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Bogoliubov transformations – linear transformations of field op-

erators preserving the CCR/CAR.

Sometimes they can be implemented by unitary Bogoliubov im-

plementers.

Sometimes they can be implemented by natural Bogoliubov im-

plementers.

Implementers are the exponentials of quadratic Hamiltonians.



1. BOSONIC CASE



Let (Y , ω) be a real vector space equipped with an antisymmet-

ric form. A regular representations of the canonical commutation

relations or a regular CCR representation over (Y , ω) on a Hilbert

space H is a map

Y 3 y 7→ φ(y) (1)

with values in self-adjoint operators on H such that

eiφ(y)eiφ(y
′) = e−

i
2y·ωy

′
eiφ(y+y

′),

φ(ty) = tφ(y), t ∈ R



φ(y) are called field operators. They satisfy

φ(y + y′) = φ(y) + φ(y′),

[φ(y), φ(y′)] = iy·ωy′

on appropriate domains.



Consider the Hilbert space L2(Rd). Let φi denote the ith coor-

dinate of Rd. Let φi denote the operator of multiplication by the

variable φi on and πi the momentum operator 1
i∂φi. Then,

Rd ⊕ Rd 3 (η, q) 7→ η · φ + q · π (2)

is an irreducible regular CCR representation on L2(Rd). (2) is

called the Schrödinger representation over the symplectic space

Rd ⊕ Rd.



Let (Y , ω) be a symplectic space. We will write Sp(Y) for the

symplectic group, that is, the group of invertible symplectic trans-

formations.

Assume in addition that Y is finite dimensional. Clearly, Y is

always equivalent to Rd⊕Rd with a natural symplectic form. The

Stone–von Neumann Theorem says that all irreducible regular CCR

representations over Y are unitarily equivalent to the Schrödinger

representation.



Let Y 3 y 7→ φ(y) be a regular CCR representation on H. We

define two groups

The c-metaplectic group Mpc(Y) consists U ∈ U(H) such that

{Uφ(y)U ∗ : y ∈ Y} = {φ(y) : y ∈ Y}.

The metaplectic group Mp(Y) is the subgroup of Mpc(Y) gen-

erated by eiφ(y)
2
, y ∈ Y .

We have a homomorphism Mpc(Y) 3 U 7→ r ∈ Sp(Y) given by

Uφ(y)U ∗ = φ(ry).



Various homomorphism related to the metaplectic group can be

described by the following diagram

1 1 1

↓ ↓ ↓
1 → Z2 → U(1) → U(1) → 1

↓ ↓ ↓
1 → Mp(Y) → Mpc(Y) → U(1) → 1

↓ ↓ ↓
1 → Sp(Y) → Sp(Y) → 1

↓ ↓
1 1

(3)



Let Z be a complex Hilbert space. Consider the bosonic Fock

space Γs(Z). We use the standard notation for creation/annihilation

operators a∗(z), a(z), z ∈ Z .

Y := Re(Z ⊕ Z) = {(z, z) : z ∈ Z}

is equipped with a symplectic form

(z, z)·ω(z′, z′) := 2Im(z|z′).

The following regular CCR representation is called the Fock repre-

sentation.

Y 3 (z, z) 7→ φ(z, z) := a∗(z) + a(z)



Note that (Y , ω) besides the symplectic form has more structure.

In particular, it has a symplectic map

j(z, z) := (iz,−iz)

which satisfies

j2 = −1l.

j is thus a complex structure (anti-involution). Using the termi-

nology from differential geometry, one can say that the space Y is

equipped with a Kähler structure. With help of j we can recover

Z from Y :

Z =
1l− ij

2
CY .



Let r ∈ Sp(Y). Its complexification is a complex linear map on

CY ' Z ⊕ Z that can be written as

rC =

[
p q

q p

]
, (4)

with p ∈ B(Z), q ∈ B(Z,Z). It satisfies the following conditions:

p∗p− q#q = 1l, p∗q − q#p = 0,

pp∗ − qq∗ = 1l, pq# − qp# = 0.



Note that

pp∗ ≥ 1l, p∗p ≥ 1l.

Hence p−1 and p∗−1 are bounded operators, and we can set

c := q#(p#)−1,

d := qp−1.

Note that c# = c, d = d#. One has the following factorization:

rC =

[
1l d

0 1l

][
(p∗)−1 0

0 p

][
1l 0

c 1l

]
. (5)



Define the restricted symplectic group

Spj(Y) := {r ∈ Sp(Y) : rj− jr is H.S.},
= {r ∈ Sp(Y) : q is H.S.},
= {r ∈ Sp(Y) : c is H.S.}.

Shale Theorem. r ∈ Sp(Y) is unitarily implementable iff

r ∈ Spj(Y). Its implementer, up to a phase factor, is

| det pp∗|−
1
4e−

1
2a
∗(d)Γ

(
(p∗)−1

)
e
1
2a(c).



Above we use 2-particle creation/annihilation operators. This

means the following. Let Z = L2(Ξ, dξ). Then for 1-particle

creation/annihilation operators of z ∈ Z we write

a∗(z) =

∫
z(ξ)a∗(ξ)dξ,

a(z) =

∫
z(ξ)a(ξ)dξ.

Let d(ξ, ξ′) be the integral kernel of d = d#. Then

a∗(d) =

∫
d(ξ, ξ′)a∗(ξ)a∗(ξ′)dξdξ′,

a(d) =

∫
d(ξ, ξ′)a(ξ′)a(ξ)dξdξ′.



Let Mpcj (Y) be the group of unitaries on Γs(Z) such that

{Uφ(y)U ∗ : y ∈ Y} = {φ(y) : y ∈ Y}.

Then we have the short exact sequence

1l→ U(1)→Mpcj (Y)→ Spj(Y)→ 1l.



Define the anomaly-free symplectic group Spj,af(Y) as the set of

elements of Spj(Y) with 1l− p trace class. Let Mpj,af(Y) consist of

operators

(det p∗)−
1
2e−

1
2a
∗(d)Γ

(
(p∗)−1

)
e
1
2a(c).

We have the short exact sequence

1l→ Z2 →Mpj,af(Y)→ Spj,af(Y)→ 1l.



Y possesses also a natural scalar product

(z, z) · ν(z′, z′) := 2Re(z|z′).

We can use it to distinguish special cases of r ∈ Sp(Y):

1. r is orthogonal or equivalently, complex (preserves the complex

structure j). Then q = 0 and p is unitary. The Bogoliubov

implementer is Γ(p), or (det p)1/2Γ(p) in the metaplectic group.



2. r is positive. Then p > 0 and c = d. We can parametrize r by

c:

p = (1l− cc∗)−
1
2 , q = (1l− cc∗)−

1
2c.

The Bogoliubov implementer is

det(1l− cc∗)
1
4e−

1
2a
∗(c)Γ(1l− cc∗)

1
2e

1
2a(c).

Every r ∈ Sp(Y) has a unique polar decomposition r = u|r|.
Both u and |r| are symplectic. Besides, u is orthogonal, r is posi-

tive.



Consider now bosonic Bogoliubov transformations from the in-

finitesimal point of view.

We consider first the case of a finite number of degrees of freedom.

Let sp(Y) denote the symplectic Lie algebra. Every element of

sp(Y) can be written as ζω, where ζ# = ζ . The polynomial given

by the symmetric operator ζ will be called the classical Hamiltonian

of ζω. We can quantize it using the Weyl quantization:

Op(ζ) :=
∑
i,j

φiζijφj.

Note that eitOp(ζ) ∈Mp(Y).



Consider in particular Y = Re(Z ⊕ Z) and the Fock represen-

tation. The symplectic form and the symmetric form defining the

Hamiltonian can be extended by complex linearity:

ω : Z ⊕ Z → Z ⊕Z, ω =

[
0 i

−i 0

]
,

ζ : Z ⊕ Z → Z ⊕Z, ζ =

[
g h

h# g

]
,

where h∗ = h, g# = g.



The complexification of the corresponding element of sp(Y) is

ζω =

[
−h g

−g h#

]
.

The quantum Hamiltonian is

Op(ζ) =
∑
ij

(
hij(a

∗
iaj + aja

∗
i ) + gija

∗
ia
∗
j + gijajai

)
.



Assume now that ζ > 0. There is a nice formula for the infimum

of the quantum quadratic Hamiltonian:

inf Op(ζ) =
1

2
Tr
√
−(ζω)2. (6)



The operator ζω is anti-self-adjoint on (Y , ζ−1). Besides, its ker-

nel is {0}. Therefore if we set

j1 := (−ζωζω)−1/2ζω,

then j1 ∈ Sp(Y) is an anti-involution and we have the polar de-

composition

ζω = (−ζωζω)1/2j1 = j1(−ζωζω)1/2

Double creation/annihilation terms disappear iff j = j1.



Set k := −jj1. One can check that k is a positive symplectic

transformation.

Define r := k1/2. Clearly, r is also positive and symplectic. Now

rj1r
−1 = r2j1 = kj1 = j.

Therefore, if U denotes the quantization of r, then the quadratic

Hamiltonian UOp(ζ)U ∗ has no double creation/annihilation terms.



If we Wick order the Hamiltonian we obtain the following formula

for the ground state energy

inf
∑
ij

(
2hija

∗
iaj + gija

∗
ia
∗
j + gijajai

)

=
1

2
Tr

([
h2 − gg∗ −hg + gh#

g∗h− h#g∗ h#2 − g∗g

]1
2

−

[
h 0

0 h#

])
.



2. FERMIONIC CASE



Let (Y , ν) be a real Hilbert space. A representations of the canon-

ical anticommutation relations or a CAR representation over (Y , ν)

on a Hilbert space H is a linear map

Y 3 y 7→ φ(y) (7)

with values in bounded self-adjoint operators on H such that

[φ(y), φ(y′)]+ = 2y · νy′



For any real Hilbert space Y , its orthogonal group will be denoted

by O(Y).

Assume in addition that dimY be finite. Elementary arguments

show that if dimY is even, then all irreducible representations are

equivalent. If dimY is odd, there are exactly two inequivalent

irreducible representations.



It is convenient to introduce the (complex) C∗-algebra CAR(Y)

generated by φ(y), y ∈ Y . We have

CAR(R2m) ' B(C2m),

CAR(R2m+1) ' B(C2m)⊕B(C2m).

CAR(Y) contains a real subalgebra generated by φ(y), y ∈ Y ,

which will be denoted Cliff(Y).

The even subalgebra of CAR(Y) will be denoted CAR0(Y).



We define 4 groups: Pinc(Y) is the set of unitary U in CAR(Y)

such that

{Uφ(y)U ∗ : y ∈ Y} = {φ(y) : y ∈ Y}.

P in(Y) := Pinc(Y) ∩ Cliff(Y),

Spinc(Y) := Pinc(Y) ∩ CAR0(Y),

Spin(Y) := Pinc(Y) ∩ Cliff0(Y).

The most useful homomorphism Pinc(Y) 3 U 7→ r ∈ O(Y) is

given not by the implementation but by the det-implementation:

Uφ(y)U ∗ = det(r)φ(ry).



Various homomorphism related to the Pin group can be described

by the following diagram

1 1 1

↓ ↓ ↓
1 → Z2 → U(1) → U(1) → 1

↓ ↓ ↓
1 → Pin(Y) → Pinc(Y) → U(1) → 1

↓ ↓ ↓
1 → O(Y) → O(Y) → 1

↓ ↓
1 1

(8)



Let Z be a complex Hilbert space. Consider the fermionic Fock

space Γa(Z). We use the standard notation for creation/annihilation

operators a∗(z), a(z), z ∈ Z .

Y := Re(Z ⊕ Z) = {(z, z) : z ∈ Z}

is equipped with the scalar product

(z, z)·ν(z′, z′) := 2Re(z|z′).

The following CAR representation is called the Fock representation.

Y 3 (z, z) 7→ φ(z, z) := a∗(z) + a(z)



Again, (Y , ν) besides the scalar product has more structure. In

particular, it has an orthogonal anti-involution j

j(z, z) := (iz,−iz)

which satisfies

j2 = −1l.

j is thus a complex structure (anti-involution). Using the terminol-

ogy from differential geometry, one can say that the space Y has a

Kähler structure.



Let r ∈ O(Y). Its complexification is a complex linear map on

CY ' Z ⊕ Z that can be written as

rC =

[
p q

q p

]
, (9)

with p ∈ B(Z), q ∈ B(Z,Z). It satisfies the following conditions:

p∗p + q#q = 1l, p∗q + q#p = 0,

pp∗ + qq∗ = 1l, pq# + qp# = 0.



We will say that r ∈ O(Y) is j-nondegenerate iff Ker(rj + jr) =

{0}, or equivalently, if Kerp = {0}. For such r, define

c := q#(p#)−1,

d := −qp−1.

Note that c# = −c, d = −d#. One has the following factorization:

rC =

[
1l d

0 1l

][
(p∗)−1 0

0 p

][
1l 0

c 1l

]
. (10)



Define the restricted orthogonal group

Oj(Y) := {r ∈ O(Y) : rj− jr is H.S.},
= {r ∈ O(Y) : q is H.S.}.

Note that j-nondegenerate elements of Oj(Y) automatically belong

to SOj(Y).

Shale-Stinespring Theorem. r ∈ O(Y) is unitarily det-

implementable iff r ∈ Oj(Y). In particular, if r is j-nondegenerate,

its det-implementer, up to a phase factor, is

| det pp∗|
1
4e

1
2a
∗(d)Γ

(
(p∗)−1

)
e
1
2a(c).



Above we use 2-particle creation/annihilation operators. This

means the following. Let Z = L2(Ξ, dξ). Then for 1-particle

creation/annihilation operators of z ∈ Z we write

a∗(z) =

∫
z(ξ)a∗(ξ)dξ,

a(z) =

∫
z(ξ)a(ξ)dξ.

Let d(ξ, ξ′) be the integral kernel of d = −d#. Then

a∗(d) =

∫
d(ξ, ξ′)a∗(ξ)a∗(ξ′)dξdξ′,

a(d) =

∫
d(ξ, ξ′)a(ξ′)a(ξ)dξdξ′.



Let Pincj (Y) be the group of unitaries on Γa(Z) such that

{Uφ(y)U ∗ : y ∈ Y} = {φ(y) : y ∈ Y}.

Then we have the short exact sequence

1l→ U(1)→ Pincj (Y)→ Oj(Y)→ 1l.



Define the anomaly-free orthogonal group Oj,af(Y) as the set of

elements of Oj(Y) with 1l − p trace class. Let Pinj,af(Y) be the

group generated by operators of the form

(det p)
1
2e

1
2a
∗(d)Γ

(
(p∗)−1

)
e
1
2a(c).

We have the short exact sequence

1l→ Z2 → Pinj,af(Y)→ Oj,af(Y)→ 1l.



Let κ ∈ O(Y) be an involution, that is κ2 = 1l. It is easy to see

that κ is det-implementable iff Ker(κ+ 1l) is finite dimensional and

then it is det-implemented by

φ(e1) · · ·φ(en) (11)

where e1, . . . , en is an o.n. basis of Ker(κ + 1l). Note that (11)

belongs to Pinaf,j(Y). It belongs to Spinaf,j(Y) iff n is even.



Note special cases of r ∈ O(Y), defined using the complex struc-

ture j:

1. If r is complex (commutes with j), then q = 0 and p is unitary.

The Bogoliubov implementer is Γ(p), or (det p)−1/2Γ(p) in the

Spin group.



2. We say that r is j-positive if p > 0. Then c = d and we can

express r with c:

p = (1l + cc∗)−
1
2 , q = (1l + cc∗)−

1
2c.

The Bogoliubov implementer is

det(1l + cc∗)−1/4e
1
2a
∗(c)Γ(1l + cc∗)

1
2e

1
2a(c).

Every j-non-degenerate r ∈ SO(Y) has a unique j-polar decom-

position r = u|r|. Both u and |r| are orthogonal. Besides, u is

complex and r is j-positive.



Consider now fermionic Bogoliubov transformations from the in-

finitesimal point of view. For simplicity, we consider only the case

of a finite number of degrees of freedom.

Let so(Y) denote the orthogonal Lie algebra. Every element of

so(Y) can be written as iζν, where ζ# = −ζ , ζ = −ζ . We

quantize it using the so-called antisymmetric quantization, which

is the fermionic analog of the Weyl quantization:

Op(ζ) :=
∑
i,j

φiζijφj.



We can compute the infimum and supremum of the quantum

Hamiltonian:

inf Op(ζ) = −Tr|ζν|, sup Op(ζ) = Tr|ζν|.



Consider in particular Y = Re(Z ⊕Z) and the Fock representa-

tion. The scalar product form and the antisymmetric form ζ can

be extended by complex linearity:

ν : Z ⊕ Z → Z ⊕Z, ν =
1

2

[
0 1l

1l 0

]
,

ζ : Z ⊕ Z → Z ⊕Z, ζ =

[
g h

−h# −g

]
,

where h∗ = h, g# = −g.



The complexification of the corresponding element of o(Y) is

ζν =
1

2

[
h g

−g −h#

]
.

The quantum Hamiltonian is

Op(ζ) =
∑
ij

(
hij(a

∗
iaj − aja∗i ) + gija

∗
ia
∗
j + gijajai

)
.



Assume that ζ is non-degenerate. The operator ζν is anti-self-

adjoint on (Y , ν). Besides, its kernel is {0}. Therefore if we set

j1 := (−ζνζν)−1/2ζν,

then j1 ∈ O(Y) is an anti-involution and we have the polar decom-

position

ζν = (−ζνζν)1/2j1 = j1(−ζνζν)1/2

Double creation/annihilation terms disappear iff j = j1.



Assume now that Ker(j + j1) = {0}. Set k := −jj1. Then k is an

orthogonal transformation satisfying Ker(k+ 1l) = {0}. Therefore,

r := k
1
2 is well defined. Then r is orthogonal and

rj1r
−1 = j.

Therefore, if U denotes the quantization of r, then the quadratic

quantum HamiltonianUOp(ζ)U ∗ has no double creation/annihilation

terms.



If we Wick order the Hamiltonian we obtain the following formula

for the ground state energy

inf
∑
ij

(
2hija

∗
iaj + gija

∗
ia
∗
j + gijajai

)
=

1

2
Tr

(
−

[
h2 + gg∗ hg − gh#

g∗h− h#g∗ h#2 + g∗g

]1
2

+

[
h 0

0 h#

])
.



3. QUADRATIC HAMILTONIANS

WITH AN INFINITE NUMBER

OF DEGREES OF FREEDOM



Consider a Fock bosonic or fermionic representation with an ar-

bitrary number of degrees of freedom. We say that a self-adjoint

operator H is a quadratic or Bogoliubov Hamiltonian on Γs/a(Z)

if there exists a strongly continuous 1-parameter unitary group

R 3 t 7→ U(t) ∈Mpcj (Y)/Spincj (Y) such that

U(t) = eitH.



Clearly, for a finite number of degrees of freedom quadratic Hamil-

tonians have the form∑
ij

(
2hija

∗
iaj + gija

∗
ia
∗
j + gijajai

)
+ c.



The Bogoliubov transformation generated by H does not depend

on c, so its choice is to some extent arbitrary. One of its possible

choices is c = 0, corresponding to the Wick ordering. This choice

can be often generalized to an infinite number of degrees of freedom.

Indeed, if Ω ∈ Dom|H|12 , then c := (Ω|HΩ) is well defined and

H − c is the Wick-ordered H .

However, many quadratic Hamiltonians cannot be Wick-ordered.

In this case the representation of H of the above form is true only

formally with c = ∞. In QFT this corresponds to the so-called

infinite vacuum polarization. The infinity needs to be removed by

renormalization.



Suppose that R 3 t 7→ ζ(t) is a family of time-dependent classical

quadratic Hamiltonians. We can quantize it by the Weyl/antisymmetric

quantization. Then the quantum dynamics

T exp
(
−
∫ t+

t−

iOp(ζt)dt
)

belongs the the anomaly-free group Mpj,af(Y)/Spinj,af(Y). So the

classical dynamics fixes the quantum dynamics up to a sign.



For an infinite number of degrees of freedom, we can seldom use

the Weyl/antisymmetric quantization. We can only say that the

dynamics belongs to Mpj(Y)/Spinj,af(Y). In particular, the phase

is not fixed by the classical transformation and depends on the

exact history of the dynamics.



The following example illustrates the above point: We consider a

bosonic system with 1 degree of freedom whose dynamics given by

a time dependent Hamiltonian. Its classical scattering operator is

identity. With the Wick quantization we obtain

eis sinh
2 t = exp

(
it(a∗2 + a2)

)
exp (isa∗a) exp

(
−it(a∗2 + a2)

)
× exp

(
is
(

cosh t sinh t(a∗2 + a2)− (cosh2 t + sinh2 t)a∗a
))
.

The Weyl quantization yields

1 = exp
(
it(a∗2 + a2)

)
exp (is(a∗a + 1/2)) exp

(
−it(a∗2 + a2)

)
× exp

(
is
(

cosh t sinh t(a∗2 + a2)− (cosh2 t + sinh2 t)(a∗a + 1/2)
))
.



In this computation we used

exp
(
it(a∗2 + a2)

)
a exp

(
−it(a∗2 + a2)

)
= cosh ta− sinh ta∗.


