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Homogeneous Rank One Perturbations
and Inverse Square Potentials

Abstract. Following [2, 3, 5], I describe several exactly solvable families of
closed operators on L2[0,∞[. Some of these families are defined by the theory
of singular rank one perturbations. The remaining families are Schrödinger
operators with inverse square potentials and various boundary conditions.
I describe a close relationship between these families. In all of them one can
observe interesting “renormalization group flows” (action of the group of di-
lations).
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1. Introduction

My contribution consists of an introduction and 3 sections, each describing inter-
esting families of exactly solvable closed operators on L2[0,∞[.

The first two sections seem at first unrelated. Only in the third section the
reader will see a relationship.

Section 2 is based on [3]. It is devoted to two families of operators, Hm,λ

and Hρ
0 , obtained by a rank one perturbation of a certain generic self-adjoint

operator. The operators can be viewed as an elementary toy model illustrating
some properties of the renormalization group. Note that in this section we do
not use special functions. However we use a relatively sophisticated technique to
define an operator, called sometimes singular perturbation theory or the Aronszajn–
Donoghue method, see, e.g., [1, 4, 9].

Section 3 is based on my joint work with Bruneau and Georgescu [2], and also
with Richard [5]. It is devoted to Schrödinger operators with potentials propor-
tional to 1

x2 . Both −∂2
x and 1

x2 are homogeneous of degree −2. With appropriate
homogeneous boundary conditions, we obtain a family of operators Hm, which we
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call homogeneous Schrödinger operators. They are also homogeneous of degree −2.
One can compute all basic quantities for these operators using special functions –
more precisely, Bessel-type functions and the Gamma function.

The operators Hm are defined only for Rem > −1. We conjecture that they
cannot be extended to the left of the line Rem = −1 in the sense described in our
paper. This conjecture was stated in [2]. It has not been proven or disproved so far.

Finally, Section 4 is based on my joint work with Richard [5], and also on [3].
It describes more general Schrödinger operators with the inverse square potentials.
They are obtained by mixing the boundary conditions. These operators in general
are no longer homogeneous, because their homogeneity is (weakly) broken by their
boundary condition – hence the name almost homogeneous Schrödinger operators.
They can be organized in two families Hm,κ and Hν

0 .

It turns out that there exists a close relationship between the operators from
Section 4 and from Section 2: they are similar to one another. In particular, they
have the same point spectrum.

Almost homogeneous Schrödinger operators in the self-adjoint case have been
described in the literature before, see, e.g., [7]. However, the non-self-adjoint case
seems to have been first described in [5]. A number of new exact formulas about
these operators is contained in [2, 5, 10] and [3].

Let us also mention one amusing observation, which seems to be original,
about self-adjoint extensions of

−∂2
x +

(
− 1

4
+ α

) 1

x2
.

The “renormalization group” acts on the set of these extensions, as described in
Table 1 after Proposition 15. Depending on α ∈ R, we obtain 4 “phases” of the
problem. Some analogies to the condensed matter physics are suggested.

2. Toy model of renormalization group

Consider the Hilbert space H = L2[0,∞[ and the operator X

Xf(x) := xf(x).

Let m ∈ C, λ ∈ C ∪ {∞}. Following [3], we consider a family of operators
formally given by

Hm,λ := X + λ|xm
2 〉〈xm

2 |. (1)

In the perturbation |xm
2 〉〈xm

2 | we use the Dirac ket-bra notation, hopefully
self-explanatory. Unfortunately, the function x �→ x

m
2 is never square integrable.

Therefore, this perturbation is never an operator. It can be however understood
as a quadratic form. We will see below how to interpret (1) as an operator.

If −1 < Rem < 0, the perturbation |xm
2 〉〈xm

2 | is form bounded relatively
to X , and then Hm,λ can be defined by the form boundedness technique. The
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perturbation is formally rank one. Therefore,

(z −Hm,λ)
−1

= (z −X)−1 +

∞∑
n=0

(z −X)−1|xm
2 〉(−λ)n+1〈xm

2 |(z −X)−1|xm
2 〉n〈xm

2 |(z −X)−1

= (z −X)−1 +
(
λ−1 − 〈xm

2 |(z −X)−1|xm
2 〉
)−1

(z −X)−1|xm
2 〉〈xm

2 |(z −X)−1.

It is an easy exercise in complex analysis to compute

〈xm
2 |(z −X)−1|xm

2 〉 =
∫ ∞

0

xm(z − x)−1dx = (−z)m
π

sinπm
.

Therefore, the resolvent of Hm,λ can be given in a closed form:

(z−Hm,λ)
−1 = (z−X)−1+

(
λ−1−(−z)m

π

sinπm

)−1

(z−X)−1|xm
2 〉〈xm

2 |(z−X)−1.

The rhs of the above formula defines a function with values in bounded operators
satisfying the resolvent equation for all−1 < Rem < 1 and λ ∈ C∪{∞}. Therefore,
the method of pseudoresolvent [8] allows us to define a holomorphic family of closed
operators Hm,λ. Note that Hm,0 = X .

The case m = 0 is special: H0,λ = X for all λ. One can however introduce
another holomorphic family of operators Hρ

0 for any ρ ∈ C ∪ {∞} by

(z −Hρ
0 )

−1 = (z −X)−1 −
(
ρ + ln(−z)

)−1
(z −X)−1|x0〉〈x0|(z −X)−1.

In particular, H∞
0 = X .

Let R % τ �→ Uτ be the group of dilations on L2[0,∞[, that is

(Uτf)(x) = eτ/2f(eτx).

We say that B is homogeneous of degree ν if

UτBU−1
τ = eντB.

E.g., X is homogeneous of degree 1 and |xm
2 〉〈xm

2 | is homogeneous of degree 1+m.

The group of dilations (“the renormalization group”) acts on our operators
in a simple way:

UτHm,λU
−1
τ = eτHm,eτmλ,

UτH
ρ
0U−1

τ = eτHρ+τ
0 .

The essential spectrum of Hm,λ and Hν
0 is [0,∞[. The point spectrum is more

intricate, and is described by the following theorem:
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Theorem 1.

1. z ∈ C\[0,∞[ belongs to the point spectrum of Hm,λ iff

(−z)−m = λ
π

sinπm
.

2. Hρ
0 possesses an eigenvalue iff −π < Im ρ < π, and then it is z = −eρ.

For a given pair (m,λ) all eigenvalues form a geometric sequence that lies on
a logarithmic spiral, which should be viewed as a curve on the Riemann surface
of the logarithm. Only its “physical sheet” gives rise to eigenvalues. For m which
are not purely imaginary, only a finite piece of the spiral is on the “physical sheet”
and therefore the number of eigenvalues is finite.

If m is purely imaginary, this spiral degenerates to a half-line starting at the
origin.

If m is real, the spiral degenerates to a circle. But then the operator has at
most one eigenvalue.

The following theorem about the number of eigenvalues of Hm,λ is proven
in [5]. It describes an interesting pattern of “phase transitions” when we vary the
parameter m. In this theorem, we denote by specp(A) the set of eigenvalues of an
operator A and by #X the number of elements of the set X .

Theorem 2. Let m = mr + imi ∈ C\{0} with |mr| < 1.

(i) Let mr = 0.

(a) If ln(|ς|)
mi
∈]− π, π[, then #specp(Hm,λ) =∞,

(a) if
ln(|λ π

sinπm |)
mi

�∈]− π, π[ then #specp(Hm,λ) = 0.

(ii) If mr �= 0 and if N ∈ N satisfies N <
m2

r+m2
i

|mr| ≤ N + 1, then

#specp(Hm,λ) ∈ {N,N + 1}.

3. Homogeneous Schrödinger operators

Let α ∈ C. Consider the differential expression

Lα = −∂2
x +

(
− 1

4
+ α

) 1

x2
.

Lα is homogeneous of degree −2. Following [2], we would like to interpret Lα as a
closed operator on L2[0,∞[ homogeneous of degree −2.

Lα, and closely related operators Hm that we introduce shortly, are interest-
ing for many reasons.

• They appear as the radial part of the Laplacian in all dimensions, in the de-
composition of Aharonov–Bohm Hamiltonian, in the membranes with conical
singularities, in the theory of many body systems with contact interactions
and in the Efimov effect.

´
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• They have rather subtle and rich properties illustrating various concepts of
the operator theory in Hilbert spaces (e.g., the Friedrichs and Krein exten-
sions, holomorphic families of closed operators).
• Essentially all basic objects related to Hm, such as their resolvents, spectral

projections, Møller and scattering operators, can be explicitly computed.
• A number of nontrivial identities involving special functions, especially from
the Bessel family, find an appealing operator-theoretical interpretation in
terms of the operators Hm. E.g., the Barnes identity leads to the formula for
Møller operators.

We start the Hilbert space theory of the operator Lα by defining its two naive
interpretations on L2[0,∞[:

1. The minimal operator Lmin
α : We start from Lα on C∞

c ]0,∞[, and then we
take its closure.

2. The maximal operator Lmax
α : We consider the domain consisting of all f ∈

L2[0,∞[ such that Lαf ∈ L2[0,∞[.

We will see that it is often natural to write α = m2. Let us describe basic
properties of Lmax

m2 and Lmin
m2 :

Theorem 3.

1. For 1 ≤ Rem, Lmin
m2 = Lmax

m2 .

2. For −1 < Rem < 1, Lmin
m2 � Lmax

m2 , and the codimension of their domains is
2.

3. (Lmin
α )∗ = Lmax

ᾱ . Hence, for α ∈ R, Lmin
α is Hermitian.

4. Lmin
α and Lmax

α are homogeneous of degree −2.

Let ξ be a compactly supported cutoff equal 1 around 0.

Let −1 ≤ Rem. It is easy to check that x
1
2+mξ belongs to DomLmax

m2 . We
define the operator Hm to be the restriction of Lmax

m2 to

DomLmin
m2 + Cx

1
2+mξ.

The operators Hm are in a sense more interesting than Lmax
m2 and Lmin

m2 :

Theorem 4.

1. For 1 ≤ Rem, Lmin
m2 = Hm = Lmax

m2 .

2. For −1 < Rem < 1, Lmin
m2 � Hm � Lmax

m2 and the codimension of the domains
is 1.

3. H∗
m = Hm̄. Hence, for m ∈]− 1,∞[, Hm is self-adjoint.

4. Hm is homogeneous of degree −2.
5. specHm = [0,∞[.
6. {Rem > −1} % m �→ Hm is a holomorphic family of closed operators.

The theorem below is devoted to self-adjoint operators within the family Hm.

Theorem 5.

1. For α ≥ 1, Lmin
α = H√

α is essentially self-adjoint on C∞
c ]0,∞[.
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2. For α < 1, Lmin
α is Hermitian but not essentially self-adjoint on C∞

c ]0,∞[.
It has deficiency indices 1, 1.

3. For 0 ≤ α < 1, the operator H√
α is the Friedrichs extension and H−

√
α is

the Krein extension of Lmin
α .

4. H 1
2
is the Dirichlet Laplacian and H− 1

2
is the Neumann Laplacian on a half-

line.
5. For α < 0, Lmin

α has no homogeneous selfadjoint extensions.

Various objects related to Hm can be computed with help of functions from
the Bessel family. Indeed, we have the following identity

x− 1
2

(
− ∂2

x +
(
− 1

4
+ α

) 1

x2
± 1

)
x

1
2 = −∂2

x −
1

x
∂x +

(
− 1

4
+ α

) 1

x2
± 1,

where the rhs defines the well-known (modified) Bessel equation.
One can compute explicitly the resolvent of Hm:

Theorem 6. Denote by Rm(−k2;x, y) the integral kernel of the operator (k2 +
Hm)−1. Then for Re k > 0 we have

Rm(−k2;x, y) =

{√
xyIm(kx)Km(ky) if x < y,
√

xyIm(ky)Km(kx) if x > y,

where Im is the modified Bessel function and Km is the MacDonald function.

The operators Hm are similar to self-adjoint operators. Therefore, they pos-
sess the spectral projection onto any Borel subset of their spectrum [0,∞[. In
particular, below we give a formula for the spectral projection of Hm onto the
interval [a, b]:

Proposition 7. For 0 < a < b <∞, the integral kernel of 1[a,b](Hm) is

1[a,b](Hm)(x, y) =

∫ √
b

√
a

√
xyJm(kx)Jm(ky)k dk,

where Jm is the Bessel function.

One can diagonalize the operators Hm in a natural way, using the so-called
Hankel transformation Fm, which is the operator on L2[0,∞[ given by(

Fmf
)
(x) :=

∫ ∞

0

Jm(kx)
√

kxf(x)dx . (2)

Theorem 8. Fm is a bounded invertible involution on L2[0,∞[ diagonalizing Hm,
more precisely

FmHmF−1
m = X2.

It satisfies FmA = −AFm, where

A =
1

2i
(x∂x + ∂xx)

is the self-adjoint generator of dilations.

´
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It turns out that the Hankel transformation can be expressed in terms of the
generator of dilations. This expression, together with the Stirling formula for the
asymptotics of the Gamma function, proves the boundedness of Fm.

Theorem 9. Set If(x) = x−1f(x−1), Ξm(t) = ei ln(2)t
Γ(m+1+it

2 )

Γ(m+1−it
2 )

.

Then

Fm = Ξm(A)I.
Therefore, we have the identity

Hm := Ξ−1
m (A)X−2Ξm(A). (3)

(Result obtained independently by Bruneau, Georgescu, and myself in [2],
and by Richard and Pankrashkin in [10].)

The operators Hm generate 1-parameter groups of bounded operators. They
possess scattering theory and one can explicitly compute their Møller (wave) op-
erators and the scattering operator.

Theorem 10. The Møller operators associated to the pair Hm, Hk exist and

Ω±
m,k := lim

t→±∞
eitHme−itHk = e±i(m−k)π/2FmFk = e±i(m−k)π/2 Ξk(A)

Ξm(A)
.

The formula (3) valid for Rem > −1 can be used as an alternative definition
of the family Hm also beyond this domain. It defines a family of closed operators
for the parameter m that belongs to

{m | Rem �= −1,−2, . . .} ∪ R. (4)

Their spectrum is always equal to [0,∞[ and they are analytic in the interior of (4).
In fact, Ξm(A) is a unitary operator for all real values of m. Therefore, for

m ∈ R, (3) is well defined and self-adjoint.
Ξm(A) is bounded and invertible also for all m such that Rem �= −1,−2, . . . .

Therefore, formula (3) defines an operator for all such m.
One can then pose various questions:

• What happens with these operators along the lines Rem = −1,−2, . . . ?
• What is the meaning of these operators to the left of Re = −1? (They are
not differential operators!)

Let us describe a certain precise conjecture about the family Hm. In order to
state it we need to define the concept of a holomorphic family of closed operators.

The definition (or actually a number of equivalent definitions) of a holomor-
phic family of bounded operators is quite obvious and does not need to be recalled.
In the case of unbounded operators the situation is more subtle, and is described,
e.g., in [8], see also [6].

Suppose that Θ is an open subset of C, H is a Banach space, and Θ %
z �→ H(z) is a function whose values are closed operators on H. We say that
this is a holomorphic family of closed operators if for each z0 ∈ Θ there exists a
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neighborhood Θ0 of z0, a Banach space K and a holomorphic family of injective
bounded operators Θ0 % z �→ B(z) ∈ B(K,H) such that RanB(z) = D(H(z)) and

Θ0 % z �→ H(z)B(z) ∈ B(K,H)
is a holomorphic family of bounded operators.

We have the following practical criterion:

Theorem 11. Suppose that {H(z)}z∈Θ is a function whose values are closed op-
erators on H. Suppose in addition that for any z ∈ Θ the resolvent set of H(z)
is nonempty. Then z �→ H(z) is a holomorphic family of closed operators if and
only if for any z0 ∈ Θ there exists λ ∈ C and a neighborhood Θ0 of z0 such that λ
belongs to the resolvent set of H(z) for z ∈ Θ0 and z �→ (H(z)− λ)−1 ∈ B(H) is
holomorphic on Θ0.

The above theorem indicates that it is more difficult to study holomorphic
families of closed operators that for some values of the complex parameter have
an empty resolvent set. We have the following conjecture (formulated as an open
question in [2]), so far unproven:

Conjecture 12. It is impossible to extend

{Rem > −1} % m �→ Hm

to a holomorphic family of closed operators on a larger connected open subset of C.

4. Almost homogeneous Schrödinger operators

For −1 < Rem < 1 the codimension of Dom(Lmin
m2 ) in Dom(Lmax

m2 ) is two. There-
fore, following [5], one can fit a 1-parameter family of closed operators in between

Lmin
m2 in Lmax

m2 , mixing the boundary condition x
1
2+m and x

1
2−m. These operators in

general are no longer homogeneous – their homogeneity is broken by the boundary
condition. We will say that they are almost homogeneous.

More precisely, for any κ ∈ C ∪ {∞} let Hm,κ be the restriction of Lmax
m2 to

the domain

Dom(Hm,κ) =
{
f ∈ Dom(Lmax

m2 ) | for some c ∈ C,

f(x)− c
(
x1/2−m + κx1/2+m

)
∈ Dom(Lmin

m2 ) around 0
}
, κ �=∞;

Dom(Hm,∞) =
{
f ∈ Dom(Lmax

m2 ) | for some c ∈ C,

f(x)− cx1/2+m ∈ Dom(Lmin
m2 ) around 0

}
.

The case m = 0 needs a special treatment. For ν ∈ C ∪ {∞}, let Hν
0 be the

restriction of Lmax
0 to

Dom(Hν
0 ) =

{
f ∈ Dom(Lmax

0 ) | for some c ∈ C,

f(x)− c
(
x1/2 lnx + νx1/2

)
∈ Dom(Lmin

0 ) around 0
}
, ν �=∞;

´
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Dom(H∞
0 ) =

{
f ∈ Dom(Lmax

0 ) | for some c ∈ C,

f(x)− cx1/2 ∈ Dom(Lmin
0 ) around 0

}
.

Here are the basic properties of almost homogeneous Schrödinger operators.

Proposition 13.

1. For any |Re(m)| < 1, κ ∈ C ∪ {∞}
Hm,κ = H−m,κ−1.

2. H0,κ does not depend on κ, and these operators coincide with H∞
0 .

3. We have

UτHm,κU−τ = e−2τHm,e−2τmκ,

UτH
ν
0 U−τ = e−2τHν+τ

0 .

In particular, only

Hm,0 = H−m, Hm,∞ = Hm, H∞
0 = H0

are homogeneous.

The following proposition describes self-adjoint cases among these operators.

Proposition 14.
H∗

m,κ = Hm̄,κ̄ and Hν∗
0 = H ν̄

0 .

In particular,

(i) Hm,κ is self-adjoint for m ∈] − 1, 1[ and κ ∈ R ∪ {∞}, and for m ∈ iR and
|κ| = 1.

(ii) Hν
0 is self-adjoint for ν ∈ R ∪ {∞}.

The essential spectrum of Hm,κ and Hν
0 is always [0,∞[. The following propo-

sition describes the point spectrum in the self-adjoint case.

Proposition 15.

1. If m ∈]− 1, 1[ and κ ≥ 0 or κ =∞, then Hm,κ has no eigenvalues.
2. If m ∈]− 1, 1[ and κ < 0, then Hm,κ has a single eigenvalue

at −4
( Γ(m)
κΓ(−m)

) 1
m .

3. If m ∈ iR and |κ| = 1, then Hm,κ has an infinite sequence of eigenvalues

accumulating at −∞ and 0. If m = imI and eiα = κΓ(−imI)
Γ(imI)

, then these

eigenvalues are −4 exp(−α+2πn
mI

), n ∈ Z.

It is interesting to analyze how the set of self-adjoint extensions of the Her-
mitian operator

Lmin
α = −∂2

x +
(
− 1

4
+ α

) 1

x2

depends on the real parameter α. Self-adjoint extensions form a set isomorphic
either to a point or to a circle. The “renormalization group” acts on this set by a
continuous flow, as described by Proposition 13. This flow may have fixed points.
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The following table describes the various “phases” of the theory of self-adjoint
extensions of Lmin

α . To each phase I give a name inspired by condensed matter
physics. The reader does not have to take these names very seriously, however I
suspect that they have some deeper meaning.

1 ≤ α “gas” point
Unique fixed point: Friedrichs
extension = Krein extension.

0 < α < 1 “liquid” circle

Two fixed points: Friedrichs and
Krein extension.
Ren. group flows from Krein to
Friedrichs.
On one semicircle of non-fixed
points all have one bound state;
on the other all have no bound
states.

α = 0
“liquid-solid
phase transition”

circle

Unique fixed point: Friedrichs
extension = Krein extension.
Ren. group flows from Krein to
Friedrichs.
Non-fixed points have one bound
state.

α < 0 “solid” circle

No fixed points.
Ren. group rotates the circle.
All have infinitely many bound
states.

Table 1

Table 1 can be represented by the picture shown in Figure 1, which is self-explan-
atory.

K=F

F

K

K=F

0 1

α

solid
phase

transition
liquid gas

Figure 1
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There exists a close link between almost homogeneous Schrödinger operators
described in this section and the “toy model of renormalization group” described in
Section 2. It turns out that the corresponding operators are similar to one another.

Define the unitary operator

(If)(x) := x− 1
4 f(2
√

x).

Its inverse is

(I−1f)(x) :=
(y

2

) 1
2

f
(y2

4

)
.

Note that

I−1XI =
X2

4
, I−1AI =

A

2
.

We change slightly notation: the operators Hm, Hm,κ and Hν
0 of this section

will be denoted H̃m, H̃m,κ and H̃ν
0 . Recall that in (2) we introduced the Hankel

transformation Fm, which is a bounded invertible involution satisfying

FmH̃mF−1
m = X2,

FmAF−1
m = −A.

Recall also that in Section 2 we introduced the operators Hm,λ and Hρ
0 .

The following theorem is proven in [3]:

Theorem 16.

1. If λ π
sin(πm) = κ Γ(m)

Γ(−m) , then the operators Hm,λ are similar to H̃m,κ:

F−1
m I−1Hm,λIFm =

1

4
H̃m,κ,

2. If ρ = −2ν, then the operators Hρ
0 are similar to H̃ν

0 :

F−1
m I−1Hρ

0 IFm =
1

4
H̃ν

0 ,
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