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1. Introduction 

The following statement belongs to conventional wisdom of physics: 

In a gener ic  situation, a smal l  sys tem interact ing wi th  a large reservoir  a t  
t emperature  T goes  to equi l ibr ium at  the same  temperature.  

In the last several years a number of papers appeared that express this idea in 
terms of mathematical theorems about relatively realistic quantum models [5, 11-13, 
15, 17, 18, 20]. In this paper I would like to explain some of the ideas involved 
in these results. 

All these works use techniques which come from a number of distinct domains 
of physics and mathematics. In fact, the following techniques play a major role in 
the formulations and proofs of these results. 

• Operator algebras: 

- KMS states, 

- Standard forms of W*-algebras, Liouvilleans. 

• Quantum field theory: 

- Quasi-free (Araki-Woods) representations of the CCR. 

• Spectral theory: 

- Analysis of embedded point spectrum--Fermi Golden Rule, the Feshbach 
method. 

-Analys i s  of absolutely continuous spectrum--the positive commutator 
(Mourre) method, the analytic deformation method. 

[317] 
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Results discussed in this paper belong to algebraic quantum statistical physics. 
This domain had a period of considerable development in the 70's and 80's of 
the last century. A large part of research of this period has been summarized in 
the well-known monographs [6, 7]. It is probably fair to say that the results of 
[17, 18, 11, 13, 12, 5, 20, 15] belong to the next period of this domain and go 
considerably beyond what was known before. 

Typical results from the previous period could be divided into three categories. In 
the first, the approach is axiomatic---certain abstract and implicit hypotheses about 
quantum systems, perhaps intuitively reasonable but difficult to verify in practice, are 
proven to imply some physically interesting consequences. In the second category, one 
considers exactly solvable models with quadratic Hamiltonians. The third category 
involves "mean field models": all N particles interact with one another with the 
strength proportional to N -1 depending only on their "species", but not on their 
spatial position, then we consider the limit N ~ oo; see e.g. [16]. 

The results that I am going to discuss are different. They concern classes of 
models that are explicitely defined, not exactly solvable and not of the mean-field 
kind. 

They are supposed to describe a small quantum system described by a finite- 
dimensional Hilbert space interacting with a free Bose field at a positive temperature 
(or more generally, at a positive density) through an interaction, usually assumed 
to be linear in creation/annihilation operators. Similar models are often used in 
physics (quantum optics or solid state physics). They are also interesting because 
of their mathematical properties and have been the subject of rigorous research by 
various authors, e.g. [23, 10, 4]. We will use the name Pauli-Fierz operators to 
denote such models. This name has some historical justification [21] and tradition 
[3] and has been used consistently by some of the authors [10-12]. Let us however 
warn the reader that the name Pauli-Fierz Hamiltonian appears in the literature, 
especially by H. Spohn and his collaborators, also in a slightly different meaning--  
that of the nonrelativistic Hamiltonian of QED (with matter minimally coupled to 
photons). 

In the results discussed in this paper the perturbation is multiplied by a small but 
nonzero coupling constant )~. This is related to the fact that perturbation techniques 
(especially rigorous versions of the Fermi Golden Rule [9]) play an important role 
in their proofs. Let us stress, however, that the results are not perturbative in the 
sense that they concern models with 0 < I;~1 _< 2.0 for some )~0 > 0. Thus they do 
not involve the weak coupling limit ;~ ",a 0. 

The series of results that we would like to discuss originated in the work of 
Jaksic and Pillet [17, 18]. Jaksic and Pillet used the analytic deformation technique 
to deal with absolutely continuous spectrum. The papers [11, 13, 12, 5, 20, 15] 
introduced various refinements, in particular spectral deformation was replaced or 
supplemented by other techniques (mostly the positive commutator method and in 
the case of [5] the "renormalization group method"). In my notes I will not discuss 
these aspects of the results about return to equilibrium. I will describe their operator 
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algebraic background and then I will state an example of a theorem on return to 
equilibrium, which is a simplified version of the main result of [12]. 

Methods developed to prove the return to equilibrium can be also applied to the 
case of a reservoir that does not have a fixed temperature, e.g. consists of several 
reservoirs at distinct temperatures. They can be used to prove that such systems 
generically have no invariant normal states. This somewhat negative result has been 
to our knowledge first noticed in [12] and can be viewed as an expression of 
another conventional wisdom: 

The behaviour of  a small system interacting with several reservoirs at distinct 
temperatures is much more difficult to describe than in the case of  a reservoir at 
a fixed temperature. 

In other words, there are good mathematical reasons for the fact that nonequi- 
librium quantum statistical physics is in a much worse shape than its equilibrium 
counterpart. 

Physically, one expects that a nonequilibrium system converges for large times 
to a steady state. The result mentioned above shows that in typical situations such a 
steady state is not described by a normal state on a W*-algebra--thus the framework 
that works well for the return to equilbrium is less adequate for nonequilibrium 
situations. 

Note, however, that there are models where nonequilibrium steady states can be 
described as states on a C*-algebra. A number of interesting rigorous results about 
nonequilibrium quantum statistical physics within this formalism have been recently 
obtained, see [19]. 

2. Operator algebraic background 
In this section we review some concepts that belong to operator algebras and 

are needed to formulate the results we discuss. There exists a number of excellent 
references to this subject, among them [6, 7, 24]. We also recommend the paper [13], 
which contains some of the technical results needed for the return to equilibrium. 

2.1. C*-dynamical systems versus W*-dynamicai systems 
In algebraic quantum statistical physics a quantum system can be described by 

either a C*- or W*-dynamical system. Let us recall that: 
(1) A C*-dynamical system is a pair (~, ~) consisting of a C*-algebra ~ and a 

1-parameter group of ,automorphisms of 9A, 

R g t ~---> Ot t 

such that t ~ ott(A ) is norm continuous for A ~ ~. 
(2) A W*-dynamical system is a pair (gYt, r) consisting of a W*-algebra 9)I and a 

1-parameter group of ,automorphisms of fiB, 

R ~ t ~ - +  rt 

such that t ~-~ rt(A) is a-weakly continuous for A ~ fiB. 
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Usually, in the literature on algebraic quantum statistical physics, C*-dynamical 
systems are preferred. They allow for an elegant theory explaining the existence 
of distinct phases of a single quantum system--they are obtained by considering 
various representations of the same C*-dynamical system. The C*-algebraic approach 
works usually well for fermionic and spin systems. In the case of bosons it is 
much more problematic, because even the usual dynamics of the local C*-algebra 
of the free Bose gas is not norm continuous. 

We do not want to be guided by the convenience of mathematical formalism 
in the choice of physical systems, and we would like to describe bosonic systems. 
Therefore, we will use the W*-algebraic approach. Fortunately the language of 
W*-algebras is adequate for the description of the return to equilibrium. 

2.2. GNS representation 

Let 9Y~ be a W*-algebra. 
Suppose that w is a state on 97~. It is well known then there exists a representation 

7r : ffY~ ---> B(~)  with vector ~ ~ 7-/ cyclic for 7r(ffYt) such that 

co(A) = (~IJr(A)S2), A ~ 9Y~. 

(:r, 7-/, f2) is called the GNS representation given by co. If co is normal, then so 
is Jr. 

Let r be a W*-dynamics on 9Y~. If in addition co is stationary with respect to 
r,  then we have a distinguished unitary implementation of r defined by 

7r(rt(A)) = eitL~(A)e -itL, A c ~ ,  
(2.1) 

L ~  = 0 .  

2.3. Standard representation 

One of the most important concepts of the modern theory of W*-algebras is 
the so-called standard representation. We say that a quadruple (Jr, ~ ,  J, 7-/+) is a 
standard representation of a W*-algebra 9Yt if 7r : flY/--->/3(7-/) is a ,-representation, 
J is an antiunitary involution on 7-/ and 7-/+ is a self-dual cone in 7-/ satisfying 
the following conditions: 
(1) JTg(~YJ~)J : 7t'(~J~)t; 
(2) JTr(A)J = re(A)* for A in the center of ~X; 
(3) J q / =  ko for qJ ~ 7-/+; 
(4) Jr(A)JJr(A)~+ C 7-/+ for A E ~Y~. 
Every W*-algebra has a unique (up to unitary equivalence) standard representation. 

The existence of a standard representation for countably decomposable W*-algebras 
follows from the following theorem. 

THEOREM 1. Let co be a faithful state, (7r, 7-/, Q)--the corresponding GNS re- 
presentation, J--the modular conjugation given by the Tomita-Takesaki theory, and 
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~ +  := {zr(A)Jzr(A)f2 : A ~ ~}cl .  Then (Jr, 7-(, J, 7-(+) is a standard representation 

o f~ .  
The standard representation has several important properties. 

THEOREM 2. Every normal state co has a unique vector representative in ~+,  that 
means, there is a unique normalized vector f2 ~ ~ +  such that co(A) = (f2lzr(A)f2). 

THEOREM 3. For every W*-dynamics r on 9Y~ there is a unique self-adjoint 
operator L on 7-( such that 

7r(rt(A)) = eitLTr(A)e -itL, eitL~t-[+ = ~ + .  (2.2) 

The operator L is called the Liouvillean of  the W*-dynamical system (92it, r). I f  
the W*-dynamics r has a faithful invariant normal state co, the standard form is 
obtained from the corresponding GNS representation as in Theorem 1 and L is the 
operator defined in (2.1), then L is the Liouvilean of  r. 

2.4. Return to equilibrium 

Let (gJt, r)  be a W*-dynamical system and L the corresponding Liouvillean. 
There exists a close relationship between eigenvectors of  L and normal invariant 
states of  r .  

THEOREM 4. Let co be a normal state and f2 c ~ +  its vector representative. 
Then the following conditions are equivalent: 
(1) co is r-invariant, 
(2) f2 6 KerL. 

COROLLARY l. The following conditions are equivalent: 
(1) d imKerL = 0, 
(2) the W*-dynamics rt has no normal invariant states. 

THEOREM 5. Suppose that 09 is faithful. Let f2 be its standard vector representative. 
Then the following statements are equivalent: 
(1) co is a unique invariant normal state, 
(2) the only eigenvalue of  L is O, it is nondegenerate and L f 2 =  O, 
(3) for  any normal state 49 and A ~ 92~, 

'to' lim - 49(r~(A))ds = co(A). 
t---~ ~ l 

If the conditions of the above theorem are true, then we say that the system 
satisfies the return to equilibrium in mean. 

THEOREM 6. Suppose that co is faithful and L has no singular spectrum except 
for  a simple eigenvalue at O. Then for  any normal state 49 and A E 92~, 

lim 49(rt(A)) = co(A). (2.3) 
t - - -~  

(2.3) is called the property of return to equilibrium. 
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2.5. KMS states 

Let r be a W*-dynamics and L the corresponding Liouvillean. 
A normal state w is called a fl-KMS state iff 

co(AB) = co(Bri~(A)), A, B ~ flY(, A analytic for r. 

Note that /3-KMS states are stationary. 
A vector f2 is called a fl-KMS vector iff f2 6 7-/+ and 

e-~L/ZA~ = JA*~2, A E 9Y~. 

vectors belong to KerL. They are standard vector representatives Note that /~-KMS 
of /3-KMS states. 

2.6. Perturbation 

The following 
stability of KMS 

theory of W*-dynamics, Liouvilleans and KMS states 

classic result of Araki [1, 7] is crucial for our understanding of 
states. 

THEOREM 7. Let (ftJ[, rfr) be a W*-dynamical system with the Liouvillean Lfr. 
(The subscript fr stands for "free"). Let f2fr be a ~-KMS vector for  rfr. Let V be 
a self-adjoint operator belonging to 99I. Then: 
(1) there exists a perturbed dynamics r such that 

d d 
~ r t ( A )  = ~-~Z'fr,t(A) -I- i[V, "t'fr, t(A)], 

(2) the Liouvillean of  r equals 

L = Lfr + zr(V) - JJr(V)J,  

(3) e-~(v)/zf2fr is a ~-KMS vector for r. 

Recall that a possibly unbounded self-adjoint operator V is affiliated to 97t iff 
all its bounded Borel functions belong to 9Jr. As proven in [13], Theorem 7 extends 
to unbounded V affiliated to ~ satisfying some mild technical assumptions. 

2.7. Basic example--a type I factor 

Finally, let us list the concepts discussed in this section in the case of the most 
elementary example of a von Neumann algebra--a type I factor. To this end we 
fix a Hilbert space K; and we present a table, which on the left lists the concepts 
we discussed and on the right gives their description in the case of a type I factor. 

W*-algebra: 

Standard Hilbert space: 

Standard representation: 

Standard positive cone: 

State: 

B(E); 
E ® ~  = B2(K;); 

7r(A) = A ® Ix: ----- A., 

(multiplication from the left by A); 

B (JC); 
co(A) = TrpA,  p ~ BI+(1C), Trp = 1; 
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Its vector representative: 

W*-dynamics: 

Its Liouvillean: 

/%KMS state: 

/%KMS vector: 

pl/2 c B2(]~); 

"~t(A) = eitK Ae-itK, K self-adjoint; 

L = K ®  1 - 1 ® K  _~ [K, .]; 

w,(A)  = (Tre-~K) -1 Tre 'KA; 

(Tr e-~K )-l/Z e ~K /2. 

Note that we denoted by B2(/C) the space of (positive) Hilbert-Schmidt operators 
and by BI(/C) the space of trace class operators. Likewise, we denoted by B2(/C) 
the space of positive Hilbert-Schmidt operators and by BI(/C) the space of positive 
trace class operators. 

3. Return to equilibrium for Pauli-Fierz systems 

This section gives a self-contained description of a simplified version of the 
main result of [11-13], which is a typical representative of results on return to 
equilibrium. The main reasons why I follow [11-13] are the following: 
(1) The conditions on the effectiveness of the interaction have the most optimal 

and, in my opinion, the most elegant form in [12]. 
(2) The operator algebraic aspects of the problem are in my opinion most adequatly 

described in [13, 12]. 
Other works on this subject [17, 18, 5, 20, 15] use different techniques to study 

embedded spectrum. This may lead in some cases to different classes of interactions 
covered by these results. This aspect of the problem is a very interesting, and 
we believe, still unfinished chapter of quantum statistical physics, which involves 
subtle technical questions about spectral analysis of self-adjoint operators. ! will not, 
however, discuss this point in more detail. 

3.1. Bose gas at zero temperature 

First I will recall basic notation used in second quantization. 
Let Z be a Hilbert space. The bosonic Fock space over the 1-particle space Z 

is defined as 
OO 

rs(Z) := ~ ®~z. 
n=0 

f~ := 1 ~ ®°Z : C will denote the vacuum vector. If U is an operator on Z,  then 
F(U) will denote the usual second quantization of the operator U. 

For definiteness, let us assume that Z = LZ(]~d). ~ will be used to denote the 
generic variable in ]~ .  Let the l-particle energy be given by I~l- Thus we consider 
massless bosons of zero spin. (If we prefer, by minor modifications we can consider 
e.g. spin 1 bosons in d = 3 dimension--the case of photons, etc.). We introduce the 
usual creation/annihilation operators a*(~)/a(~) satisfying the commutation relations 

[a(~), a*(~')] = ~(~ - ~'), [a*(~), a*(~')] = [a(~), a(~')] = 0, (3.4) 
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where 6 is the Dirac delta on R d. (Actually, a*(~)/a(~) are not operators but 
symbols that acquire the meaning of (unbounded) operators after smearing with 
appropriate functions, such as in (3.5)). We will assume that bosons are described 
by the Hamiltonian 

f d~ J~ (3.5) la*(~)a(~). 

We will refer to (3.5) as the Hamiltonian of the free Bose gas in infinite volume. 
It is also useful and physically justified to consider bosons in a finite volume. 

It is usually believed that for large volume the shape of the "container" and the 
boundary conditions do not matter much when studying most physical features 
of such a system. Therefore we assume that they are as simple as possible for 
mathematical analysis of the problem: the gas is confined to a cube of side length 
L with periodic boundary conditions. After the Fourier transformation the momenta 
are contained in the lattice (Z/L) d. Thus the system is described by the Fock space 
Vs ((Z/L)d). The creation/annihilation operators are this time true operators and they 
satisfy the commutation relations (3.4), where 6 is now the Kronecker delta. The 
Hamiltonian is given by the expression (3.5) where we replace f d~ with )-~(Z/c)d. 

3.2. Bose gas at density pwAraki-Woods algebras 

Assume that ira ~ ~ ~_> p(~) is a nonnegative real measurable function describing 
the density of bosons with the momentum ~ 6 /R a. To describe the Bose gas at 
density p one uses a special yon Neumann algebra first described by Araki and 
Woods in [2], see also [8]. It can be defined by its representation in the Hilbert 

space 7_lA w := Fs(L2(]Rd) @ L2(~d)). 

We will write al(~), al*(~), ar(~), a~(~) for the creation and annihilation operators 
corresponding to the left and right L2(]R a) resp. We define the left/right Araki-Woods 
creation and annihilation operators 

ap,l(~) := ~/1 + p(~)a~(~) + x/-P~ar(~),  

ap,l(~) := ~/l + p(~)al(~) + ~ a * ( ~ ) ,  

a~,r(~) := ~"ff~al(~) + 41 + p(~)a?(~), 

ap,r(~) := ~/~-)a~ (~) q- 41 q- p(~)ar(~). 

The left Araki-Woods algebra is denoted by 9Ytp, Aw and defined as the W*-algebra 
generated by the operators 

W(f) := exp(i 7(~)ap,l(~))d~), (3.6) 

where f E L2(]R a) satisfies f If(~)12p(~)d~ < cx). 
Let jAW := F(e), where e is an antilinear involution on Le(IR d) ~ Le(]R a) given 

by e(A,  72) := (f2, 71), 
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and let "H AW,+ be the closure of the cone in ,~AW generated by . - p  

AW AJAr2 ,  A E 9")~p, 1 . 

Then l¢fftAW "/-cAW jAW,  AW + ~'~0,1 . . . .  ~p  ' ) is a v o n  Neumann algebra in a standard form. It 
describes the Bose gas at density p. The state (f21-f2) is a quasi-free state for 
the representation of CCR given by (3.6). The algebra 9Yt~ is type I for p = 0, 
otherwise it is always type III1. 

There exists a unique W*-dynamics on 93~p, Aw that on the Weyl operators acts as 

rpA,,W(w(f)) := W(eitl~l f ) .  

Its Liouvillean equals 

f - f - 
AW rAW). These W*-dynamical Thus we obtain a family of W*-dynamical systems (gJ~p,~, 

systems are often nonisomorphic to one another. 
Of course, we can do the same for the cube with periodic boundary conditions. 

In this case, we start from a function 

( Z / L )  a E ~ w-~ pL E [0, CX~[. 

Thus we obtain a family of algebras in standard representation mrtAW'L ~"~p,l ' 
,~AW, L, jAW,L, AWL + ~ p ' '  ). We also obtain a family of W*-dynamical systems 
( AW, L 
~ p , l  ' 

Note that if ~ Z / L ) d  P(~) < ~ ,  then all of them are unitarily isomorphic to 
one another. In tact, they are isomorphic to the case of p = 0, which is just the 
free Bose gas described in Subsection 3.1. The state (f2[. f2) is equivalent to the 
state given by the density matrix 

F (y(1 + V ) - ' ) / T r F  0,(1 + y ) - ' ) .  

We can view free Bose gas at density p in infinite volume as thermodynamic 
limit of the free Bose gas in finite volume obtained by a special limiting procedure. 
It is interesting to note that in finite volume the systems we consider can be 
equivalent and trivial from the point of view of operator algebras (type I), and in 
the limit they may become nonequivalent and nontrivial (type III). 

3.3. Thermal Araki-Woods representations 

Let /5 > 0 be the inverse temperature. The radiation density given by the Planck 
law 

p~(~) = (e/~1~1 - 1) -1 (3.7) 

corresponds to the inverse temperature /5. When dealing with (3.7) we will replace 
the index p, with /5 in various symbols. 

In this case the state (~21. £2) satisfies the KMS condition for the dynamics r~ w. 
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¢I~AW,L In a finite volume, the state (f2l. f2) on " A 1  is equivalent to the state given by 

the density matrix e - ~ / / T r e  -~t-/ on the algebra B(Fs(L2(Ra)) and the Araki-Woods 
representation is unitarily equivalent to the GNS representation for this state [8]. 

3.4. Pauli-Fierz system at zero temperature 

Suppose that the Bose gas interacts with a small system described by a finite- 
dimensional Hilbert space /C and a Hamiltonian K. The Hilbert space of the Pauli- 
Fierz system at zero temperature is /E ® Fs(L2(•a)), where Fs(L2(~a)) denotes 
the symmetric (bosonic) Fock space over the 1-particle space L2(~a). The free 
Pauli-Fierz Hamiltonian is 

Hfr : =  K ® 1 + 1 @ j I~la*(~)a(~)d~, 

where a*(~)/a(~) are the creation/annihilation operators of bosons of momentum 

The interaction is described by a measurable operator-valued function (form-factor) 
Nd ~ ~ ~ v(~) 6 B(E). We assume that the form-factor satisfies 

f ( 1  + < c~. (3.8) I#l-1)llv(~)ll2d~ 

The interaction is given by the operator 

:= [ (v(~ ) ® a * (~, ) + v* (~ ) ® a(e~ ) )d~j, V 

and the full Pauli-Fierz Hamiltonian equals 

H := Hfr + ~.V, 

where ~. 6 1~. H is self-adjoint on the domain of Her and bounded from below. 
The Pauli-Fierz Hamiltonians arise as an approximation to the standard Hamil- 

tonian of the nonrelativistic QED [11, 4], or as effective Hamiltonians describing 
interaction of an atom with phonons. 

3.5. Pauli-Fierz systems at nonzero density 
AW The Pauli-Fierz algebra at density p, 9Y~p, is defined by 9Ytp := B(/E) ® ~ p , l  • 

To define the dynamics, we need the following assumption. 

ASSUMPTION 1. f (1  -k-1~12)(1 q'-p(es))llv(~)llZd~ < oo. 

Set O 

L~mi := K ® 1 + 1 ® J(l~,la~(~)al(,~) - I,~la*(~)ar(~j))d~j, 

semi semi Lp := Lfr +)~Vp. (3.9) 

Note that Vp is affiliated to 9J~p. 
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semi is PROPOSITION 1. Assume that Assumption 1 holds. Then the operator Lp 
essentially self-adjoint on Dom(Lfr )n  Dom(Vp) and 

• semi - semi ltLp ~ -ttLp r~(A) := e ,Lie (3.10) 

is a W*-dynamics on 93~p. 

We will call the W*-dynamical system (gJ~p, rp) the Pauli-Fierz system at 
density p. In the absence of interaction (k = 0) we call it the free Pauli-Fierz 
system. 

The identity representation 9Ytp ~ B(/C ® 1-'s(L2(~ d) (~ L2(Rd)) will be called 
the semistandard representation of the Pauli-Fierz system, to distinguish it from the 
standard representation described in the next subsection. Similarly, we will call the 

semi the Pauli-Fierz semi-Liouvillean at density p. operator L p 

3.6. Pauli-Fierz systems in standard representation 

It is easy to describe the standard representation of 9Y~p. Let/C be the Hilbert space 
complex conjugate to /C (see e.g. Section 4.6 in [12]). The standard representation 
acts on the space 

K~ ® ~ Q l"s(L2(~ d) • L2(~d)) (3.11) 

AW and is given by 7r(A ® B) := A @ 1E ® B for A e/3(/C), B e 9Y~p, 1 . The modular 
conjugation is given by 

J d21 ® ~-2 ® qb : =  q/2 ® ~ 1  ® jAW(I). 

Note that it is useful to consider the two representations of 9JIp--the semi-standard 
and the standard representations in a parallel way. The semi-standard representation 
is simpler whereas the standard representation has special mathematical properties. 

We have P 
zr(Vp) = _1 v(~) ® 1 ® a*p,l(~)d ~ + he, 

/ Jzr(Vp)J = 1 ® -~(~) ® ap,r(~)d ~ + hc. 

The Liouvillean of the free Pauli-Fierz system is 

Lfr = K ® 1 ® 1 - 1 ® K ®  1 + 1 N 1 @ f(l~la~*(~)a|(~) I~la*(~)ar(~))d~. I 

Set 
Lp : =  Lfr q- )wr (gp)  - )~JJr(Vp)J. 

PROPOSITION 2. Assume that Assumption 1 holds. Then the operator Lp is 
essentially self-adjoint on Dom(Lf r )n  Dom(zr(Vp))n Dom(J:rr(Vp)J) and is the 
Liouvillean of the Pauli-Fierz system (gJtp, rp). 

3.7. Thermal Pauli-Fierz systems 

Let /~ > 0 be the inverse temperature. A Pauli-Fierz system whose radiation 
density is given by the Planck law (3.7) is called a thermal Pauli-Fierz system at 
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inverse temperature ft. Due to the specific form of the Planck law Assumption 1 
takes a somewhat simpler form and is equivalent to another assumption. 

ASSUMPTION 2. f ( l~ l  2 + I~l-1)llo(~)l12d~ < co. 

Again, with a slight abuse of notation instead of the subscript p~ we will use 
t etc. The free Pauli-Fierz system has fl, so L~ and r} now stand for LRI ~ and rp~ 

a unique fl-KMS state given by the density matrix 

e-13 K 
Tr e-~ ---------~ ® 172) (72)' (3.12) 

where 72 is the vacuum on ['s(L2(N d) • L2(Nd)). Let y~ := e-~K/2/(Tre-#K) 1/2 
Then y~ ® f2 is the standard vector representative of (3.12). Using the main result 
of [13] one can easily show the following theorem: 

THEOREM 8. Assume that Assumption 2 holds. Then for all )~ E R and fl ~ ]0, oo[ 
the Pauli-Fierz system (~JJ[~, r~) has a unique fl-KMS state. Moreover, y~ ® f2 E 
Dom(e-/3(Lfr+ZZr(v~ ))/2) and 

e-fl(Lfr+)~Jr(V~))/2Yfl ® 72//lle-~(Lfr+xJr(V~))/2Y~ ® 7211 

is the corresponding fl-KMS vector. 

3.8. Return to equilibrium 

In this subsection we state simplified versions of the main result of [12]. We use 
the following notation, sp(K) denotes the spectrum of K. The spectral projection 
of K onto k E 1R will be denoted by lk(K) and v~l'k2(~) = lkl(K)v(~)lt2(K). 
Obviously, vtl'k2(~) = 0 unless kl, k2 ~ sp(K), p ~ IR+ denotes the radial coordinate. 
S d-1 is the ( d -  1)-dimensional unit sphere, o)~ S d-1 is the angle coordinate and 
do) is the surface measure on S d-1. 

Let f +  be the set of positive differences of eigenvalues of K. (In physical 
terms, these are the Bohr frequencies of the small system--the energies of photons 
that can be emitted). 

An important role will be played by a certain subset 91 of bounded operators 
on /C defined as follows: B ~ B(KT) belongs to 91 iff for almost all o9 ~ S a-1 we 
have 

B ~ vk-P'k(po))= ~ vk-P'k(pog)B, p E.) c+, 
k~sp(K) kesp(K) 

B* Y~ vk-P'k(po))= Y~ vk-P'~(po))B *, p e .T  +, (3.13) 
k~sp(K) kesp(K) 

B y~ limp-U2vk'k(po))= ~ limp-1/2vk.k(po))B. 
kesp(K) p$0 kesp(K) p$0 

Obviously, 1 E 9I. Note also that 91 is a .-algebra invariant with respect to e irK .e -irK. 
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THEOREM 9. Suppose that Assumption 2 holds and the following conditions are 
satisfied: 
(1) 

fl103pp -I+d/2(P)  1/2v(p °9) l[2dp dw < oo, 

"P-I+d/2v(pw) p-O P I+d/2v*(PW) p=0' 8pJ = (-1)JO j - j = O, 1,2, o) E S  d-1 . 

(2) 9l = C1. 
Then for any 0 < fl < oc there exists ;~o(fl) > 0 such that for  0 < IXl < x0(/3) the 
Pauli-Fierz Liouvillean Lg has no singular spectrum except for  a simple eigenvalue 
at zero. Consequently, under the above conditions the system (92~, z~) has the 
property of  return to equilibrium. 

Condition (1) is the regularity assumption. Note that it allows for quite singular 
infrared behaviour of the form-factor. For example, assume that v(~) is smooth 
outside of zero and of compact support. Then (1) holds if around zero 

v (~) = v01t I l-d/2, (3.14) 

where v0 ~/3(/C) is self-adjoint. 
Condition (2) is the effective coupling assumption. 
Let us mention that the above formalism can be applied to nonthermal radiation 

densities. For instance, if the small system interacts with several reservoirs at distinct 
temperatures, each satisfying the conditions of Theorem 9, then the Liouvillean has 
no singular spectrum. By Corollary 1 this implies that under these assumptions the 
Pauli-Fierz system (ff.rtp, rp) has no normal states, see [12, 9]. 
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