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Bogoliubov transformations — linear transformations of field op-
erators preserving the CCR/CAR.

Sometimes they can be implemented by unitary Bogoliubov im-
plementers.

Sometimes they can be implemented by natural Bogoliubov im-
plementers.

Implementers are the exponentials of quadratic Hamiltonians.



1. BOSONIC CASE



Let (Y, w) be a real vector space equipped with an antisymmet-
ric form. A regular representations of the canonical commutation
relations or a regular CCR representation over (), w) on a Hilbert

space ‘H is a map
Y3y oy (1)

with values in self-adjoint operators on H such that
ol P(Y) pio ()

o(ty) = to(y), teR

oy ib(y+y
o2V wy (io(y+y)
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¢(y) are called field operators. They satisfy

oy +y) = éy) + o),
0(y), o(y)] = iy-wy’

on appropriate domains.



Consider the Hilbert space L2(R?). Let ¢; denote the ith coor-
dinate of R?. Let ¢; denote the operator of multiplication by the

variable ¢; on and m; the momentum operator %5’@.. Then,
RIGR'S (,q) »n-d+q- (2)

is an irreducible regular CCR representation on L?(R%). (2) is

called the Schrodinger representation over the symplectic space
R? @ RY.



Let (), w) be a symplectic space. We will write Sp()) for the
symplectic group, that is, the group of invertible symplectic trans-
formations.

Assume in addition that )Y is finite dimensional. Clearly, Y is
always equivalent to R? @ R with a natural symplectic form. The
Stone-von Neumann Theorem says that all irreducible regular CCR
representations over ) are unitarily equivalent to the Schrodinger

representation.



Let YV 3 y — ¢(y) be a regular CCR representation on H. We
define two groups
The c-metaplectic group Mp®(Y) consists U € U(H) such that

{Up(y)U" - ye YV} ={oy) : ye€ IV}

The metaplectic group Mp()) is the subgroup of Mp“(Y) gen-
erated by ei¢(y)2, yey.
We have a homomorphism Mp“(Y) > U — r € Sp()) given by

Up(y)U" = ¢(ry).



Various homomorphism related to the metaplectic group can be

described by the following diagram

1 1 1
3 \3 3
1 —- Zy, — Ul —U1 —1
3 3 3
I = Mp(y) = Mp(Y) = U(1) — 1 (3)
3 \3 3
1 = SplY) = Spy) — 1



Let Z be a complex Hilbert space. Consider the bosonic Fock
space ['4(Z). We use the standard notation for creation /annihilation

operators a*(2), a(z), z € Z.

Y =Re(Z® Z)={(2,2) : z€ Z}
is equipped with a symplectic form
(2,2)w(Z,Z) := 2Im(z|2").

The following regular CCR representation is called the Fock repre-

sentation.
Y3 (2,2)— ¢(2,2) = a"(z) + a(z)



Note that (), w) besides the symplectic form has more structure.

In particular, it has a symplectic map

i(z,2) = (iz, —i2)

which satisfies
i=-1

j is thus a complex structure (anti-involution). Using the termi-
nology from differential geometry, one can say that the space ) is

equipped with a Kahler structure. With help of j we can recover

Z from Y: i
— ]
2

Z = CY.




Let 7 € Sp(Y). Its complexification is a complex linear map on
CY ~ Z @ Z that can be written as

r@[p q]) R

qp
with p € B(Z), ¢ € B(Z, Z). It satisfies the following conditions:
pr—q7=1, pq—qp=0,

pp*—q¢ =1, pg" —qp” =0.



Note that

pp* > 1, pp>1

Iare bounded operators, and we can set

¢ = q"(p") ",
d = qp '

Hence p~! and p*~

Note that ¢ = ¢, d = d*. One has the following factorization:

| Tadf|)to] |10
e 0 pllell|’

01




Define the restricted symplectic group

Spi(Y) = {reSp(y) : rj—jr is HS},
= {resSpY) : q isHS},
= {re Sp(Y) : c is HS.}.

Shale Theorem. r € Sp()Y) is unitarily implementable iff
r € Spj(Y). Its implementer, up to a phase factor, is

| det pp* ‘ _lee_%a*(d)l_’ ((p*>_1) e%a(c) .



Above we use 2-particle creation/annihilation operators. This
means the following. Let £ = L*(=,d¢). Then for 1-particle

creation /annihilation operators of z € Z we write

Let d(&,€') be the integral kernel of d = d*. Then
a*(d) = / A€, €)a" (€)a” (€)dede,
a(d) = / IE Ea(¢')a(€)dede’




Let Mp$(Y) be the group of unitaries on I'y(Z) such that

{Up(y)U" - yeV}={9y) : ye€ IV}

Then we have the short exact sequence

1— U1) — Mpi(Y) — Sp;(¥) — 1.



Define the anomaly-free symplectic group Sp; .¢(Y) as the set of
elements of Sp;(Y) with 1— p trace class. Let Mp; .¢()) consist of

operators
1 x

(det p*>—%e—7a (d)F<<p*>_1)€7a(C).
We have the short exact sequence

1 — Zo — Mpjar(Y) = Spia(Y) — 1



Y possesses also a natural scalar product
(2,2) - v(2',Z") := 2Re(z]2).
We can use it to distinguish special cases of r € Sp()):

1. r is orthogonal or equivalently, complex (preserves the complex
structure j). Then ¢ = 0 and p is unitary. The Bogoliubov
implementer is I'(p), or (det p)'/?I'(p) in the metaplectic group.



2. 7 1s positive. Then p > 0 and ¢ = d. We can parametrize r by

C.
1

, q=(1—cc) 2.

N[ —

p=(1-cc)”
The Bogoliubov implementer is

oz(0),

DO —

det(1 — cc*)%le_%“*(c)F(]l — cc”)

Every r € Sp(Y) has a unique polar decomposition r = u|r|.
Both u and |r| are symplectic. Besides, u is orthogonal, r is posi-

tive.



Consider now bosonic Bogoliubov transformations from the in-
finitesimal point of view.

We consider first the case of a finite number of degrees of freedom.

Let sp()) denote the symplectic Lie algebra. Every element of
sp()) can be written as (w, where (% = (. The polynomial given
by the symmetric operator ¢ will be called the classical Hamiltonian

of Cw. We can quantize it using the Weyl quantization:
Op(¢) == Z GiGij®j-
i,

Note that eOPC) € Mp(Y).



Consider in particular Y = Re(Z @ Z) and the Fock represen-

tation. The symplectic form and the symmetric form defining the

Hamiltonian can be extended by complex linearity:
— 0 1
w:ZPZ—2Z2PZ, w[ _O]7
—i
_ — g h
(. ZZ 202, (= |,

where h* = h, g7 = g.



The complexification of the corresponding element of sp()) is

The quantum Hamiltonian is

Op(C) — Z (hw(CL;CL]‘ + CLjCLj) + gz-ja;‘aj + Eijajai).

1]



Assume now that ¢ > 0. There is a nice formula for the infimum

of the quantum quadratic Hamiltonian:

inf Op(() = 5 Try/~ (G 6



The operator Cw is anti-self-adjoint on (), (™1). Besides, its ker-
nel is {0}. Therefore if we set

i1 = (—Cww) VX w,

then j; € Sp()) is an anti-involution and we have the polar de-

composition

Cw = (—CwCw) ) = j1(—Cwiw)Y?

Double creation/annihilation terms disappear iff j = j;.



Set k := —jj;. One can check that £ is a positive symplectic
transformation.
Define r := k'/2. Clearly, r is also positive and symplectic. Now
rior =17 = kjL = .

Therefore, if U denotes the quantization of r, then the quadratic

Hamiltonian UOp(¢)U™* has no double creation /annihilation terms.



[f we Wick order the Hamiltonian we obtain the following formula

for the ground state energy

inf Z (Zhija;‘aj + gija;a; + Eijajai)
ij
1
1 h?—gg* —hg+ gh* |’ h 0
0 h*|)

= —Ir
2 g*h —h*g* h** — g*g




2. FERMIONIC CASE



Let (Y, v) be areal Hilbert space. A representations of the canon-
ical anticommutation relations or a CAR representation over (), v)

on a Hilbert space H is a linear map

Y3y— oy (7)

with values in bounded self-adjoint operators on H such that

D), o))y = 2y - vy



For any real Hilbert space ), its orthogonal group will be denoted
by O(Y).

Assume in addition that dim ) be finite. Elementary arguments
show that if dim )/ is even, then all irreducible representations are
equivalent. If dim ) is odd, there are exactly two inequivalent

irreducible representations.



[t is convenient to introduce the (complex) C*-algebra CAR()Y)
generated by ¢(y), y € Y. We have

CAR(R*™) ~ B(C?"),
CAR(R?*™ ) ~ B(C*") & B(C*).
CAR()Y) contains a real subalgebra generated by ¢(y), y € Y,

which will be denoted Cliff(}).
The even subalgebra of CAR()) will be denoted CAR()).



We define 4 groups: Pin®()) is the set of unitary U in CAR(Y)
such that

{Up(y)U" - yeV}={9y) : y€ IV}

Pin()) = Pin‘(Y) N CIliff(Y),
Spinf(Y) = Pin(Y) N CARy(Y),
Spin(Y) = Pin(Y) N Cliffy()).
The most useful homomorphism Pin(Y) > U — r € O(Y) is

given not by the implementation but by the det-implementation:

Up(y)U™ = det(r) (ry).



Various homomorphism related to the Pin group can be described

by the following diagram

1 1 1
3 3 3
1 — Zy, — Ul —=U1 —1
! ! !
1 — Pin(Y) — Pin°(Y) — U(1l) — 1 (8)
3 i 3
1 —- OQ) — 0 — 1

l !
1 1



Let Z be a complex Hilbert space. Consider the fermionic Fock
space [',(Z). We use the standard notation for creation /annihilation

operators a*(2), a(z), z € Z.

Y =Re(Z® Z)={(2,2) : z€ Z}
is equipped with the scalar product
(z,2)v(2,Z) := 2Re(z]2).
The following CAR representation is called the Fock representation.

V3 (2,2)— ¢(2,Z) =a"(z) + a(z)



Again, (), v) besides the scalar product has more structure. In

particular, it has an orthogonal anti-involution ]

i(z,2) = (iz, —i2)

which satisfies
i=-1

j is thus a complex structure (anti-involution). Using the terminol-
ogy from differential geometry, one can say that the space ) has a

Kahler structure.



Let € O()). Its complexification is a complex linear map on
CY ~ Z @ Z that can be written as

r@[p q]) )

qp
with p € B(Z), ¢ € B(Z, Z). It satisfies the following conditions:
pr+q'q=1, p'q+q'p=0,

pp*+qq* =1, pg"+qp” = 0.



We will say that » € O()) is j-nondegenerate iff Ker(rj + jr) =
{0}, or equivalently, if Kerp = {0}. For such r, define

c = q"(p")",
d = —qp .
Note that ¢ = —¢, d = —d”. One has the following factorization:

r@[;li] [<p*0>12] []cl ?1] (10)



Define the restricted orthogonal group

Oi(Y) = {reO(Y) : rj—jr is H.S.},
= {reO0(y) : q isHS.}.
Note that j-nondegenerate elements of O;()) automatically belong
to SOJ(:)/)
Shale-Stinespring Theorem. r € O()) is unitarily det-

implementable iff r € Oj(Y). In particular, if r is j-nondegenerate,

its det-implementer, up to a phase factor, s

‘ det pp* | lee%a*(d)r ((p*>_1> e%a(c) )



Above we use 2-particle creation/annihilation operators. This
means the following. Let £ = L*(=,d¢). Then for 1-particle

creation /annihilation operators of z € Z we write

Let d(&,€') be the integral kernel of d = —d*. Then
a*(d) = / A€, €)a" (€)a” (€)dede,
a(d) = / IE Ea(¢')a(€)dede’




Let Pin{(Y) be the group of unitaries on I',(Z) such that

{Up(y)U" - yeV}={9y) : ye€ IV}

Then we have the short exact sequence

1— U(1) — Pinj(Y) = O;(Y) — 1.



Define the anomaly-free orthogonal group Oj.¢()) as the set of
elements of Oj(Y) with 1 — p trace class. Let Pin;.s()) be the

eroup generated by operators of the form

(det p)

We have the short exact sequence

1

e%a*(d)l-w (<p>:<> —1) e7a(c) .

DO —

1 — Zy — Pin (V) = Oja(YV) — 1.



Let k € O()) be an involution, that is k% = 1. It is easy to see
that x is det-implementable iff Ker(x + 1) is finite dimensional and

then it is det-implemented by
¢le1) - plen) (11)

where eq,...,e, is an on. basis of Ker(k + 1). Note that (11)
belongs to Pinag (V). It belongs to Spina ;(YV) iff n is even.



Note special cases of r € O()), defined using the complex struc-

ture j:

1. If r is complex (commutes with j), then ¢ = 0 and p is unitary.
The Bogoliubov implementer is I'(p), or (det p)~*2I'(p) in the
Spin group.



2. We say that r is j-positive if p > 0. Then ¢ = d and we can

express r with c:

1

p=(1+cc) 2, qg=(1+cc") 2c.

DO —

The Bogoliubov implementer is

o2%(¢),

DO —

det(1 + cc*)_1/4e%“*(C)F(]l + cc”)

Every j-non-degenerate r € SO()) has a unique j-polar decom-
position r = w|r|. Both u and |r| are orthogonal. Besides, u is

complex and r is j-positive.



Consider now fermionic Bogoliubov transformations from the in-
finitesimal point of view. For simplicity, we consider only the case
of a finite number of degrees of freedom.

Let so()) denote the orthogonal Lie algebra. Every element of
so()) can be written as i(v, where (#* = —(, ( = —(. We
quantize it using the so-called antisymmetric quantization, which

is the fermionic analog of the Weyl quantization:

Op(¢) = Z ®iCij P;-



We can compute the infimum and supremum of the quantum

Hamiltonian:

inf Op(¢) = —Tr[Cv|, supOp(¢) = Tr|Cv/.



Consider in particular Y = Re(Z @ Z) and the Fock representa-
tion. The scalar product form and the antisymmetric form ¢ can

be extended by complex linearity:

— 1(01
vV:Z2OZ—>ZBZ, V= :
2110

_ __ h
(ZODZZDZ, (= 9 ,
_h —7

where h* = h, g% = —g.



The complexification of the corresponding element of o()) is

1| h g
CVZIQ h#]

The quantum Hamiltonian is

Op(¢) = Y (hijlaja; — aja}) + gyyaja} + Gyja;a;).
i



Assume that ¢ is non-degenerate. The operator (v is anti-self-
adjoint on (), v). Besides, its kernel is {0}. Therefore if we set

i1 = (—Cvev) V3¢,

then j; € O(Y) is an anti-involution and we have the polar decom-
position

Cv = (—CuCv) %) = ji(—Cuiw)?

Double creation/annihilation terms disappear iff j = j;.



Assume now that Ker(j +j;) = {0}. Set k := —jj;. Then k is an
orthogonal transformation satisfying Ker(k + 1) = {0}. Therefore,

r .= k7 is well defined. Then r is orthogonal and

rigr Tt =],
Therefore, if U denotes the quantization of r, then the quadratic
quantum Hamiltonian UOp(¢)U™* has no double creation /annihilation

terms.



[f we Wick order the Hamiltonian we obtain the following formula

for the ground state energy

inf Z (thja;‘aj + L(]Z‘jCL;-kCL; + ?@jajaz')

ij
3
1 h 0
— —Tr — :

h®+ gg* hg — gh”
g*h — h*g* h"? + g*g




3. QUADRATIC HAMILTONIANS
WITH AN INFINITE NUMBER
OF DEGREES OF FREEDOM



Consider a Fock bosonic or fermionic representation with an ar-
bitrary number of degrees of freedom. We say that a self-adjoint
operator H is a quadratic or Bogoliubov Hamiltonian on I'y/,(Z)

if there exists a strongly continuous 1-parameter unitary group
R >t U(t) € Mpi(Y)/Spin{(Y) such that

U(t) =™,



Clearly, for a finite number of degrees of freedom quadratic Hamil-

tonians have the form

Z (Qh@-jafaj + gija;a; + @-jajai) + c.
i



The Bogoliubov transformation generated by H does not depend
on ¢, so its choice is to some extent arbitrary. One of its possible
choices is ¢ = 0, corresponding to the Wick ordering. This choice
can be often generalized to an infinite number of degrees of freedom.
Indeed, if Q2 € Dom\H|%, then ¢ := (Q[HQ) is well defined and
H — c is the Wick-ordered H.

However, many quadratic Hamiltonians cannot be Wick-ordered.
In this case the representation of H of the above form is true only
formally with ¢ = oo. In QFT this corresponds to the so-called
infinite vacuum polarization. The infinity needs to be removed by

renormalization.



Suppose that R 3 ¢ — ((t) is a family of time-dependent classical
quadratic Hamiltonians. We can quantize it by the Weyl /antisymmetric

quantization. Then the quantum dynamics

Texp ( _ /t ’ iOp(Ct)dt)

belongs the the anomaly-free group Mp; .1(Y)/Spin; 1(Y). So the

classical dynamics fixes the quantum dynamics up to a sign.



For an infinite number of degrees of freedom, we can seldom use
the Weyl/antisymmetric quantization. We can only say that the
dynamics belongs to Mp;(Y)/Spin; (V). In particular, the phase
is not fixed by the classical transformation and depends on the

exact history of the dynamics.



The following example illustrates the above point: We consider a
bosonic system with 1 degree of freedom whose dynamics given by
a time dependent Hamiltonian. Its classical scattering operator is
identity. With the Wick quantization we obtain

plssinl®t exp (it(a™ + a”)) exp (isa*a) exp (—it(a™ + a*))
X exp (13( cosh tsinh t(a** + a*) — (cosh®¢ + sinh” t)a,*a)) .
The Weyl quantization yields

1 = exp (it(a™ + a”)) exp (is(a*a + 1/2)) exp (—it(a™ + a*))
X exp (13( coshtsinht(a* + a*) — (cosh®t + sinh? t)(a*a + 1/2))) .



In this computation we used

exp (it(a™ + a%)) aexp (—it(a* + a”)) = coshta — sinh ta.



