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Conventional wisdom

(1) In a generic situation, a small system interacting
with a large reservoir at temperature T goes to equi-
librium at the same temperature.
(2) The behavior of a small system interacting with
reservoirs at distinct temperatures is much more dif-
ficult to desribe than in the case of a reservoir at a
fixed temperature.



Rigorous expression
of conventional wisdom

Rigorous theorems proven for nontrivial, explicit and
realistic models:

(1) Return to equilibrium for a generic small system
interacting with a thermal reservoir.

(2) Absence of normal stationary states for a generic
small system interacting with a non-equilibrium reser-
voir.



Mathematical techniques involved in
the study of return to equilibrium.

• Operator algebras:

– KMS states,

– Standard forms, Liouvilleans;

• Quantum field theory:

– Quasi-free (Araki-Woods) representations of the
CCR;

• Spectral theory:

– Fermi Golden Rule, the Feshbach method,

– The positive commutator (Mourre) method.



Plan of the lecture

(1) Small system interacting with a bosonic reservoir

(2) W ∗-algebraic background.

(3) Fermi golden rule



SMALL SYSTEM INTERACTING
WITH A BOSONIC RESERVOIR

Bosonic Fock space

Γs(L
2(Rd)) :=

∞
⊕

n=0
⊗n

s L2(Rd).

Creation/annihilation operators:

[a∗(ξ1), a
∗(ξ2)] = 0, [a(ξ1), a(ξ2)] = 0,

[a∗(ξ1), a(ξ2)] = δ(ξ1 − ξ2).
∫

a∗(ξ)f (ξ)dξΦ :=
√

n + 1f ⊗s Φ, Φ ∈ ⊗n
s L2(Rd).

Vacuum: Ω = 1 ∈ ⊗0
sL

2(Rd) = C.
Free Hamiltonian of fotons or phonons:

H =

∫

|ξ|a∗(ξ)a(ξ)dξ.



Quasi-free representations of the CCR

Radiation density: R
d 3 ξ 7→ ρ(ξ) ∈ [0,∞[. We look

for creation/annihillation operators a∗ρ,l(ξ)/aρ,l(ξ), with

a quasi-free state of density ρ given by a cyclic vector
Ω:

[a∗ρ,l(ξ1), a
∗
ρ,l(ξ2)] = 0, [aρ,l(ξ1), aρ,l(ξ2)] = 0,

[aρ,l(ξ1), a
∗
ρ,l(ξ2)] = δ(ξ1 − ξ2).

Wρ,l(f ) := exp
( i√

2

∫

(f (ξ)a∗ρ,l(ξ) + f (ξ)aρ,l(ξ))dξ
)

.

(Ω|Wρ,l(f )Ω) = exp
(

−1

4

∫

|f (ξ)|2(1 + 2ρ(ξ))dξ
)

.



Araki-Woods representation of CCR

We will write a∗l (ξ)/al(ξ), ar(ξ)/a∗r (ξ) for the creation/
annihilation operators corresponding to the left and
right L2(Rd) resp. acting on the Fock space

Γs(L
2(Rd) ⊕ L2(Rd)).

Left Araki-Woods creation/annihillation operators are
defined as

a∗ρ,l(ξ) :=
√

1 + ρ(ξ)a∗l (ξ) +
√

ρ(ξ)ar(ξ),

aρ,l(ξ) :=
√

1 + ρ(ξ)al(ξ) +
√

ρ(ξ)a∗r (ξ).

Left Araki-Woods algebra is denoted by M
AW
ρ,l and de-

fined as the W ∗-algebra generated by the operators
Wρ,l(f ). The vacuum Ω defines a quasi-free state of
density ρ.



Commutant of the Araki-Woods algebra

Define an involution ε on L2(Rd) ⊕ L2(Rd) by ε(f1, f2) :=
(f1, f2). Set J := Γ(ε). Then J is the modular involution
for the state (Ω| · Ω).

Right Araki-Woods creation/annihillation operators:

a∗ρ,r(ξ) :=
√

ρ(ξ)al(ξ) +
√

1 + ρ(ξ)a∗r (ξ),

aρ,r(ξ) :=
√

ρ(ξ)a∗l (ξ) +
√

1 + ρ(ξ)ar(ξ).

generate the right Araki-Woods algebra denoted by
M

AW
ρ,r . Note that JM

AW
ρ,l J = M

AW
ρ,r is the commutant of

M
AW
ρ,l .



Dynamics of the quasifree bosons

The Liouvillean of free bosons:

L =

∫

|ξ|a∗l (ξ)al(ξ)dξ −
∫

|ξ|a∗r (ξ)ar(ξ)dξ.

Note that JLJ = −L.

eitL · e−itL defines a dynamics on M
AW
ρ,l . The state (Ω| ·Ω)

is β-KMS iff the density is given by the Planck law:

ρ(ξ) = (eβ|ξ|−1)−1.



Small quantum system
in contact with Bose gas at zero density

Hilbert space of the small quantum system: K = C
n.

The Hamiltonian of the free system: K.
The free Pauli-Fierz Hamiltonian:

Hfr := K ⊗ 1 + 1 ⊗
∫

|ξ|a∗(ξ)a(ξ)dξ.

R
d 3 ξ 7→ v(ξ) ∈ B(K)

describes the interaction:

V :=

∫

v(ξ) ⊗ a∗(ξ)dξ + hc

The full Pauli-Fierz Hamiltonian: H := Hfr + λV. The
Pauli-Fierz system at zero density:

(

B(K ⊗ Γs(L
2(Rd)), eitH · e−itH

)

.



Small quantum system
in contact with Bose gas at density ρ.

The algebra of observables of the composite system:

Mρ := B(K) ⊗ Mρ,l ⊂ B
(

K ⊗ Γs(L
2(Rd) ⊕ L2(Rd))

)

.

The free Pauli-Fierz semi-Liouvillean at density ρ:

Lsemi
fr := K ⊗ 1 + 1 ⊗

(

∫

|ξ|a∗l (ξ)al(ξ)dξ −
∫

|ξ|a∗r (ξ)ar(ξ)dξ
)

.

The interaction:

Vρ :=

∫

v(ξ) ⊗ a∗ρ,l(ξ)dξ + hc.

The full Pauli-Fierz semi-Liouvillean at density ρ:

Lsemi
ρ := Lsemi

fr + λVρ.

The Pauli-Fierz W ∗-dynamical system at density ρ:

(Mρ, σρ), where σρ,t(A) := eitLsemi
ρ A e−itLsemi

ρ .



Relationship between the dynamics at zero density
and at density ρ.

Set ρ = 0.
M0 ' B(K ⊗ Γs(L

2(Rd)) ⊗ 1.

Lsemi
0 ' H ⊗ 1 − 1 ⊗

∫

|ξ|ar(
∗(ξ)ar(ξ)dξ.

σ0,t(A ⊗ 1) = eitH A e−itH ⊗1.

If we formally replace al(ξ), ar(ξ) with aρ,l(ξ), aρ,r(ξ)

(the CCR do not change!) then M0, Lsemi
0 , σ0 trans-

form into Mρ, Lsemi
ρ , σρ. In the case of a finite num-

ber of degrees of freedom this can be implemented by
a unitary Bogoliubov transformation. (Mρ, σρ) can be
viewed as a thermodynamical limit of (M0, σ0).



Theorem I: Return equilibrium in the thermal case.
Let the reservoir have inverse temperature β. Assume
some conditions about the regularity and effective-
ness of v(ξ). Then there exists λ0 > 0 such that for
0 < |λ| ≤ λ0, (Mρ, σρ) has a single normal stationary
state ω. This state is β-KMS and for any normal state
φ and A ∈ Mρ, we have lim|t|→∞ φ(σρ,t(A)) = ω(A). Jakšić-
Pillet, Jakšić-D., Bach-Fröhlich-Sigal, Fröhlich-Merkli

Theorem II: Absence of normal stationary states in
the non-equilibrium case. Suppose that the reservoir
has parts at distinct temperatures. Assume some con-
ditions about the regularity and effectiveness of v(ξ).
Then there exists λ0 > 0 such that for 0 < |λ| ≤ λ0,
(Mρ, σρ) has no normal stationary states. Jakšić-D.



Standard representation of Mρ.

In order to prove the above theorems we need to go
to the standard representation:

π : Mρ → B(K ⊗K ⊗ Γs(L
2(Rd) ⊕ L2(Rd)),

π(A ⊗ B) = A ⊗ 1 ⊗ B,

JΦ1 ⊗ Φ2 ⊗ Ψ = Φ2 ⊗ Φ1 ⊗ Γ(ε)Ψ.

The free Pauli-Fierz Liouvillean:
Lfr := K ⊗ 1 ⊗ 1 − 1 ⊗ K ⊗ 1

+1 ⊗ 1 ⊗
∫ (

|ξ|
(

a∗l (ξ)al(ξ) − a∗l (ξ)al(ξ)
))

dξ,

π(Vρ) =
∫

v(ξ) ⊗ 1 ⊗ a∗ρ,l(ξ)dξ + hc,

Jπ(Vρ)J =
∫

1 ⊗ v(ξ) ⊗ 1 ⊗ a∗ρ,r(ξ)dξ + hc.

The full Pauli-Fierz Liouvillean at density ρ:

Lρ = Lfr + λπ(Vρ) − λJπ(Vρ)J.



Theorem I’: Let the reservoir have inverse tempera-
ture β. Assume some conditions about the regularity
and effectiveness of v(ξ). Then there exists λ0 > 0 such
that for 0 < |λ| ≤ λ0, dim KerLρ = 1 and Lρ has abso-
lutely continuous spectrum away from 0.

Theorem II’: Absence of normal stationary states in
the non-equilibrium case. Suppose that the reservoir
has parts at distinct temperatures. Assume some con-
ditions about the regularity and effectiveness of v(ξ).
Then there exists λ0 > 0 such that for 0 < |λ| ≤ λ0,
dim KerLρ = 0.



Spectrum of Pauli-Fierz Liouvillean

Spectrum of Lfr is R.
Point spectrum of Lfr is spK − spK.

Φfr := e−βK/2 ⊗Ω is a β-KMS vector of Lfr.
By Araki-Jakšić-Pillet-D,

e−(Lfr+λπ(Vρ))β/2 Φfr

is a β-KMS vector of Lρ. Therefore,

KerLρ ≥ 1.

By a rigorous version of the Fermi Golden Rule, if the
interaction is sufficiently regular and effective, then
there exists λ0 > 0 such that for 0 < |λ| ≤ λ0

KerLρ ≤ 1.



W ∗-ALGEBRAIC BACKGROUND

2 approaches to quantum systems

(1) C∗-dynamical system (A, αt):
A – C∗-algebra, t 7→ αt ∈ Aut(A) – strongly contin-
uous 1-parameter group.

(2) W ∗-dynamical system (M, σt):
M – W ∗-algebra, t 7→ σt ∈ Aut(M) – σ-weakly con-
tinuous 1-parameter group.

We use the W ∗-dynamical approach



The GNS representation

Suppose that ω is a state on M. Then we have the
GNS representation π : M → B(H) with Ω ∈ H – a
cyclic vector for π(M) such that

ω(A) = (Ω|π(A)Ω), A ∈ M.

If ω is normal, then so is π.

If in addition ω is stationary wrt a W ∗-dynamics σ,
then we have a distinguished unitary implementation
of σ:

π(σt(A)) = eitL π(A) e−itL, A ∈ M,

LΩ = 0.



Theorem Return to equilibrium in mean.
Suppose that ω is faithful. Then the following state-
ments are equivalent:

(1) ω is a unique invariant normal state.

(2) Ω is a unique eigenvector of L.

(3) For any normal state φ and A ∈ M,

lim
t→∞

1

t

∫ t

0
φ(σs(A))ds = ω(A).

Theorem Return to equilibrium.
Suppose that ω is faithful and L has absolutely con-
tinuous spectrum away from 0. Then for any normal
state φ and A ∈ M,

lim
t→∞

φ(σt(A)) = ω(A).



Standard form of a W ∗-algebra
Connes, Araki, Haagerup

A W ∗-algebra in a standard form is a quadruple (M,H, J,H+),
where H is a Hilbert space, M ⊂ B(H) is a W ∗-algebra,
J is an antiunitary involution on H (that is, J is anti-
linear, J2 = 1, J∗ = J) and H+ is a self-dual cone in H
such that:
(1) JMJ = M

′;
(2) JAJ = A∗ for A in the center of M;
(3) JΨ = Ψ for Ψ ∈ H+;
(4) AJAH+ ⊂ H+ for A ∈ M.



Standard form in a GNS representation

If ω is a faithful state,
(π,H, Ω) – the corresponding GNS representation,
J – the modular conjugation given by the Tomita-
Takesaki theory,
H+ := {π(A)Jπ(A)Ω : A ∈ M}cl, then

(π(M),H, JΩ,H+),

is a standard form.



Standard Liouvillean

For every W ∗-dynamics σ there exists a unique self-
adjoint operator L called the Liouvillean of σ such that

π(σt(A)) = eitL π(A) e−itL, A ∈ M,

eitLH+ ⊂ H+.

If the W ∗-dynamics σ has a faithful invariant normal
state ω, then its Liouvilean L coincides with the oper-
ator L introduced in the GNS representation.



Normal states
and vectors in the positive cone

Theorem Every normal state ω has a unique
standard vector representative, that is a vector Ω ∈ H+

such that
ω(A) = (Ω|π(A)Ω), A ∈ M.

Theorem

(1) dim KerL = 0 iff the W ∗-dynamics σt has no normal
invariant states.

(2) dim KerL = 1 iff the W ∗-dynamics σt has a single
normal invariant state.



KMS states

Let σ be a W ∗-dynamics and L the corresponding Li-
ouvillean.
A normal state ω is called a β-KMS state iff

ω(AB) = ω(Bσiβ(A)), A,B ∈ M, B σ − analytic.

β-KMS states are stationary.

A vector Ω is called a β-KMS vector iff Ω ∈ H+ and

e−βL/2 AΩ = JA∗Ω, A ∈ M.

β-KMS vectors belong to KerL. They are standard
vector representatives of β-KMS states.



Theorem Let (M, σfr) be a W ∗-dynamical system with
the Liouvillean Lfr. Let Ωfr be a β-KMS vector for
σfr. Let V be a self-adjoint operator affiliated to M

satisfying some technical assumptions.
Then (1) There exists a perturbed dynamics σ such
that

d

dt
σt(A) =

d

dt
σfr,t(A) + i[V, σfr,t(A)].

(2) The Liouvillean of σ equals

L = Lfr + π(V ) − Jπ(V )J.

(3) e−βπ(V )/2 Ω is a β-KMS vector for σ.

Araki–bounded V ; Jakšić, Pillet and D.–unbounded V .



Example: type I factor

W ∗-algebra: B(K);

Standard Hilbert space: K⊗K = B2(K);

Standard representation: π(A) = A ⊗ 1K ' A ·;
Standard positive cone: B2

+(K);

State: ω(A) = TrρA, ρ ∈ B1
+(K), Trρ = 1;

Its vector representative: Ω = ρ1/2 ∈ B2
+(K);

W ∗-dynamics: σt(A) = eitK A e−itK;

Its Liouvillean: L = K ⊗ 1 − 1 ⊗ K ' [K, ·];
β-KMS state: ωβ(A) = (Tr e−βK)−1Tr eβK A;

β-KMS vector: (Tr e−βK)−1/2 eβK/2.
—————————————————-
B2(K)–Hilbert-Schmidt operators, B1(K)–trace class operators



RIGOROUS FERMI GOLDEN RULE
2nd order perturbation theory for isolated

eigenvalues

Unperturbed operator: L0. The spectral projection
onto an isolated part of spectrum of L0 consisting of a
finite number of eigenvalues is denoted P . We define

L0P =: E =
∑

e∈spE

e1e(E).

Perturbation: Q. We assume that there is no 1st order
shift of eigenvalues:

PQP = 0.

Perturbed operator: Lλ := L0 + λQ.



Theorem. For small λ, in a neighborhood of spE we
have

spLλ = sp(E + λ2Γ) + o(λ2),

where Γ is the Level Shift Operator

Γ =
∑

e∈spE

1e(E)Q(e − L0)
−1Q1e(E).

Multiplicities of eigenvalues of E + λ2Γ coincide with
multiplicities of corresponding clusters of eigenvalues
of Lλ.



2nd order perturbation theory for isolated
eigenvalues

Let L0, P , Q and Lλ be as above, except that the spec-
trum of E can be embedded in the rest of spectrum of
L0. Introduce the (upper) Level Shift Operator:

Γ =
∑

e∈spE

lim
ε↓0

1e(E)Q(e + iε − L0)
−1Q1e(E).

Clearly, Γ satisfies

ΓE = EΓ,
1

2i
(Γ − Γ∗) ≤ 0.

Fermi Golden Rule:
1
2(Γ + Γ∗) describes energy shift,
1
2i(Γ − Γ∗) describes the decay rates.



Theorem. There exists λ0 > 0 such that for 0 < |λ| < λ0

dim 1p(Lλ) ≤ dim Ker
1

2i
(Γ − Γ∗).

Proofs (for Pauli-Fierz Liouvilleans) involve
1) analytic deformation method, Jakšić-Pillet;
2) positive commutator method, Jakšić-D; Merkli;
3) “renormalization group” Bach-Fröhlich-Sigal.



2nd order perturbation theory
applied to Pauli-Fierz Liouvilleans

Unperturbed operator: L0.
Projection: 1p(Lfr), which coincides with the projec-
tion onto K ⊗K ⊗ Ω.
Perturbation: π(Vρ) − Jπ(Vρ)J.
Perturbed operator: Lρ.

Theorem. If the interaction is sufficiently regular and
effective, then

dim Ker 1
2i(Γ − Γ∗) ≤ 1 in thermal case,

dim Ker 1
2i(Γ − Γ∗) = 0 in nonthermal case.


