explained in Subsection 4.10, we obtain the
reduced Laplacian Δ⬦6 . Themost relevant values of η are 1− 42 = −1 and −1−

4
2 = −3,

which yield generalized symmetries of Δ⬦6 .
(3) We fix a section γ of the null quadric. It allows us to construct the representations

Bγ,η, αγ,η and the operator Δγ6, acting on a 4 dimensional manifold whose pseudo-
Riemannian structure depends on γ.

(4) We choose coordinates w, u1, u2, u3, so that the Cartan operators are expressed in
terms of u1, u2, u3. We compute Δγ6, B

γ,η, and αγ,η in the new coordinates.
(5) We make an ansatz that diagonalizes the Cartan operators, whose eigenvalues,

denoted by α, β, μ, become parameters. Δγ6, B
γ,η, and αγ,η involve now only the

single variable w. Δγ6 turns out to be the 2ℱ1 hypergeometric operator. The gener-
alized symmetries of Δγ6 yield transmutation relations and discrete symmetries of
the 2ℱ1 operator.

Step 1 is described in Subsection 5.1.
We have a considerable freedom in the choice of the section γ of Step 3. For in-

stance, it can be the flat section, whichwe described in Subsections 4.4 and 4.12. How-
ever, to simplify computations we prefer to choose a different section, which we call
the spherical section. (Both approaches are described in [10].)

We perform Steps 2, 3 and 4 at once. They are described jointly in Subsection 5.2.
We choose coordinates w, r, p, u1, u2, u3 in 6 dimensions, so that the null quadric, the
spherical section and the homogeneity of functions are expressed in a simple way. In
these coordinates, after the reductions of Steps 2 and 3, the variables r, p disappear.
We are left with the variables w, u1, u2, u3, and we are ready for Step 5.

Step 5 is described in Subsections 5.3 and 5.4.
Subsections 5.5 and 5.6 are devoted to factorizations of the 2ℱ1 operator. Again, we

see that the additional dimensions make all the formulas more symmetric. The role of
factorizations is explained in Subsection 1.5.

Subsections 5.4 and 5.6 contain long lists of identities for the hypergeometric op-
erator. We think that it is easy to appreciate and understand them at a glance, with-
out studying them line by line. Actually, the analogous lists of identities in the next
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sections, corresponding to other types of equations, are shorter but in a sense more
complicated, because they correspond to “less symmetric” groups.

All the material so far has been devoted to the 2ℱ1 operator and its multidimen-
sional “parents.” Starting with Subsection 5.7 we discuss the 2F1 function and, more
generally, distinguished solutions of the 2ℱ1 equation. The symmetries of the 2ℱ1 oper-
ator are helpful in deriving and organizing the identities concerning these solutions.

Subsections 5.10, 5.11, 5.12 are devoted to integral representations of solutions of
the 2ℱ1 equation. In particular, Subsection 5.10 shows that these representation are
disguised “wave packets” solving the Laplace equation and diagonalizing Cartan op-
erators.

In Subsection 5.13, we derive connection formulas, where we use the pairs of solu-
tions with a simple behavior at 0 and at∞ as two bases of solutions. The connection
formulas follow easily from integral representations. These identities look symmetric
when expressed in terms of the Lie-algebraic parameters.

5.1 so(6) in 6 dimensions

We consider ℝ6 with the split coordinates

z−1, z1, z−2, z2, z−3, z3 (125)

and the scalar product given by

⟨z|z⟩ = 2z−1z1 + 2z−2z2 + 2z−3z3. (126)

The Lie algebra so(6) acts naturally on ℝ6. Below we describe its natural basis.
Then we consider its Weyl group, D3, acting on functions on ℝ6. For brevity, we list
only elements from its subgroup D3 ∩ SO(6). Finally, we write down the Laplacian.

Lie algebra so(6). Cartan algebra

N1 = −z−1𝜕z−1 + z1𝜕z1 , (127a)

N2 = −z−2𝜕z−2 + z2𝜕z2 , (127b)

N3 = −z−3𝜕z−3 + z3𝜕z3 . (127c)

Root operators

B−2,−1 = z2𝜕z−1 − z1𝜕z−2 , (128a)

B2,1 = z−2𝜕z1 − z−1𝜕z2 , (128b)

B2,−1 = z−2𝜕z−1 − z1𝜕z2 , (128c)

B−2,1 = z2𝜕z1 − z−1𝜕z−2 ; (128d)
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B−3,−2 = z3𝜕z−2 − z2𝜕z−3 , (128e)
B3,2 = z−3𝜕z2 − z−2𝜕z3 , (128f)
B3,−2 = z−3𝜕z−2 − z2𝜕z3 , (128g)
B−3,2 = z3𝜕z2 − z−2𝜕z−3 ; (128h)

B−3,−1 = z3𝜕z−1 − z1𝜕z−3 , (128i)
B3,1 = z−3𝜕z1 − z−1𝜕z3 , (128j)
B3,−1 = z−3𝜕z−1 − z1𝜕z3 , (128k)
B−3,1 = z3𝜕z1 − z−1𝜕z−3 . (128l)

Weyl symmetries

σ123K(z−1, z1, z−2, z2, z−3, z3) = K(z−1, z1, z−2, z2, z−3, z3), (129a)
σ−12−3K(z−1, z1, z−2, z2, z−3, z3) = K(z1, z−1, z−2, z2, z3, z−3), (129b)
σ1−2−3K(z−1, z1, z−2, z2, z−3, z3) = K(z−1, z1, z2, z−2, z3, z−3), (129c)
σ−1−23K(z−1, z1, z−2, z2, z−3, z3) = K(z1, z−1, z2, z−2, z−3, z3); (129d)

σ213K(z−1, z1, z−2, z2, z−3, z3) = K(z−2, z2, z−1, z1, z−3, z3), (129e)
σ−21−3K(z−1, z1, z−2, z2, z−3, z3) = K(z2, z−2, z−1, z1, z3, z−3), (129f)
σ2−1−3K(z−1, z1, z−2, z2, z−3, z3) = K(z−2, z2, z1, z−1, z3, z−3), (129g)
σ−2−13K(z−1, z1, z−2, z2, z−3, z3) = K(z2, z−2, z1, z−1, z−3, z3); (129h)

σ321K(z−1, z1, z−2, z2, z−3, z3) = K(z−3, z3, z−2, z2, z−1, z1), (129i)
σ−32−1K(z−1, z1, z−2, z2, z−3, z3) = K(z3, z−3, z−2, z2, z1, z−1), (129j)
σ3−2−1K(z−1, z1, z−2, z2, z−3, z3) = K(z−3, z3, z2, z−2, z1, z−1), (129k)
σ−3−21K(z−1, z1, z−2, z2, z−3, z3) = K(z3, z−3, z2, z−2, z−1, z1); (129l)

σ312K(z−1, z1, z−2, z2, z−3, z3) = K(z−3, z3, z−1, z1, z−2, z2), (129m)
σ−31−2K(z−1, z1, z−2, z2, z−3, z3) = K(z3, z−3, z−1, z1, z2, z−2), (129n)
σ3−1−2K(z−1, z1, z−2, z2, z−3, z3) = K(z−3, z3, z1, z−1, z2, z−2), (129o)
σ−3−12K(z−1, z1, z−2, z2, z−3, z3) = K(z3, z−3, z1, z−1, z−2, z2); (129p)

σ231K(z−1, z1, z−2, z2, z−3, z3) = K(z−2, z2, z−3, z3, z−1, z1), (129q)
σ−23−1K(z−1, z1, z−2, z2, z−3, z3) = K(z2, z−2, z−3, z3, z1, z−1), (129r)
σ2−3−1K(z−1, z1, z−2, z2, z−3, z3) = K(z−2, z2, z3, z−3, z1, z−1), (129s)
σ−2−31K(z−1, z1, z−2, z2, z−3, z3) = K(z2, z−2, z3, z−3, z−1, z1); (129t)

σ132K(z−1, z1, z−2, z2, z−3, z3) = K(z−1, z1, z−3, z3, z−2, z2), (129u)
σ−13−2K(z−1, z1, z−2, z2, z−3, z3) = K(z1, z−1, z−3, z3, z2, z−2), (129v)
σ1−3−2K(z−1, z1, z−2, z2, z−3, z3) = K(z−1, z1, z3, z−3, z2, z−2), (129w)
σ−1−32K(z−1, z1, z−2, z2, z−3, z3) = K(z1, z−1, z3, z−3, z−2, z2). (129x)
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Laplacian

Δ6 = 2𝜕z−1𝜕z1 + 2𝜕z−2𝜕z2 + 2𝜕z−3𝜕z3 . (130)

5.2 so(6) on the spherical section

In this subsection, we perform Steps 2, 3 and 4 described in the introduction to this
section. Recall that in Step 2 we use the null quadric

𝒱5 := {z ∈ ℝ6\{0} : 2z−1z1 + 2z−2z2 + 2z−3z3 = 0}.

Then, in Step 3, we fix a section of the null quadric. We choose the section given by
the equations

4 = 2(z−1z1 + z−2z2) = −2z3z−3.

We will call it the spherical section, because it coincides with 𝕊3(4) × 𝕊1(−4). The su-
perscript used for this section will be “sph” for spherical.

In Step 4, we introduce the coordinates

r = √2(z−1z1 + z−2z2), w = z−1z1
z−1z1 + z−2z2

, (131a)

u1 =
z1

√z−1z1 + z−2z2
, u2 =

z2
√z−1z1 + z−2z2

, (131b)

p = √−2z3z−3, u3 = √−
z3
z−3
, (131c)

with the inverse transformation

z−1 =
rw
√2u1
, z1 =

u1r
√2
, (132a)

z−2 =
r(1 − w)
√2u2
, z2 =

u2r
√2
, (132b)

z−3 = −
p
√2u3
, z3 =

pu3
√2
. (132c)

The null quadric in these coordinates is given by r2 = p2. Wewill restrict ourselves
to the sheet r = p. The generator of dilations is

A6 = r𝜕r + p𝜕p.

The spherical section is given by the condition r2 = 4.
All the objects of the previous subsectionwill be now presented in the above coor-

dinates after the reduction to the spherical section. This reduction allows us to elim-
inate the variables r, p. We omit the superscript η, whenever there is no dependence
on this parameter.
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Lie algebra so(6). Cartan operators:

Nsph
1 = u1𝜕u1 ,

Nsph
2 = u2𝜕u2 ,

Nsph
3 = u3𝜕u3 .

Roots:

Bsph−2,−1 = u1u2𝜕w ,

Bsph2,1 =
1

u1u2
((1 − w)w𝜕w + (1 − w)u1𝜕u1 − wu2𝜕u2),

Bsph2,−1 =
u1
u2
((1 − w)𝜕w − u2𝜕u2),

Bsph−2,1 =
u2
u1
(w𝜕w + u1𝜕u1 );

Bsph,η−3,−2 = −u2u3(w𝜕w +
1
2
(u1𝜕u1 + u2𝜕u2 + u3𝜕u3 − η)),

Bsph,η3,2 = −
1

u2u3
(w(w−1)𝜕w+

(w−1)
2
(u1𝜕u1+u2𝜕u2−u3𝜕u3−η)+u2𝜕u2),

Bsph,η3,−2 =
u2
u3
(w𝜕w +

1
2
(u1𝜕u1 + u2𝜕u2 − u3𝜕u3 − η)),

Bsph,η−3,2 =
u3
u2
(w(w−1)𝜕w+

(w−1)
2
(u1𝜕u1+u2𝜕u2+u3𝜕u3−η)+u2𝜕u2);

Bsph,η−3,−1 = −u1u3((w − 1)𝜕w +
1
2
(u1𝜕u1 + u2𝜕u2 + u3𝜕u3 − η)),

Bsph,η3,1 =
1

u1u3
(w(w−1)𝜕w+

w
2
(u1𝜕u1+u2𝜕u2−u3𝜕u3−η)−u1𝜕u1),

Bsph,η3,−1 =
u1
u3
((w − 1)𝜕w +

1
2
(u1𝜕u1 + u2𝜕u2 − u3𝜕u3 − η));

Bsph,η−3,1 = −
u3
u1
(w(w−1)𝜕w+

w
2
(u1𝜕u1+u2𝜕u2+u3𝜕u3−η)−u1𝜕u1).

Weyl symmetries

σsph,η123 f (w, u1, u2, u3) = f (w, u1, u2, u3),

σsph,η−12−3f (w, u1, u2, u3) = f(w,
w
u1
, u2,

1
u3
),

σsph,η1−2−3f (w, u1, u2, u3) = f(w, u1,
1 − w
u2
,
1
u3
),

σsph,η−1−23f (w, u1, u2, u3) = f(w,
w
u1
,
1 − w
u2
, u3);
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σsph,η213 f (w, u1, u2, u3) = f (1 − w, u2, u1, u3),

σsph,η−21−3f (w, u1, u2, u3) = f(1 − w,
1 − w
u2
, u1,

1
u3
),

σsph,η2−1−3f (w, u1, u2, u3) = f(1 − w, u2,
w
u1
,
1
u3
),

σsph,η−2−13f (w, u1, u2, u3) = f(1 − w,
1 − w
u2
,
w
u1
, u3);

σsph,η321 f (w, u1, u2, u3) = (√−w)
ηf( 1

w
,
u3
√−w
,
u2
√−w
,

u1
√−w
),

σsph,η−32−1f (w, u1, u2, u3) = (√−w)
ηf( 1

w
,

1
√−wu3
,
u2
√−w
,
√−w
u1
),

σsph,η3−2−1f (w, u1, u2, u3) = (√−w)
ηf( 1

w
,
u3
√−w
,
(w − 1)
√−wu2
,
√−w
u1
),

σsph,η−3−21f (w, u1, u2, u3) = (√−w)
ηf( 1

w
,

1
√−wu3
,
(w − 1)
√−wu2
,

u1
√−w
);

σsph,η312 f (w, u1, u2, u3) = (√w−1)
ηf( 1

1−w
,

u3
√w−1
,

u1
√w−1
,

u2
√w−1
),

σsph,η−31−2f (w, u1, u2, u3) = (√w−1)
ηf( 1

1−w
,

1
√w−1u3

,
u1
√w−1
,
√w−1
u2
),

σsph,η3−1−2f (w, u1, u2, u3) = (√w−1)
ηf( 1

1−w
,

u3
√w−1
,

w
√w−1u1

,
√w−1
u2
),

σsph,η−3−12f (w, u1, u2, u3) = (√w−1)
ηf( 1

1−w
,

1
√w−1u3

,
w
√w−1u1

,
u2
√w−1
);

σsph,η231 f (w, u1, u2, u3) = (√−w)
ηf(w − 1

w
,
u2
√−w
,
u3
√−w
,

u1
√−w
),

σsph,η−23−1f (w, u1, u2, u3) = (√−w)
ηf(w − 1

w
,
(w − 1)
√−wu2
,
u3
√−w
,
√−w
u1
),

σsph,η2−3−1f (w, u1, u2, u3) = (√−w)
ηf(w − 1

w
,
u2
√−w
,

1
√−wu3
,
√−w
u1
),

σsph,η−2−31f (w, u1, u2, u3) = (√−w)
ηf(w − 1

w
,
(w − 1)
√−wu2
,

1
√−wu3
,

u1
√−w
);

σsph,η132 f (w, u1, u2, u3) = (√w−1)
ηf( w

w−1
,

u1
√w−1
,

u3
√w−1
,

u2
√w−1
),

σsph,η−13−2f (w, u1, u2, u3) = (√w−1)
ηf( w

w−1
,

w
√w−1u1

,
u3
√w−1
,
√w−1
u2
),

σsph,η1−3−2f (w, u1, u2, u3) = (√w−1)
ηf( w

w−1
,

u1
√w−1
,

1
√w−1u3

,
√w−1
u2
),

σsph,η−1−32f (w, u1, u2, u3) = (√w−1)
ηf( w

w−1
,

w
√w−1u1

,
1
√w−1u3

,
u2
√w−1
).
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Laplacian

Δsph6 = w(1 − w)𝜕
2
w − ((1 + u1𝜕u1 )(w − 1) + (1 + u2𝜕u2 )w)𝜕w

−
1
4
(u1𝜕u1 + u2𝜕u2 + 1)

2 +
1
4
(u3𝜕u3 )

2. (133)

Let us give the computations that yield (133). Using

𝜕z−1 =
u1
√2r
(−u1𝜕u1 − u2𝜕u2 + r𝜕r + 2(1 − w)𝜕w),

𝜕z1 =
√2
ru1
((1 − w

2
)u1𝜕u1 −

w
2
u2𝜕u2 +

w
2
r𝜕r + w(1 − w)𝜕w),

𝜕z−2 =
u2
√2r
(−u1𝜕u1 − u2𝜕u2 + r𝜕r − 2w𝜕w),

𝜕z2 =
√2
ru2
(
(w − 1)

2
u1𝜕u1 +

(w + 1)
2

u2𝜕u2 +
(1 − w)

2
r𝜕r + w(w − 1)𝜕w),

𝜕z−3 =
u3
√2p
(u3𝜕u3 − p𝜕p),

𝜕z3 =
1
√2pu3
(u3𝜕u3 + p𝜕p),

we compute the Laplacian in coordinates (131):

Δ6 =
1
r2
(4w(1 − w)𝜕2w − 4((1 + u1𝜕u1 )(w − 1) + (1 + u2𝜕u2 )w)𝜕w

− (u1𝜕u1 + u2𝜕u2 + 1)
2 + (r𝜕r)

2 + 2r𝜕r + 1)

+
1
p2
((u3𝜕u3 )

2 − (p𝜕p)
2). (134)

Next, we note that
1
r2
((r𝜕r)

2 + 2r𝜕r − (p𝜕p)
2 + 1) = 1

r2
(r𝜕r − p𝜕p + 1)(r𝜕r + p𝜕p + 1). (135)

Using p2 = r2 and r𝜕r + p𝜕p = −1, we see that (135) is zero on functions of degree −1.
Thus we obtain

Δ⬦6 =
4
r2
(w(1 − w)𝜕2w − ((1 + u1𝜕u1 )(w − 1) + (1 + u2𝜕u2 )w)𝜕w

−
1
4
(u1𝜕u1 + u2𝜕u2 + 1)

2 +
1
4
(u3𝜕u3 )

2). (136)

To convert Δ⬦6 into the Δsph6 , we simply remove the prefactor 4
r2 .

5.3 Hypergeometric equation

Let us make the ansatz

f (u1, u2, u3,w) = u
α
1u

β
2u

μ
3F(w). (137)
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Clearly,

Nsph
1 f = αf , (138a)

Nsph
2 f = βf , (138b)

Nsph
3 f = μf , (138c)

u−α1 u−β2 u−μ3 Δsph6 f = ℱα,β,μ(w, 𝜕w)F(w), (138d)

where

ℱα,β,μ(w, 𝜕w) := w(1 − w)𝜕
2
w − ((1 + α)(w − 1) + (1 + β)w)𝜕w

−
1
4
(α + β + 1)2 + 1

4
μ2, (139)

which is the 2ℱ1 hypergeometric operator in the Lie-algebraic parameters.
Traditionally, the hypergeometric equation is given by the operator

ℱ(a, b; c;w, 𝜕w) := w(1 − w)𝜕
2
w + (c − (a + b + 1)w)𝜕w − ab, (140)

where a, b, c ∈ ℂ will be called the classical parameters. Here is the relationship be-
tween the Lie-algebraic and classical parameters:

α := c − 1, β := a + b − c, μ := a − b; (141a)

a = 1 + α + β + μ
2
, b = 1 + α + β − μ

2
, c = 1 + α. (141b)

Note that the Lie-algebraic parameters α, β, μ are differences of the indices of the
singular points 0, 1,∞. For many purposes, they are more convenient than the tra-
ditional parameters a, b, c. They are used, e. g., in Subsection 2.7.2 of [4], where they
are called λ, ν, μ. In the standard notation for Jacobi polynomials Pα,βn , the parameters
α, β correspond to our α, β (where the singular points have been moved from 0, 1 to
−1, 1).

5.4 Transmutation relations and discrete symmetries

By (100), we have the following generalized symmetries:

Bsph,−3Δsph6 = Δ
sph
6 Bsph,−1, B ∈ so(6), (142a)

αsph,−3Δsph6 = Δ
sph
6 αsph,−1, α ∈ O(6). (142b)

Applying (142a) to the roots of so(6) we obtain the transmutation relations for the hy-
pergeometric operator:
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𝜕wℱα,β,μ

= ℱα+1,β+1,μ𝜕w ,

(w(1 − w)𝜕w + (1 − w)α − wβ)ℱα,β,μ

= ℱα−1,β−1,μ(w(1 − w)𝜕w + (1 − w)α − wβ),
((1 − w)𝜕w − β)ℱα,β,μ

= ℱα+1,β−1,μ((1 − w)𝜕w − β),
(w𝜕w + α)ℱα,β,μ

= ℱα−1,β+1,μ(w𝜕w + α);

(w𝜕w +
1
2
(α + β + μ + 1))wℱα,β,μ

= wℱα,β+1,μ+1(w𝜕w +
1
2
(α + β + μ + 1)),

(w(w−1)𝜕w+
1
2
(w−1)(α+β−μ+1)−β)wℱα,β,μ

= wℱα,β−1,μ−1(w(w−1)𝜕w+
1
2
(w−1)(α+β−μ+1)−β),

(w𝜕w+
1
2
(α+β−μ+1))wℱα,β,μ

= wℱα,β+1,μ−1(w𝜕w+
1
2
(α+β−μ+1)),

(w(w−1)𝜕w−
1
2
(1−w)(α+β+μ+1)+β)wℱα,β,μ

= wℱα,β−1,μ+1(w(w−1)𝜕w−
1
2
(1−w)(α+β+μ+1)+β);

((w − 1)𝜕w +
1
2
(α + β + μ + 1))(1 − w)ℱα,β,μ

= (1 − w)ℱα+1,β,μ+1((w − 1)𝜕w +
1
2
(α + β + μ + 1)),

(w(w−1)𝜕w+
1
2
w(α+β−μ+1)+α)(1 − w)ℱα,β,μ

= (1 − w)ℱα−1,β,μ−1(w(w−1)𝜕w+
1
2
w(α+β−μ+1)+α),

((w − 1)𝜕w +
1
2
(α + β − μ + 1))(1 − w)ℱα,β,μ

= (1 − w)ℱα+1,β,μ−1((w − 1)𝜕w +
1
2
(α + β − μ + 1)),

(w(w−1)𝜕w+
1
2
w(α+β+μ+1) − α)(1 − w)ℱα,β,μ

= (1 − w)ℱα−1,β,μ+1(w(w−1)𝜕w+
1
2
w(α+β+μ+1)−α).
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Applying (142b) to the Weyl group D3, we obtain the discrete symmetries of the
hypergeometric operator. We describe them below, restricting ourselves to D3 ∩ SO(6).

All the operators below equal ℱα,β,μ(w, 𝜕w) for the corresponding w:

w = v : ℱα,β,μ(v, 𝜕v),
(−v)−α(v − 1)−β ℱ−α,−β,μ(v, 𝜕v) (−v)α(v − 1)β,
(v − 1)−β ℱα,−β,−μ(v, 𝜕v) (v − 1)β,
(−v)−α ℱ−α,β,−μ(v, 𝜕v) (−v)α;

w = 1 − v : ℱβ,α,μ(v, 𝜕v),
(v − 1)−α(−v)−β ℱ−β,−α,μ(v, 𝜕v) (v − 1)α(−v)β,
(v − 1)−α ℱβ,−α,−μ(v, 𝜕v) (v − 1)α,
(−v)−β ℱ−β,α,−μ(v, 𝜕v) (−v)β;

w = 1
v : (−v)

α+β+μ+1
2 (−v)ℱμ,β,α(v, 𝜕v) (−v)

−α−β−μ−1
2 ,

(−v)
α+β−μ+1

2 (v − 1)−β (−v)ℱ−μ,−β,α(v, 𝜕v) (−v)
−α−β+μ−1

2 (v − 1)β,
(−v)

α+β+μ+1
2 (v − 1)−β (−v)ℱμ,−β,−α(v, 𝜕v) (−v)

−α−β−μ−1
2 (v − 1)β,

(−v)
α+β−μ+1

2 (−v)ℱ−μ,β,−α(v, 𝜕v) (−v)
−α−β+μ−1

2 ;

w = v−1
v : (−v)

α+β+μ+1
2 (−v)ℱμ,α,β(v, 𝜕v) (−v)

−α−β−μ−1
2 ,

(−v)
α+β−μ+1

2 (v − 1)−α (−v)ℱ−μ,−α,β(v, 𝜕v) (−v)
−α−β+μ−1

2 (v − 1)α,
(−v)

α+β+μ+1
2 (v − 1)−α (−v)ℱμ,−α,−β(v, 𝜕v) (−v)

−α−β−μ−1
2 (v − 1)α,

(−v)
α+β−μ+1

2 (−v)ℱ−μ,α,−β(v, 𝜕v) (−v)
−α−β+μ−1

2 ;

w= 1
1−v : (v−1)

α+β+μ+1
2 (v−1)ℱβ,μ,α(v, 𝜕v) (v−1)

−α−β−μ−1
2 ,

(−v)−β(v−1)
α+β−μ+1

2 (v−1)ℱ−β,−μ,α(v, 𝜕v) (−v)β(v−1)
−α−β+μ−1

2 ,

(v−1)
α+β−μ+1

2 (v−1)ℱβ,−μ,−α(v, 𝜕v) (v−1)
−α−β+μ−1

2 ,

(−v)−β(v−1)
α+β+μ+1

2 (v−1)ℱ−β,μ,−α(v, 𝜕v) (−v)β(v−1)
−α−β−μ−1

2 ;

w= v
v−1 : (v−1)

α+β+μ+1
2 (v−1)ℱα,μ,β(v, 𝜕v) (v−1)

−α−β−μ−1
2 ,

(−v)−α(v−1)
α+β−μ+1

2 (v−1)ℱ−α,−μ,β(v, 𝜕v) (−v)α(v−1)
−α−β+μ−1

2 ,

(v−1)
α+β−μ+1

2 (v−1)ℱα,−μ,−β(v, 𝜕v) (v−1)
−α−β+μ−1

2 ,

(−v)−α(v−1)
α+β+μ+1

2 (v−1)ℱ−α,μ,−β(v, 𝜕v) (−v)α(v−1)
−α−β−μ−1

2 .

5.5 Factorizations of the Laplacian

In the Lie algebra so(6) represented on ℝ6, we have 3 distinguished Lie subalgebras
isomorphic to so(4):

so12(4), so23(4), so13(4), (143)
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where we use a hopefully obvious notation. By (94), the corresponding Casimir oper-
ators are

𝒞12 = 4B1,2B−1,−2 − (N1 + N2 + 1)
2 + 1 (144a)

= 4B−1,−2B1,2 − (N1 + N2 − 1)
2 + 1 (144b)

= 4B1,−2B−1,2 − (N1 − N2 + 1)
2 + 1 (144c)

= 4B−1,2B1,−2 − (N1 − N2 − 1)
2 + 1; (144d)

𝒞23 = 4B2,3B−2,−3 − (N2 + N3 + 1)
2 + 1 (144e)

= 4B−2,−3B2,3 − (N2 + N3 − 1)
2 + 1 (144f)

= 4B2,−3B−2,3 − (N2 − N3 + 1)
2 + 1 (144g)

= 4B−2,3B2,−3 − (N2 − N3 − 1)
2 + 1; (144h)

𝒞13 = 4B1,3B−1,−3 − (N1 + N3 + 1)
2 + 1 (144i)

= 4B−1,−3B1,3 − (N1 + N3 − 1)
2 + 1 (144j)

= 4B1,−3B−1,3 − (N1 − N3 + 1)
2 + 1 (144k)

= 4B−1,3B1,−3 − (N1 − N3 − 1)
2 + 1. (144l)

Of course, for any η we can append the superscript ⬦,η to all the operators in (144).
After the reduction described in (102), we obtain the identities

(2z−1z1 + 2z−2z2)Δ
⬦
6 = −1 + 𝒞

⬦,−1
12 + (N

⬦,−1
3 )

2, (145a)

(2z−2z2 + 2z−3z3)Δ
⬦
6 = −1 + 𝒞

⬦,−1
23 + (N

⬦,−1
1 )

2, (145b)

(2z−1z1 + 2z−3z3)Δ
⬦
6 = −1 + 𝒞

⬦,−1
13 + (N

⬦,−1
2 )

2. (145c)

We insert (144) with superscript ⬦,−1 to (145), obtaining

(2z−1z1 + 2z−2z2)Δ
⬦
6

= 4B1,2B−1,−2 − (N1 + N2 + N3 + 1)(N1 + N2 − N3 + 1) (146a)

= 4B−1,−2B1,2 − (N1 + N2 + N3 − 1)(N1 + N2 − N3 − 1) (146b)

= 4B1,−2B−1,2 − (N1 − N2 + N3 + 1)(N1 − N2 − N3 + 1) (146c)

= 4B−1,2B1,−2 − (N1 − N2 + N3 − 1)(N1 − N2 − N3 − 1); (146d)

(2z−2z2 + 2z−3z3)Δ
⬦
6

= 4B2,3B−2,−3 − (N1 + N2 + N3 + 1)(−N1 + N2 + N3 + 1) (146e)

= 4B−2,−3B2,3 − (N1 + N2 + N3 − 1)(−N1 + N2 + N3 − 1) (146f)

= 4B2,−3B−2,3 − (N1 + N2 − N3 + 1)(−N1 + N2 − N3 + 1) (146g)

= 4B−2,3B2,−3 − (N1 + N2 − N3 − 1)(−N1 + N2 − N3 − 1); (146h)
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(2z−1z1 + 2z−3z3)Δ
⬦
6

= 4B1,3B−1,−3 − (N1 + N2 + N3 + 1)(N1 − N2 + N3 + 1) (146i)
= 4B−1,−3B1,3 − (N1 + N2 + N3 − 1)(N1 − N2 + N3 − 1) (146j)
= 4B1,−3B−1,3 − (N1 + N2 − N3 + 1)(N1 − N2 − N3 + 1) (146k)
= 4B−1,3B1,−3 − (N1 + N2 − N3 − 1)(N1 − N2 − N3 − 1); (146l)

where for typographical reasons we omitted the superscript ⬦,−1 at all the operators B
and N .

If we use the coordinates (131) and the spherical section, then we have to rewrite
(146) by making the replacements

2z−1z1 + 2z−2z2 → 1, (147a)
2z−2z2 + 2z−3z3 → −w, (147b)
2z−1z1 + 2z−3z3 → w − 1, (147c)

as well as replacing the superscript ⬦ with sph.

5.6 Factorizations of the hypergeometric operator

The factorizations of Δsph6 described in Subsection 5.5 yield the following factorizations
of the hypergeometric operator:

ℱα,β,μ

= (w(1 − w)𝜕w + ((1 + α)(1 − w) − (1 + β)w))𝜕w

−
1
4
(α + β + μ + 1)(α + β − μ + 1)

= 𝜕w(w(1 − w)𝜕w + (α(1 − w) − βw))

−
1
4
(α + β + μ − 1)(α + β − μ − 1)

= (w𝜕w + α + 1)((1 − w)𝜕w − β)

−
1
4
(α − β + μ + 1)(α − β − μ + 1)

= ((1 − w)𝜕w − β − 1)(w𝜕w + α)

−
1
4
(α − β + μ − 1)(α − β − μ − 1);

wℱα,β,μ

= (w𝜕w+
1
2
(α+β+μ−1))(w(1−w)𝜕w+

1
2
(1−w)(α+β−μ+1)−β)

−
1
4
(α+β+μ−1)(α−β−μ+1)
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= (w(1−w)𝜕w+
1
2
(1−w)(α+β−μ+1)−β−1)(w𝜕w+

1
2
(α+β+μ+1))

−
1
4
(α+β+μ+1)(α−β−μ−1)

= (w𝜕w+
1
2
(α+β−μ−1))(w(1−w)𝜕w+

1
2
(1−w)(α+β+μ+1)−β)

−
1
4
(α+β−μ−1)(α−β+μ+1)

= (w(1−w)𝜕w+
1
2
(1−w)(α+β+μ+1)−β−1)(w𝜕w+

1
2
(α+β−μ+1))

−
1
4
(α+β−μ+1)(α−β+μ−1);

(w−1)ℱα,β,μ

= (w(w−1)𝜕w+
1
2
w(α+β−μ+1)−α−1)((w−1)𝜕w+

1
2
(α+β+μ+1))

−
1
4
(α+β+μ+1)(α−β+μ+1)

= ((w−1)𝜕w+
1
2
(α+β+μ−1))(w(w−1)𝜕w+

1
2
w(α+β−μ+1)−α)

−
1
4
(α+β+μ−1)(α−β+μ−1)

= (w(w−1)𝜕w+
1
2
w(α+β+μ+1)−α−1)((w−1)𝜕w+

1
2
(α+β−μ+1))

−
1
4
(α+β−μ+1)(α−β−μ+1)

= ((w−1)𝜕w+
1
2
(α+β−μ−1))(w(w−1)𝜕w+

1
2
w(α+β+μ+1)−α)

−
1
4
(α+β−μ−1)(α−β−μ−1).

5.7 The 2F1 hypergeometric function

0 is a regular singular point of the 2ℱ1 hypergeometric equation. Its indices are 0 and
1 − c. For c ̸= 0, −1, −2, . . . the Frobenius method yields the unique solution of the
hypergeometric equation equal to 1 at 0, given by the series

F(a, b; c;w) =
∞

∑
j=0

(a)j(b)j
(c)j

wj

j!

convergent for |w| < 1. The function extends to the whole complex plane cut at [1,∞[
and is called the hypergeometric function. Sometimes it is more convenient to consider
the function

F(a, b; c;w) := F(a, b, c,w)
Γ(c)

=
∞

∑
j=0

(a)j(b)j
Γ(c + j)

wj

j!
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defined for all a, b, c ∈ ℂ. Another useful function proportional to F is

FI(a, b; c;w) := Γ(b)Γ(c − b)
Γ(c)

F(a, b; c;w) =
∞

∑
j=0

Γ(b + j)Γ(c − b)(a)j
Γ(c + j)

wj

j!
.

We will usually prefer to parametrize all varieties of the hypergeometric function
with the Lie-algebraic parameters:

Fα,β,μ(w) = F(
1 + α + β + μ

2
,
1 + α + β − μ

2
; 1 + α;w),

Fα,β,μ(w) = F(
1 + α + β + μ

2
,
1 + α + β − μ

2
; 1 + α;w)

=
1

Γ(α + 1)
Fα,β,μ(w),

FIα,β,μ(w) = F
I(
1 + α + β + μ

2
,
1 + α + β − μ

2
; 1 + α;w)

=
Γ( 1+α+β−μ2 )Γ(

1+α−β+μ
2 )

Γ(α + 1)
Fα,β,μ(w).

5.8 Standard solutions

The hypergeometric equation has 3 singular points. With each of them, we can as-
sociate two solutions with a simple behavior. Therefore, we obtain 6 standard solu-
tions.

Applying the discrete symmetries fromD3∩SO(6) to the hypergeometric function,
we obtain 24 expressions for solutions of the hypergeometric equation, which go un-
der the name ofKummer’s table. Some of them coincide as functions, so thatwe obtain
6 standard solutions, each expressed in 4 ways:

Solution ∼ 1 at 0: Fα,β,μ(w)

= (1 − w)−βFα,−β,−μ(w)

= (1 − w)
−1−α−β+μ

2 Fα,−μ,−β(
w

w − 1
)

= (1 − w)
−1−α−β−μ

2 Fα,μ,β(
w

w − 1
);

Solution ∼ w−α at 0: w−αF−α,β,−μ(w)

= w−α(1 − w)−βF−α,−β,μ(w)

= w−α(1 − w)
−1+α−β+μ

2 F−α,−μ,β(
w

w − 1
)

= w−α(1 − w)
−1+α−β−μ

2 F−α,μ,−β(
w

w − 1
);
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Solution ∼ 1 at 1: Fβ,α,μ(1 − w)

= w−αFβ,−α,−μ(1 − w)

= w
−1−α−β+μ

2 Fβ,−μ,−α(1 − w
−1)

= w
−1−α−β−μ

2 Fβ,μ,α(1 − w
−1);

Solution ∼ (1 − w)−β at 1: (1 − w)−βF−β,α,−μ(1 − w)

= w−α(1 − w)−βF−β,−α,μ(1 − w)

= w
−1−α+β−μ

2 (1 − w)−βF−β,μ,−α(1 − w
−1)

= w
−1−α+β+μ

2 (1 − w)−βF−β,−μ,α(1 − w
−1);

Solution ∼ w−a at∞: (−w)
−1−α−β−μ

2 Fμ,β,α(w
−1)

= (−w)
−1−α+β−μ

2 (1 − w)−βFμ,−β,−α(w
−1)

= (1 − w)
−1−α−β−μ

2 Fμ,α,β((1 − w)
−1)

= (−w)−α(1 − w)
−1+α−β−μ

2 Fμ,−α,−β((1 − w)
−1);

Solution ∼ w−b at∞: (−w)
−1−α−β+μ

2 F−μ,β,−α(w
−1)

= (−w)
−1−α+β+μ

2 (1 − w)−βF−μ,−β,α(w
−1)

= (1 − w)
−1−α−β+μ

2 F−μ,α,−β((1 − w)
−1)

= (−w)−α(1 − w)
−1+α−β+μ

2 F−μ,−α,β((1 − w)
−1).

5.9 Recurrence relations

To each root of so(6), there corresponds a recurrence relation:

𝜕wF
I
α,β,μ(w) =

1+α+β+μ
2

FIα+1,β+1,μ(w),

−(w(1−w)𝜕w+α(1−w)−βw)F
I
α,β,μ(w) =

1−α−β+μ
2

FIα−1,β−1,μ(w),

((1 − w)𝜕w − β)F
I
α,β,μ(w) =

1+α−β−μ
2

FIα+1,β−1,μ(w),

−(w𝜕w + α)F
I
α,β,μ(w) =

1−α+β−μ
2

FIα−1,β+1,μ(w);

(w𝜕w +
1 + α + β + μ

2
)FIα,β,μ(w) =

1+α+β+μ
2

FIα,β+1,μ+1(w),

−(w(w−1)𝜕w+β+
1+α+β−μ

2
(w−1))FIα,β,μ(w) =

1+α−β−μ
2

FIα,β−1,μ−1(w),

−(w𝜕w +
1 + α + β − μ

2
)FIα,β,μ(w) =

1−α+β−μ
2

FIα,β+1,μ−1(w),
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(w(w−1)𝜕w+β+
1+α+β+μ

2
(w−1))FIα,β,μ(w) =

1−α−β+μ
2

FIα,β−1,μ+1(w);

((w − 1)𝜕w +
1 + α + β + μ

2
)FIα,β,μ(w) =

1+α+β+μ
2

FIα+1,β,μ+1(w),

(w(w − 1)𝜕w−α+
1+α+β−μ

2
w)FIα,β,μ(w) =

1−α+β−μ
2

FIα−1,β,μ−1(w),

((w − 1)𝜕w +
1 + α + β − μ

2
)FIα,β,μ(w) =

1+α−β−μ
2

FIα+1,β,μ−1(w),

(w(w − 1)𝜕w−α+
1+α+β+μ

2
w)FIα,β,μ(w) =

1−α−β+μ
2

FIα−1,β,μ+1(w).

The recurrence relations are essentially fixed by the transmutation relations. The only
missing piece of information is the coefficient on the rhs, which can be derived by ana-
lyzing the behavior of both sides around zero. Anotherway to obtain these coefficients
is to use the integral representations described in the following subsections.

5.10 Wave packets in 6 dimensions

We start with the following easy fact.

Lemma 5.1. For any τ, the following function is harmonic on ℝ6:

(z1 − τ
−1z−2)

α+ν(z2 + τ
−1z−1)

β+νzμ3 (148)

Proof. Set e1 := (1,0,0, −τ−1), e2 := (0, τ−1, 1,0). Then

⟨e1|e1⟩ = ⟨e2|e2⟩ = ⟨e2|e1⟩ = 0.

Hence, (148) is harmonic by Proposition 3.1.

Let us make a wave packet out of (148), which is an eigenfunction of the Cartan
operators:

Kα,β,μ,ν(z−1, z1, z−2, z2, z−3, z3)

:= ∫
γ

(z1 − τ
−1z−2)

α+ν(z2 + τ
−1z−1)

β+νzμ3 τ
ν−1 dτ

2πi
. (149)

Proposition 5.2. Let the contour ]0, 1[ ∋ s
γ
󳨃→ τ(s) satisfy

(z1 − τ
−1z−2)

α+ν(z2 + τ
−1z−1)

β+ντν−1󵄨󵄨󵄨󵄨
τ(1)
τ(0) = 0. (150)

Then Kα,β,μ,ν is harmonic and

N1Kα,β,μ,ν = αKα,β,μ,ν , (151a)

N2Kα,β,μ,ν = βKα,β,μ,ν , (151b)

N3Kα,β,μ,ν = μKα,β,μ,ν . (151c)

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 10.02.20 14:06



Group-theoretical origin of symmetries of hypergeometric class equations | 61

Proof. Kα,β,μ,ν is harmonic by Lemma 5.1. Writing

Kα,β,μ,ν(z) = ∫
γ

(τz1 − z−2)
α+ν(z2 + τ

−1z−1)
β+νzμ3 τ

−α−1 dτ
2πi

(152a)

= ∫
γ

(z1 − τ
−1z−2)

α+ν(τz2 + z−1)
β+νzμ3 τ

−β−1 dτ
2πi
, (152b)

we see that (151a) and (151b) follow fromassumption (150) byProposition 3.2. Equation
(151c) is obvious.

Proposition 5.3. If in addition to (150), we assume that

(z1 − τ
−1z−2)

α+ν(z2 + τ
−1z−1)

β+ντν󵄨󵄨󵄨󵄨
τ(1)
τ(0) = 0, (153)

and that we are allowed to differentiate under the integral sign, we obtain the recurrence
relations

B−12Kα,β,μ,ν = (β + ν)Kα+1,β−1,μ,ν , (154a)

B1−2Kα,β,μ,ν = −(α + ν)Kα−1,β+1,μ,ν , (154b)

B12Kα,β,μ,ν = (ν + 1)Kα−1,β−1,μ,ν+1, (154c)

B−1−2Kα,β,μ,ν = −(α + β + ν + 1)Kα+1,β+1,μ,ν−1, (154d)

B1−3Kα,β,μ,ν = −(α + ν)Kα−1,β,μ+1,ν , (154e)

B−1−3Kα,β,μ,ν = −(β + ν)Kα+1,β,μ+1,ν−1, (154f)

B2−3Kα,β,μ,ν = −(β + ν)Kα,β−1,μ+1,ν , (154g)

B−2−3Kα,β,μ,ν = (α + ν)Kα,β+1,μ+1,ν−1. (154h)

Proof. Relations (154a), (154b), (154e), (154f), (154g) and (154h) are elementary. They
follow by simple differentiation under the integral sign and do not need assumptions
(153) and (150).

Relations (154c) and (154d) require assumption (150) and follow by the following
computations:

B12(z1 − τ
−1z−2)

α+ν(z2 + τ
−1z−1)

β+ντν+1 (155)

= 𝜕τ−1(z1 − τ
−1z−2)

α+ν(z2 + τ
−1z−1)

β+ντν+1

+ (ν + 1)(z1 − τ
−1z−2)

α+ν(z2 + τ
−1z−1)

β+ντν ,

B−1−2(τz1 − z−2)
α+ν(τz2 + z−1)

β+ντ−α−β−ν−1 (156)

= −𝜕τ(τz1 − z−2)
α+ν(τz2 + z−1)

β+ντ−α−β−ν−1

− (α + β + ν + 1)(τz1 − z−2)
α+ν(τz2 + z−1)

β+ντ−α−β−ν−2,
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where in (156) we used yet another representation:

Kα,β,μ,ν(z) := ∫
γ

(τz1 − z−2)
α+ν(τz2 + z−1)

β+νzμ3 τ
−α−β−ν−1 dτ

2πi
. (157)

If in addition

ν = −α − β − μ − 1
2

,

then (149) is homogeneous of degree −1, so that we can reduce it to 4 dimensions. Let
us substitute the coordinates (131), and then set τ = s

u1u2
, s = t − w:

Kα,β,μ,ν(u1, u2, u3, r, p,w) = 2
1
2 uα1u

β
2u

μ
3r
−μ−1pμF(w), (158)

F(w) = ∫
γ

(s − 1 + w)
α−β−μ−1

2 (s + w)
−α+β−μ−1

2 s
−α−β+μ−1

2 ds

= ∫
γ

(t − 1)
α−β−μ−1

2 t
−α+β−μ−1

2 (t − w)
−α−β+μ−1

2 dt. (159)

On the spherical section, we can remove r and p. Therefore, the function F given by
(159) satisfies the hypergeometric equation:

ℱα,β,μ(w, 𝜕w)F(w) = 0. (160)

From (154), we can also easily obtain the recurrence relations for F. Note that in
this list the recurrence relations corresponding to B1,3, B−1,3, B2,3 and B−2,3 aremissing.
However, they can be obtained after the reduction to 4 dimensions by an application
of the factorization formulas.

5.11 Integral representations

Below we independently prove (160), without going through the additional variables.
We will use the classical parameters.

Theorem 5.4. Let [0, 1] ∋ τ
γ
󳨃→ t(τ) satisfy

ta−c+1(1 − t)c−b(t − w)−a−1󵄨󵄨󵄨󵄨
t(1)
t(0) = 0.

Then

ℱ(a, b; c;w, 𝜕w) ∫
γ

ta−c(1 − t)c−b−1(t − w)−a dt = 0. (161)
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Proof. We check that for any contour γ

lhs of (161) = −a∫
γ

dt𝜕tt
a−c+1(1 − t)c−b(t − w)−a−1.

Analogous (and nonequivalent) integral representations can be obtained by in-
terchanging a and b in Theorem 5.4.

The hypergeometric function with the type I normalization has the integral repre-
sentation

∞

∫
1

ta−c(t − 1)c−b−1(t − w)−adt (162)

= FI(a, b; c;w), Re(c − b) > 0, Re b > 0, w ̸∈ [1,∞[.

Indeed, by Theorem 5.4 the lhs of (162) is annihilated by the hypergeometric operator
(140). Besides, by Euler’s identity it equals Γ(b)Γ(c−b)

Γ(c) at 0, so does the rhs. Therefore,
(162) follows by the uniqueness of the solution by the Frobenius method.

5.12 Integral representations of standard solutions

The integrand of (161) has four singularities: {0, 1,∞,w}. It is natural to chose γ as the
interval joining a pair of singularities. This choice leads to 6 standard solutions with
the I-type normalization:

∼ 1 at 0: [1,∞];

∼ w−α at 0: [0,w];

∼ 1 at 1: [0,∞];

∼ (1 − w)−β at 1: [1,w];

∼ w−a at∞: [w,∞];

∼ w−b at∞: [0, 1].

Below we give explicit formulas. To highlight their symmetry, we use Lie-algebraic
parameters.

Re(1 + α) > 󵄨󵄨󵄨󵄨Re(β − μ)
󵄨󵄨󵄨󵄨 : (163)

∞

∫
1

t
−1−α+β+μ

2 (t − 1)
−1+α−β+μ

2 (t − w)
−1−α−β−μ

2 dt

= FIα,β,μ(w), w ̸∈ [1,∞[;
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Re(1 − α) > 󵄨󵄨󵄨󵄨Re(β − μ)
󵄨󵄨󵄨󵄨 : (164)

w

∫
0

t
−1−α+β+μ

2 (1 − t)
−1+α−β+μ

2 (w − t)
−1−α−β−μ

2 dt

= w−αFI−α,β,−μ(w), w ̸∈ ]−∞,0] ∪ [1,∞[,
0

∫
w

(−t)
−1−α+β+μ

2 (1 − t)
−1+α−β+μ

2 (t − w)
−1−α−β−μ

2 dt

= (−w)−αFI−α,β,−μ(w), w ̸∈ [0,∞[;
Re(1 + β) > 󵄨󵄨󵄨󵄨Re(α − μ)

󵄨󵄨󵄨󵄨 : (165)
0

∫
−∞

(−t)
−1−α+β+μ

2 (1 − t)
−1+α−β+μ

2 (w − t)
−1−α−β−μ

2 dt

= FIβ,α,μ(1 − w), w ̸∈ ]−∞,0];
Re(1 − β) > 󵄨󵄨󵄨󵄨Re(α + μ)

󵄨󵄨󵄨󵄨 : (166)
1

∫
w

t
−1−α+β+μ

2 (1 − t)
−1+α−β+μ

2 (t − w)
−1−α−β−μ

2 dt

= (1 − w)−βFI−β,α,−μ(1 − w), w ̸∈ ]−∞,0] ∪ [1,∞[,
w

∫
1

t
−1−α+β+μ

2 (t − 1)
−1+α−β+μ

2 (w − t)
−1−α−β−μ

2 dt

= (w − 1)−βFI−β,α,−μ(1 − w), w ̸∈ ]−∞, 1];
Re(1 − μ) > 󵄨󵄨󵄨󵄨Re(α + β)

󵄨󵄨󵄨󵄨 : (167)
∞

∫
w

t
−1−α+β+μ

2 (t − 1)
−1+α−β+μ

2 (t − w)
−1−α−β−μ

2 dt

= w
−1−α−β+μ

2 FI−μ,β,−α(w
−1), w ̸∈ ]−∞, 1],

w

∫
−∞

(−t)
−1−α+β+μ

2 (1 − t)
−1+α−β+μ

2 (w − t)
−1−α−β−μ

2 dt

= (−w)
−1−α−β+μ

2 FI−μ,β,−α(w
−1), w ̸∈ ]0,∞];

Re(1 + μ) > 󵄨󵄨󵄨󵄨Re(α − β)
󵄨󵄨󵄨󵄨 : (168)

1

∫
0

t
−1−α+β−μ

2 (1 − t)
−1+α−β+μ

2 (t − w)
−1−α−β−μ

2 dt

= (−w)
−1−α−β−μ

2 FIμ,β,α(w
−1), w ̸∈ [0,∞[,

1

∫
0

t
−1−α+β−μ

2 (1 − t)
−1+α−β+μ

2 (w − t)
−1−α−β−μ

2 dt

= w
−1−α−β−μ

2 FIμ,β,α(w
−1), w ̸∈ [−∞, 1[.
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5.13 Connection formulas

Generically, eachpair of standard solution is a basis of solutions to thehypergeometric
equation. For instance,we canuse the pair of solutions∼ 1 and∼ w−α at 0 as one basis,
and the pair ∼ w−a and ∼ w−b as another basis. We also assume that w ̸∈ [0,∞[.

Introduce the matrix

Aα,β,μ :=
π

sin(πμ)
[[

[

−1
Γ( 1+α+β−μ2 )Γ(

1+α−β−μ
2 )

1
Γ( 1+α+β+μ2 )Γ(

1+α−β+μ
2 )

−1
Γ( 1−α−β−μ2 )Γ(

1−α+β−μ
2 )

1
Γ( 1−α−β+μ2 )Γ(

1−α+β+μ
2 )

]]

]

.

Then

[
Fα,β,μ(w)

(−w)−αF−α,β,−μ(w)
]

= Aα,β,μ [
[

(−w)
−1−α−β−μ

2 Fμ,β,α(w−1)

(−w)
−1−α−β+μ

2 F−μ,β,−α(w−1)
]

]
. (169)

Note that in the Lie-algebraic parameters the matrix Aα,β,μ has a very symmetric
form. Here are some of its properties:

Aα,β,μ = Aα,−β,μ = −[
0 1
1 0
]A−α,β,−μ [

0 1
1 0
] = A−1μ,β,α, (170)

detAα,β,μ = −
sin(πα)
sin(πμ)

. (171)

Relation (169) can be derived from the integral representations. Indeed, consider
Imw < 0. Take the branches of the powers of −t and 1− t andw − t continued from the
left clockwise onto the upper half-plane. Then (under some conditions on α, β, μ) we
can write

(
0

∫
−∞

+
1

∫
0

+
+∞

∫
1

)(−t)
−1−α+β±μ

2 (1 − t)
−1+α−β±μ

2 (w − t)
−1−α−β∓μ

2 dt = 0.

We obtain

FIβ,α,±μ(1−w) − e
iπα(−w)

−1−α−β∓μ
2 FI±μ,β,α(w

−1) − ieiπ
α+β∓μ

2 FIα,β,±μ(w) = 0.

Using

FIα,β,μ(w) = Γ(
1 + α + β − μ

2
)Γ( 1 + α − β + μ

2
)Fα,β,μ(w),

we express everything in terms of F. We eliminate Fβ,α,μ(1−w) = Fβ,α,−μ(1−w). We
find
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Fα,β,μ(w) = −
π(−w)

−1−α−β−μ
2 Fμ,β,α(w−1)

sin(πμ)Γ( 1+α+β−μ2 )Γ(
1+α−β−μ

2 )

+
π(−w)

−1−α−β+μ
2 F−μ,β,−α(w−1)

sin(πμ)Γ( 1+α+β+μ2 )Γ(
1+α−β+μ

2 )
,

which is the first line of (169). A similar argument, startingwith the integral ∫0−∞ +∫
w
0 +

∫+∞w , yields the second line of (169).

6 Laplacian in 3 dimensions and the Gegenbauer
equation

TheGegenbauer equation is equivalent to a subclass of the 2ℱ1 equation.Nevertheless,
not all its symmetries are directly inherited from the symmetries of the 2ℱ1 equation.
Therefore, it deserves a separate treatment, which is given in this section. We start
from the Laplacian in 5 dimensions, pass through 3 dimensions, and eventually we
derive the Gegenbauer equation.

This section is to a large extent parallel to the previous one, devoted to the 2ℱ1
equation. The number of symmetries, parameters, etc. is now smaller than in the pre-
vious section, since we are in lower dimensions. Nevertheless, some things are here
more complicated and less symmetric. This is related to the fact that the number of
dimensions is odd, which corresponds to a less symmetric orthogonal group and Lie
algebra.

Let us describe themain steps of our derivation of the Gegenbauer equation, even
though they are almost the same as for the 2ℱ1 equation.
(1) We start from the 3 + 2 = 5 dimensional ambient space, with the obvious repre-

sentation of so(5) and O(5), and the Laplacian Δ5.
(2) We go to the representations so(5) ∋ B 󳨃→ B⬦,η and O(5) ∋ α 󳨃→ α⬦,η and to the

reduced Laplacian Δ⬦5 . The most relevant values of η are 1 − 3
2 = −

1
2 and −1 −

3
2 =

− 52 .
(3) We fix a section γ of the null quadric, obtaining the representations Bγ,η and αγ,η,

as well as the operator Δγ5, acting on an appropriate pseudo-Riemannian 3 dimen-
sional manifold.

(4) We choose coordinates w, u2, u3, so that the Cartan elements can be expressed in
terms of u2, u3. We compute Bγ,η, αγ,η and Δγ5 in the new coordinates.

(5) We make an ansatz that diagonalizes the Cartan elements. The eigenvalues, de-
noted by α, λ, become parameters. Bγ,η, αγ,η and Δγ5 involve now only the single
variable w. Δγ5 turns out to be the Gegenbauer operator. We obtain its transmuta-
tion relations and discrete symmetries.
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Again, we choose a special sectionwhichmakes computations relatively easy.We per-
form Steps 2, 3 and 4 at once, by choosing convenient coordinatesw, r, p, u2, u3 in 5 di-
mensions. After the reductions of Steps 2 and 3, we are left with the variablesw, u2, u3,
and we can perform Step 5.

The remaining material of this section is parallel to the analogous material of the
previous section except for Subsection 6.4, which describes a quadratic relation re-
ducing the Gegenbauer equation to the 2ℱ1 equation. We describe a derivation of this
relation starting from the level of the ambient space.

6.1 so(5) in 5 dimensions

We consider ℝ5 with the coordinates

z0, z−2, z2, z−3, z3 (172)

and the scalar product given by

⟨z|z⟩ = z20 + 2z−2z2 + 2z−3z3. (173)

Note that we omit the indices −1, 1; this makes it easier to compare ℝ5 with ℝ6.
The Lie algebra so(5) acts naturally on ℝ5. Below we describe its natural basis.

Then we consider the Weyl group B2 acting on functions on ℝ5. For brevity, we list
only elements from its subgroup B2 ∩ SO(5). Finally, we write down the Laplacian.

Lie algebra so(5). Cartan algebra

N2 = −z−2𝜕z−2 + z2𝜕z2 , (174a)

N3 = −z−3𝜕z−3 + z3𝜕z3 . (174b)

Root operators

B0,−2 = z0𝜕z−2 − z2𝜕z0 , (175a)

B0,2 = z0𝜕z2 − z−2𝜕z0 , (175b)

B0,−3 = z0𝜕z−3 − z3𝜕z0 , (175c)

B0,3 = z0𝜕z3 − z−3𝜕z0 ; (175d)

B−3,−2 = z3𝜕z−2 − z2𝜕z−3 , (175e)

B3,2 = z−3𝜕z2 − z−2𝜕z3 , (175f)

B3,−2 = z−3𝜕z−2 − z2𝜕z3 , (175g)

B−3,2 = z3𝜕z2 − z−2𝜕z−3 . (175h)
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Weyl symmetries

σ23K(z0, z−2, z2, z−3, z3) = K(z0, z−2, z2, z−3, z3), (176a)
τ2−3K(z0, z−2, z2, z−3, z3) = K(−z0, z−2, z2, z3, z−3), (176b)
σ−2−3K(z0, z−2, z2, z−3, z3) = K(z0, z2, z−2, z3, z−3), (176c)
τ−23K(z0, z−2, z2, z−3, z3) = K(−z0, z2, z−2, z−3, z3); (176d)

σ32K(z0, z−2, z2, z−3, z3) = K(z0, z−3, z3, z−2, z2), (176e)
τ3−2K(z0, z−2, z2, z−3, z3) = K(−z0, z−3, z3, z2, z−2), (176f)
σ−3−2K(z0, z−2, z2, z−3, z3) = K(z0, z3, z−3, z2, z−2), (176g)
τ−32K(z0, z−2, z2, z−3, z3) = K(−z0, z3, z−3, z−2, z2). (176h)

Laplacian

Δ5 = 𝜕
2
z0 + 2𝜕z−2𝜕z2 + 2𝜕z−3𝜕z3 . (177)

6.2 so(5) on the spherical section

In this subsection, we perform Steps 2, 3 and 4, as described in the Introduction to this
section. Recall that Step 2 involves restricting to the null quadric

𝒱4 := {z ∈ ℝ5 : z20 + 2z−2z2 + 2z−3z3 = 0}.

To perform Step 3, we need to fix a section of this quadric. We choose the section given
by the equations

1 = z20 + 2z−2z2 = −2z3z−3.

We will call it the spherical section, because it is 𝕊2(1) × 𝕊1(−1). The superscript used
for this section will be “sph” for spherical.

We introduce the coordinates w, r, p, u2, u3:

r = √z20 + 2z−2z2, (178a)

w = z0
√2z−2z2 + z20

, u2 =
√2z2

√z20 + 2z−2z2
, (178b)

p = √−2z3z−3, u3 = √−
z3
z−3
. (178c)

Here is the inverse transformation:

z0 = wr, z−2 =
r(1 − w2)
√2u2
, z2 =

u2r
√2
, (179a)
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z−3 = −
p
√2u3
, z3 =

pu3
√2
. (179b)

Similarly, as in the previous section, the null quadric in these coordinates is given
by r2 = p2. We choose the sheet r = p. The generator of dilations is

A5 = r𝜕r + p𝜕p.

The spherical section is given by the condition r2 = 1.

Lie algebra so(5). Cartan operators

Nsph
2 = u2𝜕u2 ,

Nsph
3 = u3𝜕u3 .

Roots

Bsph0,−2 = −
u2
√2
𝜕w ,

Bsph0,2 =
1
√2u2
((w2 − 1)𝜕w + 2wu2𝜕u2),

Bsph,η0,−3 =
u3
√2
((w2 − 1)𝜕w + wu2𝜕u2 + wu3𝜕u3 − wη),

Bsph,η0,3 =
1
√2u3
((1 − w2)𝜕w − wu2𝜕u2 + wu3𝜕u3 + wη);

Bsph,η−3,−2 =
u2u3
2
(−w𝜕w − u2𝜕u2 − u3𝜕u3 + η),

Bsph,η3,2 =
1

2u2u3
(w(1 − w2)𝜕w − (1 + w

2)u2𝜕u2 + (w
2 − 1)u3𝜕u3 + (w

2 − 1)η),

Bsph,η3,−2 =
u2
2u3
(w𝜕w + u2𝜕u2 − u3𝜕u3 − η),

Bsph,η−3,2 =
u3
2u2
(w(w2 − 1)𝜕w + (1 + w

2)u2𝜕u2 + (w
2 − 1)u3𝜕u3 + (1 − w

2)η).

Weyl symmetries

σsph,η23 f (w, u2, u3) = f (w, u2, u3),

τsph,η2−3 f (w, u2, u3) = f(−w, u2,
1
u3
),

σsph,η−2−3 f (w, u2, u3) = f(w,
1 − w2

u2
,
1
u3
),

τsph,η−23 f (w, u2, u3) = f(−w,
1 − w2

u2
, u3);
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σsph,η32 f (w, u2, u3) = (w
2 − 1)

η
2 f( w
√w2 − 1

,
u3
√w2 − 1

,
u2
√w2 − 1

),

τsph,η3−2 f (w, u2, u3) = (w
2 − 1)

η
2 f( −w
√w2 − 1

,
u3
√w2 − 1

,
√w2 − 1

u2
),

σsph,η−3−2 f (w, u2, u3) = (w
2 − 1)

η
2 f( w
√w2 − 1

,
−1

u3√w2 − 1
,
√w2 − 1

u2
),

τsph,η−32 f (w, u2, u3) = (w
2 − 1)

η
2 f( −w
√w2 − 1

,
−1

u3√w2 − 1
,

u2
√w2 − 1

).

Laplacian

Δsph5 = (1 − w
2)𝜕2w − 2(1 + u2𝜕u2 )w𝜕w − (u2𝜕u2 +

1
2
)
2
+ (u3𝜕u3 )

2.

Let us sketch the computations that lead to (180). Using

𝜕z0 =
1
r
(wr𝜕r − wu2𝜕u2 + (1 − w

2)𝜕w),

𝜕z−2 =
u2
√2r
(r𝜕r − u2𝜕u2 − w𝜕w),

𝜕z2 =
1
√2ru2
((1 − w2)r𝜕r + (1 + w

2)u2𝜕u2 + (w
2 − 1)w𝜕w),

𝜕z−3 =
u3
√2p
(u3𝜕u3 − p𝜕p),

𝜕z3 =
1
√2pu3
(u3𝜕u3 + p𝜕p),

we change the variables in the Laplacian:

Δ5 =
1
r2
((1 − w2)𝜕2w − 2(1 + u2𝜕u2 )w𝜕w − (u2𝜕u2 )

2 − u2𝜕u2

+ (r𝜕r)
2 + r𝜕r) +

1
p2
(−(p𝜕p)

2 + (u3𝜕u3 )
2). (180)

Now

(r𝜕r)
2 + r𝜕r −

r2

p2
(p𝜕p)

2 = (r𝜕r − p𝜕p +
1
2
)(r𝜕r + p𝜕p +

1
2
)

+ (1 − r
2

p2
)(p𝜕p)

2 −
1
4
.

Therefore, using r2 = p2, r𝜕r + p𝜕p = −
1
2 , we obtain

Δ⬦5 =
1
r2
((1 − w2)2𝜕2w − 2(1 + u2𝜕u2 )w𝜕w

− (u2𝜕u2 +
1
2
)
2
+ (u3𝜕u3 )

2). (181)

To obtain the Laplacian at the spherical section, we drop 1
r2 .
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6.3 The Gegenbauer operator

Let us make the ansatz

f (u2, u3,w) = u
α
2u

λ
3S(w). (182)

Clearly,

Nsph
2 f = αf , (183a)

Nsph
3 f = λf , (183b)

u−α2 u−λ3 Δsph5 f = 𝒮α,λ(w, 𝜕w)S(w), (183c)

where

𝒮α,λ(w, 𝜕w) := (1 − w
2)𝜕2w − 2(1 + α)w𝜕w + λ

2 − (α + 1
2
)
2

(184)

is the Gegenbauer operator. Here is another parametrization of the Gegenbauer oper-
ator, which we call classical:

𝒮(a, b;w, 𝜕w) := (1 − w
2)𝜕2w − (a + b + 1)w𝜕w − ab. (185)

Here is the relationship between the classical and Lie-algebraic parameters:

α := a + b − 1
2
, λ := b − a

2
, (186a)

a = 1
2
+ α − λ, b = 1

2
+ α + λ. (186b)

The Gegenbauer operator is the 2ℱ1 operator with its finite singular points moved
to −1 and 1, which in addition is reflection invariant. Because of the reflection invari-
ance, the third classical parameter canbe obtained from the first two: c = a+b+1

2 . There-
fore, we use only a, b ∈ ℂ as the (classical) parameters of the Gegenbauer equation.

We can reduce the Gegenbauer equation to the 2ℱ1 equation by two affine trans-
formations. They move the singular points from −1, 1 to 0, 1 or 1, 0:

𝒮(a, b;w, 𝜕w) = ℱ(a, b;
a + b + 1

2
; v, 𝜕v), (187)

where

v = 1 − w
2
, w = 1 − 2v, (188a)

or v = 1 + w
2
, w = −1 + 2v. (188b)

In the Lie-algebraic parameters

𝒮α,λ(w, 𝜕w) = ℱα,α,2λ(v, 𝜕v). (189)
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6.4 Quadratic transformation

Let us go back to 6 dimensions and the Laplacian

Δ6 = 2𝜕z−1𝜕z1 + 2𝜕z−2𝜕z2 + 2𝜕z−3𝜕z3 . (190)

Let us use the reduction described in Subsection 3.14. Introduce new variables

z0 := √2z−1z1, u := √
z1
z−1
. (191)

In the new variables,

N1 = u𝜕u, (192)

Δ6 = (𝜕z0 +
1
2z0
)
2
−

1
z20
(u𝜕u −

1
2
)(u𝜕u +

1
2
)

+ 2𝜕z−2𝜕z2 + 2𝜕z−3𝜕z3 . (193)

Therefore,

(uz0)
1
2 Δ6(uz0)

− 12 = −
1
z20
N1(N1 − 1) + Δ5, (194a)

(u−1z0)
1
2 Δ6(u
−1z0)
− 12 = −

1
z20
N1(N1 + 1) + Δ5. (194b)

Compare the coordinates the coordinates (131) for 6 dimensions and (178) for 5 dimen-
sions. The coordinates p, u3 are the same. Taking into account z0 := √2z−1z1, the coor-
dinates r, u2 also coincide. This is not the case ofw, so let us renamew from (178) as v.
We then have w = v2. We also have

uz0 = √2z1 = u1r, u−1z0 = √2z−1 = rwu
−1
1 .

Hence on functions that do not depend on u we obtain

r
1
2 u

1
2
1 Δ6r
− 12 u−

1
2

1 = Δ5, (195a)

r
1
2 u−

1
2

1 vΔ6r
− 12 u

1
2
1 v
−1 = Δ5. (195b)

This implies that a quadratic substitution transforms the 2ℱ1 operator with α = ±
1
2

into the Gegenbauer operator. Explicitly, if

w = v2, v = √w;

then in the classical parameters
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𝒮(a, b; v, 𝜕v) = 4ℱ(
a
2
,
b
2
;
1
2
;w, 𝜕w), (196a)

v−1𝒮(a, b; v, 𝜕v)v = 4ℱ(
a + 1
2
,
b + 1
2
;
3
2
;w, 𝜕w), (196b)

and in the Lie-algebraic parameters

𝒮α,λ(v, 𝜕v) = 4ℱ− 12 ,α,λ(w, 𝜕w), (197a)

v−1𝒮α,λ(v, 𝜕v)v = 4ℱ 1
2 ,α,λ
(w, 𝜕w). (197b)

6.5 Transmutation relations and discrete symmetries

We have the following generalized symmetries:

Bsph,−
5
2 Δsph5 = Δ

sph
5 Bsph,−

1
2 , B ∈ so(5); (198a)

αsph,−
5
2 Δsph5 = Δ

sph
5 αsph,−

1
2 , α ∈ O(5). (198b)

Equality (198a) applied to the roots of so(5) yield the following transmutation rela-
tions:

𝜕w 𝒮α,λ
= 𝒮α+1,λ 𝜕w ,

((1 − w2)𝜕w − 2αw) 𝒮α,λ
= 𝒮α−1,λ ((1 − w2)𝜕w − 2αw),

((1 − w2)𝜕w − (α + λ +
1
2 )w) (1 − w

2)𝒮α,λ
= (1 − w2)𝒮α,λ+1 ((1 − w2)𝜕w − (α + λ +

1
2 )w),

((1 − w2)𝜕w − (α − λ +
1
2 )w) (1 − w

2)𝒮α,λ
= (1 − w2)𝒮α,λ−1 ((1 − w2)𝜕w − (α − λ +

1
2 )w);

(w𝜕w + α − λ +
1
2 ) w2𝒮α,λ

= w2𝒮α+1,λ−1 (w𝜕w + α − λ +
1
2 ),

(w(1−w2)𝜕w−α−λ+
1
2−(α−λ+

1
2 )w

2) w2𝒮α,λ
= w2𝒮α−1,λ+1 (w(1−w2)𝜕w−α−λ+

1
2−(α−λ+

1
2 )w

2),

(w𝜕w + α − λ +
1
2 ) w2𝒮α,λ

= w2𝒮α+1,λ+1 (w𝜕w + α − λ +
1
2 ),

(w(1−w2)𝜕w−α+λ+
1
2−(α+λ+

1
2 )w

2) w2𝒮α,λ
= w2𝒮α−1,λ−1 (w(1−w2)𝜕w−α+λ+

1
2−(α+λ+

1
2 )w

2).

Next, we describe discrete symmetries of the Gegenbauer operator, which fol-
low from Relation (198b) applied to Weyl symmetries. All the operators below equal
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𝒮α,λ(w, 𝜕w) for the appropriate w:

w = ±v : 𝒮α,±λ(v, 𝜕v),

w = ±v : (v2 − 1)−α 𝒮−α,∓λ(v, 𝜕v) (v2 − 1)α,

w = ±v
(v2−1)

1
2
: (v2 − 1)

1
2 (α+λ+

5
2 ) 𝒮λ,±α(v, 𝜕v) (v2 − 1)

1
2 (−α−λ−

1
2 ),

w = ±v
(v2−1)

1
2
: (v2 − 1)

1
2 (α−λ+

5
2 ) 𝒮−λ,∓α(v, 𝜕v) (v2 − 1)

1
2 (−α+λ−

1
2 ).

Note that we use ± to describe two symmetries at once. Therefore, the above list
has all 2 × 4 = 8 symmetries corresponding to the lists of Weyl symmetries (176).

6.6 Factorizations of the Laplacian

In the Lie algebra so(5) represented on ℝ5, we have 3 distinguished Lie subalgebras:
two isomorphic to so(3) and one isomorphic to so(4):

so02(3), so03(3), so23(4), (199)

where we use an obvious notation. By (92) and (94), the corresponding Casimir oper-
ators are

𝒞02 = 2B0,−2B0,2 − (N2 −
1
2
)
2
+
1
4

(200a)

= 2B0,2B0,−2 − (N2 +
1
2
)
2
+
1
4
, (200b)

𝒞03 = 2B0,−3B0,3 − (N3 −
1
2
)
2
+
1
4

(200c)

= 2B0,3B0,−3 − (N3 +
1
2
)
2
+
1
4
, (200d)

𝒞23 = 4B2,3B−2,−3 − (N2 + N3 + 1)
2 + 1 (200e)

= 4B−2,−3B2,3 − (N2 + N3 − 1)
2 + 1 (200f)

= 4B2,−3B−2,3 − (N2 − N3 + 1)
2 + 1 (200g)

= 4B−2,3B2,−3 − (N2 − N3 − 1)
2 + 1. (200h)

After the reduction described in (104) and (102), we obtain the identities

(z20 + 2z−2z2)Δ
⬦
5 = −

1
4
+ 𝒞⬦,−

1
2

02 + (N
⬦,− 12
3 )

2, (201a)

(z20 + 2z−3z3)Δ
⬦
5 = −

1
4
+ 𝒞⬦,−

1
2

03 + (N
⬦,− 12
2 )

2, (201b)

(2z−2z2 + 2z−3z3)Δ
⬦
5 = −

3
4
+ 𝒞⬦,−

1
2

23 . (201c)
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Inserting (200) into (201), we obtain

(z20 + 2z−2z2)Δ
⬦
5

= 2B0,−2B0,2 − (N2 + N3 −
1
2
)(N2 − N3 −

1
2
) (202a)

= 2B0,2B0,−2 − (N2 + N3 +
1
2
)(N2 − N3 +

1
2
), (202b)

(z20 + 2z−3z3)Δ
⬦
5

= 2B0,−3B0,3 − (N2 + N3 −
1
2
)(−N2 + N3 −

1
2
) (202c)

= 2B0,3B0,−3 − (N2 + N3 +
1
2
)(−N2 + N3 +

1
2
), (202d)

(2z−2z2 + 2z−3z3)Δ
⬦
5

= 4B2,3B−2,−3 − (N2 + N3 +
3
2
)(N2 + N3 +

1
2
) (202e)

= 4B−2,−3B2,3 − (N2 + N3 −
3
2
)(N2 + N3 −

1
2
) (202f)

= 4B2,−3B−2,3 − (N2 − N3 +
3
2
)(N2 − N3 +

1
2
) (202g)

= 4B−2,3B2,−3 − (N2 − N3 −
3
2
)(N2 − N3 −

1
2
), (202h)

where all the B and N operators need to have the superscript ⬦,−
1
2 .

If we use the spherical section, we need to make the replacements

z20 + 2z−2z2 → 1, (203a)
z20 + 2z−3z3 → w2 − 1, (203b)

2z−2z2 + 2z−3z3 → −w
2, (203c)

and replace the superscript ⬦ with sph.

6.7 Factorizations of the Gegenbauer equation

The factorizations of Δsph5 of Subsection 6.6 yield the following factorizations of the
Gegenbauer operator:

𝒮α,λ = 𝜕w((1 − w
2)𝜕w − 2αw)

+ (α + λ − 1
2
)(−α + λ + 1

2
)

= ((1 − w2)𝜕w − 2(1 + α)w)𝜕w

+ (α + λ + 1
2
)(−α + λ − 1

2
),
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(1−w2)𝒮α,λ = ((1 − w
2)𝜕w − (α + λ −

1
2
)w)((1 − w2)𝜕w − (α − λ +

1
2
)w)

+ (α + λ − 1
2
)(α − λ + 1

2
)

= ((1 − w2)𝜕w − (α − λ −
1
2
)w)((1 − w2)𝜕w − (α + λ +

1
2
)w)

+ (α + λ + 1
2
)(α − λ − 1

2
),

w2𝒮α,λ = (w(1 − w
2)𝜕w − α − λ −

3
2
+ (−α + λ − 1

2
)w2)(w𝜕w + α + λ +

1
2
)

+ (α + λ + 1
2
)(α + λ + 3

2
)

= (w𝜕w + α + λ −
3
2
)(w(1 − w2)𝜕w − α − λ +

1
2
+ (−α + λ − 1

2
)w2)

+ (α + λ − 1
2
)(α + λ − 3

2
)

= (w(1 − w2)𝜕w − α + λ −
3
2
+ (−α − λ − 1

2
)w2)(w𝜕w + α − λ +

1
2
)

+ (α − λ + 1
2
)(α − λ + 3

2
)

= (w𝜕w + α − λ −
3
2
)(w(1 − w2)𝜕w − α + λ +

1
2
+ (−α − λ − 1

2
)w2)

+ (α − λ − 1
2
)(α − λ − 3

2
).

6.8 Standard solutions

As usual, by standard solutions we mean solutions with a simple behavior around
singular points. The singular points of the Gegenbauer equation are {1, −1,∞}. The
discussion of the point −1 can be easily reduced to that of 1. Therefore, it is enough to
discuss 2 × 2 = 4 solutions corresponding to two indices at 1 and∞.

The standard solutions can be expressed in terms of the function

Sα,λ(w) = S(a, b;w) := F(a, b;
a + b + 1

2
;
1 − w
2
)

= F(a
2
,
b
2
;
a + b + 1

2
; 1 − w2). (204)

Here are the 4 standard solutions. We consistently use the Lie-algebraic parame-
ters.

∼ 1 at 1: Sα,λ(w)

= Fα,α,2λ(
1 − w
2
) = Fα,− 12 ,λ(1 − w

2),
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∼
1

2α(1 − w)α
at 1: (1 − w2)−αS−α,−λ(w)

= 2−α(1 − w)−αF−α,α,−2λ(
1 − w
2
) = (1 − w2)−αF−α,− 12 ,−λ(1 − w

2),

∼ w−a at∞: (w2 − 1)
−1−2α+2λ

4 S−λ,−α(
w
√w2 − 1

)

= (1 + w)−
1
2−α+λF−2λ,α,−α(

2
1 + w
) = w−

1
2−α+λF−λ,α, 12 (w

−2),

∼ w−b at∞: (w2 − 1)
−1−2α−2λ

4 Sλ,α(
w
√w2 − 1

)

= (1 + w)−
1
2−α−λF2λ,α,α(

2
1 + w
) = w−

1
2−α−λFλ,α, 12 (w

−2).

6.9 Recurrence relations

We will use the following normalization to express recurrence relations:

Sα,λ(w) :=
1

Γ(α + 1)
Sα,λ(w)

=
1

Γ( a+b+12 )
F(a, b; a + b + 1

2
;
1 − w
2
)

= Fα,α,2λ(
1 − w
2
). (205)

To each root of so(5), there corresponds a recurrence relation:

𝜕wSα,λ(w) = −
1
2
(
1
2
+ α − λ)( 1

2
+ α + λ)Sα+1,λ(w),

((1 − w2)𝜕w − 2αw)Sα,λ(w) = −2Sα−1,λ(w),

((1 − w2)𝜕w − (
1
2
+ α + λ)w)Sα,λ(w) = −(

1
2
+ α + λ)Sα,λ+1(w),

((1 − w2)𝜕w − (
1
2
+ α − λ)w)Sα,λ(w) = −(

1
2
+ α − λ)Sα,λ−1(w);

(w𝜕w +
1
2
+ α − λ)Sα,λ(w) =

1
2
(
1
2
+ α − λ)(3

2
+ α − λ)Sα+1,λ−1(w),

(w(1−w2)𝜕w+(
1
2
−α+λ)(1−w2)−2αw2)Sα,λ(w) = −2Sα−1,λ+1(w),

(w𝜕w +
1
2
+ α + λ)Sα,λ(w) =

1
2
(
1
2
+ α + λ)(3

2
+ α + λ)Sα+1,λ+1(w),

(w(1−w2)𝜕w+(
1
2
−α−λ)(1−w2)−2αw2)Sα,λ(w) = −2Sα−1,λ−1(w).
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6.10 Wave packets in 5 dimensions
We easily check the following lemma.

Lemma 6.1. For any τ, the function zα2 (√2z0 − τ
−1z−3 + τz3)ν is harmonic.

Let us make a wave packet from the above functions.

Proposition 6.2. Let the contour ]0, 1[ ∋ s
γ
󳨃→ τ(s) satisfy

(√2z0 − τ
−1z−3 + τz3)

ντ−λ󵄨󵄨󵄨󵄨
τ(1)
τ(0) = 0. (206)

Then the function

Kα,ν,λ(z0, z−2, z2, z−3, z3) := ∫
γ

zα2 (√2z0 − τ
−1z−3 + τz3)

ντ−λ−1 dτ

is harmonic and

N2Kα,ν,λ = αKα,ν,λ, (207a)
N3Kα,ν,λ = λKα,ν,λ. (207b)

Proof. Equation (207a) is obvious. To obtain (207b), we use Proposition 3.2.

If in addition,

ν = −α − 1
2
,

then Kα,ν,λ is homogeneous of degree − 12 . Therefore, we can reduce it to dimension 3.
Let us express it in the coordinates w, r, p, u2, u3:

K(w, r, p, u2, u3) = ∫ u
α
2 r

α(wr√2 + p
τu3√2
+
τpu3
√2
)
−α− 12

τ−λ−1 dτ

= (√2)α+
1
2 uα2u

λ
3r
− 12 ∫(2wσ + (1 + σ2)p

r
)
−α− 12

σα−λ−
1
2 dσ,

where we set σ := u3τ. Noting that on the spherical section p = r, we see that

S(w) := ∫(2wσ + 1 + σ2)−α−
1
2 σα−λ−

1
2 dσ (208)

satisfies the Gegenbauer equation.

6.11 Integral representations
In this subsection, we describe two kinds of integral representations for solutions to
the Gegenbauer equation. The first is essentially inherited from the 2ℱ1 equation. The
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second was derived using additional variables in the previous subsection. Here, we
give independent derivations. We will use classical parameters.

Theorem 6.3.
(a) Let [0, 1] ∋ τ

γ
󳨃→ t(τ) satisfy

(t2 − 1)
b−a+1

2 (t − w)−b−1󵄨󵄨󵄨󵄨
t(1)
t(0) = 0.

Then

𝒮(a, b;w, 𝜕w) ∫
γ

(t2 − 1)
b−a−1

2 (t − w)−bdt = 0. (209)

(b) Let [0, 1] ∋ τ
γ
󳨃→ t(τ) satisfy

(t2 + 2tw + 1)
−b−a
2 +1tb−2󵄨󵄨󵄨󵄨

t(1)
t(0) = 0.

Then

𝒮(a, b;w, 𝜕w) ∫
γ

(t2 + 2tw + 1)
−b−a
2 tb−1dt = 0. (210)

Proof. For any contour γ, we have

lhs of (209) = a∫
γ

dt𝜕t(t
2 − 1)

b−a+1
2 (t − w)−b−1,

lhs of (210) = ∫
γ

dt𝜕t(t
2 + 2tw + 1)

−b−a
2 +1tb−2.

Note that in the above theorem we can interchange a and b. Thus we obtain four
kinds of integral representations.

6.12 Integral representations of the standard solutions

As described in Theorem 6.3, we have two types of integral representations of solu-
tions of Gegenbauer equations: (a) and (b). It is natural to use singular points of the
integrands as the endpoints of the contours of integration. For the representations of
type (a), we have singular points at∞,−1, 1,w. For representations of type (b), singu-
lar points are at ∞,0 and the two roots of t2 + 2tw + 1 = 0. Choosing an appropri-
ate contour, we obtain all standard solutions with both types of representations with
some special normalizations. It is convenient to introduce special notation for these
normalizations:
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SIα,λ(w) := 2
− 12−α−λ

Γ( 1+2α+2λ2 )Γ(
1−2λ
2 )

Γ(α + 1)
Sα,λ(w) (211)

= 2−b
Γ(b)Γ( a−b+12 )

Γ( a+b+12 )
F(a, b; a + b + 1

2
;
1 − w
2
)

= 2−
1
2−α−λFIα,α,2λ(

1 − w
2
),

SIIα,λ(w) :=
Γ( 1+2α−2λ2 )Γ(

1+2α+2λ
2 )

Γ(2α + 1)
Sα,λ(w) (212)

=
Γ(a)Γ(b)
Γ(a + b)

F(a, b; a + b + 1
2
;
1 − w
2
),

S0α,λ(w) := √π
Γ( 1+2α2 )
Γ(α + 1)

Sα,λ(w) (213)

= √π
Γ( 1+2α2 )
Γ(α + 1)

F(a, b; a + b + 1
2
;
1 − w
2
).

In the following table, we list all standard solutions together with the contours of
integration and the corresponding normalizations.

(a) (b)

∼ 1 at 1: ] −∞, −1], [0,∞[,
I; II;

∼ 1
2α (1−w)α at 1: ]−1,w], [−i√1−w2 − w, i√1−w2−w],

I; 0;

∼ w−a at∞: ] − 1,1], [√w2 − 1 − w,0[,
0; I;

∼ w−b at∞: ]w,∞], ] −∞, −√w2 − 1 − w],
II; I.

Here are representations of type (a):

1
2
> Re λ > − 1

2
− Re α : (214)

−1

∫
−∞

(t2 − 1)−
1
2−λ(w − t)−

1
2−α+λ dt

= SIα,λ(w), w ̸∈ ]−∞, −1];
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1
2
> Re λ > − 1

2
+ Re α : (215)

1

∫
w

(1 − t2)−
1
2−λ(w − t)−

1
2−α+λ dt

= (1 − w2)−αSI−α,−λ(w), w ̸∈ ]−∞, −1] ∪ [1,∞[;
1
2
> Re λ : (216)

1

∫
−1

(1 − t2)−
1
2−λ(w − t)−

1
2−α+λ dt

= (w2 − 1)
−1−2α+2λ

4 S0−λ,α(
w
√w2 − 1

), w ̸∈ ]−∞, 1];

Re λ + 1
2
> |Re α| : (217)

∞

∫
w

(t2 − 1)−
1
2−λ(t − w)−

1
2−α+λ dt

= (w2 − 1)
−1−2α−2λ

4 SIIλ,α(
w
√w2 − 1

), w ̸∈ ]−∞, 1].

Next we list representations of type (b):

Re α + 1
2
> |Re λ| : (218)

∞

∫
0

(t2 + 2tw + 1)−α−
1
2 t−

1
2+α+λ dt

= SIIα,λ(w) w ̸∈ ]−∞, −1];
1
2
> Re α : (219)

i√1−w2−w

∫

−i√1−w2−w

(t2 + 2tw + 1)−α−
1
2 (−t)−

1
2+α+λ dt

= i(1 − w2)−αS0−α,−λ(w), w ̸∈ ]−∞, −1] ∪ [1,∞[;

− Re λ + 1
2
> −Re α > − 1

2
: (220)

0

∫
√w2−1−w

(t2 + 2tw + 1)−α−
1
2 (−t)−

1
2+α−λ dt

= (w2 − 1)
−1−2α+2λ

4 SI−λ,α(
w
√w2 − 1

), w ̸∈ ]−∞, 1];
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Re λ + 1
2
> −Re α > − 1

2
: (221)

−√w2−1−w

∫
−∞

(t2 + 2tw + 1)−α−
1
2 (−t)−

1
2+α−λ dt

= (w2 − 1)−
1
4−

α
2 −

λ
2 SIλ,α(

w
√w2 − 1

), w ̸∈ ]−∞, 1].

7 The Schrödinger Lie algebra and the heat equation

By the heat equation on ℝn ⊕ ℝ, we mean the equation given by the heat operator

ℒn := Δn + 2𝜕t . (222)

This operator has a large family of generalized symmetries, the so-called Schrödinger
Lie algebra and group. They can be derived from conformal symmetries of the Laplace
equation. In this section, we describe this derivation.

In order to be consistentwith Section 4, it is convenient to considerℒn−2 instead of
ℒn. Then the starting point, just as in Section 4, is the n+2-dimensional ambient space.
The Schrödinger Lie algebra and group are naturally contained in the pseudo-orthog-
onal Lie algebra and group for n+2 dimensions. Then, as described in Section 4.12, we
descend to the (flat) n dimensional space and the corresponding Laplacian Δn. We as-
sume that our functions depend on ym only through the factor eym . The variable y−m is
renamed to t (the “time”). The Schrödinger Lie algebra and group respects functions of
that form. The Laplacian Δn on such functions becomes the heat operator ℒn−2. From
the generalized symmetries of Δn, we obtain generalized symmetries of ℒn−2.

7.1 sch(n−2) as a subalgebra of so(n+2)

We consider again the space ℝn+2 with the split scalar product. A special role will be
played by the operator

Bm+1,m = z−m−1𝜕zm − z−m𝜕zm+1 ∈ so(n + 2).

We define the Schrödinger Lie algebra and the Schrödinger group as the commutants
(centralizers) of this element:

sch(n − 2) := {B ∈ so(n + 2) : [B,Bm+1,m] = 0}, (223a)

Sch(n − 2) := {α ∈ O(n + 2) : αBm+1,m = Bm+1,mα}. (223b)
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7.2 Structure of sch(n−2)

Let us describe the structure of sch(n−2).
We will use our usual notation for elements of so(n+2) and O(n+2). In particular,

Nm = −z−m𝜕z−m + zm𝜕zm , Nm+1 = −z−m−1𝜕z−m−1 + zm+1𝜕zm+1 .

Define

M := −Nm + Nm+1. (224)

Note that M belongs to sch(n−2) and commutes with so(n−2), which is naturally em-
bedded in sch(n−2).

The Lie algebra sch(n−2) is spanned by the following operators:
(1) Bm+1,m, which spans the center of sch(n−2).
(2) Bm,j, Bm+1,j, |j| = 1, . . . ,m − 1, which have the following nonzero commutator:

[Bm,j,Bm+1,−j] = Bm+1,m. (225)

(3) Bm+1,−m, B−m−1,m,M, which have the usual commutation relations of sl(2) ≃ so(3):

[Bm+1,−m,B−m−1,m] = M, (226a)
[M,Bm+1,−m] = −2Bm+1,−m, (226b)
[M,B−m−1,m] = 2B−m−1,m. (226c)

(4) Bi,j, |i| < |j| ≤ m − 1, Ni, i = 1, . . . ,m − 1, with the usual commutation relations of
so(n−2).

The span of (2) can be identified with ℝn−2 ⊕ ℝn−2 ≃ ℝ2 ⊗ ℝn−2, which has a natural
structure of a symplectic space. The span of (1) and (2) is the central extension of the
abelian algebraℝ2 ⊗ℝn−2 by (225). Such a Lie algebra is usually called the Heisenberg
Lie algebra over ℝ2 ⊗ ℝn−2 and can be denoted by

heis(2(n−2)) = ℝ ⋊ (ℝ2 ⊗ ℝn−2). (227)

Lie algebras sl(2) and so(n−2) act in the obvious way on ℝ2, respectively, ℝn−2.
Thus sl(2) ⊕ so(n − 2) acts on ℝ2 ⊗ ℝn−2. Thus

sch(n−2) ≃ ℝ⋊(ℝ2 ⊗ ℝn−2) ⋊ (sl(2) ⊕ so(n−2)). (228)

Note, in particular, that sch(n−2) is not semisimple.
The subalgebra spanned by the usual Cartan algebra of so(n−2),M and B−m−1,m is

a maximal commutative subalgebra of sch(n−2). It will be called the Cartan algebra of
sch(n−2).
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Let us introduce κ ∈ SO(n+2):

κ(. . . , z−m, zm, z−m−1, zm+1) := (. . . , z−m−1, zm+1, −z−m, −zm). (229)

Note that κ4 = ι and κ ∈ Sch(n − 2). On the level of functions

κK(. . . , z−m, zm, z−m−1, zm+1) := K(. . . , −z−m−1, −zm+1, z−m, zm). (230)

The subgroup of Sch(n−2) generated by the Weyl group of O(n−2) and κ will be
called theWeyl group of sch(n−2).

7.3 sch(n+2) in n dimensions
Recall from Subsection 4.12 that using the decomposition ℝn+2 = ℝn ⊕ ℝ2 we obtain
the representations

so(n+2) ∋ B 󳨃→ Bfl,η, (231a)
O(n+2) ∋ α 󳨃→ αfl,η (231b)

acting on functions on ℝn. The Laplacian Δn+2 becomes the Laplacian Δn and it satis-
fies the generalized symmetry

Bfl,
−2−n
2 Δn = ΔnB

fl, 2−n2 , B ∈ so(n+2), (232a)

αfl,
−2−n
2 Δn = Δnα

fl, 2−n2 , α ∈ O(n+2). (232b)

The operator Bm+1,m becomes

Bfl,ηm+1,m = 𝜕ym . (233)

Therefore, all elements of sch(n−2) in the representation (231a) and all elements of
Sch(n−2) in the representation (231b) have the form

Bfl,η = C + D𝜕ym , (234a)

αfl,ηf (. . . , y−m, ym) = βf (. . . , y−m, ym + d(. . . , y−m)), (234b)

where C, D, β, d, do not involve the variable ym.

7.4 sch(n−2) in (n − 2) + 1 dimensions
Weconsider now the spaceℝn−2⊕ℝwith the generic variables (y, t) = (. . . , ym−1, t). Note
that t should be understood as the new name for y−m, and we keep the old names for
the first n−2 coordinates.

We define the map θ : C∞(ℝn−2 ⊕ ℝ) → C∞(ℝn) by setting
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(θh)(. . . , ym−1, y−m, ym) := h(. . . , ym−1, y−m)e
ym . (235)

We also define ζ : C∞(ℝn) → C∞(ℝn−2 ⊕ ℝ)

(ζf )(. . . , ym−1, t) := f (. . . , ym−1, t,0). (236)

Clearly, ζ is a left inverse of θ:

ζ ∘ θ = ι. (237)

Therefore, θ ∘ ζ = ι is true on the range of θ.
The heat operator in n − 2 spatial dimensions can be obtained from the Laplacian

in n dimension:

ℒn−2 := Δn−2 + 2𝜕t = ζΔnθ. (238)

For B ∈ sch(n − 2) ⊂ so(n + 2) and α ∈ Sch(n − 2) ⊂ O(n + 2), we define

Bsch,η := ζBfl,ηθ, (239a)

αsch,η := ζαfl,ηθ. (239b)

It is easy to see, using (234), that sch(n−2), Sch(n−2) and Δn preserve the range of θ.
Therefore, for any η we obtain representations

sch(n − 2) ∋ B 󳨃→ Bsch,η, (240a)
Sch(n − 2) ∋ α 󳨃→ αsch,η (240b)

acting on functions on ℝn−2 ⊕ ℝ. By (232), we also have generalized symmetries:

Bsch,
−2−n
2 ℒn−2 = ℒn−2B

sch, 2−n2 , B ∈ sch(n−2), (241a)

αsch,
−2−n
2 ℒn−2 = ℒn−2α

sch, 2−n2 , α ∈ Sch(n−2). (241b)

7.5 Schrödinger symmetries in coordinates

In this subsection, we sum up information about Schrödinger symmetries on 3 levels
described in the previous subsections.

We start with generic names of the variables and the corresponding squares:

z ∈ ℝn+2, ⟨z|z⟩n+2 = ∑
|j|≤m+1

z−jzj, (242a)

y ∈ ℝn, ⟨y|y⟩n = ∑
|j|≤m

y−jyj, (242b)

(y, t) ∈ ℝn−2 ⊕ ℝ, ⟨y|y⟩n−2 = ∑
|j|≤m−1

y−jyj. (242c)
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Cartan algebra of sch(n−2). Central element

Bm+1,m = z−m−1𝜕zm − z−m𝜕zm+1 , (243a)

Bflm+1,m = 𝜕ym , (243b)

Bschm+1,m = 1. (243c)

Cartan algebra of so(n−2), j = 1, . . . ,m − 1,

Nj = −z−j𝜕z−j + zj𝜕zj , (244a)

N fl
j = −y−j𝜕y−j + yj𝜕yj , (244b)

Nsch
j = −y−j𝜕y−j + yj𝜕yj . (244c)

Generator of scaling

M = z−m𝜕z−m−zm𝜕zm−z−m−1𝜕z−m−1+zm+1𝜕zm+1 , (245a)

Mfl,η = ∑
|j|≤m−1

yj𝜕yj + 2y−m𝜕y−m − η, (245b)

Msch,η = ∑
|j|≤m−1

yj𝜕yj + 2t𝜕t − η. (245c)

Root operators of sch(n−2). Roots of so(n−2), |i| < |j| ≤ m − 1,

Bi,j = z−i𝜕zj − z−j𝜕zi , (246a)

Bfli,j = y−i𝜕yj − y−j𝜕yi , (246b)

Bschi,j = y−i𝜕yj − y−j𝜕yi . (246c)

Space translations, |j| ≤ m − 1,

Bm+1,j = z−m−1𝜕zj − z−j𝜕zm+1 , (247a)

Bflm+1,j = 𝜕yj , (247b)

Bschm+1,j = 𝜕yj . (247c)

Time translation

Bm+1,−m = z−m−1𝜕z−m − zm𝜕zm+1 , (248a)

Bflm+1,−m = 𝜕y−m , (248b)

Bschm+1,−m = 𝜕t . (248c)
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Additional roots, |j| ≤ m − 1,

Bm,j = z−m𝜕zj − z−j𝜕zm , (249a)

Bflm,j = y−m𝜕yj − y−j𝜕ym , (249b)

Bschm,j = t𝜕yj − y−j; (249c)

B−m−1,m = zm+1𝜕zm − z−m𝜕z−m−1 , (250a)

Bfl,η−m−1,m = y−m( ∑
|j|≤m−1

yj𝜕yj + y−m𝜕y−m − η)

−
1
2
∑
|j|≤m−1

y−jyj𝜕ym , (250b)

Bsch,η−m−1,m = t( ∑
|j|≤m−1

yj𝜕yj + t𝜕t − η)

−
1
2
∑
|j|≤m−1

y−jyj. (250c)

Weyl symmetries. We present a representative selection of elements of the Weyl
group of Sch(n−2). We will write K for a function onℝn+2, f for a function onℝn, h for
a function on ℝn−2 ⊕ ℝ in the coordinates (. . . , ym−1, t).

Reflection (for odd n)

τ0K(z0, . . . , . . . , z−m, zm, z−m−1, zm+1)
= K(−z0, . . . , z−m, zm, z−m−1, zm+1), (251a)

τfl0 f (y0, . . . , y−m, ym)
= f (−y0, . . . , y−m, ym), (251b)

τsch0 h(y0, . . . , t) = h(−y0, . . . , t). (251c)

Flips, j = 1, . . . ,m − 1,

τjK(. . . , z−j, zj, . . . , z−m, zm, z−m−1, zm+1)
= K(. . . , zj, z−j, . . . , z−m, zm, z−m−1, zm+1), (252a)

τflj f (. . . , y−j, yj, . . . , y−m, ym)

= f (. . . , yj, y−j, . . . , y−m, ym), (252b)

τschj h(. . . , y−j, yj, . . . , t) = h(. . . , yj, y−j, . . . , t). (252c)

Permutations, π ∈ Sm−1,

σπK(. . . , z−m+1, zm−1, z−m, zm, z−m−1, zm+1)
= K(. . . , z−πm−1 , zπm−1 , z−m, zm, z−m−1, zm+1), (253a)
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σflπ f (. . . , y−m+1, ym−1, y−m, ym)
= f (. . . , y−πm−1 , yπm−1 , y−m, ym), (253b)

σschπ h(. . . , y−m+1, ym−1, t)
= h(. . . , y−πm−1 , yπm−1 , t). (253c)

Special transformation κ

κK(. . . , zm−1, z−m, zm, z−m−1, zm+1)
= K(. . . , zm−1, −z−m−1, −zm+1, z−m, zm), (254a)

κfl,ηf (. . . , ym−1, y−m, ym)

= yη−mf(. . . ,
ym−1
y−m
, −

1
y−m
,

1
2y−m
∑
|j|≤m

y−jyj), (254b)

κsch,ηh(. . . , ym−1, t)

= tη exp( 1
2t
∑
|j|≤m−1

y−jyj)h(. . . ,
ym−1
t
, −

1
t
). (254c)

Square of κ

κ2K(. . . , zm−1, z−m, zm, z−m−1, zm+1)
= K(. . . , zm−1, −z−m, −zm, −z−m−1, −zm+1), (255a)

(κfl,η)2f (. . . , ym−1, y−m, ym)
= f (. . . , −ym−1, y−m, ym), (255b)

(κsch,η)2h(. . . , ym−1, t) = h(. . . , −ym−1, t). (255c)

Laplacian/Laplacian/Heat operator

Δn+2 = ∑
|j|≤m+1
𝜕z−j𝜕zj , (256a)

Δn = ∑
|j|≤m
𝜕y−j𝜕yj , (256b)

ℒn−2 = ∑
|j|≤m−1
𝜕y−j𝜕yj + 2𝜕t . (256c)

7.6 Special solutions of the heat equation

Let us describe how to obtain solutions of the heat equation from solutions of the
Laplace equation.

Consider first a function on the level of ℝn+2,

K(z) = z1−
n
2
−m g( z1

z−m
, . . . ,

zm−1
z−m
) exp(−zm+1

z−m
), (257)
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where g is a harmonic function onℝn−2. It is easy to see thatK is harmonic and satisfies

Bm+1,mK = K. (258)

Besides,K is homogeneous of degree 1− n2 . Therefore, we can descend on the level
of dimension n, obtaining the function

k(y) = y1−
n
2
−m g( y1

y−m
, . . . ,

ym−1
y−m
) exp( ∑

|i|≤m−1

y−iyi
y−m
+ ym). (259)

It is harmonic and satisfies

Bflm+1,mk = k. (260)

Descending on the level of ℝn−2 ⊕ ℝ, we obtain

h(y, t) = t1−
n
2 g(y1

t
, . . . ,

ym−1
t
) exp( ∑

|i|≤m−1

y−iyi
t
), (261)

which solves the heat equation:

ℒn−2h = 0. (262)

7.7 Wave packets for the heat equation

Let us use the coordinates (y, t) ∈ ℝn−2 ⊕ ℝ. Recall that

Msch,η = ∑
|j|≤m−1

yj𝜕yj + 2t𝜕t − η. (263)

The following proposition is proven by analogous arguments as in Proposition 3.2. It
allows us to form wave packets that are eigenfunctions ofM.

Proposition 7.1. Suppose that ]0, 1[ ∋ s
γ
󳨃→ τ(s) is a contour satisfying

f (τy, τ2t)τ−ν󵄨󵄨󵄨󵄨
τ(1)
τ(0) = 0. (264)

Set

hν(y, t) := ∫
γ

f (τy, τ2t)τ−1−ν dτ. (265)

Then

Msch,ηhν = (ν − η)hν . (266)
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8 Heat equation in 2 dimensions and the confluent
equation

The goal of this section is to derive the 1ℱ1 equation together with its symmetries from
the heat equation in 2 dimensions, which in turn comes from the Laplace equation in
6 and 4 dimensions. Let us describe the main steps of this derivation:
(1) We start from the Schrödinger Lie algebra sch(2) and group Sch(2) considered as a

subalgebra of so(6), respectively, a subgroup of O(6), acting in 6 dimensions. The
main initial operator is the Laplacian Δ6.

(2) We descend onto 4 dimensions. The 6-dimensional Laplacian Δ6 becomes the
4-dimensional Laplacian Δ4.

(3) Weassume that the variable y2 appears only in the exponential ey2 and the variable
y−2 is renamed t. The Laplacian Δ4 becomes the heat operator ℒ2. The represen-
tations Bsch,η and αsch,η preserve our class of functions. With η = −1 and η = −3,
they are generalized symmetries of the heat operator.

(4) We choose coordinatesw, s, u1, so that the Cartan operators are expressed in terms
of s, u1. We compute ℒ2, Bsch,η, and αsch,η in the new coordinates.

(5) Wemake anansatz that diagonalizes theCartanoperators,whose eigenvalues, de-
noted by −θ and α, become parameters. The operatorsℒ2, Bsch,η and αsch,η involve
now only the single variablew. The operator s2

2 ℒ2 becomes the 1ℱ1 operator. Gen-
eralized symmetries of ℒ2 yield transmutation relations and discrete symmetries
of the 1ℱ1 operator.

The first part of this section is devoted to a description of the above steps, except for
Step 2, discussed in detail in Section 7.

The remaining part of this section is devoted to the theory of the 1ℱ1 equation
and its solutions. Its organization is parallel to that of Section 5 on the 2ℱ1 equation.
The main additional complication is the fact that besides the 1ℱ1 equation and the 1F1
function, it is useful to discuss the closely related 2ℱ0 equation and the 2F0 function.
In fact, some of the standard solutions of the 1ℱ1 equation are expressed in terms of
the 1F1 function, others in terms of the 2F0 function.

8.1 sch(2) in 6 dimensions

We again consider ℝ6 with the coordinates (125) and the product given by (126):

⟨z|z⟩ = 2z−1z1 + 2z−2z2 + 2z−3z3.

We describe various object related to the Lie algebra sch(2) treated as a subalgebra of
so(6). We also list a few typical Weyl symmetries of Sch(2).

Bereitgestellt von | De Gruyter / TCS
Angemeldet

Heruntergeladen am | 10.02.20 14:06



Group-theoretical origin of symmetries of hypergeometric class equations | 91

Lie algebra sch(2). Cartan algebra

M = z−2𝜕z−2 − z2𝜕z2 − z−3𝜕z−3 + z3𝜕z3 , (267a)

N1 = −z−1𝜕z−1 + z1𝜕z1 , (267b)

B3,2 = z−3𝜕z2 − z−2𝜕z3 . (267c)

Root operators

B3,−1 = z−3𝜕z−1 − z1𝜕z3 , (268a)

B2,1 = z−2𝜕z1 − z−1𝜕z2 , (268b)

B3,1 = z−3𝜕z1 − z−1𝜕z3 , (268c)

B2,−1 = z−2𝜕z−1 − z1𝜕z2 , (268d)

B3,−2 = z−3𝜕z−2 − z2𝜕z3 , (268e)

B−3,2 = z3𝜕z2 − z−2𝜕z−3 . (268f)

Weyl symmetries

ιK(z−1, z1, z−2, z2, z−3, z3) = K(z−1, z1, z−2, z2, z−3, z3), (269a)

τ1K(z−1, z1, z−2, z2, z−3, z3) = K(z1, z−1, z−2, z2, z−3, z3), (269b)

κK(z−1, z1, z−2, z2, z−3, z3) = K(z−1, z1, −z−3, −z3, z−2, z2), (269c)

τ1κK(z−1, z1, z−2, z2, z−3, z3) = K(z1, z−1, −z−3, −z3, z−2, z2). (269d)

Laplacian

Δ6 = 2𝜕z−1𝜕z1 + 2𝜕z−2𝜕z2 + 2𝜕z−3𝜕z3 . (270)

8.2 sch(2) in 4 dimensions

Wedescendon the level ofℝ4, with the coordinates (y−1, y1, y−2, y2) and the scalar prod-
uct given by

⟨y|y⟩ = 2y−1y1 + 2y−2y2.

Lie algebra sch(2). Cartan algebra

Mfl,η = y−1𝜕y−1 + y1𝜕y1 + 2y−2𝜕y−2 − η,

N fl
1 = −y−1𝜕y−1 + y1𝜕y1 ,

Bfl3,2 = 𝜕y2 .
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Root operators

Bfl3,−1 = 𝜕y−1 ,

Bfl2,1 = y−2𝜕y1 − y1𝜕y2 ,

Bfl3,1 = 𝜕y1 ,

Bfl2,−1 = y−2𝜕y−1 − y1𝜕y2 ,

Bfl3,−2 = 𝜕y−2 ,

Bfl,η−3,2 = y−2(y−1𝜕y−1 + y1𝜕y1 + y−2𝜕y−2 − η) − y−1y1𝜕y2 .

Weyl symmetries

ιf (y−1, y1, y−2, y2) = f (y−1, y1, y−2, y2),

τfl1 f (y−1, y1, y−2, y2) = f (y1, y−1, y−2, y2),

κfl,ηf (y−1, y1, y−2, y2) = y
η
−2f(

y−1
y−2
,
y1
y−2
, −

1
y−2
,
y−1y1 + y−2y2

y−2
),

τ1κ
fl,ηf (y−1, y1, y−2, y2) = y

η
−2f(

y1
y−2
,
y−1
y−2
, −

1
y−2
,
y−1y1 + y−2y2

y−2
).

8.3 sch(2) in 2 + 1 dimensions

We apply the ansatz involving the exponential ey2 . We rename y−2 to t.

Lie algebra sch(2). Cartan algebra

Msch,η = y−1𝜕y−1 + y1𝜕y1 + 2t𝜕t − η, (274a)

Nsch
1 = −y−1𝜕y−1 + y1𝜕y1 , (274b)

Bsch32 = 1. (274c)

Root operators

Bsch3,−1 = 𝜕y−1 , (275a)

Bsch2,1 = t𝜕y1 − y−1, (275b)

Bsch3,1 = 𝜕y1 , (275c)

Bsch2,−1 = t𝜕y−1 − y1, (275d)

Bsch3,−2 = 𝜕t , (275e)

Bsch,η−3,2 = t(y−1𝜕y−1 + y1𝜕y1 + t𝜕t − η) − y−1y1. (275f)
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Weyl symmetries

ιg(y−1, y1, t) = g(y−1, y1, t), (276a)

τsch1 h(y−1, y1, t) = h(y1, y−1, t), (276b)

κsch,ηh(y−1, y1, t) = t
η exp(y−1y1

t
)h(y−1

t
,
y1
t
, −

1
t
), (276c)

τ1κ
sch,ηh(y−1, y1, t) = t

η exp(y−1y1
t
)h(y1

t
,
y−1
t
, −

1
t
). (276d)

Heat operator

ℒ2 = 2𝜕y−1𝜕y1 + 2𝜕t . (277)

8.4 sch(2) in the coordinates w , s, u1
We introduce new coordinates w, s, u1

w = y−1y1
t
, u1 =

y1
√t
, s = √t, (278)

with the reverse transformations

y−1 =
sw
u1
, y1 = u1s, t = s2. (279)

Lie algebra sch(2). Cartan algebra

Msch,η = s𝜕s − η,

Nsch
1 = u1𝜕u1 ,

Bsch32 = 1.

Root operators

Bsch3,−1 =
u1
s
𝜕w ,

Bsch2,1 =
s
u1
(w𝜕w + u1𝜕u1 − w),

Bsch3,1 =
1
u1s
(w𝜕w + u1𝜕u1 ),

Bsch2,−1 = su1(𝜕w − 1),

Bsch3,−2 =
1
s2
(−w𝜕w −

1
2
u1𝜕u1 +

1
2
s𝜕s),

Bsch,η−3,2 = s
2(w𝜕w +

1
2
u1𝜕u1 +

1
2
s𝜕s − w − η).
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Weyl symmetries

ιh(w, u1, s) = h(w, u1, s),

τsch1 h(w, u1, s) = h(w,
w
u1
, s),

κsch,ηh(w, u1, s) = s
2ηewh(−w, −iu1,

i
s
),

τ1κ
sch,ηh(w, u1, s) = s

2ηewh(−w, − iw
u1
,
i
s
).

Heat operator

ℒ2 =
2
s2
(w𝜕2w + (u1𝜕u1 + 1 − w)𝜕w +

1
2
(−u1𝜕u1 + s𝜕s)). (283)

8.5 Confluent operator

Let us make the ansatz

h(w, u1, s) = u1
αs−θ−1F(w). (284)

Clearly,

Msch,−1h = −θh, (285a)

Nsch
1 h = αh, (285b)

u−α1 sθ+1 s
2

2
ℒ2h = ℱθ,α(w, 𝜕w)F(w), (285c)

where we have introduced the 1ℱ1 operator

ℱθ,α(w, 𝜕w) = w𝜕
2
w + (1 + α − w)𝜕w −

1
2
(1 + θ + α). (286)

Let us also define the closely related 2ℱ0 operator

̃ℱθ,α(w, 𝜕w) = w
2𝜕2w + (−1 + (2 + θ)w)𝜕w +

1
4
(1 + θ)2 − 1

4
α2. (287)

It is equivalent to the 1ℱ1 operator. In fact, if z = −w−1, then

(−z)
3+α+θ

2 ̃ℱθ,α(z, 𝜕z)(−z)
− 1+α+θ2 = ℱθ,α(w, 𝜕w). (288)

We will treat ℱθ,α(w, 𝜕w) as the principal operator.
Traditionally, one uses the classical parameters a, b, c:

α := c − 1 = a − b, θ := −c + 2a = −1 + a + b; (289a)
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a = 1 + α + θ
2
, b = 1 − α + θ

2
, c = 1 + α. (289b)

Here are the traditional forms of the 1ℱ1 and 2ℱ0 operators:

ℱ(a; c;w, 𝜕w) := w𝜕
2
w + (c − w)𝜕w − a, (290)

ℱ(a, b; −;w, 𝜕w) := w
2𝜕2w + (−1 + (1 + a + b)w)𝜕w + ab. (291)

8.6 Transmutation relations and discrete symmetries

The heat operator satisfies the following generalized symmetries:

Bsch,−3ℒ2 = ℒ2B
sch,−1, B ∈ sch(2), (292a)

αsch,−3ℒ2 = ℒ2α
sch,−1, α ∈ Sch(2). (292b)

Applying (292a) to the roots of sch(2), we obtain the following transmutation re-
lations of the confluent operator:

𝜕w ℱθ,α

= ℱθ+1,α+1 𝜕w ,
(w𝜕w + α − w) ℱθ,α

= ℱθ−1,α−1 (w𝜕w + α − w),

(w𝜕w + α) ℱθ,α

= ℱθ+1,α−1 (w𝜕w + α),

(𝜕w − 1) ℱθ,α,

= ℱθ−1,α+1 (𝜕w − 1);

(w𝜕w +
1
2 (θ + α + 1)) wℱθ,α

= wℱθ+2,α (w𝜕w +
1
2 (θ + α + 1)),

(w𝜕w +
1
2 (−θ + α + 1) − w) wℱθ,α

= wℱθ−2,α (w𝜕w +
1
2 (−θ + α + 1) − w).

Applying (292b) to theWeyl symmetries of sch(2) yields discrete symmetries of the
confluent operator, described below.

The following operators equal ℱθ,α(w, 𝜕w) for the appropriate w:

w = v : ℱθ,α(v, 𝜕v),

v−α ℱθ,−α(v, 𝜕v) vα,

w = −v : −e−v ℱ−θ,α(v, 𝜕v) ev ,

−e−vv−α ℱ−θ,−α(v, 𝜕v) evvα.

The third symmetry is sometimes called the first Kummer transformation.
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8.7 Factorizations of the heat operator

A special role is played by three distinguished subalgebras in sch(2): two isomorphic
to heis(2) and one isomorphic to so(3).

First, note the commutation relations

[B2,−1,B3,1] = [B2,1,B3,−1] = B3,2. (293)

Therefore, the following subalgebras in sch(5) are isomorphic to heis(2):

heis−(2) spanned by B2,−1, B3,1, B3,2, (294a)
heis+(2) spanned by B2,1, B3,−1, B3,2. (294b)

Note that the flip of (1, −1), denoted τ1, belongs to Sch(5) and satisfies

τ1B2,−1τ1 = B2,1, τ1B3,1τ1 = B3,−1, τ1B3,2τ1 = B3,2. (295)

Hence,

τ1heis−(2)τ1 = heis+(2). (296)

Let us define

𝒞− = 2B2,−1B3,1 +M + N1 − B3,2 (297a)
= 2B3,1B2,−1 +M + N1 + B3,2, (297b)

𝒞+ = 2B2,1B3,−1 +M − N1 − B3,2 (297c)
= 2B3,−1B2,1 +M − N1 + B3,2. (297d)

𝒞+ and 𝒞− canbe viewedas theCasimir operators for heis+(2), respectively, for heis−(2).
Indeed, 𝒞+, respectively, 𝒞− commute with all operators in heis+(2), respectively,
heis−(2). We also have

τ1𝒞−τ1 = 𝒞+. (298)

On the level of ℝ2 ⊕ ℝ, the two operators 𝒞+ and 𝒞− coincide. Indeed, a direct
calculation yields

𝒞sch,η+ = 𝒞
sch,η
− = 2t(𝜕y−1𝜕y1 + 𝜕t) − η − 1. (299)

Second, note the commutation relations

[B−3,2,B3,−2] = N2 − N3 = −M. (300)

Therefore, the following subalgebra of sch(2) is isomorphic to so(3):

so23(3) spanned by B−3,2,B3,−2,M. (301)
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The Casimir operator for so23(3) is

𝒞23 = 4B3,−2B−3,2 − (M − 1)
2 + 1 (302a)

= 4B−3,2B3,−2 − (M + 1)
2 + 1. (302b)

By (104), we have

(2z−2z2 + 2z−3z3)Δ
⬦
6 = −1 + 𝒞

⬦,−1
23 + (N

⬦,−1
1 )

2. (303)

Inserting (302) into (303), we obtain

(2z−2z2 + 2z−3z3)Δ
⬦
6

= 4B2,−3B−2,3 − (N1 +M + 1)(−N1 +M + 1) (304a)

= 4B−2,3B2,−3 − (N1 +M − 1)(−N1 +M − 1), (304b)

where the B, N1 andM operators should be equipped with the superscript ⬦,−1.
Let us sum up the factorizations in the variables y−1y1, t obtained with help of the

three subalgebras:

tℒ2 = 2B2,−1B3,1 +M + N1 − 1 (305a)

= 2B3,1B2,−1 +M + N1 + 1 (305b)

= 2B2,1B3,−1 +M − N1 − 1 (305c)

= 2B3,−1B2,1 +M − N1 + 1, (305d)

2y−1y1ℒ2 = −4B2,−3B−2,3 − (N1 +M + 1)(N1 −M − 1) (305e)

= −4B−2,3B2,−3 − (N1 +M − 1)(N1 −M + 1), (305f)

where the B, N1 andM operators should be equipped with the superscript sch,−1.
Indeed, to obtain (305a)–(305d), we insert (297) into (299). To obtain (305e)–

(305f), we rewrite (304), multiplying it by −1.
In the variables w, u, s, we need to make the replacements

y−1y1 → ws2, (306a)

t → s2. (306b)

8.8 Factorizations of the confluent operator

Factorizations of ℒ2 described in Subsection 8.7 yield the following factorizations of
the confluent operator:
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ℱθ,α = (𝜕w − 1)(w𝜕w + α) −
1
2
(θ − α + 1)

= (w𝜕w + 1 + α)(𝜕w − 1) −
1
2
(θ − α − 1)

= 𝜕w(w𝜕w + α − w) −
1
2
(θ + α − 1)

= (w𝜕w + 1 + α − w)𝜕w −
1
2
(θ + α + 1),

wℱθ,α = (w𝜕w +
1
2
(−θ + α − 1) − w)(w𝜕w +

1
2
(θ + α + 1))

−
1
4
(−θ + α − 1)(θ + α + 1)

= (w𝜕w +
1
2
(θ + α − 1))(w𝜕w +

1
2
(−θ + α + 1) − w)

−
1
4
(−θ + α + 1)(θ + α − 1).

8.9 The 1F1 function

The 1ℱ1 equation (290) has a regular singular point at 0. Its indices at 0 are equal to 0,
1 − c. For c ̸= 0, −1, −2, . . . , the unique solution of the confluent equation analytic at 0
and equal to 1 at 0 is called the 1F1 function or Kummer’s confluent function. It is equal
to

F(a; c;w) :=
∞

∑
n=0

(a)n
(c)n

wn

n!
.

It is defined for c ̸= 0, −1, −2, . . . . Sometimes it is more convenient to consider the func-
tions

F(a; c;w) := F(a; c;w)
Γ(c)
=
∞

∑
n=0

(a)n
Γ(c + n)

wn

n!
,

FI(a; c;w) := Γ(a)Γ(c − a)
Γ(c)

F(a; c;w).

In the Lie-algebraic parameters:

Fθ,α(w) := F(
1 + α + θ

2
; 1 + α;w),

Fθ,α(w) := F(
1 + α + θ

2
; 1 + α;w) =

Fθ,α(w)
Γ(α + 1)

,

FIθ,α(w) := F
I(
1 + α + θ

2
; 1 + α;w) =

Γ( 1+α+θ2 )Γ(
1+α−θ

2 )Fθ,α(w)
Γ(α + 1)

.
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8.10 The 2F0 function
Recall from (288) that in parallel with the 1ℱ1 operator it is useful to consider the 2ℱ0
operator. The 2ℱ0 operator does not have a regular singular point at zero, hence to
construct its solutions having a simple behavior at zero we cannot use the Frobenius
method. One of such solutions is the 2F0 function. Forw ∈ ℂ\[0, +∞[, it can be defined
by

F(a, b; −;w) := lim
c→∞

F(a, b; c; cw),

where | arg c−π| < π−ϵ, ϵ > 0. It extends to an analytic function on the universal cover
of ℂ\{0} with a branch point of an infinite order at 0. It has the following asymptotic
expansion:

F(a, b; −;w) ∼
∞

∑
n=0

(a)n(b)n
n!

wn, | argw − π| < π − ϵ.

Sometimes instead of 2F0, it is useful to consider the function

FI(a, b; −;w) := Γ(a)F(a, b; −;w).

When we use the Lie-algebraic parameters, we denote the 2F0 function by F̃ and
F̃I. The tilde is needed to avoid the confusion with the 1F1 functions:

F̃θ,α(w) := F(
1 + α + θ

2
,
1 − α + θ

2
; −;w),

F̃Iθ,α(w) := F
I(
1 + α + θ

2
,
1 − α + θ

2
; −;w) = Γ( 1 − α + θ

2
)F̃θ,α(w).

8.11 Standard solutions
The 1F1 equation has two singular points. 0 is a regular singular point and with each
of its two indices we can associate the corresponding solution.∞ is not a regular sin-
gular point. However, we can define two solutions with a simple behavior around∞.
Therefore, we obtain 4 standard solutions.

The solutions that have a simple behavior at zero are expressed in terms of the
function Fθ,α. Using 4 discrete symmetries yields 4 distinct expressions. Taking into
account Kummer’s identity, we obtain 2 pairs of standard solutions.

The solutions with a simple behavior at ±∞ are expressed in terms of F̃θ,α. Again,
4 discrete symmetries yield 4 distinct expressions. Taking into account the trivial iden-
tity F̃θ,α = F̃θ,−α we obtain 2 pairs of standard solutions:

∼ 1 at 0 : Fθ,α(w)
= ewF−θ,α(−w);
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∼ w−α at 0 : w−αFθ,−α(w)

= w−αewF−θ,−α(−w);

∼ w−a at +∞ : w
−1−θ−α

2 F̃θ,α(−w
−1)

= w
−1−θ−α

2 F̃θ,−α(−w
−1);

∼ (−w)b−1ew at −∞ : ew(−w)
−1+θ−α

2 F̃−θ,α(w
−1)

= ew(−w)
−1+θ−α

2 F̃−θ,−α(w
−1).

The solution ∼ w−a at +∞ is often called Tricomi’s confluent function.

8.12 Recurrence relations

Recurrence relations for the confluent function correspond to roots of the Lie algebra
sch(2):

𝜕wFθ,α(w) =
1 + θ + α

2
Fθ+1,α+1(w),

(w𝜕w + α − w)Fθ,α(w) = Fθ−1,α−1(w),

(w𝜕w + α)Fθ,α(w) = Fθ+1,α−1(w),

(𝜕w − 1)Fθ,α(w) =
−1 + θ − α

2
Fθ−1,α+1(w),

(w𝜕w +
1 + θ + α

2
)Fθ,α(w) =

1 + θ + α
2

Fθ+2,α(w),

(w𝜕w +
1 − θ + α

2
− w)Fθ,α(w) =

1 − θ + α
2

Fθ−2,α(w).

8.13 Wave packets for the heat equation in 2 dimensions

Consider the spaceℝ2 ⊕ ℝ and the heat equation given by the operator ℒ2 = 2𝜕y−1𝜕y1 +
2𝜕t . Recall that

Msch,−1 = y−1𝜕y−1 + y1𝜕y1 + 2t𝜕t + 1,

Nsch
1 = −y−1𝜕y−1 + y1𝜕y1 .

Set

Ga
θ,α(y−1, y1, t)

:= ∫
γa
τ−α−1t

−1−θ+α
2 (τ−1y−1 − 1)

−1+θ−α
2 exp((y−1 − τ)y1

t
)dτ, (307a)
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Gb
θ,α(y−1, y1, t)

:= ∫
γb

τ−α−1t
−1−θ−α

2 (τy1 − 1)
−1+θ+α

2 exp(y−1(y1 − τ
−1)

t
)dτ. (307b)

(The superscripts a and b denote two kinds of wave packets, and not parameters a, b.)

Proposition 8.1. If the contours γa and γb are appropriately chosen, then

ℒ2G
a
θ,α = 0, ℒ2G

b
θ,α = 0, (308)

Msch,−1Ga
θ,α = −θG

a
θ,α, Msch,−1Gb

θ,α = −θG
b
θ,α, (309)

N1G
a
θ,α = αG

a
θ,α, N1G

b
θ,α = αG

b
θ,α. (310)

Proof. By the analysis of Subsection 7.6, the following functions

gaν (y−1, y1, t) := t
−1−νyν−1 exp(

y−1y1
t
), (311a)

gbν (y−1, y1, t) := t
−1−νyν1 exp(

y−1y1
t
) (311b)

solve the heat equation. They still solve the heat equation after translating and rotat-
ing. Therefore,

Ga
θ,α(y−1, y1, t) = ∫

γa
ga−1+θ−α

2
(τ−1(y−1 − 1), τy1, t)τ

−α−1 dτ, (312a)

Gb
θ,α(y−1, y1, t) = ∫

γb

gb−1+θ+α
2
(τ−1y−1, τ(y1 − 1), t)τ

−α−1 dτ (312b)

also solve the heat equation. This proves (308).
If the contours satisfy the requirements of Proposition 3.2, then (312) imply (310).
We can rewrite (312) in a somewhat different way:

(312a) = ∫
γa
ga−1+θ−α

2
(τ−1(y−1 − 1), τ

−1y1, τ
−2t)(τ−1)θd(τ−1), (313a)

(312b) = ∫
γb

gb−1+θ+α
2
(τy−1, τ(y1 − 1), τ

2t)τθdτ. (313b)

If the contours satisfy the requirements of Proposition 7.1, then (313) imply (309).

Now we express the above wave packets in the coordinates w, s, u1:

(313a) = ∫ s−1−θ+α( ws
τu1
− 1)

−1+θ−α
2

exp(w − τu1
s
)τ−α−1 dτ, (314a)
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(313b) = ∫ s−1−θ−α(τu1s − 1)
−1+θ+α

2 exp(w(1 − 1
τu1s
))τ−α−1 dτ. (314b)

In (314a), we make the substitution σ := w − τu1
s , or τ = s

u1
(w − σ). In (314b), we

make the substitution σ := 1
1− 1

τu1s
, or τ = σ

u1s(σ−1)
. We obtain

Ga
θ,α(w, s, u1) = s

−1−θu1
αFaθ,α(w), (315a)

Gb
θ,α(w, s, u1) = s

−1−θu1
αFbθ,α(w), (315b)

where

Faθ,α(w) := ∫
γa
σ
−α+θ−1

2 (w − σ)
−α−θ−1

2 eσdσ, (316a)

Fbθ,α(w) := ∫
γb

exp(w
σ
)σ−α−1(σ − 1)

α+ρ−1
2 dσ. (316b)

The above analysis shows that (for appropriate contours) the functions (316a) and
(316b) satisfy the confluent equation.

8.14 Integral representations

Let us prove directly that integrals (316a) and (316b) solve the confluent equation.

Theorem 8.2.
(a) Let [0, 1] ∋ τ

γ
󳨃→ t(τ) satisfy ta−c+1et(t − w)−a−1|t(1)t(0) = 0. Then

ℱ(a; c;w, 𝜕w) ∫
γ

ta−cet(t − w)−a dt = 0. (317)

(b) Let [0, 1] ∋ τ
γ
󳨃→ t(τ) satisfy e

w
t t−c(1 − t)c−a|t(1)t(0) = 0. Then

ℱ(a; c;w, 𝜕w) ∫
γ

e
w
t t−c(1 − t)c−a−1dt = 0. (318)

Proof. We check that for any contour γ

lhs of (317) = −a∫
γ

dt𝜕tt
a−c+1et(t − w)−a−1,

lhs of (318) = −∫
γ

dt𝜕te
w
t t−c(1 − t)c−a.
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8.15 Integral representations of standard solutions

Using the integral representations of type (a) and attaching contours to −∞, 0 and w
we can obtain all standard solutions.

Similarly, using the integral representations of type (b) and attaching contours to
0 − 0, 1 and∞, we can obtain all standard solutions.

Here is the list of contours:

(a) (b)

∼ 1 at 0: ]−∞, (0,w)+, −∞[, [1, +∞[;

∼ w−α at 0: [0,w], (0 − 0)+;

∼ w−a at +∞: ]−∞,0], ]−∞,0];

∼ (−w)b−1ew at −∞: [w, −∞[, [0,1].

(0,w)+ means that we bypass 0 and w counterclockwise. (0 − 0)+ means that the con-
tour departs from 0 on the negative side, encircles it and then comes back again from
the negative side.

Here are the explicit formulas for (a)-type integral representations:

all θ, α: (319a)
1
2πi
∫

]−∞,(0,w)+−∞[

t
−1+θ−α

2 et(t − w)
−1−θ−α

2 dt

= Fθ,α(w),

Re(1 − α) > |Re θ| : (319b)
w

∫
0

t
−1+θ−α

2 et(w − t)
−1−θ−α

2 dt

= w−αFIθ,−α(w), w ̸∈ ]−∞,0];
0

∫
w

(−t)
−1+θ−α

2 et(t − w)
−1−θ−α

2 dt

= (−w)−αFIθ,−α(w), w ̸∈ [0,∞[;

Re(1 + θ − α) > 0 : (319c)
0

∫
−∞

(−t)
−1+θ−α

2 et(w − t)
−1−θ−α

2 dt

= w
−1−θ−α

2 F̃Iθ,α(−w
−1), w ̸∈ ]−∞,0];
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xsRe(1 − θ − α) > 0 : (319d)
w

∫
−∞

(−t)
−1+θ−α

2 et(w − t)
−1−θ−α

2 dt

= ew(−w)
−1+θ−α

2 F̃I−θ,α(w
−1), w ̸∈ [0,∞[.

We also present explicit formulas for (b)-type integral representations:

Re(1 + α) > |Re θ| : (320a)

∫
[1,+∞[

e
w
t t−1−α(t − 1)

−1−θ+α
2 dt

= FIθ,α(w);
all θ, α: (320b)

1
2πi
∫
(0−0)+

e
w
t t−1−α(1 − t)

−1−θ+α
2 dt

= w−αFθ,−α(w), Rew > 0;
Re(1 + θ + α) > 0 : (320c)

0

∫
−∞

e
w
t (−t)−1−α(1 − t)

−1−θ+α
2 dt

= w
−1−θ−α

2 F̃Iθ,−α(−w
−1), Rew > 0;

Re(1 − θ + α) > 0 : (320d)
1

∫
0

e
w
t t−1−α(1 − t)

−1−θ+α
2 dt

= ew(−w)
−1+θ−α

2 F̃I−θ,−α(w
−1), Rew < 0.

8.16 Connection formulas

The two solutions with a simple behavior at infinity can be expressed as linear com-
bination of the solutions with a simple behavior at zero:

w
−1−θ−α

2 F̃θ,±α(−w
−1) =

πFθ,α(w)
sinπ(−α)Γ( 1+θ−α2 )

+
πw−αFθ,−α(w)
sinπαΓ( 1+θ+α2 )

, w ̸∈ ]−∞,0]; (321a)

ew(−w)
−1+θ−α

2 F̃−θ,±α(w
−1) =

πFθ,α(w)
sinπ(−α)Γ( 1−θ−α2 )

+
π(−w)−αFθ,−α(w)
sinπαΓ( 1−θ+α2 )

, w ̸∈ [0, +∞[. (321b)
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Note that (321a) uses a different domain from (321b). This is natural; however, it is
inconvenient when we want to rewrite (321) in the matrix form, because on the rhs of
(321a) and (321b) the second standard solutions differ by a phase factor.

Let us introduce the matrix

Aθ,α :=
π

sin(πα)
[[[

[

−1
Γ( 1+θ−α2 )

e−
iπ
2 α

Γ( 1+θ+α2 )

−1
Γ( 1−θ−α2 )

e
iπ
2 α

Γ( 1−θ+α2 )

]]]

]

,

satisfying

A−1θ,α =
ie

iπ
2 θ

2
[[

[

e
iπα
2

Γ( 1−θ+α2 )
−e−

iπα
2

Γ( 1+θ+α2 )

1
Γ( 1−θ−α2 )

−1
Γ( 1+θ−α2 )

]]

]

, (322)

detAθ,α = −
iπe−

iπ
2 θ

2 sin(πα)
. (323)

Then we have for Imw > 0

[

[

w
−1−θ−α

2 F̃θ,±α(−w−1)

ew(−w)
−1+θ−α

2 F̃−θ,±α(w−1)
]

]
= Aθ,α [

Fθ,α(w)

(−iw)−αFθ,−α(w)
] . (324)

Let us show how to derive connection formulas from integral representations of
type (a). We have

( ∫
]−∞,0−i0]

+ ∫
[0−i0,w]

− ∫
]−∞,0+i0]

− ∫
[0+i0,w]

)t
−1+θ−α

2 et(t − w)
−1−θ−α

2 dt

= ∫
]−∞,(0,w)+ ,−∞[

t
−1+θ−α

2 et(t − w)
−1−θ−α

2 dt, w ̸∈ [−∞,0[; (325a)

( ∫
]−∞,w−i0]

+ ∫
[w−i0,0]

− ∫
]−∞,w+i0]

− ∫
[w+i0,0]

)t
−1+θ−α

2 et(t − w)
−1−θ−α

2 dt

= ∫
]−∞,(0,w)+ ,−∞[

t
−1+θ−α

2 et(t − w)
−1−θ−α

2 dt, w ̸∈ ]0, +∞]. (325b)

We obtain

− sin(πα)w
−1−θ−α

2 F̃Iθ,α(−w
−1) + cos π(θ + α)

2
w−αFIθ,−α(w)

= πFθ,α(w), w ̸∈ [−∞,0[; (326a)

− sin(πα)ew(−w)
−1+θ−α

2 F̃I−θ,α(w
−1) + cos π(θ − α)

2
(−w)−αFIθ,−α(w)

= πFθ,α(w), w ̸∈ ]0, +∞]. (326b)

This implies (321).
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9 Heat equation in 1 dimension and the Hermite
equation

The goal of this section is to derive the Hermite equation together with its symmetries
from the heat equation in 1 dimension,which in turn comes from the Laplace equation
in 5 and 3 dimensions.

The first part of this section describes main steps of the derivation of the Hermite
equation. They are parallel to those of the derivation of the 1ℱ1 equation:
(1) We start from the Schrödinger Lie algebra sch(1) and group Sch(1) considered as a

subalgebra of so(5), respectively, a subgroup of O(5), acting in 5 dimensions. The
main initial operator is the Laplacian Δ5.

(2) We descend onto 3 dimensions. The 5-dimensional Laplacian Δ5 becomes the
3-dimensional Laplacian Δ3.

(3) We descend on 1 + 1 dimensions. The Laplacian Δ3 becomes the heat operator ℒ1.
The representations Bsch,η and αsch,η with η = − 12 and η = − 52 are generalized
symmetries of ℒ1.

(4) We choose coordinatesw, s, so that the Cartan operator is expressed in terms of s.
We compute ℒ1, Bsch,η and αsch,η in the new coordinates.

(5) We make an ansatz that diagonalizes the Cartan operator, whose eigenvalue be-
comes a parameter, denoted by λ. ℒ1, Bsch,η and αsch,η involve now only the single
variable w. 2s2ℒ1 turns out to be the Hermite operator. The generalized symme-
tries of ℒ1 yield transmutation relations and discrete symmetries of the Hermite
operator.

(As in the previous section, in our presentation we omit the step 2.)
In the remaining part of this section, we develop the theory of the Hermite equa-

tion and its solutions. Its organization is parallel to that of all other sections on individ-
ual equations, and especially of Section 6 on the Gegenbauer equation. In particular,
the Gegenbauer equation can be derived by a quadratic relation from the 2ℱ1 equa-
tion in essentially the same way as the Hermite equation can be derived from the 1ℱ1
equation.

9.1 sch(1) in 5 dimensions
We again consider ℝ5 with the coordinates

z0, z−2, z2, z−3, z3 (327)

and the scalar product given by

⟨z|z⟩ = z20 + 2z−2z2 + 2z−3z3. (328)

We keep the notation from so(5)—remember that sch(1) is a subalgebra of so(5).
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Lie algebra sch(1). The Cartan algebra

M = z−2𝜕z−2 − z2𝜕z2 − z−3𝜕z−3 + z3𝜕z3 , (329a)
B3,2 = z−3𝜕z2 − z−2𝜕z3 . (329b)

Root operators

B3,0 = z−3𝜕z0 − z0𝜕z3 , (330a)
B2,0 = z−2𝜕z0 − z0𝜕z2 , (330b)
B3,−2 = z−3𝜕z−2 − z2𝜕z3 , (330c)
B−3,2 = z3𝜕z2 − z−2𝜕z−3 . (330d)

Weyl symmetries

ιK(z0, z−2, z2, z−3, z3) = K(z0, z−2, z2, z−3, z3), (331a)
κK(z0, z−2, z2, z−3, z3) = K(z0, −z−3, −z3, z−2, z2), (331b)
κ2K(z0, z−2, z2, z−3, z3) = K(z0, −z−2, −z2, −z−3, −z3), (331c)
κ3K(z0, z−2, z2, z−3, z3) = K(z0, z−3, z3, −z−2, −z2). (331d)

Laplacian

Δ5 = 𝜕
2
z0 + 2𝜕z−2𝜕z2 + 2𝜕z−3𝜕z3 . (332)

9.2 sch(1) in 3 dimensions

We descend on the level of ℝ3, with the variables y0, y−2, y2 and the scalar product
given by

⟨y|y⟩ = y20 + 2y−2y2.

Lie algebra sch(1). Cartan algebra

Mfl,η = y0𝜕y0 + 2y−2𝜕y−2 − η,

Bfl3,2 = 𝜕y2 .

Root operators

Bfl3,0 = 𝜕y0 ,

Bfl2,0 = y−2𝜕y0 − y0𝜕y2 ,

Bfl3,−2 = 𝜕y−2 ,

Bfl,η−3,2 = y−2(y0𝜕y0 + y−2𝜕y−2 − η) −
1
2
y20𝜕y2 .
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Weyl symmetries

ιfl,ηf (y0, y−2, y2) = f (y0, y−2, y2),

κfl,ηf (y0, y−2, y2) = y
η
−2f(

y0
y−2
, −

1
y−2
,
y20 + 2y−2y2

2y−2
),

(κfl,η)2f (y0, y−2, y2) = (−1)
ηf (−y0, y−2, y2),

(κfl,η)3f (y0, y−2, y2) = (−y−2)
ηf(− y0

y−2
, −

1
y−2
,
y20 + 2y−2y2

2y−2
).

Laplacian

Δfl5 = 𝜕
2
y0 + 2𝜕y−2𝜕y2 .

9.3 sch(1) in 1 + 1 dimensions

We descend onto the level ofℝ⊕ℝ, as described in Subsection 7.4. We rename y−2 to t.

Lie algebra sch(1). Cartan algebra:

Msch,η = y0𝜕y0 + 2t𝜕t − η, (333a)

B3,2 = 1. (333b)

Root operators

Bsch3,0 = 𝜕y0 , (334a)

Bsch2,0 = t𝜕y0 − y0, (334b)

Bsch3,−2 = 𝜕t , (334c)

Bsch,η−3,2 = t(y0𝜕y0 + t𝜕t − η) −
1
2
y20. (334d)

Weyl symmetry

ιsch,ηh(y0, t) = h(y0, t), (335a)

κsch,ηh(y0, t) = t
η exp(

y20
2t
)h(y0

t
, −

1
t
), (335b)

(κsch,η)2h(y0, t) = (−1)
ηh(−y0, t), (335c)

(κsch,η)3h(y0, t) = (−t)
η exp(

y20
2t
)h(−y0

t
, −

1
t
). (335d)

Heat operator

Δsch5 = ℒ1 = 𝜕
2
y0 + 2𝜕t . (336)
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9.4 sch(1) in the coordinates w , s

Let us define new coordinates

w = y0
√2t
, s = √t, (337)

with the reverse transformation

y0 = √2sw, t = s2. (338)

Lie algebra sch(1). Cartan algebra

Msch,η = s𝜕s − η,
B32 = 1.

Root operators

Bsch3,0 =
1
√2s
𝜕w ,

Bsch2,0 =
s
√2
(𝜕w − 2w),

Bsch3,−2 =
1
2s2
(−w𝜕w + s𝜕s),

Bsch,η−3,2 =
s2

2
(w𝜕w + s𝜕s − 2η − 2w

2).

Weyl symmetries

ιsch,ηh(w, s) = h(w, s),

κsch,ηh(w, s) = s2ηew
2
h(iw, − i

s
),

(κsch,η)2h(w, s) = (−1)ηh(−w, s),

(κsch,η)3h(w, s) = (−s2)ηew
2
h(−iw, − i

s
).

Heat operator

ℒ1 =
1
2s2
(𝜕2w − 2w𝜕w + 2s𝜕s). (339)

9.5 Hermite operator

Let us set η = − 12 and use the ansatz

h(w, s) = s−λ−
1
2 S(w). (340)
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Clearly,

Msch,− 12 h = −λh, (341)
sλ+

1
2 2s2ℒ1h = 𝒮λ(w, 𝜕w)S(w), (342)

where we have introduced the Hermite operator

Sλ(w, 𝜕w) := 𝜕
2
w − 2w𝜕w − 2λ − 1. (343)

We will also use an alternative notation

S(a;w, 𝜕w) := 𝜕
2
w − 2w𝜕w − 2a, (344)

so that

λ = a − 1
2
, a = λ + 1

2
. (345)

9.6 Quadratic transformation

Let us go back to 2 + 1 dimensions and the heat operator

ℒ2 = 2𝜕y−1𝜕y1 + 2𝜕t . (346)

Let us use the reduction described in Subsection 3.14, and then applied in Subsec-
tion 6.4:

y0 := √2y−1y1, u := √
y1
y−1
. (347)

In the new variables,

N1 = u𝜕u, (348)

ℒ2 = (𝜕y0 +
1
2y0
)
2
−

1
y20
(u𝜕u −

1
2
)(u𝜕u +

1
2
) + 2𝜕t . (349)

Therefore,

(uy0)
1
2ℒ2(uy0)

− 12 = −
1
y20
N1(N1 − 1) + ℒ1, (350a)

(u−1y0)
1
2ℒ2(u

−1y0)
− 12 = −

1
y20
N1(N1 + 1) + ℒ1. (350b)

Compare the coordinates (278) for 2 + 1 dimensions and the coordinates (337) for 1 + 1
dimensions. The coordinate s are the same. This is not the case of w, so let us rename
w from (337) as v. We then have w = v2. We also have

uy0 = √2su1, u−1y0 = √2wu
−1
1 s.

Hence on functions that do not depend on u we obtain
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s
1
2 u

1
2
1 ℒ2s
− 12 u−

1
2

1 = ℒ1, (351a)

s
1
2 u−

1
2

1 vℒ2s
− 12 u

1
2
1 v
−1 = ℒ1. (351b)

Thus by a quadratic transformation we can transform the Hermite equation into
a special case of the confluent equation:

𝒮λ(v, 𝜕v) = 4ℱλ,− 12
(w, 𝜕w), (352a)

v−1𝒮λ(v, 𝜕v)v = 4ℱλ, 12
(w, 𝜕w), (352b)

where

w = v2, v = √w.

9.7 Transmutation relations and discrete symmetries

The heat operator satisfies the generalized symmetries

Bsch,−
5
2ℒ1 = ℒ1B

sch,− 12 , B ∈ sch(1); (353a)

αsch,−
5
2ℒ1 = ℒ1α

sch,− 12 , α ∈ Sch(1). (353b)

Equation (353a) applied to the roots of sch(1) implies the transmutation relations
of the Hermite operator:

𝜕w 𝒮λ = 𝒮λ+1 𝜕w ,

(𝜕w − 2w) 𝒮λ = 𝒮λ−1 (𝜕w − 2w),

(w𝜕w + λ +
1
2 ) w2𝒮λ = w2𝒮λ+2 (w𝜕w + λ +

1
2 ),

(w𝜕w − λ +
1
2 − 2w

2) w2𝒮λ = w2𝒮λ−2 (w𝜕w − λ +
1
2 − 2w

2).

Relation (353a) applied to theWeyl symmetries of sch(1) implies the discrete sym-
metries of the Hermite operator, described below.

The following operators equal 𝒮λ(w, 𝜕w) for an appropriate w:

w = ±v : 𝒮λ(v, 𝜕v), (354a)

w = ±iv : − exp(−v2)𝒮−λ(v, 𝜕v) exp(v
2). (354b)

9.8 Factorizations of the heat operator

A special role is played by two distinguished subalgebras of sch(2).
First, note the commutation relations

[B2,0,B3,0] = B3,2. (355)
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Therefore, we have the following distinguished subalgebra in sch(1) isomorphic to
heis(2):

heis0(2) spanned by B2,0, B3,0, B3,2. (356)

Let us define

𝒞0 = 2B2,0B3,0 + 2M − B3,2 (357a)
= 2B3,0B2,0 + 2M + B3,2. (357b)

We have the commutation relations

[𝒞0,B2,0] = −2B2,0(B3,2 − 1),
[𝒞0,B3,0] = 2B3,0(B3,2 − 1),
[𝒞0,B3,2] = 0.

But Bsch,η3,2 = 1. Therefore, on the level of ℝ ⊕ ℝ the operator 𝒞sch,η0 can be treated as a
kind of a Casimir operator of heis0(2): it commutes with all elements of heis0(2). Note
the identity

2tℒ1 = 𝒞
sch,− 12
0 . (358)

Second, consider B−3,2, B3,−2,M. They are contained both in sch(6) and in sch(5).
Therefore, the subalgebra so23(3), described in Section 8.7 in the context of sch(6), is
also contained in sch(5). Recall that its Casimir operator is

𝒞23 = 4B3,−2B−3,2 − (M + 1)
2 + 1 (359a)

= 4B−3,2B3,−2 − (M − 1)
2 + 1. (359b)

By (104), we have

(2z−2z2 + 2z−3z3)Δ
⬦
5 = 𝒞
⬦,− 12
23 −

3
4
. (360)

Inserting (359) into (360), we obtain

(2z−2z2 + 2z−3z3)Δ
⬦
5

= 4B2,−3B−2,3 − (M +
3
2
)(M + 1

2
), (361a)

= 4B−2,3B2,−3 − (M −
3
2
)(M − 1

2
), (361b)

where the B, N1 andM operators should be decorated with the superscript ⬦,−
1
2 .
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Let us sumup the factorizations in the variables y0, t obtainedwith the help of the
two subalgebras:

2tℒ1 = 2B2,0B3,0 − (−2M + 1) (362a)
= 2B3,0B2,0 − (−2M − 1), (362b)

−y20ℒ1 = 4B2,−3B−2,3 − (M +
3
2
)(M + 1

2
) (362c)

= 4B−2,3B2,−3 − (M −
3
2
)(M − 1

2
), (362d)

where the B, N1 andM operators should be equipped with the superscript sch,−
1
2 .

In the coordinates w, s, we need to make the replacements

t → s2, (363a)

y20 → 2w2s2. (363b)

9.9 Factorizations of the Hermite operator

The factorizations of ℒ1 described in Subsection 9.8 yield the following factorizations
of the Hermite operator:

𝒮λ = (𝜕w − 2w)𝜕w − 2λ − 1
= 𝜕w(𝜕w − 2w) − 2λ + 1,

w2𝒮λ = (w𝜕w + λ −
3
2
)(w𝜕w − λ +

1
2
− 2w2) + (λ − 3

2
)(λ − 1

2
)

= (w𝜕w − λ −
3
2
− 2w2)(w𝜕w + λ +

1
2
) + (λ + 3

2
)(λ + 1

2
).

9.10 Standard solutions

The Hermite equation has only one singular point,∞. One can define two kinds of
solutions with a simple asymptotics at∞. They can be derived from the expressions
of Subsection 8.11, using (352) and (354b).

∼ w−a for w → +∞: Sλ(w) := w
−λ− 12 F̃λ, 12 (−w

−2)

= w−aF(a
2
,
a + 1
2
; −; −w−2),

∼(−iw)a−1ew
2
for w → +i∞: ew

2
S−λ(−iw) = (−iw)

λ− 12 ew
2
F̃−λ, 12 (w

−2)

= (−iw)a−1ew
2
F( 1 − a

2
,
2 − a
2
; −; −w−2).
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9.11 Recurrence relations

Each of the following recurrence relations corresponds to a root of sch(1):

𝜕wSλ(w) = −(
1
2
+ λ)Sλ+1(w),

(𝜕w − 2w)Sλ(w) = −2Sλ−1(w),

(w𝜕w +
1
2
+ λ)Sλ(w) =

1
2
(
1
2
+ λ)(3

2
+ λ)Sλ+2(w),

(w𝜕w +
1
2
− λ − 2w2)Sλ(w) = −2Sλ−2(w).

The first pair corresponds to the celebrated annihilation and creation operators
in the theory of quantum harmonic oscillator. The second pair involves the double
annihilation and creation operators.

9.12 Wave packets for the heat equation in 1 dimensions

Consider the space ℝ ⊕ ℝ and the heat equation given by the operator ℒ1 = 𝜕
2
y + 2𝜕t .

Recall that

Msch,− 12 = y𝜕y + 2t𝜕t +
1
2
. (364)

Set

Ga
λ (y, t) := ∫

γa
t−

1
2 exp((y − τ

−1)2

2t
)τ−

3
2+λ dτ, (365a)

Gb
λ (y, t) := ∫

γb

e−√2yτ−tτ
2
τ−

1
2+λ dτ. (365b)

Proposition 9.1. We have

ℒ1G
a
λ = 0, ℒ1G

b
λ = 0; (366a)

Msch,− 12Ga
λ = −λG

a
λ , Msch,− 12Gb

λ = −λG
b
λ . (366b)

Proof. Set

ga(y, t) := t−
1
2 exp (y − 1)

2

2t
, (367a)

gb(y, t) := e−√2y−t . (367b)

We have
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Ga
λ = ∫

γa
τ−1+

1
2+λga(τy, τ2t)dτ, (368a)

Gb
λ = ∫

γb

τ−1+
1
2+λgb(τy, τ2t)dτ. (368b)

Clearly, ga and gb solve the heat equation. By (368b), Ga
λ , respectively, G

b
λ are wave

packets made out of rotated ga, respectively, gb. Therefore, they also solve the heat
equation.

If the contours satisfy the requirements of Proposition 7.1, then (368b) implies
(366b).

Let us express these wave packets in the coordinates w, s:

Ga
λ (w, s) = ∫ s

−1 exp((w − 1
√2τs
)
2
)τ−2+

1
2+λ dτ, (369a)

Gb
λ (w, s) = ∫ e

−2swτ−s2τ2τ−1+
1
2+λ dτ. (369b)

In (369a), we set σ := w − 1
√2τs , so that τ =

1
(w−σ)√2s . In (369b), we set σ := sτ, so that

τ = σ
s . We obtain

Ga
λ (w, s) = (√2)

1
2−λs−

1
2−λFaλ (w), (370a)

Gb
λ (w, s) = s

− 12−λFbλ (w), (370b)

where

Faλ (w) := ∫
γa
eσ

2
(w − σ)−

1
2−λ dσ, (371a)

Fbλ (w) := ∫
γb

e−2σw−σ
2
σ−1+

1
2+λ dσ. (371b)

The above analysis shows that for appropriate contours (371a) and (371b) are solutions
of the Hermite equation.

9.13 Integral representations

Belowwedirectly describe the twokinds of integral representations of solutions,with-
out passing through additional variables.

Theorem 9.2.
(a) Let [0, 1] ∋ τ

γ
󳨃→ t(τ) satisfy et

2
(t − w)−a−1|t(1)t(0) = 0. Then

𝒮(a;w, 𝜕w) ∫
γ

et
2
(t − w)−a dt = 0. (372)
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(b) Let [0, 1] ∋ τ 󳨃→ t(τ) satisfy e−t
2−2wtta|t(1)t(0) = 0. Then

𝒮(a;w, 𝜕w) ∫
γ

e−t
2−2wtta−1 dt = 0. (373)

Proof. We check that for any contour γ

lhs of (372) = −a∫
γ

dt𝜕te
t2 (t − w)−a−1,

lhs of (373) = −2∫
γ

dt𝜕te
−t2−2wtta.

We can also deduce the second representation from the first by the discrete sym-
metry (354b).

9.14 Integral representations of standard solutions
In type (a) representations, the integrand has a singular point at 0 and goes to zero as
t → ±∞. We can thus use contours with such endpoints. We will see that they give all
standard solutions.

In type (b) representations, the integrand has a singular point at w and goes to
zero as t → ±i∞. Using contours with such endpoints, wewill also obtain all standard
solutions.

(a) (b)

∼ w−a for w → +∞: [0,∞[, ]−i∞,w−, −i∞[;

∼ (−iw)a−1ew
2
for w → +i∞: ]−∞,0+, −∞[, [w, i∞[.

It is convenient to introduce alternatively normalized solutions:

SIλ(w) := 2
−λ− 12 Γ(λ + 1

2
)Sλ(w).

Here are integral representations of type (a):

all λ: (374)

−i∫
]−i∞,w− ,i∞[

et
2
(w − t)−λ−

1
2 dt = √πSλ(w), w ̸∈ ]−∞,0];

Re λ < 1
2
: (375)

−i∫
[w,i∞[

et
2
(−i(t − w))−λ−

1
2 dt = ew

2
SI−λ(−iw), w ̸∈ [0,∞[.
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Here are integral representations of type (b):

−
1
2
< Re λ : (376)
∞

∫
0

e−t
2−2twtλ−

1
2 dt = SIλ(w), w ̸∈ ]−∞,0];

all λ: (377)

∫
]−∞,0+ ,∞[

e−t
2−2tw(it)λ−

1
2 dt = √πew

2
S−λ(−iw), w ̸∈ [0,∞[.

10 The Helmholtz equation in 2 dimensions and the
0ℱ1 equation

The goal of this section is to derive the 0ℱ1 equation together with its symmetries from
theHelmoltz equation in 2 dimensions. The symmetries of this equation, togetherwith
their derivation, are the simplest and the best known. In particular, we do not need to
consider generalized symmetries.

Here are the main steps from the derivation:
(1) We start from the Helmholtz operator Δ2 − 1. The Lie algebra aso(2) and group

ASO(2) acting in 2 dimensions, are the obvious symmetries of this operator.
(2) We choose coordinatesw, u, so that the Cartan element is expressed in terms of u.

We compute Δ2 − 1 and the representations of aso(2) and ASO(2) in the new coor-
dinates.

(3) We make an ansatz diagonalizing the Cartan element, whose eigenvalue α be-
comes a parameter. The only variable left is w. The Helmholtz operator Δ2 − 1 be-
comes the 0ℱ1 operator. The symmetries of Δ2 − 1 yield transmutation relations
and discrete symmetries of the 0ℱ1 operator.

The remaining part of this section is to a large extent parallel to their analogs in Sec-
tions 5, 6, 8 and 9. Essentially all subsections have their counterparts there. The only
exception is Subsection 10.4 on the equivalence of the 0ℱ1 equation with a subclass of
the 1ℱ1 equation, and its many-dimensional unravelling. This equivalence is obtained
by a quadratic transformation, which is quite different from the quadratic transforma-
tions for the Gegenbauer and Hermite equation considered in Subsection 6.4, respec-
tively, 9.6.

10.1 aso(2)
We consider ℝ2 with split coordinates x−, x+ and the scalar product

⟨x|x⟩ = 2x−x+. (378)
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Lie algebra aso(ℂ2). Cartan operator

N = −x−𝜕x− + x+𝜕x+ . (379)

Root operators

B− = 𝜕x− , (380a)

B+ = 𝜕x+ . (380b)

Weyl symmetry

τf (x−, x+) = f (x+, x−). (381)

Helmholtz operator

Δ2 − 1 = 2𝜕x−𝜕x+ − 1. (382)

10.2 Variables w , u

We introduce the coordinates

w = x−x+
2
, u = x+. (383)

Lie algebra aso(2). Cartan operator

N = u𝜕u.

Root operators

B+ =
u
2
𝜕w ,

B− =
1
u
(w𝜕w + u𝜕u).

Weyl symmetry

τf (w, u) = f(w, w
u
).

Helmholtz operator

Δ2 − 1 = w𝜕
2
w + (1 + u𝜕u)𝜕w − 1. (384)
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10.3 The 0ℱ1 operator

Let us make the ansatz

f (w, u) = uαF(w). (385)

Clearly,

Nf = αf , (386)
u−α(Δ2 − 1)f = ℱα(w, 𝜕w)F, (387)

where we have introduced the 0ℱ1 operator

ℱα(w, 𝜕w) := w𝜕
2
w + (1 + α)𝜕w − 1. (388)

Instead of the Lie-algebraic parameter α, one could also use the classical parameter c

α := c − 1, c = α + 1, (389)

so that the 0ℱ1 operator becomes

ℱ(c;w, 𝜕w) := w𝜕
2
w + c𝜕w − 1. (390)

10.4 Equivalence with a subclass of the confluent equation

The 0ℱ1 equation is equivalent to a subclass of the 1ℱ1 equation by a quadratic trans-
formation. This quadratic transformation is however quite different from transforma-
tions described in Subsection 3.14, and then applied to derive the Gegenbauer equa-
tion and the Hermite equation. In this subsection, we derive this equivalence starting
from the heat equation in 2 dimensions.

First, let us recall someelements of ourderivationof the 1ℱ1 operator. Asdescribed
in Section 8, it was obtained from the heat operator (277) together with Cartan opera-
tors (274a), (274c):

t
2
ℒ2 =

t
2
(2𝜕t + 2𝜕y−1𝜕y1 ), (391a)

M = y−1𝜕y−1 + y1𝜕y1 + 2t𝜕t + 1, (391b)

N1 = −y−1𝜕y−1 + y1𝜕y1 . (391c)

(We set η = −1 and dropped the superscript sch,−1.) Recall that substituting the coordi-
nates (278)

w = y−1y1
t
, u1 =

y1
√t
, s = √t (392)
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we obtain

t
2
ℒ2 = w𝜕

2
w + (u𝜕u + 1 − w)𝜕w +

1
2
(−u𝜕u + s𝜕s), (393a)

M = s𝜕s + 1, (393b)
N1 = u1𝜕u1 . (393c)

After we setM = −θ, N1 = α, (393a) becomes ℱθ,α(w, 𝜕w).
Consider now

2t2

y−1y1
e−

y−1y1
2t ℒ2e

y−1y1
2t

=
2t

y−1y1
(y−1𝜕y−1 + y1𝜕y1 + 2t𝜕t + 1) +

4t2

y−1y1
𝜕y−1𝜕y1 − 1

=
2t

y−1y1
M + 2𝜕x−𝜕x+ − 1,

e−
y−1y1
2t N1e

y−1y1
2t = N1 = −2x−𝜕x− + 2x+𝜕x+ , (394)

where we introduced new variables

x− =
y2−1
2√2t
, x+ =

y21
2√2t
. (395)

Therefore, on the subspaceM = 0 we have

2t2

y−1y1
e−

y−1y1
2t ℒ2e

y−1y1
2t = Δ2 − 1,

e−
y−1y1
2t N1e

y−1y1
2t = 2N , (396)

where Δ2 − 1 is the Helmholtz operator (382) and N the Cartan operator (379). Remem-
ber, that in Subsection 10.2 we express these operators in the coordinates (383). To
avoid a clash of symbols, we rename w from (383) into v:

v = y−y+
2
, u = y+. (397)

Recall that in the v, u coordinates we have

Δ2 − 1 = v𝜕
2
v + (1 + u𝜕u)𝜕v − 1, (398a)

N = u𝜕u, (398b)

so that (398a) on N = α becomes ℱα(v, 𝜕v).
Now we can compare the coordinates w, u1 and v, u

v =
y2−1y

2
1

16t2
= (

w
4
)
2
, u =

y21
2√2t
=

u21
2√2
. (399)
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This leads to the so-called Kummer’s 2nd transformation, which reduces the 0ℱ1 equa-
tion to a special class of the confluent equation by a quadratic transformation:

ℱα(v, 𝜕v) =
4
w
e−w/2ℱ0,2α(w, 𝜕w)e

w/2, (400)

or, in classical parameters

ℱ(c; v, 𝜕v) =
4
w
e−w/2ℱ(c − 1

2
; 2c − 1;w, 𝜕w)e

w/2, (401)

where w = ±4√v, v = (w4 )
2.

10.5 Transmutation relations and symmetries

The following symmetries of the Helmholtz operator are obvious:

B(Δ2 − 1) = (Δ2 − 1)B; B ∈ aso(2); (402a)

α(Δ2 − 1) = (Δ2 − 1)α; α ∈ ASO(2). (402b)

Applying (402a) to the roots of aso(2), we obtain the transmutation relations

𝜕w ℱα = ℱα+1 𝜕w ,

(w𝜕w + α) ℱα = ℱα−1 (w𝜕w + α).

Applying (402b) to the Weyl symmetry of aso(2), we obtain the symmetry

w−α ℱ−α w
α = ℱα.

10.6 Factorizations

The factorizations

Δ2 − 1 = 2B−B+ − 1 (403a)

= 2B+B− − 1, (403b)

are completely obvious. They yield the factorizations of the 0ℱ1 operator:

ℱα = (w𝜕w + α + 1)𝜕w − 1

= 𝜕w(w𝜕w + α) − 1.
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10.7 The 0F1 function

The 0ℱ1 equation has a regular singular point at 0. Its indices at 0 are equal to 0, α =
1 − c.

If c ̸= 0, −1, −2, . . . , then the only solution of the 0F1 equation ∼ 1 at 0 is called the
0F1 function. It is

F(c;w) :=
∞

∑
j=0

1
(c)j

wj

j!
. (404)

It is defined for c ̸= 0, −1, −2, . . . . Sometimes it is more convenient to consider the func-
tion

F(c;w) := F(c;w)
Γ(c)
=
∞

∑
j=0

1
Γ(c + j)

wj

j!
(405)

defined for all c.
Using (401), we can express the 0F1 function in terms of the confluent function

F(c;w) = e−2√wF(2c − 1
2
; 2c − 1; 4√w) (406a)

= e2√wF(2c − 1
2
; 2c − 1; −4√w). (406b)

We will usually prefer to use the Lie-algebraic parameters:

Fα(w) := F(α + 1;w), (407a)
Fα(w) := F(α + 1;w). (407b)

10.8 Standard solutions

We have two standard solutions corresponding to two indices of the regular singular
point w = 0. Besides, using Tricomi’s function described in Subsection 8.11, we have
an additional solution with a special behavior at∞:

∼ 1 at 0: Fα(w) = e
−2√wF0,2α(4√w)

= e2√wF0,2α(−4√w);

∼ w−α at 0: w−αF−α(w) = w
−αe−2√wF0,−2α(4√w)

= w−αe2√wF0,−2α(−4√w);

∼ e−2√ww−
α
2 −

1
4 , w → +∞: F̃α(w) := e

−2√ww−
α
2 −

1
4 F̃0,2α(−

1
4√w
)

= e−2√ww−
α
2 −

1
4 F̃0,−2α(−

1
4√w
).
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Note that the third standard solution is a new function closely related to the Mac-
Donald function. It satisfies the identity

F̃α(w) = w
−αF̃−α(w). (408)

Its asymptotics

F̃α(w) ∼ exp(−2w
1
2 )w−

α
2 −

1
4 (409)

is valid in the sector | argw| < π/2 − ϵ for |w| → ∞.

10.9 Recurrence relations

The following recurrence relations follow from the transmutation relations:

𝜕wFα(w) = Fα+1(w),
(w𝜕w + α)Fα(w) = Fα−1(w).

10.10 Wave packets

Obviously, for any τ the function exp( x−√2τ +
τx+
√2 ) solves the Helmholtz equation. There-

fore, for appropriate contours γ,

f (x−, x+) :=
1
2πi
∫
γ

exp( x−
√2τ
+
τx+
√2
)τ−α−1 dτ (410)

solves

(Δ2 − 1)f = 0, (411)
Nf = αf . (412)

Substituting the coordinates w, u, we obtain

f (w, u) = ∫
γ

exp( w
τu√2
+
τu
√2
)τ−α−1dτ

= uα2−
α
2 ∫
γ

exp(w
s
+ s)s−α−1 ds, (413)

where we made the substitution s = τu
√2 . Therefore,

F(w) = ∫
γ

exp(w
s
+ s)s−α−1 ds, (414)

solves the 0F1 equation.
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10.11 Integral representations

There are three kinds of integral representations of solutions to the 0F1 equation. The
first is suggested by the previous subsection. Representations of the first kind will be
called Bessel–Schläfli-type representations. The next two are inherited from the con-
fluent equation by second Kummer’s identity.Wewill call them Poisson-type represen-
tations.

Theorem 10.1.
(i) Bessel–Schläfli type representations. Suppose that [0, 1] ∋ t 󳨃→ γ(t) satisfies

ete
w
t t−c󵄨󵄨󵄨󵄨

γ(1)
γ(0) = 0.

Then

ℱ(c;w, 𝜕w) ∫
γ

ete
w
t t−cdt = 0. (415)

(ii) Poisson type (a) representations. Let the contour γ satisfy

(t2 − w)−c+3/2e2t 󵄨󵄨󵄨󵄨
γ(1)
γ(0) = 0.

Then

ℱ(c;w, 𝜕w) ∫
γ

(t2 − w)−c+1/2e2tdt = 0. (416)

(iii) Poisson type (b) representations. Let the contour γ satisfy

(t2 − 1)c−1/2e2t√w󵄨󵄨󵄨󵄨
γ(1)
γ(0) = 0.

Then

ℱ(c;w, 𝜕w) ∫
γ

(t2 − 1)c−3/2e2t√wdt = 0. (417)

Proof. We check that for any contour γ

lhs of (415) = −∫
γ

dt𝜕te
te

w
t t−c.

This proves (i).
To prove both Poisson-type representations, we use the quadratic relation (401).

Using the type (a) representation for solutions of 1ℱ1 (317), for appropriate contours γ
and γ󸀠, we see that
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e−2√w ∫
γ

ess−c+
1
2 (s − 4√w)−c+

1
2 ds

= 2−2c+2 ∫
γ󸀠

e2t(t2 − w)−c+
1
2 dt

is annihilated by ℱ(c), where we set t = s
2 − √w. This proves (ii).

Similarly, by the type (b) representation for solutions of 1ℱ1 (318),

e−2√w ∫
γ

e
4√w
s s−2c+1(1 − s)c−

3
2 ds

= −2−2c+2 ∫
γ󸀠

e2t√w(1 − t2)c−
3
2 dt

is annihilated by ℱ(c), where we set t = 2
s − 1. This proves (iii).

10.12 Integral representations of standard solutions

In Bessel–Schläfli-type representations, the integrand goes to zero as t → −∞ and
t → 0 − 0 (the latter for Rew > 0). Therefore, contours ending at these points yield
solutions. We will see that in this way we can obtain all 3 standard solutions.

We can also obtain all solutions using Poisson-type representations (which are
actually special cases of representations for solutions of the confluent equation).

Bessel–Schläfli Poisson type (a) Poisson type (b)

∼ 1 at 0: ]−∞,0+,∞[ [−1,1]
∼ w−α at 0: (0 − 0)+ [−√w, √w]

∼ e−2√ww−
α
2 −

1
4 for w → +∞: ]−∞,0] ]−∞, −1] ]−∞, −√w]

Here are Bessel–Schläfli-type representations. They are valid for all values of α and
Rew > 0:

1
2πi

∫
]−∞,0+ ,−∞[

ete
w
t t−α−1 dt = Fα(w), (418)

1
2πi
∫
[(0−0)+]

ete
w
t t−α−1 dt = w−αF−α(w), (419)

0

∫
−∞

ete
w
t (−t)−α−1 dt = π

1
2 F̃α(w). (420)
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Next, we give Poisson-type representations, valid for w ̸∈ ]−∞,0]:

Re α > − 1
2
: (421)

1

∫
−1

(1 − t2)α−
1
2 e2t√w dt = Γ(α + 1

2
)√πFα(w),

1
2
> Re α : (422)

√w

∫
−√w

(w − t2)−α−
1
2 e2t dt = Γ(−α + 1

2
)√πw−αF−α(w);

Re α > − 1
2
: (423)

−1

∫
−∞

(t2 − 1)α−
1
2 e2t√w dt = 1

2
Γ(α + 1

2
)F̃α(w),

Re α < 1
2
: (424)

−√w

∫
−∞

(t2 − w)−α−
1
2 e2t dt = 1

2
Γ(−α + 1

2
)F̃α(w).

10.13 Connection formulas

From integral representations, we easily obtain connection formulas. As the basis, we
can use the solutions with a simple behavior at zero:

F̃α(w) =
√π

sinπ(−α)
Fα(w) +

√π
sinπα

w−αF−α(w).

Alternatively, we can use the basis consisting of the F̃ function and its clockwise or
anticlockwise analytic continuation around 0:

Fα(w) =
1

2√π
(e±iπ(α+

1
2 )F̃α(w) + e

∓iπ(α+ 12 )F̃α(e
∓i2πw)),

w−αF−α(w) =
1

2√π
(e∓iπ(α−

1
2 )F̃α(w) − e

∓iπ(α− 12 )F̃α(e
∓i2πw)).
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