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Abstract

In this short note, we will present the derivation of the formula for calculating
the Lamb shift and review the historical calculation of the self-energy diagram for
this problem in the Furry picture.

1 Introduction
The Lamb shift is one of the most important effects both in theoretical and experi-

mental quantum electrodynamics. In this brief note, we will explore various derivations of
the formula used for calculating the Lamb shift from a mathematical perspective. Addi-
tionally, we will provide an overview of the classical calculation [Moh73] of the self-energy
diagram in the Furry picture.

The Furry picture, on which our approach is based, is a way to partially solve part of
the dynamics in a problem with an external potential by treating the external potential
as part of the free Hamiltonian. We will not consider the bound state problem as a two-
body problem in quantum electrodynamics, but restrict ourselves to the external potential
approximation.

Motivation for this work is to understand whether Lamb shift calculations differ sig-
nificantly in the case of electrodynamics with massive photons and in the case of bosonic
matter.

2 Derivation of the formula for the energy shift
Consider the spinorial QED Lagrangian:

L = −1

4
FµνF

µν + Ψ̄ (iγµDµ −m)Ψ, (2.1)

where Dµ = ∂µ−ieAµ, e is the electric charge, Ψ̄ = Ψ†γ0, Fµν = ∂µAν−∂νAµ. The gamma
matrices satisfy anticommutation relations {γµ, γν} = −2ηµν , ηµν = diag(−1,+1,+1,+1).
This convention is used, for example, in the Srednicki book [Sre07]. We will use the
notation x = (t, x⃗). Counterterms will be included later.
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If we consider the above theory in a static background field A0
cl(x) = V (x⃗), Ai

cl(x) = 0
for i = 1, 2, 3 then one can separate the electromagnetic potential Aµ(x) = Aµ

cl(x)+A
µ
qu(x)

and rewrite the above Lagrangian as

L = −1

4
FµνF

µν +Ψ†
(
−i∂t + iα⃗ · ∇⃗ −mβ − eV (x⃗)

)
Ψ+ eΨ̄Aµ

quγµΨ+F0i ∂
i V (x⃗), (2.2)

where we introduced α⃗ = γ0γ⃗ and β = γ0. Later, we will also write αµ = (1, α⃗). We have
also omitted terms in the Lagrangian that do not depend on the dynamical variables. We
have also redefined F µν = ∂µAν

qu− ∂νAµ
qu and will write just Aµ instead of Aµ

qu in the rest
of what follows.

The fermionic field will be quantized in the Furry (background field) picture. Let

ũN(x) = ũN(x⃗)e
−iEN t (2.3)

be a positive frequency solution to the Dirac equation following from the Lagrangian 2.2
(N is an index that goes through both bound and scattering states):(

iα⃗ · ∇⃗ −mβ − eV (x⃗)
)
ũN(x⃗) = EN ũN(x⃗). (2.4)

Similarly for the negative frequency solutions1

vN(x) = vN(x⃗)e
iEN′ t, (2.5)

(
iα⃗ · ∇⃗ −mβ − eV (x⃗)

)
vN(x⃗) = −EN ′vN(x⃗). (2.6)

This motivates us to define the Dirac operator:

Df(x⃗) :=
(
iα⃗ · ∇⃗ −mβ − eV (x⃗)

)
f(x⃗) (2.7)

for the suitably well-behaved potential V (x⃗) this operator is self-adjoint on the appropriate
class of functions, so it has the spectral decomposition in terms of the spectral measure
(which gives the completeness relation). All energies EN , EN ′ are positive because we
denote the negative eigenvalues of D by −EN ′ , and for simplicity we will assume that
potential is chosen such that the Dirac operator D has no zero eigenvalues (zero modes).

To simplify notation, will introduce uN as the unified symbol for the eigenfunctions
of D, regardless of the sign of their. This frequency will be denoted by ωN . (Index N is
now labeling all the states. Functions uN can be chosen to be orthonormal with respect
to the L2(R3,C4) canonical scalar product ⟨·|·⟩

⟨uN |uM⟩ :=
∫

dx⃗ u†N(x⃗)uM(x⃗) = δNM . (2.8)

Symbols δNM should be everywhere interpreted as Kronecker deltas for the eigenfunctions
in the discrete spectrum and the Dirac deltas with the appropriate factor needed for a
relativistic normalization factor, for the scattering states.

1We denote negative eigenvalues by −EN ′ , |EN ′ | > 0 to avoid the potential confusion with the positive
ones.

2



Let bN , dN be annihilation operators of the positively and negatively charged states.
Let b̃N be bN if uN is the positive frequency state, or d†N in the opposite case. We define
the quantum field in the Furry picture as

ψ(x) :=
∑
N

bN ũN(x⃗)e
−iEN t +

∑
N

d†NvN(x⃗)e
iEN′ t =:

∑
N

BNuNe
−iωN t (2.9)

where the sum is written symbolically to denote summation over the bound states and
integration with respect to the Lorentz invariant measure for the scattering states. We
also have separated two sums, because there does not need to be any matching between
positive and negative frequency states.

Let ΩF be the vacuum of the theory in the Furry picture, that is the state annihilated
by all bN and dN operators. By (·, ·), we will denote the scalar product in the Fock space
built from eigenfunctions of D.

We will define the fermionic propagator as follows:

S0(x, y) := i
(
ΩF , Tψ(x)ψ̄(y) ΩF

)
, (2.10)

−iS0(x, y) = θ(x0−y0)
∑
N

ũN(x⃗)¯̃uN(y⃗)e
−iEN (x0−y0)−θ(y0−x0)

∑
N

vN(x⃗)v̄N(y⃗)e
iEN′ (x0−y0).

(2.11)
We have written S0(x, y) instead of S0(x−y) because at this point we have not assumed

any other symmetry of the potential, except time translation symmetry.
The propagator has the spectral representation2:

S0(x, y) =

∫ +∞

−∞

dω

2π

(∑
N

ũN(x⃗)¯̃uN(y⃗)

EN − ω − i0
−
∑
N

vN(x⃗)v̄N(y⃗)

EN ′ + ω − i0

)
e−iω(x0−y0)

=

∫
CF

dω

2π

(∑
N

ũN(x⃗)¯̃uN(y⃗)

EN − ω
−
∑
N

vN(x⃗)v̄N(y⃗)

EN ′ + ω

)
e−iω(x0−y0)

=

∫
CF

dω

2π

∑
N

uN(x⃗)ūN(y⃗)

ωN − ω
e−iω(x0−y0),

(2.12)

where CF denotes the Feynman contour that is depicted on the figure 2.1 that goes below
poles corresponding to the states belonging to the Dirac sea.

S0(x⃗, y⃗;ω) :=

∫
d(x0 − y0) S0(x, y)e

iω(x0−y0)

=
∑
N

uN(x⃗)ūN(y⃗)

EN − ω − i0
−
∑
N

vN(x⃗)v̄N(y⃗)

EN ′ + ω − i0
=
∑
N

uN(x⃗)ūN(y⃗)

ωN − ω − i0 sgnωN

.
(2.13)

Now we will show how to systematically derive the formula for the correction to the
energy of the given bound state using the pole structure of the propagator of the bounded

2We have used well-known formula for the step function θ(x) = (2πi)−1
∫ +∞
−∞ dz(z − i0)−1eixz
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Figure 2.1: Feynman contour of integration in the ω plane. Red lines denote branch cuts
coming from the scattering states, and red crosses depict poles coming from bound states.

particle. This derivation is valid regardless of whether the bounded particle is a boson or
a fermion.

Let us denote the Heisenberg picture propagator of the particle moving in the potential
by S ′(x, y). It is defined by the perturbation series from the given Lagrangian as a sum
of all connected diagrams with two external legs, so it has the following form:

−iS(x, y) = −iS0(x, y)−
∫

dz dw (−iS0(x,w)) (iΣ(w, z)) (−iS0(z, y))

− i

∫
dz dw dz′dw′ S0(x,w)Σ(w, z)S0(z, w

′)Σ(w′, z′)S0(z
′, y) + ...

= −iS0(x, y)− i

∫
dz dw S0(x,w)Σ(w, z)S(z, y),

(2.14)

where iΣ(w, z) is the sum of all “1-electron” irreducible diagrams with two external legs,
fixed in the w and z spacetime points, with external propagators removed. iΣ(w, z) is
really a sum of “1-electron” irreducible diagrams (we cannot cut the photon lines), not of
the one-particle irreducible diagrams, because we do not have a cancellation of tadpoles
with the Furry propagators in the loops. Interactions with an external potential break
translational symmetry needed for the tadpole cancellation. The Furry theorem does
not apply either since it assumes charge conjugation symmetry of the theory, which is
explicitly broken by the external potential. From the above equation, we see that S is
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the Green function satisfying:

(D − Σ)S =(D − Σ) (S0 + S0ΣS) = 1− Σ S0 + Σ S − Σ S0 Σ S

= 1− Σ (S − S0 − S0 Σ S) = 1.
(2.15)

We have used the operator notation AB =
∫
dz A(x, z)B(z, y), and used the fact that

DS = 1. We will therefore sometimes write shortly

S = (D − Σ)−1 . (2.16)

2.1 First derivation

In the standard textbook treatment due to Weinberg [Wei95], one assumes a certain
spectral decomposition of S and calculates its form using the perturbation theory. This
assumption is ad hoc and unjustified. Below, we will show how to use Weinberg’s method
beyond first order. In the later discussion, we will show how to obtain the energy shift
more directly. Considered energy shift δωN is a priori a complex number. Its imaginary
part is related to the lifetime of the N ’th excited state.

Assuming that the corrections to S coming from the Σ are small enough, we can write
a spectral representation of the full propagator:

S(x⃗, y⃗;ω) =
∑
N

ŨN(x⃗)
¯̃UN(y⃗)

EN + δEN − ω − i0
−
∑
N

VN(x⃗)V̄N(y⃗)

EN ′ + δEN ′ + ω − i0

=:
∑
N

UN(x⃗)ŪN(y⃗)

ωN + δωN − ω − sgnω i0
.

(2.1)

Later, we will show that this assumption about the form of the decomposition is unnec-
essary to prove formulas for energy corrections. More importantly, it turns out that we
do not even need to assume the existence of the UN functions and calculate them. We
denoted by ŨN and VN functions that are heuristically thought of as solutions to the
(D − Σ) f = 0 equation. They will be calculated using perturbation expansion by the
well-defined procedure that defines them.

We have combined the indexing of the energies and wavefunctions of both positive and
negative frequency states to simplify the notation. The propagator of the scalar particle
moving in the external potential will have the same final form as the propagator if we
replace the Dirac adjoint by the Hermitian adjoint. This analysis will still be valid for
the scalar case if we make this substitution in the final results.

We will do perturbation theory. Let us write δωN , UN and Σ as a Taylor series in the
coupling constant α:

δωN =
∞∑
n=1

δω
(n)
N αn, Σ =

∞∑
n=1

Σ(n)αn, δUN(x⃗) = uN(x⃗) +
∞∑
n=1

δU
(n)
N (x⃗)αn. (2.2)

Next, we expand to the first order in α equations 2.1 and 2.14. Using the orthogonality
of the wavefunctions and comparing the behavior of both sides of the equation in the
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ω → ωN limit we obtain:

− δω
(1)
N

(ωN − ω)2
=

1

(ωN − ω)2

∫
dx⃗ dy⃗ ūN(x⃗)

(∫
d(x0 − y0)Σ(1)(x, y)eiω(x

0−y0)

)
uN(y⃗)

=:
1

(ωN − ω)2

∫
dx⃗ dy⃗ uN(x⃗)Σ

(1)(x⃗, y⃗;ω)ūN(y⃗).

(2.3)

The orthonormality is used to isolate a given term in the sum and pole structure com-
parison is needed to ensure that we are isolating a term proportional to the correction to
the energy, not the one coming from the wavefunction correction. The final result is:

δω
(1)
N = −

∫
dx⃗dy⃗ ūN(x⃗)Σ

(1)(x⃗, y⃗;ω)uN(y⃗) = −⟨uN |γ0Σ(1)(ω)|uN⟩ . (2.4)

Let us derive the formula for the second correction to the energy. Taking the matrix
element of S and expanding gives:

⟨uN |Sγ0|uN⟩ = ⟨uN | (S0 + αS0Σ
(1)S0 + α2S0Σ

(2)S0

+ α2S0Σ
(1)S0Σ

(1)S0 + ...)γ0 |uN⟩
(2.5)

On the other hand, expansion of the spectral representation gives to the second order:

⟨uN |Sγ0|uN⟩ =
1 + α ⟨δU (1)

N |uN⟩+ α ⟨uN |δU (1)
N ⟩

ωN + αδω
(1)
N + α2δω

(2)
N − ω

=
1 + α ⟨δU (1)

N |uN⟩+ α ⟨uN |δU (1)
N ⟩

ωN − ω

− 1 + α ⟨δU (1)
N |uN⟩+ α ⟨uN |δU (1)

N ⟩
(ωN − ω)2

(
αδω

(1)
N + α2δω

(2)
N

)
+

1

(ωN − ω)3

(
αδω

(1)
N

)2
+ ...

(2.6)

We see from the above expansion that δω(n)
N can be read off from the coefficient multiplying

the αn (ωN − ω)−2 term in the perturbative series, provided that we know lower order
correction to the energy and appropriate wavefunction corrections.

For instance, if we want to calculate the second-order correction, we need to consider
the coefficient in front of −α2 (ωN − ω)−2 that is equal to:

δω
(2)
N + δω

(1)
N

(
⟨δU (1)

N |uN⟩+ α ⟨uN |δU (1)
N ⟩
)

Using in 2.5 spectral representation of the Furry propagator

S0 =
∑
N

|uN⟩ ⟨uN | γ0

ωN − ω − sgnωN i0
(2.7)
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we can collect in equation 2.5 terms with appropriate asymptotic behavior. This procedure
is equivalent to removing two external leg propagators in the diagrams. We get the result

−δω(2)
N = ⟨uN | γ0(Σ(2) + Σ(1)S0 redΣ

(1)) |uN⟩+ δω
(1)
N

(
⟨δU (1)

N |UN⟩+ ⟨UN |δU (1)
N ⟩
)

(2.8)

where S0 red is the reduced Furry picture propagator, that is, the Furry picture propagator
with the term corresponding to the state to which we calculate the correction removed.
We are omitting this term in the sum because it has a different behavior near the pole.
We need to calculate ⟨δU (1)

N |UN⟩+ ⟨UN |δU (1)
N ⟩ .

Let us take a derivative of 2.5 with respect to ω and keep only first-order terms in α:

⟨uN |
dS0

dω
γ0|uN⟩ = α ⟨uN |

(
dS

dω
Σ(1)S0 + S0

dΣ(1)

dω
S0 + S0Σ

(1)dS0

dω

)
γ0 |uN⟩+O(α2). (2.9)

Only the second term in the above equation has α (ωN − ω)−2 behavior. If we take the
derivative over ω of the equation 2.6 and keep only term proportional to α (ωN − ω)−2 we
will end up with:

α
⟨δU (1)

N |ŨN⟩+ ⟨UN |δU (1)
N ⟩

(ωN − ω)2
. (2.10)

Hence, if we equate both sides and expand S, we get:

⟨δU (1)
N |UN⟩+ ⟨UN |δŨ (1)

N ⟩ = ⟨uN | γ0
dΣ(1)

dω
|uN⟩ . (2.11)

So if insert equation 2.11 into 2.8 we obtain:

δω
(2)
N = −⟨uN | γ0(Σ(2) + Σ(1)SredΣ

(1)) |uN⟩+ ⟨uN |γ0Σ(1)|uN⟩ ⟨uN | γ0
dΣ(1)

dω
|uN⟩ . (2.12)

2.2 Improved derivation

Now we will show a more rigorous approach to derive the above relations. We will
do not As before, we will start with the fact that the position of the (isolated) pole
of the full propagator S(x⃗, y⃗;ω) in the frequency domain, determines the energy (and
average lifetime) of the given (bound) state. This is our initial assumption. If at some
order of perturbation theory this assumption is invalid, we lose the interpretation that
the singularity corresponds to the bound state.

The pole of the function that is the integral kernel of the operator

S(ω) := (D − ω1− Σ(ω))−1 , (2.1)

can be found by solving the operator equation:

(D − ω1− Σ(ω)) f = 0. (2.2)

This is just an eigenvalue equation for the inverse propagator.
The problem of solving this eigenvalue problem is hard due to the complicated form

of Σ that is calculated perturbatively. We want to solve equation 2.11 perturbatively. To
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use perturbation theory in an effective manner, we will first project the problem onto the
one-dimensional subspace of L2(R3,C4) that is spanned by the state to which frequency
ωN corrections we want to calculate. Let us denote this considered state uN and the
projection onto it by PN . We can then use the algebraic formula:

PNS(ω)γ
0PNγ

0 = |uN⟩ ⟨uN |S(ω)γ0 |uN⟩ ⟨uN | γ0

=
(
ωN − ω − ⟨uN |γ0Σ(ω)|uN⟩

− ⟨uN |γ0Σ(ω)(1− γ0PNγ
0)S(ω)(1− PN)Σ(ω)|uN⟩

)−1 |uN⟩ ⟨uN | γ0

=:
(
ωN − ω − ⟨uN |γ0Σ(ω)|uN⟩ − ⟨uN |γ0Σ(ω)Sred(ω)Σ(ω)|uN⟩

)−1 |uN⟩ ⟨uN | γ0.

(2.3)

The derivation of this formula is given in the appendix. The operator problem is reduced
to the numerical problem because the equation 2.3 is the operator relation on the one-
dimensional subspace.

⟨uN |S(ω)γ0 |uN⟩ =
(
ωN − ω − ⟨uN |γ0Σ(ω)|uN⟩ − ⟨uN |γ0Σ(ω)Sred(ω)Σ(ω)|uN⟩

)−1
.

(2.4)

The left-hand side of the above equation is divergent when:

ωN − ω − ⟨uN |γ0Σ(ω)|uN⟩ − ⟨uN |γ0Σ(ω)Sred(ω)Σ(ω)|uN⟩ = 0, (2.5)

which gives:

δωN = −⟨uN |γ0Σ(ω)|uN⟩ − ⟨uN |γ0Σ(ω)Sred(ω)Σ(ω)|uN⟩ . (2.6)

The above formula gives a clear, recursive derivation of the formula for the frequency
shift of any state. Note that this derivation avoids considerations of the spectral form of
S(ω) and complicated algebraic manipulations relating corrections to the wavefunctions
with energy corrections at different orders of the perturbation theory.

Substituting expansions from 2.2, we obtain, to the first order in α, the equation 2.4.
Expanding to the second order and setting on the right-hand side Sred(ω) = S0(ωN) gives:

αδω
(1)
N + α2δω

(2)
N = −α ⟨uN |γ0Σ(1)|uN⟩ − α2δω

(1)
N ⟨uN |γ0

dΣ(1)

dω
(ω)|uN⟩ − α2 ⟨uN |γ0Σ(2)(ω)|uN⟩

− α2 ⟨uN |γ0Σ(1)(ω)S0 red(ω)Σ
(1)(ω)|uN⟩ .

(2.7)

Substituting δω(1)
N yields:

δω
(2)
N = ⟨uN |γ0Σ(1)|uN⟩ ⟨uN |γ0

dΣ(1)

dω
(ω)|uN⟩ − ⟨uN |γ0Σ(2)(ω)|uN⟩

− ⟨uN |γ0Σ(1)(ω)S0 red(ω)Σ
(1)(ω)|uN⟩ .

(2.8)

3 Mohr’s calculation
We will now briefly discuss the calculation of the energy shift due to the self-energy

diagram done by Mohr [Moh73]. In this calculation, we will also see the standard proce-
dure of dividing the integral into the low-energy part and the high-energy part, but in our
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Figure 3.2: Self-energy diagram for spinorial electrodynamics.

opinion, in Mohr’s treatment, this splitting is the most conceptually clean. Let us evalu-
ate a 1PI diagram from the figure 3.2. Using well-known Feynman rules and Pauli-Villars
regularization, we get:

iΣSE
Λ (x, y) = (ie)2

∫
dk

(2π)4
γµ(−iS0(x, y))e

ik(x−y)γν
(

−iηµν
k2 − i0

− −iηµν
k2 + Λ2 − i0

)
. (3.1)

After going to the energy domain and using α = e2/4π, we have:

iΣSE
Λ (x⃗, y⃗;ω) = 4πα

∫
CF

dk0

2π

∫
dk⃗

(2π)3
γµS0(x⃗, y⃗;ω − k0))γµ

×
(

1

k2 − i0
− 1

k2 + Λ2 − i0

)
eik⃗(x⃗−y⃗).

(3.2)

We have explicitly written that the integral over k0 is taken using the Feynman contour
to emphasize the direction of going around poles. Let us expand S0 using its spectral
representation 2.12 and evaluate the matrix element of iΣSE

Λ (ω):

i ⟨uN |γ0ΣSE
Λ (ω)|uN⟩ = 2α

∫
CF

dk0
∫

dk⃗

(2π)3
⟨uN |αµS0(ω − k0)αµ|uN⟩

×
(

1

k2 − i0
− 1

k2 + Λ2 − i0

)
eik⃗(x⃗−y⃗).

(3.3)

The standard technique to evaluate similar integrals in quantum field theory is to use
Feynman’s parametrization and to perform a Wick rotation. However, in our case, because
we do not have a simple expression for the propagator, momentum space integrals cannot
be done that easily.

For the high-energy virtual photons, the contributions to the S0(ω − k0) propagator
from the bound states are small, and we can express S0 as the free-theory propagator
dressed by the perturbative series in the external sources V (x⃗). The problem is reduced
to the standard evaluation of the diagrams in quantum electrodynamics.

If |k0| ≲ ω the sum in the spectral representation 2.12 of S0(ω − k0) is expected
to be dominated by contributions from the poles of the bound states. In this case, the
integral over k0 can be performed using the Sochocki formula3 to isolate contributions for
the intermediate bound states and reduce the problem to the old-fashioned perturbation
theory4.

3 1
x±iε = P 1

x ∓ iπδ(x).
4As it is done for example in chapter 13 of Weinberg’s book [Wei95].
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Here, we will do the opposite. We will integrate the momenta k⃗ of photons and leave
the integral over k0 for the end. It turns out that after the integration of the virtual
photons, there is a natural split of the contributions from the high-energy and low-energy
parts due to the analytical structure of the integrand. As we will see, the integration over
the momenta will give us branch cuts in the complex k0 plane.

Consider an integral:

Iz =

∫
dk⃗

(2π)3
eiq(x⃗−y⃗)

q2 − z − i0
=

∫
dq

4π2

eiq|x⃗−y⃗| − e−iq|x⃗−y⃗|

iq|x⃗− y⃗|
q2

q2 − z − i0

=
1

4π2i|x⃗− y⃗|

∫
d|⃗k| qeiq|x⃗−y⃗|

q2 − z − i0
.

(3.4)

In the second step, we performed integration over spherical coordinates θ, φ defined via
k⃗ = q(cosφ sin θ, sinφ sin θ, cos θ) with k⃗ · (x⃗− y⃗) = q|x⃗− y⃗| cos θ. The above integral can
be evaluated using the residue method. We close the contour from above and pick the
residue at q =

√
z + iε.

Iz =
2πi

4π2i|x⃗− y⃗|

√
z + i0ei

√
z+i0|x⃗−y⃗|

2
√
z + i0

=
ei

√
z+i0|x⃗−y⃗|

4π|x⃗− y⃗|
. (3.5)

To define this function, we need to suitably fix a branch cut of the square root function.
Substituting w = ω − k0 and applying the formula (3.5) to evaluate the integrals with
propagators (k2 − i0)−1, (k2 + Λ2 − i0)−1 in (3.3) gives us

⟨uN |γ0ΣSE
Λ (ωN)|uN⟩ = −α

∫
CF

dw

2πi

∫
dk⃗ ⟨uN |αµS0(w)αµ|uN⟩

×

(
ei
√

(ωN−w)2+i0|x⃗−y⃗|

|x⃗− y⃗|
− ei

√
(ωN−w)2−Λ2+i0|x⃗−y⃗|

|x⃗− y⃗|

)
= ∆ωL +∆ωH .

(3.6)

We choose such branches of the square root that it is real and positive on the inte-
gration contour CF . The integration contour and the branch cuts are shown in the figure
3.3. Now, let us do the Wick rotation in the w variable. We see that we can deform the
contour CF to the new contour C. The portion of C that is aligned on the imaginary axis
CH gives rise to the high-energy part, and the part that encloses the branch cut CL gives
us the low-energy part. Rotated contour is depicted on the figure 3.4.

The reason for this identification is as follows. If we make an approximation that
propagators in CF can be represented as a series in the external sources Aµ

cl, then the
integral over CH reduces to the Wick rotated vertex correction diagram with external
potential that can be evaluated using standard techniques. The low-energy part is given
by an integral over the frequencies up to ωN , and it is insensitive to the UV physics (it is
independent of Λ) due to the position of branch cuts:

∆ωL
N =

α

π

∫ ωN

0

dw

∫
dk⃗ ⟨uN |αµS0(w + i0)αµ|uN⟩

× sin (ωN − w)|x⃗− y⃗|
|x⃗− y⃗|

.

(3.7)
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Figure 3.3: Contour of integration with branch cuts depicted.

Figure 3.4: Wick rotated contour of integration split into CL and CH ..
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Equation 3.7 is the final form of the formula for the non-perturbative contribution to the
frequency shift of the state due to the self-energy diagram, to the first order.

4 Discussion
We will conclude by saying that the use of the Feschbach-Shur formula makes the

derivation more transparent. Also, the splitting of a contour into the low-energy part and
the high-energy part makes the separation of the perturbative and bound state contribu-
tions easily visible.
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A Derivation of Feschbach-Schur formula
Consider an invertible operator H : V → W . We make a decomposition of the domain

V = V1 ⊕ V2 and of its codomain W = W1 ⊕ W2. Let us write H in a matrix form
compatible with this decomposition:

H =

[
a b
c d

]
. (1.1)

The direct computation shows that H can be written as a matrix product.

H =

[
1 bd
0 1

] [
a− bd−1c 0

0 d

] [
1 0

d−1c 1

]
. (1.2)

Inverting all matrices we get:

H−1 =

[
1 0

−d−1c 1

] [
(a− bd−1c)

−1
0

0 d−1

] [
1 −bd−1

0 1

]
. (1.3)

We want to obtain the restriction of the above operator to obtain an operator in
End(V1,W1). Let PX be projection on the subspace X. Then we have the final result:

PV1H
−1PW1 =

(
a− bd−1c

)−1
. (1.4)

Substitution of H = S(ω)−1 = D − ω 1 − Σ(ω) and V1 = span{u}, W1 = span{γ0u}
gives the equation 2.3.
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