RETURN TO EQUILIBRIUM

Conventional wisdom

(1) In a generic situation, a small system interacting
with a large reservoir at temperature 1" goes to equi-

librium at the same temperature.

(2) The behavior of a small system interacting with
reservoirs at distinct temperatures is much more dif-
ficult to desribe than in the case of a reservoir at a

fixed temperature.



Rigorous expression
of conventional wisdom

Rigorous theorems proven for nontrivial, explicit and
realistic models:

(1) Return to equilibrium for a generic small system
interacting with a thermal reservoir.

(2) Absence of normal stationary states for a generic
small system interacting with a non-equilibrium reser-
Voir.



Mathematical techniques involved in
the study of return to equilibrium.

e Operator algebras:
— KMS states,

— Standard forms, Liouvilleans;
e Quantum field theory:

— Quasi-free (Araki-Woods) representations of the

CCR;
e Spectral theory:
— Fermi Golden Rule, the Feshbach method,

— The positive commutator (Mourre) method.



Plan of the lecture

(1) Small system interacting with a bosonic reservoir
(2) W*-algebraic background.

(3) Fermi golden rule



SMALL SYSTEM INTERACTING
WITH A BOSONIC RESERVOIR

Bosonic Fock space

[y(LA(RY) — %30 S LARY).
n—=
Creation/annihilation operators:

[a™(61),a%(§2)] =0, [a(&1),a(§2)] =0,

[a™(61), a(§2)] = (&1 — &2).
/ O FE)IED = VAT If 2.0, b€ @LARY.
Vacuum: Q=1 € QVL*(R%) = C.

Free Hamiltonian of fotons or phonons:

H = [ lgla"(©a(6)a.



Quasi-free representations of the CCR

Radiation density: R% 35 ¢ — p(€) € [0,00[. We look
for creation/annihillation operators a;’1(§) /a,1(§), with
a quasi-free state of density p given by a cyclic vector

p1(61),851(&2)] =0, [ap)1(&1),a,1(&2)] = 0,



Araki-Woods representation of CCR

We will write a"(§)/a)(§), ar(§)/ay(§) for the creation/
annihilation operators corresponding to the left and
right L?(R%) resp. acting on the Fock space

Do(L2RY & LA(RY)).

Left Araki-Woods creation/annihillation operators are
defined as

a5 (€)= /1 + p(€)af (&) + v/ p(€)ar(€),
a,1(&) = /14 p(ai(&) + /p(€)as (£).

Left Araki-Woods algebra is denoted by imﬁ\{v and de-

fined as the W™*-algebra generated by the operators
W,1(f). The vacuum () defines a quasi-free state of
density p.




Commutant of the Araki-Woods algebra

Define an involution ¢ on LQ(Rd) P LQ(]Rd) by €( f1,72) —
(f1, fo)- Set J :=T1(¢). Then J is the modular involution
for the state (€] - Q).

Right Araki-Woods creation/annihillation operators:

ap (&) = v/p(Eai(€) + /1 + p(€)af (§),

apr(§) = v/p(&)af (§) + /1 + p(§)ax(§).
generate the right Araki-Woods algebra denoted by
,‘Jﬁé}?] Note that J?Jﬁ?YVJ = Qﬁé}y is the commutant of

AW
M ol




Dynamics of the quasifree bosons

The Liouvillean of free bosons:

= [ 1€lai ©a(©e - [ felariparte)ie

Note that JLJ = — L.

el . =1L defines a dynamics on WIAW The state (€2|-)
is S-KMS iff the density is given by the Planck law:

p(&) = (711!



Small quantum system
in contact with Bose gas at zero density

Hilbert space of the small quantum system: C = C".
The Hamiltonian of the free system: K.
The free Pauli-Fierz Hamiltonian:

Hy =K®l+ls / la* (€)al€)de.

RY 5 ¢ — v(€) € B(K)
describes the interaction:
Vim [ 6 ® a*(€)dg + he

The full Pauli-Fierz Hamiltonian: H := Hy + AV. The
Pauli-Fierz system at zero density:

(B(IC 2 FS(LQ(RCZ)), oltH | e—itH) |



Small quantum system
in contact with Bose gas at density p.

The algebra of observables of the composite system:
M, = B(KK) @M, C B (/c ® Ty(L2(RY) @ L2<Rd>)) |

The free Pauli-Fierz semi-Liouvillean at density p:

seml. K®1+1® /]f\al E)ay(&)dé — /]f\a E)ar (& )df)
The interaction:
Vy = /v(g) R a;l(g)dg + he.
The full Pauli-Fierz semi-Liouvillean at density p:
Lspeml P — Seml _|_ )\vp
The Pauli-Fierz W*-dynamlcal system at density p:

(mpga-p)y e Op,t(A) — eitLSpemlAe—itLSpeml |



Relationship between the dynamics at zero density
and at density p.

Set p = 0.
My ~ B(K @ [y(L*(RY)) @ 1.

L= Ho1-10 [ o ©are)ds

00 t(A®1) = et A7t g7
If we formally replace aj(£), ax(§) with a,)(£), apr(§)
(the CCR do not change!) then 9, LY, oy trans-
form into My, L;"", op. In the case of a finite num-
ber of degrees of freedom this can be implemented by

a unitary Bogoliubov transformation. (9,,0,) can be
viewed as a thermodynamical limit of (9%, o).



Theorem I: Return equilibrium in the thermal case.
Let the reservoir have inverse temperature 3. Assume
some conditions about the regularity and effective-
ness of v(£). Then there exists \j > 0 such that for
0 < |A] < Ag, (My,0,) has a single normal stationary
state w. This state is f-KMS and for any normal state

¢ and A € M), we have limy_,, ¢(0,+(A4)) = w(A).

Theorem II: Absence of normal stationary states in
the non-equilibrium case. Suppose that the reservoir
has parts at distinct temperatures. Assume some con-
ditions about the regularity and effectiveness of v(&).

Then there exists Ay > 0 such that for 0 < |A| < A,
(9 ), 0,) has no normal stationary states.



Standard representation of 9)i,.

In order to prove the above theorems we need to go
to the standard representation:

T M, > BKRK® Fs(LQ(Rd) D LQ(Rd»a
T(A®B)=A®1® B,
JO1 @Dy U =0y ® P @(e)V.

The free Pauli-Fierz Liouvi_llean:
Ly =KR1IQ1-19K®1

e 1@ [ (€] (af ©u(©) - af(©)(6))) de,
w(Vy) = [ 0(€) ® 1® a*(€)d€ + he.

Jr(Vp)J = [1®7(§) ® 1 ® a} (£)dE + he.
The full Pauli-Fierz Liouvillean at density p:

Lp = Ly + An(Vy,) — A7 (V,)J.



Theorem I’: Let the reservoir have inverse tempera-
ture 5. Assume some conditions about the regularity
and effectiveness of v(£). Then there exists Ay > 0 such

that for 0 < |A\| < )y, dimKerL, = 1 and L, has abso-
lutely continuous spectrum away from 0.

Theorem II’: Absence of normal stationary states in
the non-equilibrium case. Suppose that the reservoir
has parts at distinct temperatures. Assume some con-
ditions about the regularity and effectiveness of v(¢).
Then there exists Ay > 0 such that for 0 < |\ < A,
dim KerL, =



Spectrum of Pauli-Fierz Liouvillean

Spectrum of Ly is R.

Point spectrum of Ly is spK — spK.

Dy, = e PK/220) is a B-KMS vector of Ly,
By ,
o~ LatAT(V))B/2 ¢,

is a §-KMS vector of L,. Therefore,
KerL, > 1.

By a rigorous version of the Fermi Golden Rule, if the
interaction is sufficiently regular and effective, then
there exists \j > 0 such that for 0 < |A| < )\

KerL, < 1.



W*-ALGEBRAIC BACKGROUND

2 approaches to quantum systems

(1) C*-dynamical system (2, az):
A — C*-algebra, t — oy € Aut(2d) — strongly contin-
uous l-parameter group.

(2) W*-dynamical system (901, 0¢):
9N — W*-algebra, t — oy € Aut(IN) — o-weakly con-
tinuous l-parameter group.

We use the WW*-dynamical approach



The GNS representation

Suppose that w is a state on 9. Then we have the
GNS representation 7 : 9 — B(H) with € H — a
cyclic vector for 7(9) such that

W(A) = (QT(A)Q), Acm.

If w is normal, then so is 7.

If in addition w is stationary wrt a W*-dynamics o,
then we have a distinguished unitary implementation
of o:

m(ot(A)) = et r(A)e L A e M,
L) = 0.



Theorem Return to equilibrium in mean.
Suppose that w is faithful. Then the following state-
ments are equivalent:

(1) w is a unique invariant normal state.

(2) €2 is a unique eigenvector of L.

(3) For any normal state ¢ and A € 9,

1 t
lim —/ d(os(A))ds = w(A).
t—oo t Jy

Theorem Return to equilibrium.

Suppose that w is faithful and L has absolutely con-

tinuous spectrum away from (0. Then for any normal
state ¢ and A € 9N,

lim ¢(o¢(A)) = w(A).

1—00



Standard form of a WW*-algebra

A W*-algebra in a standard form is a quadruple (I, H, J, H™),
where H is a Hilbert space, 9t C B(H) is a W*-algebra,

J is an antiunitary involution on H (that is, J is anti-
linear, J°2 =1, J* = J) and H™" is a self-dual cone in H

such that:

(1) JMJ = M’;

(2) JAJ = A* for A in the center of i;

(3) JU =V for ¥ € HT;

(4) AJAHT C H" for A € M.



Standard form in a GNS representation

If w is a faithful state,
(7,’H,€2) — the corresponding GNS representation,

J — the modular conjugation given by the Tomita-
Takesaki theory,

HY = {r(A)Jr(A)Q : AeMm then
(m(9M), H, Jo, ),

is a standard form.



Standard Liouvillean

For every W*-dynamics o there exists a unique self-
adjoint operator L called the Liouvillean of ¢ such that

m(ot(A)) = et (A e A e M,
gl Hy+ C Hy.

If the W*-dynamics ¢ has a faithful invariant normal
state w, then its Liouvilean L coincides with the oper-
ator L introduced in the GNS representation.



Normal states
and vectors in the positive cone

Theorem Every normal state w has a unique
standard vector representative, that is a vector ) € H™

such that
w(A) = (Qm(A)2), AeM.

Theorem
(1) dim KerL = 0 iff the W*-dynamics o; has no normal
invariant states.
(2) dimKerL = 1 iff the W*-dynamics o4 has a single
normal invariant state.



KMS states

Let 0 be a W*-dynamics and L the corresponding Li-
ouvillean.
A normal state w is called a -KMS state iff

w(AB) = w(Baig(A)), A,B €M, B o — analytic.
5-KMS states are stationary.
A vector ) is called a 3-KMS vector iff ) € X' and
e PLI2 AQ = JA*Q, Ac M.

5-KMS vectors belong to KerlL.. They are standard
vector representatives of G-KMS states.



Theorem Let (91, 0p) be a W*-dynamical system with
the Liouvillean L. Let () be a -KMS vector for
or. Let V be a self-adjoint operator affiliated to N
satisfying some technical assumptions.

Then (1) There exists a perturbed dynamics ¢ such

that 1 1
EOt(A) = ngr,t(A) + iV, og. 1 (A)].

(2) The Liouvillean of o equals
L=Lyg+nV)—Jn(V)J
(3) e~ 07(V)/2() is a B-KMS vector for o.

—bounded V; —unbounded V.



Example: type I factor
W*-algebra: B(K);
Standard Hilbert space: K@K = B*(K);
Standard representation: 7(A)=A® 1 ~ A;
Standard positive cone: B%(IC);
State: w(A) = TrpA, p € B}F(/C), Trp = 1;
Its vector representative: ()= pl/ 2 ¢ B?F(IC);
W*-dynamics: o4(A) = ™ Ae71H,
Its Liouvillean: L=K®1 -1 K ~ |K,-|;
B-KMS state: wg(A) = (Tr e PE) LTy ofK 4,

3-KMS vector: (Tre FK)=1/2¢8K/2,

B?(K)-Hilbert-Schmidt operators, B!(K)—trace class operators



RIGOROUS FERMI GOLDEN RULE

2nd order perturbation theory for isolated
eigenvalues

Unperturbed operator: Lj. The spectral projection
onto an isolated part of spectrum of L consisting of a
finite number of eigenvalues is denoted P. We define

LyP=E= ) elE).
ecspl

Perturbation: (). We assume that there is no 1st order
shift of eigenvalues:

PQP = 0.
Perturbed operator: L) := Ly+ AQ.



Theorem. For small )\, in a neighborhood of spE we
have

spLy, = sp(E + AT + o()\?),
where I' is the Level Shift Operator
[= ) 1(BE)Q(e— Ly~ 'Qle(E).

ecspl

Multiplicities of eigenvalues of F + M\’I' coincide with
multiplicities of corresponding clusters of eigenvalues

of L)\.



2nd order perturbation theory for isolated
eigenvalues

Let Ly, P, () and L), be as above, except that the spec-
trum of £ can be embedded in the rest of spectrum of
Ly. Introduce the (upper) Level Shift Operator:

[ = lim 1o(E)Q(e + ie — L) ' Q1(E).
€0
eesply
Clearly, I' satisfies
1
I'E = ET, 2—(F — ') <.
i

Fermi Golden Rule:
%(F + I'*) describes energy shift,

%(F — I'*) describes the decay rates.



Theorem. There exists \j > 0 such that for 0 < || < )\
1
dim 1p(L)y) < dim Kerg(F — ).
i

Proofs (for Pauli-Fierz Liouvilleans) involve

1) analytic deformation method, Jaksic-Pillet;:

2) positive commutator method, Jaksi¢-D; Merkli;
3) “renormalization group” Bach-Frohlich-Sigal.



2nd order perturbation theory
applied to Pauli-Fierz Liouvilleans

Unperturbed operator: L.

Projection: 1,(Ly), which coincides with the projec-
tion onto K ® K ® ().

Perturbation: =(V),) — Jm(V,)J.

Perturbed operator: L.

Theorem. If the interaction is sufficiently regular and
effective, then

dim Ker%(F —I'*) <1 in thermal case,

dim Ker%(F — I'*) = 0 in nonthermal case.



