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We review properties of Bessel potentials, that is, inverse Fourier transforms of
(regularizations of ) (m?+p?)~ 5ona pseudoEuclidean space with signature (g, d—q).
We are mostly interested in the Lorentzian signature (1,d — 1), and the case u = 2,
related to the Klein-Gordon equation (—0O + mz) f = 0. We analyze properties
of various “propagators”, which play an important role in quantum field theory,
such as the retarded/advanced propagators or Feynman/antiFeynman propagators.
We consistently use hypergeometric functions instead of Bessel functions, which
makes most formulas much more transparent. We pay attention to distributional
properties of various Bessel potentials. We include in our analysis the “tachyonic
case”, corresponding to the “wrong” sign in the Klein-Gordon equation.

Keywords: Bessel potential, Riesz potential, Green function, Klein-Gordon equation,
Pseudo-Euclidean spaces, Minkowski space.

1. Introduction

Let us start with the Bessel potentials on the Euclidean space R%. Let Rep > 0
and m > 0. If m = 0 we will usually additionally assume that d > Reu. Consider the

function )
Gunl) = [ ot oy (1)

on the Euclidean space R?.  Note that that Gp,m(x — y) can be interpreted as the
©

integral kernel of the operator (m? — A)~=.
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We have
Gu,m(x) = md*NG“,l(mx% (12)

so the case m > 0 reduces to m = 1. G, 1(x) can be expressed in terms of the Macdonald
function, one of solutions of the modified Bessel equation. Therefore, G, 1(x) is often
called the Bessel potential of order p. The function G, o(z) is called the Riesz potential
of order u.

It is remarkable that the theory of Bessel potentials is very similar for all g > 0.
However, the case u = 2 is probably the most important. In this case we will usually
omit p from the notation, setting G, (x) := Gg (), and obtaining the Green function
of the inhomogeneous Helmholtz equation

(A +m?)g(x) = f(2). (1.3)

In other words,
(—A+m?)Gp(z) = 6(x), (1.4)

Note that in dimension d = 3 we have G, (z) = iﬂiyll:l‘

with the Yukawa potential and for m = 0 with the Coulomb potential.
Suppose now R%9~ is the pseudo-Euclidean space of signature (q,d — q). In other
words, as a set it is R? with the scalar product for z,y € R%P given by

. Thus for m > 0 it coincides

TY = —T1Y1 - — TqlYq + Tq+1¥Ygq+1 + - - TaYd- (1.5)

The definition (1.1) is usually no longer correct for m? € R, since = may fail to

m2+4p?)2
be locally integrable, and hence may not define a tempered distribution. It still works
for complex non-real m2. A possible pair of generalizations of (1.1) to m? real is the pair

of functions, which correspond to the limits from above and below:

Ghn) = [ s o 16

m? 4 p? —i0)7 (2m)4’

— ipx dp
GF (2) = / ¢ . . 1.7
Hom (z) (m? + p2 +i0)z (2m)9 (L.7)

(1.6) and (1.7) have an obvious interpretation as boundary values of integral kernels
of appropriate functions of the pseudoLaplacian

0:.= _a%..._83+8q2+1+33. (1'8)

Again, the case m > 0 reduces to m = 1. GE/mF(:r) can be expressed by Macdonald
and Hankel functions. (The Hankel functions are special functions solving the standard
Bessel equation.)

The symbols F and F are motivated by the special case of Green functions in the

Lorentzian case. Gg/nf (x) coincide then with the Feynman, resp. the anti-Feynman

propagators, which play an important role in quantum field theory, as we explain below.
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In our paper we will discuss all signatures, including the FEuclidean (0,d) and anti-
Euclidean (d,0). However, we are mostly interested in the Lorentzian signature. The
Lorentzian signature comes in two varieties: “mostly pluses” (1,d — 1) and “mostly
minuses” (d —1,1). We will treat the former as the standard one.

The Lorentzian case is especially interesting and rich. This is related to the fact
that the Minkowski space RV~! can be equipped with a causal structure and the set

p? +m? = 0 has two connected components. Therefore, besides GE(,E, we can introduce
the distributions

ipx dp
GY - / ¢ _ , 1.9
() (m? + p? — i0sgnp®) 2 (27)? (1.9)
ipx dp
G (z) = / ¢ . , 1.10
pom (@) (m2 + p2 4 i0sgnp?) 2 (27m)¢ (1.10)

which are invariant wrt orthochronous Lorentz transformations. Remarkably, Gx/n/@\ is
supported in the forward, resp. backward cone. Therefore, G;\f,m is called the forward
(or retarded), and Gﬁ’m the backward (or advanced) Bessel potential.

In the Lorentzian case, the pseudo-Laplacian is usually called the d’Alembertian

0= -8+ 0+ +93_,, (1.11)

and —0O + m? is called the Klein-Gordon operator. By a Green function of the (inhomo-
geneous) Klein-Gordon equation

(=8 +m?)f(z) = g(x). (1.12)
we will mean a distribution G*(z) satisfying
(—0+m?)G*(z) = §(). (1.13)

The Klein-Gordon equation possesses many Green functions. Among them, we have
the Feynman and antiFeynman Green functions given by the formulas (1.6) and (1.7)
with p = 2. Another distinguished pair consists of the retarded (or forward) Green
function and the advanced (or backward) Green function, defined by demanding that
their support is contained in the forward, resp. backward cone. For m? > 0 the retarded
Green function is given by (1.9) and the advanced Green function by (1.10) with p = 2.

The Feynman, anti-Feynman, forward, and backward Green functions of the Klein-
Gordon equation have important applications in physics, especially in classical and quan-
tum field theory. The forward and backward Green functions can be used to express the
Cauchy problem. The Feynman, resp. anti-Feynman Green functions express the time-
ordered, resp. anti-time-ordered vacuum expectation values of fields in quantum field
theory. Importantly, they satisfy the identity

GF +GF =GY +G. (1.14)
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In our paper, we also consider the Lorentzian case with the “wrong sign of m?”. This
case corresponds to the tachyonic Klein-Gordon equation

(-0 - m?)f(z) = g(a). (1.15)
Remarkably, all four basic Green functions, Feynman G%,, anti-Feynman GT | forward
G, and backward G.,, can be defined in the tachyonic case. For the Feynman and
anti-Feynman Green functions we can still use the formulas (1.6) and (1.7), where m?
is replaced with —m?2. Their interpretation in terms of the vacuum expectation values
is however lost, since the tachyonic theory has no vacuum state. (In particular, in the
tachyonic case we do not have a counterpart of the positive/negative frequency Green
functions (5.40)). The forward and backward Green functions are defined by their support
properties. For them we cannot use the formulas (1.9) and (1.10). In fact, the set p? —
m? = 0 is now connected, and cutting it with sgnp® is no longer invariant. Nevertheless,
one can use the analytic continuation in m to uniquely define Green functions with correct
support properties also in the tachyonic case. We point out that the identity (1.14) is no
longer true in the tachyonic case.

The difference of two Green functions is a solution of the homogeneous Helmholtz/Klein-
Gordon equation. Certain distinguished solutions are important for physics applications.
In the Lorentzian case, we have the Pauli-Jordan propagator; for m? > 0 also the positive
frequency and the negative frequency two-point functions. We illustrate applications of
distinguished solutions to the Helmholtz/Klein-Gordon equation by computing averages
of plane waves over the sphere (in the Euclidean case), as well as over the hyperbolic and
de Sitter space (in the Lorentzian case).

Let us say a few words about the history of Bessel potentials. The name Bessel
potentials was introduced in the 60s by Aronszajn and Smith, who studied them in the
Euclidean case in [1]. Around the same time, they were also investigated by Calderon
[2]. Bessel potentials are frequently viewed in the literature as smoothed versions of
Riesz potentials (see, for example, [3] where they are defined using the integral formula
(2.5)). They are often used to define Bessel potential spaces that generalize standard
Sobolev spaces (see [4]), and the idea to use Bessel kernels is due to Deny [5]. For
a comprehensive treatment of (Euclidean) Bessel potentials, we refer the reader to [1],
where many properties of Bessel potentials are exhaustively studied.

The Lorentzian versions of Bessel potentials, typically in dimension 1+3, often appear
in the literature on quantum field theory. They are ingredients of formulas for scattering
amplitudes based on Feynman diagrams and on the Epstein-Glaser approach [6, 7]. The
famous textbooks by Bjorken-Drell [§8] and by Bogoliubov— Shirkov [9] contain appendices
devoted to distinguished Green functions and solutions of the Klein-Gordon equation in
the physical dimension 14-3. They carry various names. For instance, often the term
Green function is replaced by propagator, etc.

Formulas for Bessel potentials in various signatures are known and are available in
collections of integrals [10, 11]. In chapter II1.2 of [12] one can find Fourier transforms
of powers of quadratic forms with any signature, including the formula (4.5) of the
general case studied in this paper. Although there exists a large literature about Bessel
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potentials, our presentation contains several new points, which we have not seen in the
literature and believe are important.

The first new point involves the special functions that we use. Various kinds of the
Bessel equation can be reduced to equation

(20% 4 (a4 1)9, — 1)v(2) = 0, (1.16)

which can be called the oF; hypergeometric equation. Equation (1.16) has two singular
points: 0 and co. The singularity at 0 is regular (Fuchsian), and the solution obtained by
the well-known Frobenius method is the oF) hypergeometric function, which we denote
F,. We usually prefer its Olver normalized version F,, := %, closely related to the
Bessel function, both standard and modified.

Another standard solution of the ¢F} equation, corresponding to the irregular singu-
larity at oo, is the function that we denote U,, This function is perhaps less known. Up
to a coefficient, it coincides with the Meijer G-function Gg:g(—; 0, —a; 2). The function
U, is closely related to the Macdonald and Hankel functions.

In our paper, we treat ¥, and U, functions as basic elements of our description
of Bessel potentials. In our opinion, they are much more convenient for this purpose,
rather than functions from the Bessel family, as it is done in the conventional treatment
of this topic. The corresponding formulas are simpler and more transparent. This is
especially visible when we consider non-Euclidean signatures, where the formulas involve
analytic continuation across two branches and an irregular distribution at the junction of
these branches. The F, and U, functions are also convenient to see the transition from
the Minkowski space to the deSitter and the universal cover of the AntideSitter space, as
discussed in [13]. In fact, on the Minkowski space retarded /advanced and Feynman /anti-
Feynman Bessel potentials are expressed in terms of F, and U, and on the deSitter and
Anti-deSitter space we need closely related Gegenbauer functions instead.

We also believe that there are some important novel features in our presentation of the
Lorentzian case, which is tailored to the needs of quantum field theory. In our opinion, it
is quite remarkable how rich the theory of Bessel potentials is in the Lorentzian signature.
We have four distinct Lorentz invariant Green functions of the Klein-Gordon equation,
with important applications in physics. If we also include a few useful distinguished
solutions to the Klein-Gordon equation (such as the Pauli-Jordan propagator, positive
and negative frequency solution), then we obtain a whole menagerie of functions.

In our discussion, we cover not only the massive and massless case, but also the
tachyonic case. This case is quite curious, even though usually ignored in the physics
literature. We also discuss identity (1.14), true for m? > 0, but wrong in the tachy-
onic case. Remarkably, this identity sometimes, but not always, generalizes to curved
spacetimes, as analyzed recently in [13].

In our treatment, we pay special attention to the distributional character of Bessel
potentials. This is unproblematic in the Euclidean signature, where Bessel potentials are
given by (locally) integrable functions. This is not the case in non-Euclidean signatures.
In particular, it is interesting to look at the functions F,, and U,, as defining distributions
on the real line. With this interpretation in mind, well-known identities have to be
reformulated, see e.g. (2.47).
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Finally, let us mention that there exist a large literature about Green functions of
the Klein-Gordon equation on curved spacetimes. In the generic context their explicit
expression is not possible, and often instead of exact Green functions one restricts oneself
to parametrices, that is inverses modulo smoothing terms. The existence of exactly
four parametrices that generalize GF/F and GV/” is the result of a famous paper by
Duistermaat and Hérmander [14]. It is also remarkable that expansions similar to (5.34)-
(5.37) describe singular parts of these parametrices also in curved spacetimes, where they
can be derived from the Hadamard recursion relations (see Chapter 4 of [15] or Chapter
2 of [16].) The universality of these singular parts is an important idea in quantum field
theory on curved spacetimes [7].

2. Special functions related to the oF; equation
2.1. The oF; equation

Our presentation of Bessel potentials will use extensively ¢F} hypergeometric func-
tions, closely related to functions from the Bessel family. Surprisingly, they are seldom
used and discussed in the literature. Therefore, we devote this section to a concise ex-
position of their properties, mostly following [17] and [18]. In particular, we will treat
these functions as distributions on the real line, as explained in Section 2.5., which leads
to useful distributional identities which we have not seen in the literature.

Let ¢ € C. The oF} equation is

(202 + 0, — 1)v(z) = 0. (2.1)

If ¢ # 0,—1,—2,..., then the only solution of the ¢F} equation equal to 1 at z = 0 is
called the oFy hypergeometric function:

1 2
F(c;z) = jgo @, 3"
where (c); denotes the Pochhammer symbol:
(a)o =1,
(a)p i=ala+1)...(a+n—1), n=12...
1
(a)n::(a—n)...(a—l)’ n=...,—2 —1.
F(c; 2) is defined for ¢ # 0, —1,—2,.... Sometimes it is more convenient to consider the

function

L Flgz) > 1 P2
Fle2) =305 _;F(cﬂ')ﬁ

defined for all ¢. For all parameters, we have an integral representation called the Schldfii
formula:

1 2
— / elett™°dt = F(c,2z), Rez>0,
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where the contour | — 00,07, —oo starts at —oo, goes around 0 counterclockwise and
returns to —oo.
Instead of ¢ it is often more natural to use a := ¢ — 1. Thus, we denote

Fo(z) :=F(a+1;2), Fu(z) =F(a+1;2). (2.2)
The following function is also a solution of the oF} equation (1.16):

a_1 1 1
Us(z) = 672ﬁ27§722F0(§+a,7_

2 T

) 1

) 4\/5)7

where we used the 2 Fy function, see e.g. [17, 18]. U, is a multivalued function. When
talking about multivalued functions, we will usually consider their principal branches on
the domain C\] — o0, 0].

The function U, rarely appears in the literature, except as a special case of Meijer’s
function, see (2.32) below. Typically, it is represented through Macdonald or Hankel
functions, which we describe further in equations (2.35), (2.37), and (2.36). In our
opinion, however, the function U, is often more convenient than Macdonald or Hankel
functions.

U, (z) has a symmetry

Ua(z) = 27 U_q(2). (2.3)

Alternatively, the function U, can be defined by the integral representations valid for
all o

1 /°° —to—2 a1
— e teTtt T dt = Uy(z), Rez>0. 2.4
= =) (2.0

For further reference, it is convenient to rewrite (2.4) as follows: For Re(m) > 0, we have

2.2

o0 12
/ e ﬁmQaUa(mf ) (2.5)

0

For Re(m) > 0 (2.5) is still true in the sense of oscillatory integrals. By substituting
2?2 = et322 m? — eT3m?2, into (2.5) we obtain a pair of identities valid in terms of
oscillatory integrals for m > 0:

o P . 22
/ eTUM* T iz p—a—1qt — % \/rm2°U, (eimT)- (2.6)
0

As |z| — oo and |argz| < 2m — €, € > 0, we have

W=

Ud(2) ~ exp(—223)z~ 574, (2.7)

U, is the unique solution of (1.16) with this property. (Note that the validity of (2.7)
extends beyond |arg z| < m, that is, beyond the principal sheet of the Riemann surface.)
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We can express U, in terms of the solutions of with a simple behavior at zero

Usx) = — VT g )+ YT aF (2. (2.8)

sin(—a) sin rav

Alternatively, we can use the U, function and its analytic continuation around 0 in the
clockwise or anti-clockwise direction as the basis of solutions:

( :FmocU ( ) e:tiwocUa(e:ti%rZ)). (2'9)

F.
()= 57
Here is a version of (2.9) adapted to some applications:
i iTo iT —imTa —im
Fo(—2) = NG (e Uq(e™2) — Ua(e™'72)), (2.10)
—« i im —im
27 F_o(—2) = NG (Ual€'™2) = Uqs(e™'72)) . (2.11)

We have the recurrence relations

0,F,(2) = Foy1(2), (2.12)
(20, + @) Fo(2) = Foa_1(2); (2.13)
0,Uqn(2) = =Uqny1(2), (2.14)

(20, + @) Uy (2) = —Uqn—1(2). (2.15)

a =m € Z is the degenerate case of the oFy equation at 0. We have then

1 n
F..(z) = Z mz .

n=max(0,—m)

This easily implies the identity
Fo(z) = z7"F_n,(2). (2.16)

In the degenerate case U, (2) needs to be reexpressed using the de I'Hospital formula:

Um(Z) _ ( )erl (i ( 1)k71(k _ 1)'2719 (217)
k=1

(m —k)!

NG
+m+1) Y +1)
ZO T )

In the degenerate case, the integral representation simplifies yielding the so-called Bessel
integral representation. Besides, we have a generating function:

1 p
—,/eH?t*m*ldt = F,(2) =2""F_,(2),

27
Z t"F,,(2)

ete

B
I

[0+]
meZ
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Above, [07] denotes the contour encircling 0 in the counterclockwise direction.
In the half-integer case, we can express the gF; function in terms of elementary
functions. Indeed,

F_i(z)=cosh2y/z, U_

(2) = sthﬁ’ U,
2\/z 2
and by the recurrence relations, we have for k € N
1 cosh(2y/z
Foi () _zk+23§<\/g)), (2.20)

Fip(2) a’f(smg(\z[f)), (2.21)

U_%_k(z) :( l)k k+3 61@(6)(p(\[2\/>)>7 (222)

Uy (z) =(-1ok (SRE2V)), (2.23)

(2) = exp(—2Vz), (2.18)

eXp(\/gf) (2.19)

1
2

(2) =

1
2

F

[N

2.2. Relationship to confluent functions

Recall that the confluent equation is

(w02 + (¢ — w)Dy — ¢) f(w) = 0. (2.24)
Its standard solutions are
o
Kummer’s confluent function 1Fj(a;c;w) Z ,
n:O nn'
and Tricomi’s confluent function Ul(a;c;w) := 2" % Fy(a,1+a —c;—; —w™t).

The o F} equation can be reduced to a special class of the confluent equation by the
so-called Kummer’s 2nd transformation:

202 + (a+1)9, — 1 (2.25)
4 1

— —w/2 2 _ o 2 )aw/2
e (w@w +2a4+1—-w)dy —« 2)e ) (2.26)

where w = +44/z, z = TlﬁwZ. F, and U, can be expressed in terms of Kummer’s and
Tricomi’s confluent function as follows:

1
Fo(z) = 72V 1y (a +5:20+ 1, i4ﬁ), (2.27)

e 2v7

1
5o+ 1,4\/2). (2:28)
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2.3. Relationship to Meijer G-functions

Solutions of hypergeometric equations ,F, can be expressed in terms of Meijer G-
functions [19]. In particular, the oF; equation can be solved by two distinguished
functions

1 [(—s)el™ |
Gl’o( ‘ — = — ———2°d 2.29
0200, —« Z) 2mi J, D(a+1+s) = (2.29)
2,0 1 s
! = — | D(=s)T(—a— s)2*ds. 2.
Goa (07 _a‘z> 2 /), (=s)T'(—a — 8)z%ds (2.30)

Here, the contour L; goes from 400 to 400 and encircles Ny, and the contour Ly also
goes from +o00 to +oo and encircles Ng U (Ng — ), both counterclockwise. Computing
the residues and using the connection formula (2.8) we obtain

Fo(z) = GbY (0, _a\ - z) (2.31)
Ua(z) = %ag;g (o, _a‘z) (2.32)

2.4. Relationship to Bessel functions

In the literature, the o F; equation is seldom used. Much more frequent is the modified
Bessel equation, which is equivalent to the F} equation. It is given by the operator

a a 1 a?
2 (202 DO, —1)27% = 02+ —0p—1— —,

z (zz—i—(a—&— ) )z w—i-w 7

where z = %2, w = +2/z.
Even more frequent is the (standard) Bessel equation given by:

o 2 _a 2 1 O[2
—22 (200 + (a+1)0. —1)2z72 = &+ -0, +1—-—,

u u

where z = —“Tz, u = +2iy/z. Clearly, we can pass from the modified Bessel to the Bessel
equation by w = +iu.

The function F,, is also seldom used. Instead, one uses the modified Bessel function
and, even more frequently, the Bessel function:

2

In(w) = (%)QFQ (%) (2.33)

Jatw) = (9)'R(-2). 2.31)

They solve the modified Bessel, resp. the Bessel equation.



Jan Derezinski and Barttomiej Sikorski 11

Instead of the U, function one uses the Macdonald function, solving the modified
Bessel equation:

K = ()05 a3

and the Hankel functions of the 1st and 2nd kind, solving the Bessel equation:

1) = 1) = () (), (230
i selmw\ @ o
H®(w) = HD (w) = \%(T) Ua(emz). (2.37)

Here are the relations between various functions from the Bessel family:

2

HY(z2) = ;ejFi%(a“)Ka(ﬂz), (2.38)
HZE,(2) = e ™ HE(2), (2.39)
Tal2) = 3 (HH(2) + Hy (2), (2.40)
I (2) = %(:FiKa(ejFi”z) i K, (2)). (2.41)

2.5. F, and U, functions as distributions

The function U,(z) (and many others that we consider in this paper) are multivalued
analytic functions defined on the Riemann surface of the logarithm. It has its principal
branch on C\] — 00,0]. For its analytic continuation around 0 we will often use the
self-explanatory notation U, (e'?z), where z € C\] — 00,0] and ¢ € R.

We will often consider U, (w) on the real line. For w > 0 this is unambiguous. For
w < 0 one needs to add +i0 indicating whether we are infinitesimally above or below
the real line. At w = 0 this function has a singularity, which may require a more careful
treatment in terms of distributions (see Appendix A2. for notation about some common
distributions).

Thus we introduce the distribution on the real line

Ua(w 10) = lim U (w & e), (2.42)

where the right-hand side should be understood as the limit in the distributional sense.
Note that for w # 0 these distributions are regular (in the sense of Appendix A2.) and
given by analytic functions:
Us(w £10) = Uy (w), w > 0; (2.43)
Uy (w £10) = Uy (e57 (—w)), w < 0. (2.44)
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At w = 0 these distributions are irregular if Reaw > 1. We can then write U, (w =+ i0) as
the sum of an irregular and regular part as follows:

Un(w +10) = US™E(w +10) + U8 (w), (2.45)
|Rea]—1 BREY, o .
Usme(w £i0) = — Y e =) F-(a j)(w +10)777. (2.46)

|
i = 4!

This easily follows from (2.8) and (2.17).
Recall that for v ¢ N the symbol w”* defined in (A9) denotes the standard regular-
ization of |w|~*@(—w). The identity (2.11) for w € R\{0} can be rewritten as

w_F_qo(w) := (Un(w +10) — Uy (w — i0)) . (2.47)

2f
(Note that both sides of (2.47) are zero for w > 0). It is easy to see that for « ¢ N
(2.47) is a correct distributional identity, where the lhs is the product of the distribution
w_% and of the smooth function F_,(w), whereas the rhs is a linear combination of
distributions defined in (2.42). (2.47) can be decomposed into a singular and regular

part as follows:

[Rea]—-1 w:a+j(_1)j w—oz-‘r]( l)j

—(xF_a — - + T(—c &+ 7+ 1)4!
w_ (w) JZ::O F(—Oé+]+1)]' _%{: JF( OZ"‘]"‘]-)J'

(2.48)

The rhs of (2.47) is well-defined also for a € N. We will define for such « the symbol on
the lhs of (2.47) by the rhs. Using (A14) for @ € N we can thus write

Wy () = “*12 DO | R i) (24)

(Compare with (2.16), where you do not see the distributions supported at zero).

Of course, in the context described in this subsection, the distribution U, (w = i0)
defined as in (2.42) can be also expressed in terms of K, and HZ, where we would have
to treat v/w, resp. v/—w with w € R as their arguments. It is then important to indicate
precisely how the analytic continuation of the square root is performed—whether we

bypass the branch point at zero from above or from below, adding +i0 to the variable:

Ko (Vo F10) = {Ka((f\)’ﬁ) N ’ i 8; (2.50a)

— . JHI(+iVw) = FiZeT™ K, (Vw), w>0,
Ha (V=w£10) '_{Hg(\/%), w <0,

We believe, however, that it is more convenient in such situations to use the function Ul,.
Indeed, we have

(2.50D)
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Ua(w:FiO) _ {ng(wqﬁiO)gKa(\/M) (2.51)

4 +i2%/7(w F10)~ 2 HE (v—w £10).

3. Euclidean and anti-Euclidean signature

This section is devoted to Bessel potentials on the Euclidean space R?. |z| := Va2
will denote the Euclidean norm of = € R%.

In this section, we will provide various expressions both in terms of the Bessel family
functions I, Jo, Ko, HE, as well as in terms of the hypergeometric functions F,, U,.

3.1. General exponents—Euclidean case

1

Consider first the Euclidean signature. For m > 0 and Rey > 0 the function Y
p*4m?)2

defines a tempered distribution, hence one can compute its Fourier transform.

Theorem 1 Let m > 0.

ipx d
Gll,m(w) = / (p2 j_m2)% (275)(1 (31)

2 (BN kL ke 3.2
F(,21)(4#)3( ) 7 Kz (mial) (3.2)

B Jrmd—# N m2z2
=tV ) (33

Proof. By (Al),

1 ePdp
Iy »
@m)e ) (m? +p?)3
1 > L1 —(m?4p?)s ipx
_WA dS/’dpS,2 16 ( +07) ep (35)
1 o L_d_4q ,mQS,ﬁ
= dss2727 e s (3.6)
(a0 3T() Jo

Then we use (2.5). O

Note that the integrand of (3.1) is integrable for Rep > d. Therefore, G, 1, is bounded
for such p. For instance,

Gron(0) = — / : dp m ()

L r= . Rep > d. (3.7)
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3.2. General exponents—massless case

For 0 < Reu < d the following function is in L (R?) and is bounded at infinity,
hence it defines a regular distribution in &’(R%):

Gpo(z) == TPT“ (2C7lgd (3.8)
(e x|\ r—d
_ r(g()(zw))% (B, (3.9)
It is called the Riesz potential, and it is the massless limit of Bessel potentials.
Theorem 2 Let 0 < Rep < d. Then
Gpo(a) = lim Gyuon(a) (3.10)

in the sense of S'(R?).

Proof. One can prove this fact in the position space, see Subsection 4.2., where we give
a proof in the case of a general signature. Instead, in this section we describe a proof
based on the momentum space.
For 0 < o < d, |p|™* is a regular distribution. By using the Dominated Convergence
Theorem we see that the pointwise limit
—_ K

lim (p? +m?)™2 = |p| ™ (3.11)

m—0

is a limit in the sense of &’(R?). The Fourier transformation is a continuous operator on
S’(R%). Therefore, for considered s, (3.10) is true. O

3.3. General exponent—antiEuclidean case

Suppose now the scalar product is negative definite. ~ For m? > 0, the function

ﬁ does not define uniquely a distribution, therefore one cannot compute its
—p m 2

Fourier transform. However, if m? € C\[0, o[, then ( 2: oF is a tempered distribu-
—p m 2

tion, and one can take its limit from above or below in the distributional sense:

1 1

- = lim .
(=p2+m2+i0)z &0 (—p2 +m? Lie)2

(3.12)

Thus we obtain two kinds of Bessel potentials in the antiEuclidean case.
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Theorem 3

R e dp
Gum () /(p2+m2¢10)‘5 @n)d (3.13)
. nd u—d
= VT D g ) (314)
I‘(%)(47r)§ 2m =
TieF T 1 /|2 2
— e (N . 3.15
e E (am) | el (&.15)

+ 2,2

. i _ .
e:|:17'r 3 ﬁmd i Tm
= I

SOITE Ud%(e . v ) (3.16)

Proof. Using (A2) and then (2.5) we obtain (3.16). O

Note that the Euclidean Bessel potential G, ,,, is well defined not only for m > 0, but
also for Re(m) > 0, which guarantees m? € C\]—o0, 0]. Taking the limit at the imaginary
line we can express the antiEuclidean Bessel potential in terms of the Euclidean one:

GE/E(2) = eF"5 Gy i (). (3.17)

3.4. Green functions of the Helmholtz equation

Bessel potentials with p = 2 are Green functions of the Helmholtz equation

(—E - A)f(x) =g(z). (3.18)
More precisely, the Green function for —E = m? is
ipx
G () = /(67 dp (3.19)

p? +m?2) (2m)?
d
2

1 rlzl\t=
- ot (E) K (mlz)) (3.20)
Jrmd—2 m2a2
- WU;H( - ) (3.21)
and for —F = —m? we have two distinguished Green functions:
elep dp
G = 3.22
o) = | G 522
i m \5-1
= i1<2ﬂ|x|) HY_ (mla]) (3.23)
d—2 20,2 4
B g V™M m*(z* £10)
= (i) WUQA ( - f)' (3.24)

Gim(x) coincide with the case p = 2 of the anti-Euclidean Bessel potential (3.13)
multiplied by —1.
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3.5. Averages of plane waves on sphere

Consider the sphere in R? of radius m, denoted S‘fn_l =S,,. Let d©2,,, be the natural
measure on S,,. As an application of Bessel potentials, we will compute the Fourier
transform of the measure on S,,.

Theorem 4

2,.2

/ a0 (p) =2m? iRy (- 1) (3.25)
Sm 2 4
=m?=1(2m)% (mlz])' =5 T, (mla]). (3.26)
Proof. By the Sochocki-Plemejl formula, we have
2m 1 1
5(|p| —m) = 2mé(p* — m?) = =— — : 3.27
(Ipl = m) = 2m3(p” —m") 27ri(p27m27i0 p27m2+10) (3.27)

Therefore,

/S 770, (p) = / 76 |p| — m)dp (3.28)

h _2m [ e ( 1 ! )dp (3.29)

T omi p2—m2—i0 p2—m2+i0
2 d

=T (G (a) — Giunla) (3.30)
Tl

4 d=1 e e imm2y2 e e m?2 2
ot (g (ST g (ST
2.2
:de’lng%_l(— mf ) (3.32)

where at the end we used (2.10). O

Consider a radial function R > p — f(|p|). Its Fourier transform is also radial.
(3.25) yields the identity

[ s ap=2xt [~ somy (-5

|07 e ga) 0 (33)
0

)kd—ldk (3.33)

vl

—(2r)

where k = |p| has the meaning of the length of p.

Using F_1(-2) = % and F1(-z) = Si%‘f we obtain the low dimensional cases
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of (3.33):
/ F(lple e dp = 2 / f(k)cos(klal)dk,  d=1; (3.35)
o0 k2x2 o0
= EYFol — dk‘: k)kJo(k dk d=2; .
2n [ fmo( 27r/ (R Jo(kla )k, % (330)
sin(k|x|) B
—471'/ F(k)K? ROk d=3 (3.37)

3.6. Integral representations of the U, function

As an illustration of the usefulness of (3.33), we will derive a certain integral repre-
sention of U,,.
Applying (3.33) to (3.3) we obtain

() e () e

Specifying d = 1 and d = 3 we obtain

° cos(kr) B
2/0 W+ DE T

4/ ksm(kr“) dk —
o (K2+1)=zr I'(

D
S

- (%) (3.39)
o (%) (3.40)

2

NS
~—
©

N
<

(NIIS
—

(3.40) could be also deduced from (3.39) by differentiating wrt r and using the recurrence
relation (2.14). Setting a = ”— in (3.39), we obtain the Poisson representation of the
U, function:

72 F(%—@) > —ikr 1.2 a—1
UQ(Z) _T/_ooe (k> +1)*"2dk, a<0. (3.41)

4. General signature

4.1. Positive mass

1
w2 rmn8 "
longer defines a tempered distribution in the general signature. Just as in the antiFEu-
clidean case, there are two natural regularizations of this function:

Consider now a pseudo-Euclidean space of general signature R%4—9,

1 1
(P2 +m?2+i0)z N0 (p2+m? tie)?

They lead to two kinds of the Bessel potential.
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Theorem 5 Let m > 0 (or more generally Re(m) > 0). Then

— ipx dp
GE/F(z) = / ° 4.2
pw,m (I) 9 + p2 T 10)% (27T)d ( )

(m
o 2(D) (m) bzt

q Ka_u (v/m?(2? £i0 4.3
r(4)@dm)s\ 2m o (Vm?( )) (4.3)
o mi(H)T vV £10y 43 —

IOIE ( 2m ) HE 4 (Vm?(=2* F10)) (4.4)

(£i)2/Tmd—H m?(x? £1i0)
rpunt 1)

Remark 1 In (4.3) and (4.4) we use the notation explained in (2.50a) and (2.50b).
Note that (4.3) works best for x® > 0, because then we can ignore +i0. Likewise, (4.4)
is best suited for % < 0, because then we can ignore Fi0.

Anyway, in our opinion the expression in terms of Uy, (4.5), is preferable.

Proof of Thm 5. Using (A2) and (A4) we obtain

1 / e'Prdp
(2m)4 ) (m2 +p2 Fi0)%

+iZe 00
(§] 4 . 2,2\ p .
- - dt dpeIlt(m +p )ti—lelp:v
(2m)T(5) /0 /
: +iz(Lsdy 4 oo
:(il): );F(Z) i / dteFiltm® = %) izt -1, (4.6)
m)2L(5 0

Then we apply (2.6). O

4.2. Zero mass
For 0 < Rep < d let us introduce two distributions in &’
— ipx dp
GFIF () = / € _ 4.7
,0 ( ) (p2 :Flo)i (27T)d ( )
()90 (%54) <x2 + iO) b5

L(45)@dms V4

(4.8)

They will be called Feynman/antiFeynman Riesz potentials. They are massless limits of
the corresponding Bessel potentials.
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Theorem 6 For 0 < Reu < d we have

Gylo (@) = T Gii7 () (4.9)

in the sense of S'.

Proof. Surprisingly, a momentum space proof, from the Euclidean case, seems to be
difficult to generalize to the non-Euclidean case. Instead, we will present a proof in the
position space.

Using the decomposition (2.45) of the function U,, we can write

. |Red52 | —1 e ) ) .

_ &) (—1)ImIT (452 — ) (a2 £ 10)\ i~ 5"
Gum(z) = TSTEE < ; T ( 1 ) (4.10)
FmTUG (W)) (4.11)

The line (4.10) obviously converges to (4.8). By (2.7), U, is a continuous function of
=

a polynomial growth at infinity. Therefore, the second line (4.11) converges to zero in

S0

Note that as a consequence of the above theorem and of the continuity of the Fourier
transformation on S’'(R?) we can infer that
1 1

lim — = — (4.12)
mN\O (p? + m? Fi0)2 (p?> Fi0)z

in the sense of S'.

4.3. Scaling degree of distributions

Let us start by defining the action of a dilation by A on a distribution T'(x) as
T (z) = T(Ax), by which we mean the dual action to the dilation on test functions

(Th\|f) = /T(Ax)f(x)dx = A‘d/T(x)f()\_lx)dx. (4.13)
Given a distribution 7" € D'(R?), we define its scaling degree sd(7T') as
sd(T) = inf {w : lim A“Ty = 0 in D’(Rd)}. (4.14)
ANO
The scaling degree of a distribution is often used in mathematical analysis of quantum

field theory [6, 7).
Let us compute the scaling degree of Bessel potentials.
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Theorem 7

= [d—p 0<p<d
sde;/j:{O o d<“— ' (4.15)
: < .

Proof. For 0 < p < d, the Riesz potentials GE/OF defined in (4.8) are homogeneous:

GEY () = NIGET (), (4.16)

So Sdsz =d— pu.
By the definition of the Bessel potential, the mass dependence is (1.2)

Gum(Az) = NG, (), (4.17)
so, according to Theorem 6,
i A4 Gy (A) =l Gl (@) = G (), (4.18)

which shows that sdGE(E =d — p for any mass m and 0 < p < d.

For d < p, Gﬂ/ ¥ is a continuous bounded function, so its scaling degree is 0.
For d = p, we have

(£i)4y/Tmd—H m?(x? £1i0)
Gam(x) = U . 4.19
am®) = 0 ) o( ) (4.19)
Now, we can use the bound (2.7) and the expansion (2.17)
Uo(z £i0)| < Cl2|73, z€R, |2|>1; (4.20)
Uo(z £ i0) = In(z £ i0)Fo(2) + H(2), (4.21)

where H is an entire function, just as Fy. Using this we easily show that for w > 0
AGgm(Ax) =0 (4.22)

in the sense of §’. O

5. The Minkowski signature

The Lorentzian signature is especially important, both because of its physical rele-
vance and rich mathematical properties. The spaces RV4~1 and R~ 1! are two kinds of
a Minkowski space, that is, a pseudo-Euclidean space with a Lorentzian signature. We
will treat R14~! as the standard form of a Minkowski space. z° will denote the first
coordinate of R14~1 which we assume to be timelike (having a negative coefficient in
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the scalar product). The remaining, spacelike coordinates will be denoted Z, so that
x = (2°, 7). In other words,

3?2 _ —(.1‘0)2 _"_3—7»2 _ —(.%‘0)2 + (.’L‘l>2 L (wd—l)zl (51)
The future and the past light cone will be denoted

JV i={zeRM 1 . z2<o0, 2°>0},
JVi={zxeRM . g2<0, 2 <0}

In this section, we will only use the hypergeometric functions F, U,.

5.1. General exponent

Let m > 0. The set m? + p? consists of two connected components: the future and

the past mass hyperboloid. Therefore, the following four regularizations of ﬁ are
m2+4p2)2
tempered distributions invariant wrt the orthochronous Lorentz group:
1 1
21 2 13058’ 2 2 4 0)&" (5.2)
(m? +p? +i0)2 (m? + p? £ i0sgnp?) 2
Their inverse Fourier transforms define four kinds of Bessel potentials:
— ipx dp
GE/F(z) = / ¢ 5.3
uim (@) (m2 + p2 Fi0)5 (2m)9 (5:3)
ipx dp
GYINz) = / ¢ . 5.4
i () (m? + p? Fi0sgnp®) = (27)? (5:4)

By the following well-known argument, found e.g. in various standard textbooks on
quantum field theory, we can show that GX/,Q have causal supports.

Theorem 8 suppGZ,/yﬁ c JV/IN.

Proof. For definiteness, consider (5.4) with the minus sign. In order to prove that its
support is contained in .JV, by the Lorentz invariance it suffices to prove that it is zero
for 2° < 0. We write

/ eipa;dp B / e—ip0w0+iﬁi’dp0dﬁ
(p* +m? — i0sgnp®) & (72 +m? — (0 +i0)2) 2

Next, we continuously deform the contour of integration, replacing p° + i0 by p° + iR,
where R € [0,00[. We do not cross any singularities of the integrand and note that
e~i2"(0°+iR) goes to zero (remember that 2° < 0). O
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Theorem 9 We have the identity

Ghrm(2) + G (2) = Gy (2) + Gy (2) (5.5)
Here are the expressions for the Bessel potentials in the position space:
— +i d—p 2(.2 +i0
GE/E () _dvmmT, (M) (5.6)
’ I(5)dm)= 2 4
2T p—d 252

Gl\:/,,/z (x) :9(ixo)

where in (5.7) we used the notation introduced in (2.47).

Formula (5.7) involves the multiplication of a distribution by a discontinuous function,
which in general is not well defined. At the end of this subsection we provide explain how
this formula can be correctly interpreted.

Proof. The identity (5.5) follows immediately from the defining formulas, that is from
(5.3) and (5.4).

(5.6) is a special case of (4.5). Using (5.6) and (5.7) we obtain a simple expression
for the sum of two Bessel potentials:

y A _ —iy/mmde m’z? —i0y m?z? + 10
G (@) + G () Tt <U() Vs ()| 59)
2$2

4
T
“TE - Fug (7). (59)

m

where again we used the notation introduced in (2.47). (5.9) is clearly supported in
JANUJY. By Thm 8, we know that Gx/ng are supported in JY/”. Thus to find expressions
for Gx/n/@\ we need to “split the distribution” (5.9) into two terms, one supported in JV
and the other in J”.

Using Proposition 1 to justify the multiplication of a distribution (5.9) by the (dis-
continuous) function 6(+x°), we can define

~ 2w 2| b=d m2a?
V/A _ 0 x© 2 _
Gla(@) = 0G) s (5) 7 Fua(F5). (5.10)
Clearly, é;\f% are supported in JY/”. Besides,
Gypn(@) + G (@) = Gy (@) + G (). (5.11)

But JY N J" ={0}. Therefore, G,\:/,Q - é’,\:/,ﬁ is a distribution supported in {0}, that is,
a linear combination of §(® (x)

By = Gylh — Gy = > elihe ) (). (5.12)

|aj<n
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(5.11) implies B); ,,,(¥) = =B} ,,,(x). The symmetry in z — —z, V/A = AV of (5.4)
and (5.7) allows us to write G/ () = G}, (=), G}/, (x) = G, . (—x), and therefore

B,Y/n{b\(x) = B,Q/n\{(fx) = fB,\f’/n/L\(fx). Its action on a test function ¢ € S(RV471) is

(Bilm:d) = D> (=1)"ell2(026)(0) = > elln(92,0)(0), (5.13)
la]<n o] <n
S0 CX/;Z\ = 0 for even |a|. G,\f/,,AZ and éx%\ are invariant with respect to the action of

the proper Lorentz group. The same must apply to their difference B,\f%\ . Derivatives
evaluated at 0 transform as vectors under the action of the Lorentz group. However,
(Bﬂﬁ , @) is a sum of terms with only odd number of indices so it cannot be invariant
under the action of the Lorentz group unless B;\L//n/z\ = 0. We conclude that Gx/n/@\ = @Z/rﬁ .
O

GE’m will be called the Feynman Bessel potential and GE’m the anti-Feynman Bessel
potential. These names are somewhat artificial in the context of a general u. Their
justification comes from the case p = 2, where these Bessel potentials coincide with the
Feynman and anti-Feynman propagator known from quantum field theory.

The distribution Gl\f’m will be called the forward or retarded Bessel potential, and

Gﬁym the backward or advanced Bessel potential.
For 0 < Repr < d we also have the massless Riesz potentials:

F/F () HID(55E) f22 +i0y “5°
Gl ( )_r(g)(zm)% ( 1 ) 7 (5.14)
G () =0(+2°) o ()" (5.15)

L(§)T(4=52)(4m)*

As we mentioned above, the formula (5.7) for the advanced and retarded Bessel
potential involves a product of two distributions, and therefore it needs a justfication.
We will explain two approaches how to interpret this formula.

The first approach is quite elementary. It uses the identification RM¥~1 ~ R x R¢~1,
with the first variable denoted x° or ¢. For the remaining variables Z we will later use
spherical coordinates (r,€) with r = |#|. For n,m € Ny and y € S(RY1) let us
introduce the semi-norms, which involve only the variables € R4~ 1:

(s llmm = sup = |7 (95x) (¢, 7).

FERI1,[a|=n,|B|=m

Proposition 1 Let Rev < d. Then there exist ¢y, k =0, ..., LRSVJ, such that for any
¢ € S(RMI-1)

R
55

]
[ @) Fotman] < S [ et ot o, (5.16)
k

=0
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where the coefficients [t|2~Rv+E=1 qre locally integrable and polynomially bounded at
infinity. Therefore, if f € L*=(R), then f(a:o)(zQ):E defines a tempered distribution on
R%.

v

Proof. Action of (z%)_7 on test a function ¢ € S(R?) is

/(a:2 dx—/ dt/tldr/8d2 (r? — %) qS(trQ)

For simplicity let us consider only ¢t > 0. We can expand ¢ around r =t

- (r=t* & m+1
¢(t,T, Q) = ZT(b( )(t7taQ) + (T 7t) + ’l/}(t,’l’, Q)

k=0

with m = B | — 1, where ¢(*) denote derivatives with respect to the r variable. Note

that |1(t,7, Q)| < (m + 1)!| (¢, )

00 t
At 1 ::/ dt/ dr/ dQ(t —r)P(r+ )" 29(t,r, Q)rd 2
0 0 g2

with 8 = LRe”J — 4%, —1<Ref <0, is the integral of the locally integrable function.

We see that it is well defined and

a1l </ dt/ dr/d ) r)RP (4 r) RO [yt r, Q) rd 2
S

1
(m + 1)! / QL[ (2, o 1 51 FRor =1 / dr’(l—r'>ﬁ<1+r’>*%’d*2/ aQ
0 0 Sd—2

IN

= Cldym 1) [ R g o
0
Next, we look at each term of the expansion of ¢(t,7,Q) in k

> ! 2 42 *%(T—t)k (k) d—2
ak:/ dt/ dr/Sd 2dQ(T —t9)_ be (t,t, Q)r

T drr—t e+ )*%T‘H/ dQe™(t,t,Q).
§d—2

Here, (t —r)_ 27 s the (irregular) distribution, defined by (A12). It yields a finite
expression:



Jan Derezinski and Barttomiej Sikorski 25

Because d — Rev +k —1 > d— Rev — 2 > —1, dependence on ¢ is locally integrable
and bounded by a polynomial. For £ =0,1,...,m 4+ 1 we can write

lax] < C(d, v, k) / At R () o

For fixed d, v, we have the inequality (5.16) showing that homogeneous distributions are
tempered distribution. O

Now we have d — pu < d, and therefore Proposition 1 shows that we can multiply the
p—d

distribution (%)iz by the discontinuous but bounded function §(£z"). The resulting

distribution is then multiplied by the smooth function F .—a (mg”2 ), obtaining the right
2

i
hand side of (5.7).

An alternative way to define the product in (5.7) is based on the concept of the wave
front set [20]. Here are the wave front sets of the distributions contained in (5.7):

WF (6(t)) :{ ((0,2),(r,0)) : TeR& 7 £ o},
WF ((12):%) :{ (1, @), (A AT)) = 12— 32 =0, (1, 7) # 0, \ £ o}
U{((0,0), (7 R) + 72— B2 = 0,(r.F) # 0},
where (7,k) denotes the dual variable to (¢,Z). The fiberwise sum of wavefront sets

WF (6(t)) + WF ((a:Q):E) does not contain an element of the form ((t, Z), (0,0)). There-

fore, by Hérmander’s criterion [20, p. 267], the product of these two distributions is well
defined.

5.2. Green functions of the Klein Gordon equation

Consider the Klein-Gordon equation

(—E—=0)f(x) = g(x), (5.17)

where F is a parameter, usually real. We will consider 3 cases:

massive case: — F = m?, (5.18)
massless case: — E =0, (5.19)
tachyonic case: — E = —m?. (5.20)

The massive and massless cases are quite similar and they often appear in physical
applications. They are often discussed in detail in the literature. The tachyonic case is
more exotic and less known, but also interesting.

The Klein-Gordon equation possesses several useful Green functions, that is, distri-
butions satisfying

(—E — 0)G*(z) = §(x). (5.21)
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One can try to define Green functions of the Klein-Gordon equation the Fourier trans-
formation. Unfortunately, for F € R, ﬁ is not a well-defined distribution because
of zeros of its denominator. One way to regularize it is to add +i0, which leads to the

so-called Feynman and anti-Feynman Green function:

_ eipac d
GH/F () = / CET 750 (2756" (5.22)

As follows from a general theory of hyperbolic equations, the Klein-Gordon equation
(5.17) possesses also another important pair of Green functions: the retarded (or forward)
Green function GV and the advanced (backward) Green function G*. They are uniquely
defined by the conditions

suppGY/" C JE (5.23)

Note that the above definition provides GY/” for all E € R. In the case —E >
0, with —E = m? they coincide with GXA/ " defined already with the help of Fourier
transformation. In the tachyonic case they will be denoted G%A = G\i{:,\l and they need
a separate discussion, see Subsection 5.5.

We will also consider certain distinguished solutions of the (homogeneous) Klein-

Gordon equation, that is functions G° satisfying
(-FE—-0)G°(z) =0. (5.24)

One can look for them with the ansatz

Go(0) = [ g @-E+ 1) (5.25)

where ¢° is a distribution on p?> — E = 0. Above, for E € R, we use the notation

5(p0— ﬁ2—E) 6(p0+\/]32—E)
dp+
0 /i2—E /2 —E

5y — E)dp = dp, (5.26)

where for p? < E (5.26)=0.
Below we consider separately the massive, massless and tachyonic cases of the Klein-
Gordon equation. In all three cases, we will be able to define GF/F and GV/".

5.3. Massive Klein-Gordon equation

Let us consider —F = m?2, that is the massive Klein-Gordon equation. The corre-
sponding Green functions satisfy

(m? —O)G?,(z) = 6(x). (5.27)

Specifying Theorem 9 to p = 2, we obtain the following expressions for the Feynman and
anti-Feynman Green functions.
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Theorem 10

— eipm d

G = | Gt oy e (5:28)
=V m?(x? +i0)
—= g Vs (74 ) (5.29)

The retarded and advanced Green functions of the Klein-Gordon equation are ob-
tained by specifying Theorem 9 to u = 2. In the following theorem, we also identify their
regular and singular part.

Theorem 11
ipx dp
GV/N _ / e
' (2) m? + p? F i0sgnp? (2m)

_ d—2 2,2 _ 2 9 .
gty VA (Ugl (T 0y Ly, (W)) (531)

(5.30)

(4m)?
2rmd—2 22 1-2 m2z?
= (%a”) e (5) 75 Ry (F5)- (5.32)

We can decompose GV/" into a singular and reqular part:

GY/MNzx) =GV () + G (3). (5.33)

m,sing m,reg
For d odd this decomposition can be chosen as

d—-=

o

Crlsine() = 92(;;01) jz_:o j!r(Q(_—l)ng) (%) et (5:34)
)= 57 ]_i s () e G
For d even:
i) = e<ix0>27r;1 _: (3(:12)Jj Tj)! (nf> 0, (5.36)
p
Gl g() = B(20) 2?5; Py (P ) o). (5.37)

Proof. The formula for the Green function of the Klein-Gordon equationis given by
equation (5.32), which was computed earlier for a general p (5.7). The decomposition
into (5.34) and (5.35) is due to (2.48). For even d, the decomposition can be rewritten
using (2.49). O
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Introduce the following distinguished solutions of the Klein—Gordon equation —O +
2,

m=:
GRw) = gz [ e Psen(s)30° + mdp (538)
! W gy (mo 7+ m2) (5.39)
(2m)d-1 P2 +m?
1 .
GH) () = @ / e PY(+p®)5(p? + m?)dp (5.40)
ldil / dp e$imos/ﬁ2+m2+ii’ﬁ. (541)
(2m) P2 + m?

Following [13], we will call distinguished Green functions and solutions jointly propaga-
tors. GFJ is supported in JY U J". Here are the expressions for these solutions in terms
of positions:

2 2:-4d 2.2

GPI(x) =sgn(2?) (zj:;;l (%)_TF¥ (m4x ), (5.42)
VTmdH m2x? + isgnz®0
G (x) :W %(+> (5.43)

Note the identities satisfied by the propagators:

GY —Gh =GP (5.44a)
=iGH —ig), (5.44b)
GF —GF =iGWH +iG), (5.44c)
Gy, + G, = Gy + G, (5.44d)
Gt =iath) + 6N =G + Gy, (5.44¢)
GE = -G\ + @Y, = -GS + G, (5.44f)
To prove these identities we use repeatedly
1 1
0(£p°)2mis (p 2 = 9(xp° — 5.45
(" )2mio (4 m%) = 0) (g~ ) 649)

5.4. Massless Klein-Gordon equation

The massless case is quite similar to the massive one: we need only to set m = 0
in the previous subsection. In particular, all identities (5.44) are satisfied. There are a
few simplifications. Only the most singular part of the massive propagator remains in
the massless case. This is the special case of Riesz potentials, massless limit of Bessel
potentials, that we studied in the Section 3.2..
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Theorem 12
T ir(d—1 _d
Gy )—i#(afim)l z (5.46)
42
1 1—¢
Gy (@) =0(=a” 2?7 5.47
o' (@) =0( )2W§_1F(2_%)( ) (5.47)
1 1—4d
GPJ(x) =sgn(z )2, 5.48
5 0) =w0(e") g () (5.49)
INCE! _d
G5 (z) = (z . )(:E2:i:i()sgn(x0))1 z (5.49)
T2
For d odd (5.47) and (5.48) can be rewritten as

_1)5-2

YN w) = (a®) T 5 02), (5.50)
2721

_1)5-2

Gy (z) = sgn(xo)%é%*?) (z°) (5.51)
T2
Note that using (A12) we can write identity (5.44d) as
= 1 d_
GE(z) + GE () = GY + G = it Y(a), (5.52)
T2

which agrees with the fact that massless retarded/advanced Green functions, also known

as Riesz distributions (see [16]), are expressed by homogeneous distributions supported
on JY/N,

5.5. Tachyonic Klein-Gordon equation

Let us now consider the tachyonic Klein-Gordon equation, which means, with E = m?2.

Its Green functions satisfy
(—m? — O)G*(x) = §(x). (5.53)

Usually, tachyonic quantum fields are considered to be unphysical [21]. Nevertheless,
every now and then there are attempts to analyze them in the physics literature, see [22],
and more recently [23].

We have a minor notational problem how to indicate that we replaced m? with —m?2.
Naively, one would think it should be indicated by both +im and —im instead of m.
However, this would suggest the analytic continuation e®, +¢ € [0, 7], which is not
always appropriate. This problem appears in the case of the Feynman propagator: we
will write GE | but not G¥ Similarly, for the anti-Feynman propagator we will write

im» —im*

F
G—im’

but not ng. In the case of retarded/advanced propagators, this problem will be

absent, since the analytic continuation can be performed in m?: thus G%v = G/:{;/@
We define the Feynman and anti-Feynman Green functions by adding Fi0 to the
denominator —m? + p? in the momentum representation. In the following theorem, we

compute their form in position variables.
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Theorem 13
. Foo dp
Gonl)/ (@) = | ot (5.5)
Tmd—2 ()4 m2(—z2 Fi
:m(]gl(W)_ (5.55)

In particular, for x> > 0 we have

B +iy/mmi—2eFim (51 U (mQ(—a:2 F iO))
(4r)®

GE(2)/GY,, ()

—im

and for x% < 0

B iiﬁmdﬁe;iw(gq)U (m2|x2|)

d_1 4

GY (x GF, (x <
()/GT 0 (2) = ;

—im

Proof. Let us start from the usual (positive mass) Feynman propagator, defined in

(5.28) and (5.29). Then we continue analytically G¥ (z) and GE,, replacing m with
me'?, where ¢ € [0, 5] in the former and ¢ € [—7,0] in the latter case. (Note that during
the analytic continuation the denominator has to have a constant sign of its imaginary

part, that is, £Im(m2e*¢ +i0) > 0.) The analytic continuation yields

7 +iy/mmd—2etin(g 1) eT™m?2(22 £10)
Gh.(2)/GE, (2) = 5 g_l( ) (5.56)
(4m)8 : 4
= iiﬁmd_Qeiiﬂ-(%_l) d_ m2(_x2 $ iO) 9 (557)
(4m) % 2t 4

which coincides with (5.55). O

Unfortunately, the tachyonic Feynman and antiFeynman propagator do not have
the usual physical interpretation, as the vacuum expectation value of the time-ordered,
resp. anti-time-ordered product of fields. In fact, for tachyons the vacuum is ill defined.
Nevertheless, some authors, e.g. [22], try to use the above Feynman propagator to define
interacting tachyonic quantum field theory.

Retarded and advanced tachyonic Green functions G%A are not tempered distribu-
tions on RM¥~1 and therefore they cannot be expressed in terms of the Fourier trans-
formation in all variables, as in the massive and massless cases (5.30). However, they
are well-defined, and in the following theorem we give three equivalent formulas for these
propagators.
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Theorem 14 The forward and backward propagators in the tachyonic case are given by

Gy = GYIN (x)

:9(_362)9( )IZU;)Q jd+1 (U‘;—l (@) _ U%—l (W)) (5.58)
0?0 )W@I(W) B Ugl(mQSﬂ)) (5.50)
:e(ixo)id(“?)i_%m_g (mi'fz'), (5.60)

(4m)}

They are supported in JV, resp. J". We can decompose Gi\;{/\ into a singular and regular
part:

GlMa)y =Gy (x)+ G (). (5.61)

m 1m,sing 1m,reg

For d odd this decomposition is almost the same as (5.34), (5.35) but without the factor

(_1)47‘ .

e(ixo) 1 m2 J 1_1_;’_'

QYN (z) = D) @)yt 5.62

it =2 ;ﬂr(2_g+j>< e o
vin o 0% o~ 1 mPN e

Gim,reg( 27’(3 Z Iy +]> ( 4 ) ( xr ) 9( ) (563)

For d even the decomposition is similar as in (5.36) and (5.37):

d_9 d_o
G/ Mg ) = 6(c2) 1 (mQ) 80 (5.64)
im,sing 271_%71 e (g _9 7])' 4 ) .
d—2 2|2
V/A B 0\ 27T m2 |22\ ) o
Gines() = 0(E") s Fyoy (M )o(=a?). (5.65)

Proof. Our starting point is the formula (5.31) for the forward and backward propagator

GXL/ A(nc) They are analytic in m. Therefore, we can apply the analytic continuation
m > el Tm:

(ei” (m2x? — iO))
Y

2

GV (z) =6(£2°) _iﬁmdizim(%il) Ua
n (am)?

(5.66)

U, (ei”(mzf + iO))>.
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iT

This yields (5.58). Alternatively, we can apply the analytic continuation m +— e™'zm,

which yields (5.59). O

Let us compute the sum of the tachyonic Feynman and antiFeynman propagator:

27rmd;2Fi_1(_ 7712412)7 .132 >0,
F F (4m)z 2
GE (@) + G () = 14 ) (5.67)
(=2 (L), oo
(4m)2 2
Thus GE (z) + Gim (z) does not have a causal support, and consequently,
GE () + GF, (2) # Gy (@) + G, (). (5.68)

The equality in (5.68) holds only for 22 < 0.

Note that because of (5.68) we could not deduce the formulas of the forward and
backward propagators from the Feynman and anti-Feynman propagators, and we had to
apply a separate argument based on analytic continuation.

In the tachyonic case, we do not have the solutions Gi(nﬂ;). However, we can define the
Pauli-Jordan propagator

1 .
PJ o PJ — iF
GhA(@) = P4 = (g [ 67— o (5.69)
o sx2\1-% m?|x?|
_ 0 s
= sgn(z") %(4)_ F17%< 1 ) (5.70)

(4m)

Note that GI'J cannot be written in the form (5.25).
Among the identities (5.44) only (5.44a) is still true.

5.6. Averages of plane waves on the hyperbolic plane

The Minkowski space possesses two kinds of hyperboloids. The two-sheeted hyper-
boloid consists of two connected components isomorphic to the hyperbolic space. In this
subsection, we compute the Fourier transform of the natural measure on one of the sheets
of the two-sheeted hyperboloids, similarly as in the Theorem 4.

Consider the future/past hyperboloid in the d-dimensional Minkowski space, denoted
Hy = Hij,;, consisting of points p such that p? + m2 = 0 and £p° > 0. Let d,,
denote the standard measure on Hy ,,,. We will see that up to a coefficient its Fourier
transform is essentially the “positive frequency solution of the Klein-Gordon equation.”

Theorem 15

m?2(x? + isgn:vOO))

ipx — a1 a1
/Hme A (p) = ma~1n U%,1< - (5.71)



Jan Derezinski and Barttomiej Sikorski 33

Proof. This average, up to a coeflicient, coincides with G defined in (5.40), which
we have already computed:

/ P dQ),, (p) = 2m/ei”m9(ip°)5(p2 +m?)dp (5.72)
Hy m
= 2m)*mGF) (2). (5.73)

Therefore, it is enough to use the formula (5.43). O

5.7. Averages of plane waves on the deSitter space

The one-sheeted hyperboloid in the physics literature is usually called the deSitter
space. It will be denoted dS,, = ng{l. It consists of points p such that p? = m2. Let
d€2,, denote the standard measure on dS,,. We will compute the Fourier transform of
the measure on dS,,.

Theorem 16
/ e dQy, (p) =
dSpm
g a1, m?2(—2?% +1i0) ) m?2(—2?% —i0)
e (v (M) (20 570
_1\¢ d—1,_41 —m32224i0 s —a? 1*% _ m?Za? d
(—1)22mi=tn e (Uay (7200 ) £ V/mi(=f) - *Fi_a =), %eN,
2it-lmd=1nt (=) "5F,_, ( - mffz), d¢ N,
(5.75)
Proof.
/ e'P*dQ,, (p) = 2771/6“”36(;192 —m?)dp (5.76)
dS”YL
_m ipz 1 B 1 d
mi) € (p2—m2—iO p2—m2—|—iO> P (5.77)
2 d —
_ MO GF (@) - 6T, (). (5.78)

1

Then we can use the result for the tachyonic Feynman and anti-Feynman propagator
(5.55). O

One can see that the singular part is different in even- and odd-dimensional cases.
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A Appendix
Al. Some identities

The following identities for A > 0 follow from the 2nd Euler integral:

1 1 o0 A b
AE " P(S)/o ot (A1
1 e T

> FitA 21
- t5-1at. A2
(A+i0)5 F(g)/o ¢ (A2)

We will also need the Fourier transform of the Gaussian function on the Euclidean space
R?, and of the Fresnel function on the pseudo-Euclidean space R%¢~4 (with ¢ minuses):

. ¢ z2
/ dpe el = () e, o
. . d s H (EQ
/dpeiltp2elpa: _ (:Fl)q (g) 2 eilzdeqzlﬂ. (A4)

A2. Distributions

In this paper, we often use the language of distributions on R?. We say that a
distribution T is regular if there exists a locally integrable function f such that for a test
function ¢

T(®) = / F(2)®(x)dz. (A5)

We will use the integral notation also for irregular distributions, e.g.

/ 50 (2)®(2)de = (—1)" 0 (0). (AG)
Let us now consider some special distributions on R. For any A € C

(#iz 4+ 0)* = P2 (2 Fi0)* := 1{%(iix + e
is a tempered distribution. If ReA > —1, then it is regular and given by the locally

integrable function .
eingn(I)%)\|$‘)\. (A7)

The functions
z) = |z (%) (A8)

define regular distributions only for ReA > —1. We can extend them to A € C except for
A= —1,-2,... by putting

]. Hus s
2} (—e—‘f*(:pi:wro)A —&—el?/\(:tix—&—O)/\). (A9)

~ 2isinA
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For A > —1 (A9) are regular and coincide with §(£x)|z|*. We have

eyt = x| - 2} (A10)

Instead of x}, it is often more convenient to consider

SR (A11)
P = PN 1)
(- o ix

= % (e*‘f%;ix +0) — e 2 iz + O)A). (A12)

Note that using (A11) and (A12) we have defined p} for all A € C. We have

0uph(z) = 0371 (@),
At integers we have
n Th

pi(x)zﬁ, n=0,1,...; (A13)
pr" ) = (£1)"6"(x), n=0,1,.... (A14)

Clearly, for Re(\) < —1 the distributions p} are irregular.
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