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ONE-DIMENSIONAL
SCHRÖDINGER OPERATORS

Suppose that R+ 3 x 7→ V (x) is a function in L1
loc(R+) bounded near

infinity, possibly complex valued. Consider the one-dimensional Schrödinger

operator

L := −∂2x + V (x).

We would like to describe closed (if possible self-adjoint) realizations of L

on L2(R+). There are two obvious closed realizations: the minimal Lmin

and the maximal Lmax with domains given by

D(Lmax) :=
{
f ∈ L2(R+) | Lf ∈ L2(R+)

}
,

D(Lmin) := the closure of {f ∈ D(Lmax) | f = 0 near 0},

the closure taken with respect to the graph norm of Lmax.



One can show that dimD(Lmax)/D(Lmin) is either 0 or 2.

In the latter case there exists a one-parameter family of operators L• that

satisfy Lmin ⊂ L• ⊂ Lmax defined by boundary conditions (b.c.) near zero.

If V ∈ L1 near zero, these b.c are easy to describe:

D(Lκ) :=
{
f ∈ D(Lmax) | f (0) = κf ′(0)

}
.

κ = 0 is called the Dirichlet b.c., κ = ∞ the Neumann b.c., the remain-

ing are mixed or Robin b.c.. If V 6∈ L1 near zero, the situation is more

complicated.



In most of the literature it is assumed that V is real. Then the operator L

with the domain C∞c (R+) is Hermitian (symmetric), but not necessarily self-

adjoint. The closure of L with this domain coincides with Lmin, its adjoint

L∗ coincides with Lmax. If Lmin 6= Lmax, then self-adjoint extensions of L

are in between Lmin and Lmax.

One can apply von Neumann’s method of defining self-adjoint extentions.

One looks for eigenvectors in L2(R+) of

L∗f± = ±if±.

If dimD(Lmax)/D(Lmin) = 2, Then

D(Lα) = D(Lmin) + C(eiαf+ + e−iαf−)

gives all self-adjoint extensions of L. Not an optimal approach—it requires

solving an unnecessarily difficult eigenvalue problem.



Let us go back to a possibly complex V .

Let N (L − λ) denote the space of eigenfunctions of L with eigenvalue

λ ∈ C (not necessarily square integrable). One can show the alternative

dimD(Lmax)/D(Lmin) = 0

⇔ dim
{
f ∈ N (L− λ) | f ∈ L2 near 0

}
≤ 1, ∀λ ∈ C;

dimD(Lmax)/D(Lmin) = 2

⇔ dim
{
f ∈ N (L− λ) | f ∈ L2 near 0

}
= 2, ∀λ ∈ C.

Usually, the following approach to define closed extensions of Lmin is much

more convenient than von Neumann’s:

Fix λ (e.g. λ = 0). Choose a cutoff function ξ ∈ C∞(R+) equal 1 near 0

and 0 near ∞. For h ∈ N (L− λ) set

D(L•) := D(Lmin) + Cξh.

Note that L• does not depend on the cutoff ξ.



Introduce the Wronskian of two functions h1 and h2:

W(h1, h2, x) = h1(x)h′2(x)− h′1(x)h2(x)

Note that for h1, h2 ∈ N (L− λ), the Wronskian W(h1, h2, x) does not

depend on x. Thus it defines a symplectic form on N (L− λ).

Moreover, for f, g ∈ D(Lmax) the Wronskian at 0 is well-defined:

lim
x↘0
W(f, g;x) =:W(f, g; 0)

exists and defines a continuous bilinear form on D(Lmax).

Here is an even better approach to defining close realizations of L:

D(L•) = {f ∈ D(Lmax) | W(h0, f ; 0) = 0},

where h0 is an approximate eigenfunction of L.



Later we will need a few integral kernels naturally associated with the

operator L. Let h1, h2 ∈ N (L−λ) be linearly independent. The canonical

bisolution of L− λ defined by the integral kernel

G↔(λ;x, y) =
1

W(h1, h2)

(
h1(x)h2(y)− h2(x)h1(y)

)
,

does not depend on the choice of h1, h2. G↔(λ) is usually unbounded on

L2(R+). It satisfies(
− ∂2x + V (x)− λ

)
G↔(λ;x, y) = 0.

We will use the term Green’s operator as a synonym for a right inverse

of L − λ (not necessarily bounded). In other words, the integral kernel

G•(λ;x, y) of Green’s operator G•(λ) satisfies(
− ∂2x + V (x)− λ

)
G•(λ;x, y) = δ(x− y).



We have various types of Green’s operators:

1. the forward Green’s operator

G→(λ;x, y) := θ(x− y)G↔(λ;x, y),

2. the backward Green’s operator

G←(λ;x, y) := −θ(y − x)G↔(λ;x, y).

3. Choose h1, h2 ∈ N (L−λ). The two-sided Green’s operator correspond-

ing to b.c. near 0 given by h1, resp. near ∞ given by h2:

G•(λ;x, y) :=
h1(x)h2(y)θ(x− y) + h2(x)h1(y)θ(y − x)

W(h1, h2)



Suppose we have two Schrödinger operators

L0 = −∂2x + V 0(x),

L = −∂2x + V (x) = L0 + Q(x).

Suppose we know an eigenfunction of the unperturbed operator u0 ∈
N (L0−λ). Then one can try to construct an eigenfunction of the perturbed

operator u ∈ N (L− λ) by applying

u =
(
1l + G0

•(λ)Q
)−1

u0,

where G0
•(λ) is one of the Green’s operators of L0 − λ. This is a gener-

alization of the Lippmann-Schwinger equation well-known from Quantum

Mechanics.



BESSEL OPERATORS

One of the most important families of exactly solvable 1-dimensional

Schrödinger operators is the family of Bessel operators

−∂2x +
c

x2
.

We will allow c to be complex.

As is well-known, it is convenient to set c = m2 − 1
4, so that the Bessel

operator is rewritten as

L0
m2 := −∂2x +

(
m2 − 1

4

) 1

x2
.

We will often assume that Re(m) ≥ 0, because L0
m2 depends only onm2.



Many operators in mathematics and physics can be reduced to Bessel

operators:

1. the usual Laplacian on the halfline, Dirichletm = 1
2, Neumannm = −1

2;

2. the usual Laplacian in dimension d ≥ 3, m = d
2 − 1 + `, ` ∈ N0;

3. the 2d Aharonov-Bohm Hamiltonian with flux θ, m = θ
2π + n, n ∈ Z,

4. the Laplacian on a conical surface of angle α, m = 2πn
α , n ∈ Z;

5. the Laplacian on a wedge of angle α with Dirichlet or Neumann b.c.,

m = πn
α , n ∈ Z;

6. perturbed Bessel operators with m complex define Regge poles,

7. three-body systems with contact interactions.

8. generators of sl(2,R).



The zero energy eigenvalue problem L0
m2f = 0 is easy:

x
1
2+m, x

1
2−m, m 6= 0; x

1
2 , x

1
2 ln(x), m = 0.

One can distinguish 3 regimes with a different behavior of eigensolutions:

1. Re(m) > 0. Eigensolutions of L0
m2 can be divided into principal, and

non-principal, all the others. Principal solutions behave as x
1
2+m and are

more regular than non-principal ones, which behave as x
1
2−m.

2. Re(m) = 0, m 6= 0. Eigensolutions of L0
m2 are spanned by eigensolu-

tions with a comparable oscillating behavior x
1
2+m and x

1
2−m near zero.

3.m = 0. Eigensolutions of L0
m2 are spanned by a principal solution

behaving like x0. All others are non-principal, behave like x0 ln(x), and

are less regular.



Let us now sketch the theory of closed realizations of L0
m2 on L2(R+).

First of all, the minimal and maximal realization of L0
m2 denoted by L0,min

m2

resp. L0,max
m2 , satisfy

|Re(m)| ≥ 1 implies L0,min
m2 = L0,max

m2 ,

|Re(m)| < 1 implies dimD(L0,max
m2 )/D(L0,min

m2 ) = 2.

Thus for |Re(m)| < 1 there exists a 1-parameter family of closed realisations

of L0
m2 between L0,min

m2 and L0,max
m2 defined by b.c. at zero. To describe all

closed realizations of Bessel operators one can introduce the following three

holomorphic families of operators:

{−1 < Re(m)} 3 m 7→ H0
m,

{−1 < Re(m) < 1} ×
(
C ∪ {∞}

)
3 (m,κ) 7→ H0

m,κ,(
C ∪ {∞}

)
3 ν 7→ H0,ν

0 .



The family H0
m is the most basic one. It is called homogeneous. For

1 ≤ Re(m) it is the unique closed realization of L0
m2. Then it is extended

to the strip −1 < Re(m) < 1 by analytic continuation. Its domain is

defined by the boundary condition ∼ x
1
2+m at zero.

The operator H0
m,κ is defined by

D(H0
m,κ) = D(Lmin

m2 ) + C(x
1
2+m + κx

1
2−m)ξ

= {f ∈ D(Lmax
m2 ) | W(f, x

1
2+m + κx

1
2−m; 0) = 0}.

It is holomorphic except for a singularity at (m,κ) = (0,−1).

Finally, for the special case m = 0, H0,ν
0 is defined by

D(H0,ν
m ) = D(Lmin

m2 ) + C(x
1
2 ln(x) + νx

1
2)ξ

= {f ∈ D(Lmax
m2 ) | W(f, x

1
2 ln(x) + νx

1
2 ; 0) = 0}.



Let Uτ be the group of dilations:

(Uτf )(x) = eτ/2f (eτx).

For any m with |Re(m)| < 1 and any κ, ν ∈ C ∪ {∞}, we have

UτHm,κU−τ = e−2τHm,e−2τmκ,

UτH
ν
0U−τ = e−2τHν+τ

0 .

In particular, only

Hm,0 = Hm, Hm,∞ = H−m, H∞0 = H0 are homogeneous (of degree 2).

If A is an operator, then the transformation Rτ(A) := e2τUτAU−τ . will

be called the renormalization group action. Operator is homogeneous iff it

is its fixed point.



Self-adjoint extensions of the Hermitian operator

Lα = −∂2x +
(
− 1

4
+ α
) 1

x2
.

K—Krein, F—Friedrichs, dashed line—single bound state, dotted line—

infinite sequence of bound states.



For k 6= 0 the eigenvalue problem L0
m2f = k2f reduces to the Bessel

equation. N (L0
m2 + k2) is spanned by

u0m(x, k) :=
(2

k

)m√
xIm(kx), u0m(x) ' x

1
2+m

Γ(m + 1)
near 0;

v0m(x, k) :=
(k

2

)m√
xKm(kx), decaying exponentially

where Im is the modified Bessel function and Km the Macdonald function.

u0m is principal for Re(m) > 0 and for m = 0.

v0m is always non-principal.

u0m for Re(m) < 0 and m 6= −1,−2, . . . is a distinguished non-principal

eigenfunction. (For m = −1,−2, . . . it is proportional to u0−m).



We have

u0m(x, 0) =
x

1
2+m

Γ(m + 1)
,

v0m(x, 0) =
Γ(m)x

1
2−m

2
, Re(m) ≥ 0, m 6= 0.

It is convenient to introduce another eigensolution

w0
m(x, k) = w0

−m(x, k) ∼ e−kx x→∞,

which differs from v0m(x, k) only by a different normalization:

w0
m(x, k) =

√
2k

π

(2

k

)m
v0m(x, k) =

√
2xk

π
Km(kx).



The Bessel operator for m = 0 often needs a separate treatment. This

case is actually very important – it corresponds to the 2-dimensional Lapla-

cian in the s-wave sector.

For instance, v00(·, k) does not have a limit at k = 0. To treat the case

m = 0 in a satisfactory way it is useful to introduce a family of non-principal

eigenfunctions of L0
0:

p00(x, k) := −v00(x, k)−
(

ln
(k

2

)
+ γ
)
u00(x, k),

where γ denotes Euler’s constant. At k = 0 it coincides with the logarithmic

solution:

p00(x, 0) = x
1
2 ln(x).



As explained in the previous subsection, with L0
m2 + k2 one can associate

various Green’s operators: The most important are

1. the forward Green’s operator G0
m2,→(−k2);

2. the backward Green’s operator G0
m2,←(−k2);

3. the two-sided Green’s operator with homogeneous boundary conditions,

G0
m2,./

(−k2), using u0m and v0m, for brevity often called two-sided;

4. for m = 0, additionally, the two-sided Green’s operator logarithmic near

zero G0
0,�(−k2), using u00, p00, for brevity called logarithmic.

For Re(m) > −1, Re(k) > 0 the two-sided Green’s operator with homo-

geneous b.c. is bounded on L2(R+) and is with the resolvent of H0
m:

G0
m2,./(−k

2) =
(
H0
m + k2

)−1
.

However, the integral kernelG0
m2,./

(−k2;x, y) is well defined and useful also

for other values of k and m, when it does not define a bounded operator.



THE WHITTAKER OPERATOR

The radial Schrödinger operator with the Coulomb potential

Lβ,m2 := −∂2x +
(
m2 − 1

4

) 1

x2
− β

x

will be called the Whittaker operator. It is an example of an perturbed

Bessel operator.

It has a distinguished family of closed realizations

C× {m ∈ C | Re(m) > −1} 3 (β,m) 7→ Hβ,m ,

holomorphic except for a singularity at (0,−1
2). We will call them pure.

They are generalizations of the homogeneous family Hm to the Whittaker

case. In particular, for β = 0 they coincide with Bessel operators:

H0,m = Hm.



If Re(m) ≥ 1 the boundary condition is not needed. For Re(m) > −1

Hβ,m can be defined by analytic continuation.

Alternatively, if Re(m) ≥ −1
2, we can use a simplified boundary condition:

D(Hβ,m) = {f ∈ D(Lmax
β,m2) | W(f, x

1
2+m; 0) = 0}.

For all Re(m) > −1 pure boundary conditions are defined by

D(Hβ,m) =
{
f ∈ D(Lmax

β,m2) | W
(
f, x

1
2+m
(
1− β

1+2mx
)
; 0
)

= 0
}
.



The singularity at (β,m) = (0,−1
2) is quite curious: it is invisible when

we consider just the variable m. In fact, the Bessel operator

{Re(m) > −1} 3 m 7→ Hm = H0,m

is holomorphic.

H−1
2
is the Laplacian with the Neumann boundary condition;

H1
2
is the Laplacian with the Dirichlet boundary condition.

Thus one has

H0,−1
2
6= H0,12

.



If we introduce the Coulomb potential, then

whenever β 6= 0, Hβ,−1
2

= Hβ,12
.

The function

(β,m) 7→ Hβ,m is holomorphic around (0, 12).

In particular, in the sense of the strong resolvent limit

lim
β→0

Hβ,12
= H0,12

.

But

lim
β→0

Hβ,−1
2

= H0,12
6= H0,−1

2

Thus (β,m) 7→ Hβ,m is not even continuous near (0,−1
2).



PERTURBED BESSEL OPERATORS

Consider now m ∈ C and complex Q ∈ L1
loc(R+)

Lm2 := −∂2x +
(
m2 − 1

4

) 1

x2
+ Q(x).

Proposition 1. Let Re(m) ≥ 0, k ∈ C and suppose that∫ 1

0

x|Q(x)|dx <∞, if m 6= 0;∫ 1

0

x(1 + |ln(x)|)|Q(x)|dx <∞, if m = 0.

Suppose that g0 ∈ N (L0
m2 + k2) such that g0(x) = O(x

1
2+Re(m)) near 0.

Then, there exists a unique g ∈ N (Lm2 + k2) such that,

g(x)− g0(x) = o(x
1
2+Re(m)),

∂xg(x)− ∂xg0(x) = o(x−
1
2+Re(m)), x→ 0.



If we want to well approximate all unperturbed solutions, including the

more singular ones, we need to strengthen the assumption on the perturba-

tion.

Proposition 2. Let Re(m) ≥ 0, k ∈ C and suppose that∫ 1

0

x1−2Re(m)|Q(x)|dx <∞, if m 6= 0;∫ 1

0

x
(
1 + (ln(x))2

)
|Q(x)|dx <∞, if m = 0.

Suppose that g0 ∈ N (L0
m2 + k2). Then, there exists a unique

g ∈ N (Lm2 + k2) such that

g(x)− g0(x) = o(x
1
2+Re(m)),

∂xg(x)− ∂xg0(x) = o(x−
1
2+Re(m)), x→ 0.



Here are consequences of Propositions 1 and 2:

Corollary 3. Let m ∈ C, k ∈ C and suppose that∫ 1

0

x1−ε|Q(x)|dx <∞, ε ≥ 0, Re(m) ≥ −ε
2
, m 6= 0;∫ 1

0

x(1 + |ln(x)|)|Q(x)|dx <∞, m = 0.

Then there exists a unique um(·, k) ∈ N (Lm2 + k2) that satisfies

um(x, k)− u0m(x, k) = o(x
1
2+|Re(m)|),

∂xum(x, k)− ∂xu0m(x, k) = o(x−
1
2+|Re(m)|), x→ 0.

Note that if |Q(x)| . |x|α near 0, then the above condition is satisfied for

α > −2 + ε.



Corollary 4. Let k ∈ C and suppose that∫ 1

0

x(1 + (ln(x))2)|Q(x)|dx <∞, m = 0.

Then there exists a unique p0(·, k) ∈ N (Lm2 + k2) such that

p0(x, k)− p00(x, k) = o(x
1
2),

∂xp0(x, k)− ∂xp00(x, k) = o(x−
1
2), x→ 0.



Conditions of Proposition 1 are the minimal assumptions near zero for our

purposes. They guarantee the existence of distinguished eigenfunctions um
with Re(m) ≥ 0, principal for Re(m) > 0 and m = 0. They also imply

that the behavior near zero of non-principal eigenfunctions is roughly as in

the unperturbed case:

Proposition 5. Let Re(m) ≥ 0, Re(k) ≥ 0. Under the assumptions of
Proposition 1 for all g ∈ N (Lm2 + k2), we have

g(x) = O(x
1
2−Re(m)), ∂xg(x) = O(x−

1
2−Re(m)),

g(x) = O(x
1
2 ln(x)), ∂xg(x) = O(x−

1
2 ln(x)), x→ 0.



It seems that to have distinguished non-principal eigenfunctions one needs

to impose stronger conditions on Q. In particular, under the conditions of

Corollary 3 um is constructed only in the region Re(m) ≥ −ε
2. This suggests

the following question:

Open Problem 6. Let Q satisfy the condition of Corollary 3. Does it
imply that the function m 7→ um(·, k) extends holomorphically (or at
least meromorphically) to the whole C? (This is true for the Coulomb
potential, see S.Richard, J.D.).



Let us now consider the behavior near infinity. To prove the existence of

solutions well approximating exponentially decaying solutions, called Jost

solutions, we need the so-called short-range condition on the potential.

Proposition 7. Let m ∈ C. Suppose that∫ ∞
1

|Q(x)|dx <∞.

Let k 6= 0 be such that Re(k) ≥ 0. Then there exists a unique wm(·, k) =

w−m(·, k) ∈ N (Lm2 + k2) such that

wm(x, k)− w0
m(x, k) = o(e−xRe(k)),

∂xwm(x, k)− ∂xw0
m(x, k) = o(e−xRe(k)), x→∞.

Proposition 7 does not cover the zero energy, that is, k = 0.



Proposition 8. Let m ∈ C. Suppose that∫ ∞
1

xδ|Q(x)|dx <∞, if m 6= 0, with δ = 1 + 2 max
(
Re(m), 0

)
;∫ ∞

1

x(1 + ln(x))|Q(x)|dx <∞, if m = 0.

Then there exists a unique qm ∈ N (Lm2) such that

qm(x)− x
1
2+m = o(x

1
2−Re(m)),

∂xqm(x)− ∂xx
1
2+m = o(x−

1
2−Re(m)), x→∞.



Proposition 9. Let m = 0. Suppose that∫ ∞
1

x(1 + (ln(x))2)|Q(x)|dx <∞.

Then there exists a unique q0,ln ∈ N (L0) such that

q0,ln(x)− x
1
2 ln(x) = o(x

1
2),

∂xq0,ln(x)− ∂xx
1
2 ln(x) = o(x−

1
2), x→∞.



The zero energy eigenequation near infinity is equivalent to the zero

energy eigenequation near zero:

−∂2x +
(
m2 − 1

4

) 1

x2
+ Q(x) = y3

(
− ∂2y +

(
m2 − 1

4

) 1

y2
+ Q̃(y)

)
y,

y =
1

x
, Q̃(y) := y−4Q(y−1).

Note also a simple relationship between the integral conditions near zero on

Q and near infinity on Q̃:∫ 1

0

x1−ε|Q(x)|dx =

∫ ∞
1

y1+ε|Q̃(y)|dy,∫ 1

0

x(1 + | ln(x)|α)|Q(x)|dx =

∫ ∞
1

y(1 + | ln(y)|α)|Q̃(y)|dy.

Thus one can derive Propositions 8 and 9 from the k = 0 case of Corollaries

3 and 4.



The main tools used in the construction of eigenfunctions are various

Green’s operators for the unperturbed Bessel operator. The forward Green’s

operator is used in Propositions 1, 2 and their corollaries. For instance,

um(·, k) =
(
1l + G0

m2,→(−k2)Q
)−1

u0m(·, k),

p0(·, k) =
(
1l + G0

0,→(−k2)Q
)−1

p00(·, k).

The backward Green’s operator is used in Propositions 7, 8 and 9:

wm(·, k) =
(
1l + G0

m2,←(−k2)Q
)−1

w0
m(·, k),

qm =
(
1l + G0

m2,←(0)Q
)−1

u0m(·, 0),

q0,ln =
(
1l + G0

0,←(0)Q
)−1

p00(·, 0).

In quantum physics the equation for the Jost solution w(·, k) is called the

Lippmann–Schwinger Equation.



If assumptions of Proposition 1 holds and ε
2 < Re(m), then Corollary 3

guarantees the existence only of um(·, k), but not of u−m(·, k). Therefore,

in this case it is more complicated to describe non-principal solutions. One

way to do this is to use compressed two-sided Green’s operators:

Proposition 10. Suppose the assumptions of Proposition 1 hold. If a
is small enough, the following functions are well defined and belong to
N (Lm2 + k2) on ]0, a[:

u
./(a)
−m (·, k) :=

(
1l + G0(a)

m,./(−k2)Q
)−1

u0−m(·, k),

p
�(a)
0 (·, k) :=

(
1l + G

0(a)
0,� (−k2)Q

)−1
p00(·, k).

Here,

G(a)
• (x, y) = 1l[0,a](x)G•(x, y)1l[0,a](y).



Unfortunately, the construction of Proposition 10 involves inverting a com-

plicated integral operator. Alternatively, choose a non-negative integer n,

expand the denominator into a power series retaining n first terms, fix a = 1

(quite arbitrarily) and set

u
0[n]
−m(x, k) =

n∑
j=0

(−G0(1)
./ (0)Q)ju0−m(x, k).

Proposition 11. Let Re(k) ≥ 0. Let n ∈ N such that∫ 1

0

x1−ε|Q(x)|dx <∞, ε ≥ 0,

is satisfied for −ε
2(n + 1) ≤ Re(−m) ≤ 0. Then there exists a unique

u
[n]
−m(·, k) ∈ N (Lm2 + k2) such that

u
[n]
−m(x, k)− u0[n]−m(x, k) = o(x

1
2+Re(m)),

∂xu
[n]
−m(x, k)− ∂xu0[n]−m(x, k) = o(x−

1
2+Re(m)), x→ 0.



Boundary conditions determined by u0[n]−m(·, k) still have an unpleasant

feature – they depend on k. If we want to have boundary conditions inde-

pendent of k we need to assume that |Re(m)| < 1. Then it is reasonable

to choose k = 0, which we do setting

u
0[n]
−m(x) := u

0[n]
−m(x, 0). (1)

In particular, under the condition |Re(m)| < 1 in Proposition 11 we can

replace u0[n]−m(·, k) with u0[n]−m(·).
We have seen the condition |Re(m)| < 1 already in the L2 theory of

Bessel operators.



An important object of our analysis is the Jost function Wm(k), that is

the Wronskian of the two main solutions um(·, k) and vm(·, k).

Proposition 12. Assume Re(m) > −1, as well as assumptions of
Corollary 3. Then

lim
|k|→∞

Wm(k) = 1, Re(k) ≥ 0. (2)

Note the assumption Re(m) > −1 that appears in the above proposition—

again anticipating the basic condition needed in the L2 analysis.



Let us now dscribe close realizations of perturbed Bessel operators. As

usual, we can introduce the minimal and maximal Bessel perturbed Bessel

operator Lmin
m2 and Lmax

m2 . Under the assumptions of Propositions 1 the basic

picture is the same as in the unperturbed case:

|Re(m)| ≥ 1 implies Lmin
m2 = Lmax

m2 ,

|Re(m)| < 1 implies dimD(Lmax
m2 )/D(Lmin

m2 ) = 2.

In particular, for |Re(m)| < 1, beside the minimal and maximal realiza-

tions, there exists a 1-parameter family of closed realizations of Lm2 defined

by b.c. at zero. They can be fixed by specifying continuous linear function-

als on D(Lmax
m2 ) vanishing on D(Lmin

m2 ), called boundary functionals, forming

the boundary space

Bm2 :=
(
D(Lmax

m2 )/D(Lmin
m2 )
)′
, where the prime denotes the dual.



As we discussed in the general theory, boundary functionals can be effi-

ciently described by the Wronskian at zero with an eigenfunctions of Lm2.

Zero-energy eigenfunctions are the simplest. In practice we can use approx-

imate ones.

One can ask about distinguished bases of the boundary space. Under the

assumptions of Proposition 1 we have the principal boundary functional,

which for 0 ≤ Re(m) < 1 can be defined as W(x
1
2+m, ·; 0). There are

also non-principal boundary functionals, which lead to boundary conditions

roughly of the type x
1
2−m for m 6= 0, or x

1
2 ln(x) for m = 0.



Let us now impose the assumption∫ 1

0

x1−ε|Q(x)|dx <∞.

If 2 > ε > 0, then for 0 ≤ Re(m) ≤ ε/2 we have a distinguished

non-principal boundary functional given by W(x
1
2−m, ·; 0) if m 6= 0 and

W(x
1
2 ln(x), ·; 0) if m = 0. We obtain three families of perturbed Bessel

operators {
− ε

2
< Re(m)

}
3 m 7→ Hm,{

|Re(m)| < ε

2

}
×
(
C ∪ {∞}

)
3 (m,κ) 7→ Hm,κ,

C ∪ {∞} 3 ν 7→ Hν
0 ,

analogous to the families of the unperturbed case. All three families are

holomorphic except for a singularity at (m,κ) = (0,−1).



They are defined as the restrictions of Lm2 to the domains:

D(Hm) :=
{
f ∈ D(Lmax

m2 ) | W(x
1
2+m, f ; 0) = 0

}
,

D(Hm,κ) :=
{
f ∈ D(Lmax

m2 ) | W
(
x

1
2+m + κx

1
2−m, f ; 0

)
= 0
}
, κ ∈ C,

D(Hm,∞) :=
{
f ∈ D(Lmax

m2 ) | W
(
x

1
2−m, f ; 0

)
= 0
}
,

D(Hν
0 ) :=

{
f ∈ D(Lmax

0 ) | W
(
νx

1
2 + x

1
2 ln(x), f ; 0

)
= 0
}
, ν ∈ C,

D(H∞0 ) := D(H0).

Open Problem 13. Under the conditions of Proposition 1, does the
familym 7→ Hm extend meromorphically from {Re(m) > 1} to {Re(m) > −1}?



Let us now consider a nonnegative integer n. Under the assumptions

of Proposition 11 we can use the function u0[n]−m. Then every non-principal

boundary functional can be written as

W(Γ(1−m)u
0[n]
−m + κx

1
2+m, ·; 0)

for some κ ∈ C. Clearly, it is proportional to W(x
1
2−m + κx

1
2+m, ·; 0) for

n = 0. For n ≥ 1 it is less canonical. The set of non-principal boundary

conditions can be viewed as a 1-dimensional affine space, where we can use

W(Γ(1−m)u
0[n]
−m, ·; 0) as a possible “reference point”.



Physicists often prefer to fix the operator not by a b.c. bear zero, but by

the behavior of the zero-energy eigenfunction near infinity. The behavior of

zero energy eigenfunctions at large distances is responsible for large scale

properties of quantum systems. It is described by a parameter called the

scattering length, which at least in dimension 2 and 3 is popular in physics.
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