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1 Introduction
Consider the Laplace operator on R?
Ny =02 +0;

and the Helmholtz

Introduce the polar coordinates

T =rcos¢, y=rsing,

r =22+ 92, ¢:arctan%

The 2-dimensional Laplacian in polar coordinates is

Lo

1
—Ay =02 - ;ar - 72%- (1.2)

We make an ansatz

F(z,y) = v(r)u(¢).
The equation (1.1) becomes

(-2~ %ar - T%a;)v(r)u(qs) = Bu(r)u(9). (1.3)

We divide both sides by v(r)u(¢) and multiply by r2. We put functions depend-
ing on r on one side and on ¢ on the other side. We obtain

(207 + 10, + Er®)o(r) _ Gu(9) _ C. (1.4)

v(r) - u(9)




where C' does not depend on r or ¢. We obtain an equation for u:

93u(e) = —Cu(), (1.5)
solved by linear combinations of €™? and e~ ™% with C = m?2. Condition
u(¢) = u(¢ + 27) implies that m € Z. Thus we obtain

(r?02 +rd, —m® + Er®)o(r) = 0. (1.6)

Now if F < 0, then we change the variables z = v/— Er obtaining the modified
Bessel equation

(2202 4+ 20, —m* — 2*) v = 0. (1.7)

Now if E > 0, then we change the variables z = v/ Er obtaining the (standard)
Bessel equation

(2202 4+ 20. —m* + 2*) v = 0. (1.8)

Certain distinguished solutions of (1.7) are denoted I,,,, K,,, and of (1.8) are
denoted J,,, and HE. We call them jointly the Bessel family. They are probably
the best known and the most widely used special functions in mathematics and
its applications.

The parameter m in the above analysis was an integer. However, if we
consider the Laplacian on the surface of the cone described by 0 < ¢ < a, then
the condition u(¢) = u(¢ + a) leads to 5> € Z. Hence non-integer values of
the parameter m are also relevant in applications.

We will see that the Helmholtz equation in any dimension d
—A4F =EF (1.9)

leads in spherical coordinates to the Bessel equation. The d-dimensional Lapla-
cian in spherical coordinates is given by

d—1 1
“Dg= =0 = =0~ A,

where r is the radial coordinate and Aga-1 is the Laplace-Beltrami operator on
the sphere S%~1. Eigenvalues of —Aga—1 for d = 2,3,... are

(l+d—2), 1=0,1,2,... (1.10)

where [ corresponds to the order of spherical harmonics. Setting F' = v(r)u(£),
where () are the angular coordinates, we obtain the radial part of the Helmholtz
equation

(r?02 + (d— 1)ro, — (1 + d — 2) + Er?)ov(r). (1.11)

By the same scaling argument as above, we can reduce ourselves to the case
E = +1. We will see that (1.11) is equivalent to (1.7) or (1.8).



The operator in (1.7)/(1.8) can be transformed as

rli=s (r*02 +rd, Fr* —m?) poite (1.12)
d d
_ 202 _ 2 _ _ ¢ 2
= 0.+ (d—1)rd, Fr (m 2+1)(m—|—2 1). (1.13)
Setting
m=1+ g —1, (1.14)

we can rewrite (1.13) as
202 +(d—1)rd, ¥ 12 —1(l +d — 2), (1.15)

which is the radial part of the Helmholtz equation in dimension d for spherical
harmonics of order I, see (1.11). (1.15) is sometimes called the d-dimensional
Bessel equation.

Note that in even dimensions the parameter m takes integer values and in
odd dimensions it takes half-integer values, see (1.14).

Note special cases of (1.13):

r—™m (r28f +rd, Fri— m2) rm

= 7292+ (1+2m)rd, ¥ r?, (1.16)

SIS

rs (7"2872, + 70, Fr? — mz) rT
1
= 72 (achu (1/4 —m?) 7«2> .

Here are some other operators related to the Bessel equation: Set 7 := ¢7,
so that 9, = %tliéat. Then

r2s (r*02 + 10, Fr* —m?) r (1.17)
= ¢ (5—2:5283 +672t0, F ¥ — mz)t‘% (1.18)
1 1
_ 5—242( 92 5—1y2 Z _m2s2)\ =
R (5t F (6t°71) +(4 m=6 )t2>' (1.19)

If we set » = e?, so that rd, = 9;, then

r20% + 10, Fr? —m? = 92 F 2 —m? (1.20)

2 Modified Bessel equation

2.1 Integral representations

The modified Bessel equation is given by the operator

Tn(2,0,) := 220% + 20, — 2> —m*.



Theorem 2.1 Bessel-Schlifli type representations Let ]0,1[> 7 +% t(7) be a
contour such that

t(1

(f(t —t Y+ m) exp (g(t + t*l)) tim’t(o

)
= 2.21
: =0 (2.21)

Then
/exp (E(t+t’1)> tm-lqt (2.22)
L \2
1s a solution of the modified Bessel equation

Proof. We differentiate the integral with respect to the parameter z:

(2202 + 20, — 22 —m?) / exp (E(t + til)) t—mldt
- 2

/ ((;)2 (t+t71)7 + % (t+171) =22 — m2> exp (g(t n t’l)) 1t
L ((;)2 (=) + 2+t - m2) exp (S(t+¢7h)) e
Lat ((%(t —t )4 m) exp (g(t + t’l)) t*m) dt

t(1)
£(0)

(- o) (30479)

O

Theorem 2.2 Poisson type representations. Let 0, 1[3 7 > t(7) be a contour
such that §1)

].—t2 m-&-% zt
( )" ze )

Then
,m /(1 _ t2)m—%eztdt
vy

s a solution of the modified Bessel equation.

Proof. We use (1.16).

(202 + (1 +2m)0. — 2) /(1 - t2)m*%eztdt

Y

= /(1 — )73 (A2 + (1 + 2m)t — 2)e*ldt
V

/ﬁt ((lftz)””%e“) a = 0.



2.2 Modified Bessel function

The modified Bessel equation has a regular-singular point at 0 with the indicial
equation

AA=1)+A—m?=0.

Its indices at 0 are equal to £m.
Therefore, we should look for a solution of the modified Bessel equation in
the form

0 :(2283 + 20, — 2% — m2) Z cp2™tn (2.23)
n=0

oo [ee]
= Z cn((m +n)?(m+n—1)+m+n— m2)z" - Z 2" T2 (2.24)
n=0

n=0
This leads to the recurrence relation
cn(2m+n)n = cp_a. (2.25)

The initial condition ¢_; = 0 together with (2.25) implies that ¢, = 0 for n
odd. For even subscripts, we can rewrite (2.25) in the form

Con(2m + 2n)2n = co(p_1). (2.26)

With ¢y = 1, this is solved by

1
“on = 222(m+1)--- (m+n)n!’

Multiplying this with m, we obtain

1
C222T(m 4 n+ 1)n!’

Can

The resulting function is called the modified Bessel function:

%) (z)2n+m
@) =2 it 1)

It is a solution of the modified Bessel equation with the parameter £m. Note
that m # 0 for m # —1,—-2,... For m # —1,-2,... the function I, is
the unique solution of the modified Bessel equation satisfying

Ln(2) ~ (g)m I‘(m1+ 2~ 0

which can be treated as a definition of the modified Bessel function. (By f(z) ~

9(z), z ~ 0, we understand that % is analytic around zero and at zero equals

1).



If m ¢ Z, then I_,,(z) and I,,(z) are linearly independent and span the
space of solutions of the modified Bessel equation.
We have

In(e572) = ™ (2), (2.27)
Inb(z) = Iﬁ(z) (228)

In particular, I,,,(z) is real for > 0, m € R.

2.3 Integral representations of modified Bessel function
Theorem 2.3 (Bessel-Schlifli-type representations.) LetRez > 0. Then
1
In(z) = exp (2

271 J) 0,04, o] 2

1 rz\m™ 22 1
- —( Z)smlds, (2,30
i (3) /]_0010+7_00[8Xp (8 - 4s> ° s (230)

(t+ t‘l)) t—mlae (2.29)

We also have
1

z
I, = — S+t ) e tat, 2.31
() = 3 fo @ (GUEEN) (2.31)

Here, the contour starts at 0 from the negative side on the lower sheet, encircling
0 in the positive direction and ends at 0 from the negative side on the upper sheet.
One of concrete realizations of (2.29) is the Schlafli representation:

I, (2) ! /7r e* 59 cos(ma)de — %Sin(mﬂ) /000 e-zcoshf=—mBap  (2.32)

:% -

Proof. To see this note that by Thm 2.1, the RHS of (2.29) is a solution of the
modified Bessel equation. Besides,

1 (2’)7” n 22 7m71d
— | = ex S — ]S S
27Ti 2 ]7OO,O+,700[ p 45

is holomorphic around zero. By the Hankel identity

1 1 el
_— = — exp (s) s ds.
P(m+1) 2mi /]_0070+7_OO[ p(s)
Therefore, the RHS of (2.29) behaves at zero as ~ (%)m m Therefore, it
coincides with I,,,(2), at least for m & {..., —2, —1}. By continuity, it is I,,, also

forme {...,—2,—-1}.

To see (2.31), we make a substitution ¢t = s~! in (2.29) noting that dt =
—s572ds, and then we change the orientation of the contour.

To see (2.32), we take a contour consisting of three pieces: —e™# : B €
] —00,0],e?: ¢ [-mn], —eF: Bec0,—occ] O



Theorem 2.4 (Poisson-type representations.) We have the Poisson rep-
resentation

2\ [ 2ym—1 t
Im(z)m<2) /71(14) Fertdt, m>—%. (2.33)

The following representation is due to Hankel:

F(l —m) Z\™m 1 1

In(2) = 27(7) / t— 1) E (t+ 1) etdt. 2.34

&) =53 (11"t 4 )" Fe (234
[1,—1—,1+]

Proof. By Thm 2.2, the RHS of (2.33) satisfies the modified Bessel equation.

Then we use the fact that

1 L(m+ )7
-y adt = — 22V 2.35
|- ey (2.35)
to see that the RHS of (2.33) behaves at zero as ~ (%)™ m
Similarly, to show (2.34) we use
1 1 1
(t—1)™ (e + 1) bde = il (2.36)

2mi Ji1,—1- 14

2.4 Modified Bessel function for integral parameters

For m € Z the Bessel-type integrals (2.29), (2.30) and (2.32) simplify:

Theorem 2.5 For m € Z we have

1 z dt
L — — -1 2.
@) = g ) e () m (2:37)
1 rz\m 22\ ds
= 3= (5) /[Oﬂ exp <S + 48> gt (2.38)
1 ™
= — e* 5 cos(mep)dg. (2.39)
2 J_,

Proof. We will give two proofs.



The first is based on the power series. It is enough to assume that m =
0,1,....

0 g)2n+m
In(2) = gﬁ m (2.40)
0 ( §)2<n+m>
= L G mim ) 241
) E)2nfm
= 7; 771!(2“ - (2.42)
()" (2.43)

- nz:% n!lT'(n —m+1) = I-m(2)-

The second uses the contour integrals (2.29) and (2.31): we note that if
m € 7Z, one can be deformed into the other. O

Theorem 2.6 (Generating function.)

exp (%(t +t-1)) = 3 L) (2.44)

m=—0o0

Proof. Again, we will give two proofs.
The first uses power series:

S oene -y sl

| |
m=—oo n>0, n+m>0 n(n + m)
- l
n>0n+m>0 n n + m)
_ ez/Qtetz/Z'

The second notes that (2.44) is the Laurent series in ¢ of a function holomor-
phic in C\{0}, and (2.37) is just the formula for the coefficient in the Laurent
series. O

2.5 MacDonald function
We define the Macdonald function:

K,(z) = ;/000 exp (—%(54—371)) stm=1ds, (2.45)

Other names: the Basset function or the modified Bessel function of the second
kind. The integral (2.45) is absolutely convergent. Substitution s = ¢! shows
that m can be replaced by —m (and thus K,, = K_,,).



Theorem 2.7 K,, solves the modified Bessel equation. We have

K (2) = Kiw(Z).
K, (z) is real for x > 0, and m € R or m € iR.

Proof. We can write

iTm

€ E -1 —m—1
Kon(2) : /]Oom’o]exp(z(tﬂ )t (2.46)

—imm

€ z -1 —m—1
= exp(=(t+t77))t dt, (2.47)
2 /]—oo—i—i0,0] <2 )

which are integrals satisfying Theorem 2.1. (Note that the contours lie on
the boundary of the Riemann surface of the principal branch of t~™~!, each
projecting onto | — 00, 0], the first is on the lower sheet and the second on the
upper sheet). O

Theorem 2.8

Kop(2) = Kpn(2) = ——(I_y(2) — In(2)). (2.48)

2sinm™m

Proof. (typos) We add the appropriate multiples of (2.46) and (2.47):

—disin(mrm)K,(2) = 27K, (2) — 26K, (2)

z -1 —m—1
= exp(=(t+t7))t dt
/]ooio,o} (2 )
z
+/ exp(=(t+t 1)) em tdt
10, — 00-+i0] (2( )>
Z -1 —m—1
= e —(t+1 t de
/]—oo,0+,—oo[ P <2( ))

—/ exp (E(t—kt’l)) tm1de
(0-0)+ 2
= 2mi(Ln(2) — I (2)).
where, as we recall, (0 —0)" is the contour starting at 0 from the negative side

on the lower sheet, encircling 0 in the positive direction and ending at 0 from
the negative side on the upper sheet. This proves (2.48). O

It is useful to note that for positive z the contour in (2.45) can be turned by
5, losing however its absolute convergence at 0 or oo. We thus obtain

e:I:i%m

Kn() = & /Oooexp(—z;(s—s_l))sim_lds. (2.49)




Theorem 2.9 Setting s = e’ in (2.45) and t = e® in 2.49) we obtain

1 o0
Kn(2) = 5/ emzcoshbommbqg, (2.50)
_ eflzm /oo e1izsinh¢e—m¢d¢. (2_51)
2 —00

2.6 Analytic continuation of the MacDonald function

Theorem 2.10
1 . .
In(2) = —(FiKmn(eT™2) £ie™ K, (2)). (2.52)
s

Proof. Write

K" ="

= m(e I_m(Z) —e Im(Z))

We subtract from this €™ times (2.48) obtaining
. . T . .
K(e i72) — ™[ _ o —lwmIm 17r7n]m =irl,, )

(e77z) —e (2) 2sin7rm< e (2) +e (2)) = imln(2)
This proves (2.52). O

The function K,,(z) is exponentially decaying whereas FiK,,(eT'"z) are
exponentially exploding. It will be useful to have such “exploding partners”
for K,,(2). Unfortunately, the natural domain for FiK,,(eT'"z) is C\[0, o],
which is inconvenient if we are primarily interested in [0, co[. It seems useful to

introduce the following function (which has no name and apparently does not
appear in the literature):

%(Km(eiwz) - Km(e_iﬂz))' (2:53)

Theorem 2.11 We have the identities

Xm(z) =

Im(z) =

X'm(z) =

(Xom(2) = sin(rm) K (2)), (2.54)

(I-m(2) + I-m(2)). (2.55)

IR

2.7 Asymptotics of the MacDonald function

Theorem 2.12 For |argz| <7 — e,

K(2)
li =1
‘Z‘linoo e *ym
V2z



Proof. We use the steepest descent method. Set ¢(t) := —3(t + t~'). We
compute

1
¢(t)=—501- t7?), ¢'(t)=—t"".
Hence ¢ has a critical point at to = 1 with ¢(tp) = —1 and ¢"(¢y) = —1. Thus
1

Kn() = 5 [ " oo

% /_o; exp (z¢(to) + z(bﬂgto) (t — t0)2> dt

1 o 1 V2
= fe*Z/ exp (E(tf 1)2> dt = e * YL
2" ) 2 20z

12

O

Corollary 2.13 As x — oo we have
1
Ln(x) ~ e’. 2.56
n@) ~ (2:56)

Next we derive the precise asymptotics of the MacDonald function

Theorem 2.14

> (% _m)n(%"‘m)n

n!(2z)"+z

(2.57)

Proof. To derive (2.57), at least formally, we first we transform the equation:

e%23 (2202 + 20, — 2* — mg)z*%e*’z (2.58)
1
= 22022220, —m? + T (2.59)
Acting with (2.59) on
Z cnz™" (2.60)
n=0
we obtain
o0
—n —n+1 2 1 -n
Z (n(n + 1)epz™" 4 2nepz - (m - 1)(:”2 ) (2.61)
n=0

This yields the recurrence relation

1
2ne, = —((n—l)n—mz—&—z)cn,l (2.62)

= (g -m)(n—g+m) (2.63)

= n—g—m)(n—g+mleni. .
Therefore,

o (3= m)a(5 +m)n

cn = (—1) i (2.64)

O

11



2.8 More integral representations

Theorem 2.15 (Poisson-type representations.)

K (2)
+m T 1 1

= (5) yrl(Em + 5) (M.H?)/ e*t (1 —t3)Fm—2ds. (2.65)

2 27
]—o00,—1%,—00]

Z\™ ﬁ > —sz (.2 m—1 1

= (=) =—— -1 2 —=; 2.
(2) I‘(m—i—%)/l e (s ) ds, m> 5 (2.66)
N-mDm+3) [ ., Y

— ~ isz 1 m—3 . 2.
(2) “ovr [me (s*+1) ds, m>0. (2.67)

Proof. The RHS of (2.65) solves the modified Bessel equation by Thm 2.2. Let
us check its behavior for Rez — co. We set t = 2 — 1:

1 t +m—1 +m—1
— F4+1)Tm (=t +1)T T 2de 2.68
[ et (268)
]—o00,—1F,—o0[
2\m—35e % 1 +m—1
~ |- — -* - 2.
(z) z 2mi / ¢ sds (2:69)
]—o00,—1F,—00[
2\ Em e ”?
- (Z — 2.70
C) Eam 270

Therefore, the RHS of (2.65) behaves as e_\/;‘ff. Therefore, it coincides with
K (2).
(2.67) follows from (2.65) by setting ¢ =is. O

Here are various integral representations in an exponential parametrization:

K (z) = %/ ez coshdetmo gy (2.71)
_ % / =708 ot (mg)dgb (2.72)

E mi > —zcosho.: 2m _}
<2) F(m-i-%)/o e (sinh ¢)*™dep, m > 5 (2.73)

—-m 1y poo
-(3) F@ﬁ”/ o (cosh ) dg, m > 0. (2.74)

((2.72) is an immediate consequence of (2.71)). In order to appreciate how
different these representations are, let us consider (2.72), (2.73) and (2.74) in

— 00

12



the case m = :l:%:

T\Z - 14+2¢2 )
Kii(z) = (%) = /_oo e 220 gy, t = sinh 5 (2.75)
1 o]
= (%) ’ / e *'dt, t = cosh ¢; (2.76)
1

1 et
= . / "= t=sihg.  (277)

(27m2)z Jooo (2 + 1)

2.9 MacDonald function for integer parameters

Theorem 2.16 Set H, :=Y;_, +. Then form =0,1,2,...

Kn(2) = (1) (log 2 +7)In(2)
m—1 [e%s}
1 2k—m (m k — 1) (_1)m H + Herk 2\ 2k+m
3 2 C04(3) Mo T Ki(m + k)| 3)
k:O k=0
Proof. Set i1 )
Then
o(—n) = (=1)"nl, n=0,1,2,...,
- H
dn+1) = an " n=0,1,2,...
Besides,

OmIm(z) = log (g)lm(z)_’_zqﬁ(m—i—kilk—i—l)(z)”ﬁ%.

k=0
Hence for m =0,1,2,...
OnIn(z) = (log 5 —&—7) é mrzk'k'( )m+2k, (2.78)
00,0 = (losi+a)Ial: T"Z L 17
S ) =

13



The last sum can be written as

ad Hy, 2\ m+2k
a k;n E!(k +m)! (5) '
We use the De L’Hopital rule:

™ di(l—m — I (2))

Kn(z) = 2 %sinﬂm
(=)™ d o d
2 ann(Z) n=—m d’I’LIn(Z) n=m

O

Corollary 2.17 As x — 0, we have

1 T\ m
—ln(%)—v if m=0,
)™ if Rem >0, m#£0; (2.82)

2
(£)™ if Rem <0, m#0.

I.(2) = lZm(z). (2.83)

2.10 Relationship to hypergeometric type functions

The modified Bessel function and the hypergeometric functions o F; and 1 F; are
closely related:

1 Z\m 22
RO = () on(em)
n(2) Tm+1y\g) oft{tHmig
1 Z\™ _, 1
- —— (= F( Zom 412 )
F(m+1)(2) ¢ fi{mgiamt ez
The MacDonald function is closely related to the hypergeometric function
QF()Z \/*
T 1 1 1
Kn(z) = == ’ZF(* i3 ;—;—*).
(2) 226 o Fy 2—|—m 5 m o
2.11 Recurrence relations
Theorem 2.18
QazIm(Z) = Im—l(z) + Im,—i-l(z)v (284)
2mIn(z) = z2ln-1(2) — 2Ln41(2). (2.85)

14



20, Kpm(2) = —Kp-1(2) — Knyi1(2), (2.86)
2mKp,(z2) = —2Km-1(2) + 2Kn41(2). (2.87)

Proof. Recall that

20, I (2) = /exp(g(tﬂ*l))(fm+t*m*2)dt.

0 = Q/at exp (g(tth’l)) mdt

.
z
= —Qm/exp S+t e
e (e +17)

+Z/exp (E(H—t’l)) mdt — z/exp (E(H—t’l)) =24t
L P2 LR
By (2.46), ™™ K, satisfy the same recurrence relations. O

Corollary 2.19
m
8, (2" (2)) = 2" 1 (2), or (az + ;) In(2) = In_1(2),

0. (27 ™I (2)) = 27 ™ Iy (2), or (82 - m) I, (2) = Inpy1(2).

Hence )
<i8z> ! 2" (2) = 2" M L (2), (2.88)
<i@z>n 27 L (2) = 27" T M g (2). (2.89)

Analoguous identities hold for K,,(z).

2.12 Half-integral parameters

For m = % we have

23T1277 = 22 (83 — 1).

Hence, 2~ 2e%% is annihilated by I%.

N

1
2\ 1 sinh z 2\2 |
2
= 2\
I_%(Z) = (%) ﬁcoshz = <71'Z> COShZ7 (291)
2
1
T™\2 _,
Kii(z) = (Z e, (2.92)
1
™\ 2
Xii(2) = (Z) e, (2.93)

15



One way to derive (2.90) and (2.91) is

~—

223 pIT(1/2 4+ n 4 1)

\]

\/?

to use

92" (1/2) sy = \/§(2n +1),

22" IpID(-1/2+n+1) = gQ"n!2”(1/2)n = \/E(Qn)!.
For £k =0,1,2,... we have
2\% 1 1, \ksinhz
o) = ()24 (S0:) =5 (2:94)
N
™ = (27 +1)!
1
= —(Z(2) = (FVF K 4(2).
2\% 1 1. \kcoshz
_(2\? i+k(L
Is 4(2)= (W) P (zaz) : (2.95)
2\ 2 - (5 — )k
—_ (2 2 k Z—§+2]—k 2 i
(71') (=2) jgo (29)!
1
=~ (Zy42) + (D Ky a(2))
T 3 1 1 ke—#
Ki(14m(2) = (5) Zﬁk(*;az) . (2.96)
1 00 1 n
_ z 25k R n(iii)k
_(2)2;_‘322 U ==
™
= (—F S (1) — Ik(2)
T\ 1 1, \ke?
Xiiim(2) = (5) 22+k<; z) - (2.97)
1 o0 1 n
_ (N2, ok —l—k+n(§_§)k
B (2) (=2) 7;)2 ’ n!
™
= 2 (k) + L)
Note that in the sum for (2.94) the terms with j =0,...,k — 1 vanish.

2.13 Wronskians

Recall that the Wronskian is defined as W(f,g) := fg' — f'g. The Wronskian
of two solutions of the modified Bessel equation satisfies

1
9.+ -
z

(

)W(z) =0.

16



Hence W(z) is proportional to % Using

Lem(2) ~ F(j:ni—&—l)(;)im’ Lim(2) ~ zrém(g)im_lv

we can compute the Wronskian of I,,, and I_,,, and then other Wronskians:

2si
W (I Io) = — 21 (2.98)
Tz
1
W(Kp, Im) = > (2.99)
2
W(Kpm, Xm) = > (2.100)

3 Standard Bessel equation

3.1 Bessel equation

Replacing z with +iz in the modified Bessel equation leads to the standard
Bessel equation, given by the operator

Tn(2,0.) = 220 + 20, + 2* — m?.

3.2 Integral representations
Theorem 3.1 Bessel-Schléfli representations Let v be a contour satisfying

(1)

Zlh 44t Za_en) LT
(2(t+t )+m) exp(Q(t t )) = =0, (3.101)
7(0)
Then &
z _
C/{exp <§(t7t 1)) = (3.102)

s a solution of the Bessel equation.

Theorem 3.2 Poisson type representations Let v be a contour satisfying

(1) B

1 — $2ymt3 izt
( ) 7(0)

Then
M /(1 _ t2)m7%ei2tdt
vy

s a solution of the Bessel equation.
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3.3 Bessel function
The Bessel function is defined as
Jn(z) = 575, (Fiz)
%) (_1)n (£>2n+m

- Zn!l"(m—in—i—l)

n=0

-1 (7% K (—iz) — e™ 7 K(iz))

im
Jm(e:tiwz) —_ eiimem(Z).

Theorem 3.3 Let Rez > 0. (Bessel-Schlifli-type representations)

L ex (E(t—t_l)) di
2’/Ti ]—00,0*,—00[ P 2 thrl

1 (z)m/ 22\ ds
— (= exp|s—— | —.
2 \2) oo TN s )

(Poisson-type representations)

m [l 1.

z

nlz) = ﬁr(% - m) (2)7”/[1,17”](15 — )R 1)

3.4 Relationship to hypergeometric type functions

Im(2)

1 Z\™ 22
I = o (E) OFl(”m’*Z)
1 EN™ iz 1 .93
= m<§) e 1F1<m+2,2m—|—1,21z).
3.5 Bessel function for integer parameters

Let m € Z.
Theorem 3.4

= D)t

nl(n +m)!

18



Theorem 3.5
1 z de
J S (f t—fl)
m(z) 27_[_1 \/[\0+] eXp 2( ) tm+1
1 (z)m/ . 22\ ds
= — —_ e J—
omi\2) Jige T 15 ) smi

= ;/OW cos(zsin ¢ — me)de.

3.6 Hankel functions

There are two Hankel functions. Both are analytic continuations of the Mac-
Donald function — one to the lower and the other to the upper part of the
complex plane:

2 .«
Hi(z) = ZeFiEmtK (Fiz).
™

In the literature the usual (and less natural) notation for Hankel functions is

HD(2) = Hj(2), HE(2) = H,(2). (3.103)

m

Note the identities

Kpn(2) = St 80D H (), (3.104)
HE (2) = ™™ HE(2), (3.105)
Tn(2) = 5 (HH(2) + Hin(2) (3.106)
T m(2) = % (e™MH ! (2) +e ™M H, (2)), (3.107)
HE(z) = iieinlﬂiJZif;;iJ*m(z). (3.108)

Theorem 3.6 The following asymptotic formulas are true for —m + 5 + 0 <
argz <m+x 5 —9,0>0:

H:I:
lm —— )y
Z—00 (l)g eiize:‘:mzm:':%
Tz
Here is a more precise asymptotics:
> (1 _ 1
HE (2) ~ Yt > (g = m)nly +m)n. (3.109)
TZ n!(+£2iz)"

n=

19



3.7 Integral representations of Hankel functions

Let us first consider Bessel-Schlafli-type representations. For Rez > 0,

1 z dt
Hi(z) = —— exp (=(t—t1 ,
) i ]~ c0,(04+1-0)~[ (2( )) tmtl
_ 1 z _ dt
H.(z) = = exp (i(t_t 1)) st

T J]—00,(0+1-0)*]

By | —00,(0+1-0)"[ we understand the contour starting at —oco, encircling 0
clockwise and reaching zero from the positive direction. The contour is located
on the upper halfplane.

Similarly, by | — oo, (0 + 1 -0)*[ we understand the contour starting at —oo,
encircling 0 counterclockwise and reaching zero from the positive direction. The
contour is located on the lower halfplane.

Note that
m (Zae? o) Lo
t—}(l)rfl.o(2(t+t )+m>eXp(2(t ) tm 0,

where by ¢ — 0+1-0 we denote the convergence to zero through positive values
of t (sometimes denoted by ¢ — 07). Hence the contours | — oo, (0+1-0)*[ and
] — 00, (0+1-0)7[ satisfy (3.101).

If 0 < arg z < 7, then a good contour in the representation of H, is [ico, 0].
If —7 < arg < 0, then for H,, one can use [—ico,0]. This leads to the represen-
tations valid for +Imz > 0:

iz i I z ds
+iZm rrt _ iZm gyt _ . 1
ez H>(2) =eT2MHE, (2) = :I:E/O exp (:i:li(s +s )) prsy (3.110)
1 oo
= :I:—./ exp (£iz cosh(t) — mt)dt. (3.111)
i o

Poisson type integral representations valid for Imz > 0 and all m:

F(l 7m) z m H 1 1
H:I: _ 2 V(Zz / izt F 1) E (4 1) 5 dL
m(2) wiy/T (2) Jico, F1F 1oo[e ( e T

. . . 1
Poisson type representations valid for m > —3.

i m 2 ° . 1
:tlgmH:t - 4+ f) / tisz( 2 m=3ds.
e Hm(2) (; AT em) S, O T

3.8 Hankel functions for integer parameters

12
HE(2) = Jon(2) £ 1;(1og§ + 7) T (2) (3.112)
. m—1 . 00
i 2k=m (m —k—1)1 i F(Hy + Hpir) 2k+m
— e . A1
T 0( ) k! :Fw];) k‘m—i—k) (2) (3:.113)
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3.9 Neumann function
Neumann function is defined as

Yi(z) =5 (Hf(2) — Hy(2))

_cosTmIp, (2)—J_p, (2)
- sin m '

We then have

HI(2) = Jn(2) + 1Y (2), H (2) = Jn(2) — 1Y (2).

m

Theorem 3.7 For m € Z we have

Vin(2) = 2(log(3) +7)Jm(2)

m—1
1

s

\g/

m—k—1)! —m (1) m
= ( E! . (5)% - %kzo k!((szk)!(%) +2k(Hk +Hm+k)'

3.10 Recurrence relations
Theorem 3.8 We have the identities
20, Jm(2) = Jm-1(2) — Jm+1(2),
2mdm(2) = 2Jm—1(2) + 2Jm11(2).
Sometimes, more convenient are the following forms of the recurrence relations:

Corollary 3.9

0, (2" Jm(2)) = 2™ Tm-1(2), or (8z + %) Im(2) = Im—1(2),

—0. (27" In(2)) = 27" Iy (2), or (—82 + %) Im(2) = Tmy1(2).

Besides,

(13z)n 2" I (2) = 2" T (2),

z

(—iaz) 27" I (2) = 27T M T (2).

Analogous identities hold for HX(2), and Y,,(2).
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3.11 Half-integer parameters

For £k =0,1,2,... we have

2\3 1 1 ksin z
T = (7)) (- 52)
1+k(z) T * z - z
2\ kN qvi o dt2i—k (—d)k
. 2k _1] §+2]—k7
(w) Z( y'z 25+ 1)
j=k
2\ 3 1 k
Tyl = (7) 754 (S0:) =
2)% k = _1 — (l_j)k
=(=) (-2 —1)i stk 7
() 2 §:j< ) o
2\7 1 1, \keti*
=) (- L)
§+k(z) 72 z z
(2 %Zk i(i)n 3 k—‘—n(%_%)k
= Fil — i
- 7r v i nl
1 k oEiz
+ _ 2 ;_,’_k 1 e
ey - () o)

3.12 Wronskians of solutions of the Bessel equation

The Wronskian of two solutions of the Bessel equation satisfies

(0. + W (=) =0,

Hence W(z) is proportional to % Using

Tem(2) ~ w3

)im

)

22

T (2) ~ vy (3

)j:mfl

)

(3.114)

(3.115)

(3.116)

(3.117)



we can compute the Wronskian of J,,,(z) and J_,,,(2):

2 i 43
W (T Jom) = —— L W(Hp HY) = ——, W (T, Yin) =

w4 mz 7TZ.
3.13 Putting together the Hankel and Macdonald func-
tion

K,, and HZE are naturally analytic functions on the Riemann’s surface of the
logarithm. However, it is sometimes convenient to treat them together, as func-
tions of v/w, resp. v/—w, where w € R. It is important to indicate precisely how
the analytic continuation of the square root is performed—whether we bypass
the branch point at zero from above or from below. This is encoded by adding
+i0 to the variable. More precisely, we will use the following notation:

K, (Vw), w > 0,
Ko (Vo T 10) = { (;{\)ﬁ) it (V) z o, (3118

m(
HE(V=w=£i0) = { Eil\ﬁ) Fire T K (Vi) w > 8 (3.118b)
)

) w <

Note the functions (3.118a) and (3.118b) should be understood as distributions,
possibly with a singularity at O.

4 Helmholtz equation and the group R? x SO(2)

4.1 Action of a group on functions

Let G be a group with the neutral element e € G. Let X be a set. Let Bij(X)
denote the set of bijections of X. Clearly, Bij(X) is a group. A homomorphism
7 : G — Bij(X) is called the action of G on X. Thus

r(e)=1d, n(gh) = n(g)m(h). (4.1)
In other words
m(g)(m(h)z) = (n(g)7(h))z, g, heG, zelX. (4.2)

Suppose F(X) denotes the set of functions in a certain favorite space (typi-
cally C). Then we have the action of G on F(X):

(7*(9)f) (@) := f(n " (g)z). (4.3)

Let us check that this is a homomorphism of G:

(@ W) f) @) = (" () (7" (1)) ) (@) (4.4)
= (7" (W) (w(9) ") = f(w(h)~'7(9) ") (4.5)
:f(ﬂ(h Lo D :f<7r((gh l)x) (4.6)
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4.2 'Translation operator

R acts on R by translations:
wr =z +1, z,t € R. (4.7)
The corresponding action on functions on R will be denoted Uy:

(Uif) (@) == flz = 1t).

It satisfies U;Us = U5, Uy = 1. U can be understood as a family of operators
acting on various spaces of functions on R. For instance, U; can be interpreted
as operators on L2(R), in which case they are unitary.

We also have the operator d,. We have

d
aUtf = _azUtf

Therefore, we write
Ut = e_f’a“

and call 9, the generator of translations. In quantum mechanics customarily
instead of 9, one uses the momentum operator p = %&,3, which is Hermitian in
the sense of L?(R).

4.3 Rotation operator on L*(R?)

Let SO(2) denote the group of rotations of the plane R?. It can be parametrized
by 6 € [0,27[ and acts on R? as follows:

ro(x,y) := (cos Ox — sin Oy, sin Oz + cos Oy). (4.8)

The corresponding action on functions on R? will be denoted Ry and is given
be
(Rof)(z,y) :== f(cosOx + sin Oy, — sin Oz + cos Oy).

Again, we have Ry, Rp, = Ry, +0,, Ro = Id. In particular, understood as opera-
tors on L2(IR?), they are unitary.

Define
L =20y — y0s.
We will show that d
—Ryf =—LRyf. 4.9
0 of of (4.9)

Introduce notation

T:=xcosh +ysinf, g:=—xsinf+ ycosh.
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SRof(ry) = (~wsind +ycosd)osf(F.9)

+(—z cosO — ysin0)9; f(,7),
LRyf(x,y) = z(sinf0; + cosb0y)f(Z,7)
—y(cos 00; — sin00y) f(Z, 7),

which shows (4.9). Therefore, we write
Ry = e L.

In quantum mechanics customarily one uses the angular momentum operator
B, which is Hermitian in the sense of L*(R?).

4.4 The group R? x SO(2)

Consider translations and rotations on R?:

Uy ) (2,9) = (T + 21,9 + 1), (4.10)
ro(z,y) = (xcos@ — ysinb, zsin 0 + y cos ). (4.11)

Transformations of the form (x1,y1,0) := u(s, 4,)re form a group:

(x23y2792)(x17y1a91)
=(z2 + cos o271 — sin Oay1, Yo + sinbax1 + cos Oay1, 02 + 61) (4.12)

We have an obvious complex form of this group, where we write z; = z; + iy;,
w; = e'%. Then (4.12) corresponds to

(22, wg)(zl, wl) = (ZQ + wazq, wgwl). (413)

For a function f on R? set

Ut f (@, y) = f(u@ﬁyyl)(m,y)), (4.14)
Rof(z,y) = f(ry ' (z,y)) (4.15)
We have
Uty (@) = flo — a1,y — ), (4.16)
(Rof)(x,y) := f(cosbx + sin by, —sin 6z + cos y). (4.17)

These operators can be understood on various spaces of functions on R?, e.g.
on L?(R?). We have the representation

R? % SO(2) 3 (#,4,0) = U, 4,0) := Uz, y)R(6) € U(LA(R?).
The Laplacian A is an invariant operator:

Ulz,y,0)AU (z,y,0) " = A. (4.18)
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The operators d,, 0, and L form a Lie algebra commuting with A:

[0z, L] = 0y, (4.19)
[8?;’ L] = —0p. (4.20)

Introduce

AT = 0, +10y,

A7 =0, —10,.
Note the relations
[AT,A7] = 0, (4.21)
[A* L) = FiA*, (4.22)
A = ATA™=A"AT, (4.23)
A L] = [AA%] =0 (4.24)

4.5 Polar coordinates
Introduce in R? polar coordinates

r=rcos¢, y=rsing,
r=+z2+y?, o= arctan 2.
x

Remark 4.1 Change from Cartesian coordinates to polar cordinates can be in-
terpreted as a unitary transformation U : L?(R?) — L2([0, 00[x [0, 27], rdrd¢)
defined as
(Uf)(r,6) == f(rcos g,rsin6).
It is also convenient to introduce another variety of polar coordinates, setting
w = e?:
r =5w+w?),
y =gw-—wl)
In the polar coordinates we have
Oy =cos @0, — r~ L sin @04,
9, =sin ¢0, + ! cos Oy,
AT =e'?(0, +ir710,) = w(d, — " wdy,),
AT =70, —ir710y) = w9 + 1 wdy),
(Rof)(r,¢) =f(r,¢ —0), Rof(r,w)= f(r,we™),
L :8¢ = iw@w.
Here is the Laplacian in polar coordinates:
A = Z+r'0,+r20;
= 02 +r10, —r 2 (wdy,)?.
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4.6 Helmholtz equation
Suppose ¥, a distribution in S’(R?), solves the Helmholtz equation

(A+1)¥ =0. (4.25)
Let ¥ be the Fourier transform of ¥. We have
U(z,y) = # / / B (&, n)e! v dedn. (4.26)
(4.25) and (4.26) yield
(=€ =0 + 1) (&) =0,
so that supp¥ C {(&,7) | €24 n% = 1}. Thus the Helmholtz equation is solved

by

W(g)(o.p) = 5 [ gy, (427)

g is an arbitrary distribution on the unit circle T, that is g € S'(T)

We will denote by FS'(T) the Hilbert space of functions on R? of the form
(4.27) with g € S'(T). Inside this space there is a Hibert space FL?(T) with
g € L?(T) with the scalar product

(U(91)¥(g2)) :=/0 ﬂgl(w)gg(wmw.

4.7 Plane waves and circular waves

Let 6y (¢) := 6(¢ — 1) denote the deltafunction on the circle at the point ¢ € T.
The Fourier decomposition of §y, is

I S o
dp(@) =5 Y, em (4.28)
(Note that i/; is an o.n. basis of L?(T).) Obviously

el — / ™Y 5y (4)dg. (4.29)
T

Define the plane wave in the direction 1, which we write in Cartesian and
polar coordinates:

fw = \I’(27T5¢), (430)
fw($7y) — ei(accosw+ysinw)7 (431)
Fulr, ) = el cos@=0), (4.32)
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Define also the the mth circular wave with g, := i~™e!™?:

fm = W(Qm), (433)
1 o . .
fm(x,y) _ %lim/ el(mcostrysmw)elmwdw, (434)
0
1 27 . . .
ulrs) = 5 [ resogneay, (435)
T Jo

One can pass from the plane waves to circular waves and back by the Fourier
transformation:

1 27 )
=— ™" fue™Vd 4.36
fm o o 1 fwe wa ( )
fo=Y_ i™fme ™. (4.37)
Recall now the formulas
1 T
T(r) = o (5=t a, 4.3
)= 55 /o0 (5-17) (4.38)
2D = N (). (4.39)
Setting t = ' we obtain
L[ rsingg-imo
m — 17 S1n —1m d , 44
I (1) 277/0 e e ) (4.40)
e = N MO (1), (4.41)

Setting £ = ¢ — 1 — 7 in (4.35) we obtain

fm(r7 ¢) = Jm(r)eim¢~ (442)
Thus (4.36) is essentially equivalent to (4.40), the Bessel integral representation
of J,, and (4.37) corresponds to the formula for the generating function (4.41).

4.8 Action of translations and rotations on solutions of
the Helmholtz equation

The operators U, preserve FS'(T) and FL?(T). They are unitary on FL?(T):

Uty U(g) = W (e cospmomisinduog), (4.43)
9, V(g) = ¥(icostpg), (4.44)
9y, = V(isintpg) (4.45)
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In other words, plane waves diagonalize translations:

U$0 ” fﬂl _ efia:g cos 1 —iyg sin w)fd)

Oy fy =1cos¥ fy, Oy fy = isin fy. (4.46)
The operators Ry preserve the space FL?(T) and are unitary:

Ro¥(g) = ¥(g(-—0)), (4.47)
LY(g) = ¥(9yg). (4.48)

Thus circular waves diagonalize rotations:

Rofm = e_imefm7 (4.49)

By (4.22) A¥ raises/lowers L by i. Indeed, let LW = im. Then
LATY = [L, A*)U + A* LU = i(m £ 1) AT 0. (4.51)
More precisely, we also easily compute
AT fin = — fint1, A" fm = fim—1 (4.52)

This corresponds to the recurrence relations
(ar - @)Jm A (ar n T)Jm S — (4.53)
r r

4.9 Graf addition formula
Theorem 4.2 Assume that R, v, p and ®, ¢, ¢ are related as

: ; ; ; . rei® + pel?
R= \/ et + pei¥)(re=i¢ 4 pe—i¥), ¥ =, — "
(rei? + pel¥)(r pe=¥) o ——T

Jm<R)eim<I> _ Z Jn(p)eim/)(]min(,r.)ei(m—n)dﬁ.

n=—oo

Then

If m € Z, then there are no restrictions on the parameters in the formula. If
m is nonintegral and all variables real, then one has to assume that p < r (or,
equivalently, |® — ¢| < 5 ). We can then replace the Bessel function in Jp,(R)

and Jp—n (1) with Hy(,? or Y,
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Proof. We put 1; = — ¢, =0 — ¢. Then the problem is reduced to the
case ¢ = 0.

Z JIn (p)eimpjmfn(r)

n=—oo
S [ exp Gttt ) o) e

omi 2 ), 7P "
_ i T - Py iy pipn—1\)—m—1
= = 7exp(2(t £7) + 5 (ke — (') ) )
_ L E _ o1 —m—1 im® _ _imP
= 5 | exp ( 5 (s—s1)s dse'™® = e™® J, (R).

In the first step we used the integral representation of J,,,_,(r), in the second
step we used the generating function to sum up J,(p), finally, in the last step
we used r + pe'¥ = Re'® and turned the contour. O

Substituting
T1 = 1 COS @, Y1 = rsin @,
Ty = pcosy, Y2 = psing,
= Rcos®, y = Rsin®,
we obtain

(x1,y1) + (22,92) = (x,¥)
and the addition formula can be rewritten as

Im (v @2 +y2)(\/%>m (4.54)

_ 2 2 T2 +1y2 m-mn 2 2 x1 +1y1 n
- Z‘]mfn(\/fcz‘Fyg)(m) In(y/ @7 +y1)(\/ﬁ) :

neZ

Below we will interprete the Graf addition formula for m,n € Z in terms of
the representation of the translation group. Let us compute the matrix elements
of the translation U(z,y) in the basis f,,. Let (x,y) = (r cos, rsin):

1

— i e—ircos(w—¢)ei(m—n)¢i—m,+nd¢ (456)
27

= Jpmn(r)e i(m=mv, (4.57)
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Now, by definition of matrix elements, and then by the group property,
(U(*fca *y)fm)(%,yl) = fm(z1+ 2,01 +y) (4.58)

= Z fn(ﬂCl,yl)Unm(*xv 7y)7

n=—oo

Upm (=22 =21, —t2 = 1) = Y Ukn(—22, =y2)Unm(—21, —31). (4.59)

n=-—oo

Both (4.58) and (4.59) are interpretations of the Graf addition formula.

4.10 Helmholtz equation on a disk

Consider the disc K = {2%? + y? < 1} and the Helmholtz equation on K with
the Dirichlet

ApF +w?’F =0, (v,y) € K; F(z,y) =0, (z,y) € 0K; (4.60)
and Neumann boundary conditions
ANF +w?F =0, (v,y) € K; (20, +y9,)F(z,y) =0, (v,y) € 0K. (4.61)

We are looking for F' € L?(K) and w > 0 that solve these eigenvalue problems.
One can show if F' € L?(K) satisfies the Helmholtz equation, it has to be
smooth.
Recall that
82

1
A=+ -0, +—2. (4.62)
T T

Solutions of the radial equation are spanned by J,,(wr) and HZ
0,1,2,.... It is easy to see that J,,(wr)e™?, m € Z, are smooth.
The functions HE (wr)el™? are not smooth, at zero, hence they are discarded.
Actually, HE(wr) ~ r~™, m = 1,2,..., therefore HX(wr)e™? are even not
square integrable for such m.
The function Hi (wr) ~ log(r), is square integrable. Tt should be discarded
as well—it corresponds to a “Dirac delta charge” at the origin. In fact, if we

apply the Gauss law and compute the flux through the circle around 0 we obtain

(wr), m =

/027r rd¢d, In(r) = %27# = 2.
In other words
Aln(r) = 218y, hence (A +w?)HE (wr) = 276. (4.63)
Hence acceptable solutions are given by

F(r,¢) =™ J,(wr), m € Z. (4.64)
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The boundary conditions give
Jm(w) = 0, (Dirichlet) (4.65)
J)(w) = 0, (Neumann). (4.66)
The Helmholtz equation can be derived from the wave equation
(=02 +A)f=0 (4.67)

by setting F(t,z,y) = e“'F(x,y). Thus the frequencies of a disc-shaped drum
are the zeros of the Bessel function J,,, and the frequencies of a disc-shaped
cymbal are the zeros of its derivative J,,.

5 Distributions in d =1

5.1 Homogeneous distributions of order —1 and 0

The function % is not in Llloc, therefore it does not define a regular distribution.
However, it can be naturally interpreted as a distribution as follows

P/%gb(x)dx - (/;+/aoo);¢(a:)dx+/a ~(6(w) — 6(0))d.

a

(We are writing P to indicate that it is not the usual integral). Equivalently,

%:: %((x—il—iO) * (m—lio)>'

The Sochocki formula is relationship between three kinds of order —1 distribu-
tions:

1 1

rx0 2@
/ e~y = 2m(k), (5.68)

—ixk _ T
/H(j:x)e dz = FE0 (5.69)
/sgn(x)e*i"’/’kdx = 721%, (5.70)
/5(x)e_i””kdx = 1, (5.71)

e—ikac )
/;v:i:ide = F2mif(+k), (5.72)

efikx

77/ . dz = —mnisgn(k), (5.73)
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) 9. —iNe
/e”gs(s*)\)flds _ { 2mif(g)e™ = ImA <0,

2mif(—€&)e ¢ ImA > 0;

P/e*igs(s ~N)7lds = —zisgn(&)e P, ImA =0.

5.2 Homogeneous distributions of integral order

Define for n =0,1,2, ...

I VA S S
zrtl T 2 \(z +i0)n T (2 —i0)n L)

Clearly

0% = (-1l

x Tgntlt

/z”e*i‘”kdaz = 27" (k),

n —izk _ (_i)n+1n!
. 1
n —ixk _ an+1
/z sgn(z)e”dx = 2(—i) n!kn+1’
/5(") (x)e "Fdz = "k,
e—ikw 27T(—i)n+1 N
—ikx _i\n+1
P/E;nﬁdx = 7T<+k:”sgn(k).

5.3 Homogeneous distributions of arbitrary order I

For any A € C
(Fiz +0)* := lim (i + ).
e—

(5.74)

(5.75)

(5.76)
(5.77)
(5.78)
(5.79)
(5.80)

(5.81)

is a tempered distribution. If ReA > —1, then it is simply the distribution given

by the locally integrable function

e:tisgn(m)%)\m‘)\.

The functions
z) = (£2)0(+2)
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define distributions only for ReA > —1. We can extend them to A € C except

for A\ = -1, — . by putting

A ].

= (—e_i%’\(:Fix—i-O)/\ +ei%/\(:|:i;v+0)’\).

2isin A
Instead of o)} it is often more convenient to consider
A
A __T*
(=X S
:%< 2N (Fiz + 0)N — 2 (£iz 4 0) )

Note that using (5.85) and (5.86) we have defined p?} for all A € C.
Theorem 5.1 The distributions p satisfy the recurrence relations

Dap(z) = 9} (a).

At integers we have

pi:n', n=0,1,...;
pi" = (£1)"5"(z), n=0,1,....

Their Fourier transforms are below:

/ €A (2)da = (i€ +0) A

/ ™57 (FiE + 0)*dE = 2mp T ().

Proof. (5.88) follows from

(F1)"Hn!

pln_1($) = o ((.Z‘:I:io)_"_1 — (JSZFiO)_"_l)
_(=#=)"

= - (i) — (@ Fi0) ),

O

(5.84)

(5.85)

(5.86)

(5.87)
(5.88)

(5.89)

(5.90)

Theorem 5.2 Let —n— 1< ReX, A& {...,—2,—1}. Then for any a > 0,

P/xi¢(m)dm = /:O 2 p(z)dx

+/O (6(0) Z '¢,<a> (0))ds

S @ (o : (1)
i+l
2 MU0 Z N+ A+1+10)

=0 = U0
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If —n — 1 < ReA < —n, we can even go with a to infinity

P / 2 é(a)de = / T (o) - S f;fgz)(ﬁ(()))dz. (5.92)
0 =7

Proof. We use induction. Suppose that the formula is true for A

—)\P/xiflqb(x)dx Z’P/xj\rax(b(x)dx (5.93)
:/Oo 220, p(z)dx (5.94)
’ N0
+ /0 20, ((b(:r) ;0 9 (0))dx
= A+j+1 (j+1) ’ ( l)l
+2 e Z

= (- DIA+1)- cA+1+10)

Then we integrate by parts, obtaining the identity for A — 1. O

5.4 Homogeneous distributions of arbitrary order II

We also can define

|z = m<(—ix+oﬁ+(ix+0)*), (5.95)
2
|z sgn(z) = @( (—iz + 0)* + (iz + 0)*). (5.96)

The Fourier transforms:

A—1
/|k|’\ ek g = ¥ (( A;m , (5.97)
2
. (22 —A-1
/|k|’\sgn(k)e’””kdk: = —ir? FEH; ‘g’ sgn(z), (5.98)
2

Especially symmetric expressions for Fourier transforms are obtained if we
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introduce

to=r(3+D)” ()

A1 N
_ -ipf( AL :
= (2n) F( 2+2)2 2((1x+0) +( 1x+0))
2% A ([ a A
= FF(I + 5) <P+(l‘) +pZ (l”))7
A 1,22\ 1
A Z il -
Toaa (%) *F(2+1) (2) x
A 1
=i(2m) 1F(—§)2’%’§((1x+0) ( 1x+0)’\)
2273 /1 A \
NG <2 5) (p+( ) p*(x))
We then have the following relations:
Dutloy = Mg Butloaa = Tow '
oy (@) = (A + Dy (), oaa (@) = 1ot (2);
Fnxe =001, Frigaa = —1oay s
— m -1 m\[ m
ey > (x)zi(m)l 5™ (z), m=0,1,...;
2(3)
“om (=D)™V2 (o
Moad (2) = 0P V(z), m=1,2,....
27(3),,

5.5 Anomalous distributions of degree —1

0(+k)
k

We introduce the distributions =+k} L.

[ otwar —/mba>¢”ka
/ ok dk + log(a)®(0) + /:O @dk

- lim [ %;+amm@)
0

—k)opMdk

dk—i—log
=l ( /*ﬂf’ >)
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/—a¢ dk

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)
(5.106)
(5.107)

(5.108)

(5.109)

(5.110)
(5.111)
(5.112)
(5.113)
(5.114)

(5.115)



We have i
7= R R
We also define 1

— =k kT
o T T

Proposition 5.3 Here are the Fourier transform of various forms of ﬁ and
the logarthm:

/k;le_”kdk = —log(+iz +0) — v (5.116)
im
= —log x| F Esgn(x) -, (5.117)
P/ ﬁe*iwkdk = —2log |z| — 27, (5.118)
, 1

/log |z|e™ "k dz = 47)@ — 2178 (k), (5.119)

, 0(Fk
/log(:tix +0)e " "Fdy = —27r(|t|) = 2my6(k), (5.120)
/log(x Fi0)e Fde = —2rkT" + (—2my Fim)d(k), (5.121)

/10g(m — Ne hdy = e_i’\k( - 27rk;1 +(—2myF iﬂ)é(k)), +ImA > 0.
(5.122)

Proof. We start from one of the formulas for the Euler constant. We change
the variable from k to yk, with y > 0:

—y = / e *log(k)dk
0

/0 ok log(ky)d(ky)

= ylog(y)/ e_kydk‘+y/ e ™ log(k)dk
0 0

ylog(y)é— /0 (Ok(e™ — 1)) log(k)dk — /1 (Oke™"¥) log(k)dk

1 —ky _ 1 oo —ky
log(y) + / S / ¢ dk.
0 k 1k

The rhs is analytic in y on the right halfplane. It is constant on the positive
halfline. So it is constant on the whole halfplane. Therefore, we can replace y
with iz. This proves (5.116), which implies (5.117) and (5.118).
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By inverting the Fourier transform we obtain (5.119) and (5.121). We can

also get (5.121) from (5.119):

/log(x Fi0)e Fdy = / (log |z| F inf(—z))e **dx
1
(k +1i0)

1
= —27P— + (—27y Fim)d (k).
k=

1
= —WPW —2mvyi(k) 7

Here is an alternative approach:

i:hm( ! flé(k)>,

ki v\0 k};‘” v

1 1 2

— = lim (——— — =4§(k
k] V{%(Ww al ))

Here is the computation of the Fourier transform by this method:

—ikx —ikx 1
P/e dk ~ /erk:— -
ki ki v v

1

= T(v)(&ik+0) " =,

1 . 1
~ (; - 7) (1 — vilog(+ik + 0)) — =
~ —log(xik + 0) — 7.

5.6 Anomalous distributions of integral degree

Define

R G D
k:t 1 = ol 61{: kil,
k
Si:il) — kjrnfl + (_1)nk:n71.
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(5.123)
(5.124)

(5.125)

(5.126)

(5.127)

(5.128)

(5.129)

(5.130)
(5.131)

(5.132)

(5.133)



Theorem 5.4 Using H,, defined in (.356), we have

5(n) (37)

n!

1 n
— + (F)"Hy
Ty

- i (s - EEE00),
S (e, S

=l (mliw - ((_1): . 5(21(3;))7
) (e 1y, 200

-t (s - )

Proof. It is enough to consider only z "~

n+1 u
P/ Ty dx—P/ 6 (b(x) dx

1/—1 (v —n)

B 40D ) )
‘/o ) -

_ /°° (2 =1 V(@)
o ()(1=v)--(n-v)

o gy
+/o o) a

) (1=v)---(n—v)

_ /°° log(z)¢!"*V(2) .
0 n!

O

+O(v).

(5.134)
(5.135)
(5.136)
(5.137)
(5.138)

(5.139)

(5.140)
(5.141)
(5.142)
(5.143)
(5.144)

(5.145)
(5.146)

(5.147)

The above proof is taken from Hormander, sect. 3.2. Note that Hormander
treats (5.135) as the standard regularization of z7"~*. We prefer the definition

(5.132).
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Theorem 5.5

-1

P e totade = | (060) = 30 5000 - T (@) )da

N / 1(¢<"> (x) ¢<"><o>) ot

T n! n!

o)

- —FH,.

n!

/ T1e00,,
1 T !

(5.148)

Proof. Let a > 0. If we assume that Rev > —1, then we can use (5.91) with

n replaced with n + 1:
1
Ty
o 1

4 [ i (o) - 3 60(0))do

— - a~"TIitY ) y 1
2 O G

1=0 (n—v)
The last term of (5.150) is
) n—1 1
-9 (O); (n=Dn-1-v)---(n—v)
1
O
= - ()
+260(0) - +log()6™) (0)
+om O 1 00)
_Lome L ) (0) L
=26(0) 1 +1og(a)6 ) (0) L + OW).
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(5.150)

(5.151)

(5.152)

(5.153)
(5.154)
(5.155)

(5.156)



Thus we have proven that

P/ e dx—/ ﬁ(b(m)dx

+ / (o) - _ ﬁas@(m)dm

<.

_ Z a0 (0 Z T (5.157)

=0

(n (m)(o
¢ O g7, 4 tog(a)? |() (5.158)
n! n!
Then we take a — 0o, noting that
/ 'z = log(a).
1
0O
Proposition 5.6 The Fourier transform:
P / k" lemiokdg = %( ~ log(+iz + 0) — 7) (5.159)
~ (Fix)” im
= ( log |z| F Esgn(m) 'y) (5.160)
Proof. We use (5.135):
e8] efi:rk (:Fll')n ) e8] efizk: (:Flk)n
/O Srdk+ S H, 73%(/0 Ak - ) (5.161)

:i{‘r%)(l"(—n—i—u)(:tlx—i—O) —— )(5.162)

= <(_nl!)n (5~ + H) (i)™ (1~ vlog(:tiz + 0)) — Fik)n)

_ (:F;Ll")n(

— 7+ H, — log(+iz + 0)). (5.163)

Note that the terms containg H,, cancel. O

5.7 Infrared regularized distributions

Theorem 5.7 Letn+1>2a >n. Then

ek(?]i) = o ((kzi(% (5.164)
- Z O;n;; _j 1)FF((2)+ 2 (—1)j5(”(k)). (5.165)
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Proof. Clearly,

is the limit as m — 0 of

| s (00 - S 0 o).

|
i=0 J
Now
/°° k7 G — Mla—i-Lrd+1
o (k24 m?2)> 2m2e—i—1T(a)
O
Theorem 5.8 Let2p+1>2a>2p—1,p=1,2,.... Then
1 I ( 1
= lim (————
‘k|2o¢ m—0 (k2 + m2)a
p—1 7Tgm—2a+21+1(_1)l

B ; I'(«) sin (ﬂ(a - %))QZZ!F(% —a+l)

Proof. Clearly,

P [ San= [ (ot - _ A0 (0)ar

is the limit as m — 0 of

p—1l ;o
| G (00 = 3 o™ )
=0

6(2‘)(k)).

Now
1 / B m 202D (o — 1 - DT+ 3)
@) (k2 +m2)e I(a)(20)!
ﬂ_%m—2a+21+1(_1)l
I(a)sin (m(a — 3))220T(3 —a+1)
O
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(5.166)

(5.167)

(5.168)

(5.169)

(5.170)

(5.171)

(5.172)

(5.173)

(5.174)



Theorem 5.9 Letn=0,1,.... Then

(2p)!

Proof. Clearly,

0(k)o(k)
P / e dk

is the limit as m — 0 of

| G (009 - 5 Lo (0)ar

=0

[ s
o ( .

K2 +m2)its "l

Now for n = 2p + 1 we have

1 k2p+1
|,

R =R IGETT

' 17]{ dk
0+/0 k2 +m?

1 + 1 ¢ ( t )
————— + —arctan | —
2j(1+m?2)7 2 m

NE

j=1
1 0
= —§Hp — log(m) + o(m”).

Then we use
1 1

1
Haper = 51y = 3y (3)
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0
- 1H, 1 (3) + log(m)> G (C1PI(), n=2p+1;
1H, —log(2) + log(m)) 160 (), n = 2p.

(5.175)

(5.176)

(5.177)

(5.178)

(5.179)

(5.180)

(5.181)

(5.182)

(5.183)

(5.184)

(5.185)



For n = 2p we compute

1 k2p
dk (5.186)
o (k2+m2)p+%
p—1 2j+1 1
k 1 k
== +/ ————dk (5.187)
=0 (2] )(kQ + m2) 0 0 (kz + m2)§

=— Zp: 1 — +1log (1 + /14 m?) —log(m (5.188)

() + D)1+ m2)y 3

j=1
1 1
- —iﬂp(i) + log(2) — log(m) + o(mP). (5.189)
Then we use
1 1 1
Hap — 5Hp(ﬁ) = SH, (5.190)
O
Using (2.67) we derive
e~ ike orzm=2etL x|\ o—3
dk = (Z5) " Kay . 5.191
/(k2+m2)a T(a) 9 a ;(m|$|) ( )
Note that (5.191) is bounded if o > ;, has a logarithmic singularity at zero
if a = 2, and has a singularity |z[?*~! if a < % Therefore, it is no longer a

regular distribution if a < 0. However, by applying (—92+m?) sufficiently many
times to (5.191) we can interpret it as a distribution for all a. (For a@ = —n,
n=0,—1,-2,... we simply obtain (—9% + m?)").

Suppose now that the assumptions of Thm 5.8 are satisfied. Let us compute
the Fourier transform of the linear combination of the deltas:

1 —2a
/pZ wzm 2 +2l+1( 1)l 6(2l)(k)efikmdk (5'192)
) sin ( - 3)22Ur (2 —a+1)
7r2m_2°‘+2l+1
:Z o a 22T l o (5:199)
= T(a)sin (7 (a=3) (3 —a+l)

Now the rhs of (5.191), using the identity (2.48), can be written as

5 m 20+l mz| a—1l

F(a)sin(ﬂ'(afé))< 2 ) Iy 3 (mfzl) (5.194)
13m—20+1 mz|

7F(a)sin(7r(a—%))< B ) I 1 (mlz]) (5.195)

Now (5.194) is equal to (5.193) modulo O(m~=2¢F2P+1) (5.194) is equal to

w3l (5 — ) (M)Q‘H (5.196)

I'a) 2

modulo O(m?). This is a confirmation of the correctness of Thm 5.8.
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5.8 Distributions on halfline

We will denote by C°°[0, co[ smooth function having all right-sided derivatives
at 0. We set

CR[0,00[ := {¢p € C[0,00[ : ¢@™ T (0) =0, m=0,1,...},  (5.197)
CE10,00] == {¢ € C*°[0,00[ : ™ (0) =0, m=0,1,...}. (5.198)
Sx[0, 00[, Sp[0, 0o[ have obvious definitions. We set S [0, o], S,[0, 00[ to be
their duals.
Note that 9, and the multiplication by z map Sx[0, oo into Spl0, o[ and

vice versa, as well as S{[0, oo into S0, oo[ and vice vera.
The cosine transformation with the kernel

Fn(z, k) = \/zcos(:ck‘)

maps S [0, oo into into itself. We have
Likewise, the sine transformation with the kernel

Fn(z, k) == \/zsin(xk)

maps Sp[0, oo into into itself.
Let I¢(z) := ¢(—x). I maps S(R), as well as extends to a map of S’(R) into
itself. We will write

Sev(R) :={¢p € S(R) : I¢ = ¢}, (5.199)
SL(R):={AeS'(R) : IA=2A}, (5.200)
Soaa(R) = {6 € SR) : I = —g}, (5.201)
! a(R) = {AeS'(R) : Ih=—A}. (5.202)

If ¢ € Sx[0, 0], we set

o= {20 728

Note that ¢V € Sev(R).
If Ay is an even distribution in S'(R), then we can associate with it a
distribution in S{[0, oo[ by

>~ 1 eV
/0 An(z)o(x)dx = E/Acv(m)gb (z)dz.

Similarly, if ¢ € Sp[0, 00|, we set

¢odd(z) — {¢((E> x > 0;



Note that ¢°d € Syqq(R).
If A\oga is an odd distribution in &’(R), then we can associate with it a
distribution in S;[0, oo by We set

/0 b (2)6(x)dz = % / Noaa ()6 (2)da.

The usual Fourier transform F preserves Sev(R) and Syqq(R). The Fourier
transform on even distributions is closely related to the cosine transform and
on odd distributions to the sine transform:

FNAN = (f)\)N, A€ Sév(R), (5.203)
Fodp = i(FA)p, A€ S q(R). (5.204)

An example of an even distribution is 7.,. Let nn denote the corresponding
distributtion in S0, co.

Likewise, an example of an odd distribution is 7,qq. Let np denote the
corresponding distributtion in S0, col.

We have

Fand =g, Fonpy =4 (5.205)

6 Distributions in arbitrary dimension

6.1 Sphere S%!

Consider the Euclidean space R?%. Introduce two varieties of spherical coordi-
nates on a d — 1-dimensional sphere

(ad—27-'~761a¢) € [Ovﬂ-} X X [O,Tf’] X [07271-[7

(waz, ... w1, ) € [0,7] x -+~ x [0,7] x [0, 2x],

with w; = cosf;, The spherical measure on ST is

sind_Q Qd,gdﬁd,g ---sin 91d91d¢
= (1—w2 )3 2dwy_y - dwde.

Theorem 6.1 The area of the d — 1-dimensional sphere is

ons
Sd—l = )
r(g)
or, in a more elementary form,
o2pmtl
S2m+1 = T, m = 0,17, (6206)
2 m
Sm:(l7T . m=0,1,.... (6.207)
2/m
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Proof. Method I. We compute in two ways the Gaussian integral: in the
Cartesian coordinates

4
2

/e T Iddxl...dxd:ﬂ' ,

and in spherical coordinates:

e 1 /d
—r®, d—1 _ - el
Sd,l/o e " idr = 2F(2). (6.208)

Method II. We compute the area of the sphere in the spherical coordinates:
27

Sut = / sin" gy ydy_y - - / sindodds | dén
0 0 0
Then we use

T T k—1 27
/ sm’“—lqﬁkdm:&k?), k=2,...,d—1; / dgy = 2.
0 r'(s) 0

6.2 Homogeneous functions in arbitrary dimension

Theorem 6.2 Let —d < X\ < 0. Then on R¢

. r(2td —2—d
/|:v|/\eﬂzgdx:7r% ( 29‘% . (6.209)
I'(=5)12
Proof. We use the spherical coordinates:
/|x|/\e_i$5dx (6.210)
= / dr/ dgbd,lr/”d*le*mg‘Cosd’d*lr)‘*d*l sin?2 ¢g_154_5 (6.211)
0 0

LA+ d) /E ((i|f| cos g1 +0) " 4 (=il¢| cos a1 + 0)_’\_d) sin?™? ¢g_1dgpa_1S4—2
0

A+d e [T  de
= T(A+d)2cos (Tﬂ) €] A d/ cos 4 g1 sin? 2 gpg_1ddg_1S4—o.
0

Then we apply

g 27(%
d—2 = 1y
L
ES A—dtl 1
2 ~r—d . d—2 1T(=25 (%)
cos Ga—18n""“ pg_1ddpa—1 = = ,
/ D
1
P(A+d) = g 32Md-lp A;d)r()‘+s+ )
COS()\+d7T) = T
2 I\(A—i—éi-‘rl)l'\(—)\—Qd—i—l)’
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and we obtain (6.209) O
In order to express (6.209) in a more symmetric way, define

2,2
2

1 T
A
N (x) = (—) . A>—d.
D3\ 2
We extend it to A < —d by setting
—2m —2)™ m
,'7/\ 2 L(m) — ( )\) AnT])‘( )
(=%)m
Then
Ft =n A,
22 = (A + d)yn 2,
An)‘ = )\nk_Q.

6.3 Renormalizing the |k|~¢ function

Define the distribution |k|~¢ on R%:

(6.212)

(6.213)
(6.214)
(6.215)

—d o —d _ —d
77/|k\ o(k)dk := /k<1|k| (gb(k) qﬁ(O))kor/k |k|~ %o (k)dk..

[>1

Theorem 6.3 We have an alternative definition of |k|~¢:

2 s
k=% = lim (k|7 — —=4(k)). 6.216
1% =l (1 = 0 (6.216)
Here is its Fourier transform:
r'(4) — r 1 dy 1
O TOR
QW%P/|| ¢ o6 (3)T3¥(3) 37
= —logr — 1, d=1;
r
=—tog (5) -, d=2;
og 9 Y
1
= —logr—7+3 m(i), d=2m+1;
r 1
:—1og(§)—7+§Hm, d=2(m+1)
Proof.
—d+ —14 o7s
/ k| ”dk:/ kAl = 22 (6.217)
kl<1 kl<1 vI(3)

This proves (6.216).
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/ |k|~dtveikedq (6.218)

d
m2[(5)
_ (T 6.219
@) 0219
r 7t v ,d 2
~ (1= 3)) 5 (1459 3) ()
ore /1 ry 1 gdy 1
(4 (16 (3) +3v(5) - 37) (6.220)
O
7 Bessel potentials
In this section we analyze some distinguished solutions of
(14 0)*D(z) = d(z), (7.221)

where O is the Laplacian on the pseudo-Euclidean space R%4~7 (¢ minuses and
d — ¢ pluses). Formally, D is given by the inverse Fourier transform

elPr d
D(x) =/7(1+p2)a (Qf)d, (7.222)

where p? is the square of p wrt the scalar product of R%%~4. However usually
we need to regularize the integrand of (7.222)
Note that if D solves (7.221), and m > 0, then

(m? + 0)*m42*D(mz) = 6(x). (7.223)

The following identities will be useful:

1 1 < A a1
—_— = 4527 d 224
a5 ey f, o (229
1 eTEY [ i
= AT de. 7.225
(A£i0) r<a>/0 ‘ (7:225)

We will also need the Fourier transform of the Gaussian function on the Eu-
clidean space R?, and of the Fresnel function on the pseudo-Euclidean space
R%9=4 (with ¢ minuses):

sp? 2 4 z2
/dpe*Te‘p”J = (I) fe 5, (7.226)
s
:t 2 % +iTd cx?
/dpe 5 elPe — () ( ; ) etaleTior, (7.227)



7.1 Euclidean and anti-Euclidean signature
Consider the Euclidean space R?, with |z| denoting the Euclidean norm.

Theorem 7.1

kil dp = 2 m 047% al|r
/ P+ 1) 2m)?  T(a)(dm)? ( 2 ) Ko g(l2l), (7.228)
elpz dp B W(:Fi)d71 m a—g N i
/(—P2 +1£i0) 2m)?  T(a)(4r)? ( 2 ) H~ y(z))- (7.229)

Proof. By (7.224) and then by (2.45),
/ eipxdp
(1+p?)*

= () s [ [ apere ot
2 (@) Jo
da
2

_ o (m>a_%K 1 (|z]).

By (7.225), and then by (3.110),

IN())
T (42 d
_(m (a=g) ¢T3 +2)7T2/ dtet B+ pa—g-1
2 () 0
m(Fi)41rt <|x|>a*% 4
- )
T(a) \2 3 (I

7.2 General signature

Consider now a pseudo-Euclidean space of general signature R%4—4.

Theorem 7.2

elpT dp
/(1 + p2 £i0) (27)d (7.230)
O 2(F)? VP Fi0No-s e
7F(a)(47r)%< 2m ) Ka—%(m) (7.231)
o mi(F)? -z Ei0\e-s —
= I(a)(4m)% ( 2 ) H, 4 (V=22 +10). (7.232)
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Remark 7.3 In (7.231) and (7.232) we use the notation explained in (3.118a)
and (3.118b). Note that (7.231) works best for x®> > 0, because then we can
ignore Fi0. Likewise, (7.232) is best suited for x? < 0, because then we can
tgnore +£i0.

Proof of Thm 7.2. using (7.225) and (2.49) we obtain
/ eipacdp
(1+p? £i0)®

Figa
QGQF / dt/dpe 2t(1+p2)tafleip1

(:Fl)qe:Flz (a— %
2Q*EI’(a)

/ et (=) ga—g-1, (7.233)
0

For 22 > 0, we change the variable ¢t = +isvx2, so that (7.233) becomes

(\/ﬁ)(a—g)(q:i)qwg /OO dsef‘/;iz(s+l) a—94-1
0

2 (@) e
iqﬂ% \/33’72 a—4
e (5) K ),

For 2 < 0, we change the variable ¢t = sv/—z2. By (7.225) and (3.110) we
transform (7.233) into

d
2

( 392)(a—g)(:|:i)qe¢ig(ag)7r /oo dseTi Yo 2 (541 ) ga—g-1
0
d
2

2 I'(«)
_2(F)Im N —xZ\a—% , 5
R (T R

~a T (5T)

Then we notice that vz2 and Fiv/—x? can be joined in vz2 Fi0. O

7.3 The Minkowski signature

R~ is called the Minkowski space. (We use the signature “mostly pluses”).
This case is especially important and rich.

Let us state the special case of Thm 7.2 for the Minkowski signature as a
separate theorem. We also introduce special notation.
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Theorem 7.4

= eipa: d
P a) :7/ (1+p2 £1i0)° (zf)d (7.234)
g /PFyed -
_jFr(a)(zm)%( 2 ) Ka—g(\/m) (7.235)
__T VIR EON Oy
F(a)(47r)%( ) HE,(V=a?Ei0).  (7.230)

Suppose that 20 denotes the first coordinate of R¥~1 which we assume to
be timelike (having a negative coefficient in the scalar product). The remaining,
spacelike coordinates will be denoted #. Then we set

JVi={zeRM 1 . z2<o0, 2°>0},
JNi={reRMT . 22 <0, 2°<0b

Theorem 7.5

V/A elp® d
DY/ (z) :2/ (1 + p?  i0sgnp?)™ (27:3(1 (7.237)
(40— V_rZ ri0\e-§ ——
= e an? <( ) H! (V=22 +i0)
+(#)W%H(Lg( —w2—10)> (7.238)

is a distribution whose support is contained in JV/™. Inside JY/™ we have the
identity

VINg) = 27 —a?\eT a(\/ —x2
DY/ () Y (% > ) e (V=a?), (7.239)
We also have -
DE(x) + DE(2) = DY(x) + D)\(x). (7.240)

Proof. Let us now prove that the support of (7.237) with the minus signed is
contained in JV. By the Lorentz invariance it suffices to prove that it is zero
for ° < 0. We write

/ eip:vdp _/ e—ip0m0+iﬁfdp0dﬁ
(p* + 1 — i0sgnp®)= (72 + 1 - (p° +10)2)"

Next we continuously deform the contour of integration, replacing p" + i0 by
p’ + iR, where R € [0,00[. We do not cross any singularities of the integrand
and note that e=1=’®"+R) goes to zero (remember that z° < 0).
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Next we note that

/ <(1 + p21+ i0)> * (1 +p21— i0)« )eipwdp (7.241)
() v
* (#)a_%@;g( —z% — iO)>. (7.242)

Taking into account the support properties, we obtain (7.238). Finally, using
(3.106) we obtain (7.239). O

We also introduce special notation for some solutions of

(1+0)*D(z) =0. (7.243)

DY (z) := DY(x) — D)(z), (7.244)
D/ ) (z) := —iDE () +1iDY/ " (x) (7.245)
= iD¥ (z) — iD)/Y (2). (7.246)

Here are expicit formulas for these solutions:

D" (x) =sgn( )F(a) ey (( o ) Hw%(\/ﬁ)
+(#)ng;%( —1’2—10)> (7.247)

N T
DF) = g( 27 = Sgnr ) 'K a (V/2? £isgna0). (7.248)

I'(a)(4m) 2 Tz

Note the identities

DY (z) = —iD(P) () +iD7) (z), (7.249)
DE(z) — D (z) = iDSP) (z) +1DS) (2). (7.250)

The support of DEY is contained in JY U J”. In the interior of JV U J" we have
the identity

™ m@—%
()

PJ —=Ssgn (EO
DY) =sen(a) = (5

ad (V—a?). (7.251)

93



7.4 Fourier transforms and Bessel type functions

We will have two generic notations for elements of R?: for k € R%, p := |k, and
for r € R4, r = |x|.

Theorem 7.6 Let Rea > g. Then

d F(Oé — d)
2 2\ —« _ - 5,,d2x 2
/(k +m*)"*dk =7m2m T (7.252)
—ika (.2 o—aqp 4 d-2a_ 2 (M =%
/e (k*+m*) *dk=m2m F(a)( 5 ) Ka_%(mr). (7.253)

Proof. (7.252) is

P(H)T(a — )

)
S, 2 2\—« d—ld -9, 2—1 d—2«
d 1/0 (p” +m?)"*p* dp = S4-12""m Ta)

To prove (7.253) we use

I'(a)
We obtain
/(1 =+ k2)—ae—ikxdk
- (f)a—l /oodt/dkta_le_(““k?)%te_ik“‘
2/ T(a) Jy

_ (t)a_% ﬂ—% /OO dttafgfle*(tj%_l)%

B 2 I'(a) Jo '
O

Note that the rhs of (7.253) is locally integrable for o > 0. Therefore, (7.253)
is true also for Rea > 0, if the Fourier transform is interpreted appropriately.
We can actually extend (7.253) to all € C, in the sense of distributions.

In the range 0 < Rea < £ both (7.253) and (7.254) are regular distributions
Using the asymptotics of the MacDonald function we easily see that as m 0,
the rhs of (7.253) converges to

r F(F(;)) (g)m_d. (7.254)

\Glj~H

In the distributional sense this convergence is true for all o € C except for
a= g +n,n=20,1,..., because then k% = ﬁ, which is the anomalous case
and an additional renormalization is needed.
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7.5 Averages of plane waves on sphere

Consider the Euclidean space RY. Let us take the average of plane waves over
the unit sphere S¥~1. Let dQ denote the standard measure on the sphere.

/ e k20 (k) (7.255)

= / e ipreosfqind=2949S, , (7.256)
71 . d—3

= / e Pl —w?) T dwSy (7.257)
—1

= (2m)* s (pr)(pr) (7.258)

The Fourier transform of a radial function is radial and we have the identity
[ ke ek = em? [ 074 ) r) F " .
Here are the low dimensional cases:
[ #re=ar

zé f(p)cos(pr)dp, d=1;

QWA F@plo(pr)dp,  d=2

dm /OO f(p)pQMdp, d=3.
0

pr

In particular, in dimension 1 we obtain

L(r).  (7.259)

2

o orl/2 fp\a—3

2 A+p?)° p = T (7)

/O (14 p7) " cos(pr)dp o) (2 am

Setting m = a — 3, we obtain the Poisson representation (2.65).
In dimension d = 2 we obtain

o 2 sryoe—1
2 1+pH)~@ dp = —(= Ko 1(r).
o [Caey ey = 5 (5) Kaa )
In dimension d = 3 we obtain
o 5i 213 srye—3
4 1 2\ —« bln(pr) d — o K .
7T/0 (L+p7) pr pep I'(«) (2) a_%(r),

which could be also deduced from (7.259) by differentiating wrt r.
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7.6 General signature

Suppose that the scalar product on R? has a signature with ¢ minuses.

Theorem 7.7
/e_ilm(m2 42 iiO)_adk' (7.260)
Y a_i
[ () Ky ) S
= _g '
:|:7r2md Qaﬂ}((:';l)) (@)@ 2H;|:7@(m —1’2) 2 <0.
2
Proof. We use
etz > +itA 1
(A£i0)™ = 7/ et A 1qe, (7.262)
T'(a) Jo
(7.260) for 22 > 0 is
ae:Fl o
( T / dke (7.263)
I'a)
2\ (a—9) 4oFiT(a—4) 4
J@) : (4:1) ¢ 2/ dtetiVE (a4 -1 (7.264)
5 (a,é) 1Y 732
(bt / - 2
) ' 0
which is the first case of (7.261).
(7.260) for 2% < 0 is
— 2 a Figa
( R / dt / dke#i1(+K) Y5 a1 ke (7.266)
d d o
:(E)<a_§>(¢l)q&‘2(a z)m/ et F D e—d-1 (7.967)
5 I'(a) 0 7

which is the second case of (7.261). O

7.7 Averages of plane waves on hyperboloid

Consider the Minkowski space RM@~1. Let us take the average of plane waves
over the unit future hyperboloid Hi_l. Let d©2 denote the standard measure on

Hi‘l. Let z be a future oriented vector.
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/ e R dQ(k) (7.268)

= / e iPreosht inh =2 9d0S, (7.269)
1 . d—3

= /e_‘prw(wQ—l)waSd,l (7.270)
-1

= e_i”(m+%)(QW)%H%__l(pT)(pr)_%_l. (7.271)

8 Integrals of Bessel functions

8.1 Scalar products
Theorem 8.1 We have the following indefinite integrals:

[ aknan)Knbe)in = (B (o) o) — Do) o1 (00)).
’ Re(a+b) > 0,
[ etmtaarar = G Rt + " o))~ o)
! Rea > 0.

Proof. Let us prove the first identity. Using K,,, = K_,,, we write
y(aKn-1(ay) K (by) = DKo (@) K1 (b))
= ay "MK i (ay)y" Ko (by) — by™ K (ay)y ™K g (by).
We differentiate using the recurrence relations. We obtain

@y " K (ay)y" K (by) + aby™ ™ K 1 (ay)y" K1 (by)
—aby™ Kp—1(ay)y” " K 1 (by) — b2y Ky (ay)y™ ™ Ky, (by)
= (a® = V*)yKm(ay) K (by).

o7



Theorem 8.2 We have the following definite integrals:

w(a™b™™ — a”"™H™)
2sinmm(a? — b?)
m # 0, [Rem| <1, Re(a+b) > 0;

3

/ 2Ky, (ax) Ky, (bx)de =
0

e Ina—1Inb
/0 xKo(ax)Ko(bz)dz = = Re(a +b) > 0;
(o)
/ rK,(az)?de = ——— G 3
0 2sinmma
m #0, |Rem| <1, Rea > 0;
e 1
2 —
/0 rKo(ax)*dr = 22 Rea > 0.

Proof. Assume that 0 < Rem < 1. Then for small z

™ 7r z\~m
Ky, ~ . I_ ~ . <*> s
() 2sinmm m(2) 2sinmmI'(1 —m) \2
T 0 z\m—1
Ko ~ T T (2)
1(2) 2sin7t(m — 1) 1(2) 2sinTmI(m) \ 2

Therefore, for small y,

s (@ (@) Ko (by) = b (ay) o (b))

(a? — b?)(2 sian”f/)QF(m)F(l —m) (a(%>m71 (b?y)ﬂn B b(%)im(%y)mil)

(@™~ — a” ™)

2sinmm(a? — b?)

Q

8.2 Barnes integrals

Theorem 8.3 For Rez >0, ¢ >0, c+ Rem > 0,

K (z) = 8i7r /_O:O F(c + i58)1“(0 + g + m) (g)ikiikmds. (8.272)

i [ e o))
- S () 3 ()

° s z 2n—m OO T z 2n+m
-3, G m—c
- On.F(l —m+n)sinTm \2 On.F(lerJrn) sin rm \ 2

™

- (Lm(z) - Im(z)) = 2K, (2).

sintm
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The integral is convergent because of the estimates

’F(c + g)l"(c + g + m)‘ < c(s)etReme=3s, (8.273)
—2c—is—m
‘ (g) ’ S |Z|7207Remes argz (8274)

Of course, we have a version for the Hankel functions.
The following representation holds only for real x

Theorem 8.4 For(0<c< %Rem,

Im(x

1B it m+3—2c—it
(ct+3) )(x) at. (8.275)

1 oo
)24\/7?/_00F(m+1012t 2

8.3 Integral of Sonine and Schafheitlin
([1] Exercise 4.14, p. 236):

/°° I (2€) S (y€)dE
0

e
kD (ltmtk=2X 1 — E—\ 1 k— )\ 2
_ Y ( 2 ) S m+ 7 +m+ ;k+1;yf Ly <
A Th=AT (k 4 1)T (Lmpk=2) 2 2 z?
g™ (LEmEh=A) T+m—k—XA 1+m+k—\ z?
= 1— T—\ ) am+1772 , T<Y
22 yHm=AD(m 4 1)T (=2=2) 2 2 Y
8.4 Another integral
The following integrals essentially Watson, 13.31 (1):
| exp(-as™) () o0}y (8.276)
0
1 a’ + b? ab T
_ _ . Im(*), -1, —. 2
% exp ( 17 ) 5 Rem > |arg q| < ) (8.277)
Here is its another version:
| exp(-av™ () By (3.275)
0
1 a? + 32 af 7r
— I, (—) 1, T 2
% exp ( 10 ) 5 Rem > |arg q| < 5 (8.279)
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9 Klein-Gordon equation in 1 + 1 dimensions

9.1 Hyperbolic coordinates

We have the coordinates
1 1
= —(t _ = —(t — .
The space RU! is divided into 4 sectors:

Jiv  ={ty) : t>yl} ={ry>0, z_ >0},
J— ={(ty) : t<—lyl} ={r4 <0, 2_ <0},
Ji—  ={ty) y>t]} ={z+>0, 2_ <0},
Joo ={lty) : y<-It]} ={zy <0, z_>0}.

There are 4 hyperbolic coordinate systems:

Jig: t=rcosh¢, y= rsinh o,
=Vtt—y? o= log t+y)—710g(t—y)
1 1
Ty = imq5 r_ = ire_qﬁ;
9 t = —rcosh¢, y= —rsinha,
1
=Vt2 -y 9= log —t—y) - 5log(~t +y),
1 1
Ty = —§re¢, r_ = —gre_‘i’;
by t=rsinh¢, y= rcosh o,
1
=Vy* -t 9= log y—1t) = 5log(y +1),
1 1
Ty = §Te¢, r_ = —ire_¢;

J_ 4 t = —rsinh¢, y = —rcosh¢,

1
=Vy2—t2, o= log y+t)—510g(—y—t)7

1 1
Ty = —§Te¢, r_ = ire_‘b;

The d’Alembertian in all sectors is

O = —8252 + 85 = —a$+am7 = 83 + T'_lar — 7"_26;.

9.2 Plane waves

We look for solutions of the Klein-Gordon equation

(—O+1)F =0
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of the form )
F(t.o) =5 [ [ Flemermrmagan,
We obtain
(—m*+ 7+ 1)F(&n) =0.
Positive frequency plane waves are parametrized by ¥ € R and given by

fw(%y) — ei(fzcosthrysinhw)'

They are solutions of the Klein-Gordon equation. Here is the plane wave in
hyperbolic coordinates:

Jost folr,g) =e momhlomy),
J__: fulrd) = gir cosh(¢—)
Ji_ f¢(r, ¢) = e—irsinh(¢>—w)7
T Julrg) =elrmmn(em),

Positive frequency solutions are given by

o(e,y) = / Fol@,y)g(4)de, (9.282)

where ¢ is a distribution on R. We will denote by H the Hilbert space of
functions on R? of the form (9.282) with g € L?(R). We will treat them as
“nice” solutions of the Klein-Gordon equation.

9.3 Hyperbolic waves
Let us introduce for 4 € R
1 .
= — 1Y Qe 2
fuim 5 [ foeadu (9.283)

Proposition 9.1 Here are the expressions of hyperbolic waves in hyperbolic
coordinates:

vt Julrnd) = Kilir)e, (9.284)
Jo— 1t fulr,¢) :%Ki#(fir)ei’“b, (9.285)
Jie i fulr, o) =ei$m<ir>e“‘¢, (9.286)
Tov: fulro) :ﬁmem(ir)eiW. (9.287)

Proposition 9.2 We can expand plane waves in hyperbolic waves:

fo = / fue e dp, (9.288)
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9.4 Wave equation in 1 + 1 dimension

We will use polar coordinates. Using the expressions (?7) we obtain

0:=02-07 = cos(20)0? — 2sin(2¢)r 10,04 — cos(2¢)r‘28§)
+2r 7?2 5in(2¢)0g — 7 cos(2¢)0;. (9.289)

Thus
r’0 = cos(2¢) (r*07 — rd,) — 2sin(2¢) (rd, — 1)dy — cos(2¢)9;
On functions of the form r7* f(¢) we obtain an operator
Ay = cos(29)(A* — 2X) — 25in(26)(A — 1)0 — cos(26)9;.

Let us substitute w = sin(2¢). One can distinguish two regions:

0p =2V 1—w20,, cos(2¢)=+v1—w? cos(2¢) >0,
Op = =21 — w20y, cos(2¢) =—V1—w?, cos(2¢) <O0.

‘We obtain

A)\ = —4 1—w2{g

This corresponds to the Jacobi equation

> N>
vl
|

3)+2(3 - 1)wd + (1 - w?)d2),
1) — Awdy + (1 — w2)851).

(1 —w?)02 —2(m + Dwdy, +n(n +2m +1) (9.290)

with
n= -—-m= %, (9.291)
-n= m= % (9.292)

10 Elements of partial differential equations

10.1 General formalism

Let
P(k) = Pok" (10.293)

be a polynomial in d variables k = (k1,...,kq). We set
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We consider the differential operator

D)= PaD". (10.295)

One can consider two problems: find solutions of the homogeneous problem
P(D)¢ =0, (10.296)
and, given f, find solutions of the inhomogeneous problem.
P(D)Y = . (10.297)

To solve the inhomogeneous problem, it is useful to introduce a Green’s function
or a fundamental solution of P(D), which is a distribution G satisfying

PG(z) = d(x). (10.298)

Note that if we know Green’s function, then

- / Gz — ) (y)dy (10.209)

solves the inhomogeneous equation.

Green’s function is not uniquely defined. In fact, if G is Green’s function
and (¢ solves the homogeneous problem, then G + ( is also Green’s function.
We will see, however, that often we will have distinguished Green’s functions.
Sometimes we will also have distinguished solutions.

We can look for Green’s functions using the Fourier transformation. In fact,
suppose that G € S(R?). We can write

Glz) = /G 1’”2 =, (10.300)
7T

é(z) = /ei’”(%)d. (10.301)

Equation (10.298) becomes

ik:w
/ o7 277 (10.303)

If (10.303) is well defined, then it prov1des a distinguished Green’s function for
P (D). Unfortunately, often, especially if P has zeros, % is not a well defined

distribution and (10.303) is problematic.

Thus formally,
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10.2 Laplace equation in d =1

Consider P(D) = —92, so that P(k) = k2.
Space of solutions is

a+ bx. (10.304)
Examples of Green’s functions:
Gt(z) = —0(z)z, (10.305)
G (z) = —0(—x)|z|, (10.306)
1
GOz) = f§|:17|. (10.307)

1712 is not a distribution, but it can be regularized.

10.3 Helmbholtz equation in d =1

Consider P(D) = —92 + m?, so that P(k) = k? + m?.
Space of solutions is

are™ +a_e”™* (10.308)
Examples of Green’s functions:
< h

Gt(z) = —e(x)b”“ﬂ(%im), (10.309)

inh
G (z) = —o(—g) SR (10.310)

m
G e 10.311
@) = S— (10.311)

m is a distribution. By the method of residues we can compute:

1 elkm e7m|x|
— dk = 10.312
2 / k2 +m? 2m ( )

which reproduces (10.311).

10.4 Laplace equation in d = 2
Consider P(D) = =97 — 0z, so that P(k) = kI + k. Introduce complex coor-

y7
dinates ! 1
z= §(x—|—iy), zZ= §(Jc—iy). (10.313)
Then
0. =0y —10y, Oz = 0, +10,. (10.314)
We have
—0; — 02 = 050.. (10.315)
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Therefore, solutions are sums of a holomorphic and antiholomorphic function:

G(2) + ¢2(2). (10.316)

In polar coordinates
T=TcCosQ, Yy =rsing,

the Laplacian is

1 1
2 2 2
—0; — 0, = —;arar — T—28¢. (10.317)
We claim that rotationally symmetric Green’s functions have the form
1 1 1 _
a— —logr =a— —log(z) — — log(z) + log 4. (10.318)
2w 47 47

We easily check that a + blog(r) solves the Laplace equation outside of the
origin, either in the polar coordinates, or noticing the decomposition into a
holomorphic and an antiholomorphic function. It is more difficult to determine
the coefficient in front of logr.

Note that PG = § means that for any test function ¢ € C°(R?)

/P d(x,y)G(x,y)dedy = /qb x,y)P(D)G(x,y)dzdy = ¢(0,0). (10.319)

Assume that ¢ is rotationally symmetric and G(r) = a + blog(r). We have

P(D)¢(z,y)G(z, y)dady (10.320)

z24y2>e?
_ 277/00( 0,7, )6(r)G(r)dr (10.321)
= 271'/ o(r)(—0pr0,)G(r)dr (10.322)
+27(¢(€)G(e)e — (€)G’ (€)e) (10.323)
—  —2mb(0). (10.324)

Hence, b = —2i.

+0(k) is not a distribution. We can regularize it as in (??). Then we obtain
a Green s function with a rather strange looking constant:

mzk +iyky ) dkﬁwdk‘y
G(z,y) = // GRS (10.325)

k2+k2<1
1:ck cFiyky dk dk’
10.326
// k2+k2 (2m)? ( )
k2+k2>1
1 r v
= ——1 - ) - —. 10.32
21 Og(2) 2 (10.3 7)
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10.5 Helmholtz equation in d = 2

Consider P(D) = —0; — 97 +m?, so that P(k) = kZ + k2 + m?. The method of
Fourier transformation gives a distinguished Green’s function

mk +iyky dkrdky
= : 10.32
G(z,y) // TR (27 (10.328)
1|k:\rcos¢ LIkl
= 10.32
o = | [ Gk (03)
= 7K 1 .
5 o(mr), (10.330)

where Ky(z) is the Oth MacDonald function. Note the asymptotics around zero:

Ko(z) ~ — logg - . (10.331)

Thus, in order to obtain a zero-mass Green’s function, we need to renormalize.
Writing G, (r) for the Green’s function with mass m, as defined in (10.327) and
(10.330), we obtain the massless Green’s functions by the following limit:

. 1
hrn0 (Gm + o logm) = Gy. (10.332)

m—

10.6 Wave equation ind=1+1

Consider O = 97 — 97. Introducing coordinates

1 1
Uy = i(t + y)7 U_ = §(t — y)7 (10333)

we have

Ou_. (10.334)
Therefore, the general solution is
X+(t+y) +x-(t—y). (10.335)

We have the retarded Green’s function, the advanced Green’s function, and the
Pauli-Jordan solution:

Dt (t,y) = 0@t —|z)) =00 +2)0(t—x), (10.336)
D= (t,y) = 0(—t—|z|)=0(—t—2)0(—t +z), (10.337)
DPY(t,y) = O(t—|z|) —O(—t — |z|) (10.338)

= O(t—x)—O(—t—2) =0(t +x) — O(—t + ). (10.339)

Let us compute the retarded Green’s function by the Fourier transform method.
We introduce E, p, the dual variables to ¢, y. Besides, p; := E + p and
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_:=F —p. We have dEdp = %dp+dp,.

i(-Et+pz)  Fd
e p
Dt _ 10.340
(t7 y) / (7E2 +p2— iOsgnE)(QW)2 ( )
1 e—iluyp—+u-pi)qp d
_ 1 P-CP+ > (10.341)
2. (= prp- — i0sgn(ps +p-))(27)
—1u Pt IUJr[)f
_ 1/ dp+ / “dp- (10.342)
2/ (ps + i0)27 J (p— +1i0)27
R (10.343)

The Feynman propagator is obtained by the Wick rotation from the Eu-
clidean propagator (Green’s function of the Laplacian). More precisely, we set
E =ik, t =ix:

1 e iEtHIPYd Edp
DY (¢ 10.344
(t:y) (2@2/ 24 p2—10 ( )
—1k, w—i—ipydEdp
= =iD®({i ', y). (10.345
(2m)2 // g0 D hy) )
Setting
1 ?+y’\
DE =——1 - L 10.346
(z,y) in og( 1 ) 5 ( )
we obtain
- i —t2 +y? 410 iy
= —71 _— —_ —
D (t,y) 4 Og( 4 ) 2w
i | =2+ 2\ 1 iy
- () et -
Ar 08 4 + 50t = ol) — 5
i —t2 + y?| 1 1 iy
D& - 1 (li) —0(t—y|) — =0(—t— L.
(t,z) o log 1 +50(t—lyl) — 56( wl) ¥ 5
11 Miscellanea
11.1
Identity
1— 2
(2m + ﬁ)waw + (2m + k)wd, = (m : g 6‘r> (mw + (1 — w?)dy)
T

+(Z = 0) (= (m+myw+ (1= w)a,).
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11.2
We set z = cos ¢:

1 1
8§+3§+(1—m2)?
1 1

2 1 i 2 - AN
O+~ + = (8¢+(4 m )Sin2¢)

I N R 1o ey 1
aT.+Ta,+r2((1 )02 = 20, + (5 m)l_z2)

We use
1
(1=22) 73009, (1 = 220D = 0, — (m+ D),

obtaining
1 1 ]_ 1 1 1
(1—z%)7ztmt2) ((1 — )02 — 20: + (7 - m2)m>(1 — 2%)2(mt2)

= (1-2°92—(2m+2)20. — (m+ %)2

11.3
¢ =t 0y = —2v1 - 129,
1

1 _2\92 _ L9 2 L e 2
17102(4(1 )0 — 40, + (7 — ) + (] 6)1%).

We use
(1+41)73@FT3) (1 — )73B+3)g,(1 4 ¢)2(eF3)(1 — )3 (F+3)
1 1.1 1 1.1
B+ 3)

vt gt )iy 21—t

‘We obtain
(1+ t)—%(a'*‘%)(l _ t)—%(ﬁ"r%)
1 2 1 2
4(1 — )92 — 4td o) (= - 2—)
< (40— )97 = 410, + (] = o)) + (= BT
><(1 4 t)%(a+%)(1 _ t)%(5+%)

_ 4<(1t2)at2+(a25a+2ﬂ+2t>at+(a+ﬂ+42)(a+ﬂ)>
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.1 The digamma function

In our paper we use the digamma function:

9,1 (z)
= . .34
vl = 2 (347
Here are its properties:
1
Y +2) =) + -, (:345)
¥(z) —Y(1 — 2) = —7w cot(nz), (.349)
1 1
w(§ + z) - 1/)(5 - z) = 7tan(wz), (.350)
1
21og 2 + ¥(2) +¢(z+ 5) — 20(22), (.351)
Y1) =—, (:352)
1
zp(i) — —~y—2log2. (.353)
The inverse of the Gamma function is an analytic function with the derivative
1 ¥(z)
. =— , .354
%16~ TG (50
1
S =(-1)"n!, n=0,1,2,.. 355
5F(Z>Z:_n (="l n (-355)
It is also useful to introduce
. . 1 1
the shifted kth harmonic number Hp/(2) := P + P (.356)
1 1
the kth harmonic number H = 1 + et 7= Hi (1), (.357)
r k
the Pochhammer symbol  (z); := L+E) (.358)
I'(z)
J@E+Y) (2t k-1), E>0,
a (z+k)(z+k1+1)v--(zfl)’ k<0
Some of their properties are collected below:
H’H—n(z) - Hn(z) + Hk(z + TL), (359)
H;C(Z)Z—H}C(l—z—k), (.360)
U(z + k) = ¥(2) + Hi(2), (-361)
(1 +k) = —v+ Hg, (.362)
(2)k = (=D)"(1 = k = 2)y, (.363)
0, (2)n = Hu(2)(2)n (.364)
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