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Abstract. The main aim of our lectures is to give a pedagogical introduction to various math-

ematical formalisms used to describe open quantum systems: completely positive semigroups,

dilations of semigroups, quantum Langevin dynamics and the so-called Pauli-Fierz Hamiltonians.

We explain two kinds of the weak coupling limit. Both of them show that Hamiltonian

dynamics of a small quantum system interacting with a large resevoir can be approximated by

simpler dynamics. The better known reduced weak coupling limit leads to completely positive

dynamics. The main topic of our lecture notes, the extended weak coupling limit, also known as

the stochastic limit, leads to quantum Langevin dynamics.

Our lecture notes are based partly on the results of our recent articles [DD1, DD2].

1. Introduction. Physicists often describe quantum systems by completely positive

(c.p.) semigroups [Haa, AL, Al2]. It is generally believed that this approach is only a

phenomenological approximation to a more fundamental description. One usually as-

sumes that on the fundamental level the dynamics of quantum systems is unitary, more

precisely, is of the form t 7→ eitH · e−itH for some self-adjoint H .

One of justifications for the use of c.p. semigroups in quantum physics is based on

the so-called weak coupling limit for the reduced dynamics [VH, Da1], which we will call

the reduced weak coupling limit. One assumes that a small system is coupled to a large

reservoir and the dynamics of the full system is unitary. The interaction between the

small system and the reservoir is multiplied by a small coupling constant λ. Often the

reservoir is described by a free Bose gas.
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2 J. DEREZIŃSKI AND W. DE ROECK

The basic steps of the reduced weak coupling limit are:

• Reduce the dynamics to the small system.

• Rescale time as t/λ2.

• Subtract the dynamics of the small system.

• Consider the weak coupling λ→ 0.

In the limit one obtains a dynamics given by a c.p. Markov semigroup.

Another possible justification of c.p. dynamics goes as follows. One considers the

tensor product of the small system and an appropriate bosonic reservoir. On this enlarged

space one constructs a certain unitary dynamics whose reduction to the small system is a

c.p. semigroup. We will call it a quantum Langevin dynamics. Another name used in this

context in the literature is a quantum stochastic dynamics. Its construction has a long

history, let us mention [AFLe, HP, Fr, Maa].

Thus one can obtain a Markov c.p. semigroup by reducing a single unitary dynamics,

without invoking a family of dynamics and taking its limit. However, the generator of a

quantum Langevin dynamics equals i[Z, ·] where Z is a self-adjoint operator that does

not look like a physically realistic Hamiltonian. In particular, it is unbounded from both

below and above. Thus one can question the physical relevance of this construction.

It turns out, however, that one can extend the weak coupling limit in such a way, that

it involves not only the small system, but also the reservoir. As a result of this approach

one can obtain a quantum Langevin dynamics. One can argue that this approach gives a

physical justification of quantum Langevin dynamics.

The above idea was first implemented in [AFL] by Accardi, Frigerio and Lu under

the name of the stochastic limit (see also [ALV]). Recently we presented our version of

this approach, under the name of the extended weak coupling limit [DD1, DD2], which we

believe is simpler and more natural than that of [AFL]. The basic steps of the extended

weak coupling limit are:

• Introduce the so-called asymptotic space—the tensor product of the space of the

small system and of the asymptotic reservoir.

• Introduce an identification operator that maps the asymptotic reservoir into the

physical reservoir and rescales its energy by λ2 around the Bohr frequencies.

• Rescale time as t/λ2.

• Subtract the “fast degrees of freedom”.

• Consider the weak coupling λ→ 0.

In the limit one obtains a quantum Langevin dynamics on the asymptotic space. Note that

the asymptotic reservoir is given by a bosonic Fock space (just as the physical reservoir).

Its states are however different—they correspond only to those physical bosons whose

energies differ from the Bohr frequencies by at most O(λ2). Only such bosons survive the

weak coupling limit.

Let us mention yet another scheme of deriving quantum Langevin equations that has

received attention in the literature, namely the ‘repeated interaction models’ where the

reservoir is continuously refreshed, see [AtP, AtJ].
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In this article we review various aspects of the weak coupling limit, reduced and, es-

pecially, extended, mostly following our papers [DD1, DD2]. We also describe some back-

ground material, especially related to completely positive semigroups, quantum Langevin

dynamics and the Detailed Balance Condition.

The plan of our article is as follows. In Section 2 we describe both kinds of the weak

coupling limit on a class of toy-examples—the so-called Friedrichs Hamiltonians and their

dilations. They are less relevant physically than the main model treated in our article

—the one based on Pauli-Fierz operators. Nevertheless, they illustrate some of the main

ideas of this limit in a simple and mathematically instructive context. This section is

based on [DD1].

In Sections 3 we recall some facts about completely positive maps and semigroups,

sketching proofs of the Stinespring dilation theorem [St] and of the so-called Lindblad

form of the generator of a c.p. semigroup [Li, GKS]. In particular, we discuss the freedom

of choosing various terms in the Lindblad form. This question, which we have not seen

discussed in the literature, is relevant for the construction of quantum Langevin dynamics

and the weak coupling limit.

C.p. semigroups that arise in the weak coupling limit have an additional property—

they commute with the unitary dynamics generated by the Hamiltonian K of the small

system—for brevity we say that they are K-invariant. If in addition the reservoir is

thermal, they satisfy another special property—the so-called Detailed Balance Condition

(DBC) [DF1, Ag, FKGV, Al1]. We devote a large part of Sect. 3 to an analysis of the

K-invariance and the DBC. We show that the generator of a c.p. semigroup with these

properties has some features that curiously resemble the Tomita-Takesaki theory and the

KMS condition. Let us note that in our article the DBC is considered jointly with the

K-invariance, because c.p. semigroups obtained in the weak coupling limit always have

the latter property.

In Section 4 we describe the terminology and notation that we use to describe second-

quantized bosonic reservoirs interacting with a small system. In particular, we introduce

Pauli-Fierz operators [DJ1]—used often (also under other names) in the physics literature

to describe physically realistic systems. In Subsect. 4.3 we discuss thermal reservoirs. In

our definition of a thermal reservoir at inverse temperature β one needs to check a simple

condition for the interaction without explicitly invoking the concept of a KMS state on

an operator algebra, or of a thermal Araki-Woods representation of the CCR [DF1, DJ1].

Of course, this condition is closely related to the KMS property.

In Subsection 5 we describe a construction of quantum Langevin dynamics. We include

a discussion of the so-called quadratic noises, even though they are still not used in our

version of the extended weak coupling limit. (See however [Go] for some partial results

in the context of the formalism of [AFL]).

In Section 6 we describe the two kinds of the weak coupling limit for Pauli-Fierz

operators: reduced and extended. Most of this section is based on [DD2].

2. Toy model of the weak coupling limit. This section is somewhat independent of

the remaining part of the article. It explains the (reduced and extended) weak coupling
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limit in the setting of contractive semigroups on a Hilbert space and their unitary dila-

tions. It gives us an opportunity to explain some of the main ideas of the weak coupling

limit in a relatively simple setting. It is based on [DD1].

It is possible to construct physically interesting models based on the material of this

section (e.g. by considering quadratic Hamiltonians obtained by second quantization).

We will not discuss this possibility further, since in the remaining part of the article we

will analyze more interesting and more realistic models.

2.1. Dilations of contractive semigroups. First let us recall the well known concept of

a unitary dilation of a contractive semigroup. Let K be a Hilbert space and e−itΥ a

strongly continuous contractive semigroup on K. This implies that −iΥ is dissipative:

−iΥ + iΥ∗ ≤ 0.

Let Z be a Hilbert space containing K, IK the embedding of K in Z and Ut a unitary

group on Z . We say that (Z , IK, Ut) is a dilation of e−itΥ iff

I∗KUtIK = e−itΥ, t ≥ 0.

It is well known that every weakly continuous contractive semigroup possesses a uni-

tary dilation (which is unique up to unitary equivalence if we additionally demand its

minimality). The original and well known construction of a unitary dilation is due to Foiaş

and Nagy and can be found in [NF] (see also [EL]). Below we present another construc-

tion, which looks different from that of Foiaş-Nagy. Its main idea is to view the generator

of a unitary dilation as a kind of a singular Friedrichs operator. (See the next section,

where Friedrichs operators are introduced). Such a definition is well adapted to the ex-

tended weak coupling limit. The construction that we present seems to be less known in

the mathematics literature than that of Foiaş-Nagy. Nevertheless, similar constructions

are scattered in the literature, especially in physics papers.

Let h be an auxiliary space and ν ∈ B(K, h) satisfy

1

i
(Υ−Υ∗) = −ν∗ν. (2.1)

Note that such h and ν always exist. One of possible choices is to take h := K and

ν :=
√

i(Υ−Υ∗).

If φ is a vector, then |φ) will denote the operator C 3 λ 7→ |φ)λ := λφ. Similarly, (φ|
will denote its adjoint: f 7→ (φ|f := (φ|f) ∈ C.

We will use a similar notation also for unbounded functionals. For instance, (1| will

denote the (unbounded) linear functional on L2(R) given by

(1|f =

∫
f(x)dx (2.2)

with the domain L2(R) ∩ L1(R). |1) will denote the hermitian conjugate of (1| in the

sense of sesquilinear forms: if f ∈ L2(R) ∩ L1(R), then

(f |1) :=

∫
f̄(x)dx.

Let ZR be the operator of multiplication on L2(R) by the variable x.
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Introduce the Hilbert spaces ZR := h⊗L2(R) and Z := K ⊕ ZR. Clearly, K is

contained in Z , so we have the obvious embedding IK : K → Z . We also have the

embedding IR : ZR → Z .

For t ≥ 0, consider the following sesquilinear form on K ⊕ (h⊗ (L∈(R) ∩ L∞(R))):

Ut = IRe−itZRI∗R + IKe−itΥI∗K − i(2π)−
1
2 IK

∫ t

0

du e−i(t−u)Υν∗ ⊗ (1|e−iuZRI∗R

−i(2π)−
1
2 IR

∫ t

0

du e−i(t−u)ZRν ⊗ |1)e−iuΥI∗K

− (2π)−1IR

∫

0≤u1,u2, u1+u2≤t

du1du2 e−iu2ZRν ⊗ |1)e−i(t−u2−u1)Υν∗ ⊗ (1|e−iu1ZRI∗R. (2.3)

By a straightforward computation we obtain [DD1]

Theorem 2.1. The form Ut extends to a strongly continuous unitary group and

I∗KUtIK = e−itΥ, t ≥ 0.

Thus (Z , IK, Ut) is a dilation of e−itΥ.

Let −iZ denote the generator of Ut, so that Ut = e−itZ . Z is a self-adjoint operator

with a number of interesting properties. It is not easy to describe it with a well-defined

formula. Formally it is given by the sesquilinear form
[

1
2 (Υ + Υ∗) (2π)−

1
2 ν∗ ⊗ (1|

(2π)−
1
2 ν ⊗ |1) ZR

]
. (2.4)

Note that (2.4) looks like a special case of a Friedrichs operator (see Subsection 2.3

and [DF2]). As it stands, however, (2.4) does not define a unique self-adjoint operator.

Nevertheless, we will sometimes use the expression (2.4) when referring to Z.

Note that it is possible to give a compact formula for the resolvent of Z, (which is

another possible method of defining Z). For z ∈ C+,

(z − Z)−1 := IR(z − ZR)−1I∗R + IK(z −Υ)−1I∗K
+(2π)−

1
2 IK(z −Υ)−1ν∗ ⊗ (1|(z − ZR)−1I∗R

+(2π)−
1
2 IR(z − ZR)−1ν ⊗ |1)(z −Υ)−1I∗K

+(2π)−1IR (z − ZR)−1ν ⊗ |1) (z −Υ)−1 ν∗ ⊗ (1|(z − ZR)−1 I∗R.

Yet another approach that allows to define Z involves a “cut-off procedure”. In fact,

Z is the norm resolvent limit for r →∞ of the following regularized operators:

Zr :=

[
1
2 (Υ + Υ∗) (2π)−

1
2 ν∗ ⊗ (1|1[−r,r](ZR)

(2π)−
1
2 ν ⊗ 1[−r,r](ZR)|1) 1[−r,r](ZR)ZR

]
.

Note that it is important to remove the cut-off in a symmetric way. If we replace [−r, r]
with [−r, ar] we usually obtain a different operator. The convergence of Zr to Z is the

reason why we can treat (2.4) as the formal expression for Z.
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Next, let us mention a certain invariance property of Z. For λ ∈ R, introduce the

following unitary operator on Z
jλu = u, u ∈ K; jλg(y) := λ−1g(λ−2y), g ∈ ZR.

Note that

j∗λZRjλ = λ2ZR, j∗λ|1) = λ|1).

Therefore, the operator Z is invariant with respect to the following scaling:

Z = λ−2j∗λ

[
λ2 1

2 (Υ + Υ∗) λ(2π)−
1
2 ν∗ ⊗ (1|

λ(2π)−
1
2 ν ⊗ |1) ZR

]
jλ. (2.5)

(2.5) will play an important role in the extended weak coupling limit.

Note that in the weak coupling limit it is convenient to use the representation of

ZR as a multiplication operator. Another natural possibility is to represent it as the

differentiation operator. Let us describe this alternative version of the dilation.

The (unitary) Fourier transformation on h⊗L2(R) will be denoted as follows:

Ff(τ) := (2π)−1/2

∫
f(x)e−iτxdx. (2.6)

We will use τ as the generic variable after the application of F . The operator Z trans-

formed by 1K ⊕F will be denoted

Ẑ := (1K ⊕F)Z(1K ⊕F∗). (2.7)

Introduce

Dτ :=
1

i
∂τ . (2.8)

Let (δ0| have the meaning of an (unbounded) linear functional on L2(R) with the domain,

say, the first Sobolev space H1(R), such that

(δ0|f) := f(0). (2.9)

Similarly, let |δ0) be its hermitian adjoint in the sense of forms. By applying the Fourier

transform to (2.4), we can write

Ẑ =

[
1
2 (Υ + Υ∗) ν∗ ⊗ (δ0|
ν ⊗ |δ0) Dτ

]
. (2.10)

Clearly, e−itẐ is also a dilation of e−itΥ.

The operator Ẑ (or Z) and the unitary group it generates has a number of curious

and confusing properties. Let us describe one of them. Consider the space D := K ⊕
(h⊗H1(R)). Clearly, it is a dense subspace of Z . Let us define the following quadratic

form on D:

Ẑ+ :=

[
Υ ν∗ ⊗ (δ0|

ν ⊗ |δ0) Dτ

]
. (2.11)

Then, for ψ, ψ′ ∈ D,

lim
t↓0

1

t
(ψ|(e−itẐ − 1)ψ′) = −i(ψ|Ẑ+ψ′). (2.12)
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One could think that Ẑ+ = Ẑ. But Ẑ+ is in general non-self-adjoint, which is incompatible

with the fact that e−itẐ is a unitary group.

To explain this paradox we notice that (ψ|e−itẐψ′) is in general not differentiable at

zero: its right and left derivatives exist but are different. Hence D is not contained in the

domain of the generator of Ẑ. We will call Ẑ+ the false form of the generator of eitẐ .

In order to make an even closer contact with the usual form of the quantum Langevin

equation [HP, At, Fa, Bar, Me], define the cocycle unitary

Ŵ (t) := eitDτ e−itẐ . (2.13)

Then for t > 0, or for t = 0 and the right derivative, we have the “toy Langevin

(stochastic) equation” which holds in the sense of quadratic forms on D,

i
d

dt
Ŵ (t) = (Υ + ν ⊗ |δt))Ŵ (t) + ν∗⊗(δt|. (2.14)

2.2. “Toy quadratic noises”. The formula for Ẑ or for Ẑ+ has one interesting feature:

it involves a perturbation that is localized just at τ = 0. One can ask whether one

can consider other dilations with more general perturbations localized at τ = 0. In this

subsection we will describe such dilations. This construction will not be needed in the

present version of the weak coupling limit. We believe it is an interesting “toy version”

of “quadratic noises”, which we will discuss in Subsect 5.2. We also expect to extend the

results of [DD1] to “toy quadratic noises”.

Clearly, for any unitary operator U on h⊗L2(R), (1K ⊕U)eitZ(1K ⊕U∗) is a dilation

of e−itΥ. Let us choose a special U , which will lead to a perturbation localized at τ = 0.

Let S be a unitary operator on h. For ψ ∈ h⊗L2(R) ' L2(R, h) we set

γ(S)ψ(τ) :=

{
Sψ(τ), τ > 0,

ψ(τ), τ ≤ 0.
(2.15)

Then γ(S) is a unitary operator on h⊗L2(R). Set

ẐS := (1K ⊕ γ(S)∗)Ẑ(1K ⊕ γ(S)).

Clearly, eitẐS is a dilation of e−itΥ. It is awkward to write down a formula for ẐS in the

matrix form, even just formally. It is more natural to write down the “false form of ZS”:

Ẑ+
S := (1K ⊕ γ(S)∗)Ẑ+(1K ⊕ γ(S)) =

[
Υ ν∗S ⊗ (δ0|

ν ⊗ |δ0) Dτ + i(1− S)⊗|δ0)(δ0|

]
.

For ψ, ψ′ ∈ D we have

lim
t↓0

1

t
(ψ|(e−itẐS − 1)ψ′) = −i(ψ|Ẑ+

S ψ
′), (2.16)

Again, as in (2.14), one can extend this formula to derivatives at t > 0. Let

ŴS(t) := eitDτ e−itẐS , (2.17)

then, in the sense of quadratic forms on D,

i
d

dt
ŴS(t) = (Υ + ν ⊗ |δt))ŴS(t) + ν∗S⊗(δt|+ i(1− S)⊗|δt)(δt|. (2.18)
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2.3. Weak coupling limit for Friedrichs operators. Let H := K⊕HR be a Hilbert space,

where K is finite dimensional. Let IK be the embedding of K in H. Let K be a self-adjoint

operator on K and HR be a self-adjoint operator on HR. Let V be a linear operator from

K to HR. The following class of operators will be called Friedrichs operators:

Hλ :=

[
K λV ∗

λV HR

]
.

Assume that
∫
‖V ∗e−itHRV ‖dt < ∞. Then we can define the following operator,

sometimes called the Level Shift Operator, since it describes the shift of eigenvalues of

Hλ in perturbation theory at the 2nd order in λ:

Υ :=
∑

k∈spK

∫ ∞

0

1k(K)V ∗e−it(HR−k)V 1k(K)dt, (2.19)

where 1k(K) denotes the spectral projection of K onto the eigenvalue k; spK denotes

the spectrum of K. Note that ΥK = KΥ.

The following theorem is a special case of a result of Davies [Da1, Da2, Da3], see also

[DD1]:

Theorem 2.2 (Reduced weak coupling limit for Friedrichs operators).

lim
λ→0

eitK/λ2

I∗Ke−itHλ/λ
2

IK = e−itΥ.

In order to study the extended weak coupling limit for Friedrichs operators we need

to make additional assumptions. They are perhaps a little complicated to state, but they

are satisfied in many concrete situations.

Assumption 2.3. We suppose that for any k ∈ spK there exists an open Ik ⊂ R and a

Hilbert space hk such that k ∈ Ik,

Ran1Ik (HR) ' hk ⊗ L2(Ik , dx),

1Ik(HR)HR is the multiplication operator by the variable x ∈ Ik and

1Ik (HR)V '
∫ ⊕

Ik

v(x)dx.

We assume that Ik are disjoint for distinct k and the measurable function Ik 3 x 7→
v(x) ∈ B(K, hk) is continuous at k.

In other words, we assume that the reservoir Hamiltonian HR and the interaction V

are “nice” around the spectrum of K. In fact, in the extended weak coupling limit only

a vicinity of spK matters.

We set h := ⊕k hk, ZR := h⊗L2(R) and Z := K ⊕ ZR. ZR and Z are the so-called

asymptotic spaces, which are in general different from the physical spaces HR and H.

Next, let us describe the asymptotic dynamics. Let ν : K → h be defined as

ν := (2π)
1
2 ⊕k v(k)1k(K).

Note that it satisfies (2.1) with Υ defined by (2.19). This follows by extending the inte-

gration in (2.19) to R and using the inverse Fourier transform. As before, we set ZR to
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be the multiplication by x on L2(R) and we define e−itZ by (2.3), so that (Z , IK, e−itZ)

is a dilation of e−itΥ.

Finally, we need an identification operator that maps the asymptotic space into the

physical space. This is the least canonical part of the construction. In fact, there is some

arbitrariness in its definition for the frequencies away from spK. For λ > 0, we define the

family of partial isometries Jλ,k : L2(R, hk)→ L2(Ik , hk) ⊂ H:

(Jλ,kgk)(y) =

{
1
λgk(y−kλ2 ), if y ∈ Ik;

0, if y ∈ R\Ik.
We set Jλ : Z → H, defined for g = (gk) ∈ ZR by

Jλg :=
∑

k

Jλ,kgk,

and on K equal to the identity. Note that Jλ are partial isometries and

s- lim
λ↘0

J∗λJλ = 1.

The following result is proven in [DD1]:

Theorem 2.4 (Extended weak coupling limit for Friedrichs operators).

s∗- lim
λ↘0

J∗λeiλ−2tH0eλ
−2(t−t0)Hλeiλ−2t0H0Jλ = eitZRe−i(t−t0)Zeit0ZR .

Here we used the strong* limit: s∗-limλ↘0Aλ = A means that for any vector ψ we

have limλ↘0Aλψ = Aψ, limλ↘0 A
∗
λψ = A∗ψ.

Note that in the extended weak coupling limit for Friedrichs operators the asymptotic

space is a direct sum of parts belonging to various eigenvalues of K that “do not talk to

one another”—they have independent asymptotic dynamics.

3. Completely positive maps and semigroups. This section presents basic material

about completely positive maps and semigroups. In particular, we describe a construction

of the Stinespring dilation [St] and of the so-called Lindblad form of the generator of a c.p.

semigroup [Li, GKS]. These beautiful classic results are described in many places in the

literature. Nevertheless, some of their aspects, mostly concerning the freedom of choice

of various terms in the Lindblad form, are difficult to find in the literature. Therefore,

we describe this material at length, including sketches of proofs.

In Subsect. 3.3 we recall the usual concept of a (classical) Markov semigroups (on a

finite state space). When discussing c.p. (quantum) Markov semigroups, it is useful to

compare it to their classical analogs, which are usually much simpler.

In Subsect 3.4 we discuss c.p. semigroups invariant with respect to a certain unitary

dynamics. Such c.p. semigroups arise in the weak coupling limit—therefore, one can argue

that they are “more physical than others”.

Finally, in Subsect. 3.5 we analyze the Detailed Balance Condition, which singles out

c.p. dynamics obtained from a thermal reservoir.

3.1. Completely positive maps. Let K1,K2 be Hilbert spaces. We say that a map Ξ :

B(K1) → B(K2) is positive iff A ≥ 0 implies Ξ(A) ≥ 0. We say that Ξ is Markov iff
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Ξ(1) = 1. We say that a map Ξ is n-positive iff

Ξ⊗ id : B(K1 ⊗ Cn)→ B(K2 ⊗ Cn)

is positive. (id denotes the identity). We say that Ξ is completely positive, or c.p. for

short, iff it is n-positive for any n.

It is easy to see that if h be a Hilbert space and ν ∈ B(K2,K1 ⊗ h). Then

Ξ(A) := ν∗ A⊗1 ν (3.1)

is c.p. The following theorem says that the above representation of a c.p. map is universal.

2) means that this representation is unique up to unitary isomorphism.

Theorem 3.1 (Stinespring). Assume that K1,K2 are finite dimensional.

1) If Ξ is c.p. from B(K1) to B(K2), then there exist a Hilbert space h and ν ∈
B(K2,K1 ⊗ h) such that (3.1) is true and

{(φ|⊗1h ν ψ : φ ∈ K1, ψ ∈ K2} = h. (3.2)

2) If in addition to the h′ and ν′ also satisfy the above properties, then there exists a

unique unitary operator U from h to h′ such that ν′ = 1K1 ⊗ U ν.

The right hand side of (3.1) is called a Stinespring dilation of a c.p. map Ξ. If the

condition (3.2) holds, then it is called a minimal.

Remark 3.2. If we choose a basis in h, so that we identify h with Cn, then we can

identify ν with ν1, . . . , νn ∈ B(K2,K1). Then we can rewrite (3.1) as

Ξ(A) =

n∑

j=1

ν∗jAνj . (3.3)

In the literature, (3.3) is called a Kraus decomposition, even though the work of Stine-

spring is much earlier than that of Kraus.

Note that physically the space h can be interpreted as a part of the reservoir that

directly interacts with the small system.

Proof of Theorem 3.1. Let us prove 1). We equip the algebraic tensor product H0 :=

B(K1)⊗K2 with the following scalar product: for

ṽ =
∑

i

Xi ⊗ vi, w̃ =
∑

i

Yi ⊗ wi ∈ H0

we set

(ṽ|w̃) =
∑

i,j

(vi|Ξ(X∗i Yj)wj).

By the complete positivity, it is positive definite.

Next we note that there exists a unique linear map π0 : B(K1)→ B(H0) satisfying

π0(A)ṽ :=
∑

i

AXi ⊗ vi.

We check that

(π0(A)ṽ|π0(A)ṽ) ≤ ‖A‖2(ṽ|ṽ), π0(AB) = π0(A)π0(B), π0(A∗) = π0(A)∗.
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Let N be the set of ṽ ∈ H0 with (ṽ|ṽ) = 0. Then the completion of H := H0/N is a

Hilbert space. There exists a nondegenerate ∗-representation π of B(K1) in B(H) such

that

π(A)(ṽ +N ) = π0(A)ṽ.

Using the fact that all our spaces are finite dimensional we see that for some Hilbert

space h we can identify H with K1 ⊗ h and π(A) = A⊗ 1.

We set

νv := 1⊗ v +N .
We check that

Ξ(A) = ν∗A⊗1 ν.

This ends the proof of the existence of the Stinespring dilation.

Let us now prove 2). If h′, ν′ is another pair that gives a Stinespring dilation, we check

that ∥∥∥
∑

i

Xi ⊗ 1h ν vi

∥∥∥ =
∥∥∥
∑

i

Xi ⊗ 1h′ ν
′ vi
∥∥∥.

Therefore, there exists a unitary U0 : K2 ⊗ h → K2 ⊗ h′ such that U0ν = ν′. We check

that U0 A ⊗ 1h = A ⊗ 1h′ U0. Therefore, there exists a unitary U : h → h′ such that

U0 = 1⊗ U .

We will need the following inequality for c.p. maps:

Theorem 3.3 (Kadison-Schwarz inequality for c.p. maps). If Ξ is 2-positive and Ξ(1) is

invertible, then

Ξ(A)∗Ξ(1)−1Ξ(A) ≤ Ξ(A∗A). (3.4)

Proof. Let z ∈ C.

[
A∗A zA∗

z̄A |z|2
]
≥ 0 implies

[
Ξ(A∗A) zΞ(A∗)
z̄Ξ(A) |z|2Ξ(1)

]
≥ 0. Hence, for φ, ψ ∈ K,

(φ|Ξ(A∗A)φ) + 2Rez̄(ψ|Ξ(1)−1/2Ξ(A)φ) + |z|2(ψ|ψ) ≥ 0. (3.5)

Therefore,

(φ|Ξ(A∗A)|φ)(ψ|ψ) ≥ |(ψ|Ξ(1)−1/2Ξ(A)φ)|2 , (3.6)

which implies (3.4).

3.2. Completely positive semigroups. Let K be a finite dimensional Hilbert space. Let us

consider a c.p. semigroup on B(K). We will always assume the semigroup to be contin-

uous, so that it can be written as etM for a bounded operator M on B(K). We will call

etM Markov if it preserves the identity.

C.p. Markov semigroups appear in the literature under various names. Among them

let us mention quantum Markov semigroups and quantum dynamical semigroups.

If M1, M2 are the generators of (Markov) c.p. semigroups and c1, c2 ≥ 0, then c1M1 +

c2M2 is the generator of a (Markov) c.p. semigroup. This follows by the Trotter formula.

Here are two classes of examples of c.p. semigroups:

1) Let Υ = Θ + i∆ be an operator on K, with Θ,∆ self-adjoint. Then

M(A) := iΥA− iAΥ∗ = i[Θ, A]− [∆, A]+
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is the generator of a c.p. semigroup and

etM (A) = eitΥAe−itΥ∗ .

2) Let Ξ be a c.p. map on B(K). Then it is the generator of a c.p. semigroup and

etΞ(A) =
∞∑

j=0

tj

j!
Ξj(A).

Let Θ, ∆ be self-adjoint operators on K. Let h be an auxiliary Hilbert space and

ν ∈ B(K,K ⊗ h). Then it follows from what we wrote above that

M(S) = i[Θ, A]− [∆, A]+ + ν∗ A⊗1 ν, A ∈ B(K), (3.7)

is the generator of a c.p. semigroup. etM is Markov iff 2∆ = ν∗ν.

The following theorem gives a complete characterization of generators of c.p. semi-

groups on a finite dimensional space [Li, GKS].

Theorem 3.4 (Lindblad, Gorini-Kossakowski-Sudarshan).

1) Let etM be a c.p. semigroup on B(K) for a finite dimensional Hilbert space K.

Then there exist self-adjoint operators Θ, ∆ on K, an auxiliary Hilbert space h

and an operator ν ∈ B(K,K ⊗ h) such that M can be written in the form (3.7)

and

{(φ|⊗1 ν ψ : φ, ψ ∈ K} = h. (3.8)

2) We can always choose Θ and ν so that

Tr Θ = 0, Tr ν = 0.

(Above, we take the trace of ν on the space K obtaining a vector in h). If this is

the case, then Θ and ∆ are determined uniquely, and ν is determined uniquely up

to the unitary equivalence.

We will say that a c.p. semigroup is purely dissipative if Θ = 0. We will call (3.7) a

Lindblad form of M . We will say that it is minimal iff (3.8) holds.

Remark 3.5. If we identify h with Cn, then we can write

ν∗ A⊗1 ν =

n∑

j=1

ν∗jAνj .

Then Tr ν = 0 means Tr νj = 0, j = 1, . . . , n.

Proof of Theorem 3.4. Let us prove 1). The unitary group on K, denoted U(K), is compact.

Therefore, there exists the Haar measure on U(K), which we denote dU . Note that
∫
UXU∗dU = TrX.

Define

iΘ−∆0 :=

∫
M(U∗)UdU,

where Θ and ∆0 are self-adjoint.
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Let us show that ∫
M(XU∗)UdU = (iΘ−∆0)X. (3.9)

First check this identity for unitary X , which follows by the invariance of the measure

dU . But every operator is a linear combination of unitaries. So (3.9) follows in general.

We can apply the Kadison-Schwarz inequality to the semigroup etM :

etM (X)∗etM (1)−1etM (X) ≤ etM (X∗X). (3.10)

Differentiating (3.10) at t = 0 yields

M(X∗X) +X∗M(1)X −M(X∗)X −X∗M(X) ≥ 0. (3.11)

Replacing X with UX , where U is unitary, we obtain

M(X∗X) +X∗U∗M(1)UX −M(X∗U∗)UX −X∗U∗M(UX) ≥ 0. (3.12)

Integrating (3.12) over U(K) we get

M(X∗X) +X∗X TrM(1)− (iΘ−∆0)X∗X −X∗X(−iΘ−∆0)∗ ≥ 0. (3.13)

Define

∆1 := ∆0 +
1

2
TrM(1), Ξ(A) := M(A)− (iΘ−∆1)A−A(−iΘ−∆1).

Using (3.13) we see that Ξ is positive. A straightforward extension of the above argument

shows that Ξ is also completely positive. Hence, by Theorem 3.1 1), it can be written as

Ξ(A) = ν∗1 A⊗1 ν1,

for some auxiliary Hilbert space h and a map ν1 : K → K⊗h.

Finally, let us prove 2). The operator Θ has trace zero, because

i Tr Θ− Tr ∆0 =

∫
U1M(U∗)UU∗1 dUdU1 =

∫
U2UM(U∗)U∗2 dUdU2

= −i Tr Θ− Tr ∆0.

Let w be an arbitrary vector in h and

∆ := ∆1 + ν∗1⊗|w) +
1

2
(w|w), ν := ν1 + 1⊗|w).

Then the same generator of a c.p. semigroup can be written in two Lindblad forms:

(iΘ−∆1)A+A(−iΘ−∆1) + ν∗1Aν1,= (iΘ−∆)A+A(−iΘ−∆) + ν∗Aν.

In particular, choosing w := −Tr ν1, we can make sure that Tr ν = 0.

3.3. Classical Markov semigroups. It is instructive to compare c.p. Markov semigroups

with usual (classical) Markov semigroups.

Consider the space Cn. For u = (u1, . . . , un) ∈ Cn we will write u ≥ 0 iff u1, . . . , un ≥
0. We define 1 := (1, . . . , 1). We say that a linear map T is pointwise positive iff u ≥ 0

implies Tu ≥ 0. We say that it is Markov iff T1 = 1.

A one-parameter semigroup Rt 7→ Tt ∈ B(Cn) will be called a (classical) Markov

semigroup iff Tt is pointwise positive and Markov for any t ≥ 0.
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Every continuous one-parameter semigroup on Cn is of the form R+ 3 t 7→ etm for

some n × n matrix m. Clearly, the transformations etm are pointwise positive for any

t ≥ 0 iff mij ≥ 0, i 6= j. They are Markov for any t ≥ 0 iff in addition
∑

jmij = 0.

Markov c.p. semigroups often lead to classical Markov semigroups, as described in the

following easy fact:

Theorem 3.6. Let P1, . . . , Pn ∈ B(K) satisfy P ∗j = Pj and PjPk = δjkPj . Let P be the

(commutative) ∗-algebra generated by P1, . . . , Pn. Clearly, P is naturally isomorphic to

Cn. Let etM be a Markov c.p. semigroup on B(K) that preserves the algebra P. Then

etM |P is a classical Markov semigroup.

Conversely, from a classical Markov semigroup one can construct c.p. Markov semi-

groups:

Theorem 3.7. Let etm be a classical Markov semigroup on Cn. Let e1, . . . , en denote

the canonical basis of Cn and Eij := |ei)(ej |. Let θ1, . . . , θn be real numbers and set

Θ := θ1E11 + · · ·+ θnEnn. For A ∈ B(Cn) define

M(A) := i[Θ, A]− 1

2

∑

j

mjj [Ejj , A]+ +
∑

i6=j
mijEijAEji. (3.14)

Then M is the generator of a Markov c.p. semigroup on B(Cn). The algebra P gener-

ated by E11, . . . , Enn is preserved by etM and naturally isomorphic to Cn. Under this

identification, M |P equals m.

3.4. Invariant c.p. semigroups. Let K be a self-adjoint operator on K. Let M be the

generator of a c.p. semigroup on K. We say that M is K-invariant iff

M(A) = e−itKM(eitKAe−itK)eitK , t ∈ R. (3.15)

We will see later on that c.p. semigroups obtained in the weak coupling limit are always

K-invariant with respect the Hamiltonian of the small system.

Note that M can be split in a canonical way into M = i[Θ, ·] +Md, where Md is its

purely dissipative part. M is K-invariant iff [Θ,K] = 0 and Md is K-invariant. Thus in

what follows it is enough to restrict ourselves to the purely dissipative case.

The following two theorems extend Theorems 3.6 and 3.7.

Theorem 3.8. Consider the set-up of Theorem 3.6. Suppose in addition that K is a

self-adjoint operator on K with the eigenvalues k1, . . . , kn and Pj = 1kj (K). Let M be K-

invariant. Then the algebra P is preserved by etM (and hence the conclusion of Theorem

3.6 holds).

Theorem 3.9. Consider the set-up of Theorem 3.7. If k1, . . . , kn are real and K :=

k1E11 + · · ·+ knEnn, then M is K-invariant.

The following theorem describes the K-invariance on the level of a Lindblad form.

We restrict ourselves to the Markov case.
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Theorem 3.10. Let ν ∈ B(K,K⊗h) and let Y be a self-adjoint operator on h such that

M(A) = −1

2
[ν∗ν,A]+ + ν∗A⊗ 1ν, (3.16)

νK = (K⊗1 + 1⊗Y )ν. (3.17)

Then M is the generator of a K-invariant purely dissipative Markov c.p. semigroup.

Proof. We check that ν∗ν commutes with K. Then it is enough to verify that A 7→
ν∗A⊗ 1 ν is K-invariant.

There exists a partial converse of Theorem 3.10.

Theorem 3.11. Let M be the generator of a K-invariant purely dissipative Markov c.p.

semigroup. Let h, ν realize its minimal Lindblad form (3.16). Then there exists a self-

adjoint operator Y on h such that (3.17) is true.

Proof. By the uniqueness part of Theorem 3.1 there exists a unique unitary operator Ut
on h such that eitK⊗Ut ν e−itK = ν. We easily check the Ut is a continuous 1-parameter

unitary group so that Ut can be written as eitY for some self-adjoint Y .

Note that Theorems 3.10 and 3.11 have a clear physical meaning. The operator ν is

responsible for “quantum jumps”. The operator Y describes the energy of the reservoir

(or actually of the part of the reservoir “directly seen” by the interaction). The equation

(3.17) describes the energetic balance in each quantum jump.

3.5. Detailed Balance Condition. In the literature the name Detailed Balance Condition

(DBC) is given to several related but non-equivalent concepts. In this subsection we

discuss some of the versions of the DBC relevant in the weak coupling limit.

Some of the definitions of the DBC (both for classical and quantum systems) involve

the time reversal [Ag, Ma, MaSt]. In the weak coupling limit one does not need to

introduce the time reversal, hence we will only discuss versions of the DBC that do not

involve this operation. (See however [DM] for a discussion of time-reversal in semigroups

obtained in the weak coupling limit.)

Let us first recall the definition of the classical Detailed Balance Condition. Let p =

(p1, . . . , pn) ∈ Cn be a vector with p1, . . . , pn > 0. Introduce the scalar product on Cn:

(u|u′)p :=
∑

j

ūju
′
jpj . (3.18)

Let etm be a classical Markov semigroup on Cn. We say that m satisfies the Detailed

Balance Condition for p iff m is self-adjoint for (·|·)p.
Let us now consider the quantum case. Let ρ be a nondegenerate density matrix. As

usual, we assume that K is finite dimensional. On B(K) we introduce the scalar product

(A|B)ρ := Tr ρ1/2A∗ρ1/2B. (3.19)

Let M be the generator of a c.p. semigroup on B(K). Recall that it can be uniquely

represented as

M = i[Θ, ·] +Md,
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where Md is its purely dissipative part and i[Θ, ·] its Hamiltonian part. We say that M

satisfies the Detailed Balance Condition (or DBC) for ρ iff Md is self-adjoint and i[Θ, ·]
is anti-self-adjoint for (·|·)ρ.

Note that M satisfies the DBC for ρ iff [Θ, ρ] = 0 and Md satisfies the DBC for ρ.

Therefore, in our further analysis we will often restrict ourselves to the purely dissipative

case.

We believe that in the quantum finite dimensional case the above definition of the

DBC is the most natural. It was used e.g. in [DF1] under the name of the standard

Detailed Balance Condition.

A similar but different definition of the DBC can be found in [FKGV, Al1]. The only

difference is the replacement of the scalar product (·|·)ρ given in (3.19) with

Tr ρA∗B. (3.20)

Note that if M is K-invariant and ρ is a function of K, then both definitions are equiv-

alent.

The weak coupling limit applied to a small system with a Hamiltonian K interact-

ing with a thermal reservoir at some fixed temperature β always yields a Markov c.p.

semigroup that is K-invariant and satisfies the DBC for ρ = e−βK/Tr eβK ; see e.g.

[LeSp, DF1] and Subsect 4.3.

There exists a close relationship between the classical and quantum DBC.

Theorem 3.12. Consider the set-up of Theorem 3.6. Let ρ be a density matrix on K with

the eigenvalues p1, . . . , pn and let Pj equal the spectral projections of ρ for the eigenvalue

pj . If M satisfies the DBC for ρ, either in the sense of (3.19) or in the sense of (3.20),

then the classical Markov semigroup etM |P satisfies the DBC for p = (p1, . . . , pn).

Theorem 3.13. Consider the set-up of Theorem 3.7. Let etm satisfy the classical DBC

for p = (p1, . . . , pn). Then M defined by (3.14) satisfies both quantum versions of the

DBC for ρ := p1E11 + · · ·+ pnEnn.

The following theorem describes the DBC for K-invariant generators on the level of

their Lindblad form. It is an extension of Theorem 3.10. (Note that (3.21), (3.22) are

identical to (3.16), (3.17) of Theorem 3.10).

Theorem 3.14. Let ν ∈ B(K,K⊗h) and Y a self-adjoint operator on h such that

M(A) = −1

2
[ν∗ν,A]+ + ν∗A⊗ 1ν, (3.21)

νK = (K⊗1 + 1⊗Y ) ν, (3.22)

Trh νAν
∗ = ν∗ A⊗e−βY ν. (3.23)

Then M is the generator of a K-invariant purely dissipative Markov c.p. semigroup sat-

isfying the DBC for ρ := e−βK/Tr e−βK.

Proof. It follows from (3.17) that ν∗ν commutes with e−βK/2. Hence [ν∗ν, ·]+ is self-

adjoint for (·|·)ρ.



REDUCED AND EXTENDED WEAK COUPLING LIMIT 17

If M is a map on B(K), then M∗ρ will denote the adjoint for this scalar product. Let

M1(A) = ν∗ A⊗1 ν. We compute:

M∗ρ1 (A) = Trh eβK/2⊗1 ν e−βK/2Ae−βK/2 ν∗ eβK/2⊗1

= Trh eβK/2ν∗ (e−βK/2Ae−βK/2⊗e−βY ) ν eβK/2 (3.24)

= ν∗ A⊗1ν = M1(A). (3.25)

In (3.24) and (3.25) we used (3.23) and (3.22) respectively.

It is possible to replace the condition (3.23) with a different condition (3.26). Note

that whereas (3.23) is quadratic in ν, (3.26) is linear in ν.

Theorem 3.15. Suppose that ε is an antiunitary operator on h such that

(φ⊗w|νψ) = (νφ|ψ ⊗ e−βY/2εw), φ, ψ ∈ K, w ∈ h. (3.26)

Then (3.23) holds.

Proof. It is sufficient to assume that A = |ψ)(ψ| for some ψ ∈ K. Let φ ∈ K. Let

{wi | i ∈ I} be an orthonormal basis in h. Then

Trh(φ|νAν∗φ) =
∑

(φ⊗wi|νψ)(νψ|φ⊗wi) =
∑

(νφ|ψ⊗e−βY/2εwi)(ψ⊗e−βY/2εwi|νφ)

= (νφ| |ψ)(ψ|⊗e−βY νφ) = (φ|ν∗ A⊗e−βY νφ).

There exists an extension of Theorem 3.11 to the Detailed Balance Condition. It can

be viewed as a partial converse of Theorems 3.14 and 3.15:

Theorem 3.16. Let M be the generator of a K-invariant purely dissipative Markov c.p.

semigroup satisfying the DBC for e−βK/Tr e−βK. Let h, ν realize its minimal Lindblad

form (3.21). Let a self-adjoint operator Y on h satisfy (3.22). Then (3.23) is true and

there exists a unique antiunitary operator ε on h such that (3.26) holds. Besides, εY ε =

−Y and ε2 = 1.

Proof. Step 1. By the proof of Theorem 3.14, the DBC for e−βK/Tr e−βK together with

(3.22) imply (3.23).

Step 2. The next step is to prove that (3.23) and (3.8) imply the existence of an antiunitary

ε on h satisfying (3.26).

Identify h with Cn, so that we have a complex conjugation w 7→ w in h. We can

assume that Y is diagonal, so that Y w = Y w, w ∈ h. Define ν? by

(φ⊗w|νψ) = (ν?φ|ψ ⊗ w̄), φ, ψ ∈ K, w ∈ h. (3.27)

(Note that ? is a different star from ∗ denoting the Hermitian conjugation, see [DF1]).

We can rewrite (3.23) as

ν?∗ A⊗1 ν? = ν∗ 1⊗e−βY/2 (A⊗1) 1⊗e−βY/2 ν. (3.28)

(3.28) defines a c.p. map. By the uniqueness part of Theorem 3.1 and (3.8), we obtain the

existence of a unitary map U on h such that ν? = 1⊗Ue−βY/2 ν. Now we set εw = U∗w̄.

Step 3. We apply (3.23) twice:

(φ⊗w|νψ) = (νφ|ψ⊗e−βY/2εw) = (φ⊗(e−βY/2ε)2w|νψ).

Using (3.8) we obtain w = (e−βY/2ε)2w.
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Step 4. Finally applying (3.23) together with (3.22) twice we obtain

(φ⊗w|νψ) = (νeβK/2φ|e−βK/2ψ⊗εw) = (φ⊗ε2w|νψ).

Thus with help of (3.8) we get w = ε2w.

Note that the above results show that for c.p. Markov semigroups that areK-invariant

and satisfy the DBC for e−βK/Tr e−βK we naturally obtain a certain algebraic structure

on the “restricted reservoir” h that resembles closely the famous Tomita-Takesaki the-

ory. The properties of e−βY and ε are paralel to those of the modular operator and the

modular conjugations—the basic objects of the Tomita-Takesaki formalism. (See also

Subsection 4.3).

4. Bosonic reservoirs. In this section we recall basic terminology related to second

quantization, see e.g. [De0]. We also introduce Pauli-Fierz operators—a class of models

(known in the literature under various names) that are often used to describe realistic

physical systems, see e.g. [DJ1, DJP].

4.1. Second quantization. Let HR be a Hilbert space describing 1-particle states. The

corresponding bosonic Fock space is defined as

Γs(HR) := ⊕∞n=0⊗nsHR.

The vacuum vector is Ω = 1 ∈ ⊗0
sHR = C.

If z ∈ HR, then

a(z)Ψ :=
√
n(z|⊗1(n−1)⊗Ψ ∈ ⊗n−1

s HR, Ψ ∈ ⊗nsHR,

is called the annihilation operator of z and a∗(z) := a(z)∗ is the corresponding creation

operator. They are closable operators on Γs(HR).

For an operator q on HR we define the operator Γ(q) on Γs(HR) by

Γ(q)|⊗ns HR = q ⊗ · · · ⊗ q. (4.1)

For an operator h on HR we define the operator dΓ(h) on Γs(HR) by

dΓ(h)|⊗ns HR = h⊗ 1(n−1)⊗ + · · ·+ 1(n−1)⊗ ⊗ h.
Note the identity Γ(eith) = eitdΓ(h).

4.2. Coupling to a bosonic reservoir. Let K be a finite dimensional Hilbert space. We

imagine that it describes a small quantum system interacting with a bosonic reservoir

described by the Fock space Γs(HR). The coupled system is described by the Hilbert

space H := K⊗ Γs(HR).

Let V ∈ B(K,K ⊗HR). For Ψ ∈ K ⊗⊗nsHR we set

a(V )Ψ :=
√
nV ∗⊗1(n−1)⊗Ψ ∈ K ⊗⊗n−1

s HR.

a(V ) is called the annihilation operator of V and a∗(V ) := a(V )∗ the corresponding

creation operator. They are closable operators on K⊗ Γs(HR). Note in particular that if

V is written in the form
∑

j Vj⊗|bj) (which is always possible), then

a∗(V ) =
∑

j

Vj ⊗ a∗(bj), a(V ) = V ∗j ⊗ a(bj),
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where a∗(bj), a(bj) are the usual creation/annihilation operators introduced in the pre-

vious subsection.

The following class of operators plays the central role in our article:

Hλ = K ⊗ 1 + 1⊗ dΓ(HR) + λ(a∗(V ) + a(V )). (4.2)

HereK is a self-adjoint operator describing the free dynamics of the small system, dΓ(HR)

describes the free dynamics of the reservoir and a∗(V )/a(V ), for some V ∈ B(K,K⊗HR),

describe the interaction. Operators of the form 4.2 will be called Pauli-Fierz operators.

Note that operators of the form (4.2) or similar are very common in the physics lit-

erature and are believed to give an approximate description of realistic physical systems

in many circumstances (e.g. an atom interacting with radiation in the dipole approxima-

tion), see e.g. [DJ1].

4.3. Thermal reservoirs. In this subsection we will discuss thermal reservoirs. We fix a

positive number β having the interpretation of the inverse temperature.

Recall that the free Hamiltonian is H0 := K⊗1 + 1⊗dΓ(HR). To have a simpler

formula for the Gibbs state of the small system we assume that Tr e−βK = 1. We set

τt(C) := eitH0Ce−itH0 , ωβ(C) := Tr e−βK⊗|Ω)(Ω| , C ∈ B(H).

Theorem 4.1. The following are equivalent:

1) For any D1, D2, D
′
1, D

′
2 ∈ B(K) and

Bj := Dj⊗1 (a∗(V ) + a(V )) D′j ⊗ 1, j = 1, 2,

and for any t ∈ R we have

ωβ(τt(B1)B2) = ωβ (B2τt+iβ(B1)) . (4.3)

2) For any function f on the spectrum of spHR and A ∈ B(K), we have

TrHR 1⊗f̄(−HR) V A V ∗ = V ∗ A⊗e−βHRf(HR) V. (4.4)

Proof. The left hand side of (4.3) equals

Tr e−βK+itKD1V
∗(D′1e−itKD2⊗e−itHR)V D′2.

The right hand side of (4.3) equals

TrD2V
∗(D′2e−βK+itKD1⊗e(−β+it)HR)V D′1e−itK .

Now we set A1 := D′2e−βK+itKD1, A2 := D′1e−itKD2, and use the cyclicity of the trace.

We obtain

TrA2⊗e−itHR V A1 V
∗ = TrA2V

∗A1⊗e−βHR+itHR V.

By the Fourier transformation we get

TrA2⊗f̄(−HR) V A1 V
∗ = TrA2V

∗A1⊗e−βHRf(HR) V.

This implies (4.4).

We will say that the reservoir is thermal at the inverse temperature β iff the conditions

of Theorem 4.1 are true.

(4.3) is just the β-KMS condition for the state ωβ , the dynamics τ and appropriate

operators. Note that (4.3) is satisfied for Pauli-Fierz semi-Liouvilleans constructed with
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help of the Araki-Woods representations of the CCR, where we use the terminology of

[DJP, De0]. Theorem 4.1 describes a substitute of the KMS condition without invoking

explicitly operator algebras.

The KMS condition is closely related to the Tomita-Takesaki theory. One of the

objects introduced in this theory is the modular conjugation. It turns out that the set-up

of Theorem 4.1 is sufficient to introduce a substitute for the modular conjugation without

talking about operator algebras.

Define

HR̃ := {(φ|⊗f(HR) V ψ : φ, ψ ∈ K, f ∈ Cc(R)}cl.

(cl denotes closure). Clearly, HR̃ is a subspace of HR invariant with respect to the 1-

particle reservoir Liouvillean HR. It describes the part of HR that is coupled to the small

system. Let HR̃ denote the operator HR restricted to the space HR̃.

Theorem 4.2. Suppose that the reservoir is thermal at inverse temperature β. Then there

exist a unique antiunitary operator εR̃ on HR̃ such that

(φ⊗w|V ψ) = (V φ|ψ⊗e−βHR̃εR̃w). (4.5)

It satisfies ε2
R̃

= 1 and εR̃HR̃εR̃ = −HR̃.

Proof. For f ∈ Cc(R), φ, ψ ∈ K, we set

εR̃((φ|⊗e−βHR̃/2f(HR̃) V ψ) := (ψ|⊗f̄(−HR̃)V φ.

(4.4) implies that εR̃ is a well defined antiunitary map.

5. Quantum Langevin dynamics. Suppose that we are given a c.p. Markov semigroup

etM on B(K). We will describe a certain class of self-adjoint operators Z on a larger

Hilbert space such that e−itZ · eitZ is a dilation on etM . We will use the name quantum

Langevin (or stochastic) dynamics for e−itZ · eitZ . The unitary group e−itZ will be called

a Langevin (or stochastic) Schrödinger dynamics.

In Subsection 5.1 we will restrict ourselves to a subclass of quantum Langevin dy-

namics involving only the so-called linear noises. Actually, at present our results on the

extended weak coupling limit are limited only to them.

In Subsection 5.2 we will describe a more general class of quantum Langevin dynamics,

which also involve quadratic noises. Our construction involving quadratic noises is related

to the operator-theoretic approach of Chebotarev [Ch, ChR], and especially of Gregoratti

[Gr].

We expect that our approach to the extended weak coupling limit can be improved

to cover also this larger class. Within the approach of [AFL] there exist partial results in

this direction [Go].

The history of the discovery of quantum Langevin dynamics is quite involved. The con-

struction can be traced back to [AFLe], and especially [HP] where the quantum stochas-

tic calculus was introduced. But apparently only in [Fr] and [Maa] it was independently

realized that this leads to a dilation of Markov c.p. semigroups. Let us also mention

[At, Me, Fa] for more recent presentations of the quantum stochastic calculus.
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5.1. Linear noises. Apart from a c.p. Markov semigroup etM let us fix some additional

data. More precisely, we fix an operator Υ, an auxiliary Hilbert space h and an operator

ν from K to K ⊗ h such that

−iΥ + iΥ∗ = −ν∗ν
and M is given by

M(A) = −i(ΥA−AΥ∗) + ν∗ A⊗1 ν, A ∈ B(K).

In other words, we fix a concrete Lindblad form of M .

Introduce the Hilbert space ZR := h ⊗ L2(R). The enlarged Hilbert space is Z :=

K ⊗ Γs(ZR).

Let ZR be the operator of multiplication by the variable x on L2(R). Let (1|, |1) be

defined as in (2.2).

We choose a basis (bj) in h, so that we can write

ν =
∑

νj ⊗ |bj). (5.1)

(Note that at the end the construction will not depend on the choice of a basis). Set

ν+
j = νj , ν

−
j = ν∗j .

For t ≥ 0 we define the quadratic form

Ut := e−itdΓ(ZR)
∞∑

n=0

∫

t≥tn≥···≥t1≥0

dtn · · ·dt1

× (2π)−
n
2

∑

j1,...,jn

∑

ε1,...,εn∈{+,−}
(−i)ne−i(t−tn)Υνεnjn e−i(tn−tn−1)Υ · · · νε1j1 e−i(t1−0)Υ

×
∏

k=1,...,n: εk=+

a∗(eitkZRbjk ⊗ |1))
∏

k′=1,...,n: εk′=−
a(eitk′ZRbjk′ ⊗ |1));

U−t := U∗t .

We will denote by IK the embedding of K ' K ⊗ Ω in Z .

Theorem 5.1. Ut extends to a strongly continuous unitary group on Z such that

I∗KUtIK = e−itΥ, I∗KUt A⊗ 1 U−tIK = etM (A).

Thus Ut is a unitary dilation of e−itΥ, and Ut · U∗t is a dilation of etM .

As every strongly continuous unitary group, Ut can be written as e−itZ for a certain

self-adjoint operator Z. Note that formally (and also rigorously with an appropriate

regularization)

Z =
1

2
(Υ + Υ∗) + dΓ(ZR) + (2π)−

1
2 a∗(ν ⊗ |1)) + (2π)−

1
2 a(ν ⊗ |1)).

Thus Z has the form of a Pauli-Fierz operator with a rather singular interaction.

Let us present an alternative variation of the above construction, which is actually

closer to what can be found in the literature. Let F be the Fourier transformation on

ZR = h ⊗ L2(R) defined as in (2.6). The operator Z transformed by 1K⊗Γ(F) will be
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denoted by

Ẑ := 1K⊗Γ(F) Z 1K⊗Γ(F∗). (5.2)

It equals

Ẑ =
1

2
(Υ + Υ∗)⊗1 + 1⊗dΓ(Dτ ) + a(ν ⊗ |δ0)) + a∗(ν ⊗ |δ0)),

where δ0, Dτ are defined as in (2.8), (2.9).

Similarly to the operator of Section 2.1 denoted with the same symbol, the operator

Ẑ (as well as Z) has a number of intriguing properties. Let us describe one of them.

Let D0 := h ⊗ H1(R). (Recall that H1(R) is the first Sobolev space). Let
al

Γs(D0),

denote the corresponding algebraic Fock space and D1 := K ⊗ al

Γs(D0). Introduce the

(non-self-adjoint) sesquilinear form

Ẑ+ = Υ⊗1 + 1⊗dΓ(Dτ ) + a(ν ⊗ |δ0)) + a∗(ν ⊗ |δ0)). (5.3)

Let ψ, ψ′ ∈ D1. Then

lim
t↓0

1

t
(ψ|(e−itẐ − 1)ψ′) = −i(ψ|Ẑ+ψ′). (5.4)

Thus it seems that Ẑ+ = Ẑ, which is true only if Υ is self-adjoint and hence there are

no off-diagonal terms in Z. Clearly, the explanation of the above paradox is similar as

in Subsect. 2.1: (ψ|e−itẐψ′) is not differentiable at zero. This is related to the fact that

ψ, ψ′ do not belong to DomZ. Thus Ẑ+ can again be called a false form.

In the literature, the Langevin Schrödinger dynamics e−itẐ is usually introduced

through the so-called Langevin (or stochastic) Schrödinger equation satisfied by

Ŵ (t) := eitdΓ(Dτ )e−itẐ . (5.5)

To write this equation recall the decomposition (5.1) and note that. Then, in the sense

of quadratic forms on D1, we have

i
d

dt
Ŵ (t) = (Υ⊗1 + a∗(ν ⊗ |δt)))Ŵ (t) +

∑

j

ν∗j Ŵ (t)a(bj ⊗ |δt)). (5.6)

Note that a(ν⊗|δ0)) and a∗(ν⊗|δ0)) appearing in Ẑ and Ẑ+ are quantum analogs of

a classical white noise. They are “localized” at τ = 0. Besides, they are (formally) given

by a linear expression in terms of creation/annihilation operators. Therefore, they are

often called linear quantum noises.

5.2. Quadratic noises. This subsection is outside of the main line of this article. It is

closely related to Subsect. 2.2. It is not needed for the description of the weak coupling

limit, as given in the next section.

Clearly, Ψ ∈ K⊗ (⊗ns h⊗L2(R)) ' K⊗ (⊗ns L2(R, h)) can be identified with a function

Ψ(τ1, . . . , τn) with values in K⊗ (⊗nh) and the arguments satisfying τ1 < · · · < τn.

Let S be a unitary operator on K ⊗ h. Let S(j) be this operator acting on K ⊗⊗nh,

where it is applied to the j’th “leg” of the tensor product ⊗nh. We define an operator

Λ(S) on K ⊗ (⊗ns L2(R, h)) as follows: If τ1 < · · · < τk < 0 < τk+1 < · · · < τn, then

(Λ(S)Ψ) (τ1, . . . , τn) := S(k+1) · · ·S(n)Ψ(τ1, . . . , τn).
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Clearly, Λ(S) is a unitary operator. If K = C, then it coincides with Γ(γ(S)), where γ(S)

was defined in (2.15) and Γ is the functor of the second quantization defined in (4.1).

Introduce the operator ẐS,0 on K⊗Γs(ZR) by

ẐS,0 := Υ + Λ(S)∗1⊗dΓ(Dτ )Λ(S). (5.7)

The operator (5.7) is very singular and contains a “delta interaction at τ = 0”.

Let us now define the dynamics ÛS,t that generalizes Ût. Let Sij ∈ B(K) be defined by

S =
∑

i,j

Sij⊗|bi)(bj |. (5.8)

Set

ν+
S,j = νj , ν−S,j =

∑

i

ν∗i Sij .

Then we introduce the quadratic form

ÛS,t :=
∞∑

n=0

∫

t≥tn≥···≥t1≥0

dtn · · · dt1

∑

j1,...,jn

∑

ε1,...,εn∈{+,−}
(−i)n

∏

k=1,...,n: εk=+

a∗(bjk ⊗ |δtk−t))

× e−i(t−tn)ẐS,0νεnS,jn⊗1e−i(tn−tn−1)ẐS,0 · · · νε1S,j1⊗1e−i(t1−0)ẐS,0

×
∏

k′=1,...,n: εk′=−
a(bjk′ ⊗ |δtk′ ));

ÛS,−t := Û∗S,t.

One can check that ÛS,t extends to a strongly continuous unitary group. Therefore, one

can define a self-adjoint operator ẐS such that ÛS,t = e−itẐS . It satisfies

I∗KÛS,tIK = e−itΥ, I∗KÛS,t A⊗ 1 ÛS,−tIK = etM (A).

It is awkward to write a formula for ẐS in terms of creation/annihilation operators,

even formally. There exists however and alternative formalism that is commonly used in

the literature to define the group e−itẐS . Let ψ, ψ′ ∈ D1. Introduce the cocycle

ŴS(t) := eitdΓ(Dτ )e−itẐS . (5.9)

Then, in the sense of the quadratic form on D1, the cocycle satisfies the differential

equation

i
d

dt
ŴS(t) =

(
Υ⊗1 + a∗(ν⊗|δt))

)
ŴS(t) (5.10)

+
∑

ij

i(1− Sij)⊗a∗(bi ⊗ |δt)) ŴS(t) a(bj⊗|δt)) (5.11)

+
∑

j

ν−S,j ŴS(t)a(bj⊗|δt)). (5.12)

This formula is the quantum Langevin (stochastic) equation for the cocycle ŴS(t) in the

sense of [HP, Fa, Pa, At, Maa, Fr, Bar, Me], which includes all three kinds of noises. In

the literature, the dilation e−itẐS is usually introduced through a version of (5.12).
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5.3. Total energy operator. Let us analyze the impact of the invariance of a c.p. semi-

group on its quantum Langevin dynamics.

Suppose now that K is a self-adjoint operator on K and Y a self-adjoint operator

on h. Assume that they satisfy

ν K = (K⊗1 + 1⊗Y )ν,

[
1

2
(Υ + Υ∗),K

]
= 0. (5.13)

This implies in particular that M is K-invariant. Define the self-adjoint operator on Z
E := K⊗1 + 1⊗dΓ(Y⊗1). (5.14)

Then it is easy to see that the quantum Langevin dynamics commutes with this operator:

[E, e−itZ ] = 0. (5.15)

E will be called the total energy operator, which is a name suggested by the physical

interpretation that we attach to E.

Next we discuss the implications of the DBC of a c.p. semigroup on its quantum

Langevin dynamics. We set

σt(C) := eitECe−itE ,

ωβ(C) := Tr e−βK⊗|Ω)(Ω| C/Tr e−βK , C ∈ B(Z).

We will see that the DBC for e−βK/Tr e−βK is related to a version of the β-KMS condition

for the dynamics σt and the state ωβ .

Theorem 5.2. Assume (5.14). Then the following statements are equivalent:

1) For any D1, D2, D
′
1, D

′
2 ∈ B(K), f1, f2 ∈ L2(R) and

Bj := Dj⊗1
(
a∗(ν⊗|fj)) + a(ν⊗|fj))

)
D′j⊗1, j = 1, 2.

and for any t ∈ R we have

ωβ(σt(B1)B2) = ωβ (B2σt+iβ(B1)) . (5.16)

2)

Trh νAν
∗ = ν∗ A⊗e−βY ν, (5.17)

(This implies in particular that M satisfies the DBC for e−βK/Tr e−βK).

6. Weak coupling limit for Pauli-Fierz operators. In this section we describe the

main results of this article. They are devoted to a rather large class of Pauli-Fierz oper-

ators in the weak coupling limit. In the first subsection we recall the well known results

about the reduced dynamics, which go back to Davies [Da1, Da2, Da3]. In the second

subsection we describe our results that include the reservoir [DD2]. They are inspired by

[AFL]. Finally, we discuss the case of thermal reservoirs.

6.1. Reduced weak coupling limit. We consider a Pauli-Fierz operator

Hλ = K ⊗ 1 + 1⊗ dΓ(HR) + λ(a∗(V ) + a(V )).

We assume that K is finite dimensional and for any A ∈ B(K) we have
∫
‖V ∗A ⊗

1 e−itH0V ‖dt < ∞. The following theorem is essentially a special case of a result of

Davies [Da1, Da2, Da3], see also [DD2].
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Theorem 6.1 (Reduced weak coupling limit for Pauli-Fierz operators). There exists a

K-invariant Markov c.p. semigroup etM on B(K) such that

lim
λ↘0

e−itK/λ2

I∗KeitHλ/λ
2

A⊗ 1 e−itHλ/λ
2

IKeitK/λ2

= etM (A),

and a contractive semigroup e−itΥ on K such that [Υ,K] = 0 and

lim
λ↘0

eitK/λ2

I∗Ke−itHλ/λ
2

IK = e−itΥ.

If the reservoir is at inverse temperature β, then M satisfies the DBC for the state

e−βK/Tr e−βK .

The operator Υ ∈ B(K) arising in the weak coupling limit equals

Υ := −i
∑

ω

∑

k−k′=ω

∫ ∞

0

1k(K)V ∗1k′(K)e−it(HR−ω)V 1k(K)dt.

In order to write an explicit formula for M it is convenient to introduce an additional

assumption, which anyway will be useful later on in the extended weak coupling limit.

Assumption 6.2. Suppose that for any ω ∈ spK − spK there exist an open Iω ⊂ R and

a Hilbert space hω such that ω ∈ Iω and

Ran1Iω(HR) ' hω ⊗ L2(Iω , dx),

1Iω (HR)HR is the multiplication operator by the variable x ∈ Iω and, for ψ ∈ K,

1Iω (HR)V ψ '
∫ ⊕

Iω

v(x)ψdx.

Assume that Iω are disjoint for distinct ω and x 7→ v(x) ∈ B(K,K⊗hω) is continuous

at ω.

Thus we assume that the reservoir 1-body Hamiltonian HR and the interaction V are

well behaved around the Bohr frequencies, the differences of eigenvalues of K.

Let h := ⊕ω hω. We define νω ∈ B(K,K⊗hω) by

νω := (2π)
1
2

∑

ω=k−k′
1k(K)v(ω)1k′(K)

and ν ∈ B(K,K⊗h) by

ν :=
∑

ω

νω.

Note that

iΥ− iΥ∗ =
∑

ω

∑

k−k′=ω

∫ ∞

−∞
1k(K)V ∗1k′(K)e−it(HR−ω)V 1k(K)dt

=
∑

ω

∑

k−k′=ω
1k(K)v∗(ω)1k′(K)v(ω) 1k(K) = ν∗ν.



26 J. DEREZIŃSKI AND W. DE ROECK

The generator of a c.p. Markov semigroup that arises in the reduced weak coupling limit,

called sometimes the Davies generator, is

M(A) = −i(ΥA−AΥ∗) + ν∗ A⊗1 ν

= −i

[
Υ + Υ∗

2
, A

]
− 1

2
[A, ν∗ν]+ + ν∗A⊗1 ν, A ∈ B(K). (6.1)

6.2. Energy of the reservoir in the weak coupling limit. Introduce the operator Y on h

by setting

Y = ω on hω. (6.2)

The operator Y has the interpretation of the asymptotic energy of the restricted reservoir.

Theorem 6.3.

1) The operator ν constructed in the weak coupling limit satisfies

ν K = (K⊗1 + 1⊗Y )ν. (6.3)

This implies in particular that M is K-invariant.

2) If the reservoir is at inverse temperature β, then ν satisfies

Trh νAν
∗ = ν∗ A⊗e−βY ν, (6.4)

This implies in particular that M satisfies the DBC for e−βK/Tr e−βK.

6.3. Extended weak coupling limit. Recall that given (Υ, ν, h) we can define the space

ZR and the Langevin Schrödinger dynamics e−itZ on the space Z := K ⊗ Γs(ZR), as in

Subsect. 5.1.

For λ > 0, we define the family of partial isometries Jλ,ω : hω⊗L2(R)→ hω⊗L2(Iω) ⊂
HR:

(Jλ,ωgω)(y) =

{
1
λgω(y−ωλ2 ), if y ∈ Iω;

0, if y ∈ R\Iω.
We set Jλ : ZR → HR, defined for g = (gω) by

Jλg :=
∑

ω

Jλ,ωgω.

Note that Jλ are partial isometries and s-limλ↘0 J
∗
λJλ = 1.

Set Z0 := dΓ(ZR). The following theorem [DD2] was inspired by [AFL]:

Theorem 6.4 (Extended weak coupling limit for Pauli-Fierz operators).

s∗- lim
λ↘0

Γ(J∗λ)eiλ−2tH0e−iλ−2(t−t0)Hλeiλ−2t0H0Γ(Jλ) = eitZ0e−i(t−t0)Ze−it0Z0 .

The extended weak coupling limit can be used to describe interesting physical prop-

erties of non-equilibrium quantum systems, see e.g. [DM]. The following corollary, which

generalizes the results of [Du], describes the asymptotics of correlation functions for ob-

servables of the form Γ(Jλ)AΓ(J∗λ), where A are observables on the asymptotic space.
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Corollary 6.5 (Asymptotics of correlation functions). Suppose that

A`, . . . , A1 ∈ B(Z) and t, t`, . . . , t1, t0 ∈ R. Then

s∗- lim
λ↘0

I∗Keiλ−2tH0e−iλ−2(t−t`)Hλe−iλ−2t`H0Γ(Jλ)A`Γ(J∗λ)

· · ·Γ(Jλ)A1Γ(J∗λ)eiλ−2t1H0e−iλ−2(t1−t0)Hλe−iλ−2t0H0IK

= I∗KeitZ0e−i(t−t`)Ze−it`Z0A` · · ·A1eit1Z0e−i(t1−t0)Ze−it0Z0IK.

The following corollary is interesting since it describes how reservoir Hamiltonians

converge to operators whose dynamics under the quantum Langevin dynamics U−t · Ut
is well-studied, see e.g. [Bar].

Corollary 6.6 (Asymptotic reservoir energies). Consider the operator Y : h 7→ h de-

fined in (6.2). The operator E := K⊗1 + 1⊗dΓ(Y⊗1) plays the role of “asymptotic total

energy operator”, i.e.

[E, eitZ ] = 0. (6.5)

Moreover, for κ1, . . . , κ` ∈ R,

s∗- lim
λ↘0

I∗Keiλ−2tH0e−iλ−2(t−t`)Hλe−iλ−2t`H0 eiκ`dΓ(HR)

· · · eiκ1dΓ(HR) eiλ−2t1H0e−iλ−2(t1−t0)Hλe−iλ−2t0H0IK

= I∗KeitZ0e−i(t−t`)Ze−it`Z0 eiκ`dΓ(Y⊗1) · · · eiκ1dΓ(Y⊗1) eit1Z0e−i(t1−t0)Ze−it0Z0IK.
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