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Abstract: We show that properties of hypergeometric class equations and functions
become transparent if we derive them from appropriate second-order differential
equations with constant coefficients. More precisely, properties of the hypergeometric
and Gegenbauer equation can be derived from generalized symmetries of the Laplace
equation in 4, respectively, 3 dimension. Properties of the confluent, respectively,
Hermite equation can be derived from generalized symmetries of the heat equation
in 2, respectively, 1 dimension. Finally, the theory of the ;F; equation (equivalent to
the Bessel equation) follows from the symmetries of the Helmholtz equation in 2 di-
mensions. All these symmetries become very simple when viewed on the level of the
6- or 5-dimensional ambient space.

Crucial roleis played by the Lie algebra of generalized symmetries of these second-
order PDEs, its Cartan algebra, the set of roots and the Weyl group. Standard hyperge-
ometric class functions are special solutions of these PDEs diagonalizing the Cartan
algebra. Recurrence relations of these functions correspond to the roots. Their discrete
symmetries correspond to the elements of the Weyl group.
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1 Introduction

These lecture notes are devoted to the properties of the following equations:

the Gauss hypergeometric equation, called also the ,F; equation,
(w@- w)afv +(c-(a+b+1w)o, —ab)F(w) = 0; 1
the Gegenbauer equation

(1-w?)dZ, - (a+ b+ 1)wd,, — ab)F(w) = 0; 2
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4 =— | Derezifiski

Kummer’s confluent equation, called also the {F; equation,
(wd, + (c - w)d,, — a)F(w) = 0; 3)
the Hermite equation

(32 - 2wd,, — 2a)F(w) = 0; %)

w

and the (F; equation (equivalent to the better known Bessel equation; see, e. g., [9])
(W, + cd,, — 1)F(w) = 0. 5)

Here, w is a complex variable, 0,, is the differentiation with respect tow, and a, b, c are
arbitrary complex parameters.

These equations are typical representatives of the so-called hypergeometric class
equations [40]. (Nikiforov and Uvarov call them hypergeometric type equations; fol-
lowing [46], we prefer in this context to use the word class, reserving type for narrower
families of equations). We refer the reader to Section 2, where we discuss the terminol-
ogy concerning hypergeometric class equations and functions that we use.

The equations (1)-(5) and their solutions belong to the most natural objects of
mathematics and often appear in applications [16, 38, 54].

The aim of these notes is to elucidate the mathematical structure of a large class of
identities satisfied by hypergeometric class equations and functions. We believe that
our approach brings order and transparency to this subject, usually considered to be
complicated and messy.

We will restrict ourselves to generic parameters a, b, c. We will not discuss special
properties of two distinguished classes of parameters, when additional identities are
true:

(1) the polynomial case (which corresponds to negative integer values of a);
(2) the degenerate case (which corresponds to integer values of ¢).

The notes are to a large extent based on [9] and [10], with some additions and improve-
ments.

1.1 From second-order PDEs with constant coefficients to
hypergeometric class equations

In our approach, each of the equations (1)-(5) is derived from a certain complex
second-order PDE with constant coefficients. The identities satisfied by this PDE and
their solutions are very straightforward—they look obvious and symmetric. After an
appropriate change of variables, we derive (1)-(5) and identities satisfied by their
solutions. They look much more complicated and messy.
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Group-theoretical origin of symmetries of hypergeometric class equations = 5

We will argue that the main source of these identities are generalized symmetries
of the parent PDE. Let us briefly recall this concept.
Suppose that we are given an equation

Kf =0, (6)

where K is a linear differential operator. Let g be a Lie algebra and G a group equipped
with pairs of representations

g>Bw— B’ B*, (7a)

Gram d,a, (7b)

where (7a) has its values in first-order differential operators and (7b) in point transfor-
mations with multipliers. We say that (7a) and (7b) are generalized symmetries of (6)
if

B’K = kKB, (8a)
respectively, K = Ka*. (8b)

Note that (8a), respectively, (8b) imply that B and a* preserve the space of solutions
of (6).
We will omit the word “generalized” if B* =B’ and «’ = a".
We can distinguish 3 kinds of PDEs with constant coefficients in complex domain.
Below we list these PDEs, together with the Lie algebra and group of their generalized
symmetries:
(1) The Laplace equation on C"

Af=0, n>2 ©

The orthogonal Lie algebra and group in n+2 dimensions, denoted so(n+2, C), re-
spectively, O(n+2, C), both acting conformally in n dimensions. (For n = 1,2 there
are additional conformal symmetries.)

(2) The heat equation on C"? & C:

Ay +205)f = 0. (10)

The Schrddinger Lie algebra and group in n-2 dimensions, denoted sch(n-2, C),
respectively, Sch(n-2, C).
(3) The Helmholtz equation on C" !,

(A - Df = 0. (11)

The affine orthogonal Lie algebra and group in n-1 dimensions, denoted
aso(n-1, C), respectively, AO(n-1, C).
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(The reason for the strange choice of dimensions in (10) and (11) will be explained
later.)

The basic idea of our approach is as follows. Let us start from the equation (6),
where K is appropriately chosen from among (9), (10) and (11). In the Lie algebra of
its generalized symmetries, we fix a certain maximal commutative algebra, which we
will call the “Cartan algebra.” Operators that are eigenvectors of the adjoint action of
the “Cartan algebra” will be called “root operators.”

In the group of generalized symmetries we fix a subgroup, which we call the “Weyl
group.” It is chosen in such a way, that its adjoint action fixes the “Cartan algebra.”

Note that in some cases the Lie algebra of symmetries is simple, and then the
names Cartan algebra, root operators amd Weyl symmetries correspond to the stan-
dard names. In other cases, the Lie algebra is not semisimple, and then the names
are less standard—this is the reason for the quotation marks that we use above. In the
sequel, we drop the quotation marks.

Let us fix a basis of the Cartan algebra Ny, ..., N;. Suppose that the dimension of
the underlying space is by 1 greater than the dimension of the Cartan algebra. Then
we introduce new variables, say w, uy, ..., 4 such that N; = u;0,, .

Substituting a function of the form

f=uf-wF(w), 12)
to the equation (6), and using
Nu® = au™ (13)
we obtain the equation
Fopt =05 (14)

which coincides with one of the equations (1)—(5). The eigenvalues of the Cartan op-
erators become the parameters of this equation.

Root operators shift the Cartan elements, typically by 1 or —1 (like the well-known
creation and annihilation operators). Therefore, root operators inserted into the rela-
tions (8a) lead to transmutation relations for (1)-(5).

Similarly, elements of the Weyl group permute Cartan elements or change their
signs. Therefore, Weyl symmetries inserted into (8b) lead to discrete symmetries of (1)—
(5).

Of course, one can apply (8b) to elements of G other than Weyl symmetries, ob-
taining interesting integral and addition identities for hypergeometric class functions.
They are, however, outside of the scope of these notes.

There are five second-order PDE with constant coefficients where we can perform
this procedure. They are all listed in the following table:
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Group-theoretical origin of symmetries of hypergeometric class equations =—— 7

PDE Lie algebra dimension of discrete equation
Cartan algebra symmetries

A, s0(6,C) 3 cube oF

A3 s0(5,C) 2 square Gegenbauer

N, +20; sch(2,C) 2 Z,x7Z, 1Fy oryF

Ay +20; sch(1,C) 1 Z, Hermite

A, -1 aso(2,C) 1 z, of1

Note that some other second-order PDEs have too few variables to be in the above list:
this is the case of A; and A,. Others have too many variables: one can try to perform
the above procedure, however, it leads to a differential equation in more than one
variable.

1.2 Conformalinvariance of the Laplace equation

The key tool of our approach is the conformal invariance of the Laplace equation. Let
us sketch a derivation of this invariance. For simplicity, we restrict our attention to the
complex case, for which we do not need to distinguish between various signatures of
the metric tensor.

In order to derive the conformal invariance of the Laplacian on C", or on other
complex manifolds with maximal conformal symmetry, it is convenient to start from
the so-called ambient space C™?, where the actions of so(n+2, C) and O(n+2, C) are
obvious. In the next step, these actions are restricted to the null quadric, and finally to
the projective null quadric. Thus the dimension of the manifold goes down from n+2
to n. The null quadric can be viewed as a line bundle over the projective null quadric.
By choosing an appropriate section, we can identify the projective null quadric, or at
least its open dense subset, with the flat space C" or some other complex manifolds
with a complex Riemannian structure, e. g., the product of two spheres. The Lie alge-
bra so(n+2, C) and the group O(n+2, C) act conformally on these manifolds.

What is more interesting, the above construction leads to a definition of an in-
variantly defined operator, which we denote A®, transforming functions on the null
quadric homogeneous of degree 1 — g onto functions homogeneous of degree -1 — g
After fixing a section, this operator can be identified with the conformal Laplacian
on the corresponding complex Riemannian manifold of dimension n. For instance,
one obtains the Laplacian A, on C". The representations of so(n+2, C) and O(n+2, C)
on the level of the ambient space were true symmetries of A,,,. After the reduc-
tion to n dimensions, they become generalized symmetries of the conformal Lapla-
cian.

The fact that conformal transformations of the Euclidean space are generalized
symmetries of the Laplace equation was apparently known already to Lord Kelvin. Its
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explanation in terms of the null quadric first appeared in [6], and is discussed, e. g., in
[8]. The reduction of A,,,, to A,, mentioned above, is based on a beautiful idea of Dirac
in [11], which was later rediscovered, e. g., in [21, 15]; see a discussion by Eastwood
[12].

The construction indicated above gives a rather special class of (pseudo-)Rie-
mannian manifolds—those having a conformal group of maximal dimension; see,
e. g., [14]. However, conformal invariance can be generalized to arbitrary (pseudo-)Rie-
mannian manifolds. In fact, the Laplace-Beltrami operator plus an appropriate mul-
tiple of the scalar curvature, sometimes called the Yamabe Laplacian, is invariant in
a generalized sense with respect to conformal maps; see, e. g., [47, 42].

1.3 The Schrodinger Lie algebra and Lie algebra as generalized
symmetries of the Heat equation

The heat equation (10) possesses a large Lie algebra and group of generalized symme-
tries, which in the complex case, as we already indicated, we denote by sch(n-2, C)
and Sch(n-2, C). Apparently, they were known already to Lie [29]. They were redis-
covered (in the essentially equivalent context of the free Schrodinger equation) by
Schrodinger [45]. They were then studied, e. g., in [19, 39].

By adding an additional variable, one can consider the heat equation as the
Laplace equation acting on functions with an exponential dependence on one of the
variables. This allows us to express generalized symmetries of (10) by generalized
symmetries of (9). They can be identified as a subalgebra of so(n+2, C), respectively, a
subgroup of O(n+2, C) consisting of elements commuting with a certain distinguished
element of so(n+2, C).

1.4 Affine orthogonal group and algebra as symmetries of the
Helmholtz equation

Recall that the affine orthogonal group AO(n-1,C) is generated by rotations and
translations of C"\. It is obvious that elements of AO(n-1,C) commute with the
Helmholtz operator A,_; — 1. The same is true concerning the affine orthogonal Lie
algebra aso(n-1, C). Therefore, they are symmetries of the Helmholtz equation (11).

The Helmholtz equation is conceptually simpler than the Laplace and heat equa-
tions, because all generalized symmetries are true symmetries.

Note that one can embed the symmetries of the Helmholtz equation in confor-
mal symmetries of the Laplace equation, similarly as was done with the heat equa-
tion. In fact, aso(n-1, C) is a subalgebra of so(n+2, C), and AO(n-1, C) is a subgroup
of O(n+2, C).
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1.5 Factorization relations

Another important class of identities satisfied by hypergeometric class operators are
factorizations [22]. They come in pairs. They are identities of the form

]'-1 = A_A+ + Cl’ (153)
]'-2 = A+A_ + Cz, (15b)

where A, A_ are first-order differential operators, c;, ¢, are numbers and 7, F, are
operators coming from (1)—(5) with slightly shifted parameters.

The number of such factorizations is the same as the number of roots of the Lie
algebra of generalized symmetries. They can be derived from certain identities in the
enveloping algebra. They are closely related to the Casimir operators of its subalgebras.

Factorizations imply transmutation relations. In fact, it is easy to see that (15b) and
(15a) imply

A F=(F+6-c)A, (16a)
A+./—"1 = (.Fz + Cl - C2).A+. (16b)

Note that (16a) implies that the operator .A_ maps the kernel of F, to the kernel
of F; + ¢, — ¢;. Similarly, (16b) implies that the operator .4, maps the kernel of 7
to the kernel of F, + ¢; — ¢,. The above construction is usually called the Darboux
transformation.

1.6 Standard solutions of hypergeometric class equations

So far we discussed only identities satisfied by the operators corresponding to the
equations (1)-(5). The approach discussed in these notes is also helpful in deriving
and classifying the identities for their solutions.

The equations (1)—(5) have at least 1 and at most 3 singular points on the Riemann
sphere. One can typically find two solutions with a simple behavior at each of these
points. We call them standard solutions. (If it is a regular-singular point, then the so-
lutions are given by convergent power series, otherwise we have to use other methods
to define them.) The discrete symmetries map standard solutions on standard solu-
tions. The best known example of this method of generating solutions is Kummer’s
table [28], which lists various possible expressions for solutions of the hypergeomet-
ric equation.

1.7 Recurrence relations of hypergeometric class functions

All transmutation relations have the form

‘A’Fl = .FzA, (17)
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where A is a first-order differential operator and Fj, 7, is a pair of hypergeometric
class operators of the same type. Typically, some parameters of F, differ from the cor-
responding parameters of 7; by +1. Clearly, if a function F; solves F;F; = 0, then AF;
solves F, AF; = 0.

It turns out that if F, is a standard solution of 7;, then AF; is proportional to one
of standard solutions of F,, say F,. Thus we obtain an identity

A‘Fl = an, (18)

called a recurrence relation, or a contiguity relation.
The recurrence relation (18) is fixed by the transmutation relation (17) except for
the coefficient a. In practice it is not difficult to determine a.

1.8 From wave packets to integral representations

Hypergeometric class functions possess integral representations, where integrands
are elementary functions. We show that integral representations come from certain
natural solutions of the parent second-order PDE, which at the same time are eigen-
functions of Cartan operators. It will be convenient to have a name for this kind of
solutions—we will call them wave packets.

Let us describe how to construct wave packets for the Laplace equation. It is easy
to see that each function depending only on variables from an isotropic subspace is
harmonic, that is, satisfies the Laplace equation. By assuming that the function is ho-
mogeneous in appropriate variables we can make sure that it is an eigenfunction of
Cartan operators.

Unfortunately, the above class of functions is too narrow for our purposes. There
is still another construction that can be applied: we can rotate a function and integrate
it (“smear it out”) with respect to a weight. This procedure does not destroy the har-
monicity. By choosing the weight appropriately, we can make sure that the resulting
wave packet is an eigenfunction of Cartan operators. (The “smearing out” is essentially
a generalization of the Fourier (or Mellin) transformation to the complex domain.)

After substituting special coordinates to a wave packet, we obtain a function of
the form (12) with F solving (14), and having the form of an integral of an elementary
function.

Wave packets for the heat and Helmholtz equation can be derived from wave pack-
ets for the Laplace equation.

1.9 Plan of the lecture notes

In Section 2, we give a concise introduction to hypergeometric class equations and
functions. One can view this section as an extension of the Introduction, concentrated
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on the terminology and classification of equations and functions we consider in these
notes.

The remaining sections can be divided into two categories. The first category con-
sists of Sections 3, 4 and 7. They have a general character and are devoted to basic ge-
ometric analysis in any dimension. The most important one among them is Section 4,
devoted to the conformal invariance of the Laplace equation. Of comparable impor-
tance is Section 7, where the Schrédinger Lie algebra and group are introduced. In
Subsections 3.10-3.13, we explain how to construct “wave packets.” No special func-
tions appear in Sections 3, 4 and 7. They can be read independently of the rest of the
notes.

The second category consists of Sections 5, 6, 8, 9 and 10. They are devoted to a
detailed analysis of equations (1), (2), (3), (4), respectively, (5). Typically, each section
starts with the ambient space corresponding to the second-order PDE from the left
column of the table in Subsection 1.1. In the ambient space, these symmetries are very
easy to describe. Then we reduce the dimension and introduce special coordinates,
which leads to the equation in the right column of the table.

We made serious efforts to make Sections 5, 6, 8, 9 and 10 as parallel as possible.
There is a one to one correspondence between most subsections in all of these five
sections. We try to use a uniform terminology and analogous conventions. This makes
our text somewhat repetitive—we believe that this is helpful to the reader. Note also
that these sections are to a large extent independent of one another.

We use various (minor but helpful) ideas to make our presentation as short and
transparent as possible. One of them is the use of two kinds of parameters. The param-
eters that appear in (1), (2), (3), (4) and (5), denoted a, b, ¢, are called classical param-
eters. They are convenient when one defines ; F,, functions by power series. However,
in most of our text we prefer to use a different set of parameters, denoted by Greek
letters a, B, u, 6, A. They are much more convenient when we describe symmetries.

Another helpful idea is a consistent use of split coordinates in C" or R". In these
coordinates, root operators and Weyl symmetries have an especially simple form.

The notes are full of long lists of identities. We are convinced that most of them
are easy to understand and appreciate without much effort. Typically, they are highly
symmetric and parallel to one another.

We hesitated whether to use the complex or real setting for these notes. The com-
plex setting was used, e. g., in [10]. It offers undoubtedly some simplifications: there
is no need to consider various signatures of the scalar product. However, the com-
plex setting can also be problematic: analytic functions are often multivalued, which
causes issues with some global constructions. Therefore, in these notes, except for
the Introduction, we use the real setting as the basic one. At the same time, we keep in
mind that all our formulas have obvious analytic continuations to appropriate com-
plex domains.

In most of our notes, we do not make explicit the signature of the scalar product
in our notation for Lie algebras and groups. For example, by writing so(n), we mean
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so(q, p) for some n = q + p or so(n, C). Specifying each time the signature would be
overly pedantic, especially since we usually want to complexify all objects, so that the
signature loses its importance.

1.10 Comparison with literature

The literature about hypergeometric class functions is enormous—after all it is one of
the oldest subjects of mathematics. Let us mention, e. g., the books [4, 46, 1, 13, 20, 31,
41, 43, 54].

The relationship of special functions to Lie groups and algebras was noticed long
time ago. For instance, the papers by Weisner [52, 53] from the 50’s describe Lie alge-
bras associated with Bessel and Hermite functions.

The idea of studying hypergeometric class equations with the help of Lie algebras
was developed further by Miller. His early book [33] considers mostly small Lie alge-
bras/Lie groups, typically sl(2, C)/SL(2, C) and their contractions, and applies them
to obtain various identities about hypergeometric class functions. These Lie algebras
have 1-dimensional Cartan algebras and a single pair of roots. This kind of analysis
is able to explain only a single pair of transmutation relations for each equation. To
explain bigger families of transmutation relations, one needs larger Lie algebras.

A Lie algebra strictly larger than sl(2, C) is so(4, C). There exists a large literature
on the relation of the hypergeometric equation with so(4, C) and its real forms; see,
e. g., [24, 25). This Lie algebra is however still too small to account for all symmetries
of the hypergeometric equation—its Cartan algebra is only 2-dimensional, whereas the
equation has three parameters.

An explanation of symmetries of the Gegenbauer equation in terms of so(5, C) and
of the hypergeometric equation in terms of so(6, C) = sl(4, C) was first given by Miller;
see [36], and especially [37].

Miller and Kalnins wrote a series of papers where they studied the symmetry ap-
proach to separation of variables for various second-order partial differential equa-
tions, such as the Laplace and wave equation; see, e. g., [23]. A large part of this re-
search is summed up in the book by Miller [35]. As an important consequence of this
study, one obtains detailed information about symmetries of hypergeometric class
equations.

The main tool that we use to describe properties of hypergeometric class functions
are generalized symmetries of second-order linear PDEs. Their theory is described in
another book by Miller [34], and further developed in [35].

A topic that is extensively treated in the literature on the relation of special func-
tions to group theory, such as [49, 51, 33, 50], is derivation of various addition for-
mulas. Addition formulas say that a certain special function can be written as a sum,
often infinite, of some related functions. As we mentioned above, they are outside of
the scope of this text—we concentrate on the simplest identities.
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The relationship of Kummer’s table with the group of symmetries of a cube (which
is the Weyl group of so(6, C)) was discussed in [30]. A recent paper, where symmetries
of the hypergeometric equation play an important role is [27].

The use of transmutation relations as a tool to derive recurrence relations for hy-
pergeometric class functions is well known and can be found, e. g., in the book by
Nikiforov—Uvarov [40], in the books by Miller [33] or in older works such as [48, 52, 53].

There exist various generalizations of hypergeometric class functions. Let us men-
tion the class of .A-hypergeometric functions, which provides a natural generalization
of the usual hypergeometric function to many-variable situations [5, 7]. Saito [44] con-
siders generalized symmetries in the framework of .A-hypergeometric functions.

Another direction of generalizations of hypergeometric functions is the family of
Gel’fand-Kapranov-Zelevinsky hypergeometric functions [17, 18]. Similar construc-
tions were explored by Aomoto and others [2, 3, 32]. The main idea is to generalize in-
tegral representations of hypergeometric functions, rather than hypergeometric equa-
tions. There exist also interesting confluent versions of these functions [26].

A systematic presentation and derivation of symmetries of hypergeometric class
equations and functions from second-order PDEs with constant coefficients was given
in [9] and [10]. These papers consistently use Lie-algebraic parameters, describe trans-
mutation relations, discrete symmetries and factorizations. [9] describes integral rep-
resentations and recurrence relations. [10] concentrates on the study of hypergeomet-
ric class operators, leaving out the properties of hypergeometric class functions.

These lecture notes are to a large extent based on [9] and [10]. There are some
corrections and minor changes of conventions. There are also some additions. A sys-
tematic derivation of all integral representations from “wave packets” in higher di-
mensions seems to be new.

There are a number of topics related to the hypergeometric class equation that we
do not touch. Let us mention the question whether hypergeometric functions can be
expressed in terms of algebraic functions. This topic, in the context of .A-hypergeo-
metric functions was considered, e. g., in the interesting papers [5, 7].

We stick to a rather limited class of equations and functions (1)-(5). They have
a surprisingly rich structure, which often seems to be lost in more general classes.
Nevertheless, it is natural to ask how far one can generalize the ideas of these notes
to other equations and functions, such as higher hypergeometric functions, multivari-
able hypergeometric functions, Heun functions, g-hypergeometric functions, Painlevé
equations.

2 Hypergeometric class equations

In this short section, we fix our terminology concerning hypergeometric class equa-
tions and functions.
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2.1 Remarks on notation

We use 9,, for the operator of differentiation in the variable w. We will understand that
the operator 9,, acts on the whole expression on its right:

0, f (W)g(w) = 0,,(f(w)g(w)). (19)

If we want to restrict the action of 9,, to the term immediately to the right, we will write

f(w),,, or simply f'(w).
We use lhs and rhs as the abbreviations for the left-hand side and right-hand side.

2.2 Generalized hypergeometric series
Fora € Candj € N, we define the Pochhammer symbol
(@);=ala+1l)---(a+j-1).

For ay,...,a; € C, cy,...,¢, € C\{0,-1,-2,...}, we define the ,F,, generalized
hypergeometric series, or for brevity the ; F,, series:

O (@) (ak)jo

= . 20
& @y Gl 0

WFm(@p s as€q5 oo, Cpps W)
By the d’Alembert criterion,
(1) ifm+1 > k, the series (20) is convergent for w € C;
(2) if m+1 = k, the series (20) is convergent for |w| < 1;
(3) if m +1 < k, the series (20) is divergent, however, sometimes a certain function
can be naturally associated with (20).

The corresponding analytic function will be called the ; F,, function.
The zeroth-order term of the series (20) is 1. A different normalization of (20) is
often useful:
Fm(@gs oo Qs €y e o5 s W)
I(cy) - Tley)
R (al)j"'(ak)jwj
- z L(cy +j) - -T(cy + )i

Fmag, .., 605, Cps W) 2=

(21)

Jj=0

In (21), we do not have to restrict the values of ¢y, ..., ¢, € C.

2.3 Generalized hypergeometric equations
Theorem 2.1. The ,F,, function (20) solves the differential equation

(c; +woy,) - (¢ + WO, )0 F(ay,...,a15¢q, ..., Cps W)

= (a; + Wo,,) -+ (ay + WO, )F(ay, ..., ay;Cps - .y Cops W). (22)
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Proof. We check that both the lhs and rhs of (22) are equal to

a-qpF(ap+1,...,a,+1,¢q, ..., Cpps W). O

We will call (22) the , F,, equation. It has the order max(k, m + 1). Below we list all

«Fm functions with equations of the order at most 2.

The ,F, function or the Gauss hypergeometric function

S b
F(a,b;c;w) = z (‘:l)'r(zé) )nwn.

n=0

The series is convergent for |w| < 1, and it extends to a multivalued function on
a covering of C\{0, 1}. It is a solution of the Gauss hypergeometric equation or the
»F; equation

(w1 - W)aﬁ, +(c-(a+b+1)w)o, —ab)f(w) = 0.
The ,F; function or Kummer’s confluent function

ey . N @y g
F(a,c,w)—n;)n!(c)n .

The series is convergent for all w € C. It is a solution of Kummer’s confluent equa-
tion or the | F; equation

(W, + (c - w)d,, — a)f (w) = 0.

The (F, function

(e8] 1 n
F(s¢w) = Flew) :r;)mw |

The series is convergent for all w € C. It is a solution of the (F; equation (related
to the Bessel equation)

(wd? + cd,, - 1)f(w) = 0.

The ,F, function
For argw # 0, we define

F(a,b;—w) := Cllrgo F(a, b;c;cw).

It extends to an analytic function on the universal cover of C\{0} with a branch
point of an infinite order at 0. It has the following divergent but asymptotic ex-
pansion:

F(a,b;—w) ~ Z %wn, largw -m| < —¢€, € > 0.
n=0 °
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It is a solution of the , 7, equation

(wzafv +(-1+(a+b+1w)o, +ab)f(w) = 0.

By a simple transformation described in Subsection 8.10, it is equivalent to the

1F; equation.
— The F, function or the power function

Fl@a—w) =1-w)"=Y

n=0

It solves

((w-1)0,, — a)f(w) = 0.

— The (F, function or the exponential function

S 1
F(=—w)=¢" = Z —w"
= n

It solves

@y ~ DF (W) = 0.

2.4 Hypergeometric class equations

Following [40], equations of the form

(o(W)3Z, + T(W)d,, + n)f (W) = 0

where

0 is a polynomial of degree < 2,
T is a polynomial of degree <1,

n is a number,

v (@),

w'.

(23)

(24a)
(24b)
(24¢)

will be called hypergeometric class equations. Solutions of (23) will go under the name
of hypergeometric class functions. Operators o(w)aﬁ, +1(W)0,, + n with o, 1,17 satisfying

(24) will be called hypergeometric class operators.

Let us review basic classes of hypergeometric class equations. We will always as-
sume that o(w) # 0. Every class will be simplified by dividing by a constant and, except

for (32), by an affine change of the complex variable w.

The , 7, or Gauss hypergeometric equation

(w1 - w)afv +(c-(a+b+1w)o, —ab)f(w) = 0.
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The ,F, equation
(wzafv +(-1+ (1+a+b)w)o, +ab)f(w) = 0. (26)

The ; 7, or Kummer’s confluent equation

(W, + (c - w)d,, — a)f (w) = 0. @27)
The (7, equation
(waa, +co,, - Df(w) = 0. (28)
The Hermite equation
(32, - 2wa,, — 2a)f (w) = 0. 29)

Second-order Euler equation
(W?32, + bwd,, + a)f(w) = 0. (30)
First-order Euler equation for the derivative
(W, + cd,,)f(w) = 0. (€7))]
Second-order equation with constant coefficients
(6V2v +¢o,, +a)f(w) =0. (32

Note that the equations (30), (31) and (32) are elementary. The remaining ones
(25), (26), (27), (28) and (29) are the subject of these lecture notes. This is why they
are contained in the list (1)-(5) given at the beginning of these notes. (Actually, (26) is
not explicitly mentioned in this list, however, it is equivalent to (27), so that these two
equations are treated together.) This list contains also

The Gegenbauer equation
((1- wz)afv -(a+b+1)wo, - ab)f(w) =0, (33)

which can be reduced to a subclass of , 7, equations by a simple affine transforma-
tion. Its distinguishing property is the invariance with respect to the reflection. The
Gegenbauer equation has special properties, which justify its separate treatment.
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3 (Pseudo-)Euclidean spaces

In this section, we introduce basic terminology and notation related to Lie algebras
and groups acting on functions on R" or, more generally, on manifolds. Lie algebras
will be usually represented as first-order differential operators. Lie groups will typi-
cally act as point transformations times multipliers.

We will discuss various operators related to (pseudo-)orthogonal Lie algebras and
groups. In particular, we will introduce a convenient notation to describe their Cartan
algebras, root operators and Weyl groups. We will also discuss briefly the Laplacian
and the Casimir operator.

We will describe some special classes of harmonic functions—solutions of the
Laplace equation. Of particular importance will be solutions that at the same time
are eigenfunctions of the Cartan algebra. This construction will involve a contour in-
tegral, which can be viewed as a modification of the Fourier or Mellin transformation.
These solutions will be informally called wave packets.

Finally, in the last subsection we will show how to construct a harmonic function
in n-1 dimension from a harmonic function in n dimensions.

3.1 Basic notation

We will write R* for R\{0}, R, for ]0, co[ and R_ for ]-co, 0[. We write C* for C\{0}.

We will treat R" as a (real) subspace of C". If possible, we will often extend func-
tions from real domains to holomorphic functions on complex domains.

In the following two subsections, Q, Q;, Q, are open subsets of R", or more gener-
ally, manifolds.

Often it is advantageous to consider a similar formalism where Q, Q,, Q, are open
subsets of C", or more generally, complex manifolds. We will usually stick to the ter-
minology typical for the real case. The reader can easily translate it to the complex
picture, if needed.

3.2 Point transformations with multipliers

Leta : Q; — Q, be a diffeomorphism. The transport of functions by the map a will be
also denoted by a.! More precisely, for f € C*(Q,) we define af € C*(Q,) by

@)y) = f(a” ).
If m e C*(Q,), then we have a map ma : C*°(Q,) — C*°(Q,) given by

(maf)(y) == my)f (e (y)). (34)

Transformations of the form (34) will be called point transformations with a multiplier.

1 An alternative notation used often in mathematical literature for the transport by a is a,, or (a* L
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Clearly, transformations of the form (34) with Q = Q, = Q, and m everywhere
nonzero form a group.

3.3 First-order differential operators

A vector field X on Q will be identified with the differential operator
Xfy) =Y X0o,f(y), feC®Q)
i

where X! € C*®(Q),i=1,...,n. More generally, we will often use first-order differential
operators

(X + M) = Y X3 ¥) + M) 7). (35)

where M € C*(Q). Clearly, the set of operators of the form (35) is a Lie algebra.
Leta : Q; — Q, be a diffeomorphism. If X is a vector field on Q,, then a(X) is the
vector field on Q, defined as

a(X) == aXa .

3.4 Affine linear transformations

The general linear group is denoted GL(R™). It has a natural extension AGL(R") :=
R™ x GL(R™) called the affine general linear group. (w, a) € AGL(R") acts on R" by
R'sy—w+ay e R".

The permutation group S,, can be naturally identified with a subgroup of GL(R").
If m € S,, then

On the level of functions, we have

af (. Ly = FO™, Y™,

The Lie algebra gl(R") represented by vector fields on R" is spanned by y"ay,-.

The Lie algebra agl(R") := R" x gl(R") is spanned by gl(R") and by Oy

A special element of gl(R") is the generator of dilations, known also as the Euler
vector field,

n .
Ay =Y Yo (36)

We will often use the complex versions of the above groups, with R replaced
with C. We will write GL(n) and gl(n), where the choice of the field follows from the
context.
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3.5 (Pseudo-)orthogonal group

A pseudo-Euclidean space is R" equipped with a symmetric nondegenerate nxn matrix
8 = [g;]. g defines the scalar product of vectors x,y € R" and the square of a vector
x e R™

(xly) = Y x'ggy,  (xlx) = ) xigyd.
i ij
The matrix [gii ] will denote the inverse of (8]
We will denote by $""!(R) the sphere in R" of squared radius R € R:

S$"'(R):={y e R": (yly) = R}. 37)

We will write $"* := §"71(1).

Actually, $"! is the usual sphere only for the Euclidean signature. For non-
Euclidean spaces it is a hyperboloid. Usually we will keep a uniform notation for all
signatures. Occasionally, if we want to stress that $"lhasa specific signature, it will
be denoted $%P~!, where the signature of the ambient space is (g, p) (see (40)).

We also introduce the null quadric

Y12 §7(0)\{0}. (38)

The (pseudo-)orthogonal and the special (pseudo-)orthogonal group of g are de-
fined as

0(g) := {a € GL(n) : (aylax) = (ylx), y,x € R"},
SO(g) := {a € O(g) : deta = 1}.

We also have the affine (special) orthogonal group AO(g) = R" x «(g), ASO(g) :=
R" x SO(g).

Itis easy to see that the pseudo-orthogonal Lie algebra, represented by vector fields
on R", can be defined by

so(g) := {B € gl(n) : B{yly) = 0}.

Fori,j=1,...,n, define
k k
By = ) (gay 0y — 8" 0,).
k

{B;; : i < j} is a basis of so(g). Clearly, B;; = -Bj;; and B; = 0.

The affine pseudo-orthogonal Lie algebra aso(g) := R" x so(g) is spanned by i
and so(g).

We will often use the complex versions of the above groups and Lie algebras. In
the real formalism, we have to distinguish between various signatures of g—in the
complex formalism there is only one signature and we can drop the prefix pseudo.
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3.6 Invariant operators

Consider a pseudo-Euclidean space R". We define the Laplacian and the Casimir op-
erator

n

= Y 80,9y,
]:

n

z ik ]lB Bkl

:
l\)lr—l

The above definitions do not depend on the choice of a basis. A, commutes with AO(g)
and aso(g). C,, commutes with O(g) and so(g).
Note the identity

YA, = A2+ (n=2)A, +Cp, (39)

where A, is defined in (36).

3.7 Orthonormal coordinates

Suppose that g + p = n. Every scalar product of signature (g, p) can be brought to the
form

a ., 9w
(Y|J’>=—Zyi + Z Yj- (40)
i=1 j=q+1
so(g) has a basis consisting of
B = —yiayi +y;9,, 1<i<j<g (41a)
B; = y,.ayj +Y;0y., 1<i<q, g<j<m (41b)
By = y:d,, - Y0, g<i<j<n (41c)

The Laplacian and the Casimir operator are

==Y o+ )9, (42)

1<i<q g<j<n

2 2 2
> Bi+ ) B;- ) B (43)
1<i<j<q g<i<j<n 1<i<q,

g<j<n

We will rarely use orthonormal coordinates.

In the context of the signature (g, p), the standard notation for the orthogonal
groups/Lie algebras is O(q,p), AO(q,p), so(q,p), aso(q,p). We will however often
use the notation O(n), AO(n), so(n), aso(n), without specifying the signature of the
quadratic form, and even allowing for an arbitrary choice of the field (R or C).
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3.8 Split coordinates

Suppose that 2m = n. (m, m) will be called the split signature. If the scalar product has
such a signature, we can find coordinates such that

oly)y =Y 2y ;. (44)
i=1

We will say that (44) is a scalar product in split coordinates.
so(2m) has a basis consisting of

Nl = B*ll = _y*l‘ay,i + yiayi, j = 1, R ( (X (45a)

Bj =y 0, —y 0, 1<l <ljl<m (45b)

The subalgebra of so(2m) spanned by (45a) is maximal commutative. It is called
the Cartan algebra of so(2m). (45b) are its root operators. They satisfy

[Nk’Bl]] = —(Sgn(i)(sk,m + Sgn(})ﬁk’m)BU

The Laplacian and the Casimir operator are

Azm = Zzayﬂ-ayi’ (46)
i=1
L 2
Cm= ) BiBij-)N. (47)
1<lil<ljl<m i=1

Suppose now that 2m+1 = n. In this case, (m, m+1) will be called the split signature.
Every scalar product of such signature can be brought to the form

m
lyy =yg+ Y 2y (48)
i=1

We will say that (48) is a scalar product in split coordinates.
so(2m + 1) has then a basis consisting of the above described basis of so(2m) and

Bo; =Yody, =Yy, il =1....m. (49)
The additional roots satisfy
[Ny, Boj] = —sgn(j)6yj Bo;- (50)

The subalgebra spanned by (45a) is still maximal commutative in so(2m+1). It is called
a Cartan algebra of so(2m + 1).
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We have
5 m
Doyt = Oy + )20, 3, (51)
i=1
m m )
Comi1 = ) BoiBoi+ ) ByBij— ) Ni. (52)
lil=1 1<fil<[jl<m i-1

In the real case, we will most often consider the split signature, both in even and
odd dimensions. In both real and complex cases, we will usually prefer split coordi-
nates. We will often write (44) and (48) in the form

ol =Y v (53)

lil<m

whereitisunderstood thati € {-m,...,-1,1,...,m}intheevencaseandi € {-m,...,-1,
0,1,...,m} in the odd case.

3.9 Weyl group

In this subsection, we introduce a certain finite subgroup of O(n), which will be called
the Weyl group. We will also introduce a notation for elements of these groups. The
reader is referred to Subsections 5.1 and 6.1, for examples of application of this nota-
tion. We will assume that the signature is split and split coordinates have been chosen.

Consider first dimension 2m. Permutations of {-1,...,—-m}u{l, ..., m} that preserve
the pairs {-1,1},...{-m, m} define elements of O(2m). They form a group that we will
denote D,,,. It is isomorphic to Z5' x Sp,. It is the Weyl group of O(2m).

The flip interchanging —i, i will be denoted 7;. The flips 7;, withi = 1,..., m, gener-
ate a subgroup of D,,, isomorphic to Z'.

To every m € S,, there corresponds an element of D,, denoted o, that permutes
pairs (—i,i). We have

Of V1 Vi s YemoYm) = FVnp Vo o> Vry o V- (54)

Lete = (e1,....€,) and €y, ...,€, € {1,-1}. We will write err as the shorthand for
€171y, . . ., €71, We will use the notation

Ocn =0, [] 7;- (55)
=1

We have

-1 . 1
OciBijOen = Benens  OenNjO, €N, .

ij ] j%n = &V

Bereitgestellt von | De Gruyter / TCS
Angemeldet
Heruntergeladen am | 10.02.20 14:06



24 — | Derezifiski

Using R*™! = ReR*™, we embed D,,, in 0(2m+1). We also introduce 7, € 0(2m+1)
given by

T()f(y())y—])y])n-)y—m)ym) 5:f(_)/o>y71>)’1)--~»y7m>ym)~ (56)

Clearly, 7, commutes with D,,. The group B, is defined as the group generated by D,,,
and 7. It is isomorphic to Z, x ZJ' % S,,. It is the Weyl group of O(2m + 1).
We set

Ten = To0en-
We have

-1 -1 -1
TEITBOjTen = _BO,Ciﬂi’ TElTijTeﬂ = Beini’ejnj’ TGHN'T = €'Nn .

3.10 Harmonic functions

Suppose that R" is equipped with a scalar product. We say that a function F on R" is
harmonic if

A.F =0. (57)
Proposition 3.1. Lete,,...¢e, € R" satisfy
(ei|e]'> = 0, 1 < 1,] < k

In other words, assume that e, ... ., e, span an isotropic subspace of R". Let f be a func-
tion of k variables. Then

F(z) = f({el2),..., (elz))
is harmonic.

For instance, consider R" with a split scalar product, wheren = 2morn = 2m + 1.
Then any function f(y;, ..., ¥,,) is harmonic, for instance,

Fopoa, = V1 Vs (58)
which in addition satisfies
NjFal,...am = ajFal,...am' (59)

Harmonic functions satisfying in addition the eigenvalue equations (59) will play
an important role in our approach. Unfortunately, functions of the form (58) consti-
tute a rather narrow class. We need more general harmonic functions, which we will
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call wave packets. They are obtained by smearing a rotated (58) with an appropriate
weight, so that it is an eigenfunction of Cartan operators. This construction will be ex-
plained in the Subsections 3.11-3.13. It is essentially a version of the Fourier (or Mellin)
transformation, possibly with a deformed complex contour of integration.

Note that the aim of Subsections 3.11 and 3.12 is to provide motivation, based on
the concept of the Fourier transformation, for Subsection 3.13, which contains the con-
struction that will be used in what follows.

3.11 Eigenfunctions of angular momentum I
Suppose that R" = R? @ R""?, where we write z = (x,y,z') € R" and
Y2 y2y =X +y* + ('),
Set
Ny = —i(xd, - y3,).

Let m € Z. Consider a function f(x,y,z'). Then

2m
Fo(x,y,2") = %r J f(cos ¢x — sin ¢y, sin ¢x + cos ¢y, z')e ™ dep, (60)
0
satisfies  N;F,(x,y,z') = mF,(x,y,z"). (61)

Note that if f is harmonic, then so is F,,. This construction is essentially the Fourier
transformation.
Introduce complex coordinates
1
V2
We will write f(z_,21,2') = f(6,y,2'), F(z_1,21,2') = F(x,y,2"). The operator N; takes
the familiar form

Zy = —=(x +iy). (62)

Ny =-z.,0, +20,, (63)
and the metric becomes
(zp21,2' 20,20, 2") = 2242 + {Z|2). (64)
Then (60) and (61) can be rewritten as

1 _ m—
Fo(z_1,2,2') = > Jf(-r 'z, 12,2 )t d, (65)
y

N\F,(z_1,2,2") = mF,(z_1,2,,2"), (66)

where y is the closed contour [0,277][ > ¢ — T = el?,
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3.12 Eigenfunctions of angular momentum Il

We again consider R® = R? @ R"2, but we change the signature of the metric. We
assume that the scalar product is given by

(zop 22|22, 2"y = 2202 + {2|2"). (67)

We start from a function f(z_;,2;,z"). We would like to construct an eigenfunction of
N; with a generic eigenvalue a, and not only with integer eigenvalues as (65). To do
this, we repeat a similar procedure as in the previous subsection. Now, however, we
need to integrate over a half-line, so we need conditions at the ends: we assume that

f(r 'z, 12,2 )Ty = 0. (68)

We set

17, .
Foi= 5 Jf(‘r 2 12,2 )T N dr. (69)
0

Then, with N; given by (63),

NiFy(z_1,21,2') = aFy(z_1, 2, 2). (70)
Indeed,
o.f(17'2_y,12,2 )17
= —af (172,12, 2" )T
1220 f (72,120, 2" )T + 2005 (172, 120, 2" )T
= (-a-2.10, +20,)f (172,120, 2" )T
Hence
0
0= Zim J dro.f(17'z_1, 12,2 )T = (—~a + N,)F,. (71)
0

Note that F,, is the Mellin transform of 7 — f(77'z_;,7z,,2). If f is harmonic, then
sois F,.

3.13 Eigenfunctions of angular momentum Il

Assume now that z_;,z;,z’" are complex variables and f is holomorphic. Then we can
formulate a result that includes (61) and (70), allowing for a greater flexibility of the
choice of the contour of integration.
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Proposition 3.2. Suppose that]0,1[ > s R 7(S) is a contour on the Riemann surface of

T f(172, 12,2 )17

that satisfies
f(r7lz,12,2") 1" |T(1) 0. (72)
-1, T2, 7(0) =
Then
1 -1 —a-1
Foi= o Jf(r 21,712,z )T % dr (73)
y
solves

N,F, = aF,.

Proof. We repeat the arguments of the previous subsection, where we replace [0, o[
with y. O

3.14 Dimensional reduction

In this subsection, we describe how to construct harmonic functions in n — 1 dimen-
sions out of a harmonic function in n dimensions.
Suppose that R" is equipped with the scalar product

(z.1.20.2 |z ,20,2"), = 2242+ (2|2,
As usual, we write

Nl = _Z_laz_l + Zlazl, (74)
Ay =20, 3, +A, 5. (75)

Introduce new variables and the Laplacian in n-1 dimensions.

=12z_;z;, \j7 (76)

An—l = azo + An_z. (77)
In the new variables,
N; =uo,, (78)
> 1 1 2
An = azo + Z—Oazo - %(uau) + An_z. (79)
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Consequently,
inz =N -1 N+ t)ea (80)
ZO nZo ——% 1—5 1+§ + 0,1
Therefore, if we set
_1
F.(zoou,2') = ui%z0 f,(20,2')s (81)
then
1
NiF, = iiFr’ (82)
1o
22U IAF, = A of,. (83)

Hence, the n — 1-dimensional Laplace equation A,_;f = 0 is essentially equivalent to

the n-dimensional Laplace equation A, F = O restricted to the eigenspace of N; = J_r%.

4 Conformal invariance of the Laplacian

Conformal manifolds are manifolds equipped with a conformal structure—a pseudo-
Euclidean metric defined up to a positive multiplier. Conformal transformations are
transformations that preserve the conformal structure.

The main objects of this section are projective null quadrics. They possess a natural
conformal structure with an exceptionally large group of conformal transformations.
In fact, on the n+2 dimensional pseudo-Euclidean ambient space we have the obvious
action of the pseudo-orthogonal Lie algebra and group. This action is inherited by the
n + 1 dimensional null quadric V, and then by its n-dimensional projectivization ).
One can view Y as the base of the line bundle V — Y. By choosing a section y of
this bundle, we can equip ) with a pseudo-Riemannian structure. Choosing various
sections defines metrics that differ only by a positive multiple—thus ) has a natural
conformal structure. If the signature of the ambient space is (g + 1,p + 1), then the
signature of Y is (g, p).

We discuss a few examples of pseudo-Riemannian manifolds conformally equiv-
alent to ) or to its open dense subset. The main example is the flat pseudo-Euclidean
space. Another example is the product of two spheres $7 x §”, which is conformally
equivalent to the entire ) of signature (g, p).

Especially simple and important are the low dimensional cases: in 1 dimension
Y = $' and in 2 dimensions Y = S$! x S'. One should however remark that the di-
mensions 1 and 2 are somewhat special—in these dimensions, the full conformal Lie
algebra is infinite dimensional, and the above construction gives only its subalgebra.
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Conformal transformations are generalized symmetries of the Laplacian. One can
see this with help of a beautiful argument that goes back to Dirac. Its first step is the
construction of a certain geometrically defined operator denoted AS, ,, that transforms
functions on V homogeneous of degree 1 — g into functions homogeneous of degree
-1- g After fixing a section y of the line bundle V — Y, we can identify the somewhat
abstract operator Ay, , with a concrete operator A’ , acting on functions on y()). This
operator turns out to be the Yamabe Laplace—Beltrami operator for the corresponding
pseudo-Riemannian structure.

On the n + 2-dimensional ambient space the Laplacian A,,, obviously commutes
with the pseudo-orthogonal Lie algebra and group. On the level of y()), this commu-
tation becomes a transmutation of Afl ., With two different representations—one cor-
responding to the degree 1 - g, the other corresponding to the degree -1 - g

At the end of this section, we consider in more detail the conformal action of the
pseudo-orthogonal Lie algebra and group corresponding to the degree of homogene-
ity n on the flat pseudo-Euclidean space. In particular, we compute the representa-
tions for all elements of the pseudo-orthogonal Lie algebra. For the pseudo-orthogonal
group, we compute the representations of Weyl symmetries.

4.1 Pseudo-Riemannian manifolds

We say that a manifold Y is pseudo-Riemannian if it is equipped with a nondegenerate
symmetric covariant 2-tensor

Yoy gy =I[g;»]
called the metric tensor. For any vector field Y, it defines a function g(Y,Y) € C*()):
Yoy g, Y)) = gNY' MY ).

Let a be a diffeomorphism of ). As is well known, the tensor g can be transported
by a. More precisely, a* (g) is defined by

a’ (@)Y, Y) = g(a(Y),a(Y)),

where Y is an arbitrary vector field. We say that « is isometric if a*g = g.
Let X be a vector field. The Lie derivative in the direction of X can be applied to
the tensor g. More precisely, Lyg is defined by

(EXg)(Yr Y) = g([X> Y]: Y) + g(Y: [X) Y])
We say that a vector field X is Killing if Lxg = 0.
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4.2 Conformal manifolds

We say that the metric tensor g, is conformally equivalent to g if there exists a positive
function m € C*°(Y) such that

my)g(y) = g1(y).

Clearly, the conformal equivalence is an equivalence relation in the set of metric ten-
sors. We say that a manifold ) is equipped with a conformal structure, if it is equipped
with an equivalence class of conformally equivalent metric tensors.

We say that a diffeomorphism a is conformal if for some metric tensor g in the
conformal class of ), a* g is conformally equivalent to g. Clearly, this is equivalent to
saying that for all g in the conformal class of ), a* g is conformally equivalent to g.

We say that a vector field X is conformal Killing if for any metric tensors from the
conformal class of ) there exists M € C*°()) such that

Lxg = Mg. (84)

Clearly, if (84) is true for one metric tensor g from the conformal class of ), it is true
for all metric tensors conformally equivalent to g.

4.3 Projective null quadric

Consider a pseudo-Euclidean vector space (R", g) of signature (g + 1,p + 1), which
we will call the ambient space. Recall that

V= [z e R™: (2]2) = 0, 2 # 0},

is the null quadric. For simplicity, we will often write V for V"1,

The scaling, that is the action of R*, preserves V. Let )V := V/R* be the projective
null quadric. We obtain a line bundle V — ) with the base ) and the fiber R*.

Let ); be an open subset of ) and V; be the corresponding open subset of V. Let

Y2y e v €y,

be a section of the bundle V; — ), that is a smooth map satisfying y = R*y;(y). Let 8y,
be the metric tensor g restricted to y;();) transported to ;.
It is easy to prove the following fact.

Proposition 4.1. Let y;, i = 1,2, be sections of V; — Y;. Then 8,, are metrics on Y; of
signature (q,p). The metrics g, and g, restricted to Y, N Y, are conformally equivalent.

Proposition 4.1 equips ) with a conformal structure.
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Choosing a section in the bundle V — ) endows ) with the structure of a pseudo-
Riemannian manifold. For some special sections, we obtain in particular various sym-
metric spaces together with an explicit description of their conformal structure. In fol-
lowing subsections, we present a few examples of this construction.

Instead of Y one can consider Y := V/R +- Weobtainabundley — Y with fibre R .
which has similar properties as the bundle V — Y. It is a double covering of )V, which
means that we have a canonical 2 — 1 surjection Y — .

Let y be asection of V — Y. Everyy € Y equals R*y(y), and hence it is the disjoint
union of , := R,y(y) and j_ := R_y(y). Clearly, {y,,y_} ¢ Y is the preimage of y under
the canonical covering. Let us set

Y0 =yy), yO-) =-y®). (85)

Then yis a section of the bundle V — Y. With help of y we can equip ) with a metric 8y-
Obviously, if Y is equipped with the metric g,, the canonical surjection Yy - Vis
isometric.

We would like to treat ) as the principal object, since it has a direct generalization
to the complex case. However, for some purposes ) is preferable.

4.4 Projective null quadric as a compactification of a
pseudo-Euclidean space

Consider a pseudo-Euclidean space (R",g,) of signature (g,p) embedded in the
pseudo-Euclidean space (R, 8nsy) Of signature (g + 1,p + 1). We assume that the
square of a vector (z',z_,z,) € R™? = R" @ R is

(' z_z,|z" z_,2,),,, = (Z'|e'),, + 2z,2_.
Set
Vo ={(z,z_,2,) e V:z_#0}, Vy:=V,/R"

Y, is dense and open in ).
We have a bijection and a section

y y
Voo R*| 1 oy e 1 €V, (86)
_ Y m _YWn
2 R" 2

Thus R" is identified with ). The metric on ), given by the above section coincides
with the original metric on R". We have thus embedded R" with its conformal structure
as a dense open subset of ).
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4.5 Projective null quadric as a sphere/compactification of a
hyperboloid

Consider a Euclidean space (R™', 8n+1) embedded in a pseudo-Euclidean space
(R™?, 8n.) Of signature (1,n + 1). We assume that the square of a vector (z',z,) €
]Rn+1 &R = ]Rn+2 is

<Z,,ZOlZI,Zo>n+2 = <ZI|ZI>n+1 _Z(z)'
Recall that
§" = w e ™ (wlw) = 1)

is the unit sphere of dimension n.
We have a bijection and a section

yalRX[{f]HyH[w]ev. (87)

Thus $" is identified with . The metric on ) given by the above section coincides with
the usual metric on S".

Y is in this case simply the disjoint sum of two copies of $".

The above construction can be repeated with minor changes for a general sig-
nature. Indeed, let the signature of (R}, 8n+1) be (g,p + 1), so that the signature of
(R"™2,g,.,)is (g +1,p +1). Set

VO = {(Z,,Zo) € V :ZO :/: 0}, y() = Vo/IRX.
We have then the bijection and section

Vo > R* [(;)] o %} — [(;)} € V. (88)

SIP

Note that now instead of the unit Euclidean sphere we have the unit hyperboloid of
signature (g, p), which has been identified with }));, a dense open subset of V.

4.6 Projective null quadric as the Cartesian product of spheres

Consider now the space R™" of signature (g + 1,p + 1). The square of a vector (f,X) =
(to>--->tp Xos - - > Xp) is defined as

r I '——2—.0.— 2 2 e 2
(£, X|t,X) = -t tg+Xo+ - +X, (89)
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Note that $7 x $? is contained in V. It is easy to see that the map
V3R@,d) — @B,d) € $TxS$° cV, (90)
is a double covering. Indeed, we easily see that the map is onto and
R*(B, @) = R*(-p, -@).
Thus
V=81x87/7, Y=5TxS"

The map (90) can be interpreted as a section of V — Y. The corresponding metric
tensor on ) is minus the standard metric tensor on $? plus the standard metric tensor
on $P. Its signature is (g, p).

Again, similarly as in the previous subsection, the above construction can be gen-
eralized. Indeed, replace (89) with

227 3 2 2 2 2
(GX|EX) = —tg ==ty +E g4+
2 2 2 2
HXg Xy — Xy = Xy L

We then obtain a map
V3 R@,d) — (B,d) € PPN x §%2P2 c p, (91)

Unlike (90), the map (91) is in general not onto—it doubly covers only an open dense
subset of V.

4.7 Dimensionn =1

Consider now the dimension n = 1 in more detail. The ambient space is R> with the
split scalar product

2
(zlz) =z + 2z_4z,,.

The 1-dimensional projective quadric is isomorphic to $! or, what is the same, the
1-dimensional projective space:

V' =§' = Ru{oo} = P'R.
Indeed, it is easy to see that
¢ : RU{oo} — Yl
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defined by
1 2 X
o(s) = (s, 1,—55 >1R , SeER;
¢p(00) = (1,0,0)R*

is a homeomorphism.
The group O(1,2) acts on PR by homographies (Mdbius transformations).
The Lie algebra so(1, 2) is spanned by

By, Bo—1> Ny,
with the commutation relations

[BO,l’BO,—l] = le
[Bo,l»Nl] = Bo,1>
[BO,—l’Nl] = _30,71-

Appying (52) with m = 1, we obtain its Casimir operator:

C3 = 2BO’1B0)71 - le - Nl (928)
= 2By 1By, — Ni + Ny. (92b)

4.8 Dimensionn =2

Consider finally the dimension n = 2 in the signature (1,1). The ambient space is R*
with the split scalar product

(2|z) = 2z_42,1 + 22 52,,.
The 2-dimensional projective quadric is isomorphic to the product of two circles:
V=~ P'RxP'R.
Indeed, define
¢ : (RU {oo}) x (RU {oo}) — )?
by

P(t,s) = (~ts,1,t,5)R", (93a)
¢P(0,s) := (-5,0,1,0)R*, (93b)
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¢(t,00) := (-t,0,0, R, (93c)
¢(0c0, 00) := (-1,0,0,0)R>, (93d)

where t, s € R. We easily check that ¢ is a homeomorphism. In fact, rewriting (93a) as

~ =
| »

N—
=
X

o(t,s) = (—s, ,1

|
/
&
| —
|~
p—
N———
=
X

Il
/

=
&l
W | =
~ =
~—

=

%

we see the continuity of ¢ at (93b), (93c), respectively, (93d).
The Lie algebra so(2, 2) is spanned by

Ny, Na, By, By 3, B_yp, By
Applying (52) with m = 2, we obtain its Casimir operator:
2 a2
Cy=2B1yB 4 5 +2B; 3B 15— Ny - N, - 2N;.

As is well known, so(2,2) decomposes into a direct sum of two copies of so(1, 2).
Concretely,

50(2,2) =s0"(1,2) ®s0 (1,2),
where so* (1, 2), respectively, so™ (1, 2), both isomorphic to so(1, 2), are spanned by
B1,2’ B_l’_z, Nl + Nz; respectively, Bl)_z, B—1,2’ Nl - Nz.

They have the commutation relations

[12 B—l,—Z] _ N +N, (B, B—I,Z] _ N -N,
V22l 2 L2227

N, + N, B—l,—Z] _ By [N -N, B—l,z] _ By
2 T v2 o2 L2 T2l V2
EECH IR PR W
2 'v2l vz L2 vzl T

The corresponding Casimir operators are

1 1 1
C; =By,By ;- Z(Nl +N,)° - §N1 - §N2

1 1 1
=B ,Biy - Z(Nl +N,)* + §N1 + §N2’
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_ 1 1 1
C3 =By ,B 4, - Z(Nl - Nz)z - 5N1 + ENz
1 1 1

=B_,B;_»— ~(N; - N,)*>+ =N, — =N,.
-1,2DP1,-2 4( 1 ) +2 175
Thus

C, =205 +2C5.

In the enveloping algebra of so(2,2), the operators C; and C; are distinct. They
satisfy a(C_) = C, for a € 0(2,2)\SO(2, 2), for instance fora = 7;,i = 1, 2.

However, inside the associative algebra of differential operators on R* we have
the identity

BB, 5 —B_1,B; > =NiN, + Nj,
which implies
=G

inside this algebra. Therefore, represented in the algebra of differential operators we
have

Cy = 4B1,B_1 5 — (Ny + N,)* - 2N; - 2N, (94a)
=4B_y »By, - (N; + N,)> + 2N, + 2N, (94b)
= 4B, ,B_1; — (N; - Ny)* = 2N; + 2N, (94c)
=4B_15By - (N; - N,)* + 2N, - 2N,. (94d)

4.9 Conformal invariance of the projective null quadric

Obviously, O(n+2) and so(n+2) preserve V. They commute with the scaling (the action
of R*). Therefore, we obtain the action on ) = V/R*, which we denote as follows:

so(n+2)>Bw— B°, (95a)
on+2)>ama°. (95b)

Clearly, the vector fields B® are conformal Killing and the diffeomorphisms a® are con-
formal.

Let n € C. We define AZ(V) to be the set of smooth functions on V (positively)
homogeneous of degree 7, that is, satisfying

fy)=t"f(y), t>0, yeV.

Clearly, B € so(n + 2) and a € O(n + 2) preserve AZ(V). We will denote by
B, respectively, a®” the restriction of B, respectively, a to A”(V). Thus we have
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representations

so(n+2) > B+ B, (96a)
on+2)>am— a®m, (96b)
acting on AT()).
Clearly, A?(V) can be identified with C*°()’). Moreover, (95a), respectively, (95b)
coincide with (96a), respectively, (96b) for = 0.

If n € Z, one can use another concept of homogeneity. We define A"(V) to be the
set of smooth functions on V satisfying

fy)=t'f(y), t+0, yeV.

The properties of AT(V) are similar to AZ(V), except that A°(V) can be identified with
C*).

4.10 Laplacian on homogeneous functions

The following theorem according to Eastwood [12] goes back to Dirac [11]. We find it
curious because it allows in some situations to restrict a second-order differential op-
erator to a submanifold.

Theorem 4.2. Let Q ¢ R™? be an open conical set. Let K € C*°(Q) be homogeneous of
degree 1 - 3 such that

I<|Vﬂﬂ = O
Then
Ani2Klyng = 0.

Before we give two proofs of this theorem, let us describe some of its conse-
quences. .

Letk € Ai_f (V). We can always find Q, a conical neighborhood of V, and K € A(Q)
homogeneous of degree 1 — g such that

k = Klv
Note that A,,,,K is homogeneous of degree -1 - . We set

AS k= ApoKly. (97)

n+2

By Theorem 4.2, the above definition (97) does not depend on the choice of Q and K.
We have thus defined a map

<&
An+2

AT ) - AR ). (98)
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Obviously,

BA,.» =10p0B, Beso(n+2), (99a)
Ay =Bppp, € O(n+2). (99Db)

Restricting (99) to A17 (V), we obtain

B®" 2A3+z = A§+zB°1 , Beso(n+2), (100a)
A A§+2 - An+2a g’ a € O(n + 2)~ (100b)

1st proof of Theorem 4.2. We use the decomposition R*"? = R" @ R? described in Sub-
section 4.4, with the distinguished coordinates denoted z_, z,. We denote the square
of a vector, the Laplacian, the Casimir, respectively, the generator of dilations on R"*2
by R,..2, Anias Cyos YESPECtively, A,,,,. Similarly, we denote the square of a vector, the
Laplacian, the Casimir, respectively, the generator of dilations on R" by R,,, A, Cp,
respectively, A,.. We will also write

Ny =20, —z.0, .
We have
Rpya=Ry+2z,2,
Dppp =0, +20; 0, ,
Ap=A,+2,0, +z.0; .

The following identity is a consequence of (39):

RpByia = Rpbp + Ry - 2Z+Z—)2az+ 0,

2

n n
e, +(A,-1+2) -(2 -1
”+<" +2> (2 )

+Rpy220, 0, — (2,0, +2z.0, ) +N
= Rn+2262+az,

2

m+l

+ (An -1+ g - 2,0, —z_az_><An+2 -1+ g)

2
—(%—1) +Cp+ N2 L. (101)

5 - 1)? is a scalar. C, and N2, are polynomials in elements of so(n + 2), which are
tangent to V. Therefore, all operators in the last lme of (101) can be restricted to V. The
operator A, - 1+ vanishes on functions in A - (Q). The operator Ry, ,20, 0, is zero
when restricted to V (because R,,, vanishes on V).

Therefore, if K is homogeneous of degree 1 3 vanishing on V, then R,A,,,,K van-
ishes on V. We are free to choose different coordinates which give different R,,’s. There-
fore, we can conclude that A,,,,K vanishes on V. O
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Corollary 4.3. Using the operator A, ,, we can write

2
n 0,15 01-512
RS, = —(5 —1) +Cp 2+ (N 7)™ (102)

Second proof of Theorem 4.2. We use the decomposition R*"? = R"™"! @ R with the dis-
tinguished variable denoted by z,, as in Subsection 4.5. We denote the square of a
vector, the Laplacian, the Casimir, respectively, the generator of dilations on R™! by
Ryi15 Apiqs Cnyts Yespectively, A, ;. We have

2
Ry =Ry + 20>
Apyy =Apyy + Zoa >

An+2 - n+1 + az
We have the following identity:

RoBniz = RyaBniy + (Roya - Z(%)aﬁo
2
n-1 1
:Cn+1+<An+1+T> _<T>
+ Rn+2a <Zoaz > < )
n+2a + ( n+l1 + >< n+2 + )

- (5 ~1)2 (103)

NI =

Then we argue similarly as in the first proof. O

Corollary 4.4. Using the operator A,,, we can write

n n o,1-3
Rn+1An+2 _< 5 - 1) 5 + Cn+1 E (104)

4.11 Fixing a section

For nonzero 7, in order to identify functions from AZ(V) with functions on ) we need
to fix a section of the line bundle V — . Let us describe this in detail.

Let V, be an open homogeneous subset of V and ), := V,/R,. Consider a section
Y : Yo — Vo. We then have the obvious identification ¥ : A1(V,) — C®(J,): for
k € AT(V,) we set

W) y) = k(y®)), vy €. (105)
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The map y"" is bijective and we can introduce its inverse, denoted ¢"", defined
forany f € C®(Y,) by

(") (syy)) =sf(y), seR,, ye,. (106)

Let B € so(n +2) and @ € O(n + 2). As usual, B and «a are interpreted as transfor-
mations acting on functions on R**2. Both B and a preserve A'l (Vp)- Therefore, we can
define

BY = Y1 BpH N, (107a)
A" = Y, (107b)
B is a first-order differential operator on J,. a”" maps C*(¥, n (@°)}(,)) onto
COOO)O n ao(jjo))-
It is easy to see that for any B € so(n +2) and a € O(n + 2) there exist Mg € C*(J,)
and m, € C*(Y, na®(),)) such that

Bf(y) = Bf(y) + nMp®)f 1), (108a)
a®"f(y) = myy)a°f ). (108b)
We define also
Ny =9 AP (109)
This is a second-order differential operator on ). It satisfies
B"7ia =N B":, Beso(n+2), (110a)
ay”l’%Asz = Afﬁzay’l’g, acO0mn+2). (110b)

Note that for even n the numbers +1 - g are integers. Therefore, I (V) are well-

defined. In the above construction, we can then use ) instead of its double cover ).
We also do not have problems in the complex case.
For odd n, the numbers +1 — g are not integers, and so A2 (V) are ill defined.

Therefore, we have to use AflfE (V) and Y.

4.12 Conformalinvariance of the flat Laplacian

In this subsection, we illustrate the somewhat abstract theory of the previous subsec-
tions with the example of the flat section described in (86). Recall that the flat section
identifies an open subset of Y with R". Therefore, we obtain an action of so(n +2) and
O(n + 2) on R". As a result, we will obtain the invariance of the Laplacian on the flat
pseudo-Euclidean space with respect to conformal transformations. The results of this
subsection will be needed for our discussion of symmetries of the heat equation.

We will use the notation of (107a) and (107b), where instead of y we write “f1”, for
the flat section. We will describe conformal symmetries on two levels:
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(@) the ambient space R™"?
(b) the space R".

We will use the split coordinates, that is, z € R*? and y € R" have the square

(z|z) = z z_zj, (111a)
lilsm+1

oy =D v (111b)
ljilsm

As arule, if a given operator does not depend on 7, we omit the subscript .
Derivation of all the following identities will be sketched in Subsection 4.13.

Cartan algebra of so(n + 2)
Cartan operators of so(n),i=1,...,m:

N;=-z_0,  +29,, (112a)
N = ~Y_i0y  + Y0y, (112b)
Generator of dilations:
Np1 = ~Z_m10; | +Zmia0;, > (113a)
Nolhi= Y yidy, -n=Ay-n. (113b)
lil<m
Root operators
Roots of so(n), |i| < |j| < m:
Bij=z0, -2z 0,, (114a)
By = y_id,, — y_jy,- (114b)
Generators of translations, |j| < m:
Byy1j =210y — 20, > (115a)
By =9, (115b)
Generators of special conformal transformations, |j| < m:
B y1j = Zmi10y — 20, > (116a)
BY =S 03, v Y vidy -y (116b)

lil<m
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Weyl symmetries

We will write K for a function on R"" and f for a function on R". We only give some

typical elements that generate the whole Weyl group.
Reflection in the Oth coordinate (for odd n):

oK (zg,...) = K(-zg,...),
T/ Wos--) = F(-Yor. ).
Flips,j=1,...,m:
TK(....252) . s Z 1 Zme)
=K(....zz .. Z_m_15Zma1)>
fl

T]-f(...,y_j,yj,...) :f(...y]-,y_]-,...).

Inversion:

K (5 Zom1:Zm0) = Koo 2 Zom)s

2

M f(y) = <—M>nf< )

o

Permutations, 7 € S,

0.K(....2_5,2j,. ... 21, Zims1)

=K(... 2o 2y 2 m-1>Zma1)s

o,f}f(...,y_j,yj,...) :f(...y_,,j,y,,l_,...).
Special conformal transformations, j = 1,...,m:

OGimyK(Z 121020525 21, Zim1)

=K(z_1,21 - > Zome1Zmat> - -+ 2 Zj)s

fl,
O (VS VRS S 7N

. <)3 no 1 gy )
TNy Y5 Yoo 2

Laplacian

Apyy = Z aziaz,,»’

lilcm+1

fl
A,y = Z 9,0, , = Ay

lil<m

(117a)

(117b)

(118a)

(118b)

(119a)

(119b)

(120a)

(120b)

(121a)

(121b)

(122a)

(122b)
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We have the representations on functions on R":

so(n+2) > B BM, (123a)
On+2) > a— a™. (123b)

They yield generalized symmetries:

g5 A, =A, B, Beson+2), (124a)
aﬂ)ijAn - Anaﬂ’%", aeOn+2). (124Db)

4.13 Computations

Below we sketch explicit computations that lead to the formulas from the previous
subsection. Consider R" x R* x R (defined by z_,,,_, # 0), which is an open dense
subset of R™*?. Clearly, V, is contained in R" x R* x R.

We will write AT(R" x R* x R) for the space of functions homogeneous of degree n
on R" x R* x R.

Instead of using the maps ¢ﬂ”7 and ll)ﬂ’” ,as in (106) and (105), we will prefer @77 ;
C®(R") — AR x R* x R) and ¥ : AT(R" x R x R) — C®(R") defined below.

For K € AT(R" x R* x R), we define YK ¢ C®°(R") by

(YK (y) = K(y, 1,—@), y e R".

Letf € C*°(R"). Then there exists a unique function in A"(R"xR* xR) that extends
f and does not depend on z,,,;. It is given by

z
(@Y (2,2 10 Zma1) = z?m71f<z > zeR"

-m-1
The map ¥ is a left inverse of ®™1:
yhph =,
where ( denotes the identity. Clearly,

o™f,, = ¢™f,
WK = YUKl ).

Moreover, functions in AT(R" x R* x R) restricted to V, are in A"(V,). Therefore,

B = ¢1ppi B ¢ so(R™?),
o™ =yt o e O(R™?).
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(Note that a, B preserve AT(R" x R* x RR).) Note also that

Al =wlhip o=,

n+2 =

In practice, the above idea can be implemented by the following change of coor-
dinates on R™"%:

Z; .
yi = > |l| S ms
Z_m-1
R := Z ZiZ_j,
lil<m+1
P=Z

The inverse transformation is

zi=pyp lil<m,

1/R
Zmi1 = §<; -p Z )/iY—i>>

lil<m
Z_m-1=DP
The derivatives are equal to

-1 .
0 =2 10y, +220g, il <m,

azmﬂ = zz_m_laR’
)
Oy =0~ Z Z ;0 + 2Zp,10p.

lil<m

Note that these coordinates are defined on R" x R* x R. The set V), is given by the
condition R = 0. The flat section is given by p = 1.
For a function y — f(y), we have

(@™)y.R.p) = P ).
For a function (y, R, p) — K(y, R, p), we have
(¥™K)(y) = K(y,1,0).
Note also that on AT(R" x R* x R) we have
PO, +2Rog = 1.
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5 Laplacian in 4 dimensions and the hypergeometric
equation

The goal of this section is to derive the ,7; equation together with its symmetries from

the Laplacian in 4 dimensions, or actually from the Laplacian in 6 dimensions, if one

takes into account the ambient space. Let us describe the main steps of this derivation:

(1) We start from the 4 + 2 = 6 dimensional ambient space, with the obvious repre-
sentations of so(6) and O(6), and the Laplacian Aq.

(2) Asexplained in Subsection 4.9, we introduce the representations so(6) > B — B
and 0(6) > a — a®'. Besides, as explained in Subsection 4.10, we obtain the
reduced Laplacian Ag. The most relevant values of n are 1— % =-land-1- % =-3,
which yield generalized symmetries of A

(3) We fix a section y of the null quadric. It allows us to construct the representations
B, " and the operator A, acting on a 4 dimensional manifold whose pseudo-
Riemannian structure depends on y.

(4) We choose coordinates w, uy, u,, u3, so that the Cartan operators are expressed in
terms of u, u,, u;. We compute Ag, B and & in the new coordinates.

(5) We make an ansatz that diagonalizes the Cartan operators, whose eigenvalues,
denoted by a, B, u, become parameters. A’6', B and a”" involve now only the
single variable w. Ag turns out to be the , 7, hypergeometric operator. The gener-

alized symmetries of A’6’ yield transmutation relations and discrete symmetries of
the ,7; operator.

Step 11is described in Subsection 5.1.

We have a considerable freedom in the choice of the section y of Step 3. For in-
stance, it can be the flat section, which we described in Subsections 4.4 and 4.12. How-
ever, to simplify computations we prefer to choose a different section, which we call
the spherical section. (Both approaches are described in [10].)

We perform Steps 2, 3 and 4 at once. They are described jointly in Subsection 5.2.
We choose coordinates w, 1, p, U, U, U3 in 6 dimensions, so that the null quadric, the
spherical section and the homogeneity of functions are expressed in a simple way. In
these coordinates, after the reductions of Steps 2 and 3, the variables r, p disappear.
We are left with the variables w, u;, u,, u3, and we are ready for Step 5.

Step 5 is described in Subsections 5.3 and 5.4.

Subsections 5.5 and 5.6 are devoted to factorizations of the , 7; operator. Again, we
see that the additional dimensions make all the formulas more symmetric. The role of
factorizations is explained in Subsection 1.5.

Subsections 5.4 and 5.6 contain long lists of identities for the hypergeometric op-
erator. We think that it is easy to appreciate and understand them at a glance, with-
out studying them line by line. Actually, the analogous lists of identities in the next
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sections, corresponding to other types of equations, are shorter but in a sense more
complicated, because they correspond to “less symmetric” groups.

All the material so far has been devoted to the ,F; operator and its multidimen-
sional “parents.” Starting with Subsection 5.7 we discuss the ,F; function and, more
generally, distinguished solutions of the , F; equation. The symmetries of the ,.7; oper-
ator are helpful in deriving and organizing the identities concerning these solutions.

Subsections 5.10, 5.11, 5.12 are devoted to integral representations of solutions of
the ,F; equation. In particular, Subsection 5.10 shows that these representation are
disguised “wave packets” solving the Laplace equation and diagonalizing Cartan op-
erators.

In Subsection 5.13, we derive connection formulas, where we use the pairs of solu-
tions with a simple behavior at 0 and at co as two bases of solutions. The connection
formulas follow easily from integral representations. These identities look symmetric
when expressed in terms of the Lie-algebraic parameters.

5.1 so(6) in 6 dimensions
We consider R® with the split coordinates
Z1:21,2_3:22,2_3,23 (125)
and the scalar product given by
(zlz) = 2z_121 + 2252, + 22_325. (126)

The Lie algebra so(6) acts naturally on R®. Below we describe its natural basis.
Then we consider its Weyl group, D5, acting on functions on IR®. For brevity, we list
only elements from its subgroup D; n SO(6). Finally, we write down the Laplacian.

Lie algebra so(6). Cartan algebra

Ny =-z.40, +2z0,, (127a)

N, =-2.,0, , + 2,0, (127b)

N3 =-z_30,  +230;,. (127¢)

Root operators

B, 1=20, -20,, (128a)

By1 =250, —2.40,, (128b)

B, 1 =250, —20,, (128¢)

B ;1 =250, —2.40, ;; (128d)
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B73’72 = 238272 - 228273, (1288)
33,2 = Z_3azz - Z_zaZB, (128f)
B3)_2 = Z_3a272 - 22523, (128g)
B_3)2 = 23822 - Z_zaz_3; (128h)
B_3’_1 = 2382_1 - 2182_3, (1281)
B3y =230, —2.40,, (128))
By 1 =230, —20,, (128k)
B_3)1 = Zgazl - Z_laziz. (1281)

Weyl symmetries
0123K(Z_1, Zl’Z—Z’ 22,2_3,23) = I((Z_l, Zl) Z_2; Zz, Z_B:ZB)) (129a)
0_13K(z_1,21,2_9,29,2_3,23) = K(21,2_1,2_9, 22, 23, 2_3), (129b)
01.23K(z_1,21,2_3,22,2_3,23) = K(2_1,21,25,2_,23,2_3), (129¢)
0_1-53K(z_1,21,2_9,29,2_3,23) = K(21,2_1, 22, 2_5,Z_3,23); (129d)
03K (z_1,21,2_5,25,2_3,23) = K(2_3,22,2_1, 21, 2_3, Z3), (129¢)
0_21_3K(Z_1’Z];Z_z,Zz,Z_3,Z3) = I((Zz,Z_z,Z_l,Zl,Z3,Z_3), (129f)
0213K(2.1,21,2 5,2, 2 3,23) = K(2_5, 25, 21,2 1,23, 2.3)s (129g)
0.5, 3K(z_1,21,2 5,25,2 3,23) = K(25,2_5,21,2_1,Z2_3,Z3); (129h)
030 K(z_1,21,2_3,22,2_3,23) = K(2_3,23,2_5, 25, 2_1,Z1), (1291)
0.3 1K(2.1,21,2 3,22,2 3,23) = K(23,2 3,2 5,25, 21,2_1)s (129j)
031K(2_1,21,2_5,22,2_3,23) = K(2_3,23, 25,25, 21, 2_1); (129k)
0.3 1K(z_1,21,2_5,25,2_3,23) = K(23,2_3,25,2_5,Z_1, 21); (1291)
030K(z_1,21,2_3,25,2_3,23) = K(2_3,23,2_1, 21,22, Z3), (129m)
0_31K(z_1,21,2_3,22,2_3,23) = K(23,2_3,2_1,21, 22, 2_3), (129n)
03.19K(z_1,21,2_9,29,2_3,23) = K(2_3,23,21,Z_1, 22, Z_3), (1290)
0_3-12K(2_1,21,2 5, 2,2 3, 23) = K(23,2.3,21, 21,25, 2); (129p)
031K(2_1,21,2_3,29,2_3,23) = K(2_3,25,2_3,23,2_1,21), (1299)
0_3_1K(z_1,21,2_5,2),2_3,23) = K(23,2_3,2_3,23,21,Z2_1)> (129r1)
0y 31K(2_1,21,2_9,29,2_3,23) = K(2_5,25,23,2_3, 21, Z_1), (129s)
0.5.31K(z_1,21,2_5,2),2_3,23) = K(23,2_5,23,2_3,2_1,Z1); (129t)
01Kz 1,21,2_,25,2_3,23) = K(2_1,21,2_3,23,2_, Z5), (129u)
0_132K(z_1,21,2_5,25,2_3,23) = K(21,2_1,2_3, 23,25, Z_»), (129v)
0135K(z_1,21,2_5,25,2_3,23) = K(2_1,21,23,2_3,25,Z_5), (129w)
0_1-2K(z_1,21,2_5,25,2_3,23) = K(21,2_1,23,2_3,2_3, Z)). (129x)
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Laplacian

Ng =20, 0, +20, 3, +20, 0, (130)

5.2 so(6) on the spherical section

In this subsection, we perform Steps 2, 3 and 4 described in the introduction to this
section. Recall that in Step 2 we use the null quadric

V2= {z e RO\(0} : 22_,2, + 22,2, + 22_323 = O}.

Then, in Step 3, we fix a section of the null quadric. We choose the section given by
the equations

4 =2z_1z1 +Z2_52)) = —223Z_3.

We will call it the spherical section, because it coincides with $3(4) x $'(—4). The su-
perscript used for this section will be “sph” for spherical.
In Step 4, we introduce the coordinates

z_z
r=1\20z.z +252,), w=—"11 (131a)
Z1Zy +Z_5Z,

z z
we—2 -2 (131b)
\Z_1Z1 ¥ 257, VZ_121 T 252,

V4
-3

with the inverse transformation

w

wr

Z, = , Zy = —, (132a)
vy Y
r(l-w) u,r

Z 5= , Zy= =, (132b)
oV, V2
p pus

Z5=- , Zy= —=. (132¢)
v, W2

The null quadric in these coordinates is given by r? = p?. We will restrict ourselves
to the sheet r = p. The generator of dilations is

Ag =10, + PO,

The spherical section is given by the condition r* = 4.

All the objects of the previous subsection will be now presented in the above coor-
dinates after the reduction to the spherical section. This reduction allows us to elim-
inate the variables r, p. We omit the superscript n, whenever there is no dependence
on this parameter.

Bereitgestellt von | De Gruyter / TCS
Angemeldet
Heruntergeladen am | 10.02.20 14:06



Group-theoretical origin of symmetries of hypergeometric class equations = 49

Lie algebra so(6). Cartan operators:

sph _

N7 =u0,,
sph _

N = uzauz,

sph _
N3 =u30,,.

- Wiy0,,),

(u10,, +Uy0,, u3au3—11)+u28u2>,

u - rl)))

(Uy0y, +Up0y, +U30,, —1)+U50,, >;

—72)>;

Roots:
h
Big,_1 = U U0y,
1
Bgrih = —(Q-wwo, + (1 - w9,
’ Uiy
h U
B - u_l((l - W)d,, — U0, ),
sph _ u .
B®) = u—l(waW +Up0y )s
h, 1
1
B = ——<w(w 02, + 2
5 Uyl
sphyp U
B3,_2 = “ <Wa + = (ula + uzau
B = <W( 13, + 2
> u2
. 1
BE = —u1u3<(w =10y + 510y, + Updy, +Usdy, ’”)’
h, 1
B;ﬂ 1= Uy (W(W Doy +— (ula 1 FU20y, ~UsOy, M) Uy u1>
h, 1
B;ﬁln _ u_;<(w -1, + E(ulaul +Uz0y, — Us0,
h, u w
Bs—l;’ln _ —u—j(w(W—l)aw+5(ulam+“zauz+”36uz_'1)_“1a“1)‘
Weyl symmetries

sph n

O35 f (W, Uy, U, us) = f(W, Uy, Uy, u3),

sph, w 1
o Il’z rl3f(w Uy, Uy, u3) f(W; —, Uy, _>)
Uy us

1-w l

h,
AT {(TATIRTPRTEY) =f<w,u1, o

2 U3

w l-w
f(W,u—, >u3>;
1

sph,
_Il) zr;f(w Uy, Uy, u3)
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Ugfsh (W, uy, uy, u3) = F(1- W, uy, Uy, u3),
Usglll";f(w Uy, Uy, Us) = f<1 - W, 1_—W,u1, i)
2 us
s 1
azplf’"}f(w Up, Uy, Us) = f<1 w, Uy, W, —),
Uy Uz
ighfsf(w Uy, Uy, Us) = f(l— 1_W,Zv,u3)
1
0321 f(W Uy, Uy, Uz) = (\/_)nf< \/TB_W \/_ \/u_l_w>
s 1 U, V-w
];kzlnlf(w Uy, uz,ll3) = (\/_)nf<w \/—u3 _2 ” >,
;Pz,'llf(w, Uy, Uy, Us) = (N)W( ! \/113_ (\/W_i) \/_>
2 U
s 1 1 w-1) u
_ghznl (W, up, up,u3) = (\/_)nf<w ‘/_“3 \/_uz \/_1_W>
s 1
050 (W s, Uy, 13) = (Vi )nf<1— _u3 _ul 1 )
s u W—l
—g?'lzf(w up, Uy, u3) = (Vw-1)"f < W \/_u3 _1_ uz >,
sph, 1 u w w-1
3p11l oS W, ug, up,u3) = (Vw i <1— \/3_ \/_ul ” ),
s 1 w u
ghlrlzf(W Uy, Uy, u3) = (Vw-1)f <—W \/_u3 \/_u1 —wz— >;

OSPOE (, uy1y ) = (VW )”f( 1 T v”_l—w)
e T,
) = (W M v%u;t_W)’
o ) = (0 T o )
fé’f”f(wul,uz,ug)—(\/_)”f<% \/— \/u3— \/uz—>
aLE(w, ul,uz,u3>:<x/ﬁ>”f< = \/_ul \/:j__ sz_l),
Uff’?’,'éf(w,ul,uz,uﬁ:(\/m)”f< - \/— \/_1u3 2;_1)
o o, ul,uz,us>=<x/vﬂ>"f(wl T v—1u3 v"z__)
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Laplacian
AP = w(l - w)d, — ((1+ w3, )W = 1) + (1 + w9, )w)d,
1 1
- Z(”laul + U0y, + 1%+ Z(u3au3)2. (133)

Let us give the computations that yield (133). Using
U

0, = E(—ulaul ~Uy0y, + 10, +2(1 - w)d,,),
\/j w w w
0 = (15wt - Fuw, + 50, < wat-w, )
u
9, = ﬁzr(_ula‘“ —Uy0,, + 19, — 2wd,,),
V2((w-1) (w+1) (1-w)
0, = @(T“laul + Tuzau2 + Tra, +w(w - 1)aw>,
u
a273 = \/_T;(u3au3 _pap))
1
0,, = Wug(uﬁu3 +poy),

we compute the Laplacian in coordinates (131):
Ag = r—12(4w(1 - w)az, - 4((1+ U0, ) (W — 1) + (1+ 1,0, )w)d,,
= (U10y, + U0y, + 1% + (r0,)* + 219, +1)
+ I%((ua%)z ~ (p3,)%). (134)
Next, we note that
r—12((ra,)2 +2r9, - (p3,)* +1) = rlz(ra, — pd, + 1)(rd, + pd, + 1. (135)

Using p? = r* and 1o, + pd, = -1, we see that (135) is zero on functions of degree -1.
Thus we obtain

4
AS = r—2<w(1 —w)al - ((1+ U0, )W = 1) + (1 + U0, )w)d,,
1 1
- 5 dy, + U0, + 1%+ Z(u3a,13)2>. (136)

To convert Ay into the Azph, we simply remove the prefactor riz

5.3 Hypergeometric equation

Let us make the ansatz

fug, ty, us, W) = u;"ulju’;F(w). (137)
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Clearly,
NP = af, (138a)
NSPRF = f, (138b)
N3P = uf, (138¢)
U P AP = Fy g, (,0,)F (W), (138d)
where

FapuW:0,) = w(l - w)ds, — (1 +a)(w —1) + (1+B)w)a,,

1 1
- Z(a +B+1)%+ Z],lz, (139)

which is the ,F; hypergeometric operator in the Lie-algebraic parameters.
Traditionally, the hypergeometric equation is given by the operator

F(a,b;c;w,0,,) = w(l - w)af, +(c-(a+b+1)w)o, —ab, (140)

where a, b,c € C will be called the classical parameters. Here is the relationship be-
tween the Lie-algebraic and classical parameters:

a=c-1, B=a+b-c, u=a-b; (141a)

a 1+a+B+pu b - 1+a+B-p

R , c=1+a. 141b
5 5 (141b)

Note that the Lie-algebraic parameters a, §, u are differences of the indices of the
singular points 0,1, co. For many purposes, they are more convenient than the tra-
ditional parameters a, b, c. They are used, e. g., in Subsection 2.7.2 of [4], where they
are called A, v, u. In the standard notation for Jacobi polynomials P{'I"ﬁ , the parameters
a, B correspond to our a, 8 (where the singular points have been moved from 0,1 to

-1,1).

5.4 Transmutation relations and discrete symmetries

By (100), we have the following generalized symmetries:
BEPRT3ASPR - ASPRBSPRTL B e 50(6), (142a)
aSph"3Ath = AzphaSph’_l, a € 0(6). (142b)

Applying (142a) to the roots of so(6) we obtain the transmutation relations for the hy-
pergeometric operator:
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0w F, ap.pu

= lX+l,ﬁ+l,}laW’
(W1 -w)9,, + (1 - w)a W) Fp,

= Foo1p1uy(Wl =w)o, + (1 - w)a - wp),
((1 - W)aw _B)]:a,ﬁ,}l

= tx+1,ﬁ—l,y((1 - W)o,, - B)’
(Waw + (X)}—a’ﬁ,}l

= a—l,ﬁ+l,y(waw +a);

<waw + %(a +B+u+ 1)>W]-—a)ﬁ)y
= w]—'a,ﬁﬂ’wl(waw + %(a +B+u+ 1)>,
<W(w—1)aw+%(W—l)(a+ﬂ—y+1)—ﬁ>w}'a,ﬁ,y
1
= w]—'a,ﬁ_l,u_1<w(w—l)aw+§(w—l)(a+ﬁ—y+1)—ﬂ>,
1
<waw+§(a+ﬁ—y+l)>w]-'aﬁ,y
= W.Fa’ﬁ+1)y_1<waw+%(a+B—y+1)>,
<w(w—1)aw—%(1—w)(a+ﬂ+y+1)+ﬂ>w]—'aﬁ,y
1
= w]-'a,ﬁ,l,yH(w(w—l)aw—i(1—W)(a+,8+y+1)+,8);
<(w -1o, + %(a +B+u+ 1))(1 —W)Fapu
1
=(1- W)]:a+l,ﬂ,y+l<(w -1o, + E(a +f+u+ 1)),
<W(w—1)aw+%w(a+ﬁ—y+1)+a>(1 “W)Fupu
=(1- w)fa_l,ﬁ,y_l<w(w—1)aw+%w(a+ﬁ—y+l)+a>,
<(w -1o, + %(a +f-pu+ 1))(1 - W)]:a’ﬁ’y
=(1- W).Fa+1,/;,y_1((w -1o, + %(a +f-u+ 1)),
<w(w—1)aw+%w(a+ﬁ+y+l) - a)(l - w)]-‘a’ﬁ,u

=(1- w)fa,l,ﬁwl<W(w—1)aw+%w(a+ﬁ+y+1)—a>.
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Applying (142b) to the Weyl group D5, we obtain the discrete symmetries of the
hypergeometric operator. We describe them below, restricting ourselves to D; N SO(6).
All the operators below equal F, 5, (w, 9,,) for the corresponding w:

w=v: FopuV,0y),
(N -DF Fyp,00) (Wv-1F
v-0F Fpp ) v-1F
(WY Fap,nd) ()%
w=1-v ]-‘ﬁw(va)
V=D Fp ) =DV,
V-0 Fp_qpu.0) (v-17
(WP Fpauv:d) (v
w=5: (_V)% (N Fupa:d) (V)T
(v (VF o pad) (W) -1,
WD (VF ) (VT -1,
(VT (NF g ad) (1)
w=Slo ()T (W Fpnd) ()
W=D (VFap.3) (1) (v -1
DTV (Va1 (V) “’z”(v 1%,
(VT (NF e g0, ()T
w=l )" 1) F,.000) (v—l)"ﬁ_H
I PO-D"TT -DFp e08) (VP
V-0 DFp W) D)
I PO-D" -DF 5, o(1.3))

W= )T ) Fp0hd) D)
Cryen VD F g pp%:3,) (-1 "2
(v-1 )‘”ﬁ )P 3 -

D@D D F g 50,3,

5.5 Factorizations of the Laplacian

In the Lie algebra so(6) represented on R®, we have 3 distinguished Lie subalgebras
isomorphic to so(4):

S015(4), S0x3(4), S015(4), (143)
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where we use a hopefully obvious notation. By (94), the corresponding Casimir oper-
ators are

Cp = 4B1,B_y 5~ (Ny+ N, +1)° +1 (144a)
=4B_; B, — (N;+ N, - 1)° +1 (144b)
= 4B; ;B — (N, - N, +1)° +1 (144c)
= 4B_1,B, 5 — (N, =N, - 1)° + 1; (144d)

Cy3 = 4By3B_y 35— (N, + N3 +1)° +1 (144e)
=4B_5 3By5— (N;+N; - 1)° +1 (144f)
=4B, 3B ,5—(Ny—N;+1)°+1 (144g)
=4B_53By 53— (N, - N; -1 +1; (144h)

Ci3 = 4By3B_y 5~ (N; + N3 +1)° +1 (144i)
=4B_;_3B3— (N + N3 —1)° +1 (144j)
=4B; 3B15—(N; - Ny + 1) +1 (144K)
=4B_13B; 53— (N; - N3 -1)° + 1. (1441)

Of course, for any n we can append the superscript > to all the operators in (144).
After the reduction described in (102), we obtain the identities

(22121 + 22,5)A8 = -1+ ¢+ (NS, (145a)
(2252, +22_32)A8 = -1+ ¢ + (N0, (145b)
(22_121 + 22_323)08 = -1+ C5 " + (NS 1Y, (145¢)

We insert (144) with superscript ! to (145), obtaining

(22121 +22_,2))A

=4B5,B 1 5 — (Ny+ Ny + N3+ )(N; + N, - N3 + 1) (146a)
= 4B_;_,B;,— (N; + Ny + Ny —1)(N;, + N, - N3 - 1) (146b)
= 4B, ,B_1,— (N; =Ny + N3+ )(N; - N, - N3 + 1) (146¢)
= 4B_1,B;_,— (N; = Ny + Ny = 1)(N, - N, - N3 — 1); (146d)
(2252, +22323)¢
=4By3B 5 53— (N;+ Ny, + N3 +1)(=N; + Ny + N3 +1) (146e)
=4B 5 3By3—(Ny+ Ny + N3 - 1)(-N; + N, + N3 - 1) (146f)
= 4B, 3B 55— (N; + Ny — N3 + 1)(=N; + N, - N3 + 1) (146g)
=4B_,3B, 35— (N} + Ny - Ny~ 1)(=N; + N, - Ny - 1); (146h)
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(224121 + 22_323)0¢

=4B13B 1 3 - (N;+ Ny + N3 + D(N; - N, + N3 + 1) (146i)
=4B_ 1 3Bi3 - (N;+ Ny + N3 -1D)(N; - N, + N3 - 1) (1467)
= 4B, 3B_;5— (Ny + Ny = Ny + 1)(N; = N, - N3 + 1) (146K)
= 4B_1 3B, 3 — (N, + Ny = Ny = 1)(N; = N, — N3 — 1); (1461)

where for typographical reasons we omitted the superscript !

and N.
If we use the coordinates (131) and the spherical section, then we have to rewrite
(146) by making the replacements

at all the operators B

ZZ—IZI + 22_222 — 1, (1473)
22 52, + 22_323 — -W, (147b)
2z 4z + 22323 > w-1, (147¢)

as well as replacing the superscript © with PP,

5.6 Factorizations of the hypergeometric operator

The factorizations of Azp " described in Subsection 5.5 yield the following factorizations
of the hypergeometric operator:

Fapu
= (W1 -w3,, + (L +a)(1-w) - (1+B)w))3,
- L@ Brpa D@+
=0, (w1 -w)d, + (a1 - w) - fw))
— L@+ Bru-D@+p-p-1)
= (wo,, +a+1)((1-w)d, - B)
- %(a—ﬁ+y+1)(a—ﬁ—#+1)
=((1-w)o, - B-1)(wo,, +a)
- %(a—ﬁ+p—1)(a—ﬁ—ll—1);
WFupu

= (waw+%(a+ﬁ+y—l)><w(1—w)aw+%(1—w)((x+ﬁ—y+l)—ﬁ>
1
- g @Bru-Da-p-p+1)
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1 1
= <w(1—w)aw+§(1—W)(a+ﬁ—y+1)—ﬁ—1><waw+5(a+ﬁ+y+1)>
- %(a+ﬁ+u+1)(a—ﬁ—u—l)
1 1
= <waw+§(a+ﬁ—y—1))(w(l—w)aw+§(1—w)(a+ﬁ+y+1)—ﬁ>
- %(a+/3—u—1)(a—ﬁ+u+1)
1 1
= <W(1—W)aw+§(1—W)(0(+ﬁ+}1+1)—ﬁ—1><Waw+§(a+ﬁ—}1+l)>

- @ pprD(a-prp-1)
(W_l)]:a,ﬁ,y

- <w(w—1)8w+%w(a+,8—y+1)—a—1><(w—l)aw+%((x+ﬁ+y+1)>
- %(a+,8+y+1)(a—ﬁ+y+1)

- <(w—1)aw+%(a+ﬁ+y—1)><w(w—1)aw+%w(a+ﬁ—y+1)—a>
- @ p-D(a—pru)

- <w(w—1)aw+%w(a+ﬁ+y+l)—a—1><(w—1)aw+%(a+ﬁ—y+1)>
- @ (a—pp])

- <(w—l)aw+%(a+/3—y—1)><w(w—1)aw+%w(a+/3+y+1)—a>

- @ ppD(a—pp).

5.7 The ,F, hypergeometric function

0 is a regular singular point of the , 7, hypergeometric equation. Its indices are 0 and
1-c.Forc # 0,-1,-2,... the Frobenius method yields the unique solution of the
hypergeometric equation equal to 1 at O, given by the series

&S (@)(b); W

Fabicw) =) — %

= © !
convergent for |w| < 1. The function extends to the whole complex plane cut at [1, o[
and is called the hypergeometric function. Sometimes it is more convenient to consider
the function

F(a,b,c,w) & (a)j(b)jmj

Fabew) === = ,ZO Tc+)) J!
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defined for all a, b, ¢ € C. Another useful function proportional to F is

& (b +j)I(c - b)(@) w

_ T(B)(c-b)
- T(c+j) j

I ceew) -
F(a,b;c;w) : T

F(a,b;c;w) =

j=0

We will usually prefer to parametrize all varieties of the hypergeometric function
with the Lie-algebraic parameters:

l+a+f+pu 1+a+f-u
Fa’ﬁ’y(w)=F< 3 ) 5 1+aw ),
l+a+B+pu 1+a+B-u
Foputw) = F( L PR TPl gy
T T(a+1) BT
I _pflta+B+p 1+a+B-p _
Fa,ﬂ)y(w) =F ( 5 , > 1+ aw
r 1+a+p-u T 1+a—f+u
| r(iebp et )
T(a+1) PH

5.8 Standard solutions

The hypergeometric equation has 3 singular points. With each of them, we can as-
sociate two solutions with a simple behavior. Therefore, we obtain 6 standard solu-
tions.

Applying the discrete symmetries from D; N SO(6) to the hypergeometric function,
we obtain 24 expressions for solutions of the hypergeometric equation, which go un-
der the name of Kummer’s table. Some of them coincide as functions, so that we obtain
6 standard solutions, each expressed in 4 ways:

Solution ~ 1at0:  Fyp.,(w)
= (1-w)PFy g (W)

—1-a—f+u

w
=00 ()

“1-a-fp

w
= (1—W) 2 Fa’y’ﬂ<m>;

Solution ~ w™*at0: W™ F_y5_,(W)

=w 1 -w)PF g, (w)

—1+a—f+u

=w1-w)" 2 F,a,,yﬁ<—>

=

w-1

—l+a-p-u

—a
=w (1-w) : F”"’“’*ﬁ<w—1>;

E
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Solution ~ 1 at 1: Fﬁ,w(l -w)
=w "Fp_g_,(1-w)

—w (1-w)

F B—p—a
“l-a-p-p

=w 7 Fpu(1- w);

Solution ~ (1—w)_ﬂ atl: (1-w)” P _Ba-u(l—wW)

=w*1-w)" F,ﬁ,w(l -w)

—l-a+, ﬂu

=w (1-w)” F—ﬂu L(1-wh

—l-atfp

=w 2 (1-w) ‘BF_,; _M(l—w’ );

— 59

Solution ~ w™* at co: yﬁa( -

= W) A=W PR, g (W)

= ,mﬁ((l w>‘1)
Fyap(=-w7");

Solution ~ w™’ at co:  (-w) i F_y)ﬁ)_a(w’l)

=(-w * F o paw™)

i Fyacpl(1=07)
= WA w) T (- W),

5.9 Recurrence relations
To each root of so(6), there corresponds a recurrence relation:

W) = 1+a+ﬁ+yF

a Bsu a+1,5+1, y(w)

-(w(1-w)a,, +a(1-w) Bw)Faﬁ}l(W) %Fa 18-1 (W)

(1-w)o, —ﬁ)FLpH( w) = Mpaﬂﬁ ly(w)

1-a+
—(wo,, + a)Faﬂy(W) ﬁpa 1,8+1, y(W)

1+a+ﬁ+y Lratpp

a,f+1u+1 (W)

1+a+ﬁ+y
(waw aﬂy

<w(w 13, 4B+ +(x+ﬁ y( _1)>Faﬂy( - l+a— ﬁ HFIB )
) _ - a+/3 latp-pn

—(waw 1+a+ﬁ u

appu(W aBru-1W)s
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W) = 1-a— B+yF

<W(W—1)aw+ﬁ+ 1+0l+ﬁ+]1 ( —1)> B a,B- ly+1(W)
1+a+ﬁ+y 1+a+f+u

<(W 1)8 )Faﬁy( )= P FI+1/5;1+1(W)

<W(W 1)0,,— 1+a+ﬁ yW)Faﬁy( ) = - 0(+ﬂ FFI 15)‘11_1(W),
1+a+ ﬁ u _ ra- ﬁ M

<(W 1)o,, + ) aﬁy 5 Fa+1ﬁp 1 (W),

1+a+ﬁ+y 1-a-B+u
<W(W— 1)aw—d+T )Faﬁu(w) TFa 1/3y+1(w)

The recurrence relations are essentially fixed by the transmutation relations. The only
missing piece of information is the coefficient on the rhs, which can be derived by ana-
lyzing the behavior of both sides around zero. Another way to obtain these coefficients
is to use the integral representations described in the following subsections.

5.10 Wave packets in 6 dimensions

We start with the following easy fact.
Lemma 5.1. For any t, the following function is harmonic on R®:
(@ -12) @+ T,) (148)
Proof. Sete; :=(1,0,0,-7 %), e, := (0,7°,1,0). Then
(erley) = (eyley) = (esley) =0
Hence, (148) is harmonic by Proposition 3.1. O

Let us make a wave packet out of (148), which is an eigenfunction of the Cartan
operators:

Kopuy(2-1,21:2 3,22, 23, 23)

= J(z1 12 ) Mg+l )ﬁ Vet dT_. (149)
2mi
y
Proposition 5.2. Let the contour10,1[ > s AA 7(s) satisfy
(@ -12) " (@ + TﬁlZ—l)ﬁwTV?lﬁE(l))) =0. (150)
Then K,p,,, is harmonic and
NlKa,ﬁ,y,v = aI(lX,ﬂ,}l,V’ (1513)
NoKoppy = ﬁKa,ﬁ,y,v, (151b)
N31<D(,ﬁ,y,v = yKa,ﬁ,ll,V' (151C)
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Proof. K,p,,, is harmonic by Lemma 5.1. Writing
Kopu(@) = J’(‘rz1 -2.59)"V(z, + T_lz,l)ﬁ +Vz’; T_‘H% (152a)
y
= | (z, - 172) " (12, + z_ PV 2 T_ﬁ_ld—r,, (152b)
1 2 2 1 3 i
y

we see that (151a) and (151b) follow from assumption (150) by Proposition 3.2. Equation
(151¢) is obvious. O

Proposition 5.3. Ifin addition to (150), we assume that

B+v_y |T(1)

(z1-1'2,) " (zy+17'2) (0) (153)

and that we are allowed to differentiate under the integral sign, we obtain the recurrence
relations

B_pKappy = (B+VIKyi1p 10 (154a)
B Koy = —(@+V)Kg 184105 (154b)
BypKopyw = (v +DKg 18 10415 (154c¢)

B 1 oKapyy = —(@+B+V+ DKy g1 pv-1s (154d)
By_sKappuy = ~(@+ Vet preiys (154¢)
By 3Koppuy = —(B+VIKai1gpsiv-1- (154f)
By 3Kapyy = —B+V)Kyp 1pi105 (154g)
B 3Kupyv = @+ V)Kgpi1pi1v1- (154h)

Proof. Relations (154a), (154b), (154€), (154f), (154g) and (154h) are elementary. They
follow by simple differentiation under the integral sign and do not need assumptions
(153) and (150).

Relations (154c) and (154d) require assumption (150) and follow by the following
computations:

By(z -7'2,) " (7 + TﬁlZ—l)ﬁwTHl (155)

=0(z -7 '2,)" 2y + T"lz,l)ﬁ vl
+ WDz -7 25) (g + Tﬁlz_l)ﬁ Y,
By (121 - 2.)" (12 + 2 )ﬁw ~apvl (156)

= -0,(1z) - 2_,)"V (12 + z_ PV PV

—(@+B+V+ 1)1z —2,) " (1zy + 2PV TEPV2
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where in (156) we used yet another representation:

—a—B-v-1 dT
Koppuy(2) = J(Tz1 -z, (1z, +z_1)ﬁ+vzé‘r ap-v 1%‘ (157)
y

If in addition

- —a-f-pu-1
2

>

then (149) is homogeneous of degree —1, so that we can reduce it to 4 dimensions. Let
us substitute the coordinates (131), and then set 7 = ﬁ, s=t-w:

Kg gy (g Un, Us, T, p, W) = 2 u’lxug uy r *IpHF(w), (158)

a—p-pu-1 —a+f-p-1  —a—P+p-1

F(w)=J(s—l+w)T(s+w) 2 s 2 ds

p-1

NS

Yy
a—p-p-1 B-p-1
:J(t—l) 2w at. (159)
Yy

On the spherical section, we can remove r and p. Therefore, the function F given by
(159) satisfies the hypergeometric equation:

]:D(,ﬂ,y(W’ aw)F(W) =0. (160)

From (154), we can also easily obtain the recurrence relations for F. Note that in
this list the recurrence relations corresponding to B, 3, B_; 3, B, 3 and B_, 5 are missing.
However, they can be obtained after the reduction to 4 dimensions by an application
of the factorization formulas.

5.11 Integral representations

Below we independently prove (160), without going through the additional variables.
We will use the classical parameters.

Theorem 5.4. Let[0,1] > T RA t(7) satisfy

- —b —a-1,tQ1)
ta c+1(1 _ t)c (t—W) a 1|t(0)

=0.
Then

F(a,b;c;w,0,) j -t e —w)de = 0. (161)
y
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Proof. We check that for any contour y

lhs of (161) = —a j At t 1 - )Pt - w) O
y

Analogous (and nonequivalent) integral representations can be obtained by in-
terchanging a and b in Theorem 5.4.

The hypergeometric function with the type I normalization has the integral repre-
sentation

£t - )N e - w) Tt (162)

= FI(a, b;c;w), Re(c-b)>0,Reb >0, w¢[lo00[.

Indeed, by Theorem 5.4 the lhs of (162) is annihilated by the hypergeometric operator

(140). Besides, by Euler’s identity it equals Lh)I(e=b) ¢ 0, so does the rhs. Therefore,
y yiteq )

(162) follows by the uniqueness of the solution by the Frobenius method.

5.12 Integral representations of standard solutions

The integrand of (161) has four singularities: {0, 1, co, w}. It is natural to chose y as the
interval joining a pair of singularities. This choice leads to 6 standard solutions with
the I-type normalization:
~lat0: [1,00];
~w%at0o: [0,w];
~latl: [0,00];
~(1-wPat1: [L,w]
~w %atoo: [w,o0];
~wPatoo: [0,1].

Below we give explicit formulas. To highlight their symmetry, we use Lie-algebraic
parameters.

Re(1+a) > |Re(B - )| : (163)
I —1-a+f+u —1+a—f+u —1-a—f-u
.[t 2 (t-1)" 2 (t-w) 2z dt
1

= Fop, (W), W ¢ [Lool;
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Re(1-a) > |Re(B-p)| :

“1-afp

—1-a+f+u —1+a—p+u
Jt - T won T at
0

=wFlp (W), W ¢]-00,0]U 100,

0

—1-a+p+u —1+a—B+u —1-a-p-u
J(—t) Py w) T A
w

= (-W) Flyp W), w¢[0,00[;
Re(1+B) > |Re(a - )| :
2 —1-a+f+u —1+a—f+u
j O AT w-o)
=Fp,,(1-w), w¢]-00,0];
Re(1-p) > |Re(a + p)| :
! —1-a+p+u —1+a—p+u
Jt 21T (- w)

w

“afop

dt

“1-afp

dt

(164)

(165)

(166)

=1-wPF,, A-w), w¢l-00,0]U (100l

¢ “l-a+p+u “l+a—p+u —l-a—p-p
Jt 2 (t-1)" 7 (w-t)y z dt
1

- w-1)"PF (1-w), w¢]-001];

B
Re(1-u) > |Re(a + )| :
e —l-a+B+p —l+a—B+p —1-a—B-u
Jt T (t-1)" 2 (t-w) 2 dt
w
—l-a—B+u _
=w 2 Fl_u’ﬁ)_a(w D, w¢l-00,1],
h —1-a+f+u —1+a—f+u —1-a—f-u
J(—t) 2 (1-6" 2 (w-t) dt
—00

—1-a—f+u

=(-w) 2 Fl,y)ﬁ,,a(w"l), w ¢ 10,00];

Re(1+p) > |Re(a - B)| :
1

—l-a+f—p —l+a—p+p —1-a—p-p
Jt AT e —w) T de
0
e py _
=(-w)" 2 L)ﬁ)a(w Y, w¢[0,00[,

—1-a+f-pu —1+a—B+pu —l-a—p-p
Jt T e e e e

“lapy _
=w~ 2 FL’M(W 1), w ¢ [-o0,1].

(167)

(168)
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5.13 Connection formulas

Generically, each pair of standard solution is a basis of solutions to the hypergeometric

equation. For instance, we can use the pair of solutions ~ 1and ~ w™* at 0 as one basis,

and the pair ~ w™% and ~ w? as another basis. We also assume that w ¢ [0, o0l
Introduce the matrix

-1 1
T I( 1+a+2-[§—y )( 1+a;ﬁ—y ) I( 1+a-v2-ﬁ+u )I( 1+a;ﬁ+u )

-1 1
I( 1—0(;[}—;4 )( 1—0(;[}—;4 ) I( 1—a;ﬁ+u )I( 1—a-;ﬁ+u )

A =—_—
apu sin(ru)

Then

[ Fa,ﬁ,y (W) ]
(W) F_gp (W)

“l-a—p-p
(-w)~ 7 Fugaw™)
= Aa»&l‘ [ —l-a-f+u 1 * (169)
(-w) F—y,ﬁ,—a(W )

Note that in the Lie-algebraic parameters the matrix 4, 5, has a very symmetric

form. Here are some of its properties:

a.B.u

0 1 0 1 »
Aﬂ,ﬁ,li = Aa,—ﬁ,y = - [l O:| A—a,ﬁ,—y [1 0:| = All,ﬁ,ﬂ’ (170)
sin(rra)

detA (7)

apu = _W‘

Relation (169) can be derived from the integral representations. Indeed, consider
Imw < 0. Take the branches of the powers of -t and 1-t and w — t continued from the
left clockwise onto the upper half-plane. Then (under some conditions on a, 8, u) we

can write
0 1 +oo
“latpip “lta—pp —1-a—BFu
( J +J+ J )(—t) 2 (1-t) z (w-t)" 2 dt=0.
-0 0 1
We obtain
: —1-a-7 s QBT
1)~ €™ TR (7)€L ) <0
Using
I _flta+B-u 1+a-B+pu
Fa)ﬂ’ﬂ(w) - r( 2 >r< 2 Fa,ﬁ,y(w):

we express everything in terms of F. We eliminate Fgau(1-w) = Fgo_,(1-w). We
find
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=1-a—f-u

Fy,ﬁ,a (W_l)
1+a+p-u 1+a—f-u
— =)

m(-w)

FlpyW) = —
A T

—l-a—B+p

F—y,ﬁ,—a(w_l)
1+a+B+u 1+a—B+uy’
— =)

m(-w)

+
sin(mu)I'(

which is the first line of (169). A similar argument, starting with the integral f_ooo + ng +
J‘;OO, yields the second line of (169).

6 Laplacian in 3 dimensions and the Gegenbauer
equation

The Gegenbauer equation is equivalent to a subclass of the , F; equation. Nevertheless,
not all its symmetries are directly inherited from the symmetries of the , 7, equation.
Therefore, it deserves a separate treatment, which is given in this section. We start
from the Laplacian in 5 dimensions, pass through 3 dimensions, and eventually we
derive the Gegenbauer equation.

This section is to a large extent parallel to the previous one, devoted to the ,F;
equation. The number of symmetries, parameters, etc. is now smaller than in the pre-
vious section, since we are in lower dimensions. Nevertheless, some things are here
more complicated and less symmetric. This is related to the fact that the number of
dimensions is odd, which corresponds to a less symmetric orthogonal group and Lie
algebra.

Let us describe the main steps of our derivation of the Gegenbauer equation, even
though they are almost the same as for the ,.7; equation.

(1) We start from the 3 + 2 = 5 dimensional ambient space, with the obvious repre-
sentation of so(5) and O(5), and the Laplacian As.
(2) We go to the representations so(5) > B — B®" and O(5) > @ — a®" and to the

reduced Laplacian A?. The most relevant values of ny are 1 - % = —% and -1 - % =
5

3

(3) We fix a section y of the null quadric, obtaining the representations B”" and a*",
as well as the operator AY, acting on an appropriate pseudo-Riemannian 3 dimen-
sional manifold.

(4) We choose coordinates w, u,, us, so that the Cartan elements can be expressed in
terms of u,, u;. We compute B, ¢ and A’S' in the new coordinates.

(5) We make an ansatz that diagonalizes the Cartan elements. The eigenvalues, de-
noted by a, A, become parameters. B, a1 and Ag involve now only the single
variable w. A’S' turns out to be the Gegenbauer operator. We obtain its transmuta-
tion relations and discrete symmetries.

Bereitgestellt von | De Gruyter / TCS
Angemeldet
Heruntergeladen am | 10.02.20 14:06



Group-theoretical origin of symmetries of hypergeometric class equations —— 67

Again, we choose a special section which makes computations relatively easy. We per-
form Steps 2, 3 and 4 at once, by choosing convenient coordinates w, r, p, u,, u3 in 5 di-
mensions. After the reductions of Steps 2 and 3, we are left with the variables w, u,, us,
and we can perform Step 5.

The remaining material of this section is parallel to the analogous material of the
previous section except for Subsection 6.4, which describes a quadratic relation re-
ducing the Gegenbauer equation to the ,.; equation. We describe a derivation of this
relation starting from the level of the ambient space.

6.1 so(5) in 5 dimensions
We consider R> with the coordinates
200222923, 23 (172)
and the scalar product given by
(z|z) = Z(z) +22 525 + 22_32;. 173)

Note that we omit the indices -1, 1; this makes it easier to compare R’ with R®,

The Lie algebra so(5) acts naturally on R°. Below we describe its natural basis.
Then we consider the Weyl group B, acting on functions on R°. For brevity, we list
only elements from its subgroup B, N SO(5). Finally, we write down the Laplacian.

Lie algebra so(5). Cartan algebra

N, = -z_,0, , +2,0,, (174a)
N3 = -z_30,  +230,,. (174Db)
Root operators

By, 2 =20, , - 2,0, (175a)
By =20, — 230, (175b)
BO,—3 = Zoazi3 - Z3azo, (175(:)
Bo3 =200, ~ Z2_30;,; (175d)
B 3 5=20,,-20, (175e)
B3, =2 30, -2 30,, (1751)
B ,= Z—Baz,z - Zzaz3> (1758)
B*3,2 = Z’;‘az2 - Z—Zaz,y (175h)
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Weyl symmetries

023K(Zo, Z_2, Zz, Z_3 5 Z3) = I((Zo, Z_2, Zz, Z_3, 23), (1763)
T, 3K(20,2_5,29,2_3,23) = K(-2(,2_5,25,23,2_3), (176b)
0., 3K(29,2_5,25,2_3,23) = K(24,25,2_5,23,2_3), (176¢)
T_23K(Zo, Z_2, Zz, 2_3, 23) = I((—Zo, Zz, Z—Z’ Z_3, 23); (176d)
U32K(Zo, Z_2, Zz, Z_3 5 23) = I((Zo, Z_3, Z3, Z_z, Zz), (1766)
T5,K(20,2_5,25,2_3,23) = K(~2,2_3, 25,25, 2_3), (176f)
0_3.,K(29,2_5,25,2_3,23) = K(24,23,2_3, 25, Z_5), (176g)
T_K(z20,2.5,25,2_3,23) = K(-20,23,2_3,2_5, 2)). (176h)

Laplacian
As =0 +20, 0, +20, 0,. (177)

6.2 so(5) on the spherical section

In this subsection, we perform Steps 2, 3 and 4, as described in the Introduction to this
section. Recall that Step 2 involves restricting to the null quadric

Vi={zeR 22(2) +2z_yZ) + 22 323 = O}.

To perform Step 3, we need to fix a section of this quadric. We choose the section given
by the equations

1= Z(Z) + 2Z_222 = —2232_3.

We will call it the spherical section, because it is $%(1) x S'(=1). The superscript used
for this section will be “sph” for spherical.
We introduce the coordinates w, 1, p, u,, us:

r =122 +22_2, (178a)
0 242

z
w2 - Y= (178b)
\22.,2, + 2} z5+22 2,
z

Here is the inverse transformation:

Zg=WF, Z,=——"", Z,= (179a)

_ \/§u2 >
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p puy
Z .= . Zy = ) 179b
3 \/_ ; 3 \/_ ( )

Similarly, as in the previous section, the null quadric in these coordinates is given
by r? = p?. We choose the sheet r = p. The generator of dilations is

As =10, + po,.
The spherical section is given by the condition r? = 1.
Lie algebra so(5). Cartan operators

ngh = Uy0y,

sph _
N3 =uz0,,.

Roots

sph U

Bo,—z = —ﬁaw,
1
BPh - w? —1)3,, + 2wi,9, ),

0,2 \/zu2 (( ) w 2 uz)

h, u
B‘E’f_;l = 73’2((w2 -1)0,, + w9y, + W30, — wn),

sph,p 1 2 .

B3 = Vi, ((1-wo, - WUy0,, + Wii30,, + wn);

h, u,u
BEM = %(—waw — U0y, — U0y, + 1),
B;pzh"’ - (w(1-w?)3,, — (1+ w0, + (W? — Duzd, + (w? -1)n),

> 2u2u3 2 3

h, u
B = ﬁ(waw + U0y, — U30y, — 1),

3

h, u 2 2 2 2

BS,I;,ZYI = z—ljz(w(w -1o, +(1+w )uzau2 +(w” - 1)u3au3 +(1-wn).
Weyl symmetries

sph,
o‘zg ”f(wy uz, u3) = f(Ws uzs u3))

sph,n _ 1
T3 f(w,up,u3) = f(—w, Uy, ™ )

sph, 1-w? 1
0_2_3f(w)u2»u3) =f w, > |

Sph,rl 1 - W2
T_23 f(w> Uy, u3) :f -w >Uz |3
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sph, 1
oS (W, Uy, us) = (WP - 1)°f

<\/WV2V—1 \/wz—l \/\:22 >
Rt

1 w? -1
W, Uy, U )? ,
w0 ) = (W - 1) )
h, 1 -1 w? -1
oS (wuy uz) = (W - 1) 2f<\/_ Y e s LU )
-1 usVw?2 -1
sph, 1 -1 u,

00 (w,up, u3) = (WP - 1)°f

\/W2—1 u; Vw2 -1 Vw? -1
Laplacian

2
h 1
AP = (1-w?)oy, - 2(1 + U0, )W, — <uzau2 + 5) + (u3au3)2.

Let us sketch the computations that lead to (180). Using
1
0,, = ;(wrar ~Wiy0,, + (1~ w?)3,,),

u
9, , = —=(ro, - uyd, - wo,),

V2r
0, = \/Elruz ((1- wz)ra, +(1+ wz)uzauZ + (w2 -1)wa, ),
0, = 250, =),
%, = o %+ PO,
we change the variables in the Laplacian:
A = ,12 (1 - w232, = 201 + 0, )W, — (430, )” - 1D,

+(r0,)* +10,) + ;(—(pap)z + (139,,)°)- (180)
Now

2
r 1 1
(ra,)z + 710, — E(pap)z = (ra, - po, + §><rar +poy + E)

+ (1 - ;—22>(pap)2 - %

Therefore, using P = pz, ro, + pap = —%, we obtain

1 2
AS = ﬁ<(1 ~w?)'3), - 201+ u3,,)wd,
2

1 2
_ <u26u2 + 5) + (u30,,) ) (181)
To obtain the Laplacian at the spherical section, we drop r—lz
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6.3 The Gegenbauer operator

Let us make the ansatz

fuy, uz,w) = ugu’;S(w). (182)

Clearly,
N3P = af, (183a)

h
N3P = Af, (183b)
L W AP = S, (w,8,)S(W), (183c)
where
1 2

Saaw,0,,) == (1-w?)d;, - 2(1 + )wd,, + A* - <a + 5) (184)

is the Gegenbauer operator. Here is another parametrization of the Gegenbauer oper-
ator, which we call classical:

S(a,b;w,d,) = (1-w?)d:, - (a+b+1)wd, - ab. (185)

Here is the relationship between the classical and Lie-algebraic parameters:

a+b-1
a=—-"
2

a:%ﬂx—}l, b:%+a+)l. (186h)

_b-a

, A
2

, (1864a)

The Gegenbauer operator is the ,; operator with its finite singular points moved
to —1 and 1, which in addition is reflection invariant. Because of the reflection invari-
ance, the third classical parameter can be obtained from the first two: ¢ = %b“. There-
fore, we use only a, b € C as the (classical) parameters of the Gegenbauer equation.

We can reduce the Gegenbauer equation to the , 7, equation by two affine trans-
formations. They move the singular points from -1, 1to 0,1 0r 1, O:

S(abw,d,) = ]—‘(a, b; ‘”Tb”; v, av>, (187)
where
V= 1_TW w=1-2y, (188a)
or v= 1J;W, w=-1+2v. (188h)
In the Lie-algebraic parameters
Saa(W;0y) = Faan (v, 0y). (189)
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6.4 Quadratic transformation
Let us go back to 6 dimensions and the Laplacian
A =20, 0, +20, 9, +20, 0 (190)

Z3723°

Let us use the reduction described in Subsection 3.14. Introduce new variables

=22,z \/7 (191)

In the new variables,

Ny = uo,, (192)
2
1 1 1 1
AG = <az° + ZZ_O> - Z—(2)<uau - §><u6u + E)
+ 2azfza22 + 28273823. (193)
Therefore,

1 _1 1
(uzg)?Ag(uzy) 2 = _z_le(Nl -1 +A, (194a)

0

TR DD |
(U20)Dg(u29) * =~ Ni(Ny +1) +As. (194Db)

2y

Compare the coordinates the coordinates (131) for 6 dimensions and (178) for 5 dimen-
sions. The coordinates p, u; are the same. Taking into account z, := /2z_;z;, the coor-
dinates r, u, also coincide. This is not the case of w, so let us rename w from (178) as v.
We then have w = v2. We also have

uzy = V2z; = uyr, u_lzo =V2z = rwul_l.

Hence on functions that do not depend on u we obtain

_1
e uf Agr™ 2u1 2= A, (195a)
1

1 1
ra U 2vA(,r_%ul2 vz A (195b)

This implies that a quadratic substitution transforms the , 7, operator with a =
into the Gegenbauer operator. Explicitly, if

1
42
-2

then in the classical parameters
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S(a,b;v,d,) = 4F

v_ls(a, b;v,0,)v = 4]”( - ,

— 73

and in the Lie-algebraic parameters

Spa(v,0,) = 47:-%,01,/1(""’ Ow)s

-1
v Saav,0,)v = 4f%’a’A(w, Oy)-

6.5 Transmutation relations and discrete symmetries

We have the following generalized symmetries:

BPh- 2 A;ph _ A;pthph,—% )

abl

<§,5,§,W,aw>, (1963)

a+1 b+1 3
T T,E,W,aw>, (196b)
(197a)
(197b)
B € s0(5); (198a)
(198Db)

_3 _1
a2 AP = AP g e O(5).

Equality (198a) applied to the roots of so(5) yield the following transmutation rela-

tions:
Oy
$a+1,/1
(1 -wHd,, - 2aw)
= Sa—l,/t
((1-w"d, — (@ + A+ Hw)
= (- W2)Sa,/1+1
(1=w)3, — (@=A+ 3)w)
= (- WZ)Sa,/l—l
(wo, +a—-A+ %)
= W28a+1,/1—1
W(A-w")d,—a—A+3—(a-A+3)w?)
= WzSa—l,/Hl
(wo, +a—-A+ %)
= W28a+1,/1+1
(W(l—wz)aw—a+/l+%—((x+/l+%)wz)

9
= WS

Sap

Oy

Sap

(1 -wH9,, - 2aw),

(1- WS

((1-w"3, — (@+ A+ Hw),
(1= w")Sa

(1-w’)), - (@-A+ Dw);
W2$M

(wo,, +a—A+ %),

wzsm
W(A-w?)3,—a—-A+3-(a-A+3)w?),
WZS(X’A

(wo, +a—-A+ %),

wzs,m

(w(l—wz)aw—a+/l+§—(a+/1+%)w2).

Next, we describe discrete symmetries of the Gegenbauer operator, which fol-
low from Relation (198b) applied to Weyl symmetries. All the operators below equal
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Sy (W, 0,,) for the appropriate w:

W Sa22(V:0,)s

wW=zVv: (V2 — 1)“1 S—a,i/\(va av) (vz _ 1)a)
w = (Vi:)% : (VZ _ 1)%(tx+}t+g) SaaV50)) (V2 _ 1)%(,,1,,1,%)’
w2 (2o s, L0,g,) (- DI,

02-1)2

Note that we use + to describe two symmetries at once. Therefore, the above list
has all 2 x 4 = 8 symmetries corresponding to the lists of Weyl symmetries (176).

6.6 Factorizations of the Laplacian

In the Lie algebra so(5) represented on R°, we have 3 distinguished Lie subalgebras:
two isomorphic to so(3) and one isomorphic to so(4):

S00,(3), 5003(3), S0x3(4), (199)

where we use an obvious notation. By (92) and (94), the corresponding Casimir oper-
ators are

N

1 1
COZ = ZBO —2BO,2 - (Nz - 5) + Z (2003)
1Y 1
=2B,By,» - <Nz + 5) o (200b)
1" 1
Co3 = 2By, 3Bo3 - <N3 - 5) + " (200¢)
1 1
=2By3By, 3 - <N3 + 5) o (200d)
Cz3 = 4B2’3B_2)_3 - (N2 + N3 + 1)2 + 1 (2006)
= 4B_,_3B,5— (N, + Ny —1)? +1 (200f)
= 4B2)73B72’3 - (Nz - N3 + 1)2 + 1 (ZOOg)
=4B_53B, 35— (N, - N3 -1’ + 1. (200h)
After the reduction described in (104) and (102), we obtain the identities
1 _1
(22 + 22 y2,)AS = _% F T (NS, (201a)
_1 _1
(26 +22_525)0¢ = _% + C:; (N ), (201b)
& 3 0,—%
(22_222 + 22_323)A5 = —Z + C23 . (201(:)
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Inserting (200) into (201), we obtain

(Z(Z) + 22—222)A§>

1 1
= 2B, ,B, - <Nz +N; - §)<Nz -N3 - 5)
1 1
(25 + 22323) A5
1 1
1 1
= 2B0)3B0’_3 - <N2 +N3 + §><—N2 +N3 + E),

(2292, + 22_323)05

= 4B2,3B72)73 - (Nz + N3 +
= 4B_2)_3B2,3 - <N2 + N3 -
= 4Bz)_3B_2,3 - <N2 - N3 +

3
=4B_ 3B, 35— (Nz -N; - §><Nz -N;- ),

where all the B and N operators need to have the superscript o3,

If we use the spherical section, we need to make the replacements
2(2) +2z 52, = 1,
Z(z) +2z 323 — wi -1,

2
22 2y + 2z 323 — -W,

and replace the superscript © with PP,

6.7 Factorizations of the Gegenbauer equation

Sar =0, ((1- wz)aW - 2aw)

+<a+/\—l><—a+)l+1>
2 2

= ((1-w*)3, — 201 + a)w)d,

+<a+/\+l><—a+}l—1>,
2 2

— 75

(202a)

(202b)

(202c)

(202d)

(202e)
(202)
(202g)

(202h)

(203a)
(203b)
(203¢)

The factorizations of Agph of Subsection 6.6 yield the following factorizations of the
Gegenbauer operator:
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(l—wz)Sa)A=< (1-w?a, —<a+)l %)w)((l—wz)aw—<a—)l+%>w>
<a+}l——><a /1+%>
<1 w?)d, —<a A- %)w)((l—wz)aw—<a+/\+%>w>
+<a+)l+2><a—/\—%>,
WZS,M:< (1-w")o, —a- A—; <—a+A—%>W2><waw+a+/t+%>

+<a+/\+1><a+/\+§>
2 2

= <Waw+a+)l—g)(w(l—wz)aw—a—iu % +<—a+/\—%>wz>

+<a+)\—l><a+/\—§>
2 2
—<w(1—w2)a —a+/1—§+<—a—/1—1>w2><wa +a—)l+1>
N " 2 2 v 2
+<a—}l+1><a—/1+§>
2 2
:<wa +a—/1—§><w(1—w2)a —a+/\+1+(—a—/\—l>w2)
v 2 v 2 2
+<a—)l—1><a—/\—§>.
2 2

6.8 Standard solutions

As usual, by standard solutions we mean solutions with a simple behavior around
singular points. The singular points of the Gegenbauer equation are {1, -1, co}. The
discussion of the point —1 can be easily reduced to that of 1. Therefore, it is enough to
discuss 2 x 2 = 4 solutions corresponding to two indices at 1 and co.

The standard solutions can be expressed in terms of the function

SeaW) = S(a, byw) := F(a, AR “TW>

=F<a ba+b+l, w2>. (204)
227 2

Here are the 4 standard solutions. We consistently use the Lie-algebraic parame-
ters.

~latl: Sg(w)

1-w
= a,a,Z/l(T) Fa—l/\(l W)
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1

~ S A (1w S w)
_ _ 1-w -
=2%1-w) “F,a,a’,z,\(T) =(1-wd) aFfaﬁ%ﬁA(l -w),

—1-2a+2A w
~w%atoco: (W -1) ¢ S,A’,a<—>
w2 -1
2

1_ _1_ _
=(1+w)2 “*AF,M),X,,Q< ) =w2 “*"F_A’a’%(w %),

1+w

_ —1-2a-2 w
~wlatco: (W'-1)" * S,La<—>
w? -1

S Y 2 Y
=(1+w): “ Fz/t,a,tx<1+w>:w O F/l,a

(w™).

1
>2

6.9 Recurrence relations

We will use the following normalization to express recurrence relations:

1
Sa’A(W) = mSa’A(W)
1 a+b+1 1-w
- F(T?H) > Us T; T
1-w
= Fa)a’u< T ) (205)
To each root of so(5), there corresponds a recurrence relation:
1/1 1
aWSM(W) = —§<§ + - A)(E + &+ A)SDH_LA(W),

(1= w3y, - 2aw)Sy 5 (W) = ~28,1,(W),

(1-w?d,, - (% ta +A>W>SM(W) = —( ta +/1)SM+1(W),

NIl= N =

(1-w?d,, - (% +a- A)w)SM(w) = —( +a— A)Sm_l(w);

1 1/1 3
wo,, + Sta- A)SQ,A(W) = §<§ +ta- A)(E +ta- A>Sa+1,A—1(W)>

1

wo,, + % +a+ A)SM(W) = %(5 +a +/l><% +a +A>Sa+1,A+l(w),

(
(
(
(- 3-a2 ) (1-w?)- 20?800 = =28 10000),
(
(

w(l—w2)8W+<%—a—A>(1—W2)—2aw2>Sa),1(w) =-25, 111 (w).
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6.10 Wave packets in 5 dimensions

We easily check the following lemma.

Lemma 6.1. For any T, the function z(N2z, - 1725 + 123)" is harmonic.
Let us make a wave packet from the above functions.

Proposition 6.2. Let the contour]0,1[ > s RA 7(S) satisfy

(V2zy - 1725 + TZ3)VT_A|:E(1))) = 0. (206)
Then the function

— V _A-—
Koy A (20:2_2:22,2_3,23) = ng(@o 125+ 1z) T N dr

y
is harmonic and
NZI<IX,V,A = aKa)v)A, (2073)
N3Kyyp = Ay (207b)
Proof. Equation (207a) is obvious. To obtain (207b), we use Proposition 3.2. O
If in addition,
1
vV=-a- =,
2

then K, , ; is homogeneous of degree —%. Therefore, we can reduce it to dimension 3.
Let us express it in the coordinates w,r, p, u,, us:

ol
p Tpus 2
KW, 1,p, Uy, u3) = Ju“r"‘(wr\/ﬁ+ + —) " tdr
P2 t) = )12 V2 V2

ot
= (\/i)m%ugugr’% J<2w0 +(1+ 02)179> 0“3 do,

where we set 0 := u37. Noting that on the spherical section p = r, we see that

1

Sw) = J(Zwa +1+ 02)_‘1_50"‘_’1_2 do (208)

satisfies the Gegenbauer equation.

6.11 Integral representations

In this subsection, we describe two kinds of integral representations for solutions to
the Gegenbauer equation. The first is essentially inherited from the , 7, equation. The
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second was derived using additional variables in the previous subsection. Here, we
give independent derivations. We will use classical parameters.

Theorem 6.3.
(a) Let[0,1]>T RA t(t) satisfy

b—

b-a+l _p—1,t(D)
(-1 7 t-w "o =0.

Then
b-a-1
S(a,b;w,d,) J(t2 -1) 2 (t-w)Pdt=o. (209)
Y
(b) Let[0,1] 5T R t(t) satisfy
-b-a
(@+2w+1) 7 P20 0.
Then
S(a,b;w,d,) j(t2 +2tw+1) 7 ¢27ldt = 0. (210)
4

Proof. For any contour y, we have
b-att
Ihs of (209) = a j At (-1) * (t-w)P,
y

—b-a

Ihs of (210) = J At (C+2tw+1) 7 TP O
4

Note that in the above theorem we can interchange a and b. Thus we obtain four
kinds of integral representations.

6.12 Integral representations of the standard solutions

As described in Theorem 6.3, we have two types of integral representations of solu-
tions of Gegenbauer equations: (a) and (b). It is natural to use singular points of the
integrands as the endpoints of the contours of integration. For the representations of
type (a), we have singular points at co, -1, 1, w. For representations of type (b), singu-
lar points are at co,0 and the two roots of t? + 2tw + 1 = 0. Choosing an appropri-
ate contour, we obtain all standard solutions with both types of representations with
some special normalizations. It is convenient to introduce special notation for these
normalizations:
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r( 1+2(;+2/1 )r(%/l

I —1a-A
SeaW) =22 1

Saa(W) (211)

>

brwWﬂ%ﬂ)< ba+b+y1-w>
I( a+§+1) > 2

2
Y 1-w
= Faam< 5 )

1—-( 1+2¢;—2}l )r( 1+2a+2A4 )

1I _
Saa(w) Ta+ D Sap(w) (212)
_ I(a)r(b) a+b+1 1-w
" T(a+b) F(“’b’ 2 02 )
(1+2a
0 -—_
Sap(W) = Vm—=— Tl 1)) (213)
(1+2a a+b+1 1-w
\/_ +1) (a h——7 )

In the following table, we list all standard solutions together with the contours of
integration and the corresponding normalizations.

@ (b)
~1at1: ] - 0,-1], [0, oo,
l; Il
~ saiogye at L 1-1,wl, [-iV1-w? - w,iVi-w2-w],
l; 0;
~w™? at oco: 1-1,1], [Vw2 -1 -w,0][,
0; l;
~w™® at co: Jw, 0o], ]-00, Vw2 -1 -w],

Here are representations of type (a):

l >ReA>—1—Rea: (214)
2 2

-1
J -1 w-p gt

—00

=Si (W), w¢]-co,-1];
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1>Re)l>—1+Re0(:
2 2

1
J(l - tz)’f”‘(w — gy

=(1-w?) s, _yw), w¢l-co,~1]U[L 00

1>Re/1:
2

1
J(l A R
)

—1-2a+21
= (W2 - 1) 4 S(—)/I,a< ‘2/ ), w ¢ ]_OO) 1])
w- —

—

1
ReA + 3 > |[Reaq| :

s 1_
j(t2 —) M e wy e
w

—1-2a-2 w
:(Wz—l) 4 S}l{a<m>, w ¢ ]-00,1].

Next we list representations of type (b):

1
Rea + 3 > |ReA| :

[ee]

—a-1
J(t2+2tw+1) Cagararh gy
0

=S5 (W) W ¢ ]-00,-1];

1
- >Rea:
2

ivi-wl-w .
——= 1
j (B +2tw+1) "2 (=) e
—iVI-wi-w

= 1(1 - Wz)iaSQQ,—/I(W)) w ¢ ]_00, —1] U [1,00[;

1 1
—-Red+=>-Rea>-=:
2 2

0
_a-1
j (2 +2tw+1) () Ay
N

—1-2a+21
=(wr-1)" ¢ SI_M< \/2v ) w ¢ ]-co,1];
W —

—_

— 81

(215)

(216)

(217)

(218)

(219)

(220)
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Re/\+%>—Rea>—%: (221)
-Vw?-1-w )
—0— = 1
I (E+2tw+1) " 2(=t) 2" A dt
—00

_1l_a A
:(wz—l) i3 25}1,:){( w )) w ¢ ]-00,1].

7 The Schrodinger Lie algebra and the heat equation
By the heat equation on R" @ R, we mean the equation given by the heat operator
Ly =D, + 20, (222)

This operator has a large family of generalized symmetries, the so-called Schrédinger
Lie algebra and group. They can be derived from conformal symmetries of the Laplace
equation. In this section, we describe this derivation.

In order to be consistent with Section 4, it is convenient to consider £,_, instead of
L,. Then the starting point, just as in Section 4, is the n+2-dimensional ambient space.
The Schrodinger Lie algebra and group are naturally contained in the pseudo-orthog-
onal Lie algebra and group for n+2 dimensions. Then, as described in Section 4.12, we
descend to the (flat) n dimensional space and the corresponding Laplacian A,,. We as-
sume that our functions depend on y,, only through the factor e’=. The variable y_,,, is
renamed to t (the “time”). The Schrodinger Lie algebra and group respects functions of
that form. The Laplacian A,, on such functions becomes the heat operator £,,_,. From
the generalized symmetries of A,,, we obtain generalized symmetries of £,_,.

7.1 sch(n-2) as a subalgebra of so(n+2)

We consider again the space R with the split scalar product. A special role will be
played by the operator

Bpiim = 2-m-10;, —Z_m0;,,, € SO(n+2).

We define the Schrddinger Lie algebra and the Schrédinger group as the commutants
(centralizers) of this element:

sch(n—-2):= {Beso(n+2):[B,By,1nl =0}, (223a)
Sch(n-2) := {a € O(n+2) : @B 1,y = Byim@}- (223b)
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7.2 Structure of sch(n-2)

Let us describe the structure of sch(n-2).
We will use our usual notation for elements of so(n+2) and O(n+2). In particular,

Ny = _Z—maz,m + Zmazm’ N1 = _Z—m—laz,m,1 +Zm410;,

m+1”

Define
M = -N,, + Np,1. (224)

Note that M belongs to sch(n-2) and commutes with so(n-2), which is naturally em-
bedded in sch(n-2).
The Lie algebra sch(n-2) is spanned by the following operators:
(1) By41.m> Which spans the center of sch(n-2).
() By Byiajs lil = 1,...,m — 1, which have the following nonzero commutator:

[Bm,i’ Bm+l,—i] = Biim: (225)

(3) B +1,-m> B_m-1,m» M, which have the usual commutation relations of sl(2) = so(3):

(Bin+1,-m> Bomoiml = M, (226a)
[M’ Bm+1)—m] = _ZBm+],—m> (226b)
[M, B_y_1m] = 2By i m- (226¢)

(4) B, lil < ljl <m-1,N;,i=1,...,m~ 1, with the usual commutation relations of
so(n-2).

The span of (2) can be identified with R"? @ R"? =~ R? @ R"2, which has a natural
structure of a symplectic space. The span of (1) and (2) is the central extension of the
abelian algebra R? ® R"2 by (225). Such a Lie algebra is usually called the Heisenberg
Lie algebra over R? ® R"? and can be denoted by

heis(2(n-2)) = R x (R* ® R"?). (227)

Lie algebras sl(2) and so(n-2) act in the obvious way on R?, respectively, R™2.
Thus s1(2) @ so(n - 2) acts on R?> ® R" 2. Thus

sch(n-2) =~ Rx(R? ® R"2) x (sl(2) @ so(n-2)). (228)

Note, in particular, that sch(n-2) is not semisimple.

The subalgebra spanned by the usual Cartan algebra of so(n-2), Mand B_,, ; , is
a maximal commutative subalgebra of sch(n-2). It will be called the Cartan algebra of
sch(n-2).
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Let us introduce x € SO(n+2):
K(- -5 2 Zimo Zme1> Zmat) = (- o5 Zomet> Zmat> —Z—m> —Zm)- (229)
Note that k* =  and x € Sch(n - 2). On the level of functions
KK(...,Z_ s Zys Zo1> Zmet) = K (o oy =2t —Zmat> 2> Zm)- (230)

The subgroup of Sch(n-2) generated by the Weyl group of O(n-2) and x will be
called the Weyl group of sch(n-2).

7.3 sch(n+2) in n dimensions

Recall from Subsection 4.12 that using the decomposition R"*? = R" & R? we obtain
the representations

so(n+2) > B+ B, (231a)
0(n+2) > a s o™ (231b)

acting on functions on R". The Laplacian A,,,, becomes the Laplacian A, and it satis-
fies the generalized symmetry

f] =N ], 2=
B>7 A, =AB>7, Beso(n+2), (232a)
d 3N = 0,d T, a e 0me2). (232b)

The operator By, ,, becomes

fl.n
B m+1,m

=9, . (233)

Therefore, all elements of sch(n-2) in the representation (231a) and all elements of
Sch(n-2) in the representation (231b) have the form

B™=C+Da, , (234a)

ALY o Vi) = BFC Yo Y + AC Y m)s (234b)

where C, D, 3, d, do not involve the variable y,,,.

7.4 sch(n-2)in (n - 2) + 1dimensions

We consider now the space R" @R with the generic variables (y,t) = (... »Ym-1>t). Note
that ¢t should be understood as the new name for y_,,, and we keep the old names for
the first n-2 coordinates.

We define the map 6 : C®°(R" 2 & R) — C®(R") by setting
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OR)(.... Y- 1Yo Ym) = h( Y1V om)E™. (235)
We also define { : C®°(R") - C*(R" 2o R)
@A sYmt) =f Y11, 0). (236)
Clearly, { is a left inverse of 6:
(oB=1 (237)

Therefore, 6 - { = (is true on the range of 6.
The heat operator in n — 2 spatial dimensions can be obtained from the Laplacian
in n dimension:

,Cn_z = An_z + Zat = (Ane (238)
For B € sch(n —2) c so(n +2) and a € Sch(n — 2) c O(n + 2), we define

gsh . CBﬂJle’ (239a)
P (aﬂ,ne' (239b)

It is easy to see, using (234), that sch(n-2), Sch(n-2) and A, preserve the range of 6.
Therefore, for any  we obtain representations

sch(n-2) > B B, (240a)
Sch(n-2) > a — a*™1 (240b)

acting on functions on R™ g R. By (232), we also have generalized symmetries:

psh 5" Ly o= LH,ZBSCh’%n, B e sch(n-2), (241a)
i Ly o= £n_2aSCh’2;2n, a € Sch(n-2). (241b)

7.5 Schrodinger symmetries in coordinates

In this subsection, we sum up information about Schrodinger symmetries on 3 levels
described in the previous subsections.
We start with generic names of the variables and the corresponding squares:

zeR"™,  El2ho= Y z57 (242a)
lilcm+1
YERY,  a= ) V¥ (242b)
ljilsm
O ERZOR, YYo= Y Y (242c)
ji<m-1
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Cartan algebra of sch(n-2). Central element

Boiim = Z—m—lazm - Z—mazmﬂ’

fl
Bm+1,m = aym’
sch
Bm+1,m =1

Cartan algebra of so(n-2),j=1,...,m-1,
]V]' = —Z_]-azij +Z]’azi,

fl
]Vi = _y—]'ayfj +yjan’

sch
IV]- = _y*]'ayfj + yia)’j'

Generator of scaling

M= Z—maz,m _Zmazm _Z—m—laz,m,1 +Zm+laz

fl,
M™M= Z Yidy, + 2V _mdy , — 1,

ljlsm-1

MR = z Yj0y, + 2t0; — 1.

ljilsm-1
Root operators of sch(n-2). Roots of so(n-2), |i| < |jl <m -1,

B z_,-azi—z 0>

ij = -

fl
Bi,j = y*ia)’j - y*}'a)’i’

h
BIS,}C = y*iayl' - y’ja‘Vi'

Space translations, |jl < m -1,

Bm+l,j = Z—m—lazi - Z—jazml’
B ?YHLJ' = ayi’
Byt =9,
Time translation
Bm+1,—m = —m—laz_m Zmazm+1>
Bfln+l,—m = ay_m’
Bfr(l:}rll,fm = at

>
m+1

(243a)
(243b)

(243c)

(244a)
(244b)

(244¢)

(245a)

(245b)

(245c)

(246a)
(246b)

(246¢)

(247a)
(247b)

(247¢)

(248a)
(248b)

(248c)
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Additional roots, |jl <m -1,

B :z_maz z_j0,

y_i0

fl
Bm,j ZY—ma Vin?

Yj J
sch
B s = tayi - y_}';

m,j

B—m—l,m = Zm+1azm - Z—maz_m_l)

fl,
Bfr’ifl,mw-m( 2. Yy +Yomd ﬂ)

lilcm-1

Z VY%,

ljlsm-1

h,
Fot, =t ¥ yd,rta-n)

lilcm-1

l\)l’—l

— 87

(249a)
(249Db)
(249¢)

(250a)

(250b)

(250c¢)

Weyl symmetries. We present a representative selection of elements of the Weyl
group of Sch(n-2). We will write K for a function on R™*, f for a function on R", h for

a function on R"? @ R in the coordinates (... »Ym-1> t)-
Reflection (for odd n)

ToK (20> s 3 Z o Zi> 21> Zms1)
=K(-2p>- > Z_pm> Zim> Zom—1> Zma1)>
T0f YooY Yim)
=f(=Yor--->Y-m>Ym)»
P h(yg, ... ) = h(=Yg, ..., 1).

Flips,j=1,...,m -1,

Z;

o e s Z

TjK( »Z_j» —m> Zm> Z-m-1>Zm+1)

=K(...,z z;, ,}-,...,z,m,zm,z,m,l,zmﬂ),

fl

ij(-~->)’—j’er-~->Y—m’Ym)
=fC.VpYjpoo s Vo Ym)s

h
T;C h(...y Yoo t) = ALY Y s ).
Permutations, i € S,,_;,

0; K( —m+1’Zm—1’Z—m’Zm’Z—m—l’ZmH)

= K(' c —nm_l’znm_l)Z—m>Zm’Z—m—l»Zm+1)’

(251a)

(251b)
(251c¢)

(252a)

(252b)
(252c)

(253a)
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fl
an(- o> Yomt1> Ym=1>Y—m>Ym)

:f('-"y—nm_l’ynm_l’)/—m’ym)’ (253b)
O',S,Chh(~ o Yemst Ym0
=h(....y_n Vn, -0 (253¢c)

Special transformation x
KK(..., 21> Zoms 2> Z—met1> Zma1)
=K(...,Zmet> ~Zme1> —Zmat> Z—m> Zm)> (254a)

Kﬂ)nf(- > Ym-1Y-m>Vm)

n Ym-1 1 1 >
=Y- f<~-~,—,——,— Y_iYi )> (254Db)
" Yom Yom Yom g

) T Ymeps t)
=1 exp(l Z y y>h<’£—l> (254c¢)
2t . B t 0t
ljlsm-1
Square of x
KZK(. e Zme1 2> 2> Z—m-1> Zmat)
=K(....Zmt> 2> —Zm> —Z—m—1> —Zma1)> (255a)
2
M FC s Yimets Vo Vi)
:f('-')_ym—]’y_maym)> (255b)
2
PR Y t) = (s Vs D). (255c)

Laplacian/Laplacian/Heat operator

Duz= ) 90 (256a)
lilsm+1

Ay= ) 9.0, (256h)
ljilsm

L= ) 9,0, +20. (256¢)
ljilsm-1

7.6 Special solutions of the heat equation

Let us describe how to obtain solutions of the heat equation from solutions of the
Laplace equation.
Consider first a function on the level of R™?,

K@) :zf}nfg<;—1,...,@>exp<—‘zz’"—+l>, (257)

-m -m
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where g is a harmonic function on R" 2. Itis easy to see that K is harmonic and satisfies

ByimK = K. (258)

Besides, K is homogeneous of degree 1- g Therefore, we can descend on the level
of dimension n, obtaining the function

k(y)=yi;n5g<yy_1,...,)£>exp( Z )ﬁ+ym). (259)

-m Y-m lil<m—1 Y-m
It is harmonic and satisfies

Bﬂ

m+1,m

k= k. (260)

Descending on the level of R™ @ R, we obtain

h(y,t):tlfgg<y1 ,)ﬁ>exp< D M) (261)

t t ligm-1 t
which solves the heat equation:

Ly ,h=0. (262)

7.7 Wave packets for the heat equation

Let us use the coordinates (y, t) € R"2 & R. Recall that

MP — z Yj0y, + 2t0; — 1. (263)

ljlsm-1

The following proposition is proven by analogous arguments as in Proposition 3.2. It
allows us to form wave packets that are eigenfunctions of M.

Proposition 7.1. Suppose that 10,1[ > s A 7(s) is a contour satisfying

f(ty, ‘rzt)‘r_v|:zg) =0. (264)
Set
h,(y,t) := J flry, 7)™V dr. (265)
y
Then
MMy = (v - ph,. (266)
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8 Heat equation in 2 dimensions and the confluent
equation

The goal of this section is to derive the ; 7; equation together with its symmetries from
the heat equation in 2 dimensions, which in turn comes from the Laplace equation in
6 and 4 dimensions. Let us describe the main steps of this derivation:

(1) We start from the Schrodinger Lie algebra sch(2) and group Sch(2) considered as a
subalgebra of so(6), respectively, a subgroup of O(6), acting in 6 dimensions. The
main initial operator is the Laplacian Aq.

(2) We descend onto 4 dimensions. The 6-dimensional Laplacian Ag becomes the
4-dimensional Laplacian A,.

(3) We assume that the variable y, appears only in the exponential e’ and the variable
y_, is renamed ¢. The Laplacian A, becomes the heat operator £,. The represen-
tations B*™ and a*™ preserve our class of functions. With n = —-1and 7 = -3,
they are generalized symmetries of the heat operator.

(4) We choose coordinates w, s, u;, so that the Cartan operators are expressed in terms
of s, u;. We compute £,, B and a®™™ in the new coordinates.

(5) Wemake an ansatz that diagonalizes the Cartan operators, whose eigenvalues, de-
noted by -0 and a, become parameters. The operators £,, B5M and @M involve
now only the single variable w. The operator %Ez becomes the ; F; operator. Gen-
eralized symmetries of £, yield transmutation relations and discrete symmetries
of the 7} operator.

The first part of this section is devoted to a description of the above steps, except for
Step 2, discussed in detail in Section 7.

The remaining part of this section is devoted to the theory of the ;7; equation
and its solutions. Its organization is parallel to that of Section 5 on the ,; equation.
The main additional complication is the fact that besides the ; 7; equation and the F;
function, it is useful to discuss the closely related ,.F, equation and the ,F, function.
In fact, some of the standard solutions of the ;; equation are expressed in terms of
the ,F; function, others in terms of the ,F, function.

8.1 sch(2) in 6 dimensions
We again consider R® with the coordinates (125) and the product given by (126):
<Z|Z> = 22_121 + 22_222 + 22_323.

We describe various object related to the Lie algebra sch(2) treated as a subalgebra of
so(6). We also list a few typical Weyl symmetries of Sch(2).
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Lie algebra sch(2). Cartan algebra

M =z_,0, , - 2,0, — 230, , +230;,, (267a)
Ny =-z.40, +20,, (267D)
B3, =230, — 250, (267¢)
Root operators
By 1=230,, —20,; (268a)
By1 =250, —2.40,, (268b)
B3y =230, —2.40,, (268¢c)
B, 1 =250, —20,, (268d)
B ,=230,,-2,0,, (268e)
B 3,=230, ~2,0; . (268f)
Weyl symmetries
K(z_1,21,2_5,29,2_3,23) = K(2_1,21,2_3, 23, Z_3,Z3), (269a)
T.K(z_1,21,2_5,25,2_3,23) = K(21,2_1,2_3, 22, Z_3,Z3), (269b)
kK(z_1,21,2_3,25,2_3,23) = K(2_1,21,-2_3, 23,23, 2)), (269c¢)
T.kK(2_1,21,2_5,29,2_3,23) = K(21,2_1, —2_3, —23,Z2_, Z)). (269d)
Laplacian
D¢ =20, 0, +20, 9, +20, 0,.. (270)

8.2 sch(2) in 4 dimensions

We descend on the level of R*, with the coordinates (V_1,Y1>Y-2¥>) and the scalar prod-
uct given by
Yy =2y_1y1 + 2y o).
Lie algebra sch(2). Cartan algebra
M = Yo10y  + Y10y, +2y50, -1,
fl
Ny = _.V—lay_l + )’1ay1’
fl

B3,=9,,.

Y2
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Root operators

fl
B3 1=9,
fl
By1 =Y-20y, = ¥10y,,
fl
B3,1 = ayl’

fl
By1=Y20y, =10y,
Bgfz =9y,

_32 =Y (Y10, + Y10y, + Y20, , = 1) —V_1V10y,.

Weyl symmetries

Fy_1uYY-2Y2) =f_1,Y1Y-2V2)
T?f(y—l’)’py—z»)/z) =f(yY-1Y-2Y2)s

_ 1 +
Kﬂ’rlf(yflxybyfz))/z) 2f<§ ;/1 ,_y w>
2 2 2 2

yoya 1 Y1Y1+Y—2y2>

Tk Y,y Y2 Ys) = YLf <y Y 7 v

8.3 sch(2) in 2 + 1dimensions

We apply the ansatz involving the exponential ”2. We rename y_, to t.
Lie algebra sch(2). Cartan algebra
M = Y10y + 10y, +2t0; -1,
Nich =-Y_10,  + Y10,
B =1.
Root operators

B;ch1 _ ay_1>
B3 =13y, ~ Y1,
Bg(,:lh = a)’l’
B = to,  ~ V1
B3, =0,

Bschrl _ t(y 1a + ylayl + ta[ - rl) - Y-

Bereitgestellt von | De Gruyter / TCS

(274a)
(274Db)

(274c¢)

(275a)
(275b)
(275¢)
(275d)
(275€)

(2758)

Angemeldet
Heruntergeladen am | 10.02.20 14:06



Group-theoretical origin of symmetries of hypergeometric class equations =—— 93

Weyl symmetries

Heat operator

We introduce new coordinates w, s, u;

with the reverse transformations

Lie algebra sch(2). Cartan algebra

lg(y,ly)ﬁ,t) = g()’—l))’l)t)’ (2763)
TfChh(y_l,yl,t) =h(y,y-1,0), (276D)
1
KPh(y_y,y;, ) = £ exp(u)hcﬂ, h —-)» (276¢)
t tt ot
T1KSCthh(y_1,y1, t) — tr[ exp<y*;yl )h( )%’ )%) _% > (276d)
£, =20, 0, +20. (277)
8.4 sch(2) in the coordinates w, s, u,
Y- N1
w=2221 g = 2L s W, 278
¢ Vi @78)
ya=2 yi=us t=s @79)
U
MM = 53—,
h
lec = ulaul’
h
By =1

Root operators

sch U
BB,—l = ?aw’

sch S
By, = u—(waw + ulau1 -w),
1

sch 1
B3y = u—ls(waW + ulaul),
B = su;@, - 1),

1 1
B, = S—2<—waw ~ Sy, + —sas>,

Bsch,q 2

1 1
3, =S <waw + Eulau1 + Esas -w- n).
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Weyl symmetries
th(w,uy,8) = h(w,uy,s),

sch w
7, h(w,uy,s) = h<w, u—,s),
1

N |
KM h(w, uy, s) = 52”ewh<—w, —iuy, —),
s

iw i
TP h(w, 1y, 5) = sznewh<—w, -—, —).

U’ s
Heat operator
= 2 (wd? + @ 3y + S (-0, +50
ﬁz—s—z woy, + (u; u1+1—w)w+§(—u1 iy, T 59) )- (283)
8.5 Confluent operator
Let us make the ansatz
h(w,uy,s) = u,%s O 1F (w). (284)
Clearly,
M*™h = —6h, (285a)
N:Th = an, (285b)
2
u;”‘s"“%ﬁzh = Foa(W,0,)F(W), (285¢)
where we have introduced the ; 7, operator
1
FouW,y,) = o, + (1+a—w)d, — S1+0+a. (286)
Let us also define the closely related , 7, operator
- 1 1
Fouw,d,) = W20, + (-1+ 2+ 0)w)d,, + S0+ )% - Z“z' (287)
It is equivalent to the , 7, operator. In fact, if z = —w™!, then
3vat . _trasd
(=2)" 2 Fyul2,0,)(=2)" 2 = Fyua(w,0,). (288)
We will treat 7y ,(w, 0,,) as the principal operator.
Traditionally, one uses the classical parameters a, b, c:
a=c-1=a-b, 6:=-—c+2a=-1+a+b; (289a)
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a_1+¢x+6 _1-a+0
) )

Here are the traditional forms of the ; 7 and , 7, operators:

, b , c=1+a. (289Db)

Flasc;w,0,,) := wa; +(c-w)o, —a, (290)
F(a,b;—w,0,,) = wzafv +(-1+ (1 +a+b)w)o, +ab. (291)

8.6 Transmutation relations and discrete symmetries

The heat operator satisfies the following generalized symmetries:
B3, = £, Besch(2), (292a)
P73, = £, a e Sch(2). (292b)

Applying (292a) to the roots of sch(2), we obtain the following transmutation re-
lations of the confluent operator:

aw ]:9,01

= ]:0+1,a+1 aw>
(wo,, +a-w) Fy,

= Fopra1 WO, +a-w),
Wo, +@)  Fpq
= Fosrar (WO, +a),
Oy -1 Fou
= Forann Oy 1)
W, + 10 +a+1) wry,
= WFpoa WO, + %(9 +a+1)),
(wo,, + %(—9 ta+1l)-w) wFy,
= WFy,, Wo,+ %(—0 +a+1)-w).
Applying (292b) to the Weyl symmetries of sch(2) yields discrete symmetries of the
confluent operator, described below.
The following operators equal Fy ,(w, 9,,) for the appropriate w:
w=v: Foavs0y),
V% Fo_av,0,) vV,

W=-v: e Fgav,0,) €',

-V Fg _av,0,) e

The third symmetry is sometimes called the first Kummer transformation.
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8.7 Factorizations of the heat operator

A special role is played by three distinguished subalgebras in sch(2): two isomorphic
to heis(2) and one isomorphic to so(3).
First, note the commutation relations

(By,-1,B31] = [By1,B3 1] = B3),. (293)
Therefore, the following subalgebras in sch(5) are isomorphic to heis(2):

heis_(2)  spanned by B, _;, Bs;, Bs,, (294a)
heis,(2)  spanned by B,;, B;_;, Bs,. (294b)

Note that the flip of (1, -1), denoted 7;, belongs to Sch(5) and satisfies

7B, 171 =B,1, TiB3 71 =Bs 4, T1B3,T; = B3, (295)
Hence,
T,heis_(2)t; = heis_(2). (296)
Let us define

C_=2B, 1B3; +M+N; - Bs, (297a)

=2B;,B;, 1 +M+N; + B, (297b)

C, =2B,,B;_,+M-N, - Bs, (297¢)

=2B3_1B,; + M - N; + B3, (2974)

C, and C_ can be viewed as the Casimir operators for heis, (2), respectively, for heis_(2).
Indeed, C,, respectively, C_ commute with all operators in heis, (2), respectively,
heis_(2). We also have

7,01, =C,. (298)

On the level of R? @ R, the two operators C, and C_ coincide. Indeed, a direct
calculation yields

CM = ¢S = 263, 9y, +0) —n L. (299)
Second, note the commutation relations
[B_35,B; 5] =N, - N3 = -M. (300)
Therefore, the following subalgebra of sch(2) is isomorphic to so(3):

50,3(3) spanned by B 5,,B; ,, M. (301)
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The Casimir operator for so,3(3) is

Cyy =4B; B 5, — (M -1 +1 (302a)
=4B_35B; , — (M +1) +1. (302b)

By (104), we have
(2297, + 22 32)A8 = -1+ + (NS (303)

Inserting (302) into (303), we obtain

(2292, + 22_32;)A¢
= 4B2,73sz’3 - (Nl + M + 1)(_Nl + M + 1) (3043)
= 4B_2’3B2’_3 - (Nl + M - 1)(_Nl + M - 1), (304b)
where the B, N; and M operators should be equipped with the superscript o1

Let us sum up the factorizations in the variables y_,y,, t obtained with help of the
three subalgebras:

tL,=2B; 1B3; + M+ N; -1 (305a)
=2B31B, 1+ M+ Ny +1 (305b)
=2By)1B; 1+ M-N; -1 (305c¢)

=2B3 1By; +M-N; +1, (305d)

2y 1Ly =-4By 3B 55— Ny + M +1)(N; -M -1) (305¢e)
=—4B_;3B; 3= (N; + M - 1)(N; - M +1), (305f)

where the B, N; and M operators should be equipped with the superscript sch,-1,
Indeed, to obtain (305a)-(305d), we insert (297) into (299). To obtain (305e)-
(305f), we rewrite (304), multiplying it by -1.
In the variables w, u, s, we need to make the replacements

Y1) — ws, (306a)
t — s (306b)

8.8 Factorizations of the confluent operator

Factorizations of £, described in Subsection 8.7 yield the following factorizations of
the confluent operator:
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]-'g,a:(aw—l)(waw+a)—%(9—a+1)
:(waw+1+a)(8w—1)—%(B—a—l)
= W(waw+a—w)—%(9+a—1)
:(waw+l+a—w)aw—%(9+a+1),
w]-‘g,a:<waw+%(—9+a—l)—w><waw+ %(9+a+1)>
—%(—6+a—1)(9+a+1)
:<waw+%(0+a—l)><waw+ %(—6+a+1)—w>

—%(—6+a+1)(9+a—1).

8.9 The ,F, function

The , 7, equation (290) has a regular singular point at 0. Its indices at O are equal to O,
1-c.Forc # 0,-1,-2,..., the unique solution of the confluent equation analytic at O
and equal to 1 at O is called the ;F; function or Kummer’s confluent function. It is equal
to

(o0}

ey e S @ W!
F(a;c;w) = n;) @,

It is defined for ¢ # 0,-1,-2,.... Sometimes it is more convenient to consider the func-
tions

_ F(a;c;w) _ 020: (@), w"

Fla;cw) = —,
@eW) =" =L Tcrmnl
Fl(a; W) = mF(u; c;w).
I'(c)
In the Lie-algebraic parameters:
Fyo(w) = F(%; 1+ a;w),
1+a+0 Fpq(w)
F =F —;1+a; = = ,
0a(W) ( 2 e W) T(a+1)
) e FI<1 varf ) TRy o (w)
Bt o) T(a+1)
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8.10 The ,F, function

Recall from (288) that in parallel with the ; 7} operator it is useful to consider the , 7,
operator. The , 7, operator does not have a regular singular point at zero, hence to
construct its solutions having a simple behavior at zero we cannot use the Frobenius
method. One of such solutions is the ,F, function. For w € C\[0, +o0][, it can be defined
by

F(a,b;—;w) := lim F(a, b;c;cw),
Cc—00
where |arg c—m| < m—¢€, € > 0. It extends to an analytic function on the universal cover

of C\{0} with a branch point of an infinite order at 0. It has the following asymptotic
expansion:

F(a,b;—;w) ~ Z Mw", largw —t| < m—€.

n=0 n!
Sometimes instead of ,F,, it is useful to consider the function
F'(a, b;—;w) = T(a)F(a, b; —; w).

When we use the Lie-algebraic parameters, we denote the ,F, function by F and
F!. The tilde is needed to avoid the confusion with the ,F, functions:

- 1+a+0 1-a+0

F, =F , ;W

e,a(w) < 2 2 >

- l1+a+0 1-a+0 1-a+0)-
Fé,a(w) = FI< > 3 HH ) = F<T>F0,tx(w)-

8.11 Standard solutions

The ;F,; equation has two singular points. O is a regular singular point and with each
of its two indices we can associate the corresponding solution. oo is not a regular sin-
gular point. However, we can define two solutions with a simple behavior around co.
Therefore, we obtain 4 standard solutions.

The solutions that have a simple behavior at zero are expressed in terms of the
function Fy,. Using 4 discrete symmetries yields 4 distinct expressions. Taking into
account Kummer’s identity, we obtain 2 pairs of standard solutions.

The solutions with a simple behavior at +co are expressed in terms of Fy ;. Again,
4 discrete symmetries yield 4 distinct expressions. Taking into account the trivial iden-
tity Fy 4 = Fy,_, We obtain 2 pairs of standard solutions:

~lat0: Fy,(w)

= e"F_g (-w);
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~w%at0: wFy_,(w)

=w e"F_g_,(-w);

—a “1-6-a . 1
~w%at+oo: w2 Fp,(-w

—-1-6-a . 1
=w 2 FG,—tx(_W );

“1+60-a .
~(-w) e at-co: €¥(-w) 2 F g (w)

—1+0-a .

2 F—@,—a (W_l)'

=e"(-w)

The solution ~ w™% at +co is often called Tricomi’s confluent function.

8.12 Recurrence relations

Recurrence relations for the confluent function correspond to roots of the Lie algebra
sch(2):

1+0+a
2
(wo,, +a—-w)Fg (W) =Fg_1 ,1(W),

awFH,a(W) = F9+1,a+1 (w),

(wo,, + )Fg (W) = Fg,14.1(W),

-1+0-a
(0w — DFg (W) = — 5 Fg_1.001(W),
1+60+a 1+0+a
(v + 2050, - 11070,

<waw g 10ra w)Fea(w) _1=0+ap  w).
2 : 2 :
8.13 Wave packets for the heat equation in 2 dimensions

Consider the space R? & R and the heat equation given by the operator L, =20, 0, +
20;. Recall that

psch1 Y10y + Y10, + 260, +1,
Ny =<y, + 1y,
Set
GoaV_1:Y1:0)

_1-6+a “1+6-a —
= JT“Ht Ty, —1) exp(@)dr, (307a)

yﬂ
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GoaV_1. Y1 0)

—1-6-a 71+ +a — -1
- Jr a1 =t (ty, -1z ; exp(%)dr. (307b)

yb

(The superscripts a and b denote two kinds of wave packets, and not parameters a, b.)

Proposition 8.1. If the contours y* and yb are appropriately chosen, then

£,Gg, =0, £,G, =0, (308)
Msch,—ng)a _ _GGg,w MSCh’_ng,a _ _eGlgn)w (309)
N,Gg, = aGy,, N\Gj, = aGp,. (310)

Proof. By the analysis of Subsection 7.6, the following functions

gy pypt) =t Vyvlexp<y 1y 1) (311a)
oy pypt) =ty exp<y 4 1) (311b)

solve the heat equation. They still solve the heat equation after translating and rotat-
ing. Therefore,

G V-1 V1) = guea(r (y_1 - D1y, )T % Hdr, (312a)
ya

Gy t) j ona (T, 70, — D), )T dr (312b)
yb

also solve the heat equation. This proves (308).
If the contours satisfy the requirements of Proposition 3.2, then (312) imply (310).
We can rewrite (312) in a somewhat different way:

(312a) = Jg’@ 'y -1, Ny, T"zt)(‘r_l)ed(r_l), (313a)
ya

(312b) = J glﬁ (ty_1,1(y; = 1), th)redr. (313b)
yb

If the contours satisfy the requirements of Proposition 7.1, then (313) imply (309). O

Now we express the above wave packets in the coordinates w, s, u;:

—1+6-a

2
(313a) = Js"l_eﬂ”(g - 1) exp<w - T::l ) ~* g, (314a)
1
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(313b) = Js_l_e *(tuys - 1) 7 exp< <1 L ))T"H dr. (314b)
TS
In (314a), we make the substitution ¢ := w - =, or 7 = = ww-0).In (314h), we
make the substitution ¢ := ——, or7= —2— We obtain
l_ﬁls u;s(o— 1)
Gg,a(w> S ul) = S_l_eulaFg)a(W)) (3153)
Gg,a(w> S, Uy) = S_l_eulaFg,a(W), (315b)
where
a -1 o'
Fy,(w) := (w 0) do, (316a)
yﬂ
Fa(w) = J exp<g>0’“_1(0 ~1)"F do. (316h)
yb

The above analysis shows that (for appropriate contours) the functions (316a) and
(316b) satisfy the confluent equation.

8.14 Integral representations

Let us prove directly that integrals (316a) and (316b) solve the confluent equation.

Theorem 8.2.

(a) Let[0,1] > T o> t(7) satisfy t el (t — w)™%" i) = 0. Then
t(0)

Fascw, aw)j et (¢t —w)™dt = 0. (317)
y

(b) Let[0,1] 5T RA t(1) satzsfyett 1-nc “Iﬁ%)) = 0. Then

Fla; c;w,d,,) J et 1-1t) % dt = 0. (318)
y

Proof. We check that for any contour y

lhs of (317) = —a I dto,t el (t —w) ™,
Y

Ths of (318) = — j dta,e’ (1 - ) O
y
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8.15 Integral representations of standard solutions

Using the integral representations of type (a) and attaching contours to —co, 0 and w

we can obtain all standard solutions.

Similarly, using the integral representations of type (b) and attaching contours to
0 - 0, 1 and oo, we can obtain all standard solutions.

Here is the list of contours:

@) (b)
~1ato: ]-00, (0, W)™, —ool, [1,+o00[;
~w%ato: [0, wl, 0-0)%;
~w™? at +o0: ]-00, 0], ]-00,0];
~ (-w)?"te" at —co: w,—ocol, [0,1].

(0, w)" means that we bypass 0 and w counterclockwise. (0 — 0)* means that the con-
tour departs from O on the negative side, encircles it and then comes back again from

the negative side.

Here are the explicit formulas for (a)-type integral representations:

all o, a: (319a)
L J el (- w) T dt
2mi
]=00,(0,w)*~o0[
= Fg,a(W),
Re(1-a) > |Re b : (319b)
w
cs6ea 4 S1-0-a
Jt T e(w—t) 2
0
=w Fp_,(W), W ¢]-00,0];
0
c6ea g S-b-a
J(—t) 2 e(t-w) z dt
w
= (-w) “Fp_,(W), w ¢ [0,00(;
Re(1+0-a)>0: (319¢)

0

j 0" etw -7

-0

—1-6-a . 1

=w 2 Fy(-w), w¢l-co,0]
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xsRe(1-60-a)>0: (319d)
J( H7 T et w— 1) 7" dt

—eM(ew) Flea( ), we¢ 0,00l
We also present explicit formulas for (b)-type integral representations:
Re(1+a) > |Re 6| : (320a)

T t—l—a(t _

[1,4+00]
= Fp (w);
all 6, a: (320b)
(0-0)*
=w “Fg_o(w), Rew>0;

Re(1+0+a)>0: (320¢)
0

j et (=)@

—00

:w_lze_Fe oW ’1), Rew > 0;

Re(1-0+a)>0: (320d)
1
j el 11— )2 dt

0
“14+6-a . 1

Y (-w) 2 F_e)_a(wfl), Rew < 0.

=e
8.16 Connection formulas

The two solutions with a simple behavior at infinity can be expressed as linear com-
bination of the solutions with a simple behavior at zero:

“16-a . Fq (W
W By (w ) =
a sinm(—a)I'(
mw “Fy, a(W)
+ —

1+9+a)

1+60 a)

w ¢ ]-00,0]; (321a)
sin al'(

146-a . _ niFg (W)
Flgua(w)=——20—2
sinm(—a)I'(

eV (-w) HJ)
L W)’ “Fy_o(W)

Cow) w¢[0,+c0[.  (321b)

sin ral’(
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Note that (321a) uses a different domain from (321b). This is natural; however, it is
inconvenient when we want to rewrite (321) in the matrix form, because on the rhs of
(321a) and (321b) the second standard solutions differ by a phase factor.

Let us introduce the matrix

-1 e'iTn”‘
T F(Mj) 1-( 1+9+a)
Ae a = 2 -2 >
’ sin(mra) 1 eZa
IS T
satisfying
ine eiﬂTﬂ 7e,iﬂT‘X
_ ie? r(=gray ol
Al = 2 2 , 322
O 2 1 -1 G2)
=S
detAg, = —7C & (323)
0= ") sin(ma)”
Then we have for Imw > 0
—-1-6-a ~
2 Fg ( -w ) F9 (W)
- =A [ o : (324)
(W) T Fg i) (=iw) " Fg_o(w)

Let us show how to derive connection formulas from integral representations of
type (a). We have

—1+6-a t —1-6-a
J+J—J—It2e(t—w)2dt
]-00,0-i0]  [0-i0,w] ]-00,0+i0] [0+iO,w]
—1+6-a

- J e —w) T AL w ¢ [—00,0[; (3252)

]-00,(0,w)*,~co

< j N J - J - j )t%wet(t—w)%eﬁtdt

]—oco,w=i0] [w-i0,0] ]-oo,w+i0] [w+iO 0]
= J el —w) A, w ¢ 10, +00). (325b)
]-00,(0,w)*,~co
We obtain
- 1 n@+a) _ap
—sin(raw” 7 Fea(—W ) +cos ———w "Fy_,(w)
=nFg, (W), W ¢ [-00,0[; (326a)
— sin(ra)e" (- w) Flea( ) + Cos @(—w)_“%ra(w)
=nFg,(w), w ¢]0,+00]. (326Db)
This implies (321).
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9 Heat equation in 1 dimension and the Hermite
equation

The goal of this section is to derive the Hermite equation together with its symmetries
from the heat equation in 1 dimension, which in turn comes from the Laplace equation
in 5 and 3 dimensions.

The first part of this section describes main steps of the derivation of the Hermite
equation. They are parallel to those of the derivation of the ; 7; equation:

(1) We start from the Schrédinger Lie algebra sch(1) and group Sch(1) considered as a
subalgebra of so(5), respectively, a subgroup of O(5), acting in 5 dimensions. The
main initial operator is the Laplacian As.

(2) We descend onto 3 dimensions. The 5-dimensional Laplacian A; becomes the
3-dimensional Laplacian A;.

(3) We descend on 1+ 1 dimensions. The Laplacian Ay becomes the heat operator £;.
The representations B*™ and a*™ with n = —% andn = —g are generalized
symmetries of £;.

(4) We choose coordinates w, s, so that the Cartan operator is expressed in terms of s.
We compute £, B*P1 and o°P" in the new coordinates.

(5) We make an ansatz that diagonalizes the Cartan operator, whose eigenvalue be-
comes a parameter, denoted by A. £,, B™ and a*™" involve now only the single
variable w. 252, turns out to be the Hermite operator. The generalized symme-
tries of £, yield transmutation relations and discrete symmetries of the Hermite
operator.

(As in the previous section, in our presentation we omit the step 2.)

In the remaining part of this section, we develop the theory of the Hermite equa-
tion and its solutions. Its organization is parallel to that of all other sections on individ-
ual equations, and especially of Section 6 on the Gegenbauer equation. In particular,
the Gegenbauer equation can be derived by a quadratic relation from the ,7; equa-
tion in essentially the same way as the Hermite equation can be derived from the ;7
equation.

9.1 sch(1) in 5 dimensions

We again consider R> with the coordinates
20,2_22»2_3,23 (327)
and the scalar product given by
(z|z) = z(z) +22_52) +22_32;. (328)
We keep the notation from so(5)—remember that sch(1) is a subalgebra of so(5).
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Lie algebra sch(1). The Cartan algebra

M = Z_26272 - Zzazz - Z_38273 + 23323,

B3’2 = 273822 - Z?Zazs.
Root operators

Bs o =230, — 200,

B, =250, — 240,
BB,*Z = Z*—)'aZ,Z - ZZaz3>

B 3,= Z3azz - Z—Zaz,3'
Weyl symmetries

K(zy,2_5,25,2_3,23) = K(20,2_5,25,2_3,23),
kK(zy,2_3,25,2_3,23) = K(2g,—2_3, —23,2_5, 25),
KZK(ZO,Z,Z,ZZ,Z,B, z3) = K(z9,-2_5, 25, -2_3,—23),

K3K(zo,z_2,zz,z_3,z3) = K(zg,2_3,23,—2_3, —2,).
Laplacian

2
A5 =0 +20, 0, +20, 0,.

9.2 sch(1) in 3 dimensions

— 107

(329a)
(329b)

(330a)
(330b)
(3300)
(330d)

(331a)
(331b)
(331¢)
(331d)

(332)

We descend on the level of R?, with the variables Yo,Y-2Y, and the scalar product

given by
ly) =y + 2y oy
Lie algebra sch(1). Cartan algebra

fl,
M™ =yo0, +2y_50, , -1,

fl
B3, =0,
Root operators
fl
B3y = ayo’
fl
BZ,O = y—za}’o - yoa)’z’
fl
By ,=9,,

fl, 15
B3, =y(rody, + Y20y, — 1) - 5Ya%,-
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Weyl symmetries

lﬂ’"f(yo, V-2Y2) =fVo,Y_2.V2)s

2
g 1 yg+2y_y

K F 0oy -2 ¥2) = (D (=Y V-2 Y2

2
fl,gy\3 _ n Yo 1 Yot+2Yy),
Yy ,y_,y>—(—y_)f(——,——,— |
() f Vo Y-2¥2 2 T ¥,
Laplacian

fl_ 52
A =0, +20, 0,

9.3 sch(1)in1 + 1dimensions

We descend onto the level of R@ R, as described in Subsection 7.4. We rename y_, to t.

Lie algebra sch(1). Cartan algebra:

M Y09y, +2t0; -1, (333a)
By, -1, (333b)

Root operators
B35 =y, (3342)
B30 = 3y, ~ Yo (334b)
BT, =2, (3340)

1
B = tyody, + 10— 1) ~ 25, (334d)
Weyl symmetry
EPh(yo, £) = h(yo, ), (335a)
2
K Mh(yq, t) = 1" exp(%)h( ’% —% ) (335b)
(KSCh’n)zh(yo, t) = (_1)'Zh(_y0, t), (335¢)
2
(Ksch,n)3h(y0’ t) = (-t exp< Yo >h<—)ﬂ, —1 ) (335d)
2t t t

Heat operator

A;Ch = El = a)%o + Zat. (336)
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9.4 sch(1) in the coordinates w, s

Let us define new coordinates

with the reverse transformation
Yo = V2sw, t=s%

Lie algebra sch(1). Cartan algebra

Msch,rl _ Sas -n
B32 = 1.
Root operators
1
Bsch _ O
3,0 \/ES w
S
B = 2 @, -2w),
2,0 \/z w

h 1
B;’C_z = 2—82(—Waw + Sas),

>
B = 5 (wd,, + 50, — 21 — 2w).

=32 T
Weyl symmetries
£ h(w, 5) = h(w, 5),
KSCh’"h(W, s) = SZHeW2h<iw, —é >,
(™) hw, 5) = (-Dh(-w, ),
(™) h(w, 5) = (-Sz)newzh<_iw’ _é )
Heat operator

1
Ly = E(afv - 2w0,, + 250).

9.5 Hermite operator

Letussetn = —% and use the ansatz

h(w,s) = s 2 S(w).

— 109

(337)

(338)

(339)

(340)
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Clearly,

MM 3= AR, (341)
+1,2
s2282 2 h = Sy(w, 3,,)S(W), (342)

where we have introduced the Hermite operator

S, d,,) = 32 —2wd,, - 2A -1, (343)
We will also use an alternative notation
S(a;w,d,,) := 92, - 2wd,, - 2a, (344)
so that
1 1
A=a- =, =A+=. 4
a 5 a 3 (345)

9.6 Quadratic transformation
Let us go back to 2 + 1 dimensions and the heat operator

Ly =20, 3, +20. (346)

Let us use the reduction described in Subsection 3.14, and then applied in Subsec-

tion 6.4:
\/2)’—1y it \ (347)

In the new variables,

N; = udy, (348)
2
1 1 1 1
= — ) - 5(ud, -5 =) +29,.
Ly <ay0 + 2y0) vz (uau 2)<uau + 2) +20; (349)
Therefore,
1 _1 1
(uyo)? Ly(uyp) 2 = —FN1(N1 -D+ Ly, (350a)
0
(o) Lo(ulye) 2 = —}%M(Nl +1)+ L. (350b)
0

Compare the coordinates (278) for 2 + 1 dimensions and the coordinates (337) for 1 + 1
dimensions. The coordinate s are the same. This is not the case of w, so let us rename
w from (337) as v. We then have w = v2. We also have

uy, = V2suj, u_lyo = \/iwul_ls

Hence on functions that do not depend on u we obtain
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101 1 1
2

STUILyS Uy = Ly, (351a)

1 -1 1

1
z -1.5 1
S2u, *vLyS 2ujv

Thus by a quadratic transformation we can transform the Hermite equation into
a special case of the confluent equation:
S}l (V> av) = 4~FA _1 (W’ aw): (3523)
> 2
VISV, 9,)V = 4F, 1 (W, d,,), (352b)
22

where

9.7 Transmutation relations and discrete symmetries

The heat operator satisfies the generalized symmetries

5

B¥M3L = £,BM: B e sch(l); (353a)
aSCh’_%Cl = ElaSCh’_%, a € Sch(1). (353b)
Equation (353a) applied to the roots of sch(1) implies the transmutation relations
of the Hermite operator:
Oy S) = S 0>
(aw — ZW) SA = S/I—l (aw - 2W),
(wo,, +A + %) WS, = WSy, (wo, +A+ %),
(wo,, — A + % —2w?) WS =wiS, (wo, —A+ % -2wA).
Relation (353a) applied to the Weyl symmetries of sch(1) implies the discrete sym-
metries of the Hermite operator, described below.
The following operators equal S;(w, 9,,) for an appropriate w:
=1v: §(v,0,), (354a)
= +iv: —exp(—v)S_(v,9,) exp(v?). (354b)

w
w

9.8 Factorizations of the heat operator

A special role is played by two distinguished subalgebras of sch(2).
First, note the commutation relations

(B2, B30l = Bs),. (355)
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Therefore, we have the following distinguished subalgebra in sch(1) isomorphic to
heis(2):

heisy(2) spannedby B,,, B3, Bs),. (356)

Let us define
CO = 232’0B3’0 + ZM - B3’2 (357a)
= 233,032,0 + 2M + B3,2. (357b)

We have the commutation relations

[Co>Byol = —2By (B3, - 1),
(Co> B3l = 2B3 (B3, - 1),
[C0>BB,2] =0.

But Bgczh 1 — 1. Therefore, on the level of R @ R the operator CgCh’” can be treated as a
kind of a Casimir operator of heis(2): it commutes with all elements of heis;(2). Note
the identity

sch,— %

L, =Cy 2 (358)

Second, consider B_3,, B3 _,, M. They are contained both in sch(6) and in sch(5).
Therefore, the subalgebra so;(3), described in Section 8.7 in the context of sch(6), is
also contained in sch(5). Recall that its Casimir operator is

Cys =4B; B35~ (M +1)° +1 (359a)
=4B_3,B; ,~ (M-1°+1. (359b)
By (104), we have
&> <>,—l 3
(22_222 + 22_323)A = 623 2 — Z (360)

Inserting (359) into (360), we obtain

(222, +22_323)AS

= 4B, 3B_y; - <M + §><M + %) (361a)
3 1
=4B 3B, 3 - (M - §)<M — §>, (361b)

where the B, N; and M operators should be decorated with the superscript o3,
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Let us sum up the factorizations in the variables y, t obtained with the help of the
two subalgebras:

2Ly = 2B, By — (-2M + 1) (362a)
=2B;B,o — (-2M - 1), (362b)
~Yo Ly =4By 3B 55— (M + %)(M + %) (362c)
=4B 3B, 3- <M - ;)(M - %) (362d)

where the B, N; and M operators should be equipped with the superscript sch—3
In the coordinates w, s, we need to make the replacements
t — % (363a)
Vo — 2w’s’. (363b)

9.9 Factorizations of the Hermite operator

The factorizations of £, described in Subsection 9.8 yield the following factorizations
of the Hermite operator:

Sy =0, -2w)o,, —2A -1
=0,(0, —2w) =21 +1,

3 1 3 1
WZSA: <waw+/\— §><waw—/1+ 3 —2w2>+ </\— §><A— 5)

= <W8W—/\—§—2w2><waw+}l+ 1>+<}l+ 2><)l+1>
2 2 2 2

9.10 Standard solutions

The Hermite equation has only one singular point, co. One can define two kinds of
solutions with a simple asymptotics at co. They can be derived from the expressions
of Subsection 8.11, using (352) and (354b).

1.
~w ¥ forw — +oo:  Sy(w) = W’A’EFA)%(—W’Z)

- 1 _
=W aF<g)aL;_;_W 2>>
20 2

a-1 ew2

~(~iw) forw — +ico: e"'S_;(~iw) = (—iw)/l_%ewzl:"_k%(w_z)

_ (_iw)a—lew2F< l-a 2- a _ _W—2>
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9.11 Recurrence relations

Each of the following recurrence relations corresponds to a root of sch(1):

OwSi(w) = —(% + A>SA+1(W)>

@y - 2W)S; (W) = =251 (W),

1 1/1 3
<waw + 3 +/1>SA(W) = 5<§ +/\><§ +/\>5A+2(W)>

(waw + % -A- 2w2>S,1(w) ==25,_,(w).

The first pair corresponds to the celebrated annihilation and creation operators
in the theory of quantum harmonic oscillator. The second pair involves the double
annihilation and creation operators.

9.12 Wave packets for the heat equation in 1 dimensions

Consider the space R @ R and the heat equation given by the operator £; = a + 20;.
Recall that

M3 Z a4 260, + % (364)
Set
Gi(y,t) J £73 ex ((y 0 ) -3+ dr, (365a)
;o
Gl t) = J e VTt A g (365b)
b
Proposition 9.1. We have
£,G§ =0, £,GY =0; (366a)
MP368 = AGE,  MPMTIGE = -AGE. (366b)
Proof. Set
gy, t) = £ exp 3 ;tl)Z’ (367a)
gt =e (367b)
We have
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Gy = IT"H%Mg“(Ty, ’t)dr, (368a)
ya

Gl - j T 1y 24)dr. (368b)
yb

Clearly, g% and gb solve the heat equation. By (368b), G5, respectively, G,lt7 are wave
packets made out of rotated g%, respectively, gb. Therefore, they also solve the heat
equation.

If the contours satisfy the requirements of Proposition 7.1, then (368b) implies

(366b). O
Let us express these wave packets in the coordinates w, s:
a -1 1y —2+14A
Gi(w,s) = Is exp((w - \/§Ts> >‘r 2P dr, (369a)
Gf{ (w,s) = J @ 2IWTST 1y g (369hb)
In (369a), we set 0 := w — ﬁ, sothat T = m In (369b), we set ¢ := s, so that
7 = 7. We obtain
Giw,s) = (V2): s 1A Fe(w), (370a)
Glw,s) = s FP(w), (370b)
where
Fi(w) = e"z(w - 0)*%”1 do, (371a)
v
F ,{’ (W) := J e 20w—0 13t A g (371b)
/P

The above analysis shows that for appropriate contours (371a) and (371b) are solutions
of the Hermite equation.

9.13 Integral representations

Below we directly describe the two kinds of integral representations of solutions, with-
out passing through additional variables.

Theorem 9.2.
2
(a) Let [0,1] > T+ £(r) satisfy e (t - w) ™[ = 0. Then
S(a;w,d,,) J etz(t -w)?dt=0. (372)
4
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. —t? 2wt at(l) _
(b) Let[0,1] > T — t(1) satisfy e * =" ta|t(0) = 0. Then
S(a;w,d,) J e "Wl gp - . (373)
y

Proof. We check that for any contour y

We can also deduce the second representation from the first by the discrete sym-
metry (354b). O

9.14 Integral representations of standard solutions

In type (a) representations, the integrand has a singular point at 0 and goes to zero as
t — +00. We can thus use contours with such endpoints. We will see that they give all
standard solutions.

In type (b) representations, the integrand has a singular point at w and goes to
zero as t — *ioco. Using contours with such endpoints, we will also obtain all standard
solutions.

(@) (b)

~w 9 forw — +oo: [0, 00], ]—ico, w™, —ico[;

2
~ (—iw)3te"" forw — +ico: ]-00,0", —col, (w, icol.

It is convenient to introduce alternatively normalized solutions:
1 —A-1 1
SA(W) =2 TA+ 5 SA(W)

Here are integral representations of type (a):

all A: (374)
[ o= VAs . w e l-c0,0)
]—ico,w™,ico[
1
ReA < 5 (375)

—ij e (Cit-w) 2 de = 'S (Ciw),  w ¢ [0, 00].

[wiico]
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Here are integral representations of type (b):

- % <ReA: (376)
J e AN d = S\w),  w ¢ ]-00,0];
0

A

all (377)

e Gty "2 dt = Ve S_y(-iw), w ¢ [0, 00

]-00,0*,00[

10 The Helmholtz equation in 2 dimensions and the
o1 equation

The goal of this section is to derive the ,.F; equation together with its symmetries from
the Helmoltz equation in 2 dimensions. The symmetries of this equation, together with
their derivation, are the simplest and the best known. In particular, we do not need to
consider generalized symmetries.

Here are the main steps from the derivation:

(1) We start from the Helmholtz operator A, — 1. The Lie algebra aso(2) and group
ASO(2) acting in 2 dimensions, are the obvious symmetries of this operator.

(2) We choose coordinates w, u, so that the Cartan element is expressed in terms of u.
We compute A, — 1 and the representations of aso(2) and ASO(2) in the new coor-
dinates.

(3) We make an ansatz diagonalizing the Cartan element, whose eigenvalue a be-
comes a parameter. The only variable left is w. The Helmholtz operator A, — 1 be-
comes the ,F; operator. The symmetries of A, — 1 yield transmutation relations
and discrete symmetries of the (7, operator.

The remaining part of this section is to a large extent parallel to their analogs in Sec-
tions 5, 6, 8 and 9. Essentially all subsections have their counterparts there. The only
exception is Subsection 10.4 on the equivalence of the ( 7; equation with a subclass of
the ; 7; equation, and its many-dimensional unravelling. This equivalence is obtained
by a quadratic transformation, which is quite different from the quadratic transforma-
tions for the Gegenbauer and Hermite equation considered in Subsection 6.4, respec-
tively, 9.6.

10.1 aso(2)
We consider R? with split coordinates x_, x . and the scalar product

(x|x) = 2x_x,. (378)
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Lie algebra aso(C?). Cartan operator

N = —Xx_0, +X,0y. (379)
Root operators
B =0, (380a)
B, =0, (380b)
Weyl symmetry
f(x_,x,) = f(x,,x_). (381)
Helmholtz operator
Ay -1=20,0, -1 (382)
10.2 Variables w, u
We introduce the coordinates
w= X’2X+, u=x,. (383)

Lie algebra aso(2). Cartan operator

Root operators

B_= %(waw +uo,).

Weyl symmetry

f (W, u) =f<w, K).
u
Helmholtz operator

Ay —1=wd2, +(1+ud,)d, - 1. (384)
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10.3 The ,F, operator

Let us make the ansatz

fw,u) = u“F(w). (385)

Clearly,
Nf = af, (386)
u (B - 1)f = Fo(w,0,)F, (387)

where we have introduced the (. F; operator
Fo(w,8,) = w2, + (1+@)d,, — 1. (388)
Instead of the Lie-algebraic parameter a, one could also use the classical parameter ¢
a=c-1, c=a+1, (389)
so that the ( 7; operator becomes

F(cw,0,) = wafv +co, — 1. (390)

10.4 Equivalence with a subclass of the confluent equation

The (7, equation is equivalent to a subclass of the ; 7; equation by a quadratic trans-
formation. This quadratic transformation is however quite different from transforma-
tions described in Subsection 3.14, and then applied to derive the Gegenbauer equa-
tion and the Hermite equation. In this subsection, we derive this equivalence starting
from the heat equation in 2 dimensions.

First, let usrecall some elements of our derivation of the ; 7; operator. As described
in Section 8, it was obtained from the heat operator (277) together with Cartan opera-
tors (274a), (274¢):

t t
5[:2 = E(ZBt + ZByilayl), (3913)
M =y_0, +y10, +2to;+1, (391b)

Ny =-y_40,  +Y0 (391¢)

e

(We set = -1 and dropped the superscript sch-1 ) Recall that substituting the coordi-
nates (278)

_ Y-

. s=Vt (392)

w u1=

n
"
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we obtain
1
%Lz = W3R + (D, +1- W), + 5(-1d, +50,), (393a)
M =50, +1, (393b)
Nl = ulaul. (393(:)
After we set M = -6, N, = a, (393a) becomes Fy ,(w, 0,,).
Consider now
21‘2 y_21[y1 Ezey_zltyl
y—1Y1
(y T Y10y, +2t0; +1) + “Za -1
Ty 1 ! ! ‘ yay,
M +20, 0,
Y W1
y 1)’1 Y-1in
2t Nle 2t Nl = —2X,axi + 2X+ax+, (394)
where we introduced new variables
2 2
Y 1
X =—, X, = . (395)
22t T 242t
Therefore, on the subspace M = 0 we have
2
2t _yizlty L‘,zey 21ty1 = AZ -1,
Y-
Yy
e Nle 2 =2N, (396)

where A, - 1is the Helmholtz operator (382) and N the Cartan operator (379). Remem-
ber, that in Subsection 10.2 we express these operators in the coordinates (383). To
avoid a clash of symbols, we rename w from (383) into v:

V= % u=y,. (397)

Recall that in the v, u coordinates we have

Ay —1=v3: + (1+ud,)d, - 1, (398a)
N =ud,, (398b)

so that (398a) on N = a becomes F,(v,0,).
Now we can compare the coordinates w,u; and v,u

y2 yz w 2 y2 u2
-171 1 1
V= ==, u= = —. 399
16t2 ( 4 > 22t 242 (99)
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This leads to the so-called Kummer’s 2nd transformation, which reduces the (,F; equa-
tion to a special class of the confluent equation by a quadratic transformation:

4
Fa:0,) = —e "2 o 2a(W, 8,0, (400)

or, in classical parameters
. _ 4 —-w/2 1_ . w/2
F(c;v,0,) = e F e E’ZC -Lw,0, Je"", (401)

where w = +4/v, v = (”—Z)z.

10.5 Transmutation relations and symmetries

The following symmetries of the Helmholtz operator are obvious:

B(A,-1) = (A~ 1)B; B € aso(2); (402a)

a(A, -1) = (A, - Da;  a € ASO(2). (402b)
Applying (402a) to the roots of aso(2), we obtain the transmutation relations

aw Fa = Fan aw’

Wo, +@) Fp=Fuy (WO, +a).

Applying (402Db) to the Weyl symmetry of aso(2), we obtain the symmetry

10.6 Factorizations

The factorizations
Ay-1=2B_B, -1 (403a)
=2B,B_-1, (403Db)
are completely obvious. They yield the factorizations of the ,7; operator:

Fy=WwWo, +a+1)o, -1

=9, (wo, +a) - 1.
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10.7 The ,F, function

The (. F; equation has a regular singular point at 0. Its indices at O are equal to 0, a =
1-c.
If c + 0,-1,-2,..., then the only solution of the (F; equation ~ 1at O is called the
oF; function. It is
X 1w

F(cw) = Z — . (404)

j=0 (C)) )'

It is defined for ¢ # 0,-1,-2,.... Sometimes it is more convenient to consider the func-
tion

_Flw)
F(c;w) = (405)
I(c) ]:ZO I(c +1) 1'
defined for all c.
Using (401), we can express the (F; function in terms of the confluent function

24w 2c-1

F(c;w)=e F T;Zc—l;ln/W (406a)
2Vw 2c-1

=e V(= ;20— L;—4\w ). (406b)

We will usually prefer to use the Lie-algebraic parameters:

F,(w) = F(a+Lw), (407a)
F,(w) :=F(a+Lw). (407b)

10.8 Standard solutions

We have two standard solutions corresponding to two indices of the regular singular
point w = 0. Besides, using Tricomi’s function described in Subsection 8.11, we have
an additional solution with a special behavior at co:
~1at0: Fy(w) = e >Y"Fy,a(4vw)
= W Ey u(~4VW);
~w%at0: wlF_,(w) = w_“e_z‘/WFO,_Za(l; Yw)
= WiaeszFO’_za(—l} '\/W),
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Note that the third standard solution is a new function closely related to the Mac-

Donald function. It satisfies the identity
F,(w) = wF_,(w).

Its asymptotics

_a
2

R

Fo(w) ~ exp(—2w?)w

is valid in the sector | arg w| < /2 — € for [w| — oo.

10.9 Recurrence relations

The following recurrence relations follow from the transmutation relations:

0, F,(w) =F 1 (w),
(Wdy, + @Fg(W) = Fy_y(W).

10.10 Wave packets

(408)

(409)

Obviously, for any 7 the function exp(- A -%) solves the Helmholtz equation. There-

fore, for appropriate contours y,

- TX, ol
flx_,x,) = Jexp<ﬁ+7> dr
solves
A, -1f =0,
Nf = af.

Substituting the coordinates w, u, we obtain

_ w TU N —a-1
fw,u) = yjexp(—m\/ﬁ+ \/§>T dr

- : I exp(% + s)s_”'_1 ds,

Y
where we made the substitution s = % Therefore,

F(w) = Jexp(‘;—v + s>s‘”‘_1 ds,
%

solves the (F; equation.

(410)

(411)
(412)

(413)

(414)
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10.11 Integral representations

There are three kinds of integral representations of solutions to the yF; equation. The
first is suggested by the previous subsection. Representations of the first kind will be
called Bessel-Schldifli-type representations. The next two are inherited from the con-
fluent equation by second Kummer’s identity. We will call them Poisson-type represen-
tations.

Theorem 10.1.
(i) Bessel-Schléfli type representations. Suppose that [0,1] > t — y(t) satisfies

t Y (@
eert ™|, =0.

Then

Few,d,) j ele’ td¢ = 0. (415)
y

(ii) Poisson type (a) representations. Let the contour y satisfy

2 —c+3/2 ot y(1) _
(t°-w) e |\ =0
Then
Flew.d,) j(t2 Cw) e - o, (416)

y
(iii) Poisson type (b) representations. Let the contour y satisfy

2 c=1/2_2tywy()
(-1 eV =0.
Then

Flc;w,d,) J(t2 —1) 7PVt = 0, (417)
14

Proof. We check that for any contour y

Ihs of (415) = - J deosele’ t°.
y

This proves (i).

To prove both Poisson-type representations, we use the quadratic relation (401).
Using the type (a) representation for solutions of ;.7; (317), for appropriate contours y
and y’', we see that
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e 2V J S5 (s- 4\/W)_C+%ds
1%

—c+i
=% j (P -w) T dt

!

Y

is annihilated by F(c), where we set t = % — v/w. This proves (ii).
Similarly, by the type (b) representation for solutions of ;. 7; (318),

_ ww 3
e z‘mje s s (1 - g)¢2ds

Y

= 2 J e2VW(1 - tz)c’% dt
yl
is annihilated by F(c), where we set t = % — 1. This proves (iii). O

10.12 Integral representations of standard solutions

In Bessel-Schlifli-type representations, the integrand goes to zero as t — —oco and
t — 0 - O (the latter for Rew > 0). Therefore, contours ending at these points yield
solutions. We will see that in this way we can obtain all 3 standard solutions.

We can also obtain all solutions using Poisson-type representations (which are
actually special cases of representations for solutions of the confluent equation).

Bessel-Schlafli Poisson type (a) Poisson type (b)
~1ato0: ]-00,07", co[ [-1,1]
~w%ato: (0-0)" [—vw, Vw]
~ ey 57 forw — +oo: 1-00,0] ]-00, ~1] 1-c0, — VW]

Here are Bessel-Schlifli-type representations. They are valid for all values of a and
Rew > 0:

1 j elet 971 dt = Fy(w), (418)
2mi
]—00,0*,—00[
1 t Yo —a-1 —-a
— eett dt = w F_,(w), 41
| W) (419)
[(0-0)*]
0
t ¥ —a-1 4, _ _1x
J eer(-t) dt = m2F,(w). (420)
=00
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Next, we give Poisson-type representations, valid for w ¢ ]-co, 0]:

1
Rea > -5 : (421)

1
[a-eyiemar- r(a . %)ﬁFa(w),
-1

% >Rea: (422)
\M 1
j (w—t) " 2eXdt = F<—a + %)\/ﬁw‘“F_a(w);
—VW
1
Rea > -5 (423)

Rea < % : (424)
e 1 1 1
J (P -w) “2e¥dt = 51"(—0( + §>Fa(w).
—00

10.13 Connection formulas

From integral representations, we easily obtain connection formulas. As the basis, we
can use the solutions with a simple behavior at zero:

Vi Vi

S LI
sin 7(-a) aW) + sin rix

wF_,(w).

Fy(w)

Alternatively, we can use the basis consisting of the F function and its clockwise or
anticlockwise analytic continuation around O:

1, simasly TN

Fa(w) — zﬁ(etln(a+;)Fa(W) + e+1n(a+§)Fa(e+12nW)),

_ 1 Tim(a—1) = Fitta—H = , Fiw
w aF_a(W) — m(eﬂn(tx Z)Fa(W) _ e+1n(a Z)Fa(e“ W))
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