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Abstract

In this note, we discuss the infrared problem in quantum electrodynamics and
its resolution via Faddeev–Kulish dressings. We begin by connecting the classical
definition of radiation, as presented in standard electrodynamics textbooks, with
quantum field-theoretic expressions. We then analyze the infrared divergences that
arise in Feynman diagrams and demonstrate that their exponentiation leads to a
trivial S-operator when acting on the standard Fock space built from states with
a finite number of external photons. Next, we construct Faddeev–Kulish dressings
and show how they eliminate infrared divergences. Finally, we briefly describe how
the soft theorems predict a measurable phenomenon of the memory effect.

Introduction
In undergraduate physics courses, it is usually convenient to distinguish between an

electron (thought of as a ball with electric charge e and mass m0 and electric field which
it produces. However, introduction of the concept of a charged particle stripped from its
electric field leads to two very severe problems. Only if we realize that charged particles
separated from their electro-magnetic field do not exists in real world, we can make sense
of QFT results!

First issue is the famous problem of infinite energy of an electron with its own electric
field [1]. Since distance from electron to itself, r, is zero, interaction energy is infinite,
U = limr→0

e2

4π
1
r
= ∞. Since “E = mc2”, it is tempting to conclude that electrons have

infinite mass m0 + U/c2 - so they cannot move. But this is clearly nonsense - mass of
an electron is 0.5 GeV. We need to renormalize the mass - i.e. say that the parameter
m0 = 0.5 GeV/c2 − U/c2 - that is, the physical electron with mass 0.5 GeV is the ball
with electric charge e and mass parameter m0 together with its own Coulomb field.

In these notes, we will focus on the second problem. When a charged particle "wiggles"
or accelerates, it sources an electro-magnetic field disturbance δFµν which decays slowly
at infinity, as δFµν ∼ O(r−1). Such electromagnetic modes are called “radiation.”

Consider a scattering event involving charged particles (with renormalized mass -
assume that we have already taken care of the Coulombic self-interaction of particles). In
every non-trivial scattering event, the charged particles accelerate (so that final velocities
are different than initial velocities), and hence, they produce radiation. Therefore, a
non-trivial scattering event of charged particles with no radiation both at the beginning
and in the end of an experiment is not possible! Quantum-mechanically, given an initial
state of n charged particles (without photons) |p1, . . . , pn⟩ and final state of n′ charged
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particles with different momenta (and without photons) |p′1, . . . , p′n′⟩ , the following S-
matrix element vanishes:

⟨p′1, . . . , p′n′| Ŝ |p1, . . . , pn⟩ = 0. (0.1)

This suggests that the most convenient basis for QED S-matrix is not comprised of single-
particle states, but rather by dressed states describing charged particles together with the
acceleration radiation (known also as bremsstrahlung).

In the first section we will show that the standard free QFT modes of electromagnetic
field coincide with the definition of radiation that can be found in textbooks on classical
electrodynamics [1].

In the second section we shall focus on the structure divergences of QED Feyn-
man diagrams in the limit as energy of a single external photon goes to zero (we say
that the external photon is soft). It turns out that the behavior of amplitudes in
this soft limit contains a lot of interesting information about the theory. Next, in the
second section, we will show how the soft (infra-red) divergences exponentiate for dia-
grams corresponding to the above-discussed p1, . . . , pn → p′1, . . . , p

′
n′ scattering, leading

to ⟨p′1, . . . , p′n′| Ŝ |p1, . . . , spn⟩ ∼ exp(−∞) = 0. In the third section, we will discuss the
construction of asymptotic states that contain acceleration radiation, and show that the
corresponding S-matrix is non-trivial. A detailed, self-contained analysis of IR divergences
in QED can be also found in the classic textbook [2].

At the end of this note, we discuss the simplest example of so-called “memory effects”
[3–5].

0.1 Basic conventions and gauge-fixing

The main subject of study in this note is a theory of U(1) gauge field Aµ coupled to
matter fields Φ, with Lagrangian

L = −1

4
FµνF

µν + Lmatter(Φ, A). (0.2)

For computational simplicity, throughout these notes, Feynman-diagrammatic calcula-
tions will be performed, depending on the situation, for either scalar QED, corresponding
to

Lmatter = −(Dµϕ)
†(Dµϕ) + V (ϕ†ϕ), (0.3)

with arbitrary potential function V dependent on U(1)-invariant variable ϕ†ϕ, or spinor
QED, corresponding to:

Lmatter = ψ̄(i /D −m)ψ. (0.4)

In the end of each calculation, we will generalize our results to an arbitrary matter coupled
to the U(1) gauge field.

We will work in the Lorentz gauge, ∂µAµ = 0, supplemented by temporal gauge
condition, A0 = 0. We can always do this, since, given Ãµ, we take Aµ = Ãµ + ∂µλ with
λ satisfying

∂µ∂
µλ = −∂µÃµ. (0.5)
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The Lorentz condition fixes U(1) transformations only up to functions satisfying the
wave equation, ∂µ∂µλ′ = 0. Then, equations of motion for Aµ are equivalent to a non-
homogenous Klein-Gordon equation

□Aµ = Jµ, (0.6)

with current Jµ = ∂Lmatter
∂Aµ

.
In the Lorentz gauge, we can also fix the residual gauge freedom by imposing the

temporal gauge condition:
A0 = 0, (0.7)

since, given Ã0 ̸= 0, we can choose λ′ such that ∂0λ′ = −Ã0 and ∂2λ′ = 0.1

1 What is radiation? - radiative phase space of elec-
tromagnetism

In undergraduate textbooks, one usually defines electomagnetic radiation as the part
of the Poynting vector S⃗ = E⃗× B⃗ that decays as “ 1

r
” at infinity, r → ∞ (r is the standard

radial distance from the origin of a chosen coordinate system). But this definition is not
elegant. Since S⃗ is not a Lorentz-invariant object, it is not directly measurable.

For instance, consider a Coulomb field of a point charge e. In the rest frame of the
charge E⃗ = e

4π
r⃗
r3

, B⃗ = 0, and hence E⃗ × B⃗ = 0. However, if we make a Lorentz boost,
both electric and magnetic fields in the new frame are nonzero E⃗ ′ ̸= 0 ̸= B⃗′, and E⃗ ′ × B⃗′.

We clearly need a more geometric way to properly describe electromagnetic radiation.
To prepare ourselves for a proper definition, let us first briefly review causal structure of
Minkowski spacetime.

1.1 Aspects of geometry of Minkowski spacetime

Let (t, r, θ, φ) be the standard spherical coordinates in Minkowski space. The Minkowski
metric is:

η = −dt2 + dr2 + r2
◦
q, (1.1)

where ◦
q is the metric on the unit round sphere, ◦

q = dθ2 + sin2 θdφ2. Introduce advanced
and retarded time coordinates, u and v, as:

v = t+ r, u = t− r. (1.2)

In these coordinates, the Minkowski metric reads

η = −dv2 − 2dvdr + r2
◦
q (1.3)

= −du2 + 2dudr + r2
◦
q (1.4)

= −dudv +
1

4
(u− v)2

◦
q. (1.5)

1With A0 = 0, Lorentz condition reduces to the Coulomb condition, however, now the residual gauge
transformations are time-independent (in Coulomb gauge there are more residual gauge transformations
since they are generically time-dependent).
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The range of u, v-coordinates is −∞ < u ≤ v <∞.
We will also frequently use stereographic coordinates on S2:

z = eiφ cot(θ/2), z̄ = e−iφ cot(θ/2). (1.6)

In these coordinates
◦
q =

4dzdz̄

(1 + zz̄)2
≡ 2qzz̄dzdz̄, (1.7)

where qzz̄ = 2
(1+zz̄)2

. The inverse metric has two nonzero components, qzz̄ = qz̄z = 1
qzz̄

=
1
2
(1 + zz̄)2. Volume form on S2 is

volS2 = sin(θ)dθ ∧ dφ = iqzz̄dz ∧ dz̄. (1.8)

1.1.1 Penrose diagram for Minkowski space

Structure of the spacetime at “r → ∞” can be understood by introducing yet another
set of coordinates:

U = arctan(u), V = arctan(v), (1.9)
with −π

2
< U ≤ V ≤ +π

2
. Then

η = − 1

cos2 U cos2 V

(
dUdV +

1

4
sin2(U − V )

◦
q

)
≡ Ω2η̂, (1.10)

where Ω = (cosU cosV )−1 and metric η̂ is regular at U, V → ±π/2:

η̂ = −dUdV +
1

4
sin2(U − V )

◦
q. (1.11)

It is well-known that Weyl-rescaling a metric gµν 7→ Ω2(x)gµν preserves null (lightlike)
geodesics. In our simple case, lightlike trajectories are given by u = const. or v = const. for
Minkowski metric, and U = const. or V = const. in the rescaled metric η̂. Hence, η̂ yields
the same causal structure as η. Since coordinates U and V have finite range, suppressing
angular coordinates θ, φ, we can draw a finite-size diagram of the entire spacetime:

Figure 1: Penrose diagram of Minkowski spacetime. Red lines represent lines of constant
r, and blue lines represent constant time slices t = const. Every point on the diagram
represents a 2-sphere (of conformally-rescaled radius 1

4
sin2(U − V )).
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Point i+ = (U = π/2, V = π/2) is called "future infinity", and it is where all timelike
curves end. In particular, we achieve it in the limit t → ∞ with fixed r. Similarly,
"past infinity" i− = (U = −π/2, V = −π/2) corresponds to the limit t → −∞ with
fixed r. Spacetime boundary J + called "future null infinity" is J + = {−π/2 < U <
π/2, V = π/2}. It is reached in the limit r → ∞ with u = t − r = const. fixed. Past
null infinity J − = {U = −π/2,−π/2 < V < π/2}, is reached in the limit r → ∞ with
v = t + r = const. Line U = V is the "middle" of space, i.e., r = 0. We also introduced
notation J +

+ and J +
− for for future and past boundary of J + (both J +

± are spheres).
Similarly, J −

± are future and past boundary of J −. Even though on the above diagram
it seems that spheres J +

− , i0, J −
+ coincide, it is important to distinguish between them in

order to impose antipodal boundary conditions [5,6]. Conformal diagram nicely illustrates
causal structure of spacetime, but it does not preserve distances between points - region
near i0 is very large (it is infinite) even though on the diagram it looks small.

It is convenient to unfold the above diagram to represent antipodal points on the
spheres. Regions J ± are of particular interest to us, since in a free theory, massless
particles (and hence, radiation) follow lines of unit slope and cross points on the spheres
at J − (J +) at retarded (advanced) times v (u). Massive particles never reach J ±.
Timelike geodesics start at i− and end on i+. This is illustrated on the following diagram:

Figure 2: Penrose diagram of Minkowski space, where two points on the diagram represent
a single sphere S2. For example, points P and Q are antipodal points on a 2-sphere. Red
and green lines illustrate timelike trajectories. Wiggly blue line represents a lightlike
trajectory.
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1.2 Conventions for 4-momenta and polarizations

Let us now spell out our conventions for free field expansions and introduce useful
parametrizations of 4-momenta and polarization vectors. Free U(1) gauge field can be
written as:

Aµ(x) =

∫
d̃q
(
aµ(q⃗)e

iq·x + a†µ(q⃗)e
−iq·x) , (1.12)

where aµ(q⃗) =
∑

α=± aα(q⃗)ε
α
µ(q⃗), and εαµ(q⃗) are circular polarization vectors, and d̃q =

d3q⃗
2|q⃗|(2π)3 is a Lorentz-invariant measure of integration over photon momenta. In quan-
tum theory, a†α(q⃗) is the complex conjugate of the annihilation operator aα(q⃗) satisfying
canonical commutation relations, [aα(q⃗), a†β(q⃗

′)] = (2π)32|q⃗|δ3(q⃗ − q⃗′). In classical theory
a†α(q⃗) is simply complex conjugate of the Fourier mode aα(q⃗). We will not introduce a
separate notation for classical fields and quantum field operators. It should be clear from
the context to which of these two objects we are referring to in a given paragraph.

One can parametrize null momenta qµ as:

qµ = (q0, q1, q2, q3)

= ω(1, sin θ cosφ, sin θ sinφ, cos θ)

=
ω

1 + ww̄
(1 + ww̄, w + w̄,−i(w − w̄), 1− ww̄) ≡

√
2ω

1 + ww̄
q̂µ,

where q0, q1, q2, q3 are the standard components in cartesian coordinate system (t, x1, x2, x3).
We also defined:

q̂µ(w, w̄) =
1√
2
(1 + ww̄, w + w̄ − i(w − w̄), 1− ww̄). (1.13)

Given a photon with 4-velocity qµ, ω is the frequency of the photon measured by an
observer moving with 4-velocity uµ = (∂t)

µ = (∂u)
µ, namely ω = qµu

µ. Given q̂(w, w̄),
circular polarization vectors are defined as:

εµ+(w, w̄) = ∂wq̂
µ − f(q)qµ =

1√
2
(w̄, 1,−i,−w̄)− f(q)qµ,

εµ−(w, w̄) = ∂w̄q̂
µ − g(q)qµ =

1√
2
(w, 1,+i,−w)− g(q)qµ, (1.14)

with functions f(q) = f(ω,w, w̄), g(q) = g(ω,w, w̄) chosen so that polarization vectors
have zero u-components, εu+ = 0 = εu− (since we want to work in the temporal gauge).
They obey the standard orthogonality relations:

ηµν(ε
µ
α)

∗ενβ = δαβ, εµα(w, w̄)q̂µ(w, w̄) = 0. (1.15)

We will use the following volume form on J +:

du ∧ sin θdθ ∧ dφ = du ∧ iqzz̄dz ∧ dz̄. (1.16)

1.3 Radiative phase space

Let us now define radiation as part of electromagnetic field that carries energy to J +.
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1.3.1 Energy flux

Energy flux of electromagnetic field through a codimension 1 spacelike surface Σ, as
seen by observer with 4-velocity ξµ, is

Fξ,Σ[A] =

∫
Σ

d3x
√
hnµTµνξ

ν , (1.17)

where h is the determinant of the metric induced on Σ, nµ is the unit normal to Σ, and
Tµν is the electromagnetic stress tensor:

Tµν(x) = − 2√
−g

δ

δgµν(x)

∫ √
−g
(
−1

4
FρσFκλg

ρσgκλ
)
= FµρFνσg

ρσ − 1
4
FρσF

ρσgµν . (1.18)

We can take the limit of Σ approaching J +, with an observer moving near J + with
4-velocity ξµ∂µ = ∂t =

∂u
∂t
∂u +

∂r
∂t
∂r = ∂u. Then nµ = (∂u)

µ, and flux through J + is:

FJ+ = lim
r→∞

∫ ∞

−∞
du(∂u)

µ

∫
S2

r2volS2 Tµν(∂u)
ν , (1.19)

where volS2 is the volume form on the unit round sphere. The uu-component of the stress
tensor is:

Tuu = FuρFuση
ρσ =

2

r2
qzz̄FuzFuz̄ (1.20)

since ηuu = 0, ηrz = ηrz̄ = 0 and ηzz̄ = 1
r2
qzz̄. The factor of r−2qzz̄ cancels with r2qzz̄ from

the volume form volS2 , and we obtain:

FJ+ = 2

∫ ∞

−∞
du

∫
C
d2z lim

r→∞
(FuzFuz̄). (1.21)

1.3.2 Asymptotic expansions

Requiring FJ+ to be finite suggests the following fall-off conditions at J +:

FuA(u, r, z, z̄) = F
(0)
uA (u, r, z, z̄) +

1

r
F

(1)
uA (u, r, z, z̄) +O(r−2), (1.22)

with radiative degrees of freedom encoded in F (0)
uA (u, r, z, z̄), with index A = z, z̄ running

over stereographic coordinates.
In retarded coordinates u, r, z, z̄, temporal gauge condition reads:

0 = At =
∂u

∂t
Au +

∂r

∂t
Ar = Au. (1.23)

Therefore:
FuA(u, r, z, z̄) = ∂uAA(u, r, z, z̄), (1.24)

which implies:

AA(u, r, z, z̄) = A
(0)
A (u, z, z̄) +

1

r
A

(1)
A (u, z, z̄) +O(r−2). (1.25)
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Radial component Ar(u, r, zz̄) is determined by the Lorentz gauge condition, which (gener-
ically, in curved spacetime) reads ∇µAµ = 0.

Fall-off condition for Ar(u, r, z, z̄) can be determined from finiteness of the electric
charge. Total electric charge of sources of radiation that reached J + is defined as:

Q =

∫
J+
+

⋆F =

∫
J+
+

Fur ⋆ du ∧ dr =

∫
S2

Fur r
2 sin(θ)dθ ∧ dφ. (1.26)

It is finite provided that Fur = O(r−2). Since Fur = ∂uAr − ∂rAu = ∂uAr + O(r−2), we
have:

Ar =
1

r2
A(2)

r (u, z, z̄) +O(r−3). (1.27)

Coefficients A(k≥2)
r are fully determined by ∇µA

µ = 0. Radiative modes are fully described
by two functions on J +, A(0)

z (u, z, z̄), A(0)
z̄ (u, z, z̄).

1.3.3 Radiative modes from free-field expansion

Let us now show that fall-off conditions (1.25), (1.27) are fully consistent with the
standard free field expansion in plane waves:

Aµ(x) =

∫
d̃k
(
aµ(k⃗)e

ik·x + a†µ(k⃗)e
−ik·x

)
, (1.28)

Writing k⃗ in spherical coordinates, k⃗ = ω(sin θ cosφ, sin θ sinφ, cos θ), where θ is the angle
between k⃗ and x⃗ = rx̂, we obtain:

Aµ(x) =

∫ ∞

0

ωdω

2(2π)3

∫ 1

−1

d(cos θ)

∫ 2π

0

dφ
(
aµ(k⃗)e

−iωu−iωr(1−cos(θ)) + h.c.
)
. (1.29)

At r → ∞ we can use stationary phase approximation. Then, the integral over θ, φ
localizes at θ = 0 - we can put θ = 0 everywhere except in the rapidly changing exponents.
At θ = 0 vector k̂ coincides with the direction of x⃗. Let us denote x⃗ = rx̂. Then, we can
write

Aµ(x)
r→∞∼

∫ ∞

0

ωdω

8π2

(
aµ(ωx̂)

∫ 1

−1

d(cos θ)e−iωu−iωr(1−cos(θ)) + h.c.
)
. (1.30)

In the stationary phase approximation
∫ 1

−1
d(cos θ)e−iωr(1−cos(θ)) ≈ 1

iωr
, and thus

Aµ(x)
r→∞∼ 1

8π2i

1

r

∫ ∞

0

dω
(
aµ(ωx̂)e

−iωu − a†µ(ωx̂)e
iωu
)
. (1.31)

Because circular polarizations εαµ(x̂) do not have u, r-components, εαr (x̂) = 0 = εαu(x̂),
result (1.31) implies that Ar and Au decay at r → ∞ faster than 1/r, which is consistent
with conditions Au = 0 and Ar ∼ O(r−1). Az, Az̄ are of order O(1), since ∂xµ/∂z ∼ O(r)
for Cartesian coordinates xµ = (t, x1, x2, x3).
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More specifically, for k⃗ = ωx̂ polarization vectors (1.14) are given by:

εµ+ =
1

r
√
qzz̄

(∂z)
µ, εµ− =

1

r
√
qzz̄

(∂z̄)
µ, ε+µ = r

√
qzz̄(dz̄)µ, ε−µ = r

√
qzz̄(dz)µ, (1.32)

where qzz̄ = 2
(1+zz̄)2

and therefore:

aµ(ωx̂) = r
√
qzz̄ (a−(ωx̂)(dz̄)µ + a+(ωx̂)(dz)µ) , (1.33)

Az(u, r, z, z̄) =

√
qzz̄

8π2i

∫ ∞

0

dω
(
a+(ωx̂)e

−iωu − a†−(ωx̂)e
iωu
)
= A(0)

z (u, z, z̄). (1.34)

The bottom line is that radiative modes are fully described by the standard free field
coefficients aµ(ωx̂(z, z̄)) and a†µ(ωx̂(z, z̄)), which are Fourier modes of A(0)

z (u, z, z̄) and
A

(0)
z̄ (u, z̄, z). Upon quantization a±, a†± become creation and annihilation operators. Then,

the above results tell us that asymptotic photon states describe radiation - nothing sur-
prising!

1.4 Towards Feynman-diagrammatic description

In QFT, we calculate the profile of electromagnetic flied, like F (0)
uz , as expectation value

of the corresponding field operator, F̂ (0)
uz . For example, for scattering event with initial

state |in⟩ and final state |out⟩, the corresponding field profile at J + (i.e., at the end of
the scattering experiment) is [7]:

F (0)
uz = ∂uA

(0)
z = ⟨out| F̂ (0)

uz Ŝ |in⟩ = − 1

8π2

∫ ∞

0

dω ω e−iωu ⟨out| a+(ωx̂)Ŝ |in⟩ . (1.35)

F
(0)
uz is simply given by a scattering amplitude with an extra external photon! At the tree

level, amplitude ⟨out| a+(ωx̂)Ŝ |in⟩ is a meromorphic function of ω, so we can Laurent-
expand it at ω = 0. Since the integral (1.35) should be convergent at ω → 0, the Laurent
expansion must start at order ω−1:

⟨out| a±(ωx̂)Ŝ |in⟩ = ω−1c
(−1)
± (x̂) + c

(0)
± (x̂) + ωc

(1)
± (x̂) + · · · . (1.36)

One can check using Feynman-diagrammatic calculations (and we shall do this in the next
section) that this is indeed the case.

We can rewrite the equation (1.36) as follows:

⟨out| a±(ωx̂)Ŝ |in⟩ =
(
ω−1S

(0)
± (x̂) + S

(1)
± (x̂) + ωS

(2)
± (x̂) + · · ·

)
⟨out| Ŝ |in⟩ , (1.37)

where S(k)
± are differential operators acting on the original amplitude ⟨out| Ŝ |in⟩. It turns

out that the behavior of the amplitude at low energies ω → 0 is very interesting. We
refer to a low-energy photon as “soft” and will henceforth call equation (1.37) the “soft
expansion.” In QED, the first two coefficients in expansion (1.37) are universal that is,
they maintain the same form regardless of the matter fields to which the electromagnetic
field is coupled. Moreover, we will demonstrate that “soft factors” S(0)

± , S(1)
± are related to

conservation laws of the theory.
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The expression (1.35) is also critical from an experimental point of view. The waveform
F

(0)
uz is measurable (we will discuss this in more detail in section 5). If we can quickly

calculate Laurent coefficients c(k) for small integers k, we know about low-energy radiation
produced in a given scattering process. Notably, Feynman-diagrammatic calculations are
often much more efficient than standard methods for solving Maxwell’s equations with
specific sources.

Importantly, the above analysis can be extended by replacing photons with spin-2
particles - i.e., gravitons. In this case, we will soon be able to precisely measure wave-
forms of gravitational waves produced in scatterings of some stars or black holes in new
gravitational wave detectors like LISA [8–10]. This presents an exciting opportunity to
test Einstein’s theory of general relativity in a novel regime!

1.5 Remark: Newman-Penrose coefficients

In this section we will briefly describe a more elegant, geometric definition of radiative
electromagnetic modes.

Let us first take a null tetrad, that is, a frame field (l, n,m, m̄) such that the only
nonzero contractions w.r.t. a given metric gµν are:

gµνl
µnν = −1, gµνm

µm̄ν = 1, (1.38)

in particular, lµlµ = 0 = nµn
µ = mµm

µ = m̄µm̄
µ.

We say that (l, n,m, m̄) is adapted to a given null geodesic congruence if we can write
l as l = ∂/∂u, where u is an affine parameter of the null geodesics. Then any other null
tetrad adapted to this congruence has the form:

(l, n̂, m̂, ˆ̄m), (1.39)

where:

n̂ = n+ f(x)m̄+ f̄(x)m+
1

2
|f(x)|2l, (1.40)

m̂ = eiχ(x)(m+ f(x)l), (1.41)

with functions χ(x) ∈ R, f(x) ∈ C. To verify this we need to simply check that scalar
products of l, n̂, m̂, ˆ̄m recover (1.38).

An example of a null frame field is (∂u, ∂v,
√
qzz̄∂z,

√
qzz̄∂z̄), where v = u + 2r. It

is adapted to a null geodesic congruence forming J +. Given (l, n,m, m̄), we can define
Newman-Penrose coefficients :

Φ0 = Fµνl
µm̄ν =

1

r
Φ0

0 +
1

r2
Φ1

0 + · · · , (1.42)

Φ1 =
1

2
Fµν(l

µnν +mµm̄ν) =
1

r2
Φ0

1 +
1

r3
Φ1

1 + · · · , (1.43)

Φ2 = Fµνm
µnν =

1

r3
Φ0

2 +
1

r4
Φ1

2 + · · · . (1.44)

This is a more geometric way of writing fall-off conditions (1.27), (1.25). One can show
that Φ0 does not depend on the choice of the null tetrad adapted to a given null geodesic
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congruence, that is, it does not change under transformations n 7→ n̂, m 7→ m̂, with n̂,
m̂ given by equations (1.40) and (1.41). If Φ0 = 0, then Φ1 is invariant under (n,m) 7→
(n̂, m̂), and if both Φ0 and Φ1 are zero, Φ0 = Φ1 = 0, then Φ2 is invariant under (n,m) 7→
(n̂, m̂).

Similar conditions imposed on gravitational field are usually referred to as “peeling
property” of the Weyl Tensor [11,12].

2 Soft Theorems

2.1 Soft photon theorem

Consider an (N + 1)-point amplitude in U(1) gauge theory coupled to certain matter
fields, AN+1(1, 2, . . . , N ; s), where (N + 1)-st particle (called “s”) is a photon with fre-
quency ω, 4-momentum q = ωq̂, and polarization εα(q̂). The soft photon theorem [13,14]
states that in the limit of vanishing energy of the photon, ω → 0, the amplitude AN+1

behaves as:
AN+1

ω→0∼
(
ω−1S(0)

α (q̂) + S(1)
α (q̂) +O(ω)

)
AN(1, 2, . . . , N), (2.1)

with universal Laurent coefficients:

S(0)
α (q̂) =

N∑
a=1

Qaηa
(pa · εα)
pa · q̂

, (2.2)

S(1)
α (q̂) =

1

2

N∑
a=1

Qaηa
1

pa · q̂
q̂µεανJ

µν
a , (2.3)

where ηa = +1 if the particle a is outgoing and ηa = −1 if the particle a is incoming.
Jµν
a = Lµν

a + Sµν
a is the angular momentum operator corresponding to the a’th particle.

Orbital angular momentum operator in momentum space is:

L(a)
µν = paµ

∂

∂pνa
− paν

∂

∂pµa
. (2.4)

For a beautiful interpretation of soft theorems as Ward identities, see [5].

2.2 Argument for the leading soft photon theorem

Consider scalar electrodynamics:

LSQED = −(DµΦ
†)(DµΦ)−m2Φ†Φ− 1

4
FµνF

µν , (2.5)

where DµΦ = ∂µΦ− ieAµΦ. From this Lagrangian we can read-off the Feynman rule for
3-point vertex:

p+ q
p

q;µ
= e(2pµ + qµ) (2.6)
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Consider a scattering process with n incoming charged scalar particles, m outgoing
charged scalars and an outgoing photon with 4-momentum momentum qµ = ωq̂µ, with
vanishing frequency ω → 0. Let us denote the corresponding scattering amplitude as
An+m+1 = An+m+1(ωq̂; p

in
1 , . . . , p

in
n , p

out
1 , · · · , poutm ). The amplitude may also contain ex-

ternal photon legs, but, since they are not important for our end result, we will not
write them explicitly. An+m+1 can be written as a sum of terms, when the soft photon is
attached to an external line and to an internal line:

(2.7)
Let’s focus on the first diagram, on the right hand side. It is almost the same as the di-

agram without the amplitude without the soft photon (with the k’th external momentum
poutk replaced by poutk + q):

(2.8)

Scalar propagator carrying momentum poutk + q, with poutk and q on-shell can be written
as:

−i
(poutk + q)2 +m2

=
−i

2poutk · q
∼ O(ω−1) (2.9)

If the k’th outgoing particle has charge Qout
a , then the additional vertex factor is simply

iQout
a (2pµ + qµ). Since qµεαµ(q) = 0, the right-hand side of the above equation can be

written as:
m∑
a=1

Qout
a

pouta · εα(q)
pouta · q

An+m(p
in
1 , · · · , pouta + q, · · · poutm ). (2.10)

By crossing symmetry, an ingoing scalar particle with momentum p and charge Qa is
equivalent to an outgoing scalar particle with momentum −p and charge −Qa. Therefore,
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the second diagram on the right-hand side of (2.7) contributes:

−
n∑

a=1

Qin
a

pina · εα(q)
pina · q

An+m(p
in
1 , · · · , pina − q, · · · poutm ). (2.11)

Both (2.10) and (2.11) diverge as ω−1 at ω → 0.
Note that generically internal momenta in a tree-level are not on shell, so

−i
(pinternal + q)2 +m2

ω→0−−→ −i
p2internal +m2

∼ O(1). (2.12)

Therefore, the third diagram on the right-hand side of (2.7) is regular in the limit ω → 0.
It takes the form:

εαµ(q̂) ·Nµ(ω, q̂), (2.13)

with
Nµ(ω, q̂) = N (0)

µ (q̂) + ωN (1)
µ (q̂) + ω2N (2)

µ (q̂) + · · · . (2.14)

Summarizing, the full amplitude An+m+1(ωq̂; p
in
1 , . . . , p

out
m ) can be written as:

An+m+1(ωq̂; p
in
1 , . . . , p

out
m ) =

∑
a∈in∪out

Qaηa
pa · εα

pa · q
An+m(p

in
1 , . . . , pa + ηaq, · · · , poutm ) + εαµN

µ,

(2.15)
with index a running over both initial and final particles. We also defined ηa = +1 for
outgoing particle, and ηa = −1 for incoming particles. At the leading order in ω we
obtain:

An+m+1(ωq̂; p
in
1 , . . . , p

out
m ) =

1

ω

∑
a∈in∪out

Qaηa
pa · εα(q̂)
pa · q̂

An+m(p
in
1 , . . . , p

out
m ) +O(ω0), (2.16)

in agreement with (2.2).

2.3 Subleading soft theorem from Ward identity and charge con-
servation

In this section we will determine the form of the subleading soft factor, S(1)
α . For

notational simplicity, for now-on we shall restrict to scattering particles involving only
outgoing particles (we will put n = 0 and denote pouta = pa). With crossing symmetry,
our results can be easily generalized to include incoming particles too.

Recall that, because of U(1)-symmetry, amplitude Am+1 = εαµA
µ
m+1 must satisfy Ward

identity, i.e. it must vanish if we replace εµα(q̂) with qµ:

0 = qµA
µ
m+1 =

∑
a

QaAm(p1, . . . , pa + q, . . . , pm) + qµN
µ. (2.17)

where in the last equality we used (2.15) with εµα replaced by qµ. At the leading order in
ω, i.e. O(ω0), we obtain:

0 = q̂µS
(0)µ
α (q̂)Am =

∑
a

QaAm(p1, . . . , pm). (2.18)

13



Including incoming particles gives us:∑
a∈in∪out

Qaηa = 0 ⇔
∑
a∈in

Qin
a =

∑
a∈out

Qout
a . (2.19)

This is nothing but charge conservation law. We learn that soft theorems together with
Ward identities imply conservation laws extends to non-Abelian gauge theories and grav-
ity. Notably, in the case of gravity, leading soft theorem implies 4-momentum conserva-
tion, and subleading soft theorem implies conservation of angular momentum [15].

Let us now return to (2.15):

Am+1 =
m∑
a=1

Qa
pa · εα

pa · q
Am(p1, . . . , pa + q, . . . , pm) + εµαNµ(ω, q̂, p1, . . . , pm). (2.20)

Extracting the O(ω0)-contribution arising from the above term, and then replacing εµα
with qµ gives us:

m∑
a=1

Qaq̂
µ ∂

∂pµa
Am(p1, . . . , pa, . . . , pm) + q̂µN (0)

µ (ω, q̂, p1, . . . , pm) = 0. (2.21)

This equation must hold for an arbitrary q̂µ, and therefore:

N (0)
µ (ω, q̂, p1, . . . , pm) = −

m∑
a=1

Qa
∂

∂pµa
Am(p1, . . . , pa, . . . , pm). (2.22)

Substituting this equation back into (2.20), we obtain:

Am+1 = O(ω−1) +
m∑
a=1

Qa

(
paµε

µ
α

pa · q̂
q̂ν

∂

∂pνa
− ενα

∂

∂pνa

)
Am +O(ω)

= O(ω−1) +
m∑
a=1

Qa

pa · q̂
q̂µενα

(
paµ

∂

∂pνa
− paν

∂

∂pµa

)
Am +O(ω), (2.23)

recovering the subleading soft factor (2.2).

2.4 Remark: Subleading soft factor receive loop corrections

Since loop corrections do not violate charge conservation and Ward identities, the
leading soft factor cannot receive corrections from loop diagrams. Factor∑

a

Qaηa
pa · εα
pa · q

, (2.24)

is the only Lorentz-invariant expression of order O(ω−1) that can be constructed from
pa, q, εα and Qa which vanishes when εα is replaced with q and charge conservation is
assumed. Hence, it must be protected from loop corrections.
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However, in [16] authors argued that the subleading soft photon theorem is modified
at 1-loop order:

S(1)1-loop
α =

∑
a

Qaηa
pa · qs

εµαq
ν

(
paµ

∂

∂pνa
− paν

∂

∂pµa

)
(Kreg.Am), (2.25)

with

Kreg =
i

2

∑
a̸=b

qaqb

∫
d4l

(2π)4
1

l2 − iϵ

(2pa − l) · (2pb + l)

(2pa · l − l2 + iϵ)(2pb · l + l2 − iϵ)
. (2.26)

This expression arises from loop corrections to the 3-point vertex to which the soft photon
line is attached:

p1

pn

pa

q

...

...
(2.27)

Moreover, it turns out that the analysis of loop corrections to soft theorems is even
more complicated. In the seminal work [17], Sahoo and Sen have shown that the expansion
of QED (or in gravity) amplitudes in small frequency of a photon (or gravity) contains
logarithmic terms.

3 Is QED S-matrix trivial?
Accelerating charged particles are known to emit radiation. Somewhat unexpectedly,

this simple statement has a surprising consequences for QED S-matrix. It implies that any
non-trivial scattering event of charged particles with no radiation both at the beginning
and in the end of an experiment is not possible! In QFT this means that, given an initial
state of n charged particles (without photons) |p1, . . . , pn⟩ and final state of n′ charged
particles with different momenta (and without photons) |p′1, . . . , p′n′⟩ , the following S-
matrix element vanishes:

⟨p′1, . . . , p′n′| Ŝ |p1, . . . , pn⟩ = 0. (3.1)

This result was firstly derived in [18], but we shall follow here the presentation of [19].
Consider QED (coupled to some matter fields) with IR cutoff λ, i.e. assume that

3-momenta q⃗ have norm |q⃗| ≥ λ. Let us call photons with momentum q⃗ s.t. Λ ≥ |q⃗| ≥ λ
soft.

Denote the n-point amplitude in the theory with cutoff λ as A(Λ)
n :

A(Λ)
n =

p1

pn

p′1

p′n′...

...

...

...
(3.2)
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Similarly, A(Λ)
n is an amplitude in the theory with cutoff Λ (meaning that all lines - both

external and internal) carry 3-momentum greater than Λ.
For small Λ, λ (compared to some interesting energy scale, like a mass of a matter

particle) comes from A
(Λ)
n with soft particles attached to external legs of A(Λ)

n since soft
theorems indicate that they are of order λ−1:

A(λ)
n ≈

∑
soft exchanges

p1

pn

p′1

p′n′...

...

...

...
, (3.3)

where the sum runs over the photon lines carrying soft momenta q, λ < |q⃗| < Λ. The
blob denotes the amplitude A(Λ)

n . In (3.3), photon lines attached to the external legs carry
soft momenta Λ ≥ |q⃗| ≥ λ. A diagram with N soft photon loops comes with a symmetry
factor:

2NN !, (3.4)

where 2N corresponds to the changes of the orientation of each line and N ! corresponds
to permutations of the soft lines.

Using soft theorems, we can rewrite (3.3) as:

A(λ)
n ≈

∞∑
N=0

1

N !
2−N

(∑
α=±

∫
λ≤|q⃗|≤Λ

d3q

(2π)3
S(0)
α (q)

−i
q2 − iϵ

S(0)
α (−q)

)N

A(Λ)
n , (3.5)

where the leading soft factor is:

S(0)
α (q) =

∑
a∈in∪out

Qaηa
pa · εα(q)
pa · q − iϵηa

. (3.6)

Since A(Λ)
n is independent of N , the sum over N gives an exponential factor:

A(λ)
n ≈

∞∑
N=0

1

N !

[
−i
2

∑
a,b

∫
R

dq0

2π

∫
Λ≥|q⃗|≥λ

d3q⃗

(2π)3
e2QaQbηaηb(p

µ
aΠµν(q)p

ν
b )

(pa · q − iϵηa)(−pb · q − iϵηb)(q2 − iϵ)

]N
A(Λ)

n

= exp

[
1

2

∑
a,b

QaQbηaηbIab

]
A(Λ)

n , (3.7)

where we defined:

Iab =

∫
dq0

2π

∫
Λ≥|q⃗|≥λ

d3q⃗

(2π)3
i(pa · pb)

(pa · q − iϵηa)(pb · q + iϵηb)(q2 − iϵ)

=

∫
dq0

2π

∫
Λ≥|q⃗|≥λ

d3q⃗

(2π)3
ipa · pb

(−(q0)2 + q⃗2 − iϵ)(−q0p0a + q⃗ · p⃗a − iϵηa)(−q0p0b + q⃗ · p⃗b + iϵηb)
.

(3.8)
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In the above expression the integrand has poles at:

q0 = ±|q⃗| ∓ iϵ, q0 =
p⃗a · q⃗
p0a

− iϵηa, q0 =
p⃗b · q⃗
p0b

+ iϵηb. (3.9)

For ηa = −1, ηb = +1 we can close the integration contour over q0 in the upper-half
complex plane, picking up only the contribution from the residue q0 = −|q⃗|+ iϵ:

This gives us:

Ikl = i

∫
Λ≥|q⃗|≥λ

d3q⃗

(2π)3
i(pa · pb)

2|q⃗|(|q⃗|p0a + q⃗ · p⃗a)(|q⃗|p0b + q⃗ · p⃗b)

= − 1

2(2π)3
pa · pb
p0a p

0
b

∫ Λ

λ

dω

ω

∫
S2

d2q̂
1

(1 + v⃗a · q̂)(1 + v⃗b · q̂)

=
1

2(2π)3
log

(
Λ

λ

)
J(v⃗a, v⃗b), (3.10)

where d2q̂ is the volume form on the unit round sphere S2 and we defined v⃗a ≡ p⃗a/p
0
a,

ω ≡ |q⃗|. In the last line, we defined:

J(v⃗a, v⃗b) = −pa · pb
p0a p

0
b

∫
S2

d2q̂
1

(1 + v⃗a · q̂)(1 + v⃗b · q̂)
= (1−v⃗a·v⃗b)

∫
S2

d2q̂
1

(1 + v⃗a · q̂)(1 + v⃗b · q̂)
(3.11)

If we assume that the external particles have non-zero mass, the integral over S2 is finite
since |v⃗a| < 1 implies (1 + v⃗a · q̂) > 0. For massless external particles, we may have
collinear divergences [20].

For ηa = 1 = ηb the integrand of (3.8) has two residues in the upper half of the complex
q0 plane (UHP). By closing the integration contour in the UHP, we pick contributions
from poles −|q⃗|+ iϵ and q0 = v⃗b · q⃗+ iϵ. Contribution from −|q⃗|+ iϵ is the same as in the
previously-discussed case (with ηa = −1 = −ηb).

Residue at q0 = v⃗b · q⃗ + iϵ gives us:

pa · pb
(2π)3

∫
Λ≥|q⃗|≥λ

d3q⃗

p0ap
0
b

1

q⃗2(−v⃗b · q⃗ + v⃗a · q⃗ − iϵ)(1− (v⃗b · q̂)2 − iϵ)
=

= −(1− v⃗a · v⃗b) log
(
Λ

λ

)∫
S2

d2q̂
1

(1− (q̂ · v⃗b)2)(q̂ · (v⃗a − v⃗b)− iϵ)
. (3.12)
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The factor (1− (q̂ · v⃗b)2)−1 is regular for massive external particles and gives only collinear
singularities for massless external particles. The principal part of (q̂ · (v⃗a − v⃗b)− iϵ)−1 is
odd, and hence, its integral vanishes. Therefore, the integral:∫

S2

d2q̂
1

(1− (q̂ · v⃗b)2)(q̂ · (v⃗a − v⃗b)− iϵ)
= iπ

∫
S2

d2q̂
δ(q̂ · (v⃗a − v⃗b))

(1− (q̂ · v⃗b)2)
(3.13)

is purely imaginary.
Analysis of the two other cases, ηk = −1 = ηk and ηk = 1 = −ηk, is analogous. We

conclude that the real part of Imn is given by:

Re Iab =
1

2(2π)3
log

(
Λ

λ

)
J(v⃗a, v⃗b), (3.14)

J(v⃗a, v⃗b) = (1− v⃗a · v⃗b)
∫
S2

d2q̂
1

(1 + v⃗a · q̂)(1 + v⃗b · q̂)
, (3.15)

independently of the signs of ηa, ηb. In the rest frame of particle b, we have v⃗b = 0 and
v⃗a = (0, 0, βab) is the relative velocity between particles a and b. Then, we can rewrite
(3.15) as

J(v⃗a, v⃗b) = 2π

∫ 1

−1

d(cos θ)(1 + βab cos θ)
−1 =

2π

βab
log

(
1 + βab
1− βab

)
. (3.16)

In an arbitrary frame, the relative velocity is given by:

βab =

√
1− m2

am
2
b

(pa · pb)2
. (3.17)

Equipped with the above formulae, we can rewrite (3.3) as:

|A(λ)
n | = exp

[
1

2

∑
a,b

QaQbηaηb
1

2(2π)3
2π

βab
log

(
1 + βab
1− βab

)]
|A(Λ)

n | =
(
λ

Λ

)B

|A(Λ)
n |, (3.18)

where
B = − 1

(4π)2

∑
a,b

QaQbηaηb
1

βab
log

(
1 + βab
1− βab

)
. (3.19)

It turns out that for any non-trivial scattering event we have B > 0. For example,
consider scattering of a test particle on an external potential (that is, 1 → 1 scattering
in a non-trivial background). Then a, b = 0, 1 with 0 (1) corresponding to initial (final)
particle. Asume that Q0 = Q1 = e. Relative velocities are:

β00 = β11 = 0, β01 = β10 > 0, (3.20)

so that:

B = − e2

(4π)2
· 2η0η1 log

(
1 + β01
1− β01

)
− e2

(4π)2
· 2 lim

β00→0

1

β00
log

(
1 + β00
1− β00

)
=

=
2e2

(4π)2

(
1

β01
log

(
1 + β01
1− β01

)
− 2

)
. (3.21)

18



Function 1
β01

log
(

1+β01

1−β01

)
is greater than 2 for all β01 ∈ (0, 1), and thus, B ≥ 0.

Eq. (3.18) implies that in the limit λ → 0 we have |Aλ
n| → 0. For arbitrarily small Λ

our approximation of soft exchanges with the leading soft factors becomes more and more
accurate. Hence, we see that all non-trivial scattering processes have zero probability if
we restrict external particles to have finite momenta |q⃗| ≥ Λ. This is just a QFT way
of saying that, since particles in a non-trivial scattering accelerate, they emit radiation
which contains photons of arbitrarily small frequency - non-trivial scattering of charged
particles without bremsstrahlung is impossible. We need to find a way to encode radiation
in asymptotic states of the theory.

4 Faddeev-Kulish construction of asymptotic states
Note that in the previous section we used the standard QFT framework, and hence, we

made an implicit assumption that the theory is free in the far past and future. However,
this assumption is true only if the scattered particles do not interact if they are far-
separated. But his assumption does not hold if the particles mediating interactions are
massless (since in this case the interaction potential V (r) ∼ 1

r
lacks the fast-decaying

exponential factor e−mr). In particular, it is not valid in electrodynamics.
In this section we will show that by including the long-ranged electromagnetic inter-

actions in asymptotic states resolves the problem of vanishing S-matrix from the previous
section and forces us to include bremsstrahlung. The formalism presented in this section
was originally developed in [21].

Consider interaction Hamiltonian of spinor QED:

V (t) = −
∫
t=const.

d3x⃗ Aµj
µ = −e

∫
d3x⃗Aµ(t, x⃗) : ψ̄(t, x⃗)γ

µψ(t, x⃗) : . (4.1)

We want to analyze V (t) at t → ±∞, where we suspect that V is small (although non-
vanishing!). Hence, we approximate Aµ and ψ with free-theory expressions, namely:

Aµ(x) =

∫
d̃k
(
aµ(k⃗)e

ik·x + a†µ(k⃗)e
−ik·x

)
, (4.2)

ψ(x) =
∑
s=±

∫
d̃p
(
bs(p⃗)us(p⃗)e

ip·x + d†s(p⃗)vs(p⃗)e
−ip·x) , (4.3)

where aµ(k⃗) =
∑

α=± ε
α
µ(k̂)aα(k⃗) and:

[aα(k⃗), a
†
β(k⃗

′)] = δαβ δ̃(k⃗ − k⃗′), (4.4)

[bs(p⃗), b
†
s′(p⃗

′)] = δss′ δ̃(p⃗− p⃗′) = [ds(p⃗), d
†
s′(p⃗

′)], (4.5)
(/p+m)u(p⃗) = 0 = (−/p+m)v(p⃗), (4.6)

where δ̃(k⃗ − k⃗′) = 2Ek(2π)
3δ3(k⃗ − k⃗′).

We expect that asymptotic dynamics of the our system is governed by the Hamiltonian:

Has = H0 + V (t), (4.7)
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where H0 is the free theory Hamiltonian. The corresponding evolution operator, U(t),
satisfies:

i
d

dt
U(t) = (H0 + V (t))U(t). (4.8)

Substituting ansatz U(t) = e−iH0tZ(t), we obtain:

i
d

dt
Z(t) = V (t)Z(t). (4.9)

Lemma:
At t→ ±∞ potential V (t) takes the form:

V (t)
t→±∞∼ = Vas(t) = −e

∫
d̃k

∫
d̃p
pµ

Ep

N̂(p⃗)
[
aµ(k⃗)e

i(p·k)t/Ep + a†µ(k⃗)e
−i(p·k)t/Ep

]
, (4.10)

where the particle number operator N̂(p⃗) is:

N̂(p⃗) =
∑
s=±

[
b†s(p⃗)bs(p⃗)− d†s(p⃗)ds(p⃗)

]
, (4.11)

and Ep =
√
p⃗2 +m2.

Proof :
Let’s write V in terms of mode expansions:

V (t) =− e

∫
d3x

∑
s,s′

∫
d̃kd̃pd̃q

[
b†s(p⃗)bs′(q⃗)ūs(p)γ

µus′(q)e
i(−p+q)·x

+ b†s(p⃗)d
†
s′(q⃗)ūs(p)γ

µvs′(q)e
i(−p−q)·x − d†s′(q⃗)ds(p⃗)v̄s(p)γ

µvs′(q)e
i(p−q)·x

− bs′(q⃗)bs(p⃗)v̄s(p)γ
µus′(q)e

i(p+q)·x
] (

aµ(k⃗)e
ik·x + a†µ(k⃗)e

−ik·x
)

(4.12)

The integral over x⃗ gives momentum-conserving delta functions, (2π)3δ(3)(p⃗ ± q⃗ ± k⃗). Thus, we
can easily integrate over q. After multiplying the two brackets, we get eight terms, each with time
dependence of the type:

exp
[
i
(
±q0 ± p0 ± |⃗k|

)
t
]
,

where q0 =

√
(p⃗+ k⃗)2 +m2. At early and late times (t → ±∞) we can use the saddle-point

approximation. Terms which depend on the sum q0+p0 vanish, since, for every k⃗ and p⃗ kinematically
q0 + p0 ± |⃗k| ≠ 0. For the other terms, we have a saddle at |⃗k| → 0. This means that only soft
photons are responsible for long-range interactions!

Take the terms proportional to exp
(
i(p0 − q0 + k0)t

)
. After integration over x⃗ and q⃗ we get:

−e

2

∑
s,s′=±

∫
d̃p d̃k

ūs(p)γ
µus′(p+ k)√

(k⃗ + p⃗)2 +m2

b†s(p⃗)bs′(p⃗+ k⃗)a†µ(k⃗)e
i(p0−q0+k0)·t. (4.13)
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In the expansion in small |⃗k| we need to keep track of the variables that depend only on the direction
(and not the length) of k⃗, e.g. polarization εµα(k⃗). Using q0 ≈ p0 + (p⃗ · k⃗)/p0, ik0t = ik0p0/p0 and
the special case of Gordon identities, ūs(p)γµus′(p) = 2pµδss′ we arrive at

−e
∑

s,s′=±

∫
d̃k

∫
d̃p

pµ

p0
b†s(p⃗)bs(p⃗)a

†
µ(k⃗)e

−i(k·p)·t/p0 . (4.14)

In the same fashion we can manipulate the term proportional to b†(p)b(q)a(k). The only difference
is that the sign of k⃗ changes (everywhere except in aµ(k⃗)):

−e
∑

s,s′=±

∫
d̃k

∫
d̃p

pµ

p0
b†s(p⃗)bs(p⃗)aµ(−k⃗)e−i(k·p)·t/p0 . (4.15)

One can similarly calculate expressions proportional to d†s(p)ds(p). This completes the proof. ♣

Note that Vas can be written as:

Vas(t) =

∫
d̃k Jµ

as(k⃗, t)
[
a†µ(−k⃗) + aµ(k⃗)

]
, (4.16)

where
Jµ
as(k⃗, t) = −e

∫
d̃p
pµ

p0
e
i p·k
p0

t
∑
s=±

[b†s(p⃗)bs(p⃗)− d†s(p⃗)ds(p⃗)]. (4.17)

Jµ
as is a classical current of asymptotic particles moving with constant velocities p⃗/Ep⃗.

4.1 Asymptotic States

In this section we will describe how free theory states (which are asymptotic states
of an interacting theory if the interactions are short-ranged) are modified in the presence
of asymptotic potential Vas(t). See Appendix A for a short review of the standard con-
struction of asymptotic states and definition of S-matrix, when there is no long-range
potential.

The previous analysis tells us that QED is not free at t → ±∞. Asymptotic states
evolve under Hamiltonian:

H = H0 + Vas(t). (4.18)

The corresponding evolution operator, U(t, t0), is given by:

i
d

dt
U(t, t0) = (H0 + Vas(t))U(t, t0), U(t0, t0) = 1. (4.19)

By writing U(t, t0) = e−iH0(t−t0)Z(t, t0), we can reduce the above equation to:

i
d

dt
Z(t, t0) = eiH0∆tV e−iH0∆tZ(t, t0), Z(t0, t0) = 1, (4.20)

where ∆t = t − t0 and V (t) = −e
∫
d3xψ̄(t, x⃗) /A(t, x⃗)ψ(t, x⃗). ψ(t, x⃗) = eiH0tψ(x⃗)e−iH0t,

Aµ(t, x⃗) = eiH0tAµ(x⃗)e
−iH0t are free fields, with mode expansions (4.2).
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According to the above lemma, V (t) approaches Vas(t) at t → ±∞. Let Zas(t, t0)
satisfy i d

dt
Zas(t, t0) = Vas(∆t)Zas(t, t0). Then, we can define "in" and "out" states |Ψ±

α ⟩
as:

e−iH(t−t0)

∫
dα f(α)

∣∣ψ±
α

〉 t→±∞∼ e−iH0(t−t0)Zas(t, t0)

∫
dα f(α) |Φα⟩ . (4.21)

Equivalently, we can write∣∣Ψ±
α

〉
= Ω(±∞) |Φα⟩ , with Ω(t, t0) = eiH(t−t0)e−iH0(t−t0)Zas(t, t0). (4.22)

remembering that the equality is in the distributional sense - it is true only when smeared
with f(α).

With this modification of asymptotic states, S-matrix elements are given by:

Sβα = ⟨Ψ+
β |Ψ

−
α ⟩

= lim
t→+∞,t′→−∞

⟨Φβ|Z†
as(t, t0)e

iH0(t−t0)e−iH(t−t0)eiH0(t0−t′)Zas(t
′, t0) |Φα⟩

=
〈
ΦDr+

β

∣∣ Ŝ ∣∣ΦDr,−
α

〉
, (4.23)

where Ŝ is the standard Ŝ-operator, defined perturbatively via the Dyson series:

Ŝ = lim
t→+∞,t′→−∞

eiH0(t−t′)e−iH(t−t′)e−iH0t′ = T exp

(∫ +∞

−∞
dt V (t)

)
, (4.24)

and the "dressed states"
∣∣ΦDr,±

α

〉
are:∣∣ΦDr,±

α

〉
= lim

t→±∞
Zas(t, t0) |Φα⟩ ≡ Z±

as |Φα⟩ . (4.25)

4.2 Calculation of the dressing operators

Recall that operator Zas(t, t0) satisfies:

i
d

dt
Zas(t, t0) = Vas(t− t0)Zas(t, t0), (4.26)

with
Vas(t, t0) = −e

∫
d̃k

∫
d̃p
pµ

Ep

N̂(p⃗)
(
aµ(k⃗)e

i(p·k)(t−t0)/Ep + h.c.
)
. (4.27)

Since Vas(t, t0) is linear in photon creation and annihilation operators, and the particle
number operators N̂(p⃗) commute with each other, [N(p⃗), N(p⃗′)] = 0, we have:

[Vas(t), [Vas(t
′), Vas(t

′′)]] = 0. (4.28)

This allows us to find an explicit solution to the equation (4.26) using the Magnus expan-
sion [22], namely:

Zas(t, t0) = T exp

(
−i
∫ t

t0

dt′Vas(t
′)

)
= exp

(
∞∑
k=1

Ak(t)

)
, (4.29)
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where

A1(t) =

∫ t

t0

dt′ Vas(t
′), (4.30)

A2(t) = − i

2

∫ t

t0

dt1

∫ t1

t0

dt2 [Vas(t1), Vas(t2)], (4.31)

A3(t) = −1

4

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3 [Vas(t1), [Vas(t2), Vas(t3)]], (4.32)

with obvious generalization to A4,5,···. Because of (4.28), the sum
∑

k Ak truncates at
k = 2, and we can compactly express Zas(t) as

Zas(t) = exp [−R(t) +R(t0) + iΦ(t, t0)] , (4.33)

where

R(t) = −ie
∫ t

ds

∫
d̃k d̃p

pµ

Ep

N(p⃗)
(
aµ(k⃗)e

i(p·k)s/Ep + h.c.
)

= −e
∫
d̃k

∫
d̃p

pµ

p · k
N(p⃗)

(
aµ(k⃗)e

i(p·k)t/Ep − a†µ(k⃗)e
−i(p·k)t/Ep

)
. (4.34)

and

Φ(t, t0) =
i

2

∫ t

t0

ds1

∫ s1

t0

ds2 [Vas(s1), Vas(s2)]

=
ie2

2

∫
d̃k d̃p1 d̃p2 N̂(p⃗1)N̂(p⃗2)

∑
α(p1 · ϵα)(p2 · ϵ∗α)
(p1 · k)(p2 · k)

×

×
((
ei(p1·k)t/E1 − ei(p1·k)t0/E1

) (
ei(p2·k)t/E2 − ei(p2·k)t0/E2

)
− h.c.

)
. (4.35)

Since Φ(t, t0) commutes will all other operators, it contributes only an overall phase factor
to scattering amplitudes. It is not interesting and we shall suppress it in the following
analyses - we define Zas(t) = exp[−R(t) +R(t0)].

As noted in [23], one should regularize the above expressions by substituting:

p · k → p · k − iϵ sgn(t) (4.36)

where sgn(t) = t/|t|. Then, in the limit t→ ±∞, R(t) vanishes, and:

Φ(t, t0) =
i

2

∫ t

t0

ds1

∫ s1

t0

ds2 [Vas(s1), Vas(s2)]

=
ie2

2

∫
d̃k d̃p1 d̃p2 N̂(p⃗1)N̂(p⃗2)

∑
α(p1 · ϵα)(p2 · ϵ∗α)
(p1 · k)(p2 · k)

(
eit0k·(p1/E1+p2/E2) − h.c.

)
.

(4.37)

Choosing t0 = 0 we obtain: Φ(±∞, 0) = 0 and:

R(t0 = 0) = e

∫
d̃k

∫
d̃p

pµ

p · k
N(p⃗)

(
a†µ(k⃗)− aµ(k⃗)

)
≡ R. (4.38)
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Then, the dressing operator of “in” and “out” states takes a simple form:

Zas(t→ ±∞, t0 = 0) = eR, (4.39)

so that ∣∣ΦDr,±
α

〉
= lim

t→±∞
Zas(t, t0 = 0) |Φα⟩ = eR |Φα⟩ . (4.40)

Note that operator R is anti-hermitian, and hence, exponent eR is unitary.

4.3 Cancellation of IR divergences

Recall that in Section 3 we argued that IR divergences caused by soft momenta running
in loops between external legs of Feynman diagrams exponentiate, resulting in a trivial
S-matrix of undressed charged particle states (it is equal to 1 on the Fock space of the
undressed states). In this section we shall argue that Faddeev-Kulish dressings cancel
these divergences. This implies that S-matrix of dressed states is not trivial. See [24] for
a slightly different argument for cancellation of IR divergences.

Let us consider a scattering amplitude with n dressed charged particles, An. By
crossing symmetry, we can without loss of generality restrict to scattering configurations
without final particles. Thus, we write:

An = ⟨0| ŜeR |in⟩ , (4.41)

where R is the dressing operator, and Ŝ is the S-operator (4.24). Let us mark an energy
scale Λ such that all particles in the state |in⟩ have momenta q⃗ greater than Λ, |q⃗| ≥ Λ.

When acting on initial state of n particles with electric charges Qa and a finite number
of photons (with some polarizations αph and momenta k⃗ph):

|in⟩ =

(
n∏

a=1

b†a(p⃗a)

)( ∏
photons

a†αph
(k⃗ph)

)
|0⟩ , (4.42)

we can express R as:

R = e
n∑

a=1

Qa

∫
d̃k

pµa
(pa · k)

N̂(p⃗a)
(
a†µ(k⃗)− aµ(k⃗)

)
≡
∫
d̃k fµ(k⃗)

(
a†µ(k⃗)− aµ(k⃗)

)
, (4.43)

where:

fµ(k⃗) = e

n∑
a=1

Qa
pµa

(pa · k)
. (4.44)

Using the Baker-Campbell-Hausdorf formula, we can express eR as:

eR = e
∫
d̃k fµ(k⃗)(a†µ(k⃗)−aµ(k⃗)) = e

∫
d̃kfµ(k⃗)a†µ(k⃗)e−

∫
d̃kfµ(k⃗)aµ(k⃗)e−

1
2

∫
d̃kf(k⃗)·Π(k⃗)·f(k⃗), (4.45)

where:

f(k⃗) · Π(k⃗) · f(k⃗) = fµ(k⃗)fν(k⃗)Πµν(k⃗) = e2
n∑

a,b=1

QaQb
pa · Π(k⃗) · pb
(pa · k)(pb · k)

, (4.46)
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and projection operator:
Πµν(k⃗) =

∑
α=±

εµα(k⃗)ε
ν
α(k⃗). (4.47)

This allows us to express An as:

An = e
− e2

2

∑n
a,b=1 QaQb

∫
d̃k

pa·Π(k⃗)·pb
(pa·k)(pb·k) ⟨0| Ŝ e

∫
d̃kfµ(k⃗)a†µ(k⃗) e−

∫
d̃kfµ(k⃗)aµ(k⃗) |in⟩ . (4.48)

Note that the integral
∫
d̃k pa·Π(k⃗)·pb

(pa·k)(pb·k)
is divergent at k⃗ → 0, and therefore, we introduce an

IR cutoff λ < Λ, restricting the integration region to |⃗k| ≥ λ and modifying the S-operator
Ŝ to Ŝ(λ), such that it acts only on states with momenta |⃗k| ≥ λ, and in the corresponding
loop integrals one sums only over momenta |q⃗| ≥ λ. We aim to take the limit λ → 0 at
the end of this calculation.

Next, commutation relation of operators e−
∫
d̃kfµ(k⃗)aµ(k⃗) and a†α(q⃗),

e−
∫
d̃kfµ(k⃗)aµ(k⃗)a†α(q⃗) =

(
a†α(q⃗)− εµα(q⃗)fµ(q⃗)

)
e−

∫
d̃kfµ(k⃗)aµ(k⃗) (4.49)

implies that

An =e
− e2

2

∑n
a,b=1 QaQb

∫
|k⃗|≥λ

d̃k
pa·Π(k⃗)·pb
(pa·k)(pb·k) ⟨0| Ŝ(λ) e

∫
|k⃗|≥λ

d̃k fµ(k⃗)a†µ(k⃗)×

×
n∏

a=1

b†a(p⃗a)
∏

photons

(
a†αph

(k⃗ph)− εµαph
(k⃗ph)fµ(k⃗ph)

)
|0⟩ . (4.50)

We obtain a sum of amplitudes with different numbers of external photons. Part of the
dressing operator eR, e−

∫
k⃗≥λ

d̃kfµ(k⃗)aµ(k⃗), gives a finite contribution to An, and does not
modify the state of the initial charged particles.

Let us now consider the operator:

exp

(∫
|⃗k|≥λ

d̃k f ν(k⃗)a†ν(k⃗)

)
=

∞∑
N=1

1

N !

(∫
|⃗k|≥λ

d̃k f ν(k⃗)a†ν(k⃗)

)N

(4.51)

The N ’th term in the above expansion is equivalent to attaching N new external pho-
tons, with smeared polarizations

∑
α=±

∫
|⃗k|≥λ

d̃k fµ(k⃗)ε
µ
α(k⃗). Hence, at sufficiently small

momenta k⃗, we can replace a†α(k⃗) with the leading soft factor,

Sα(k⃗) = e
n∑

a=1

Qa
pa · εα(k⃗)
pa · k

. (4.52)

We can split the integral over k⃗ as:∫
|⃗k|≥λ

d̃k f ν(k⃗)a†ν(k⃗) =

(∫
Λ≥k⃗≥λ

+

∫
|⃗k|≥Λ

)
d̃k f ν(k⃗)a†ν(k⃗) (4.53)
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For sufficiently small Λ, with a high accuracy we can approximate the integral over |⃗k| ∈
(λ,Λ) by replacing a†µ(k⃗) with the leading soft factor (4.52). We approximate:

exp

(∫
|⃗k|≥λ

d̃k f ν(k⃗)a†ν(k⃗)

)
≃ exp

(
e
∑
α=±

n∑
a=1

Qa

∫
Λ≥|⃗k|≥λ

d̃k
(pa · εα(k⃗))(f(k⃗) · εα(k⃗))

k · pa

)
×

× exp

(∫
|⃗k|≥Λ

d̃k f ν(k⃗)a†ν(k⃗)

)
(4.54)

Thus, An can be estimated as:

An = e
− e2

2

∑n
a,b=1 QaQb

∫
|k⃗|≥λ

d̃k
pa·Π(k⃗)·pb
(pa·k)(pb·k) ee

∑n
a=1 Qa

∫
Λ≥|k⃗|≥λ

d̃k
pa·Π(k⃗)·f(k⃗)

k·pa An,Λ,λ, (4.55)

where:

An,Λ,λ = ⟨0| Ŝ(λ) e
∫
|k⃗|≥Λ

d̃k fν(k⃗)a†ν(k⃗)
n∏

a=1

b†a(p⃗a)
∏

photons

(
a†αph

(k⃗ph)− εµαph
(k⃗ph)fµ(k⃗ph)

)
|0⟩ .

(4.56)
The argument from Section 3 implies that, for sufficiently small Λ and λ, we can approx-
imate amplitude An,Λ,λ as:

An,Λ,λ = exp

(
−e

2

2

∑
a,b

QaQb

∫
Λ≥|⃗k|≥λ

d̃k
pa · Π(k⃗) · pb
(pa · k)(pb · k)

)
An,Λ,Λ (4.57)

with finite

An,Λ,Λ = ⟨0| Ŝ(Λ) e
∫
|k⃗|≥Λ

d̃k fµ(k⃗)a†µ(k⃗)
n∏

a=1

b†a(p⃗a)
∏

photons

(
a†αph

(k⃗ph)− εµαph
(k⃗ph)fµ(k⃗ph)

)
|0⟩ ,

(4.58)
where in Ŝ(Λ) we sum only over loop momenta l⃗ greater than Λ, |⃗l| ≥ Λ. Combining the
above expression with (4.55), we obtain:

An = e
− e2

2

∑n
a,b=1 QaQb

∫
|k⃗|≥λ

d̃k
pa·Π(k⃗)·pb
(pa·k)(pb·k) e

+ e2

2

∑n
a,b=1 QaQb

∫
Λ≥|k⃗|≥λ

d̃k
pa·Π(k⃗)·pb
(pa·k)(pb·k)An,Λ,Λ

= exp

(
−e

2

2

n∑
a,b=1

QaQb

∫
|⃗k|≥Λ

d̃k
pa · Π(k⃗) · pb
(pa · k)(pb · k)

)
An,Λ,Λ. (4.59)

This is a finite result independent of λ. In the limit λ → 0 we obtain a finite, nonzero
result, fixing the IR problem from the previous section. Faddeev-Kulish dressings cancell
infra-red divergences.

5 Memory Effect
In this section, we will provide a basic explanation of how to measure the waveform

F
(0)
uz . Our discussion will primarily follow the arguments presented in [4], which were also
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covered in a remarkably illustrative presentation of aspects of IR physics by Miller [6] (a
highly recommended read).

Consider a test charge Q immersed in a viscous fluid, which position is determined by
the Newton’s second law:

m
d2x⃗

dt2
= F⃗ext − b

dx⃗

dt
, (5.1)

where b is a viscosity coefficient, −bdx⃗
dt

is the drag force caused by the fluid, and F⃗ext is an
external force acting on a charge. Then, the difference between initial and final velocity
of the charged particle is:

m∆v⃗ =

∫ ∞

−∞
dt F⃗ext − b∆x⃗. (5.2)

If the particle starts at rest, and F⃗ext is turned on only for a finite period of time, then,
because of the viscosity of the fluid, the particle will be at rest also at t → ∞. Hence,
∆v⃗ = 0 and:

∆x⃗ =
1

b

∫
dt F⃗ext. (5.3)

Now, consider a large number of such probe particles with charge Q, immersed in the
fluid, arranged in a large sphere and moving initially near J −, and then J +. Assume
that they surround a group of moving charges emitting radiation. If the radiation sources
move slowly, the probe particles at J ± feel only electric, and not magnetic field. Force
acting on the probe particles near J + is F⃗ext = QF

(0)
uA

∂
∂zA

, where zA are coordinates on
the sphere at J +. Similarly, near J − we have F⃗ext = QF

(0)
vA

∂
∂zA

. Recall that according
to the fall-off conditions (1.25) (1.27), force in the radial direction is negligible far away
from the radiation sources. Therefore, relative change of positions of test particles on the
celestial sphere is:

∆xA =
Q

b

(∫ ∞

−∞
duFuA +

∫ ∞

−∞
dv FvA

)
. (5.4)

This shift is fully determined by soft theorems! Note that:∫ ∞

−∞
du ⟨out|FuzŜ |in⟩ = 1

8π

∫ ∞

−∞
du

∫ ∞

0

dω ωeiωu ⟨out| a+(ωx̂)Ŝ |in⟩

=
1

8π

∫ ∞

0

dω δ(ω)ω ⟨out| a+(ωx̂)Ŝ |in⟩

=
1

8π
lim
ω→0

ω ⟨out| a+(ωx̂)Ŝ |in⟩

=
∑

a∈in∪out

ηa
Qa

8π

ε+ · pa
q̂(z, z̄) · pa

⟨out| Ŝ |in⟩ , (5.5)

where in the last step of the derivation we used the soft theorem for positive-helicity soft
photon.

On the other hand, the temporal gauge condition implies F (0)
uz = ∂uA

(0)
z , and thus,∫∞

−∞ duF
(0)
uz = A

(0)
z |J+

+
− A

(0)
z |J+

−
. Similarly,

∫∞
−∞ dv F

(0)
vz = A

(0)
z |J−

+
− A

(0)
z |J−

−
. Using
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antipodal matching conditions , A(0)
z (z, z̄)|J+

−
= A

(0)
z (z, z̄)|J−

+
[5, 6], we obtain:

∆A(0)
z = A(0)

z |J+
+
− A(0)

z |J−
−
=

∫ ∞

−∞
duFuz +

∫ ∞

−∞
dv Fvz =

∑
a∈in∪out

Qaηa
4π

ε+ · pa
q̂(z, z̄) · pa

. (5.6)

Note that ∆A
(0)
z is total derivative:

∆A
(0)
A (z, z̄) =

∂

∂zA

∑
a

ηa
Qa

4π
log(q̂(z, z̄) · pa). (5.7)

But this cannot imply that ∆A(0)
A is a gauge-dependent quantity. It is directly related to

the measurable shift ∆xA. Remember that in the temporal gauge residual gauge transfor-
mations are time-independent. Differences between field configurations at different times,
like ∆A

(0)
z = A

(0)
z |J+

+
− A

(0)
z |J−

−
are measurable, physical quantities.

Let us also emphasize that ∆A
(0)
z depends only on initial and final velocities of the

radiating particles. It is independent of the details of the process that caused acceleration
of the particles (that caused radiation). One can say that ∆A

(0)
A (and thus also ∆xA)

“remembers” initial velocities of charged particles. Hence, the phenomenon of the shift
∆xA is commonly referred to as memory effect [3–5].

5.1 Subleading memory effect

One can also set up experiment that measures other modes of the electromagnetic
radiation, for example: ∫ ∞

−∞
du uF (0)

uz (u, z, z̄). (5.8)

Its expectation value at the end of a scattering experiment is fully determined by the
subleading soft factor S(1)

+ (z, z̄):∫ ∞

−∞
du uFuz =

1

8π

∫ ∞

−∞
du u

∫ ∞

0

dω ωeiωu ⟨out| a+(ωx̂(z, z̄))Ŝ |in⟩

=
−i
8π

∫ ∞

−∞
du

∫ ∞

0

dω (∂ωe
iωu)ω ⟨out| a+(ωx̂(z, z̄))Ŝ |in⟩

=
−i
8π

∫ ∞

−∞
du

∫ ∞

0

dω eiωu∂ω(ω ⟨out| a+(ωx̂(z, z̄))Ŝ |in⟩)

=
i

8π
S
(1)
+ ⟨out| Ŝ |in⟩ . (5.9)

A physical phenomenon directly dependent on the quantity
∫∞
−∞ du uF

(0)
uz is referred to as

“subleading memory effect” [25].

Summary
In this note we set out to clarify the infrared structure of quantum electrodynamics.

Beginning from classical considerations, we showed that the standard free QFT modes

28



of electromagnetic field coincide with the “undergraduate definition of radiation” and the
proper definition via Newman-Penrose coefficients. Then, considering generic waveform
profile, we showed that Feynman diagrams involving particles with zero energy are ex-
pected to be divergent.

In the second section, with Feynman-diagrammatic analysis we confirmed the intuition
from the first section. We computed the leading and subleading contributions to tree-level
amplitudes in the limit of vanishing frequency of an external photon (“in the soft-photon
limit”) and showed that they are controlled by universal expressions (“soft factors”). Be-
cause of the direct relation between the leading soft factor and charge conservation, the
leading soft factor is believed to be protected from loop corrections (the leading soft pho-
ton theorem is true at any loop order). We also discussed how the subleading soft photon
factor is modified at 1-loop.

In the third section we showed that the soft theorems imply IR divergences of ampli-
tudes due to soft photons running in loops. These divergences exponentiate, leading to a
vanishing amplitude between any initial and final states with finite numbers of photons.

This failure of the standard definition of S-matrix can be traced directly to the pres-
ence of long-range interactions, which persist in QED even when the particles are widely
separated in space and time. A resolution of this problem is provided by the Faddeev-
Kulish construction of asymptotic states. We derived the form of the dressing operators
and showed how they cancel IR divergences to all orders in perturbation theory. The
resulting dressed S-matrix is finite and non-trivial.

We finished our analysis in section 4, by showing that the soft factors appearing in
amplitudes correspond to measurable quantities, such as the electromagnetic memory,
predicting the net displacement of test charges induced by radiation.

We conclude by noting that the ideas developed here are not specific to QED. The
infrared structure of gravity and non-Abelian gauge theories exhibits many analogous
features, including soft theorems, infinite-dimensional symmetry algebras, and memory
effects [5]. The study of these effects has led to the development of celestial holography, a
program that aims to recast scattering amplitudes as correlation functions of a conformal
field theory living on the celestial sphere [26, 27], hinting at a relation between infrared
physics and quantum gravity.

To deepen the understanding of topics described in this note, we encourage the reader
to explore several related directions. These include the study of asymptotic symme-
tries in gauge and gravitational theories [5, 28, 29], the role of soft modes in black hole
physics [30,31], and the S-matrix bootstrap [32–34]. On the more practical side, infrared
effects are intimately related to post-Minkowskian expansions, eikonal approximations,
and waveform predictions for gravitational wave detectors [35, 36].
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A Fundamentals of scattering theory
Key question for scattering theorist: "Given initial state |in⟩ , what is the probability

of measuring state |out⟩.
Assume that "in" and "out" states contain well-separated, non-interacting particles,

relatively well-localized in momentum space"

|in⟩ = |{p1, s1, a1}, . . . , {pn, sn, an}⟩ , (A.1)

where pa, sa are 4-momentum and helicity of the a’th particle, respectively. aa collectively
denotes other degrees of freedom of the particle.

Poincaré transformations of "in" and "out" states:

U(Λ, b) |{pa, sa, aa}⟩ = eibµ
∑

a pµa
∑
s′1···s′n

(
n∏

a=1

Dsas′a [W (Λpa)]

)
|{Λpa, s′a, aa}⟩ , (A.2)

where Dsas′a is the spin-sa representation of the little group transformation of pa cor-
responding to Λ. For massless particles we have Dss′ = δss′e

isθ(Λp) with momentum-
dependent phase θ(Λp) ∈ R, and for massive partickes Dss′ is a (2j + 1)-dimensional
unitary irrep. of SO(3).

We choose relativistic normatization of states:

in⟨p, s, a|p′, s′, a′⟩in = δss′δaa′ δ̃(p, p
′), (A.3)

where δ̃(p, p′) = (2π)d−12Epδ
d−1(p⃗− p⃗′) and Ep =

√
p⃗2 +m2.

Let vectors |Ψ+
α ⟩ (|Ψ−

α ⟩) form an orthonormal basis of "out" ("in") states,

1 =

∫
dα
∣∣Ψ±

α

〉 〈
Ψ±

α

∣∣ , ⟨Ψ±
α |Ψ±

β ⟩ = δ(α, β). (A.4)

For Λµ
ν = δµν , b

µ = (t, 0⃗) we have U(Λ, a) = e−itH , where H is the Hamiltonian of the
theory. Eq. (A.2) implies:

e−itH
∣∣Ψ±

α

〉
= e−iEαt |Ψα±⟩ , (A.5)

and hence,
H
∣∣Ψ±

α

〉
= Eα

∣∣Ψ±
α

〉
, (A.6)

where Eα = p01 + p02 + · · · + p0n. Note that we are working in the Heisenberg picture, so
state vectors do not evolve in time. We do not say that |Ψ±

α ⟩ are some limits of the same
|Ψ(t)⟩ with t→ ±∞.

Take H = H0 + V, where H0 is a "free theory" Hamiltonian, with known eigenstates
|Φ⟩α, and the same spectrum {Eα} as Hamiltonian H. In particular, masses in H0 must be
the physical masses, which are actually measured, not necessarily equal to "bare" masses
of H. We think of V as a small correction to H0.
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A.1 Definition of in and out states

"In" states |Ψ−
α ⟩ are defined via:

H
∣∣Ψ−

α

〉
= Eα

∣∣Ψ−
α

〉
(A.7)

e−iHt
∣∣Ψ−

α

〉 t→−∞∼
∫
dα e−iEαtf(α) |Φα⟩ = e−iH0t

∫
dαf(α) |Φα⟩ (A.8)

for any well-beaved smearing function f(α). Similarly, we define "out" states via:

H
∣∣Ψ+

α

〉
= Eα

∣∣Ψ+
α

〉
(A.9)

e−iHt
∣∣Ψ−

α

〉 t→∞∼
∫
dα e−iEαtf(α) |Φα⟩ = e−iH0t

∫
dαf(α) |Φα⟩ . (A.10)

The second condition can be rewritten as∣∣Ψ−
α

〉
= Ω(±∞) |Φα⟩ , (A.11)

where
Ω(t) = eiHte−iH0t. (A.12)

Ω(t) is defined in a distributional sense, the above equation is true only when smeared
with f(α).

A.2 S-matrix

Define S-matrix as:
Sαβ = ⟨Ψ+

β |Ψ
−
α ⟩. (A.13)

Completeness of "in" and "out" states implies:

δ(α, β) =

∫
dγ⟨Ψ+

β |Ψ
−
γ ⟩⟨Ψ−

γ |Ψ+
α ⟩ =

∫
dγSβγS

∗
αγ =

〈
Ψ+

β

∣∣SS† ∣∣Ψ+
α

〉
, (A.14)

δ(α, β) =

∫
dγ⟨Ψ−

β |Ψ
+
γ ⟩⟨Ψ+

γ |Ψ−
α ⟩ =

∫
dγS∗

γβSγα =
〈
Ψ−

β

∣∣S†S
∣∣Ψ−

α

〉
, (A.15)

for all α, β. This means that the S-matrix is unitary:

SS† = S†S = 1. (A.16)

It is convenient to encode the information about scattering amplitudes using free
theory eigenstates |Φα⟩. To this end, we define "S-operator" Ŝ via:

⟨Φβ| Ŝ |Φα⟩ = Sβα. (A.17)

Since |Ψ±
α ⟩ = Ω(±∞) |Φα⟩ , the Ŝ-operator is:

Ŝ = Ω†(+∞)Ω(−∞) ≡ U(+∞,−∞), (A.18)

where

U(t, t′) = Ω†(t)Ω(t) = eiH0te−iHteiHt′e−iH0t′ = eiH0te−iH(t−t′)e−iH0t′ . (A.19)

31



References
[1] J. D. Jackson, Classical electrodynamics. John Wiley & Sons, 2021.

[2] G. Sterman, An Introduction to quantum field theory. Cambridge university press,
1993.

[3] D. Christodoulou, “Nonlinear nature of gravitation and gravitational wave
experiments,” Phys. Rev. Lett. 67 (1991) 1486–1489.

[4] L. Bieri and D. Garfinkle, “An electromagnetic analogue of gravitational wave
memory,” Class. Quant. Grav. 30 (2013) 195009, arXiv:1307.5098 [gr-qc].

[5] A. Strominger, Lectures on the Infrared Structure of Gravity and Gauge Theory.
Princeton University Press, 2018. http://www.jstor.org/stable/j.ctvc777qv.

[6] N. Miller, “From Noether’s Theorem to Bremsstrahlung: a pedagogical introduction
to large gauge transformations and classical soft theorems,” 12, 2021.

[7] A. Cristofoli, R. Gonzo, D. A. Kosower, and D. O’Connell, “Waveforms from
amplitudes,” Phys. Rev. D 106 no. 5, (2022) 056007, arXiv:2107.10193 [hep-th].

[8] M. Levi, “Effective Field Theories of Post-Newtonian Gravity: A comprehensive
review,” Rept. Prog. Phys. 83 no. 7, (2020) 075901, arXiv:1807.01699 [hep-th].

[9] P. D. Lasky, E. Thrane, Y. Levin, J. Blackman, and Y. Chen, “Detecting
gravitational-wave memory with LIGO: implications of GW150914,” Phys. Rev.
Lett. 117 no. 6, (2016) 061102, arXiv:1605.01415 [astro-ph.HE].

[10] R. van Haasteren and Y. Levin, “Gravitational-wave memory and pulsar timing
arrays,” Mon. Not. Roy. Astron. Soc. 401 (2010) 2372, arXiv:0909.0954
[astro-ph.IM].

[11] E. Newman and R. Penrose, “An Approach to gravitational radiation by a method
of spin coefficients,” J. Math. Phys. 3 (1962) 566–578.

[12] L. A. G. López and G. D. Quiroga, “Asymptotic structure of spacetime and the
newman-penrose formalism: a brief review,” 2017.
https://arxiv.org/abs/1711.11381.

[13] F. E. Low, “Bremsstrahlung of very low-energy quanta in elementary particle
collisions,” Phys. Rev. 110 (1958) 974–977.

[14] S. Weinberg, “Infrared photons and gravitons,” Phys. Rev. 140 (1965) B516–B524.

[15] F. Cachazo and A. Strominger, “Evidence for a New Soft Graviton Theorem,” 4,
2014.

[16] Z. Bern, S. Davies, and J. Nohle, “On Loop Corrections to Subleading Soft
Behavior of Gluons and Gravitons,” Phys. Rev. D 90 no. 8, (2014) 085015,
arXiv:1405.1015 [hep-th].

32

http://dx.doi.org/10.1103/PhysRevLett.67.1486
http://dx.doi.org/10.1088/0264-9381/30/19/195009
http://arxiv.org/abs/1307.5098
http://www.jstor.org/stable/j.ctvc777qv
http://dx.doi.org/10.1103/PhysRevD.106.056007
http://arxiv.org/abs/2107.10193
http://dx.doi.org/10.1088/1361-6633/ab12bc
http://arxiv.org/abs/1807.01699
http://dx.doi.org/10.1103/PhysRevLett.117.061102
http://dx.doi.org/10.1103/PhysRevLett.117.061102
http://arxiv.org/abs/1605.01415
http://dx.doi.org/10.1111/j.1365-2966.2009.15885.x
http://arxiv.org/abs/0909.0954
http://arxiv.org/abs/0909.0954
http://dx.doi.org/10.1063/1.1724257
https://arxiv.org/abs/1711.11381
http://dx.doi.org/10.1103/PhysRev.110.974
http://dx.doi.org/10.1103/PhysRev.140.B516
http://dx.doi.org/10.1103/PhysRevD.90.085015
http://arxiv.org/abs/1405.1015


[17] B. Sahoo and A. Sen, “Classical and Quantum Results on Logarithmic Terms in the
Soft Theorem in Four Dimensions,” JHEP 02 (2019) 086, arXiv:1808.03288
[hep-th].

[18] D. R. Yennie, S. C. Frautschi, and H. Suura, “The infrared divergence phenomena
and high-energy processes,” Annals Phys. 13 (1961) 379–452.

[19] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge
University Press, 6, 2005.

[20] T. R. Taylor, “A Course in Amplitudes,” Phys. Rept. 691 (2017) 1–37,
arXiv:1703.05670 [hep-th].

[21] P. P. Kulish and L. D. Faddeev, “Asymptotic conditions and infrared divergences in
quantum electrodynamics,” Theor. Math. Phys. 4 (1970) 745.

[22] W. Magnus, “On the exponential solution of differential equations for a linear
operator,” Communications on pure and applied mathematics 7 no. 4, (1954)
649–673.

[23] H. Hirai and S. Sugishita, “Dress code for infrared safe scattering in QED,” PTEP
2023 no. 5, (2023) 053B04, arXiv:2209.00608 [hep-th].

[24] V. Chung, “Infrared Divergence in Quantum Electrodynamics,” Phys. Rev. 140
(1965) B1110–B1122.

[25] H. Hirai and S. Sugishita, “Conservation Laws from Asymptotic Symmetry and
Subleading Charges in QED,” JHEP 07 (2018) 122, arXiv:1805.05651 [hep-th].

[26] A.-M. Raclariu, “Lectures on Celestial Holography,” 7, 2021.

[27] S. Pasterski, “Lectures on celestial amplitudes,” Eur. Phys. J. C 81 no. 12, (2021)
1062, arXiv:2108.04801 [hep-th].

[28] G. Compère and A. Fiorucci, “Advanced Lectures on General Relativity,”
arXiv:1801.07064 [hep-th].

[29] L. Donnay, “Celestial holography: An asymptotic symmetry perspective,” 2023.
https://arxiv.org/abs/2310.12922.

[30] S. W. Hawking, M. J. Perry, and A. Strominger, “Soft Hair on Black Holes,” Phys.
Rev. Lett. 116 no. 23, (2016) 231301, arXiv:1601.00921 [hep-th].

[31] S. Haco, S. W. Hawking, M. J. Perry, and A. Strominger, “Black Hole Entropy and
Soft Hair,” JHEP 12 (2018) 098, arXiv:1810.01847 [hep-th].

[32] C. Cheung, “TASI lectures on scattering amplitudes.,” in Theoretical Advanced
Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries
in Particle Physics, pp. 571–623. 2018. arXiv:1708.03872 [hep-ph].

33

http://dx.doi.org/10.1007/JHEP02(2019)086
http://arxiv.org/abs/1808.03288
http://arxiv.org/abs/1808.03288
http://dx.doi.org/10.1016/0003-4916(61)90151-8
http://dx.doi.org/10.1017/CBO9781139644167
http://dx.doi.org/10.1016/j.physrep.2017.05.002
http://arxiv.org/abs/1703.05670
http://dx.doi.org/10.1007/BF01066485
http://dx.doi.org/10.1093/ptep/ptad057
http://dx.doi.org/10.1093/ptep/ptad057
http://arxiv.org/abs/2209.00608
http://dx.doi.org/10.1103/PhysRev.140.B1110
http://dx.doi.org/10.1103/PhysRev.140.B1110
http://dx.doi.org/10.1007/JHEP07(2018)122
http://arxiv.org/abs/1805.05651
http://dx.doi.org/10.1140/epjc/s10052-021-09846-7
http://dx.doi.org/10.1140/epjc/s10052-021-09846-7
http://arxiv.org/abs/2108.04801
http://arxiv.org/abs/1801.07064
https://arxiv.org/abs/2310.12922
http://dx.doi.org/10.1103/PhysRevLett.116.231301
http://dx.doi.org/10.1103/PhysRevLett.116.231301
http://arxiv.org/abs/1601.00921
http://dx.doi.org/10.1007/JHEP12(2018)098
http://arxiv.org/abs/1810.01847
http://dx.doi.org/10.1142/9789813233348_0008
http://arxiv.org/abs/1708.03872


[33] G. Travaglini et al., “The SAGEX review on scattering amplitudes,” J. Phys. A 55
no. 44, (2022) 443001, arXiv:2203.13011 [hep-th].

[34] T. Adamo, J. J. M. Carrasco, M. Carrillo-González, M. Chiodaroli, H. Elvang,
H. Johansson, D. O’Connell, R. Roiban, and O. Schlotterer, “Snowmass White
Paper: the Double Copy and its Applications,” in Snowmass 2021. 4, 2022.
arXiv:2204.06547 [hep-th].

[35] A. Buonanno, M. Khalil, D. O’Connell, R. Roiban, M. P. Solon, and M. Zeng,
“Snowmass White Paper: Gravitational Waves and Scattering Amplitudes,” in
Snowmass 2021. 4, 2022. arXiv:2204.05194 [hep-th].

[36] D. A. Kosower, R. Monteiro, and D. O’Connell, “The SAGEX review on scattering
amplitudes Chapter 14: Classical gravity from scattering amplitudes,” J. Phys. A
55 no. 44, (2022) 443015, arXiv:2203.13025 [hep-th].

34

http://dx.doi.org/10.1088/1751-8121/ac8380
http://dx.doi.org/10.1088/1751-8121/ac8380
http://arxiv.org/abs/2203.13011
http://arxiv.org/abs/2204.06547
http://arxiv.org/abs/2204.05194
http://dx.doi.org/10.1088/1751-8121/ac8846
http://dx.doi.org/10.1088/1751-8121/ac8846
http://arxiv.org/abs/2203.13025

	Basic conventions and gauge-fixing
	What is radiation? - radiative phase space of electromagnetism
	Aspects of geometry of Minkowski spacetime
	Penrose diagram for Minkowski space

	Conventions for 4-momenta and polarizations
	Radiative phase space
	Energy flux
	Asymptotic expansions
	Radiative modes from free-field expansion

	Towards Feynman-diagrammatic description
	Remark: Newman-Penrose coefficients

	Soft Theorems
	Soft photon theorem
	Argument for the leading soft photon theorem
	Subleading soft theorem from Ward identity and charge conservation
	Remark: Subleading soft factor receive loop corrections

	Is QED S-matrix trivial?
	Faddeev-Kulish construction of asymptotic states
	Asymptotic States
	Calculation of the dressing operators
	Cancellation of IR divergences

	Memory Effect
	Subleading memory effect

	Fundamentals of scattering theory
	Definition of in and out states
	S-matrix


