RETURN TO EQUILIBRIUM

V.Jakšić, C. A. Pillet, J. Dereziński.

Conventional wisdom

(1) In a generic situation, a small system interacting with a large reservoir at temperature T goes to equilibrium at the same temperature.

(2) The behavior of a small system interacting with reservoirs at distinct temperatures is much more difficult to desribe than in the case of a reservoir at a fixed temperature. **Rigorous expression** of conventional wisdom

Rigorous theorems proven for nontrivial, explicit and realistic models:

(1) Return to equilibrium for a generic small system interacting with a thermal reservoir.

(2) Absence of normal stationary states for a generic small system interacting with a non-equilibrium reservoir.

Mathematical techniques involved in the study of return to equilibrium.

- Operator algebras:
 - $-\mathbf{KMS}$ states,
 - -Standard forms, Liouvilleans;
- Quantum field theory:
 - -Quasi-free (Araki-Woods) representations of the CCR;
- Spectral theory:
 - -Fermi Golden Rule, the Feshbach method,
 - The positive commutator (Mourre) method.

Plan of the lecture

 $\left(1\right)$ Small system interacting with a bosonic reservoir

- (2) W^* -algebraic background.
- (3) Fermi golden rule

SMALL SYSTEM INTERACTING WITH A BOSONIC RESERVOIR

Bosonic Fock space

$$\Gamma_{\mathrm{s}}(L^2(\mathbb{R}^d)) := \bigoplus_{n=0}^{\infty} \otimes_{\mathrm{s}}^n L^2(\mathbb{R}^d).$$

Creation/annihilation operators:

$$[a^{*}(\xi_{1}), a^{*}(\xi_{2})] = 0, \quad [a(\xi_{1}), a(\xi_{2})] = 0,$$
$$[a^{*}(\xi_{1}), a(\xi_{2})] = \delta(\xi_{1} - \xi_{2}).$$
$$\int a^{*}(\xi) f(\xi) d\xi \Phi := \sqrt{n+1} f \otimes_{s} \Phi, \quad \Phi \in \bigotimes_{s}^{n} L^{2}(\mathbb{R}^{d})$$

Vacuum: $\Omega = 1 \in \bigotimes_{s}^{0} L^{2}(\mathbb{R}^{d}) = \mathbb{C}$. Free Hamiltonian of fotons or phonons:

$$H = \int |\xi| a^*(\xi) a(\xi) \mathrm{d}\xi.$$

Quasi-free representations of the CCR

Radiation density: $\mathbb{R}^d \ni \xi \mapsto \rho(\xi) \in [0, \infty[$. We look for creation/annihillation operators $a_{\rho,l}^*(\xi)/a_{\rho,l}(\xi)$, with a quasi-free state of density ρ given by a cyclic vector Ω :

$$\begin{split} & [a_{\rho,l}^*(\xi_1), a_{\rho,l}^*(\xi_2)] = 0, \quad [a_{\rho,l}(\xi_1), a_{\rho,l}(\xi_2)] = 0, \\ & [a_{\rho,l}(\xi_1), a_{\rho,l}^*(\xi_2)] = \delta(\xi_1 - \xi_2). \\ & W_{\rho,l}(f) := \exp\left(\frac{\mathrm{i}}{\sqrt{2}} \int (f(\xi)a_{\rho,l}^*(\xi) + \overline{f}(\xi)a_{\rho,l}(\xi))\mathrm{d}\xi\right) \\ & (\Omega|W_{\rho,l}(f)\Omega) = \exp\left(-\frac{1}{4} \int |f(\xi)|^2 (1 + 2\rho(\xi))\mathrm{d}\xi\right). \end{split}$$

Araki-Woods representation of CCR

We will write $a_l^*(\xi)/a_l(\xi)$, $a_r(\xi)/a_r^*(\xi)$ for the creation/ annihilation operators corresponding to the left and right $L^2(\mathbb{R}^d)$ resp. acting on the Fock space

$$\Gamma_{\mathrm{s}}(L^2(\mathbb{R}^d)\oplus L^2(\mathbb{R}^d)).$$

Left Araki-Woods creation/annihillation operators are defined as

$$\begin{aligned} a_{\rho,\mathbf{l}}^*(\xi) &:= \sqrt{1 + \rho(\xi)} a_{\mathbf{l}}^*(\xi) + \sqrt{\rho(\xi)} a_{\mathbf{r}}(\xi), \\ a_{\rho,\mathbf{l}}(\xi) &:= \sqrt{1 + \rho(\xi)} a_{\mathbf{l}}(\xi) + \sqrt{\rho(\xi)} a_{\mathbf{r}}^*(\xi). \end{aligned}$$

Left Araki-Woods algebra is denoted by $\mathfrak{M}_{\rho,l}^{AW}$ and defined as the W^* -algebra generated by the operators $W_{\rho,l}(f)$. The vacuum Ω defines a quasi-free state of density ρ .

Commutant of the Araki-Woods algebra

Define an involution ϵ on $L^2(\mathbb{R}^d) \oplus L^2(\mathbb{R}^d)$ by $\epsilon(f_1, \overline{f_2}) := (f_1, \overline{f_2})$. Set $J := \Gamma(\epsilon)$. Then J is the modular involution for the state $(\Omega | \cdot \Omega)$.

Right Araki-Woods creation/annihillation operators:

$$a_{\rho,r}^{*}(\xi) := \sqrt{\rho(\xi)} a_{l}(\xi) + \sqrt{1 + \rho(\xi)} a_{r}^{*}(\xi),$$
$$a_{\rho,r}(\xi) := \sqrt{\rho(\xi)} a_{l}^{*}(\xi) + \sqrt{1 + \rho(\xi)} a_{r}(\xi).$$

generate the right Araki-Woods algebra denoted by $\mathfrak{M}_{\rho,r}^{AW}$. Note that $J\mathfrak{M}_{\rho,l}^{AW}J = \mathfrak{M}_{\rho,r}^{AW}$ is the commutant of $\mathfrak{M}_{\rho,l}^{AW}$.

Dynamics of the quasifree bosons

The Liouvillean of free bosons:

$$L = \int |\xi| a_{\mathbf{l}}^*(\xi) a_{\mathbf{l}}(\xi) d\xi - \int |\xi| a_{\mathbf{r}}^*(\xi) a_{\mathbf{r}}(\xi) d\xi.$$

Note that JLJ = -L.

 $e^{itL} \cdot e^{-itL}$ defines a dynamics on $\mathfrak{M}_{\rho,l}^{AW}$. The state $(\Omega|\cdot\Omega)$ is β -KMS iff the density is given by the Planck law: $\rho(\xi) = (e^{\beta|\xi|} - 1)^{-1}.$ Small quantum system in contact with Bose gas at zero density Hilbert space of the small quantum system: $\mathcal{K} = \mathbb{C}^n$. The Hamiltonian of the free system: K. The free Pauli-Fierz Hamiltonian:

$$H_{\rm fr} := K \otimes 1 + 1 \otimes \int |\xi| a^*(\xi) a(\xi) d\xi.$$

$$\mathbb{R}^d \ni \xi \mapsto v(\xi) \in B(\mathcal{K})$$

describes the interaction:

$$V := \int v(\xi) \otimes a^*(\xi) \mathrm{d}\xi + \mathrm{ho}$$

The full Pauli-Fierz Hamiltonian: $H := H_{fr} + \lambda V$. The Pauli-Fierz system at zero density:

$$\left(B(\mathcal{K}\otimes\Gamma_{\mathrm{s}}(L^{2}(\mathbb{R}^{d})),\mathrm{e}^{\mathrm{i}tH}\cdot\mathrm{e}^{-\mathrm{i}tH}\right)$$

Small quantum system in contact with Bose gas at density ρ . The algebra of observables of the composite system: $\mathfrak{M}_{\rho} := B(\mathcal{K}) \otimes \mathfrak{M}_{\rho,l} \subset B\left(\mathcal{K} \otimes \Gamma_{\mathrm{s}}(L^{2}(\mathbb{R}^{d}) \oplus L^{2}(\mathbb{R}^{d}))\right).$ The free Pauli-Fierz semi-Liouvillean at density ρ : $L_{\mathrm{fr}}^{\mathrm{semi}} := K \otimes 1 + 1 \otimes \left(\int |\xi| a_{\mathrm{l}}^{*}(\xi) a_{\mathrm{l}}(\xi) \mathrm{d}\xi - \int |\xi| a_{\mathrm{r}}^{*}(\xi) a_{\mathrm{r}}(\xi) \mathrm{d}\xi\right).$

The interaction:

$$V_{\rho} := \int v(\xi) \otimes a_{\rho,l}^*(\xi) \mathrm{d}\xi + \mathrm{hc}$$

The full Pauli-Fierz semi-Liouvillean at density ρ : $L_{\rho}^{\text{semi}} := L_{\text{fr}}^{\text{semi}} + \lambda V_{\rho}.$ The Pauli-Fierz W*-dynamical system at density ρ : $(\mathfrak{M}_{\rho}, \sigma_{\rho}), \text{ where } \sigma_{\rho,t}(A) := e^{itL_{\rho}^{\text{semi}}} A e^{-itL_{\rho}^{\text{semi}}}.$

Relationship between the dynamics at zero density and at density ρ .

Set
$$\rho = 0$$
.
 $\mathfrak{M}_0 \simeq B(\mathcal{K} \otimes \Gamma_{\mathrm{s}}(L^2(\mathbb{R}^d)) \otimes 1.$
 $L_0^{\mathrm{semi}} \simeq H \otimes 1 - 1 \otimes \int |\xi| a_r(^*(\xi) a_r(\xi) \mathrm{d}\xi.$
 $\sigma_{0,t}(A \otimes 1) = \mathrm{e}^{\mathrm{i}tH} A \, \mathrm{e}^{-\mathrm{i}tH} \otimes 1.$

If we formally replace $a_{l}(\xi)$, $a_{r}(\xi)$ with $a_{\rho,l}(\xi)$, $a_{\rho,r}(\xi)$ (the CCR do not change!) then \mathfrak{M}_{0} , L_{0}^{semi} , σ_{0} transform into \mathfrak{M}_{ρ} , L_{ρ}^{semi} , σ_{ρ} . In the case of a finite number of degrees of freedom this can be implemented by a unitary Bogoliubov transformation. $(\mathfrak{M}_{\rho}, \sigma_{\rho})$ can be viewed as a thermodynamical limit of $(\mathfrak{M}_{0}, \sigma_{0})$. Theorem I: Return equilibrium in the thermal case. Let the reservoir have inverse temperature β . Assume some conditions about the regularity and effectiveness of $v(\xi)$. Then there exists $\lambda_0 > 0$ such that for $0 < |\lambda| \le \lambda_0$, $(\mathfrak{M}_{\rho}, \sigma_{\rho})$ has a single normal stationary state ω . This state is β -KMS and for any normal state ϕ and $A \in \mathfrak{M}_{\rho}$, we have $\lim_{|t|\to\infty} \phi(\sigma_{\rho,t}(A)) = \omega(A)$. Jakšić-Pillet, Jakšić-D., Bach-Fröhlich-Sigal, Fröhlich-Merkli

Theorem II: Absence of normal stationary states in the non-equilibrium case. Suppose that the reservoir has parts at distinct temperatures. Assume some conditions about the regularity and effectiveness of $v(\xi)$. Then there exists $\lambda_0 > 0$ such that for $0 < |\lambda| \le \lambda_0$, $(\mathfrak{M}_{\rho}, \sigma_{\rho})$ has no normal stationary states. Jakšić-D. Standard representation of \mathfrak{M}_{ρ} .

In order to prove the above theorems we need to go to the standard representation:

$$\pi: \mathfrak{M}_{\rho} \to B(\mathcal{K} \otimes \overline{\mathcal{K}} \otimes \Gamma_{s}(L^{2}(\mathbb{R}^{d}) \oplus L^{2}(\mathbb{R}^{d})),$$

$$\pi(A \otimes B) = A \otimes 1 \otimes B,$$

$$J\Phi_{1} \otimes \overline{\Phi}_{2} \otimes \Psi = \Phi_{2} \otimes \overline{\Phi}_{1} \otimes \Gamma(\epsilon)\Psi.$$
The free Pauli-Fierz Liouvillean:

$$L_{\mathrm{fr}} := K \otimes 1 \otimes 1 - 1 \otimes \overline{K} \otimes 1$$

$$+1 \otimes 1 \otimes \int \left(|\xi| \left(a_{1}^{*}(\xi)a_{1}(\xi) - a_{1}^{*}(\xi)a_{1}(\xi) \right) \right) \mathrm{d}\xi,$$

$$\pi(V_{\rho}) = \int v(\xi) \otimes 1 \otimes a_{\rho,1}^{*}(\xi)\mathrm{d}\xi + \mathrm{hc},$$

$$J\pi(V_{\rho})J = \int 1 \otimes \overline{v}(\xi) \otimes 1 \otimes a_{\rho,r}^{*}(\xi)\mathrm{d}\xi + \mathrm{hc}.$$
The full Pauli-Fierz Liouvillean at density ρ :
$$L\rho = L_{\mathrm{fr}} + \lambda \pi(V_{\rho}) - \lambda J \pi(V_{\rho})J.$$

Theorem I': Let the reservoir have inverse temperature β . Assume some conditions about the regularity and effectiveness of $v(\xi)$. Then there exists $\lambda_0 > 0$ such that for $0 < |\lambda| \le \lambda_0$, dim Ker $L_{\rho} = 1$ and L_{ρ} has absolutely continuous spectrum away from 0.

Theorem II': Absence of normal stationary states in the non-equilibrium case. Suppose that the reservoir has parts at distinct temperatures. Assume some conditions about the regularity and effectiveness of $v(\xi)$. Then there exists $\lambda_0 > 0$ such that for $0 < |\lambda| \le \lambda_0$, dim Ker $L_{\rho} = 0$. Spectrum of Pauli-Fierz Liouvillean Spectrum of L_{fr} is \mathbb{R} . Point spectrum of L_{fr} is $\operatorname{sp} K - \operatorname{sp} K$. $\Phi_{fr} := e^{-\beta K/2} \otimes \Omega$ is a β -KMS vector of L_{fr} . By Araki-Jakšić-Pillet-D, $e^{-(L_{fr}+\lambda\pi(V_{\rho}))\beta/2}\Phi_{fr}$

is a β -KMS vector of L_{ρ} . Therefore, Ker $L_{\rho} \ge 1$.

By a rigorous version of the Fermi Golden Rule, if the interaction is sufficiently regular and effective, then there exists $\lambda_0 > 0$ such that for $0 < |\lambda| \le \lambda_0$

 $\operatorname{Ker} L_{\rho} \leq 1.$

W*-ALGEBRAIC BACKGROUND

2 approaches to quantum systems

- (1) C^* -dynamical system (\mathfrak{A}, α_t) : $\mathfrak{A} - C^*$ -algebra, $t \mapsto \alpha_t \in \operatorname{Aut}(\mathfrak{A})$ – strongly continuous 1-parameter group.
- (2) W^* -dynamical system (\mathfrak{M}, σ_t) : $\mathfrak{M} - W^*$ -algebra, $t \mapsto \sigma_t \in \operatorname{Aut}(\mathfrak{M}) - \sigma$ -weakly continuous 1-parameter group.

We use the W^* -dynamical approach

The GNS representation

Suppose that ω is a state on \mathfrak{M} . Then we have the GNS representation $\pi : \mathfrak{M} \to B(\mathcal{H})$ with $\Omega \in \mathcal{H} - a$ cyclic vector for $\pi(\mathfrak{M})$ such that

$$\omega(A) = (\Omega | \pi(A)\Omega), \quad A \in \mathfrak{M}.$$

If ω is normal, then so is π .

If in addition ω is stationary wrt a W^* -dynamics σ , then we have a distinguished unitary implementation of σ :

$$\pi(\sigma_t(A)) = e^{itL} \pi(A) e^{-itL}, \quad A \in \mathfrak{M},$$
$$L\Omega = 0.$$

Theorem Return to equilibrium in mean. Suppose that ω is faithful. Then the following statements are equivalent:

- $(1) \; \omega$ is a unique invariant normal state.
- (2) Ω is a unique eigenvector of L.
- (3) For any normal state ϕ and $A \in \mathfrak{M}$,

$$\lim_{t \to \infty} \frac{1}{t} \int_0^t \phi(\sigma_s(A)) \mathrm{d}s = \omega(A).$$

Theorem Return to equilibrium.

Suppose that ω is faithful and L has absolutely continuous spectrum away from 0. Then for any normal state ϕ and $A \in \mathfrak{M}$,

$$\lim_{t \to \infty} \phi(\sigma_t(A)) = \omega(A).$$

Standard form of a W^* -algebra Connes, Araki, Haagerup

A W^* -algebra in a standard form is a quadruple $(\mathfrak{M}, \mathcal{H}, J, \mathcal{H}^+)$, where \mathcal{H} is a Hilbert space, $\mathfrak{M} \subset \mathcal{B}(\mathcal{H})$ is a W^* -algebra, J is an antiunitary involution on \mathcal{H} (that is, J is antilinear, $J^2 = 1$, $J^* = J$) and \mathcal{H}^+ is a self-dual cone in \mathcal{H} such that:

(1)
$$J\mathfrak{M}J = \mathfrak{M}';$$

(2) $JAJ = A^*$ for A in the center of \mathfrak{M}
(3) $J\Psi = \Psi$ for $\Psi \in \mathcal{H}^+;$
(4) $AJA\mathcal{H}^+ \subset \mathcal{H}^+$ for $A \in \mathfrak{M}.$

Standard form in a GNS representation

If ω is a faithful state,

 $(\pi, \mathcal{H}, \Omega)$ – the corresponding GNS representation, J – the modular conjugation given by the Tomita-Takesaki theory, $\mathcal{H}^+ := \{\pi(A)J\pi(A)\Omega : A \in \mathfrak{M}\}^{\mathrm{cl}}$, then

 $(\pi(\mathfrak{M}), \mathcal{H}, J_{\Omega}, \mathcal{H}^+),$

is a standard form.

Standard Liouvillean

For every W^* -dynamics σ there exists a unique selfadjoint operator L called the Liouvillean of σ such that

$$\pi(\sigma_t(A)) = e^{itL} \pi(A) e^{-itL}, \quad A \in \mathfrak{M},$$
$$e^{itL} \mathcal{H}_+ \subset \mathcal{H}_+.$$

If the W^* -dynamics σ has a faithful invariant normal state ω , then its Liouvilean L coincides with the operator L introduced in the GNS representation.

Normal states and vectors in the positive cone

Theorem Every normal state ω has a unique standard vector representative, that is a vector $\Omega \in \mathcal{H}^+$ such that

$$\omega(A) = (\Omega | \pi(A) \Omega), \quad A \in \mathfrak{M}.$$

Theorem

- (1) dim KerL = 0 iff the W^* -dynamics σ_t has no normal invariant states.
- (2) dim KerL = 1 iff the W^* -dynamics σ_t has a single normal invariant state.

KMS states

Let σ be a W^* -dynamics and L the corresponding Liouvillean.

A normal state ω is called a β -KMS state iff

 $\omega(AB) = \omega(B\sigma_{i\beta}(A)), \ A, B \in \mathfrak{M}, \ B \ \sigma-analytic.$

 β -KMS states are stationary.

A vector Ω is called a β -KMS vector iff $\Omega \in \mathcal{H}^+$ and $e^{-\beta L/2} A\Omega = JA^*\Omega, \quad A \in \mathfrak{M}.$

 β -KMS vectors belong to KerL. They are standard vector representatives of β -KMS states.

Theorem Let $(\mathfrak{M}, \sigma_{\mathrm{fr}})$ be a W^* -dynamical system with the Liouvillean L_{fr} . Let Ω_{fr} be a β -KMS vector for σ_{fr} . Let V be a self-adjoint operator affiliated to \mathfrak{M} satisfying some technical assumptions.

Then (1) There exists a perturbed dynamics σ such that

$$\frac{\mathrm{d}}{\mathrm{d}t}\sigma_t(A) = \frac{\mathrm{d}}{\mathrm{d}t}\sigma_{\mathrm{fr},t}(A) + \mathrm{i}[V,\sigma_{\mathrm{fr},t}(A)]$$

(2) The Liouvillean of σ equals

$$L = L_{\rm fr} + \pi(V) - J\pi(V)J.$$

(3) $e^{-\beta \pi(V)/2} \Omega$ is a β -KMS vector for σ .

Araki–bounded V; Jakšić, Pillet and D.–unbounded V.

Example: type I factor

 W^* -algebra: $B(\mathcal{K})$; Standard Hilbert space: $\mathcal{K} \otimes \overline{\mathcal{K}} = B^2(\mathcal{K})$; Standard representation: $\pi(A) = A \otimes 1_{\mathcal{K}} \simeq A$; Standard positive cone: $B^2_{+}(\mathcal{K})$; State: $\omega(A) = \text{Tr}\rho A, \ \rho \in B^1_+(\mathcal{K}), \ \text{Tr}\rho = 1;$ Its vector representative: $\Omega = \rho^{1/2} \in B^2_{+}(\mathcal{K});$ W*-dynamics: $\sigma_t(A) = e^{itK} A e^{-itK}$; Its Liouvillean: $L = K \otimes 1 - 1 \otimes K \simeq [K, \cdot];$ β -KMS state: $\omega_{\beta}(A) = (\operatorname{Tr} e^{-\beta K})^{-1} \operatorname{Tr} e^{\beta K} A;$ β -KMS vector: $(\text{Tr e}^{-\beta K})^{-1/2} e^{\beta K/2}$.

 $B^{2}(\mathcal{K})$ -Hilbert-Schmidt operators, $B^{1}(\mathcal{K})$ -trace class operators

RIGOROUS FERMI GOLDEN RULE 2nd order perturbation theory for isolated eigenvalues

Unperturbed operator: L_0 . The spectral projection onto an isolated part of spectrum of L_0 consisting of a finite number of eigenvalues is denoted P. We define

$$L_0 P =: E = \sum_{e \in \operatorname{sp} E} e \mathbb{1}_e(E).$$

Perturbation: Q. We assume that there is no 1st order shift of eigenvalues:

$$PQP = 0.$$

Perturbed operator: $L_{\lambda} := L_0 + \lambda Q$.

Theorem. For small λ , in a neighborhood of sp*E* we have

$$\operatorname{sp}L_{\lambda} = \operatorname{sp}(E + \lambda^2 \Gamma) + o(\lambda^2),$$

where Γ is the Level Shift Operator

$$\Gamma = \sum_{e \in \operatorname{sp} E} 1_e(E)Q(e - L_0)^{-1}Q1_e(E).$$

Multiplicities of eigenvalues of $E + \lambda^2 \Gamma$ coincide with multiplicities of corresponding clusters of eigenvalues of L_{λ} .

2nd order perturbation theory for isolated eigenvalues

Let L_0 , P, Q and L_{λ} be as above, except that the spectrum of E can be embedded in the rest of spectrum of L_0 . Introduce the (upper) Level Shift Operator:

$$\Gamma = \sum_{e \in \operatorname{sp} E} \lim_{\epsilon \downarrow 0} \mathbb{1}_e(E) Q(e + i\epsilon - L_0)^{-1} Q \mathbb{1}_e(E).$$

Clearly, Γ satisfies

$$\Gamma E = E\Gamma, \quad \frac{1}{2i}(\Gamma - \Gamma^*) \le 0.$$

Fermi Golden Rule: $\frac{1}{2}(\Gamma + \Gamma^*)$ describes energy shift, $\frac{1}{2i}(\Gamma - \Gamma^*)$ describes the decay rates. Theorem. There exists $\lambda_0 > 0$ such that for $0 < |\lambda| < \lambda_0$ $\dim 1_p(L_{\lambda}) \le \dim \operatorname{Ker} \frac{1}{2i}(\Gamma - \Gamma^*).$

Proofs (for Pauli-Fierz Liouvilleans) involve

- 1) analytic deformation method, Jakšić-Pillet;
- 2) positive commutator method, Jakšić-D; Merkli;
- 3) "renormalization group" Bach-Fröhlich-Sigal.

2nd order perturbation theory applied to Pauli-Fierz Liouvilleans

Unperturbed operator: L_0 . Projection: $1_p(L_{fr})$, which coincides with the projection onto $\mathcal{K} \otimes \overline{\mathcal{K}} \otimes \Omega$. Perturbation: $\pi(V_{\rho}) - J\pi(V_{\rho})J$. Perturbed operator: L_{ρ} .

Theorem. If the interaction is sufficiently regular and effective, then

dim $\operatorname{Ker} \frac{1}{2i}(\Gamma - \Gamma^*) \leq 1$ in thermal case, dim $\operatorname{Ker} \frac{1}{2i}(\Gamma - \Gamma^*) = 0$ in nonthermal case.