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Quantum Physics.

1 Introduction—examples of algebras

Let K be a field. In practice, we will restrict ourselves to K = C or K = R. N0 := {0, 1, 2, . . . }.
Let us describe several algebras that appear in quantum physics. All of this section will

contain the unit and will be over K. The unit will be denoted 1l, and for any element A of the
algebra will satisfy

1lA = A1l = A. (1.1)

Example 1.1 Algebra generated by x1, . . . , xn statisfying

xixj = xjxi. (1.2)

It is the algebra of polynomials in variables x1, . . . , xn. The standard notation: K[x1, . . . , xn]. It
has the basis

xm1
1 · · ·x

mn
n , m1, . . . ,mn ∈ N0. (1.3)

The differentiation wrt xi, denoted ∂xi is the unique linear operator satisfying

∂xiFG = (∂xiF )G+ F∂xiG, (1.4)
∂xixj = δij . (1.5)

We have
∂xix

m1
1 · · ·x

mi
i · · ·x

mn
n = mix

m1
1 · · ·x

mi−1
i · · ·xmnn . (1.6)

Example 1.2 Algebra over C generated by x1, . . . , xn, p1, . . . , pn satisfying

xixj − xjxi = pipj − pjpi = 0, (1.7)

xipj − pjxi = iδij1l (1.8)

It goes sometimes under the name of the Weyl algebra (but this is ambiguous). Other possible
names are the Heisenberg algebra or the CCR algebra.

Its basis is
(x1)m1 · · · (xn)mnpk11 · · · p

kn
n , mi, kj ∈ N0. (1.9)

Standard representation on C[x1, . . . , xn]:

x̂i := multiplication by xi, (1.10)

p̂i :=
1

i
∂xi . (1.11)
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Example 1.3 Algebra generated by θ1, . . . θn satisfying

θiθj + θjθi = 0. (1.12)

It is called the Grassman algebra or the algebra of polynomials in anticommuting variables.
Another name is the exterior algebra. Sometimes it is denoted K[θ1, . . . , θn]. Its basis is

θε11 · · · θ
εn
n , εi ∈ {0, 1}. (1.13)

Elements which are linear compbinations of (1.13) with ε1+· · ·+εn even/odd are called even/odd.
Elements which are either even or odd are called pure. If F is a pure element, then sgn(F ) := 1
if F is even and sgn(F ) := −1 if F is odd.

We have two kinds of differentiation: the left differentiation
←
∂ θi =

←
∂
i

and the right differen-

tiation
→
∂ θi =

→
∂
i

They are defined by

←
∂
j

θi =
←
∂
j

θi = δji , (1.14)
→
∂
j

FG = (
→
∂
j

F )G+ sgn(F )F (
→
∂
j

G), (1.15)
←
∂
j

FG = sgn(G)(
←
∂
j

F )G+ F (
←
∂
j

G). (1.16)

Thus after acting with
→
∂
j

, resp.
←
∂
j

on θε11 · · · θεnn we obtain 0 if θj is not present and the same
expression with θj omitted multiplied by (−1)ε1+···+εj−1 , resp. (−1)εj+1+···+εn .

We will treat
→
∂ as the standard differentiation, denoting it often by ∂.

Example 1.4 The algebra generated by α1 . . . αn satisfying

αiαj + αiαj = 2δij . (1.17)

It is called the Clifford algebra. For K = R it will be denoted Cl+(nCl+(Rn). For K = C it
is sometimes called the CAR algebra.

Here is a basis of Cl+(n)
αε11 · · ·α

εn
n , εi ∈ {0, 1}. (1.18)

We will discuss this algebra further in more detail.

Example 1.5 Algebra generated by x1, . . . , xn (with no relations).

It is called the free algebra with the generators x1, . . . , xn. Its basis are the expressions

xi1 · · ·xik , k = 0, 1, . . . , i1, . . . ik ∈ {1, . . . , k}. (1.19)

The product is just the concatenation of these expressions.
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2 Quaternions

2.1 Definitions

The algebra over R with a basis 1, i, j, k satisfying the relations

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, (2.1)

is called the algebra quaternions and denoted H. Note that the following identities follow from
(2.1):

ji = −k, kj = −i, ik = −j, (2.2)

H is endowed with ∗ acting as

1∗ = 1, i∗ = −i, j∗ = −j, k∗ = −k.

∗ is an involution, that is x∗∗ = x, (xy)∗ = y∗x∗, x, y ∈ H. x ∈ H is called Hermitian, resp.
anti-Hermitian if x = x∗, resp. x = −x∗.

For x ∈ H we set
Rex :=

1

2
(x+ x∗), |x| :=

√
x∗x.

(Note that, że x∗x = xx∗ is always positive real).
If x = x1 + xii + xjj + xkk, where x1, xi, xj, xk ∈ R, then

Rex = x1, |x| =
√
x2

1 + x2
i + x2

j + x2
k.

Note that | · | is a norm on H. If x, y ∈ H, then |xy| = |x||y|.
H is equipped with the quaternionic scalar product x∗y and the real scalar product

〈x|y〉 := Rex∗y = x1y1 + xiyi + xjyj + xkyk, x, y ∈ H.

All non-zero elements of H are invertible (just as in a field). Such algebras are called division
algebras.

An element x ∈ H is called unitary if x∗x = 1. Equivalently, x is unitary if |x| = 1. Every
non-zero quaternion can be uniquely written as x = |x|u, where u is unitary. Every unitary u
can be written as

u = cos θ + y sin θ = exp(θy), (2.3)

where y2 = −1. From this it is easy to show that unitary quaternions form a group isomorphic
to SU(2), see also (2.9).

Isomorphisms of H preserve the scalar product 〈·|·〉. They also preserve the 3-dimensional
subspace of anti-Hermitian quaternions. This group is isomorphic to SO(3). Every isomorphism
of H has the form

H 3 x 7→ uxu−1 ∈ H, (2.4)

where u is a unitary anti-Hermitian quaternion.
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2.2 Embedding complex numbers in quaternions

It is easy to see that there exists a unique continuous injective homomorphism R→ H. Its image
is the center of the algebra H, which can be identified with R.

There exist many continuous injective homomorphisms C → H. To fix it one has to fix an
element of H whose square is −1. Let us call it i.

Quaternions can be defined as an algebra over C spanned by 1, j, satisfying the relations

zj = jz. (2.5)

This fixes a homomorphism C→ H. H is then a vector space over C of dimension 2. We have

x = x1 + xii + xjj + xkk = (x1 + xii)1 + (xj + xki)j. (2.6)

The map

H 3 x 7→ 1

2
(x− ixi) ∈ C (2.7)

is a projection.
Set

(x|y) :=
1

2
(yx∗ − iyx∗i) (2.8)

By (2.7), the values of this scalar product are in C. (2.8) is sesquilinear, because

(x|zy) =
1

2
(zyx∗ − izyx∗i) = z(x|y),

(zx|y) =
1

2
(yx∗z − iyx∗zi) = (x|y)z, z ∈ C,

Thus (2.8) is a complex sesquilinear scalar product on H, so that H becomes a 2-dimensional
complex Hilbert space. 1, j is an example of an orthonormal basis in H wrt (2.8).

2.3 Matrix representation of quaternions

Quaternions can be represented by Pauli matrices multiplied by i:

π(1) =

[
1 0
0 1

]
, π(i) =

[
i 0
0 −i

]
, π(j) =

[
0 1
−1 0

]
, π(k) =

[
0 i
i 0

]
. (2.9)

This yields a representation of quaternions acting on the Hilbert space C2

π : H→ B(C2). (2.10)

In this representation
π(x∗) = π(x)∗, |x|2 = detπ(x). (2.11)

π(H) = {λU : U ∈ U(2), λ ∈ [0,∞[}.

Another useful relation within this representation is

π(H) = {A ∈ B(C2) : A = π(j)Aπ(j)−1}, (2.12)
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where A denotes the usual complex conjugation of the matrix A. Indeed,

π(1) = π(1), π(i) = −π(i), π(j) = π(j), π(k) = −π(k). (2.13)

Replacing (2.10) by Wπ(·)W−1 for some invertible W , we replace π(j) by R := Wπ(j)W
−1.

Note that
RR = −1l. (2.14)

3 Algebras

3.1 Definitions

Let K be a field. Let A be a vector space over K. We say that A is an algebra over K if it is
equipped with an operation

A× A 3 (A,B) 7→ AB ∈ A

satisfying

A(B + C) = AB +AC, (B + C)A = BA+ CA,

(αβ)(AB) = (αA)(βB), A,B,C ∈ A, α, β ∈ K. (3.1)

If in addition
A(BC) = (AB)C,

we say that it is an associative algebra. (In practice by an algebra we will usually mean an
associative algebra).

We say that A is commutative if A,B ∈ A implies AB = BA.
The center of an algebra A equals

Z(A) = {A ∈ A : AB = BA, B ∈ A}.

Let A, B be algebras. A map φ : A→ B is called a homomorphism if it is linear and preserves
the multiplication, ie.
(1) φ(λA) = λφ(A);

(2) φ(A+B) = φ(A) + φ(B);

(3) φ(AB) = φ(A)φ(B).
The set of all automorphisms of A is denoted Aut(A).

We say that 1l ∈ A is a unit if

1lA = A1l = A, A ∈ A. (3.2)

An algebra is called unital if it possesses a unit.
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3.2 Subalgebras

Fix an algebra A. B ⊂ A is called a subalgebra of A if it is a vector subspace of A and A,B ∈
B⇒ AB ∈ B. Obviously, a subalgebra is an algebra.

If a family Bα ⊂ A consists of subalgebras, then ∩αBα is also a subalgebra. Therefore, for
any subset B ⊂ A there exists the smallest subalgebra containing B. It is denoted Alg(B) and
called the subalgebra generated by B.

Let V be a vector space over K. Clearly, the set of linear transformations in V, denoted L(V),
is an (associative) algebra.

Subalgebras of L(V) are called concrete algebras.
A homomorphism of an algebra A into L(V) is called a representation of A on V.

3.3 ∗-algebras

We say that an algebra A over C (more rarely over R) is a ∗-algebra if it is equipped with an
antilinear map A 3 A 7→ A∗ ∈ A such that (AB)∗ = B∗A∗, A∗∗ = A and A 6= 0 implies A∗A 6= 0.

If H is a Hilbert space, then B(H) equipped with the Hermitian conjugation is a ∗-algebra
If A, B are ∗-algebras, then a homomorphism π : A→ B satisfying π(A∗) = π(A)∗ is called

a ∗-homomorphism.

3.4 Ideals

B is an ideal of an algebra A, if it is a linear subspace of A and A ∈ A, B ∈ B⇒ AB,BA ∈ B.
We say that an ideal B is proper if B 6= A. We say that an ideal B is nontrivial if B 6= A

and B 6= {0}.

Theorem 3.1 The kernel of a homomorphism is an ideal. If B is an ideal of A, then A/B has
a natural structure of an algebra. The map

A 3 A 7→ A+ B ∈ A/B

is a surjective homomorphism whose kernel is B. If A→ C is a different surjective homorphism
whose kernel is also equal B, then C ' A/B.

Saying that
B

φ→A
ψ→H

is an exact sequence we mean that Kerψ = Ranφ.
In particular,

0→ B
φ→A

ψ→H→ 0 (3.3)

means that φ is injective, ψ is surjective and Kerψ = Ranφ. Then ψ generates an isomorphism
of A/φ(B) with H. (3.3) is called then a short exact sequence We say that A is an extension of
B by H.

Theorem 3.2 (1) If H, B are ideals, then so is H + B and H ∩B = H ·B.

(2) If φ : A→ B is a surjective homorphism between algebras, then C 7→ φ(C) defines a bijection
between ideals of A containing Kerφ and ideals of B.
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3.5 Quaternionic vector spaces

We say that (V,+, 0) is a quaternionic vector space if it is an abelian group equipped with the
operations

H× V 3 (x, v) 7→ xv ∈ V, V ×H 3 (v, x) 7→ vx ∈ V,

such that
(x+ y)v = xv + yv, (xy)v = x(yv), x, y ∈ H, v ∈ V.

v(x+ y) = vx+ vy, v(xy) = (vx)y, x, y ∈ H, v ∈ V.

For example, Hn are quaternionic vector spaces. Quaternionic vector spaces isomorphic to Hn

are said to be of quaternionic dimension n.
Transformations H-linear from the left/right on a quaternionic vector space have an obvious

definition. The set of H-linear transformations from the right from V to W is denoted L(V,W).
As usual, L(V) := L(V,V).

Elements of L(Hn,Hm) can be obviously represented with matrices m × n of quaternionic
elements.

If we fix the embedding (2.7), then quaternionic vector spaces can be reinterpreted as complex
vector spaces, and quaternionic Hilbert spaces as complex Hilbert spaces. If V is a quaternionic
vector space, then VC denotes V understood as a complex space. It is called a complex form of
the space V.

3.6 Real and complex simple algebras

An algebra over K that does not contain nontrivial ideals and is different from K with the zero
product is called a simple algebra.

It is well known by the Wederburn Theorem that one can classify all finite dimensional
algebras over C and R. The complex case is especially easy:

Theorem 3.3 Let A be a complex finite dimensional simple algebra. Then there exists n ∈ N
such that A is isomorphic to L(Cn).

The corresponding real classification is slightly more complicated:

Theorem 3.4 Let A be a real finite dimensional simple algebra. Then thgere exists n ∈ N such
that A is isomorphic to L(Cn), L(Rn) or L(Hn).

Note that L(Rn) can be embedded in L(Cn):

L(Rn) = {A ∈ L(Cn) : A = A}.

L(Hn) can be embedded in L2(C2 ⊗ Cn):

L(Hn) = {A ∈ L(C2 ⊗ Cn) : RA = AR},

where R = π(j)⊗ 1l.
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3.7 Algebras generated by relations

Suppose that {ei : i ∈ I} is a set. It is obvious what is the unital algebra generated by {ei}i∈I
is a set. Let us denote it Free{ei : i ∈ I}. Suppose that R ⊂ Free{ei : i ∈ I}. Let Ideal(R)
be the ideal generated by R. Then Free{ei : i ∈ I}/Ideal(R) is called the algebra generated by
{ei : i ∈ I} with relations R. We had a few examples oof this construction in the introduction.

4 Second quantization

In this chapter we describe the terminology and notation of multilinear algebra. We will concen-
trate on the infinite dimensional case, where it is often natural to use the structure of Hilbert
spaces. We will introduce Fock spaces and various classes of operators acting on them. In quan-
tum physics the passage from a dynamics on one-particle spaces to a dynamics on Fock spaces
is often called second quantization – hence the name of the chapter.

We will consider two setups: that of vector spaces and that of Hilbert spaces. If X ,Y are
vector spaces, then L(X ,Y) will denote the set of linear operators from X to Y. If X ,Y are
Hilbert spaces, then B(X ,Y) will denote the set of bounded operators fro X to Y.

4.1 Vector and Hilbert spaces

Let V be a vector space. A set {ei : i ∈ I} ⊂ V is called linearly independent if for any finite
subset {ei1 , . . . , ein} ⊂ {ei : i ∈ I}

c1ei1 + · · ·+ cnein = 0 ⇒ c1 = · · · = cn = 0. (4.1)

{ei : i ∈ I} is a Hamel basis (or simply a basis) of V if it is a maximal linearly independent
set. It means that it is linearly independent and if we add any v ∈ V to {ei : i ∈ I} ⊂ V then
it is not linearly independent any more. Note that every v ∈ V can be written as a finite linear
combination v =

∑
i∈I λiei in a unique way.

Let V be a vector space over C or R equipped with a scalar product (v|w) (positive, nonde-
generate, sesquilinear form). It defines a metric on V by

‖v − w‖ :=
√

(v − w|v − w). (4.2)

We say that V, (·|·) is a Hilbert space if V is complete.
If V, (·|·) is not necessarily complete, then we can always complete it, that is find a larger

complete space Vcpl, (·|·) in which V is embedded as a dense subspace. Vcpl is uniquely defined
and is called the completion of V.

For instance, if we take Cc(R), C∞c (R) or S(R) with the usual scalar product (f |g) =∫
f(x)g(x)dx, then its completion is L2(R).
If V is a Hilbert space, then {ei : i ∈ I} is called an orthonormal basis (o.n.b.) if it is

a maximal orthonormal set. Note that every v ∈ V can be written as a linear combination
v =

∑
i∈I λiei, where

∑
i∈I |λi|2 <∞, in a unique way

Note that in a finite dimensional Hilbert space every orthonormal basis is a basis. This is
not true in infinite dimensional Hilbert spaces.
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4.2 Direct sum

Let (Vi)i∈I be a family of vector spaces. The algebraic direct sum of Vi will be denoted

al⊕
i∈I
Vi, (4.3)

It consists of sequences (vi)i∈I , which are zero for all but a finite number of elements.
If (Vi)i∈I is a family of Hilbert spaces, then

al⊕
i∈I
Vi has a natural scalar product.

(
(yi)i∈I

∣∣∣(vi)i∈I) =
∑
i∈I

(yi|vi). (4.4)

The direct sum of Vi in the sense of Hilbert spaces is defined as

⊕
i∈I
Vi :=

(
al⊕
i∈I
Vi
)cpl

.

If I is finite, then
al⊕
i∈I
Vi = ⊕

i∈I
Vi

Let (Vi), (Wi), i ∈ I, be families of vector spaces. If ai ∈ L(Vi,Wi), i ∈ I, then their direct

sum is denoted ⊕
i∈I

ai and belongs to L
(

al⊕
i∈I
Vi,

al⊕
i∈I
Wi

)
. It is defined as

(
⊕
i∈I

ai

)
(vi)i∈I = (aivi)i∈I (4.5)

Let Vi, Wi, i ∈ I be families of Hilbert spaces, and ai ∈ B(Vi,Wi) with supi∈I ‖ai‖ < ∞.

Then the operator ⊕
i∈I

ai is bounded. Its extension in B
(
⊕
i∈I
Vi, ⊕

i∈I
Wi

)
will be denoted by the

same symbol.

4.3 Tensor product

Let V,W be vector spaces. The algebraic tensor product of V and W will be denoted V al⊗W.
Here is one of its definitions

Let Z be the space of finite linear combinations of vectors (v, w), v ∈ V, w ∈ W. In Z we
define the subspace Z0 spanned by

(λv,w)− λ(v, w), (v, λw)− λ(v, w),

(v1 + v2, w)− (v1, w)− (v2, w), (v, w1 + w2)− (v, w1)− (v, w2).

We set V al⊗W := Z/Z0. If v ∈ V, w ∈ W, we define v ⊗ w := (v, w) + Z0.

Remark 4.1 Note that (v, w) above is just a symbol and not an element of V ⊕W. Elements
of the space Z have the form

n∑
j=1

λn(vn, wn). (4.6)

12



In particular, in general

(v1, w1) + (v2, w2) 6∼ (v1 + v2, w1 + w2), (4.7)
λ(v, w) 6∼ (λv, λw). (4.8)

V al⊗W is a vector space and ⊗ is an operation satisfying

(λv)⊗ w = λv ⊗ w, v ⊗ (λw) = λv ⊗ w,
(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

Vectors of the form v⊗w are called simple tensors. Not all elements of V⊗W are simple tensors,
but they span V al⊗W.

If {ei}i∈I and {fj}j∈J are bases of V, resp. W, then {ei ⊗ fj}(i,j)∈I×J is a basis of V al⊗W,
Note that we can identify

∞
al⊕
n=0
V

al⊗n ' Free{ei : i ∈ I}. (4.9)

If V, W are Hilbert spaces, then V al⊗W has a unique scalar product such that

(v1 ⊗ w1|v2 ⊗ w2) := (v1|v2)(w1|w2), v1, v2 ∈ V, w1, w2 ∈ W.

To see this it is enough to choose o.n.b’s {ei}i∈I and {fj}j∈J in V, resp. W. Then every element
of V al⊗W can be written as an (infinite) linear combination of ei ⊗ fj and we can use them as
an orthonormal set defining this scalar product.

We set
V ⊗W := (V al⊗W)cpl,

and call it the tensor product of V and W in the sense of Hilbert spaces. If {ei}i∈I and {fj}j∈J
are o.n.b’s of V, resp. W, then {ei ⊗ fj}(i,j)∈I×J is an o.n.b. of V ⊗W,

If one of the spaces V or W is finite dimensional, then V al⊗W = V ⊗W.

Proposition 4.2 Let V1,V2,W1,W2 be vector spaces. If a ∈ L(V1,V2) and b ∈ L(W1,W2), then
there exists a unique operator a⊗ b ∈ L(V1

al⊗W1,V2
al⊗W2) such that on simple tensors we have

(a⊗ b)(y ⊗ w) = (ay)⊗ (bw). (4.10)

It is called the tensor product of a and b.

Proof. Choose bases (ei)i∈I in V1 and (fj)j∈J in W1. Define a⊗ b on the basis (ei⊗ fj)(i,j)∈I×J
by

(a⊗ b)ei ⊗ fj := (aei)⊗ (bfj). (4.11)

Then we check that thus defined operator satisfies (4.10). It is unique, because simple tensors
span the whole tensor product. 2
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Proposition 4.3 If V1,V2,W1,W2 are Hilbert spaces and a ∈ B(V1,V2), b ∈ B(W1,W2), then
a⊗ b is bounded. Hence it extends uniquely to an operator in B(V1 ⊗W1,V2 ⊗W2), denoted by
the same symbol.

Proof. To prove the boundedness of a⊗ b = a⊗ 1l 1l⊗ b, it is sufficient to consider the operator
a⊗ 1l from V1

al⊗W to V2
al⊗W. Let e1, e2, . . . and f1, f2 . . . be orthonormal bases in V1, W resp.

Consider a vector
∑
cijei ⊗ fj .∥∥∥a⊗ 1l

∑
i

cijei ⊗ fj
∥∥∥2

=
∑
j

∥∥∥∑
i

cijaei

∥∥∥2

=
∑
j

‖a‖2
∥∥∥∑

i

cijei

∥∥∥2
=

∑
j

‖a‖2
∑
i

|cij |2

= ‖a‖2
∥∥∥∑

ij

cijei ⊗ fj
∥∥∥2
.

2

4.4 Fock spaces

Let Y be a vector space. Let Sn denote the permutation group of n elements and σ ∈ Sn.

Proposition 4.4 There exists a unique operator Θ(σ) on
al⊗
n
Y such that

Θ(σ)y1 ⊗ · · · ⊗ yn = yσ−1(1) ⊗ · · · ⊗ yσ−1(n). (4.12)

Proof. Choose a basis {ei}i∈I of Y. We define Θ(σ) on the corresponding basis of
al⊗
n
Y:

Θ(σ)ei1 ⊗ · · · ⊗ ein = eiσ−1(1)
⊗ · · · ⊗ eiσ−1(n)

.

Then we extend by linearity Θ(σ) to the whole
al⊗
n
Y. It is easy to see that the operator defined

in this way satisfies (4.12). The uniqueness is obvious. 2

We can check that
Sn 3 σ 7→ Θ(σ) ∈ L(

al⊗
n
Y) (4.13)

is a group representation.
We say that a tensor Ψ ∈ al⊗

n
Y is symmetric, resp. antisymmetric if

Θ(σ)Ψ = Ψ, resp. Θ(σ)Ψ = sgn(σ)Ψ. (4.14)

We define the symmetrization/antisymmetrization projections

Θn
s :=

1

n!

∑
σ∈Sn

Θ(σ), Θn
a :=

1

n!

∑
σ∈Sn

sgnσΘ(σ).

They project onto symmetric/antisymmetric tensors.
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We will often write s/a to denote either s or a.
If Y is a Hilbert space, then Θ(σ) is unitary and Θn

s/a are orthogonal projections.
Let Y be a vector space. The algebraic n-particle bosonic/fermionic space is defined as

al⊗
n

s/aY := Θn
s/a

al⊗
n
Y.

The algebraic bosonic/fermionic Fock space or the symmetric/antisymmetric tensor algebra is

al

Γs/a(Y) :=
∞
al⊕
n=0

al⊗
n

s/aY.

The vacuum vector is Ω := 1 ∈ ⊗0
s/aY = C.

If Y is a Hilbert space, then the n-particle bosonic/fermionic space is defined as

⊗ns/aY := Θn
s/a ⊗

n Y.

The bosonic/fermionic Fock space is

Γs/a(Y) :=
∞
⊕
n=0
⊗ns/aY.

4.5 Creation/annihilation operators

For z ∈ Y we define the creation operator

â∗(z)Ψ := Θn+1
s/a

√
n+ 1z ⊗Ψ, Ψ ∈ ⊗ns/aY,

and the annihilation operator â(z) := (â∗(z))∗. (We often omit the hat). We have

[a(z), a(w)]∓ =[a∗(z), a∗(w)]∓ = 0, (4.15)
[a(z), a∗(w)]∓ = (z|w). (4.16)

We will sometimes write (z| and |z) for the following operators

V 3 v 7→ (z|v := (z|v) ∈ C, (4.17)
C 3 λ 7→ λ|z) := λz ∈ V. (4.18)

Then on ⊗ns/aY we have

a∗(z) = Θn+1
s/a

√
n+ 1|z)⊗ 1ln⊗, (4.19)

a(z) =
√
n(z| ⊗ 1l(n−1)⊗. (4.20)

Above we used the compact notation for creation/annihilation operators popular among math-
ematicians. Physicists commonly prefer the traditional notation, which is longer and less canon-
ical.
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One version of the traditional notation uses a fixed basis {ei}i∈I of Z and set a∗i := a∗(ei),
ai := a(ei). Then if z =

∑
i ziei, we write

a∗(z) =
∑
i

zia
∗
i , a(z) =

∑
i

ziai, (4.21)

[ai, a
∗
j ]∓ = δij , [ai, aj ]∓ = 0. (4.22)

If Φ ∈ al⊗
n

s/aZ, then it can be represented by a symmetric/antisymmetric matrix Φi1,...,in . The
annihliation operator acts on Φ as

(aiΦ)j1,...,jn−1 =
√
nΦi,j1,...,jn−1 . (4.23)

Alternatively, one often identifies Z with, say, L2(Rd, dξ). If z equals a function Ξ 3 ξ 7→ z(ξ),
then

a∗(z) =

∫
z(ξ)a∗ξdξ, a(z) =

∫
z(ξ)aξdξ.

Note that formally

[a(ξ), a∗(ξ′)]∓ = δ(ξ − ξ′), [a(ξ), a(ξ′)]∓ = 0. (4.24)

The space ⊗ns/aZ can then be identified with the space of symmetric/antisymmetric square
integrable functions L2(Rnd), and then(

a(ξ)Φ
)
(ξ′1, . . . , ξ

′
n−1) =

√
nΦ(ξ, ξ′1, . . . , ξ

′
n−1). (4.25)

4.6 Integral kernel of an operator

Every linear operator A on Cn can be represented by a matrix [Aji ].
One would like to generalize this concept to infinite dimensional spaces (say, Hilbert spaces)

and continuous variables instead of a discrete variables i, j. Suppose that a given vector space
is represented, say, as L2(Rd), or more generally, L2(X) where X is a certain space with a
measure. One often uses the representation of an operator A in terms of its integral kernel
Rd × Rd 3 (x, y) 7→ A(x, y), so that

AΨ(x) =

∫
A(x, y)Ψ(y)dy.

Note that strictly speaking A(·, ·) does not have to be a function. E.g. in the case X = Rd
it could be a distribution, hence one often says the distributional kernel instead of the integral
kernel. (Note that we use the integral notation for distributions, thus writing for a test function
Φ
∫
F (x)Φ(x)dx often means F (Φ).)
Sometimes A(·, ·) is ill-defined anyway. At least formally, we have

AB(x, y) =

∫
A(x, z)B(z, y)dz,

A∗(x, y) = A(y, x).

Here is a situation where there is a good mathematical theory of integral/distributional
kernels:
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Theorem 4.5 (The Schwartz kernel theorem) B is a continuous linear transformation from
S(Rd) to S ′(Rd) iff there exists a distribution B(·, ·) ∈ S ′(Rd ⊕ Rd) such that

(Ψ|BΦ) =

∫
Ψ(x)B(x, y)Φ(y)dxdy, Ψ,Φ ∈ S(Rd).

Note that ⇐ is obvious. The distribution B(·, ·) ∈ S ′(Rd⊕Rd) is called the distributional kernel
of the transformation B. All bounded operators on L2(Rd) satisfy the Schwartz kernel theorem.

Examples:
(1) e−ixy is the kernel of the Fourier transformation

(2) δ(x− y) is the kernel of identity.

(3) ∂xδ(x− y) is the kernel of ∂x.

4.7 Position and momentum representation

The standard definition of the Fourier transform of V is

V̂ (p) =

∫
e−ixpV (x)dx, V (x) =

1

(2π)d

∫
V̂ (p)dp. (4.26)

One uses the unitary Fourier transform

Ff(p) :=
1

(2π)
d
2

∫
e−ixpf(x)dx, F−1f(x) :=

1

(2π)
d
2

∫
eixpf(p)dp. (4.27)

to pass from the position to momentum representation. Thus if we have an operator K with
integral kernel K(x′, x) in the position representation, then its kernel in the momentum repre-
sentation is

K(p′, p) =
1

(2π)d

∫
eix′p′−ixpK(x′, x)dx′dx. (4.28)

For instance, the 1-body potential V (x) acting on L2(Rd) has the integral kernels

δ(x′ − x)V (x) in the position representation (4.29)

V̂ (p′ − p)
(2π)d

in the momentum representation (4.30)

A 2-body potential V (x1 − x2) acting on L2(R2d) has the integral kernels

δ(x′1 − x1)δ(x′2 − x2)V (x1 − x2) in the position representation (4.31)

= δ(p′1 + p′2 − p1 − p2)
V̂ (p′1 − p1)

(2π)d
in the momentum representation (4.32)

In fact, (4.32) equals

1

(2π)2d

∫ ∫
ei(x′1p

′
1+x′2p

′
2−x1p1−x2p2)δ(x′1 − x1)δ(x′2 − x2)V (x1 − x2)dx′1dx′2dx1dx2. (4.33)
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If we replace Rd with [0, L]d with periodic boundary conditions, then the momentum space
is 2π

L Zd. The standard definition of the Fourier transform of V is

V̂ (p) =

∫
e−ixpV (x)dx, V (x) =

1

Ld

∑
p

V̂ (p). (4.34)

The unitary Fourier transform is

Ff(p) :=
1

L
d
2

∫
e−ixpf(x)dx, F−1f(x) :=

1

L
d
2

∑
p

eixpf(p). (4.35)

4.8 Second quantization of operators

For a contraction q on Z the operator q⊗n commutes with Θ(σ), σ ∈ Sn. Therefore, it preserves
⊗ns/aZ. We define the operator Γ(q) on Γs/a(Z) by

Γ(q)
∣∣∣
⊗n

s/a
Z

= q ⊗ · · · ⊗ q
∣∣∣
⊗n

s/a
Z
.

Γ(q) is called the second quantization of q.
Similarly, for an operator h on Z the operator h⊗1(n−1)⊗+ · · ·+1(n−1)⊗⊗h preserves ⊗ns/aZ.

We define the operator dΓ(h) by

dΓ(h)
∣∣∣
⊗n

s/a
Z

= h⊗ 1(n−1)⊗ + · · ·+ 1(n−1)⊗ ⊗ h
∣∣∣
⊗n

s/a
Z
.

dΓ(h) is called the (infinitesimal) second quantization of h.
Note the identities

Γ(eith) = eitdΓ(h), Γ(q)Γ(r) = Γ(qr), [dΓ(h), dΓ(k)] = dΓ([h, k]),

Γ(q)dΓ(h)Γ(q−1) = dΓ(qhq−1). (4.36)

Let {ei | i ∈ I} be an orthonormal basis of Z. Write âi := â(ei). Let h be an operator on Z
given by the matrix [hij ]. Then

dΓ(h) =
∑
ij

hij â
∗
i âj . (4.37)

Let us prove it in the bosonic case. Let Φ ∈ Γns (Z).

â∗i âjΦ = nΘn
s |ei)⊗ 1l(n−1)⊗(ej | ⊗ 1l(n−1)⊗Φ (4.38)

= nΘn
s |ei)(ej | ⊗ 1l(n−1)⊗Φ (4.39)

=
1

(n− 1)!

∑
σ∈Sn

Θ(σ)|ei)(ej | ⊗ 1l(n−1)⊗Θ(σ)−1Φ (4.40)

=
n∑
k=1

1l(k−1)⊗|ei)(ej | ⊗ 1l(n−k)⊗Φ. (4.41)
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More generally, if the integral kernel of an operator h is h(x, y), then

dΓ(h) =

∫
h(x, y)â∗xâydxdy. (4.42)

For instance, if h is the multiplication operator by h(ξ), then dΓ(h) =
∫
h(ξ)â∗ξ âξdξ.

4.9 Symmetric/antisymmetric tensor product

Let Ψ ∈ ⊗ps/aZ, Φ ∈ ⊗qs/aZ. We set

Ψ⊗s/a Φ := Θp+q
s/a Ψ⊗ Φ. (4.43)

Note that
z ⊗ · · · ⊗ z = z ⊗s · · · ⊗s z. (4.44)

If there are n terms, it is often written as zn⊗. In the antisymmetric case one usually prefers

Ψ ∧ Φ :=
(p+ q)!

p!q!
Ψ⊗a Φ. (4.45)

The operations ⊗s, ⊗a, ∧ are associative. We have

y1 ∧ · · · ∧ yn =
∑
σ∈Sn

sgn(σ)yσ(1) ⊗ · · · ⊗ yσ(n), (4.46)

y1 ⊗a · · · ⊗a yn =
1

n!

∑
σ∈Sn

sgn(σ)yσ(1) ⊗ · · · ⊗ yσ(n). (4.47)

Let {ei}i∈I be a linearly ordered orthonormal basis in Z. Then
√
n!ei1 ⊗a · · · ⊗a ein , i1 < · · · < in, (4.48)

forms an o.n.b of ⊗na (Z).
√
n!√

k1! · · · kn!
e⊗k1i1

⊗s · · · ⊗s e
⊗km
im

, k1 + · · ·+ km = n, (4.49)

forms an o.n.b of ⊗ms (Z).
If dimZ = d, then

dim⊗nsZ =
(d+ n− 1)!

(d− 1)!n!
, dim⊗naZ =

d!

n!(d− n)!
. (4.50)

4.10 Exponential law

Let Z,W be Hilbert spaces. We can treat them as subspaces of Z ⊕ W. Let Φ ∈ ⊗ns/aZ,
Ψ ∈ ⊗ms/aW. We can identify Φ⊗Ψ with

UΦ⊗Ψ :=

√
(n+m)!

n!m!
Φ⊗s/a Ψ ∈ ⊗n+m

s/a (Z ⊕W). (4.51)
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Theorem 4.6 The map (4.51) extends to a unitary map

U : Γs/a(Z)⊗ Γs/a(W)→ Γs/a(Z ⊕W). (4.52)

It satisfies

UΩ⊗ Ω = Ω, (4.53)
dΓ(h⊕ g)U = U

(
dΓ(h)⊗ 1l + 1l⊗ dΓ(g)

)
, (4.54)

Γ(p⊕ q)U = UΓ(p)⊗ UΓ(q), (4.55)
a∗(z ⊕ w)U = U

(
a∗(z)⊗ 1l + 1l⊗ a∗(w)

)
, (4.56)

a(z ⊕ w)U = U
(
a(z)⊗ 1l + 1l⊗ a(w)

)
, in the bosonic case, (4.57)

a∗(z ⊕ w)U = U
(
a∗(z)⊗ 1l + (−1)N ⊗ a∗(z)

)
, (4.58)

a(z ⊕ w)U = U
(
a(z)⊗ 1l + (−1)N ⊗ a(z)

)
, in the fermionic case. (4.59)

Proof. Let us prove the unitarity of this map in the symmetric case:

Φ⊗s Ψ =
1

(n+m)!

∑
σ∈Sn+m

Θ(σ)Φ⊗Ψ (4.60)

=
n!m!

(n+m)!

∑
[σ]∈Sn+m/Sn×Sm

Θ(σ)Φ⊗Ψ. (4.61)

The terms on the right are mutually orthogonal. The maps Θ(σ) are unitary. The number of
cosets in Sn+m/Sn × Sm is (n+m)!

n!m! . Therefore the square norm of (4.60) is

n!m!

(n+m)!
‖Φ⊗Ψ‖2. (4.62)

2

4.11 Wick symbol

Suppose we fix a basis {e(i) : i ∈ I} in the space Z. Recall that

e(i1)⊗ · · · ⊗ e(ik), i1, . . . , ik ∈ I (4.63)

is a basis of
al⊗
k
Z. Every linear map b :

al⊗
k
Z → al⊗

m
Z can be represented by a matrix

b(i1, · · · im; i′k, · · · , i′1), (4.64)

Thus if Φ ∈ ⊗mZ to Ψ ∈ ⊗kZ, then

(Φ|bΨ) =
∑
· · ·
∑

Φ(im, · · · i1)b(i1, · · · im, i′k, · · · , i′1)Ψ(i′k, · · · , i′1). (4.65)

(Note that we invert the order of im, . . . , i1—this is just a convention).
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We can restrict (4.65) to Φ ∈ ⊗ks/aZ to Ψ ∈ ⊗ms/aZ. Then (4.65) will depend only on the
symmetrization/antisymmetrization of b, that is

bs/a := Θm
s/abΘ

k
s/a. (4.66)

Thus to describe operators from ⊗ks/aZ to ⊗ms/aZ it is enough to consider matrices symmet-
ric/antisymmetric separately wrt the first m and the last k arguments.

In this subsection we will put “hats” on the creation/annihillation operators. The symbols
a∗(i), a(i) without hats will be reserved for classical variables, which in the bosonic case commute
and in the fermionic anticommute, that is

[a∗(i), a∗(j)]∓ = [a(i), a(j)]∓ = [a(i), a∗(j)]∓ = 0. (4.67)

As usual, by a (commuting/anticommuting) polynomial in the variables a∗i , aj we mean a linear
combination of the following expressions

b(a∗, a) =
∑
· · ·
∑

b(i1, · · · im, i′k, · · · , i′1)a∗(i1) · · · a∗(im)a(i′k) · · · a(i′1) (4.68)

where b are symmetric/antisymmetric separately wrt the first m and the last k arguments. In
the symmetric case this can be interpreted as a usual polynomial In the antisymmetric case it is
an element of the Grassmann algebra.

The Wick quantization of b(a∗, a) is defined as

b(â∗, â) =
∑
· · ·
∑

b(i1, · · · im, i′k, · · · , i′1)â∗(i1) · · · â∗(im)â(i′k) · · · â(i′1). (4.69)

(Actually, by (4.66), in (4.68) and (4.69) we can consider b which is not symmetric/antisymmetric.)
Here is an equivalent definition of b(â∗, â): Its only nonzero matrix elements are between

Φ ∈ ⊗p+ms/a Z, Ψ ∈ ⊗p+ks/a Z, and equal

(Φ|b(â∗, â)Ψ) =

√
(m+ p)!(k + p)!

p!
(Φ|b⊗ 1⊗pZ Ψ). (4.70)

To see this it is enough to check(
Φ|â∗(i1) · · · â∗(im)â(i′k) · · · â(i′1)Ψ

)
(4.71)

=
(
â(im) · · · â(i1)Φ|â(i′k) · · · â(i′1)Ψ

)
(4.72)

=
√

(m+ p) · · · (p+ 1)(k + p) · · · (p+ 1) (4.73)

×
∑
jp

· · ·
∑
j1

Φ(im, . . . , i1, jp, . . . , j1)Ψ(i′m, . . . , i
′
1, jp, . . . , j1). (4.74)

Essentially every operator on a Fock space can be written as a linear combination of (4.69).
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4.12 Wick symbol and coherent states

In the bosonic case, we have the identities

e−â
∗(b)+â(b)â(v)eâ

∗(b)−â(b) = â(v) + (v|b), (4.75)

e−â
∗(b)+â(b)â∗(v)eâ

∗(b)−â(b) = â(v) + (v|b). (4.76)

We also introduce the coherent state corresponding to b ∈ Z:

Ωb := eâ
∗(b)−â(b)Ω. (4.77)

Note that â(v)Ωb = (v|b)Ωb. We have the identity

(Ωb|c(â∗, â)Ωb) =c(b∗, b). (4.78)

5 Clifford algebras

5.1 Clifford algebras

Let φ1, ..., φn satisfy the relations
[φi, φj ]+ = 2δij1l. (5.1)

The associative algebra over R generated by 1l, φ1, . . . , φn satisfying these relations is called the
(real) Clifford algebra with positive signature Cl+(Rn) = Cl+(n).

Let γ1, ..., γn satisfy the relations

[γi, γj ]+ = −2δij1l. (5.2)

The associative algebra over R generated by 1l, γ1, . . . , γn satisfying these relations is called the
(real) Clifford algebra with negative signature Cl−(Rn) = Cl−(n).

The associative algebra over C generated by 1l, φ1, . . . , φn and satisfying (5.1) is called the
complex Clifford algebra and will be denoted by Cl(Cn). Clearly, it is isomorphic to the algebra
over C generated by 1l, γ1, . . . , γn satisfying (5.2), where the isomorphism is given by

γi := iφi. (5.3)

Both Cl+(Rn) and Cl−(Rn) are real subalgebras of Cl(Cn) = Cl(n,C). In what follows we
will treat Cl+(Rn) and Cl(Cn) as basic objects, because Cl−(Rn) can be obtained by (5.3).

More generally, we can consider Clifford algebras Cl(q, p) of an arbitrary signature, generated
by γi,

[γi, γj ]+ =


−2, i = j = 1, . . . q;

2, i = j = q + 1, . . . , q + p;

0, i 6= j.

(5.4)

More abstractly, let V be a vector space over a field K equipped with a bilinear form 〈v|w〉,
v, w ∈ V. Then we define Cl(V) as the associative algebra generated by φ(v), v ∈ V, with
relations

φ(v + w) = φ(v) + φ(w), φ(λv) = λφ(v), [φ(v), φ(w)]+ = 2〈v|w〉1l. (5.5)
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Setting

φ(v) =

n∑
i=1

viφi, v = (v1, . . . , vn), V = Rn, (5.6)

〈v|w〉 = ±
n∑
i=1

viwi, (5.7)

we obtain Cl±(n).

5.2 Even Clifford algebras

The map φi 7→ −φi (or equivalently γi 7→ −γi) extends uniquely to an automorphism of a Clifford
algebra denoted α. Elements fixed by this automorphism are called even. The subalgebra of even
elements of Cl(Cn) is denoted Cl0(Cn). Elements that flip the sign under α are called odd. The
set of odd elements is denoted Cl1(Cn).

If we view Cl+(Rn) and Cl−(Rn) as subalgebras of Cl(Cn), then the set of even elements in
both algebras coincides. We will denote it by Cl0(Rn) (without indicating the sign ±).

We have an isomorphism

ψ : Cl−(Rn−1)→ Cl0(Rn), (5.8)
ψ(γj) :=φjφn, j = 1, . . . , n− 1. (5.9)

In fact,
[ψ(γj), ψ(γk)]+ = −2δjk1l.

Similarly,
Cl(Cn−1) ' Cl0(Cn).

5.3 Bases

The set
φi1 · · ·φik =

1

k!

∑
σ∈Sk

sgn(σ)φiσ(1) · · ·φiσ(k) , i1 < · · · < ik. (5.10)

is a basis of Cl+(n). Hence Cl+(n), as well as Cl−(n) have a real dimension 2n. Cl(n,C) has a
complex dimension 2n. Clearly,

α
(
φi1 · · ·φik

)
= (−1)kφi1 · · ·φik . (5.11)

One can introduce an identification of the Grassmann algebra and the Clifford algebra. It is
the linear map defined by

Op : C[φ1, . . . , φn]→ Cl(n,C), (5.12)

Op
(
φi1 · · ·φik

)
:=
∑
σ∈Sk

φiσ(1) · · ·φiσ(k) , i1 < · · · < ik. (5.13)

Clearly, Op is not a homomorphism. It plays a role of quantization for fermionic systems.
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5.4 Involution

The algebras Cl+(n) are equipped with the involution, which is a linear map defined by

φ∗i = φi, (AB)∗ = B∗A∗, (5.14)

and called the (Clifford) conjugation. Another acceptable notation for the conjugation on Cl+(n)
is AT = A∗, and another name is the (Clifford) transposition.

In the algebras Cl−(n) there is an analogous involution defined by

γ∗i = −γi, (AB)∗ = B∗A∗, (5.15)

Note that on Cl−(2) ' C, the transposition coincides with the complex conjugation, and on
Cl−(3) ' H it coincides with the quaternionic conjugation.

In Cl(n,C) we have two natural maps that extend (5.15): one by linearity, and then we
denote it by AT and call the (Clifford) transposition, the other one by antilinearity, and then we
denote it by A∗. Thus the action on basis elements is(

λOp
(
φi1 · · ·φik

))T
= (−1)

k(k−1)
2 λOp

(
φi1 · · ·φik

)
, (5.16)(

λOp
(
φi1 · · ·φik

))∗
= (−1)

k(k−1)
2 λOp

(
φi1 · · ·φik

)
. (5.17)

Cl(n,C) equipped with the antilinear involution A 7→ A∗ is a ∗-algebra, called the CAR
algebra, denoted CAR(n) = CAR(Rn). It depends on the choice of the real subspace Rn inside
Cn.

The transposition on Cl(n,C) does not depend on the choice of a real subspace of Cn.
The unitary group of Cl±(n) is defined as

U
(
Cl±(n)

)
:= {U ∈ Cl±(n) | U∗U = 1l}. (5.18)

(The notation O
(
Cl+(n)

)
= U

(
Cl+(n)

)
and the name orthogonal group is also possible.)

In the complex case we have two distinct groups: orthogonal and unitary:

U
(
CAR(n)

)
:= {U ∈ CAR(n) | U∗U = 1l}, (5.19)

O
(
Cl(n,C)

)
:= {U ∈ Cl(n,C) | UTU = 1l}. (5.20)

5.5 Volume element

Sometimes, the following element of Cl+(Rn) is called the volume element:

ω := φ1 · · ·φn.

Clearly, Cl+(Rn) is generated by φ1, . . . , φn−1, ω. We have

ω2 = (−1l)
1
2
n(n−1), ωφi = −(−1)nφiω.

In Cl−(Rn) instead we may prefer to use

inω = γ1 · · · γn.
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If n is even, then ω (as well as iω) implements the authomorphism α:

ωAω−1 = α(A), A ∈ Cl(Cn). (5.21)

If n is odd ω (or iω commutes with Cl(Cn).

5.6 The Jordan-Wigner construction

If k ≤ m and A ∈ L(⊗kC2), then we identify A with A⊗ 1l⊗(m−k) ∈ L(⊗mC2).
Recall that σ1, σ2, σ3 denote the standard Pauli matrices. Note that 1l, σ1, σ2, σ3 = iσ1σ2

span L(C2). Hence σ1, σ2 generate L(C2).
Let n = 2m. Consider the space ⊗mC2. Introduce the operators

ρ(φ1) := σ1, ρ(φ2) : = σ2,

. . .

ρ(φ2m−1) := σ
⊗(m−1)
3 ⊗ σ1, ρ(φ2m) := σ

⊗(m−1)
3 ⊗ σ2.

Theorem 5.1 ρ extends uniquely to a homomorphism

ρ : Cl(2m)→ L(⊗mC2). (5.22)

We have

ρ(ω) = imσ⊗m3 , (5.23)

ρ
(
φ1 · · ·φ2kφ2k+1

)
= ik1l⊗k ⊗ σ1, ρ

(
φ1 · · ·φ2kφ2k+2

)
= ik1l⊗k ⊗ σ2. (5.24)

(5.22) is an isomorphism.

Proof. It is easy to check that ρ(φ1), . . . , ρ(φ2m) satisfy the Clifford relations. Hence the map
ρ extends to a homorphism.

By (5.24), the image of ρ contains 1l⊗k ⊗ L(C2). Hence it contains the whole L(⊗mC2). 2

Theorem 5.2 For n = 2m+1 there exist two homorphisms extending ρ : Cl(2n,C)→ L(⊗mC2):

ρ± :Cl(2n+ 1,C)→ L(⊗mC2), (5.25)

ρ±(φ2m+1) : = ±σ⊗(m+1)
3 . (5.26)

The map
Cl(2m+ 1) 3 A 7→

(
ρ+(A), ρ−(A)

)
∈ L(⊗mC2)⊕ L(⊗mC2) (5.27)

is an isomorphism of algebras.

Proof. First we check that ρ±(φ1), . . . , ρ±(φ2m+1) satisfy the Clifford relations. Hence (5.26)
defines two homorphisms ρ±.

25



Let us prove that (5.26) is onto. Let Ã, B̃) ∈ L(⊗mC2) ⊕ L(⊗mC2). The maps ρ are onto,
hence we will find A+, A− ∈ Cl(2m,C) such that ρ(A+) = Ã+, ρ(A−) = Ã−. Next we put

π := (−i)mφ1 · · ·φ2mφ2m+1 ∈ Cl(2m+ 1,C).

Then π commutes with Cl(C2m+1) and ρ±(π) = ±1l. Therefore, for A ∈ Cl(2m,C),

ρ±

(
A

(1l± π)

2

)
= ρ±(A)ρ±

((1l± π)

2

)
= ρ(A),

ρ±

(
A

(1l∓ π)

2

)
= ρ±(A)ρ±

((1l± π)

2

)
= 0.

Hence,

ρ±

(
A+

(1l + π)

2
+A−

(1l− π)

2

)
= ρ(A±) = Ã±. (5.28)

which proves that (5.26) is onto. 2

5.7 Fock representations of Clifford algebras

In this subsection we describe a representation of Clifford algebras seemingly different from the
Jordan-Wigner contruction. Eventually, it will turn out to be essentially the same representation
in disguise.

Consider the Fock space Γa(Cm) with the standard creation and annihilation operators a∗i ,
aj satisfying

[a1, aj ]+ = [a∗i , a
∗
j ]+ = 0, [ai, a

∗
j ]+ = δij1l.

Consider Cl(2m,C) with generators φ1, . . . , φ2m. We define

ρ(φ2i−1) := a∗i + ai, ρ(φ2i) := i−1(a∗i − ai), i = 1, . . . ,m. (5.29)

Clearly, the above operators satisfy Clifford relations and are self-adjoint. Hence ρ extends
uniquely to a ∗-isomorphism ρ : Cl(2m,C)→ L

(
Γa(Cm)

)
.

We have also the number operator

N =
m∑
i=1

a∗i ai

and the parity operator

(−1)N = (−1)
∑
i a
∗
i ai =

∏
i=1

(−1)a
∗
i ai =

∏
i

(1l− 2a∗i ai).

Now
[(−1)N , ai]+ = [(−1)N , a∗i ]+ = 0,

(
(−1)N

)2
= 1l.

Hence setting
ρ±(φ2m+1) := ±(−1)N , (5.30)
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we extend ρ to two isomorphisms ρ± : Cl(2m+ 1,C)→ L
(
Γa(Cm)

)
.

Cl(2m+ 1,C) can be also represented on Γa(Cm+1), if we set

ρ(φ2m+1) := a∗m+1 + am+1. (5.31)

Now ρ is not irreducible: ρ(Cl(2m+ 1,C)) commutes with

(a∗m+1 + am+1)(−1)
∑m
i=1 a

∗
i ai . (5.32)

ρ is a direct sum of the representations ρ+ and ρ−.
Note that the above constructions are fully equivalent to the Jordan-Wigner construction.

In fact, first let us check it for Cl(3,C). We identify Γa(C) with C2 by

a∗Ω =

[
1
0

]
, Ω =

[
0
1

]
, a∗ =

[
0 1
0 0

]
, a =

[
0 0
1 0

]
,

a∗ + a = σ1 =

[
0 1
1 0

]
, i−1(a∗ − a) = σ2 =

[
0 −i
i 0

]
, −(−1)N = σ3 =

[
1 0
0 −1

]
.

Thus the Jordan-Wigner consstruction and the Fock representation coincide for n = 1, 2, 3.
Consider now n = 2m. We have Cm ' ⊕mj=1C. Hence, by the exponential property of Fock

spaces,
Γa(Cm) ' ⊗mΓa(C) = ⊗mC2. (5.33)

and we easily check that under this identification ρ of the Jordan-Wigner representation and of
the Fock represention coincide.

5.8 Form of Clifford algebras

Remember that the standard notation for the space of linear maps on space V is L(V). If V = Kn

where K = R,C,H, then L(V) can be identified with n×n matrices with entries in K. Below we
will often use an alternative notation K(n) for L(Kn).

The following table describes the form of various Clifford algebras in tems of R(2m), C(2m)
and H(2m). Note that the validity of the column Cl(n,C) was proven in Theorems 5.1 and 5.2.
It implies the column Cl0(n,C). Both have an obvious period 2.

The real columns have a period 8, which involves multiplying the arguments of the entries
by 24 = 16. Clearly, the column Cl−(n) implies the column Cl0(n).

n Cl+(Rn) Cl−(Rn) Cl0(Rn) Cl(Cn) Cl0(Cn)

0 R R C
1 R⊕ R C, R C⊕ C C
2 R(2) H C C(2) C⊕ C
3 C(2) H⊕H, H C(2)⊕ C(2) C(2)
4 H(2) H(2) H⊕H C(4) C(2)⊕ C(2)
5 H(2)⊕H(2) C(4) H(2) C(4)⊕ C(4) C(4)
6 H(4) R(8) C(4) C(8) C(4)⊕ C(4)
7 C(8) R(8)⊕ R(8) R(8) C(8)⊕ C(8) C(8)
8 R(16) R(16) R(8)⊕ R(8) C(16) C(8)⊕ C(8)
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Consider a few first entries from the column Cl−(n):

Cl−(1) = C : i := γ1;

Cl−(2) = H : i := γ1, j := γ2;

Cl−(3) = H⊕H : (i, i) := γ1, (j, j) := γ2, (1,−1) := γ1γ2γ3;

Cl−(4) = H(2) :

[
i 0
0 i

]
:= γ1,

[
j 0
0 j

]
:= γ2,[

k 0
0 k

]
= γ3,

[
0 −1
1 0

]
:= γ4

Next, Cl+(n):

Cl+(4) = H(2) :

[
0 −i
i 0

]
:= φ1,

[
0 −j
j 0

]
:= φ2,[

0 −k
k 0

]
= φ3,

[
1 0
0 −1

]
:= φ4

Let us now describe the relationship between Cl(2m) and Cl(2m + 1). ω always belongs to
the center of Cl+(R2m+1) and iω belongs to the center of Cl−(R2m+1).

We have ω2 = (−1)m, (iω)2 = (−1)m+1. Hence we have the isomorphisms

m ≡ 0 mod (2), Cl+(R2m)⊕ Cl+(R2m) 3 (A1, A2) 7→ 1l + ω

2
A1 +

1l− ω
2

A2 ∈ Cl+(R2m+1),

m ≡ 2 mod (2), CCl+(R2m) 3 (A1 + iA2) 7→ A1 + ωA2 ∈ Cl+(R2m+1).

m ≡ 0 mod (2), CCl−(R2m) 3 (A1 + iA2) 7→ A1 + iωA2 ∈ Cl−(R2m+1),

m ≡ 2 mod (2), Cl−(R2m)⊕ Cl−(R2m) 3 (A1, A2) 7→ 1l + iω

2
A1 +

1l− iω

2
A2 ∈ Cl−(R2m+1).

Note also that the complexification of R is C and of H is C(2).

5.9 Charge conjugation

Consider the Jordan-Wigner representation of Cl(n,C), ρ for n = 2m or ρ± for n = 2m+ 1. We
drop ρ, ρ± from the notation. We have φi = φi for odd i, including φ2m+1, and for φi = −φi for
even i. Consider first n = 2m. Set

η+ := imφ2φ4 · · ·φ2m, η− := φ1φ3 · · ·φ2m−1, .

Then η+ and η− are real. Besides,

η2
+ = (−1)

m(m+1)
2 , η2

− = (−1)
m(m−1)

2 ;

η+φi = (−1)mφiη+, η−φi = −(−1)mφiη, i = 1, 2, . . . , 2m;

η+φ2m+1 = (−1)mφ2m+1η+, η−φ2m+1 = (−1)mφ2m+1η−.
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Hence for A ∈ Cl(n,C)

n ≡ 0 mod (8), η2
+ = η2

− = 1l, A = η+Aη
−1
+ α(A) = η−Aη

−1
− ;

n ≡ 1 mod (8), η2
+ = 1l, A = η+Aη

−1
+ ;

n ≡ 2 mod (8), − η2
+ = η2

− = 1l, α(A) = η+Aη
−1
+ A = η−Aη

−1
− ;

n ≡ 3 mod (8), − η2
+ = 1l, α(A) = η+Aη

−1
+ ;

n ≡ 4 mod (8), − η2
+ = −η2

− = 1l, A = η+Aη
−1
+ α(A) = η−Aη

−1
− ;

n ≡ 5 mod (8), − η2
+ = 1l, A = η+Aη

−1
+ ;

n ≡ 6 mod (8), η2
+ = −η2

− = 1l, α(A) = η+Aη
−1
+ A = η−Aη

−1
− ;

n ≡ 7 mod (8), η2
+ = 1l, α(A) = η+Aη

−1
+ ;

6 Matrix Lie groups

6.1 Quaternionic determinant

Identify H ' C2 by v = x+ jy, x, y ∈ C, so that jx = xj, jy = −yj. Similarly, if V ∈ L(Hn), then
V = X + jY with jX = Xj, jY = −Y j, where X,Y ∈ L(Cn). Writing

π(j) =

[
0 −1ln

1ln 0

]
=: Jn (6.1)

we can represent V as

π(V ) =

[
X −Y
Y X

]
∈ L(C2n). (6.2)

Thus
π(L(Hn)) = {V ∈ L(C2n) | JnV = V Jn}. (6.3)

In what follows we will often identify L(Hn) with a subspace of L(C2n) through (6.2), dropping
π.

It is well-known that L(Rn) and L(Cn) are equipped with the homomorphism into R, resp.
C called the determinant. Matrices with nonzero determinant are invertible.

If V ∈ L(Hn), then its quaternionic determinant is defined as

detV := detπ(V ),

where on the right we use the usual determinant (in the sense of a complex matrix) and the
embedding π defined in (6.2), and earlier in (2.9). Note that detVW = detV detW . detV does
not depend on the embedding of C in H and always has a real value ≥ 0. detV is nonzero if V
is invertible

We also have the quaternionic trace

Tr(V ) := Trπ(V ) = 2Re
(
Tr(X)

)
. (6.4)

Clearly, the quaternionic trace is always real and det(eV ) = eTr(V ).
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6.2 Classical matrix Lie groups

Let K = R,C,H. We define

GL(Kn) = {V ∈ L(Kn) | detV 6= 0, }, (6.5)
SL(Kn) = {V ∈ L(Kn) | detV = 1, }. (6.6)

By a classical matrix Lie group we mean a subgroup of GL(Kn).
We now define several series of such subgroups defined as the sets elements of GL(Kn)

preserving a certain 2-argument form (bilinear or sesquilinear).

Kn ×Kn 3 (v, w) 7→ B(v, w). (6.7)

That is, the general form of these groups are

GB(Kn) := {V ∈ GL(Kn) | B(V v, V w) = B(v, w), v, w ∈ Kn}. (6.8)

Their Lie algebras are

gB(Kn) := {V ∈ gl(Kn) | B(V v,w) +B(v, V w) = 0 v, w ∈ Kn}. (6.9)

Especially important series are the following three, which consist of compact groups:

O(Rn) = O(n) : v1w1 + · · · vnwn,
U(Cn) = U(n) : v1w1 + · · · vnwn,
Sp(Hn) = Sp(n) : v∗1w1 + · · · v∗nwn.

Here are all series of classical matrix Lie groups:

O(Rq,p) = O(q, p) : − v1w1 − · · · − vqwq + vq+1wq+1 + · · · vnwn,
Sp(R2n) = Sp(n,R) : v1wn+1 + · · ·+ vnw2n − vn+1w1 + · · ·+ vn+1w1,

U(Cq,p) = U(q, p) : − v1w1 − · · · − vqwq + vq+1wq+1 + · · ·+ vq+pwq+p,

O(Cn) = O(n,C) : v1w1 + · · · vnwn,
Sp(C2n) = Sp(n,C) : v1wn+1 + · · ·+ vnw2n − vn+1w1 + · · ·+ vn+1w1,

Sp(Hq,p) = Sp(q, p) : − v∗1w1 − · · · − v∗qwq + v∗q+1wq+1 + · · ·+ v∗q+pwq+p,

O(Hn) = O∗(n) : v∗1jw1 + · · · v∗njwn.

Note that Sp(n,R), resp. Sp(n,C) is sometimes also denoted Sp(2n,R), resp. Sp(2n,C) (which
incidentally shows the superiority of the notation Sp(R2n), resp. Sp(C2n), which is unambiguos).

Clearly

U(Cn) = U(Cn,0) = U(C0,n),

O(Rn) = O(Rn,0) = O(R0,n),

Sp(Hn) = Sp(Hn,0) = Sp(H0,n).
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We have

V ∈ Sp(R2n), Sp(C2n), Sp(Hq,p) or O(Hn) ⇒ detV = 1;

V ∈ O(Rq,p) or O(Cn)⇒ detV ∈ {1,−1};
V ∈ U(Cq,p) ⇒ detV ∈ {z ∈ C| |z| = 1}.

We set

SO(Rq,p) := O(Rq,p) ∩ SL(Rq+p),
SO(Cn) := O(Cn) ∩ SL(Cn),

SU(Cn) := O(Cn) ∩ SL(Cn).

Let us make some remarks concerning the quaternionic groups identified as subgroups of
complex groups. Clearly,

GL(Hn) = {V ∈ GL(C2n) | JnA = AJn}, (6.10)

SL(Hn) = {V ∈ SL(C2n) | JnA = AJn}. (6.11)

Writing vi = xi + jyi ∈ H, i = 1, 2, xi, yi ∈ C, note that

v∗1v2 = x1x2 + y1y2 + j(x1y2 − y1x2) (6.12)
v∗1jv2 = −x1y2 + y1x2 + j(x1x2 + y1y2). (6.13)

Therefore, writing v1i = x1i + jy1i ∈ Hn v2i = x2i + jy2i ∈ Hn, we can rewrite the forms defining
Sp(Hn), resp. O(Hn) as

x11x21 + · · ·+ x1nx2n + y11y21 + · · ·+ y1ny2n (6.14)
+j
(
x11y21 + · · ·+ x1ny2n − y11x21 − · · · − y1nx2n

)
, (6.15)

resp. − x11y21 − · · ·x1ny2n + y11x21 + · · ·+ y1nx2n (6.16)
+j
(
x11x21 + · · ·+ x1nx2n + y11y21 + · · ·+ y1ny2n

)
. (6.17)

Now Sp(Hn), resp. O(Hn) can be defined as the set of V ∈ GL(C2n) preserving separately the
form (6.14) and 6.15, resp. (6.16) and (6.17). Note that we do not need to check the conditions
(6.3). Thus, we obtain (using a simple change of variabkes in the case of O(Hn))

Sp(Hn) = SU(C2n) ∩ Sp(C2n), (6.18)

O(Hn) ' SU(Cn,n) ∩O(C2n). (6.19)

Similarly,

Sp(Hq,p) ' SU(C2q,2p) ∩ Sp(C2n). (6.20)
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6.3 Reflections

Let v ∈ Rn. The reflection wrt v is the map Rv ∈ L(Rn)

Rvy := y − 2
〈v|y〉
〈v|v〉

v.

Clearly, R2
v = 1l i Rv ∈ O(Rn)\SO(Rn).

Theorem 6.1 Reflections generate O(Rn). The set of even products of reflections coincides with
SO(Rn).

Proof. Consider first O(R2) and the rotation

Aφ :=

[
cosφ − sinφ
sinφ cosφ

]
(6.21)

Take a pair of normalized vectors v1, v2 with angle φ
2 . Then it is easy to see that Aφ = Rv1Rv2 .

Let A ∈ O(Rn). After complexification, we can use the spectral theorem, which yields that
in an appropriate basis A is the direct sum of matrices of the form (6.21) and of 1 and −1. 2

For v ∈ Rn, define
φ(v) :=

∑
i

viφi, γ(v) :=
∑
i

viγi.

It is an element o Cl+(Rn), resp. Cl−(Rn). Clearly,

φ(v)∗ = φ(v), γ(v)∗ = −γ(v), φ(v)φ(v)∗ = γ(v)γ(v)∗ = 〈v|v〉,

Assume 〈v|v〉 = 1. Then ±φ(v) and ±γ(v) are unitary odd elements of Cl+(Rn), resp. Cl−(Rn),
and (

± φ(v)
)
φ(y)

(
± φ(v)

)∗
= −φ(Rvy), (6.22)(

± γ(v)
)
γ(y)

(
± γ(v)

)∗
= −γ(Rvy). (6.23)

6.4 Pin and Spin groups

Let Pin+(n) = Pin+(Rn) be the group of U ∈ U
(
Cl+(Rn)

)
satisfying

{Uφ(v)U∗ : v ∈ Rn} = {φ(v) : v ∈ Rn}.

Analogously, let Pin−(n) = Pin−(Rn) be the group of U ∈ U
(
Cl−(Rn)

)
satisfying

{Uγ(v)U∗ : v ∈ Rn} = {γ(v) : v ∈ Rn}.

We set
Spin(Rn) = Spin(n) := Pin+(n) ∩ Cl0(n) = Pin−(n) ∩ Cl0(n). (6.24)
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Theorem 6.2 1. Pin+(n) is generated by φ(v), 〈v|v〉 = 1, and Pin−(n) generated by γ(v),
〈v|v〉 = 1.

2. If U ∈ Spin(Rn), then there exists RU ∈ SO(Rn) such that

Uφ(y)U∗ = φ(RUy), Uγ(y)U∗ = γ(RUy), (6.25)

3. If U ∈ Pin+(Rn)\Spin(Rn), then there exists RU ∈ O(Rn)\SO(Rn) such that

Uφ(y)U∗ = −φ(RUy), (6.26)

Similarly, if U ∈ Pin−(Rn)\Spin(Rn), then there exists RU ∈ O(Rn)\SO(Rn) such that

Uγ(y)U∗ = −γ(RUy), (6.27)

4. The maps
Pin±(n) 3 U 7→ RU ∈ O(n) (6.28)

are surjective group homomorphisms with kernel {1l,−1l}, satisfying

α(U)φ(y)U∗ = Uφ(y)α(U∗) = φ(RUy), U ∈ Pin±(n). (6.29)

5. We have RU = R−U .
R±1l = 1l, R±ω = −1l. (6.30)

Proof. Let G be the group by φ(v), 〈v|v〉 = 1. It is clearly a subgroup of Pin+(n), and we easily
check that it satisfies all properties listed in the theorem. Now suppose that Pin+(n) is larger
than G. Then the kernel of the homomorphism Pin+ → O(n) should be larger that {1l, 1l}.

We check that the only unitary elements of L(C2m) commuting with φi(v) are {c1l | |c| = 1}
and only ±1l belong to Cl+(2m). This yields that the kernel is {1l, 1l} for n = 2m.

The only unitary elements of of L(C2m) ⊕ L(C2m) commuting with with φi(v) are {c11l ⊕
c21l | |c1| = |c2| = 1} and only ±(1l, 1l) and ±(1l,−1l) belong to Cl+(2m+ 1). Then we use (6.30)
and the fact that ω is odd. 2

U 7→ RU defines the 2-fold coverings

1→ Z2 → Spin(Rn)→ SO(Rn)→ 1,

1→ Z2 → Pin±(Rn)→ O(Rn)→ 1.

6.5 Other Pin groups

The group Pin(q, p) = Pin(Rq,p) is defined as the subgroup of Cl(q, p) generated by γ(v) with
γ(v)2 = 1 or γ(v)2 = −1. We have

1→ Z2 → Spin(Rq,p)→ SO(Rq,p)→ 1,

1→ Z2 → Pin±(Rq,p)→ O(Rq,p)→ 1.
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There are also Pin±(n,C) = Pin±(Cn), which are the groups generated by φ(v) with φ(v)2 =
±1. We set Spin(n,C) = Pin+(n,C) ∩ Cl0(n,C) = Pin−(n,C) ∩ Cl0(n,C). We have

1→ Z2 → Spin(Cn)→ SO(Cn)→ 1,

1→ Z2 → Pin±(Cn)→ O(Cn)→ 1.

Especially important in applications is the group

Pinc(n) := {cU : c ∈ C, |c| = 1, U ∈ Pin(n)}. (6.31)

An equivalent characterization of Pinc(n): it is the set of elements U of U
(
CAR(Rn)

)
such that

{Uφ(v)U∗ : v ∈ Rn} = {φ(v) : v ∈ Rn}.

We have

1→ U(1)→ Spinc(Rn)→ SO(Rn)→ 1,

1→ U(1)→ Pinc(Rn)→ O(Rn)→ 1.

6.6 Quadratic Hamiltonians

Consider Cl(n). Let Hij be a real antisymmetric matrix. The expressions

Op(H) =
1

2

∑
ij

Hijφiφj (6.32)

form a Lie algebra, which is isomorphic to o(n). In fact[
Op(H),Op

(
G)
]

= Op
(
[H,G]

)
. (6.33)

It is easy to see that Spin(n) coincides with the set of eOp(H) where H are real antisymmetric
matrices. In fact, it is enough to consider Cl(2):

etφ1φ2 = cos t1l + sin tφ1φ2 = φ1(cos tφ1 + sin tφ2). (6.34)

6.7 Low-dimensional coincidences

Recall that U
(
Cl0(Rn)

)
denotes the set of unitary elements of Cl0(Rn), that is V ∈ Cl0(n)

satisfying V ∗V = 1l. Obviously,

Spin(Rn) ⊂ U
(
Cl0(Rn)

)
(6.35)

Now
n Cl0(Rn) U

(
Cl0(Rn)

)
1 R O(R)
2 C U(C),
3 H Sp(H) = SU(C2),
4 H⊕H Sp(H)× Sp(H) = SU(C2)× SU(C2),
5 H(2) Sp(H2),
6 C(4) U(C4),
7 R(8) O(R8).

(6.36)
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Proposition 6.3 Here are the (real) dimensions of the basic classical groups:

dimSO(Rn) =
n(n− 1)

2
, (6.37)

dimSU(Cn) = (n+ 1)(n− 1), U(Cn) = n2, (6.38)
dimSp(Hn) = n(2n+ 1). (6.39)

Proof. Instead of the groups we will consider their Lie algebras.

o(Rn) = {A ∈ gl(Rn) | A = −AT}. (6.40)

Hence each element of o(Rn) is determned by its strictly upper triangular part. Hence

dim so(Rn) = dim o(Rn) =
n(n− 1)

2
. (6.41)

Clearly, dim su(Cn) = dimu(Cn)− 1. Now

u(Cn) = {A ∈ gl(Rn) | A = −A∗}. (6.42)

Hence each element of u(Cn) is determned by its (real) diagonal and (complex) strictly upper
triangular part. Hence

dimu(Rn) = n+ 2
n(n− 1)

2
= n2. (6.43)

Finally,

sp(Hn) =

{[
X −Y
Y X

]
| X∗ = X, Y = Y T

}
. (6.44)

The dimension of possible X is n2 by what we know about u(Cn). The dimension of possible Y
is 2n+ 2n(n−1)

2 = n2 + n. Hence

dim sp(Hn) = 2n2 + n. (6.45)

2

Now table (6.36) and the above proposition yield

n dimSO(n) = dimSpin(n) dimU
(
Cl0(Rn)

)
1 0 0 = dimO(1),
2 1 1 = dimU(1),
3 3 3 = dimSp(H) = dimSU(2),
4 6 6 = dimSp(H)× Sp(H) = dimSU(2)× SU(2),
5 10 10 = dimSp(H2),
6 15 16 = dimU(4),
7 21 28 = dimO(8).
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Thus

Spin(Rn) = U
(
Cl0(Rn)

)
, n = 1, 2, 3, 4, 5, (6.46)

Spin(Rn) ( U
(
Cl0(Rn)

)
, n ≥ 6. (6.47)

Actually, if we consider the Jordan-Wigner representations (in the odd case, the irreducible
ones), then φ(v), the generators of Clifford algebras Cl(n) have determinant 1 starting from
n = 4. But they also generate the Pin group. So all elements of the Pin(n) have determinant
1 for n ≥ 4. Therefore, for n = 6 we can write Spin(6) ⊂ SU(4). We have dimSU(4) = 15.
Hence Spin(6) = SU(4). Thus we obtain the coincidences in low dimensions:

Spin(R2) ' SO(R2),

Spin(R3) ' SU(C2),

Spin(R4) ' SU(C2)× SU(C2),

Spin(R5) ' Sp(H2),

Spin(R6) ' SU(C4).

6.8 SL(R2) = Sp(R2)

Let

J :=

[
0 1
−1 0

]
.

Note that for A ∈ L(R2) we have

ATJA = (detA)J,

ATJ + JA = (TrA)J.

Hence SL(R2) = Sp(R2) and sl(R2) = sp(R2). For later reference note the following identities
for 2× 2 matrices:

1

2
TrJATJA = −detA, TrA = 0 ⇒ JATJ = A. (6.48)

6.9 SU(2) ' Spin(3)

We can show directly that SU(2) ' Spin(3) using the Jordan-Wigner representation:

Spin(R3) = {a01l + a1φ2φ3 + a2φ3φ1 + a3φ1φ2 : a2
0 + a2

1 + a2
2 + a2

3 = 1}, (6.49)

SU(2) = {a01l + a1σ1 + a2σ2 + a3σ3 : a2
0 + a2

1 + a2
2 + a2

3 = 1}. (6.50)

The following construction allows to see directly the 2-fold covering SU(2)→ SO(3). Identify
R3 with Hermitian matrices 2× 2 of trace 0:

R3 3 (x, y, z) 7→ X =

[
z x+ iy

x− iy −z

]
.
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Note that
1

2
TrX1X2 = x1x2 + y1y2 + z1z2

defines the standard scalar product. Alternatively, the scalar product can be defined through
the determinant:

−detX = x2 + y2 + z2.

For A ∈ SU(2) we set
ρAX := AXA∗.

Then
det ρAX = detX.

Hence ρA preserves the scalar product.

SU(2) 3 A 7→ ρA ∈ SO(3).

is a surjective homomorpism. Its kernel is {1l,−1l}.
For Y ∈ su(2) we set

ρYX := Y X +XY ∗ = [Y,X].

(Note that Y = −Y ∗).

6.10 SL(2,R) ' Spin0(1, 2)

We identify R3 with 2× 2 matrices of trace 0:

R3 3 (x, y, z) 7→ X =

[
z x+ y

−x+ y −z

]
.

Note that
1

2
TrX1X2 = −x1x2 + y1y2 + z1z2

Hence for R = R we obtain a pseudoscalar product of signature (1, 2). Alternatively, we can use
the determinant

−detX = −x2 + y2 + z2.

For A ∈ SL(2,R) we set
ρAX := AXA−1.

Then
det ρAX = detX.

Hence ρA preserves the (pseudo-)scalar product

SL(2,R) 3 A 7→ ρA ∈ SO0(1, 2),

SL(2,C) 3 A 7→ ρA ∈ SO(3,C),

are surjective homomorphisms. Their kernel is {1l,−1l}.
For Y ∈ sl(2,R),

ρYX := [Y,X].
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6.11 SL(2,C) ' Spin0(1, 3)

We identify R4 with 2× 2 Hermitian matrices

R4 3 (t, x, y, z) 7→ X =

[
t+ z x+ iy
x− iy t− z

]
.

Note that
1

2
TrJX1JX2 = −t1t2 + x1x2 + y1y2 + z1z2,

−detX = −t2 + x2 + y2 + z2.

Hence we obtain a pseudoscalar product of signature (1, 3).
For A ∈ SL(2,C) we set

ρAX := AXA∗.

Then
det ρAX = detX.

Hence ρA preserves the pseudoscalar product.

SL(2,C) 3 A 7→ ρA ∈ SO0(1, 3).

is a surjective homorphism. Its kernel is {1l,−1l}.

6.12 SL(2,R)× SL(2,R) ' Spin0(2, 2)

We identify R4 with 2× 2 matrices:

R4 3 (t, x, y, z) 7→ X =

[
t+ z x+ y
x− y t− z

]
.

Note that
1

2
TrJX1JX2 = −t1t2 + x1x2 − y1y2 + z1z2,

−detX = −t2 + x2 − y2 + z2.

Hence we obtain a pseudo-scalar product of signature (2, 2).
For (A,B) ∈ SL(2,R)× SL(2,R) we set

ρ(A,B)X := AXB−1.

Then
det ρ(A,B)X = detX.

Hence ρ(A,B) preserves the pseudoscalar product.

SL(2,R)× SL(2,R) 3 (A,B) 7→ ρ(A,B) ∈ SO0(2, 2),

SL(2,C)× SL(2,R) 3 (A,B) 7→ ρA ∈ SO(4,C),

are surjective homomorphsims with kernel {1l,−1l}.
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6.13 SU(2)× SU(2) ' Spin(4)

Let J :=

[
0 1
−1 0

]
. Identify R4 with complex matrices 2× 2 satisfying JX = XJ (or quater-

nions) as follows:

R4 3 (t, x, y, z) 7→ X =

[
t+ iz ix+ y
ix− y t− iz

]
.

Note that

1

2
TrX∗1X2 = t1t2 + x1x2 + y1y2 + z1z2,

detX = t2 + x2 + y2 + z2,

defines the standard scalar product.
For (A,B) ∈ SU(2)× SU(2) we set

ρ(A,B)X := AXB∗.

Then
det ρ(A,B)X = detX.

Hence ρ(A,B) preserves the scalar product.

SU(2)× SU(2) 3 (A,B) 7→ ρ(A,B) ∈ SO(4).

is a surjective homorphism. Its kernel is {(1l, 1l),−(1l, 1l)}.

7 Slater determinants and CAR representations

7.1 Reminder about fermionic Fock spaces

Let W be a Hilbert space. We consider the fermionic Fock space Γa(W). Recall that for ∈ W
we have creation/annihilation operators a∗(w), a(w) =

(
a∗(w)

)∗ satisfying
[a(w), a(w′)]+ = 0, [a(w), a∗j (w

′)]+ = (w|w′), a(w)Ω = 0. (7.51)

If e1, e2, . . . is a basis of W, then we often use a different notation

ai := a(ei), a∗i := a∗(ei),

a(w) =
∑

wiai, a∗(w) =
∑

wia
∗
i ,

[ai, aj ]+ = 0, [ai, a
∗
j ]+ = δi,j , aiΩ = 0. (7.52)

The vectors a∗i1 · · · a
∗
in

Ω, i1 < · · · < in form an orthonormal basis of Γa(W).
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7.2 Slater determinants

Let W be a Hilbert space. We consider the fermionic Fock space Γa(W).
Consider an orthogonal finite dimensional projection π on W and let e1, . . . , em be an or-

thonormal basis of πW. Then

Φ = a∗(e1) · · · a∗(em)Ω =
1√
m!

∑
σ∈Sm

sgnσeσ(1) ⊗ · · · ⊗ eσ(m) (7.53)

=
√
m!e1 ⊗a · · · ⊗a em =

1√
m!
e1 ∧ · · · ∧ em (7.54)

is a normalized vector. Such vectors are called Slater determinants. If f1, . . . , fm is another basis
of πW, so that ei =

∑
j cijfj , then

a∗(e1) · · · a∗(em)Ω = det[cij ]a
∗(f1) · · · a∗(fm)Ω.

Thus the state
ωπ(A) := (Φ|AΦ)

depends only on π.

7.3 Changing the vacuum

Consider a basis e1, e2, .. and the Slater determinant made of the first m vectors:

Φ := a∗1 · · · a∗mΩ. (7.55)

It satisfies
a∗iΦ = 0, i = 1, . . . ,m, ajΦ = 0, j = m+ 1, . . . , (7.56)

A conjugation is an antilinear operator C such that C2 = 1l. Let us fix a conjugation on πW
such that Cei = ei, i = 1, . . . ,m. Thus

Cn 3 w =
∑

wnen 7→ Cw :=
∑

wiei ∈ W.

Then we can set

ã(w) := a∗(Cπw) + a((1− π)w), (7.57)
ã(w) := a(Cπw) + a∗((1− π)w). (7.58)

Then ã(w), ã∗(w) satisfy the usual commutation relations with vacuum Φ

[ã(w), ã(w′)]+ = 0, [ã(w), ã∗j (w
′)]+ = (w|w′), ã(w)Φ = 0. (7.59)

The vectors ã∗i1 · · · ã
∗
in

Ω, i1 < · · · < in form an orthonormal basis of Γa(W). Thus instead the
space Γa(W) is isomorphic to the space Γ

(
CπW ⊕ (1− π)W

)
.

Often one renames

bi := a∗i , b∗i := ai, i = 1, . . . ,m, (7.60)
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so that

ãi :=

{
bi i ≤ n,
aj j > n;

ã∗i :=

{
b∗i i ≤ n,
a∗j j > n.

, (7.61)

We can implement this change by a unitary transformation: Set

U :=

{∏m
i=1(a∗i − ai), m is even;∏m
i=1(a∗i − ai)(−1)N , m is odd.

(7.62)

U is unitary and satisfies

Ua∗(w)U∗ = ã∗(w), Ua(w)U∗ = ã(w), UΩ = Φ. (7.63)

In fact, using

(a∗ − a)a(a− a∗) = −a∗aa∗ = −a∗(aa∗ + a∗a) = −a∗, (7.64)

(−1)Nai(−1)N = −ai, (7.65)

we see that

Ua∗iU
∗ = bi, i = 1, . . . ,m; (7.66)

Ua∗iU
∗ = a∗i , i = m+ 1, . . . (7.67)

UΩ = Φ. (7.68)

7.4 Free fermionic Hamiltonians

For simplicity, assume that W is finite dimensional. Consider a self-adjoint operator h on W. It
can be diagonalized, so that

h =
∑
i

λi|ei)(ei|.

Consider the Hamiltonian
H = dΓ(h) =

∑
i

λia
∗
i a
∗
i . (7.69)

It is easy to see that dΓ(h) possesses a unique ground state iff 0 6∈ σ(h). Indeed, let λ1 ≤ λ2 ≤
· · · ≤ λm < 0 < λm+1 ≤ . . . . Then the ground state of dΓ(h) is given by

Φ := a∗1 · · · a∗mΩ,

so that
HΦ = EΦ, E = λ1 + · · ·+ λm.

Setting
bi = a∗i , b∗i = ai, i = 1, . . . ,m, (7.70)
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the Hamiltonian H can be rewritten as

H =
∑
i≤m
|λi|b∗i bi +

∑
i>m

λia
∗
i ai +

∑
i≤m

λi.

We can view this as the Hamiltonian on the Fock space Γa(CπW ⊕ (1l − π)W), and treat Φ as
the new vacuum, bi, resp. b∗i , i = 1, . . . ,m, as new annihilation/creation operators.

Note that strictly speaking this construction makes sense only for a finite dimensional 1l]−∞,0](h).
However, it is often used also if this dimension is infinite. The constant E is usually dropped—it
is often in fact infinite, and we use then the renormalized Hamiltonian

Hren =
∑
i≤m
|λi|b∗i bi +

∑
i>m

λia
∗
i ai.

Example 7.1 Consider the free Fermi gas with the chemical potential µ in volume L.

H =
∑

k∈ 2π
L
Zd

(k2 − µ)a∗kak.

The ground state is called the Fermi sea
∏
k2<µ a

∗
kΩ. It has the energy

E =
∑
k2<µ

(k2 − µ).

The renormalized Hamiltonian is

Hren =
∑
k2<µ

|k2 − µ|b∗kbk +
∑
k2≥µ

(k2 − µ)a∗kak.

In infinite volume the Hamiltonian is

H =

∫
(k2 − µ)a∗kakdk.

E is infinite and the Slater determinant is ill defined. However, we can change the representation
of CAR replacing H with

Hren =

∫
k2<µ

|k2 − µ|b∗kbkdk +

∫
k2≥µ

(k2 − µ)a∗kakdk.

Example 7.2 Let αi, , i = 1, 2, 3, β satisfy Clifford relations. Consider the Dirac Hamiltonian

h := ~α~p+ βm.

It is a self-adjoint operator on L2(R3 ⊗ C4). The operator h has spectrum σ(h) =] −∞,−m] ∪
[m,∞[. In fact, one easily shows that h2 = p2 + m2, hence σ(h2) = [m2,∞[, and there exists a
distinguished conjugation C, called the charge conjugation, such that ChC = −h.
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The naive quantization of h, that is dΓ(h), acts on the space Γa

(
L2(R3⊗C4)

)
. It is however

physically meaningless—it yields an operator unbounded from below. Formally, the ground state
of dΓ(h) is the Slater determinant with all negative energy states present. This state is called the
Dirac sea.

In practice, we change the representation of CAR. Set

Λ± := 1l[0,∞[(±h).

On can take
CΛ−L2(R3 ⊗ C4)⊕ Λ+L2(R3 ⊗ C4)

as the physical one particle space.

Example 7.3 Let us continue with the previous example. Let add a scalar and magnetic poten-
tial:

h := ~α
(
~p−A(x)

)
+ βm+ V (x).

σ(h) is still unbounded from below. (One does not have ChC = −h though). Suppose that
0 6∈ σ(h). Then one can repeat the previous construction.

7.5 Representations of CAR

Let
(
V, 〈·|·〉

)
be a real Hilbert space. Let H be a complex Hilbert space. We say that

V 3 v 7→ φ•(v) ∈ B(H) (7.71)

is a representation of Canonical Anticommutation Relations (over V in H) or a CAR representa-
tion if

φ•(v)∗ = φ•(v), [φ•(v), φ•(w)]+ = 2〈v|w〉. (7.72)

We say that it is irreducible if there are no closed subspaces in H invariant wrt φ•(v). We say
that two representations of CAR V 3 v 7→ φi(v) ∈ B(Hi), i = 1, 2, are equivalent if there exists
a unitary operator U : H1 → H2 such that

Uφ1(v) = φ2(v)U, v ∈ V. (7.73)

Example 7.4 If dimV is even, then all irreducible CAR representations over V are equivalent,
and given by the Jordan-Wigner (or Fock) construction. If dimV is odd, then there exist two
inequivalent irreducible CAR representations over V.

Example 7.5 Let V be infinite dimensional with an o.n. basis fi,j, i = 1, 2,, j = 1, 2, . . . .
Consider a space W with basis ej, j = 1, 2 . . . . We set

φ•(f1,j) := a∗j + aj , φ•(f2,j) :=
1

i
(a∗j − aj). (7.74)

Then we obtain a CAR representation over V in Γa(W).
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Example 7.6 Let us continue with the previous example. Let I ⊂ N.

φ•(f1,j) := a∗j + aj , φ•(f2,j) :=

{
1
i (aj − a∗j ), j ∈ I;
1
i (a∗j − aj), j 6∈ I.

. (7.75)

Then we also obtain a CAR representation. We will say that it is a representation in Γa

(
CπW⊕

(1l−π)W
)
, where π is the projection in W onto Span{ej | j ∈ I}. Note that both representations

are equivalent iff π is finite dimensional.

7.6 CAR C∗-algebra

A is a C∗-algebra if it is a Banach ∗algebra satisfying ‖A∗‖ = ‖A‖ and ‖A∗A‖ = ‖A‖2. ω is a
state on A if it is a functional on A such that ω(A∗A) ≥ 0 and ω(1l) = 1. π : A → B(H) is a
∗-representation if it is a ∗-homomorphism.

Every closed ∗-algebra in B(H) is a C∗-algebra. Every functional of the form A 7→ TrAρ,
where Trρ = 1, ρ ≥ 0 is a state.

Let
(
V, 〈·|·〉

)
be a real Hilbert space. If V is finite dimensional, then the CAR algebra CAR(V)

was defined before (as the Clifford algebra Cl(CV) generated by φ(v) v ∈ V, equipped with the
involution such that φ(v)∗ = φ(v)).

Assume now that V separable and infinite dimensional. We can associate with it the algebra
CAR(V) as follows. We choose an o.n. basis fi, i = 1, 2, . . . . Let Vm := Span(f1, . . . , f2m). The
Jordan-Wigner construction yields CAR(Vm) = B(⊗mC2), as the algebra generated by elements
φ(v), v ∈ Vm. We identify

CAR(Vm) = B(⊗mC2) 3 A 7→ A⊗ 1lC2 ∈ B(⊗m+1C2) = CAR(Vm+1). (7.76)

Thus CAR(Vm) is an ascending sequence of C∗-algebras. We can define the algebra

CAR0(V) :=

∞⋃
j=1

CAR(Vm). (7.77)

It is a normed ∗-algebra. We can take its completion

CAR(V) := CAR0(V)cpl. (7.78)

It is a C∗-algebra with distinguished elements φ(v) satisfying

φ(v)∗ = φ(v), [φ(v), φ(w)]+ = 2〈v|w〉, v, w ∈ V (7.79)

If V 3 v 7→ φ•(v) ∈ B(H) is a CAR representation, then we have a ∗representation of the
C∗algebra ρ• : CAR0(V)→ B(H) defined by

ρ•
(
φ(v)

)
= φ•(v). (7.80)

This representation extends uniquely by continuity to a representation ρ• : CAR(V)→ B(H).
Thus given the formalism of CAR representations is essentially equivalent to the formalism

of representations of CAR C∗-algebras.
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8 Quantum gases and the Hartree-Fock method

8.1 Particle number preserving operators

Let b : ⊗kZ → ⊗mZ. (We do not require that b preserves the symmetric/antisymmetric tensor
product). Recall that the Wick quantization of b, denoted b(â∗, â), can be defined as follows. Its
only nonzero matrix elements are between Φ ∈ ⊗p+ms/a Z, Ψ ∈ ⊗p+ks/a Z, p = 0, 1, . . . and are equal

(Φ|b(â∗, â)Ψ) =

√
(m+ p)!(k + p)!

p!
(Φ|b⊗ 1⊗pZ Ψ). (8.81)

Clearly, b(â∗, â) depends only on Θm
s/abΘ

k
s/a, but it is convenient to allow for b that are not

(anti-)symmetric.
Suppose now that k = m, that is, b : ⊗ms/aZ → ⊗

m
s/aZ. Then the operator b(â∗, â) preserves

the number of particles. For Φ ∈ ⊗ns/aZ, Ψ ∈ ⊗ns/aZ (8.81) can be rewritten as

(Φ|b(â∗, â)Ψ) =
n!

(n−m)!
(Φ|b⊗ 1

⊗(n−m)
Z Ψ). (8.82)

Suppose 1 ≤ i1 < · · · im < n. We will write bi1,...,im for the operator b acting on ⊗nZ whose
“legs” are put at the slots i1, . . . , im. For instance,

b1,...,m = b⊗ 1l⊗(n−m). (8.83)

Now n!
(n−m)!m! is the number of m-element subsets of {1, 2, . . . , n}. Therefore we can rewrite

(8.82) as
1

m!

(
Φ|b(â∗, â)Ψ

)
=

∑
1≤i1<···<im≤n

(
Φ|bi1,...,imΨ

)
. (8.84)

If in addition b = Θ(σ)bΘ(σ)−1 for σ ∈ Sn, then b preserves ⊗ms/aZ and we can write

1

m!
b(â∗, â) =

∑
1≤i1<···<im≤n

bi1,...,im restricted to ⊗ms/a Z. (8.85)

In particular, for m = 1, we obtain the identity that we know:

b(â∗, â) =
∑

1≤i≤n
bi = dΓ(b). (8.86)

The case m = 2 is especially important in applications:

1

2
b(â∗, â) =

∑
1≤i<j≤n

bij . (8.87)
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8.2 N-body Schrödinger Hamiltonians

Consider the N body Schrödinger Hamiltonian and the corresponding total momentum. They
are operators on ⊗nL2(Rd) ' L2(Rdn)

Hn = −
n∑
i=1

1

2mi
∆i +

∑
1≤i<j≤n

Vij(xi − xj), (8.88)

Pn =
n∑
i=1

1

i
∂xi , (8.89)

In the momentum representation

Hn =
n∑
i=1

1

2mi
p2
i + (2π)−d

∑
1≤i<j≤N

δ(p′i + p′j − pj − pi)V̂ij(p′i − pi).

Pn =
n∑
i=1

pi.

Clearly, [Hn, Pn] = 0.
If the particles are identical, then mi are the same, which for simplicity we assume to be 1

2 ,
and Vij(x) = V (x) = V (−x). We can then restrict the Hamiltonian and total momentum to
⊗ns/aL(Rd) ' L2

s/a

(
(Rd)N

)
. Then we can use the 2nd quantized formalism on the Fock space

Γs/a

(
L2(Rd)

)
. We have the position representation, with the generic variables x, y and the

momentum representation with the generic variables k, k′. We can pass from one representation
to the other by

a∗(k) = (2π)−
d
2

∫
a∗(x)e−ikxdx, a∗(x) = (2π)−

d
2

∫
a∗(k)eikxdk, (8.90)

a(k) = (2π)−
d
2

∫
a(x)eikxdx, a(x) = (2π)−

d
2

∫
a(k)e−ikxdk. (8.91)

In the 2nd quantized notation we can rewrite all this as

H :=
∞
⊕
n=0

Hn = −
∫
a∗x∆xaxdx+

1

2

∫ ∫
dxdyV (x− y)a∗xa

∗
yayax

=

∫
p2a∗papdp+

∫ ∫ ∫ ∫
δ(p′1 + p′2 − p1 − p2)

V̂ (p′1 − p1)

(2π)d
a∗p′1

a∗p′2
ap2ap1dp′1dp′2dp1dp2 (8.92)

=

∫
p2a∗papdp+

1

2(2π)d

∫ ∫ ∫
dpdqdkV̂ (k)a∗p+ka

∗
q−kaqap, (8.93)

P :=
∞
⊕
n=0

Pn =

∫
a∗x

1

i
∂xaxdx (8.94)

=

∫
pa∗papdp. (8.95)
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Passing from (8.92) to (8.93) we evaluate the delta and set p = p1, q = p2, k = p′1 − p1.
Let us now put our system in a box of size L with periodic boundary conditions. That is,

we consider L2([0, L]d) ' L2
(

2π
L Zd

)
and its 2nd quantization. Again we use x, y in the position

representation with periodic boundary conditions and k, k′ in the momentum representation. We
can pass from one representation to the other by

a∗(k) = L−
d
2

∫
a(x)e−ikxdx, a∗(x) = L−

d
2

∑
k

a(k)eikx, (8.96)

a(k) = L−
d
2

∫
a(x)eikxdx, a(x) = L−

d
2

∑
k

a(k)e−ikx. (8.97)

Here are the analogs of (8.93) and (8.95):

H =
∑
p

p2a∗pap +
1

2Ld

∑
p

∑
q

∑
k

V̂ (k)a∗p+ka
∗
q−kaqap,

P =
∑
p

pa∗pap.

8.3 Hartree-Fock method for atomic systems

Suppose now that V (x) = V (−x) and

H =−
∫
a∗x∆xaxdx+

∫
a∗xW (x)axdx+

1

2

∫ ∫
a∗xa
∗
yV (x− y)axaydxdy. (8.98)

Let π be an n-dimensional projection in L2(Rd). Let π(x, y) be its integral kernel and ρ(x) :=
π(x, x) its diagonal. Let ωπ be the state defined by the Slater determinant corresponding to π.
The Hartree-Fock functional is defined as

EHF(π) := ωπ(H). (8.99)

Clearly, EHF(π) is an upper bound of the ground state energy of H. Here is an explicit formula
for the Hartree-Fock functional:

EHF(π) =

∫
∂x∂yπ(x, y)

∣∣∣
x=y

dx+

∫
W (x)ρ(x)dx (8.100)

+
1

2

∫ ∫
V (x− y)ρ(x)ρ(y)dxdy − 1

2

∫ ∫
V (x− y)|π(x, y)|2dxdy,

To see this choose f1, . . . , fn, an o.n. basis of Ranπ. Then

− ωπ
(∫

a∗x∆xaxdx
)

=

∫ (
∇xaxa∗(f1) · · · a∗(fn)Ω|∇xaxa∗(f1) · · · a∗(fn)Ω

)
dx

=

n∑
j=1

∫
∇xfj(x)∇xfj(x)dx =

∫
∂x∂yπ(x, y)

∣∣∣
x=y

dx.
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ωπ

(∫ ∫
a∗xa
∗
yV (x− y)ayaxdx

)
=

∫ ∫
dxdyV (x− y)

(
axaya

∗(f1) · · · a∗(fn)Ω|
(
axaya

∗(f1) · · · a∗(fn)Ω
)

=
∑
i 6=j

∫ ∫
dxdyV (x− y)

(
fi(x)fj(y)fj(y)fi(x)− fi(x)fj(y)fi(y)fj(x)

)
=

∫ ∫
dxdyV (x− y)

(∑
|fi(x)|2|fj(y)|2 −

∣∣∣∑ fi(x)fi(y)
∣∣∣2)

=

∫ ∫
V (x− y)dxdy

(
π(x, x)π(y, y)− |π(x, y)|2

)
Suppose πHF is a minimizer of EHF and ρHF(x) := πHF(x, x). Then we can also define the

Hartree-Fock Hamiltonian:

hHF = −∆ +W (x) +

∫
ρHF(y)V (x− y)dy − Tex,

where Tex is a nonlocal operator with the kernel

Tex(x, y) = V (x− y)πHF(x, y).

We will show later that πHF is the projection onto n lowest levels of hHF.

8.4 Thomas-Fermi functional

A semiclassical argument implies that the first term in (8.100), that is the kinetic energy, can be
approximated by

(2π)−d
d

d+ 2
c
−2/d
d

∫
ρ
d+2
d (x)dx, (8.101)

where cd is the volume of a unit ball in d dimensions. We also expect that the last term, that
is the exchange energy is relatively small. This leads to the so-called Thomas-Fermi functional,
which depends only on the density:

ETF(ρ) :=(2π)−d
d

d+ 2
c
−2/d
d

∫
ρ
d+2
d (x)dx

+

∫
W (x)ρ(x)dx+

1

2

∫ ∫
V (x− y)ρ(x)ρ(y)dxdy.

In practice the Thomas-Fermi functional is often applied to atomic systems, where d = 3,W (x) =
− Z
|x| and V (x) = 1

|x| .

8.5 Expectation values of Slater determinants

The arguments from the previous subsection about the expectation values of Slater determinants
can be generalized to a more abstract setting.
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Theorem 8.1 Let b be an operator on ⊗mW. Let π be a projection onto a subspace of W. Then

ωπ
(
b(a∗, a)

)
=
∑
σ∈Sm

Tr b π⊗m Θ(σ)sgn(σ).

Proof. Suppose that ω is given by a∗1 · · · a∗nΩ. It is enough to assume that

b = |ei1) · · · |eim)(ejm | · · · (ej1 |,

corresponding to
b(a∗, a) = a∗i1 · · · a

∗
inajn · · · aj1 .

Now
(a∗1 · · · a∗nΩ|a∗i1 · · · a

∗
imajm · · · aj1 a

∗
1 · · · a∗nΩ) (8.102)

is nonzero only if i1, . . . , im are distinct,

{i1, . . . , im} = {j1, . . . , jm} ⊂ {1, . . . , n}.

Then it is ±1, where its sign is determined by the unique permutation that maps {i1, . . . , im}
onto {j1, . . . , jm}. Now

1 = Trπ⊗m|ei1) · · · |eim)(ejm | · · · (ej1 |Θ(σ).

2

In particular, we have the cases n = 1, 2:

ωπ
(
dΓ(h)

)
= Trπh, (8.103)

ωπ
(
b(a∗, a)

)
= Tr b π⊗π(1l− τ), (8.104)

where τ :W ⊗W →W ⊗W is the transposition of the factors in the tensor product.

8.6 The Hartree-Fock method

We are now going to consider the Hartree-Fock method from a more abstract point of view. Let
h be a self-adjoint operator on W and b on W ⊗W. We assume that τbτ = b. Consider the
particle number preserving operator

H = dΓ(h) +
1

2
b(a∗, a).

We would like to find the ground state energy of H in the n-body sector.
The Hartree-Fock functional is the expectation value of H in a Slater determinant:

EHF(π) := ωπ(H) = Trhπ +
1

2
Tr b π⊗π (1l− τ).

The ground state energy of H is clearly estimated from above by its Hartree-Fock energy

EHF := inf{EHF(π) : π is an n-dimensional orthogonal projection}.
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If a minimizer of EHF exists, we denote it by πHF. We define the Hartree-Fock Hamiltonian
(called also the Fock Hamiltonian) by its expectation value in a trace class matrix γ:

TrhHFγ := Trhγ + Tr b πHF⊗γ (1l− τ).

Notice the absence of 1
2 .

Theorem 8.2 πHF is a projection onto n lowest lying levels of hHF

Proof. Write the integral kernel of π as

π(x, y) =
n∑
i=1

fi(x)fi(y),

where f1, . . . , fn is an orthonormal basis of Ranπ. The Hartree-Fock functional can be written
as

EHF(π) =: E(f1, . . . fn) =
∑
i

(fi|hfi)

+
1

2

∑
ij

(fi ⊗ fj |b fi ⊗ fj)−
1

2

∑
ij

(fi ⊗ fj |b fj ⊗ fi).

Using the method of Lagrange multipliers, EHF is given as the infimum of

EHF(f1, . . . , fn)−
∑
ij

εij
(
(fi|fj)− δij

)
,

over all fi and Hermitian [εij ]. Writing fi + δfi, εij + δεij for the variations, we find

δEHF =
∑
i

(
fi|hHFδfi) +

(
δfi|hHFfi) (8.105)

−
∑
ij

εij(fi|δfj)−
∑
ij

εij(δfi|fj) (8.106)

+
∑
ij

δεij
(
(fi|fj)− δij

)
. (8.107)

Comparing the coefficients at δfi on the right of the scalar product and on the left of the scalar
product independently, we obtain

hHFfi =
∑
j

εijfj .

We can diagonalize the matrix [εij ] with a unitary transformation, so that εij = δijεi, and we
obtain

hHFfi = εifi.

Thus the minimizing sequence f1, . . . , fn can consist of normalized eigenvectors of hHF.
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Now assume that there is an eigenvector of hHF, say g, orthogonal to f1, . . . fn and with an
eigenvalue β lower than one of the eigenvalues ε1, . . . , εn. For instance,

hHFg = βg, β < ε1.

Then we can consider a variation f1 + δf1 :=
√

1− t2f1 + tg. This variation is tangent to the
constraints. The first variation is zero. We compute the second variation:

δEHF(f1 + δf1, f2, . . . , fn)

≈ δ2

δf2
1

EHFδf1δf1 +
δ2

δf
2
1

EHFδf1δf1 + 2
δ2

δf1δf1

EHFδf1δf1

=
∑
ij

(fi ⊗ fj |b δf1 ⊗ δf1)−
∑
ij

(fi ⊗ fj |b δf1 ⊗ δf1) (8.108)

+
∑
ij

(δf1 ⊗ δf1|b fi ⊗ fj)−
∑
ij

(δf1 ⊗ δf1|b fj ⊗ fi) (8.109)

+
∑
j

(δf1 ⊗ fj |b δf1 ⊗ fj)−
∑
j

(δf1 ⊗ fj |b fj ⊗ δf1) (8.110)

= (δf1|hHFδf1) = t2(ε1 − β2) < 0. (8.111)

((8.108) and (8.109) are zero). 2

Note that the Hartree-Fock energy is in general not equal to the sum of the lowest n eigen-
values of HHF.

9 Squeezed states

9.1 1-mode squeezed vector

Consider Γs(C).

Theorem 9.1 Let |c| < 1. Then

Ωc := (1− |c|2)
1
4 e

c
2
a∗2Ω

is a normalized vector satisfying
(a− ca∗)Ωc = 0. (9.112)

Proof. (
e
c
2
a∗2Ω|e

c
2
a∗2Ω

)
=
∞∑
n=0

|c|2n(2n)!

(n!)222n

=
∑ (−1)n|c|2n(−1

2)(−1
2 − 1) · · · (−1

2 − n)

n!
=
(
1− |c|2

)− 1
2 .
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Using

e−
c
2
a∗2ae

c
2
a∗2 =a− c

2
[a∗2, a] = a+ ca∗,

we obtain (9.120). 2

Theorem 9.2 Set
Ut := e

t
2

(−a∗2+a2).

Then

UtaU
−1
t = a cosh t+ a∗ sinh t, (9.113)

Uta
∗U−1

t = a∗ cosh t+ a sinh t, (9.114)

Ut =
1√

cosh t
e−

tanh t
2

a∗2Γ
( 1

cosh t

)
e

tanh t
2

a2 , (9.115)

Ωtanh t = UtΩ. (9.116)

Proof. (9.113) and (9.114) are immediate. We next compute

d

dt
Ut =

1

2
(−a∗2 + a2)Ut

= − 1

2 cosh2 t
a∗2Ut +

1

2 cosh2 t
Uta

2 − sinh t

cosh2 t
a∗Uta−

sinh t

2 cosh t
Ut.

Then we use the identity concerning the derivative of Γ(eh) = eha
∗a contained in (9.117). 2

Lemma 9.3
d

dt
eh(t)a∗a = ḣ(t)eh(t)a∗eh(t)a∗aa. (9.117)

Proof.

d

dt
eha
∗a = ḣeha

∗aa∗a (9.118)

= ḣeha
∗aa∗e−ha

∗aeha
∗aa = ḣeha∗eha

∗aa. (9.119)

2

9.2 Many-mode squeezed vector

Suppose c is a symmetric complex matrix on Cn. One can show that then there exists an
orthonormal basis such that c is diagonal where all terms on the diagonal are nonnegative.
Therefore, we have the many-mode generalizations of the results of the previous subsection to
Γs(Cn):

52



Theorem 9.4 Let c be a symmetric n× n matrix such that ‖c‖ < 1. Then

Ωc := det(1− |c|2)
1
4 e

1
2
cija

∗
i a
∗
jΩ

is a normalized vector satisfying
(ai − cija∗j )Ωc = 0. (9.120)

where we write |c| :=
√
c∗c.

Theorem 9.5 Let θ be a symmetric n× n matrix. Set

Uθ := e
1
2

(−θija∗i a∗j+θijajai).

Then

UθaiU
−1
θ = (cosh |θ|)ijaj +

(
θ

sinh |θ|
|θ|

)
ij
a∗j , (9.121)

Uθa
∗
iU
−1
θ = (cosh |θ|)ija∗j +

(
θ

sinh |θ|
|θ|

)
ij
aj , (9.122)

Uθ =
1√

det cosh |θ|
e
−
(
θ
tanh |θ|

2|θ|

)
ij
a∗i a
∗
jΓ
( 1

cosh |θ|

)
e

(
θ
tanh |θ|

2|θ|

)
ij
ajai

, (9.123)

UθΩ = Ω tanh |θ|
|θ| θ

. (9.124)

9.3 Single-mode gauge-invariant squeezed vector

Consider Γs(C2). The creation/annihilation of first mode are denoted a∗, a, of the second b∗, b.
We assume that in our space there is a “charge operator”

Q := a∗a− b∗b,

and we are interested mostly in gauge invariant states, that is satisfying Q = 0.

Theorem 9.6 Let |c| < 1. Then

Ωc := (1− |c|2)
1
2 eca

∗b∗Ω

is a normalized vector satisfying

(a− cb∗)Ωc = 0, (9.125)
(b− ca∗)Ωc = 0. (9.126)

Proof. (
eca
∗b∗Ω|eca∗b∗Ω

)
=

∞∑
n=0

|c|2n(n!)2

(n!)2

=
(
1− |c|2

)−1
.
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Using

e−ca
∗b∗aeca

∗b∗ =a− c[a∗b∗, a] = a+ cb∗,

we obtain (9.126). 2

Remark 9.7 Clearly,
eca
∗b∗ = exp

( c
4

(a∗ + b∗)2 − c

4
(a∗ − b∗)2

)
.

Hence a single mode gauge-invariant squeezed vector can be also understood as a 2-mode squeezed
state. However, it is often simple to deal with it directly.

Theorem 9.8 Set
U t := et(−a

∗b∗+ab).

Then

U taU−t = a cosh t+ b∗ sinh t, (9.127)
U ta∗U−t = a∗ cosh t+ b sinh t, (9.128)
U tbU−t = b cosh t+ a∗ sinh t, (9.129)
U tb∗U−t = b∗ cosh t+ a sinh t, (9.130)

U t =
1

cosh t
e− tanh ta∗b∗Γ

( 1

cosh t

)
etanh tba, (9.131)

U tΩ = Ω− tanh t =
1

cosh t
e− tanh ta∗b∗Ω. (9.132)

Proof. We compute

d

dt
U t = (−a∗b∗ + ba)U t

= − 1

cosh2 t
a∗b∗U t +

1

cosh2 t
U tba− sinh t

cosh2 t

(
a∗U ta+ b∗U tb

)
− sinh t

cosh t
U t.

10 Bose gas and superfluidity

n identical bosonic particles are described by the Hilbert space, the Hamiltonian and the total
momentum

Hn := L2
s

(
(Rd)n

)
= ⊗ns L2(Rd), (10.133)

Hn : = −
n∑
i=1

∆i + λ
∑

1≤i<j≤n
V (xi − xj), (10.134)

Pn : = −
n∑
i=1

i∂xi . (10.135)
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We have
PnHn = HnPn,

which expresses the translational invariance of our system. The potential V is a real function on
Rd that decays at infinity and satisfies V (x) = V (−x).

We enclose these particles in a box of size L with fixed density ρ := n
Ld

and n large. Instead
of the more physical Dirichlet boundary conditions, to keep translational invariance we impose
the periodic boundary conditions, replacing the original V by the periodized potential

V L(x) :=
∑
n∈Zd

V (x+ Ln) =
1

Ld

∑
p∈(2π/L)Zd

eipxV̂ (p),

well defined on the torus [−L/2, L/2[d. (Note that above we used the Poisson summation for-
mula).

The original Hilbert space, Hamiltonian and total momentum are replaced by

HLn := L2
s

((
[−L/2, L/2[d

)n)
= ⊗ns

(
L2([−L/2, L/2[d)

)
, (10.136)

HL
n := −

n∑
i=1

∆L
i + λ

∑
1≤i<j≤n

V L(xi − xj), (10.137)

PLn := −
n∑
i=1

i∂Lxi . (10.138)

Because of the periodic boundary conditions we still have

PLnH
L
n = HL

nP
L
n .

In the sequel we drop the superscript L.
We use the second quantized formalism

H =
∞
⊕
n=0
Hn = Γs

(
L2[0, L]d

)
' Γs

(
l2
(2π

L
Zd
))
,

H :=
∞
⊕
n=0

Hn = −
∫
a∗x∆xaxdx+

λ

2

∫ ∫
dxdya∗xa

∗
yV (x− y)ayax

=
∑
p

p2a∗pap +
λ

2Ld

∑
p,q,k

V̂ (k)a∗p+ka
∗
q−kaqap,

P :=
∞
⊕
n=0

Pn =

∫
a∗x

1

i
∂xaxdx

=
∑
p

pa∗pap.
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10.1 Bogoliubov’s approximation in the canonical formalism

We assume that the potential is repulsive, more precisely,

V̂ ≥ 0, V ≥ 0.

The Hamiltonian H commutes with N . We are interested in its low energy part for a large
number of particles N .

We expect that for low energies most particles will be spread evenly over the whole box
staying in the zeroth mode, so that N ' N0 := a∗0a0. (The Bose statistics does not prohibit to
occupy the same state). Following the arguments of N. N. Bogoliubov from 1947, we drop all
terms in the Hamiltonian involving more than two creation/annihilation operators of a nonzero
mode. We obtain

H ≈ λV̂ (0)

2Ld
a∗0a
∗
0a0a0 +

∑
k 6=0

(
k2 + a∗0a0

λ

Ld
(
V̂ (k) + V̂ (0)

))
a∗kak

+
∑
k 6=0

λ

2Ld
V̂ (k)

(
a∗0a
∗
0aka−k + a∗ka

∗
−ka0a0

)
=

λV̂ (0)ρ

2
(N − 1) +HBog +R,

where we set

ρ :=
N

Ld
,

HBog :=
∑
k 6=0

(
k2 + λρV̂ (k)

)
a∗kak +

1

2

∑
k 6=0

λρV̂ (k)
(
a∗ka
∗
−k + aka−k

)
,

R := −λV̂ (0)

2Ld
(N −N0)(N −N0 − 1)

+
∑
k 6=0

λ

2Ld
V̂ (k)

(
(a∗0a

∗
0 −N)aka−k + a∗ka

∗
−k(a0a0 −N)

)
.

We used

a∗0a
∗
0a0a0 = N0(N0 − 1)

= N(N − 1)− 2N0(N −N0)− (N −N0)(N −N0 − 1).

We argue that R is small because

a∗0a
∗
0 ≈ a0a0 ≈ N0 ≈ N.

A Bogoliubov transformation, is a linear transformation of creation/annihilation operators
preserving the commutation relations. If we demand in addition that it should commute with
translations, it should have the form

ãp := cpap + spa
∗
−p, (10.139)

ã∗p := cpa
∗
p + spa−p, p 6= 0, (10.140)
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where c2
p−s2

p = 1. We are looking for a Bogoliubov transformation that diagonalizes the quadratic
Hamiltonian HBog. Set

Ak := k2 + λρV̂ (k), Bk := λρV̂ (k). (10.141)

Then

HBog =
1

2

∑
k 6=0

(
Ak(a

∗
kak + a∗−ka−k) +Bk(a

∗
ka
∗
−k + a−kak)

)
=

1

2

∑
k 6=0

(
Cka

∗
k + Ska−k)(Ckak + Ska

∗
−k)− S2

k

)
=

1

2

∑
k 6=0

(
(C2

k − S2
k)(cka

∗
k + ska−k)(ckak + ska

∗
−k)− S2

k

)

where Ck :=
1

2
(
√
Ak +Bk +

√
Ak −Bk), Sk :=

1

2
(
√
Ak +Bk −

√
Ak −Bk),

cp :=
Cp√

C2
p − S2

p

=

√
|p|2 + 2λρV̂ (p) + |p|

2
√
ω(p)

,

sp :=
Sp√

C2
p − S2

p

=

√
|p|2 + 2λρV̂ (p)− |p|

2
√
ω(p)

.

Set

ω(k) = C2
k − S2

k =
√
A2
k −B2

k = |p|
√
|p|2 + 2λρV̂ (p),

EBog := −1

2

∑
p 6=0

S2
p = −1

2

∑
p 6=0

(
|p|2 + λρV̂ (p)− |p|

√
|p|2 + 2λρV̂ (p)

)
,

ω(p) is called the Bogoliubov dispersion relation and EBog the Bogoliubov energy. Using the
rotated creaton/annihilation operators, the Hamiltonian and total momentum can be written as

HBog = EBog +
∑
p 6=0

ω(p)ã∗pãp,

P =
∑
p 6=0

pã∗pãp,

We can introduce βp by
coshβp = cp, coshβp = sp (10.142)

and the unitary operator

U = exp
(∑
p 6=0

βp
2

(
−a∗pa∗−p + apa−p

) )
.
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Then U implements the Bogoiubov transformation:

ãp = UapU
∗,

ã∗p = Ua∗pU
∗,

HBog = EBog + U
∑
p6=0

ω(p)a∗papU
∗,

P = U
∑
p 6=0

pa∗papU
∗.

We have

tanh(βp) :=
|p|2 + λρV̂ (p)− |p|

√
|p|2 + 2λρV̂ (p)

λρV̂ (p)
,

The ground state of the Bogoliubov Hamiltonian is a squeezed state in the non-zero mode sector:

a∗n0√
n!
UΩ =

a∗n0√
n!

exp
(1

2

∑
p 6=0

tanh(βp)a
∗
pa
∗
−p

)
Ω.

The Bogoliubov dispersion relation depends on λ and ρ only through λρ = λn
Ld

.
The Bogoliubov Hamiltonian depends on L only through the choice of the lattice spacing 2π

L .
Note that formally we can even take the limit L→∞ obtaining

HBog − EBog = (2π)−d
∫
ω(p)ã∗pãpdp,

P = (2π)−d
∫
pã∗pãpdp.

We expect that the low energy part of the excitation spectra of Hn and HBog are close to one
another for large n, hoping that then n−n0 is small. We expect some kind of uniformity wrt L.

10.2 Grand-canonical approach

Suppose that H = ⊕∞n=0H
n is a particle-preserving Hamiltonian decomposed in n-particle sec-

tors. Let N denote the number operator. Instead of studying it inside the nth sector it is often
useful to consider its grand-canonical vdersion, that is Hµ := H − µN , where µ ∈ R is the
parameter called the chemical potential. Instead of looking for the ground state of Hn it is often
more convenient to look for the ground state of Hµ. The following simple fact justifies partly
this approach:

Theorem 10.1 Suppose that En is a sequence with E0 = 0 and µj := Ej−Ej−1 increasing. Let
µ ∈ [µn, µn+1]. Then

inf
k

(Ek − µk) = En − µn. (10.143)
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Proof. Clearly,

Ek − µk =

k∑
j=1

(Ej − Ej−1 − µ). (10.144)

Now

Ej − Ej−1 − µ ≤ Ej − Ej−1 − µn ≤ 0 for j ≤ n; (10.145)
Ej − Ej−1 − µ ≥ Ej − Ej−1 − µn+1 ≤ 0 for j ≥ n. (10.146)

Hence the choice of k that minimizes (10.144) is k = n. 2

10.3 Bogoliubov’s approximation in the grand-canonical approach

Let us present an alternative derivation of the Bogoliubov dispersion relation based on the grand-
canonical approach. For a chemical potential µ > 0, we define the grand-canonical Hamiltonian

Hµ := H − µN =
∑
p

(p2 − µ)a∗pap +
λ

2Ld

∑
p,q,k

V̂ (k)a∗p+ka
∗
q−kaqap.

We will mostly set λ = 1.
If Eµ is the ground state energy of Hµ, then it is realized in the sector n satisfying

∂µEµ = −n.

In what follows we drop the subscript µ.
For α ∈ C, we define the displacement orWeyl operator of the zeroth mode: Wα := e−αa

∗
0+αa0 .

Let Ωα := WαΩ be the corresponding coherent vector. Note that PΩα = 0. The expectation of
the Hamiltonian in Ωα is

(Ωα|HΩα) = −µ|α|2 +
V̂ (0)

2Ld
|α|4.

It is minimized for α = eiτ
√
Ldµ√
V̂ (0)

, where τ is an arbitrary phase.

We apply the Bogoliubov translation to the zero mode of H by Wα:

ãk = W ∗αakWα, ã∗k = W ∗αa
∗
kWα,

and thus the operators with and without tildes satisfy the same commutation relations. This
means making the substitution

a0 = ã0 + α, a∗0 = ã∗0 + α,

ak = ãk, a∗k = ã∗k, k 6= 0.

We drop the tildes.
Here is the translated Hamiltonian:
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H := −Ld µ2

2V̂ (0)

+
∑
k

(1

2
k2 + V̂ (k)

µ

V̂ (0)

)
a∗kak

+
∑
k

V̂ (k)
µ

2V̂ (0)

(
e−i2τaka−k + ei2τa∗ka

∗
−k
)

+
∑
k,k′

V̂ (k)
√
µ√

V̂ (0)Ld
(e−iτa∗k+k′akak′ + eiτa∗ka

∗
k′ak+k′)

+
∑

k1+k2=k3+k4

V̂ (k2 − k3)

2Ld
a∗k1a

∗
k2ak3ak4 .

If we (temporarily) replace the potential V (x) with λV (x), where λ is a (small) positive
constant, the translated Hamiltonian can be rewritten as

Hλ = λ−1H−1 +H0 +
√
λH 1

2
+ λH1.

Thus the 3rd and 4th terms are in some sense small, which suggests dropping them. Thus

H ≈ −Ld µ2

2V̂ (0)
+ µ(eiτa∗0 + e−iτa0)2 +HBog,

where

HBog =
∑
k 6=0

(1

2
k2 + V̂ (k)

µ

V̂ (0)

)
a∗kak

+
∑
k 6=0

V̂ (k)
µ

2V̂ (0)

(
e−i2τaka−k + ei2τa∗ka

∗
−k
)

Then we proceed as before obtaining the Bogoliubov dispersion relation

ω(p) = |p|

√
|p|2 + 2µ

V̂ (p)

V̂ (0)
.

and the Bogoliubov energy

EBog := −1

2

∑
p 6=0

(
|p|2 + µ

V̂ (p)

V̂ (0)
− |p|

√
|p|2 + 2µ

V̂ (p)

V̂ (0)

)
Thus, as compared with the canonical approach, we have µ in place of λρ.

Note that the grand-canonical Hamiltonian Hµ is invariant wrt the U(1) symmetry eiτN .
The parameter α has an arbitrary phase. Thus we broke the symmetry when translating the
Hamiltonian.

The zero mode is not a harmonic oscillator – it has continuous spectrum and it can be
interpreted as a kind of a Goldstone mode.

60



10.4 Landau’s argument for superfluidity

A translation invariant system such as homogeneous Bose gas is described by a family of commut-
ing self-adjoint operators (H,P ), where P = (P1, . . . , Pd) is the momentum. If the translation
invariance is on Rd, then the momentum spectrum is Rd. If it is in a box of side length L with
periodic boundary conditions then eiPiL = 1l, therefore the momentum spectrum is 2π

L Zd.
Thus the energy-momentum spectrum σ(H,P ) is

σ(H,P ) ⊂

{
R× Rd, L =∞,
R× 2π

L Zd, L <∞.

By general arguments the momentum of the ground state of a Bose gas is zero. Let E denote
the ground state energy of H. We define the critical velocity by

ccrit := sup{c : H ≥ E + c|P |}.

Suppose that our n-body system is described by (H,P ) with critical velocity ccrit. We add
to H a perturbation u travelling at a speed w:

i
d

dt
Ψt =

(
H + λ

n∑
i=1

u(xi − wt)
)

Ψt.

We go to the moving frame:

Ψw
t (x1, . . . , xn) := Ψt(x1 − wt, . . . , xn − wt).

We obtain a Schrödinger equation with a time-independent Hamiltonian

i
d

dt
Ψw
t =

(
H − wP + λ

n∑
i=1

u(xi)
)

Ψw
t .

Let Ψgr be the ground state of H. Is it stable against a travelling perturbation? We need to
consider the tilted Hamiltonian H − wP .

If |w| < ccrit, then H −wP ≥ E and Ψgr is still a ground state of H −wP . So Ψgr is stable.
If |w| > ccrit, then H − wP is unbounded from below. So Ψgr is not stable any more.

11 Fermionic Gaussian states

11.1 1-mode particle-antiparticle vector

Consider Γa(C2). The creation/annihilation of first mode are denoted a∗, a, of the second b∗, b.
We assume that in our space there is a “charge operator”

Q := a∗a− b∗b,

and we are interested mostly in states with Q = 0.
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Theorem 11.1 Let c ∈ C. Then

Ωc := (1 + |c|2)−
1
2 eca

∗b∗Ω = (1 + |c|2)−
1
2
(
Ω + ca∗b∗Ω

)
is a normalized vector satisfying

(a− cb∗)Ωc = 0,

(b+ ca∗)Ωc = 0.

Theorem 11.2 Set
U t := et(−a

∗b∗+ba).

Then

U taU−t = a cos t+ b∗ sin t, (11.147)
U ta∗U−t = a∗ cos t+ b sin t, (11.148)
U tbU−t = b cos t− a∗ sin t, (11.149)
U tb∗U−t = b∗ cos t− a sin t, (11.150)

U t = cos te− tan ta∗b∗Γ
( 1

cos t

)
etan tba, (11.151)

Ω− tan t = U tΩ. (11.152)

Proof. First we derive (11.147)-(11.150). Then we compute

d

dt
U t = (−a∗b∗ + ba)U t

= − 1

cos2 t
a∗b∗U t +

1

cos2 t
U tba+

sin t

cos2 t

(
a∗U ta+ b∗U tb

)
− sin t

cos t
U t.

2

11.2 Fermionic oscillator

Let
H = (a∗ + a)(b∗ + b).

Theorem 11.3 We have H2 = −1l, H∗ = −H

etH = cos t1l + sin tH,

etH(a∗ + a)e−tH = cos 2t(a∗ + a)− sin 2t(b∗ + b),

etH(b∗ + b)e−tH = cos 2t(b∗ + b) + sin 2t(a∗ + a),

etH(a∗ − a)e−tH = a∗ − a,
etH(b∗ − b)e−tH = b∗ − b,

Ωtan t = etHΩ.
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In particular,

e±
π
2
H = ±H,

Ha∗H−1 = −a, HaH−1 = −a∗,
Hb∗H−1 = −b, HbH−1 = −b∗.

12 Fermi gas and superconductivity

12.1 Fermi gas

We consider fermions with spin 1
2 described by the Hilbert space

Hn := ⊗na
(
L2(Rd,C2)

)
.

We use the chemical potential from the beginning and we do not assume the locality of interaction,
so that the Hamiltonian is

Hn = −
n∑
i=1

(
∆i − µ

)
+ λ

∑
1≤i<j≤n

vij .

The interaction will be given by a 2-body operator on ⊗2
(
L2(Rd,C2)

)
given by

(vΦ)i1,i2(x1, x2) =

∫ ∫
v(x1, x2, x3, x4)Φi1,i2(x3, x4)dx3dx4.

We will assume that v is invariant wrt the exchange of particles, Hermitian, real and translation
invariant:

v(x1, x2, x3, x4) = v(x2, x1, x4, x3)

= v(x1, x2, x3, x4)

= v(x4, x3, x2, x1)

= v(x1 + y, x2 + y, x3 + y, x4 + y).

By the invariance wrt the exchange of particles v preserves ⊗2
a

(
L2(Rd,C2)

)
. By translation

invariance, v can be written as

v(x1, x2, x3, x4) = (2π)−4d

∫
eik1x1+ik2x2−ik3x3−ik4x4q(k1, k2, k3, k4)

× δ(k1 + k2 − k3 − k4)dk1dk2dk3dk4,

where q is a function defined on the subspace k1 + k2 = k3 + k4. An example of such interaction
is a local 2-body potential V (x) such that V (x) = V (−x), which corresponds to

v(x1, x2, x3, x4) = V (x1 − x2)δ(x1 − x4)δ(x2 − x3),

q(k1, k2, k3, k4) =

∫
dpV̂ (p)δ(k1 − k4 − p)δ(k2 − k3 + p).
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Similarly, as before, we periodize the interaction

vL(x1, x2, x3, x4)

=
∑

n1,n2,n3∈Zd
v(x1 + n1L, x2 + n2L, x3 + n3L, x4)

=
1

L3d

∑
k1+k2=k3+k4

eik1·x1+ik2x2−ik3x3−ik4x4q(k1, k2, k3, k4),

where ki ∈ 2π
L Zd. The Hamiltonian

HL,n =
∑

1≤i≤n

(
−∆L

i − µ
)

+
∑

1≤i<j≤n
vLij

acts on Hn,L := ⊗na
(
L2([−L/2, L/2]d,C2)

)
. We drop the superscript L.

We will denote the spins by i =↑, ↓. It is convenient to put all the n-particle spaces into a
single Fock space

∞
⊕
n=0
Hn = Γa

(
L2([L/2, L/2]d,C2)

)
and rewrite the Hamiltonian and momentum in the language of 2nd quantization:

H :=
∞
⊕
n=0

Hn =
∑
i

∫
a∗x,i(∆x − µ)ax,i2dx

+
1

2

∑
i,j

∫ ∫
a∗x1,ia

∗
x2,jv(x1, x2, x3, x4)ax3,jax4,idx1dx2dx3dx4,

P :=
∞
⊕
n=0

Pn = −
∑
i

i

∫
a∗x,i∇xax,idx.

In the momentum representation,

H =
∑
i

∑
k

(k2 − µ)a∗k,iak,i

+
1

2Ld

∑
i,j

∑
k1+k2=k3+k4

q(k1, k2, k3, k4)a∗k1,ia
∗
k2,jak3,jak4,i,

P =
∑
i

∑
k

ka∗k,iak,i.

We also have the generators of the spin su(2).

Sx =
1

2

∑
k

(a∗k↑ak↓ + a∗k↓ak↑), (12.153)

Sy =
i

2

∑
k

(a∗k↑ak↓ − a∗k↓ak↑), (12.154)

Sz =
1

2

∑
k

(a∗k↑ak↑ − a∗k↓ak↓). (12.155)

The Hamiltonian is invariant with respect to the spin su(2).
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13 Hartree-Fock-Bogoliubov approximation with BCS ansatz

We try to compute the excitation spectrum of the Fermi gas by approximate methods. We look
for a minimum of the energy among Gaussian states. We assume that a minimizer is invariant
wrt translations and the spin su(2). We use the Hartree-Fock-Bogoliubov approximation with
the Bardeen-Cooper-Schrieffer ansatz.

For a sequence 2π
L Zd 3 k 7→ θk such that θk = θ−k, set

Uθ :=
∏
k

e
1
2
θk(−a∗k↑a

∗
−k↓+a−k↓ak↑−a

∗
−k↑a

∗
k↓+ak↓a−k↑).

(Note the double counting for k 6= 0). We are looking for a minimizer of the form UθΩ.
Note that Uθ commutes with P and the spin su(2). Therefore, UθΩ is translation and su(2)

invariant.
We want to compute

(UθΩ|HUθΩ) = (Ω|U∗θHUθΩ).

To do this we can use the fact that Uθ implements Bogoliubov rotations:

U∗θ a
∗
k↑Uθ = cos θka

∗
k↑ + sin θka−k↓,

U∗θ ak↑Uθ = cos θkak↑ + sin θka
∗
−k↓,

U∗θ a
∗
k↓Uθ = cos θka

∗
k↓ − sin θka−k↑,

U∗θ ak↓Uθ = cos θkak↓ − sin θka
∗
−k↑,

After inserting this into U∗θHUθ the resulting expression can be Wick ordered.
In practice, this is usually presented differently. One makes the substitution

ak↑ = cos θkb
∗
k↑ + sin θkb−k↓,

ak↑ = cos θkbk↑ + sin θkb
∗
−k↓,

a∗k↓ = cos θkb
∗
k↓ − sin θkb−k↑,

ak↓ = cos θkbk↓ − sin θkb
∗
−k↑,

in the Hamiltonian. Note that

Uθa
∗
k↑U

∗
θ = b∗k↑,

Uθak↑U
∗
θ = bk↑,

Uθa
∗
k↓U

∗
θ = b∗k↓,

Uθak↓U
∗
θ = bk↓.
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Then one Wick orders wrt the operators b∗, b. Our Hamiltonian becomes

H = B +
∑
k

D(k)
(
b∗k↑bk↑ + b∗k↓bk↓

)
+

1

2

∑
k

O(k)
(
b∗k↑b

∗
−k↓ + b∗−k↑b

∗
k↓
)

+
1

2

∑
k

O(k)
(
b−k↓bk↑ + bk↓b−k↑

)
+ terms higher order in b’s.

Note that
(Ωθ|HΩθ) = B.

By the Beliaev Theorem, minimizing B is equivalent to O(k) = 0.
If we choose the Bogoliubov transformation according to the minimization procedure, the

Hamiltonian equals

H = B +
∑
k

D(k)
(
b∗k↑bk↑ + b∗k↓bk↓

)
+ terms higher order in b’s

with

B =
∑
k

(k2 − µ)(1− cos 2θk)

+
1

4Ld

∑
k,k′

α(k, k′) sin 2θk sin 2θk′

+
1

4Ld

∑
k,k′

β(k, k′)(1− cos 2θk)(1− cos 2θk′).

Here,

α(k, k′) :=
1

2

(
q(k,−k,−k′, k′) + q(−k, k,−k′, k′)

)
,

β(k, k′) = 2q(k, k′, k′, k)− q(k′, k, k′, k).

In particular, in the case of local potentials we have

α(k, k′) :=
1

2

(
V̂ (k − k′) + V̂ (k + k′)

)
,

β(k, k′) = 2V̂ (0)− V̂ (k − k′).

The condition ∂θkB = 0, or equivalently O(k) = 0, has many solutions. We can have

sin 2θk = 0, cos 2θk = ±1,

They correspond to Slater determinants and have a fixed number of particles. The solution of
this kind minimizing B, is called a normal or Hartree-Fock solution.
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Under some conditions the global minimum of B is reached by a non-normal configuration
satisfying

sin 2θk = − δ(k)√
δ2(k) + ξ2(k)

, cos 2θk =
ξ(k)√

δ2(k) + ξ2(k)
,

where

δ(k) =
1

2Ld

∑
k′

α(k, k′) sin 2θk′ ,

ξ(k) = k2 − µ+
1

2Ld

∑
k′

β(k, k′)(1− cos 2θk′),

and at least some of sin 2θk are different from 0. It is sometimes called a superconducting solution.
For a superconducting solution we get

D(k) =
√
ξ2(k) + δ2(k).

Thus we obtain a positive dispersion relation. One can expect that it is strictly positive, since
otherwise the two functions δ and ξ would have a coinciding zero, which seems unlikely. Thus
we expect that the dispersion relation D(k) has a positive energy gap.

Conditions guaranteeing that a superconducting solution minimizes the energy should involve
some kind of negative definiteness of the quadratic form α – this is what we vaguely indicated
by saying that the interaction is attractive. Indeed, multiply the definition of δ(k) with sin 2θk
and sum it up over k. We then obtain

∑
k

sin2 2θk
√
δ2(k) + ξ2(k)

= − 1

2Ld

∑
k,k′

sin 2θkα(k, k′) sin 2θk′ .

The left hand side is positive. This means that the quadratic form given by the kernel α(k, k′)
has to be negative at least at the vector given by sin 2θk.

14 Basics of representations of su(n)

14.1 Contragradient representation

Let g be a Lie algebra. Consider a representation g 3 A 7→ π(A) ∈ L(V) on a finite dimensional
space V. The representation contragradient to π is defined as

πctg(A) := −π(A)T ∈ L(VT), (14.1)

where VT denotes the dual of V.
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Let V be in addition a Hilbert space. By saying that π is infinitesimally unitary we mean
that the corresponding group representation is unitary. Equivalently, π(A) are antiself-adjoint:

π(A) = −π(A)∗ = −π(A)
T
. (14.2)

Thus for an infinitesimally unitary representation we have

πctg(A) = π(A). (14.3)

When speaking of representations we will usually omit the symbol π. Various representations
will be recognized by the space on which they act.

14.2 su(n) and sl(n,C)

We will mostly speak about representations of

su(n) := {A ∈ L(Cn) : A∗ = −A, TrA = 0}.

The complexification of su(n) is

sl(n,C) := {A ∈ L(Cn) : TrA = 0} = su(n) + isu(n).

Every finite dimensional representation of su(3) extends to a complex representation of sl(n,C).
Conversely, for every finite dimensional complex representation of sl(n,C) we can choose a scalar
product so that its restriction to su(n) is infinitesimally unitary. A representation of su(n) is
irreducible iff so is the corresponding representation of sl(n,C).

Thus we can pass from representations of su(n) to complex representations of sl(n,C) and
back. It is often convenient to use the complexified version.

sl(n,C) has the obvious representation on Cn. It will be called fundamental. Its contragra-
dient representation, acting on CnT will be called antifundamental. When restricted to su(n) we
can write Cn instead of CnT.

14.3 Cartan algebra

Let |1〉, . . . , |n〉 denote the canonical basis of Cn. Let 〈1|, . . . , 〈n| denote its dual basis, which is
a basis of CnT. sl(n,C) is embedded in the obvious way in gl(n,C), which is spanned by the
operators Aij := |i〉〈j|. gl(n,C) has a natural scalar product

〈A|B〉 = TrATB, (14.4)

in which Aij is an orthonormal basis.
The set of diagonal elements of sl(n,C) is called the Cartan algebra of sl(n,C) and denoted

h. It is a maximal commutative algebra in sl(n,C). It is spanned by Hi,j = −Hji = Aii − Ajj ,
i 6= j. Note that

〈Hi,j |Hi,k〉 = −1, j 6= k; 〈Hi,j |Hi,j〉 = 2. (14.5)

Hence the angle between Hij and Hik is 2π
3 . Hi,i+1, i = 1, . . . , n− 1 is a (non-orthogonal) basis.
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14.4 Representation weights

Suppose π is a representation of the Lie algebra su(n) (or sl(n,C)) on a finite dimensional space
V. Elements of V that are eigenvectors jointly of all elements of the Cartan algebra are called
weight vectors of this representation. Their eigenvalues depend linearly on h, hence they can be
interpreted as elements of hT. They are called weights. Denote by Vβ the space of eigenvectors
for the weight β ∈ hT. We thus have

Hv = 〈β|H〉v, v ∈ Vβ, H ∈ h.

For instance, consider the fundamental representation on Cn. We have

Hij |i〉 = |i〉, Hji|i〉 = −|i〉, Hjk|i〉 = 0, i 6∈ {j, k}. (14.6)

Hence |i〉 is a weight vector and the corresponding weight, denoted Li, satisfies

〈Li|Hij〉 = −〈Li|Hji〉 = 1, 〈Li|Hjk〉 = 0, i 6∈ {j, k}. (14.7)

Note that h is n− 1-dimensional, so L1, . . . , Ln have to be linearly dependent. In fact,

L1 + · · ·+ Ln = 0. (14.8)

For the antifundamental representation weight vectors are 〈i|, i = 1, . . . , n, and the corre-
sponding weight is −Li.

14.5 Representations of su(2)

It is easy to describe all representations of su(2). For every n ∈ N0 there exists exactly one n-
dimensional representation and it acts on ⊗n−1

s C2, where C2 is the fundamental representation.
The antifundamental representation is equivalent to the fundamental, because for A ∈ sl(2,C)[

0 −1
1 0

]
A

[
0 −1
1 0

]−1

= −AT. (14.9)

The Cartan algebra of su(2) is H12. su(2) is spanned by H12, A12, A21 satisfying

[A12, A21] = H12, [H12, A12] = 2A12, [H12, A21] = −2A21.

Eigenvalues of H12 in all representations are integers. The n-dimensional representation, called
also the spin n−1

2 representation, has weights −n+ 1,−n+ 3, . . . , n− 1, e.g.

0;

−1, 1;

−2,0, 2.
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14.6 Roots

Every Lie algebra has a representation on itself

g 3 A 7→ [A, ·] ∈ L(g). (14.10)

This representation is called the adjoint representation. Let us describe it in the case of su(n).
su(n) is spanned by Aij , a 6= j and the Cartan algebra h. The Cartan algebra consists of

weight vectors for the adjoint representation with weight 0. The operators Aij are called roots
operators and satisfy

[H,Aij ] = αij(H)Aij , H ∈ h,

where αij is a linear functional on h called a root. If i, j, k are distinct, then

αij(Hij) = 2, αij(Hjk) = −1, αij(Hki) = −1.

Identifying hT with h with the help of the scalar product (14.4) we obtain the identification
αij = 〈Hij |·〉, because

〈Hij |H〉 = αij(H). (14.11)

Hence Aij are weight vectors for the adjoint representation and αij are the corresponding weights.
Aij , Aji and Hij satisfy the relations sl(2,C)

[Aij , Aji] = Hij , [Hij , Aij ] = 2Aij , [Hij , Aji] = −2Aji.

Hence eigenvalues of Hij have to be integers.
The set of elements of hT which are integer linear combinations of roots is called the root

lattice. U . Clearly, U ⊂ W.
The set of elements of hT, which on Hij have integer values, is called the weight lattice W.

Weights of all representations belong to the weight lattice.
Let β ∈ W be a weight of a certain representation. We have

AijVβ ⊂ Vβ+αij .

Clearly, the Cartan algebra preserves Vβ . Therefore, if a representation is irreducible and has a
weight β ∈ W, then all other weights belong to β + U .

14.7 Representations of su(3)

It is easy to describe all irreducble representations of sl(3,C). We consider (p, q) ∈ N2
0. On the

space
⊗psC3 ⊗⊗qsC3T.

we have the obvious representation

πp,q(A) =

p−1∑
k=0

1l⊗k ⊗A⊗ 1l⊗(p−1−k) ⊗ 1l⊗q − 1l⊗p ⊗
p−1∑
k=0

1l⊗k ⊗AT ⊗ 1l⊗(q−1−k). (14.12)
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Its elements are tensors ∑
|i1〉 ⊗ · · · ⊗ |ip〉 ⊗ 〈j1| ⊗ · · · ⊗ 〈jq| t

i1,...,ip
j1,...,jq

,

which for brevity can be written as [t
i1,...,ip
j1,...,jq

]. We can introduce the contraction

[t
i1,...,ip
j1,...,jq

] 7→ [t
i1,...,ip−1,k
j1,...,jq−1,k

],

where we use the Einstein summation convention. The contraction operator intertwines the
representation on na ⊗psC3 ⊗⊗qsC3T with a representation on ⊗p−1

s C3 ⊗⊗q−1
s C3T. Its kernel is

an invariant subspace and is an irreducible representation of sl(3,C), which will be called the
representation of type (p, q). The representation contravariant to (p, q) is (q, p).

sl(3,C) can be also represented on the antisymmetric tensor product. However, this does not
lead to additional irreducible representations. In fact, ⊗3

aC3 and ⊗3
aC3T are one-dimensional,

and hence sl(3,C) acts on them trivially. Besides, the representation on ⊗2
aC3 is equivalent to

the antifundamental representation and on ⊗2
aC3T —to the fundamental one.

14.8 Fundamental and antifundamental representation of su(3)

The Cartan algebra of su(3) is spanned by H12 = −H21 and H13 = −H31. We also have
H23 = −H32 = H21 +H13,

〈H12|H12〉 = 2, 〈H13|H13〉 = 〈H12|H13〉 = 1

In the fudamental representation

〈L1|H12〉 = 1, 〈L1|H13〉 = 1.

We check that L1 = 1
3〈(H12 +H13)|·〉. Thus we can identify

L1 =
1

3
(H12 +H13), L2 =

1

3
(H23 +H21), L3 =

1

3
(H31 +H32).

Thus
L1 − L2 =

1

3
(H12 +H13)− 1

3
(H21 +H23) =

1

3
(2H12 −H31 −H23) = H12.

Clearly, L1 + L2 + L3 = 0. If we choose L1, L2 as a basis, then

H12 = L1 − L2,

H23 = L2 − L3 = L1 + 2L2,

H31 = L3 − L1 = −2L1 − L2.

The vectors Li span the weight lattice. Together with −Li they are situated on vertices of a
regular hexagon:

−L3

L2 L1

−L1 −L2

L3
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14.9 Triality of su(3)

The lattice W can be partitioned into three sublattices:

Wk := {n1L1 + n2L2 : n1 + n2 ∈ 3Z + k}.

Equivalently,
W0 = U , W1 = L1 + U , W2 = 2L1 + U .

k ∈ Z3 is called the triality of the sublattice. The weights of a representation of type (p, q) belong
to Wp−q. In particular, roots have triality 0.

The center of SU(3) is {ei 2πk
3 1l : k = 0, 1, 2} ' Z3. Z3 has three irreducible representations,

also numbered by Z3. The triality of a given representation corresponds to the representation of
the center.

14.10 Negative and positive roots

Among root operators we distinguish negative roots:

A12, A13, A23

and positive roots:
A21, A31, A32.

A highest weight vector is annihilated by negative roots. Every irreducible representation has
up to a multiplier a unique highest weight vector. Let us denote it by Ψ. Then every vector is a
linear combination of vectors of the form B1 · · ·BnΨ, where B1, . . . are positive roots.

Let e1, e2, e3 be a basis of C3 and e1, e2, e3 its dual basis in C3T. The representation of type
(p, q) on ⊗psC3 ⊗ ⊗qsC3# has a highest weight vector ⊗pe1 ⊗ ⊗qe3 with weight pL1 − qL3 =
(p+ q)L1 + qL2.

14.11 Examples of weight diagrams

Fundamental representation, that is (1, 0): weights {Li}, heighest weight L1

1 1
1

(2, 0): weights {Li + Lj}, heighest weight 2L1

1 1 1
1 1

1

(3, 0): weights {Li + Lj + Lk}, heighest weight 3L1

1 1 1 1
1 1 1

1 1
1
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Antifundamental representation, that is, (0, 1): weights {−Li}, heighest weight −L3

1
1 1

(0, 2): weights {−Li − Lj}, heighest weight −2L3

1
1 1

1 1 1

(0, 3): weight {−Li − Lj − Lk}, heighest weight −3L3

1
1 1

1 1 1
1 1 1 1

Adjoint representation, that is (1, 1), acts in C3 ⊗ C3T, weight {Li − Lj , i 6= j; 2 × 0},
heighest weight L1 − L3

1 1
1 2 1

1 1

Representation (2, 1) has weights {2Li −Lj , i 6= j; −2Li; 2×Li} heighest weight 2L1 −L3

1 1 1
1 2 2 1

1 2 1
1 1

The set of weight and their multiplicities for any representation has to satisfy the following
properties:
(1) It is symmetric wrt reflections in any axis determined byej z osi zadanej przez Lk.

(2) Intersecting with an arbitrary line passing through the origin and orthogonal to Lk we
obtain multiplicities of a certain representation of SU(2).

(3) If the representation is irreducible, its weights are contained in one of the sublattices W0,
W1 or W2.

to see (1) note that B 7→WijAW
−1
ij is an isomorphism of the Lie algebra sl(3,C), where

Wij = W−1
ij := Akk +Aij +Aji.

This isomorphism exchanges Hij with −Hji and Hik with Hjk.
To see (2) we note that if Hβ is a weight space, then ⊕Hβ+µ, where µ are certain multiples

of αij , span a representation of sl(2,C).
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The weight multiplicities (the dimensions of weight spaces) for irreducible representations
satisfy the following properties. The weights on the boundary have multiplicity 1. In every
next level they are increased by 1 unless we reach a level of the form of a triangle, when we
stop increasing the multiplicity. In particular, for representations (n, n), which have triangular
boundaries, all multiplicities ar 1.

15 Applications of su(3) to particle physics

15.1 Symmetries in quantum mechanics

Let H be a Hilbert space describing a quantum system and G 3 g 7→ U(g) ∈ U(H) a unitary
representation of a group G. Assume that A1, . . . , An is a set of commuting self-adjoint observ-
ables. Let U(g), g ∈ G, commute with A1, . . . , An. Then eigenspaces of A1, . . . , An are invariant
wrt G.

The most common application of the group theory to quantum mechanics involves approx-
imate symmetries. Suppose that the observables Ai slowly change in time. For instance, if
H = H0 + V is an unperturbed Hamiltonian and V is in an appropriate sense small, then one of
these observables can be H0.

A different application consists in assuming that G is a gauge group. This means that both
the Hamiltonian H and all physical observables commute with U(g), g ∈ G.

Instead of representations of Lie groups, we will usually speak about representations of the
corresponding Lie algebras.

15.2 Conserved charges

Every elementary particle, if left alone, eventually will decay and split into photons, neutrinos,
electrons, protons and their antiparticles.

The following quantities do not depend on the decay channel: the electric charge

Q := #p+ #e−#p−#e,

and the barion number
B := #p−#p.

They are always conserved.

15.3 Isospin

A proton p and a neutron n have similar masses and properties unrelated to electromagnetic
interactions. Similarly mesons π+, π0, π−.

Let us describe Heisenbergs proposal meant to explain this: The Hamiltonian has a decom-
position

H = Hstrong +Hem,

where Hstrong is describes strong interactions and is invariant wrt the isospin group SU(2),
unlike the Hamiltonian of electromagnetic interactions Hem. Denote by I1, I2, I3 the generators
of su(2). The electromagnetic interaction commutes only with I3.
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A proton p and a neutron n are eigenvectors of I3 in the fundamental representation of SU(2),
which has the isospin 1

2 :

I3p =
1

2
p, I3n = −1

2
n.

Similarly, mesons π belong to the isospin 1 representation:

I3π
+ = π+, I3π

0 = 0, I3π
− = −π−.

More generally, it has been noticed that particles can be arranged in isospin multiplets. Inside
each isospin multiplet particles have a similar mass and some other properties, however they have
a different charge and the value of I3.

It was noticed that interactions among particles can be divided into strong, which occur very
fast and weak, which are much slower, and electromagnetc. The isospin is conserved in strong
interactions, but not in weak interactions. Here is an example of a weak interaction that violates
the isospin conservation:

π+ → π0 + µ+ + νµ.

Taking into account strong interactions one can asign to each particle a value of I3.
Note that for the nucleon and pion multiplets we have the relation

Q = I3 +
1

2
B. (15.1)

15.4 Strangeness

It was noticed that there exists another number which is conserved in strong interactions and in
weak interactions it changes by ±1. It was called strangeness and denoted S. It was assumed
that the “standard particles” such as p, n, π, e have a zero strangeness.

It turned out that strongly interacting particles can be grouped in larger multiplets containing
particles not only with different I3, but also S. Inside each multiplet particles the masses are
quite similar and the barion number is the same. It was noticed that these multiplets have a
symmetric form if as coordinates we use I3 and the hypercharge

Y = B + S.

The following relation, called the Gell-Mann – Nishijima formula, generalizes (15.1):

Q = I3 +
1

2
Y.

Hadrons with a zero barion number are called mesons. On the diagrams below the vertical
axis is parametrized by Y , and the horizontal axis by I3.

The pseudoscalar nonet consists of the octet

K0 K+

π− π0, η π+

K− K0
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and the singlet η′.
The pseudovector nonet consists of the octet

K∗0 K∗+

ρ− ρ0, ω ρ+

K∗− K∗0

the singlet ω′.
There are also two barion (B = 1) multiplets. The spin 1

2 octet:

n p

Σ− Σ0,Λ0 xs Σ+

Ξ− Ξ0

The spin 3
2 decuplet:

∆− ∆0 ∆+ ∆++

Σ∗− Σ∗0 Σ∗+

Ξ∗− Ξ∗0

Ω−

Finally, there are two antibarion (B = −1) multiplets consisting of antiparticles of the barion
multiplets.

15.5 Quarks

Here is how one can explain the above properties of elementary particles. Introduce 3 quarks:
u, d and s. We treat them as weight vectors for the fundamental representation of SU(3):

d u

s

We also have antiquarks, which correspond to the antifundamental representation:

s

u d
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We assume that they have the following quantum numbers:

Q =
1

3
(2#u−#d−#s), B =

1

3
(#u+ #d+ #s), S = −#s. (15.2)

Consequently

Y = B + S =
1

3
(#u+ #d− 2#s), I3 = Q− 1

2
(B + S) =

1

2
(#u−#d). (15.3)

Then all the above described multiplets of hadrons correspond to weight diagrams of certain
irreducible representations of su(3) with triality 0. Let us try to understand why precisely these
representations show up.

Consider the group SU(3)fl describing the flavors u, d, s, the group SU(2)spin describing the
spin and SU(3)col describing the color. Quarks can be treated as elements of C3

fl ⊗ C2
spin ⊗ C3

col,

and antiquarks as elements of C3
fl ⊗C2

spin ⊗C3
col. The group SU(3)fl × SU(2)spin × SU(3)col acts

on them.
We will ignore the position degrees of freedom of quarks, remembering only their flavor, color

and spin degrees of freedom. They are fermions, hence we will describe them by elements of the
Fock space

Γa

(
C3

fl ⊗ C2
spin ⊗ C3

col ⊕ C3
fl ⊗ C2

spin ⊗ C3
col

)
. (15.4)

We will often use the exponential property of (fermionic) Fock spaces, which implies

⊗na (Z ⊕W) '
n
⊕
k=0
⊗kaZ ⊗⊗n−ka W. (15.5)

Thus bound states of p quarks and q antiquarks are described by elements of

⊗pa
(
C3

fl ⊗ C2
spin ⊗ C3

col

)
⊗⊗qa

(
C3

fl ⊗ C2
spin ⊗ C3

col

)
. (15.6)

The confinement conjecture says that in physics we have only "‘colorless"’ states, that is
states on which the color group acts trivially. If we embed (15.6) in the space

⊗p
(
C3

fl ⊗ C2
spin

)
⊗⊗q

(
C3

fl ⊗ C2
spin

)
⊗
(
⊗p C3

col ⊗⊗qC
3
col

)
, (15.7)

they will have the form Ψ⊗Φ, where Φ, corresponding to "‘color"’ degrees of freedom, is a singlet
wrt sucol(3).

The smallest (p, q) for which sucol(3) has a singlet representation on ⊗pC3
col ⊗ ⊗qC

3
col are

(1, 1) (mesons), (3, 0) (barions) and (0, 3) (antibarions).
In particular, mesons are elements of(

C3
fl ⊗ C2

spin ⊗ C3
col

)
⊗
(
C3

fl ⊗ C2
spin ⊗ C3

col

)
'

(
C3

fl ⊗ C3
fl

)
⊗
(
C2

spin ⊗⊗C
2
spin

)
⊗
(
C3

col ⊗ C3
col

)
.

(Note that there is no antisymmetrization). The colorlessness condition yields

Ψ⊗ 1√
3

(
|1, 1) + |2, 2) + |2, 2)

)
,
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where 1,2,3 corresponds to the three colors and

Ψ ∈ C3
fl ⊗ C2

spin ⊗ C3
fl ⊗ C2

spin '
(
C3

fl ⊗ C3
fl

)
⊗
(
C2

spin ⊗ C2
spin

)
.

For the representation of SU(3)flwe have 3⊗ 3 = 8 + 1. For the representation of SU(2)spin

we have 2⊗ 2 = 3 + 1, which yields spin 0 and 1. Hence we obtain both meson nonets.
Here is the "‘quark content"’ of meson nonets:

ds us

du dd, uu, ss ud

su sd

Mesons of zero charge differ with their quark content. Assuming exact su(3) symmetry they are

π0 =
1√
2

(dd− uu),

η =
1√
6

(2ss− dd− uu),

η′ =
1√
3

(ss+ dd+ uu).

Barions are elements of

⊗3
a

(
C3

fl ⊗ C2
spin ⊗ C3

col

)
⊂ ⊗3

(
C3

fl ⊗ C2
spin

)
⊗⊗3C3

col.

The colorlessness condition yields

Ψ⊗ 1√
3!

(
|1, 2, 3) + |2, 3, 1) + |3, 1, 2)− |1, 3, 2)− |3, 2, 1)− |1, 3, 2)

)
.

The color part of the vector is antisymmetric. Hence Ψ has to be an element of ⊗3
s

(
C3

fl ⊗
C2

spin

)
, whose dimension is 6·7·8

1·2·3 = 56. The action of the group SU(3)fl × SU(2)spin has inside
⊗3

s

(
C3

fl ⊗ C2
spin

)
a representation ⊗3

sC3
fl ⊗⊗3

sC2
spin. Its dimension is 10× 4. What remains is the

representation of dimension 56−40 = 16. It is equivalent to the adjoint representation of SU(3)fl

times the identity on C2. Thus we have the decomposition

C10 ⊗ C4 ⊕ C8 ⊗ C2,

The first is a sufl(3) decuplet (the representation of type (3, 0), that is, on ⊗3
sC3), and its

spin is 3
2 . The second is an sufl(3) octet (the representation of type (1, 1), that is, the adjoint

representation) and its spin is 1
2 .

Here is the "‘quark content"’ of the barion multiplets:

ddd ddu duu uuu

dds dus uus

dss uss

sss
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Here are the spin states of the the barions in the middle of the diagram, where there is the
greatest degeneracy:

Σ∗0 d ↑ u ↑ s ↑,
1√
3

(d ↑ u ↑ s ↓ +d ↑ u ↓ s ↑ +d ↓ u ↑ s ↑),

1√
3

(d ↓ u ↓ s ↑ +d ↑ u ↓ s ↓ +d ↓ u ↑ s ↓),

d ↓ u ↓ s ↓;

Σ0 1√
6

(2d ↑ u ↑ s ↓ −d ↑ u ↓ s ↑ −d ↓ u ↑ s ↑),

1√
6

(2d ↓ u ↓ s ↑ −d ↑ u ↓ s ↓ −d ↓ u ↑ s ↓);

Λ0 1√
2

(d ↑ u ↓ s ↑ −d ↓ u ↑ s ↑),

1√
2

(d ↑ u ↓ s ↓ −d ↓ u ↑ s ↓).

The states of Σ∗− and Σ− are obtained from Σ∗0, resp Σ0 by replacing u with d.
All the physical representations of SU(3)fl have the triality 0—this is essentially the meaning

of the "‘colorlessness"’.

16 Aplications of group theory to Standard Model and Grand
Unified Theories

16.1 Conventions

As usual, instead of representations of Lie groups, we will usually speak about representations
of the corresponding Lie algebras.

Unitary representations of u(1) are one-dimensional and are given by q ∈ R, called the charge:

u(1) ' R 3 θ 7→ eiθq.

When we apply the tensor product, we add the charges.
An irreducible representation of su(n), so(n) are usually denoted by the number of their di-

mension. For the conjugate representation we add the bar. Thus the fundamental representation
of su(n) is denoted by n and the antifundamental by n.

16.2 Standard Model

The Standard Model is based on the gauge group SU(3)× SU(2)× U(1).
Suppose that the (self-adjoint) generators of su(2) are denoted T1, T2, T3. They are the

generators of the so-called weak isospin. The self-adjoint generator of u(1) will be denoted Y . It
is the so-called weak hypercharge, which should not be confused with the so-called hypercharge,
which has the same symbol.
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The main assumption of the Weinberg-Salam model (which is the part of the standard model
describing the weak and electromagnetic interactions) is the following: the electric charge Q
comes partly from SU(2) and partly from U(1). This can be expressed as

Q = T3 + Y. (16.1)

(We use the convention from the book by S.Srednicki. Often one replaces Y with 2Y , so that
one obtains Q = T3 + Y

2 , which is analogous to the Gell-Mann–Nishijima formula).
Beside the gauge bosons, which correspond the Lie algebra su(3) ⊕ su(2) ⊕ u(1), the La-

grangian contains charged particles corresponding to varrious irreducible representations (mul-
tiplets) of the group SU(3) ⊕ SU(2) ⊕ U(1). Each particle has an antiparticle posessing the
opposite chirality and charges. They can be divided as follows:
(1) A multiplet (or several multiplets) of complex scalar (Higgs) bosons needed to break the

gauge symmetry SU(2)× U(1).

(2) Several multiplets of Weyl (chiral) fermions. Every multiplet appears in 3 generations.
Fermionic multiplets can be divided in two families:

(i) Leptons, which do not take part in strong interactions, in other words are singlets wrt
SU(3).

(ii) Quarks, which are nontrivially transformed by SU(3).

(By a multiplet we mean an irreducible, usually multidimensional representation of the gauge
group.)

There exist two versions of the Standard Model: the original version, which we denote SM ,
does not contain the right-handed neutrinos. In a newer version, denoted νSM , there are addi-
tional right-handed neutrinos.

We will consistently use the terminology related to the first generation.

16.3 Leptons

Leptons can be divided into electrons and neutrinos. Electrons are both left- and right-handed.
The left- and right-handed electrons have the same mass. From the point of view of electro-
magnetic and strong interactions they can be treated as Dirac fermions. They are denoted
e = (eL, eR), They have Q = −1. The antiparticle for the electron is called the positron and
denoted e.

Neutrinos have Q = 0. Electronic neutrinos, denoted νe or νe,L, are in SM left-chiral and
have a zero mass.

(eL, νe,L) form a doublet wrt SU(2). We have

T3eL = −1

2
eL, T3νe,L =

1

2
νe,L.

Using (16.1), we obtain

Y eL = −1

2
eL, Y νe,L = −1

2
νe,L.
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eR is a singlet for SU(2). Thus T3eR = 0 and (16.1) implies

Y eR = −eR.

When describing the multiplets, it is convenient to restrict oneself to left-handed multiplets.
Therefore, instead of the right-handed electron we take into account the left-handed positron. It
has Q = 1 and T3 = 0. Here is its hypercharge:

Y eR = eR.

In νSM additionally one introduces a right-handed neutrino νe,R, which transforms trivially
under the gauge group. When describing multiplets we take into account its antiparticle νe,R,
which is left-handed.

Summing up, we have the following multiplets of left-handed leptons:

L := (eL, νe,L) (1, 2,−1

2
),

E := eR (1, 1, 1),

N := νe,R (1, 1, 0).

16.4 Higgs scalar

In order to build invariant mass terms in the Lagrangian we need an additional scalar φ, which
is a singlet for SU(3) and a doublet for SU(2). It has Q = 0 and the weak isospin −1

2 . Hence
Y = 1

2 . Therefore, its representation is

(1, 2,
1

2
).

16.5 Quarks

We have two quarks: u and d (recall that we consider a single generation). Proton and neutron,
for instance, are built as follows

p = uud, n = udd.

Therefore, the quarks have the following electric charge:

Qu =
2

3
u, Qd = −1

3
d.

They are triplets wrt SU(3) – they transform according to the fundamental representation.
The antiquarks have the oposite electric charges

Qu = −2

3
u, Qd =

1

3
d,

and transform according to the antifundamental representation.
Left-handed quarks are a doublet wrt SU(2):

T3uL =
1

2
uL, T3dL = −1

2
dL.
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Hence,

Y uL =
1

6
uL, Y dL =

1

6
dL.

Right-handed quarks are singlets wrt SU(2). Therefore,

T3uR = 0, T3dR = 0.

Hence,

Y uR =
2

3
uR, Y dR = −1

3
dR.

Summing up, we have the following multiplets of left-handed quarks:

Q = (uL, dL) (3, 2,
1

6
),

U = uR (3, 1,−2

3
),

D = dR (3, 1,
1

3
).

16.6 Standard Model Lagrangian

The Standard Model Lagrangian is a singlet wrt the gauge group. One could distinguish the
following terms in the Lagrangian:
(1) The kinetic term for gauge fields.

(2) The kinetic terms for fermions.

(3) The kinetic term for scalar bosons.

(4) The scalar boson potential (a “Mexican hat”?)–because of renormalizabilty, it should be a
polynomial of maximally degree 4. One also assumes it to be invariant wrt φ→ −φ.

(5) Mass terms, that is 2-linear terms in fermions without derivatives. They have to be singlets
wrt the gauge group, and therefore most of them involve the scalar boson.

Let ψ,ψ′ transform according to the fundamental representation of SU(3). All invariant real
2-linear/antilinear expressions built out of ψ,ψ′ have the form

ψ
α
ψ′α

and their complex conjugates.
Let ψ,ψ′ transform according to the fundamental representation of SU(2). Then invariant

two-linear/antilinear expressions built out of ψ,ψ′ have the form

ψ
i
ψ′i,

εijψiψ
′
j ,

and their complex conjugates.
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If ψ1, . . . , ψn have charges y1, . . . , yn wrt U(1), then ψ1 · · ·ψn is invariant iff y1 + · · ·+yn = 0.
Therefore, possible non-kinetic terms in the ν SM Lagrangian involving only left-handed fermions
are

φiφ
i,

(
φiφ

i
)2
, (16.2)

εijφiELj , ε
ijφiD

α
Qαj , φ

i
U
α
Qαi, (16.3)

φ
i
LiN, NCN. (16.4)

Right-handed fermions appear in expressions conjugate to (16.3) and (16.4). α runs over the
color index, i, j runs over the indices 1, 2. C is the charge conjugation matrix. SM contains only
(16.2) and (16.3).

16.7 SU(n)

SU(n) has a fundamental and antifundamental representation in Cn, resp. Cn. We will need the
following irreducible representations:

⊗psCn, p = 1, 2, . . . , dim⊗ns Cd =
(d+ n− 1)!

(d− 1)!n!
.

⊗qaCn, q = 1, . . . , n− 1, dim⊗naCd =
n!

d!(n− d)!
.

We have
⊗qaCn ' ⊗n−qa Cn.

⊗2Z = ⊗2
sZ ⊕⊗2

aZ.

We will use the following relations for any pair of spaces Z,W:

⊗ps/a(Z ⊕W) '
p
⊕
j=0
⊗js/aZ ⊕⊗

p−j
s/a W.

16.8 Extending SU(3)⊗ SU(2)× U(1) to SU(5)

The following analysis is based partly on the book by Srednicki and the article by Baez-Huerta.
Set

Y =


−1

3
−1

3
−1

3
1
2

1
2

 .
Let A ∈ su(3), B ∈ su(2) and s ∈ R ' u(1). Then[

A 0
0 B

]
+ sY ∈ su(5).
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Thus we have the inclusion su(3)⊕ su(2)⊕ u(1) ⊂ su(5), where Y is the generator of u(1).
The fundamental representation of su(5) can be decomposed as follows:

5→ (3, 1,−1

3
)⊕ (1, 2,

1

2
).

Hence,

5 → (3, 1,
1

3
)⊕ (1, 2,−1

2
). (16.5)

⊗2
a5 = 10, the representation of su(5), can be decomposed as

⊗2
a5 → ⊗2

a(3, 1,−1

3
)⊕ (3, 1,−1

3
)⊗(1, 2,

1

2
)⊕⊗2

a(1, 2,
1

2
)

= (3, 1,−2

3
)⊕ (3, 2,

1

6
)⊕ (1, 1, 1), (16.6)

where we used the property ⊗2
a3 = 3 of the representation of su(3).

All left-handed multiplets of SM wrt SU(3)× SU(2)× U(1) can be found in two multiplets
wrt SU(5): (16.5) and (16.6):

⊗4
a5 = 5 : D,L;

⊗2
a5 = 10 : U,Q,E.

16.9 Fields in GUT based on SU(5)

In GUT based on SU(5), without a right-handed neutrino, beside gauge bosons parametrized by
su(5), we have the following fields:
(1) Complex scalar bosons

(1) The boson Φ in the adjoint representation of SU(5), responsible for breaking SU(5)
to SU(3)× SU(2)× U(1). It couples only to gauge bosons and to φ.

(2) The boson φ in the antifundamental representation of SU(5) responsible for breaking
SU(2)× U(1) to U(1).

(3) Weyl left-handed fermions (and their antiparticles):

(1) The multiplet ψ = (L,D) = (eL, νL, dR) in 5 (the antifundamental representation).
(2) The multiplet χ = (E,Q,U) = (eR, uL, dL, uR) in 10 (the antisymmetric representa-

tion).

Possible non-kinetic terms in the Lagrangian:

TrΦ2, TrΦ4, (TrΦ)2,

φ · φ, (φ · φ)2, φ · Φ2φ,

φiψjχij , εijklmφiχjkχlm.

If we want neutrinos to have a mass, we need to add the field νR, which is a singlet for SU(5)
and the term

φiψ
iνR.
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16.10 Extending SU(3)⊗ SU(2)× U(1) to Spin(10)

All the left-handed multiplets of the Standard Model wrt SU(3) × SU(2) × U(1) can be found
in the following two multiplets wrt SU(5): ⊗4

a5 (16.5) and ⊗2
a5 (16.6). To obtain antiparticles

it suffices to add ⊗1
a5 and ⊗3

a5. To include right-handed neutrinos and their antiparticles it
suffices to add ⊗0

a5 and ⊗5
a5. We obtain a space that naturally identifies with the Fock space

Γa(C5). It decomposes in two irreducible representations of Spin(10) corresponding to left- and
right-handed particles.

We consider the fermionic Fock space with the basis u, d, r, g, b. (u, d are not up and down
quarks, although they are related to them). The antiparticles of left-handed leptons are u, d, and
the righthanded down quark is r, g, b, depending on the color. The antiparticle to the righthanded
up quark is made out of missing colors. The left-handed quarks are made of the “color” and of
u, d. The antiparticle to the righthanded positron is ud.

The righthanded neutrino is identified with the “ceiling vector”. The antiparicles are always
made out of the missing constituents.

In the following list c denotes one of the colors r, g, b, and c, c′, c′′ is one of cyclic permutations
of r, g, b. We write a1 · · · an instead of 1√

n!
a1 ∧ · · · ∧ an.

1,L 5,R 10,L 10,R 5,L 1,R

νR = 1 eL = u eR = ud eR = cc′c′′ eL = cc′c′′d νR = cc′c′′ud

νL = d ucL = cu ucL = c′c′′d νL = cc′c′′u

dcR = c dcL = cd d
c
L = c′c′′u d

c
R = c′c′′ud

ucR = c′c′′ ucR = cud

16.11 Extending SU(3)⊗ SU(2)× U(1) to SU(2)× SU(2)× SU(4)

In the Pati-Salam Theory we assume the existence of the fourth color "‘white"’, denoted w
representing leptons. SU(4) acts in two representations: the fundamental with basis r, g, b, w
and antifundamental with basis r, g, b, w. c will denote r, g, or b.

The “left” group SU(2) acts on C2 with basis uL, dL. The “right” group SU(2) acts on C2

with basis uR, dR. These are “prequarks”. The notation u and d now corresponds to the “isospin".
The charge conjugation switches the “isospin” and chirality. Therefore, uL = dR, dL = uR.

Leptons are obtained by multiplying prequarks with w or w. Quarks are obtained by mul-
tiplying prequarks with colors. Particles (including the right neutrino) are organized into four
representations of SU(2)× SU(2)× SU(4):

(2, 1, 4) (1, 2, 4) (2, 1, 4) (1, 2, 4)

νL = uL ⊗ w νR = uR ⊗ w eR = uL ⊗ w eL = uR ⊗ w
eL = dL ⊗ w eR = dR ⊗ w νR = dL ⊗ w νL = dR ⊗ w
ucL = uL ⊗ c ucR = uR ⊗ c d

c
R = uL ⊗ c d

c
L = uR ⊗ c

dcL = dL ⊗ c dcR = dR ⊗ c ucR = dL ⊗ c ucL = dR ⊗ c
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Let us introduce the operators of “left and right isospin”, and the “color operator”:

TL
3 uL =

1

2
uL, TL

3 dL = −1

2
dL; (16.7)

TR
3 uR =

1

2
uR, TL

3 dR = −1

2
dR; (16.8)

Zw = −1

2
w, Zc =

1

6
c. (16.9)

They can be used to express the usual weak isospin and the weak hypercharge:

T = TL, Y = TR + Z. (16.10)

Thus SU(3) × SU(2) × U(1) ⊂ SU(2) × SU(2) × SU(4), where SU(3) is embedded in SU(4),
the weak SU(2) coincides with the first Pati-Salam SU(2) and U(1) is defined by Y in (16.10).

We have the isomorphism SU(4) ' Spin(6). We can reorganize the representation space of
SU(4) as a representation space of Spin(6) as follows:

〈w, r, g, b〉 ⊕ 〈w, r, g, b〉 ' C4 ⊕ C4

' 〈w〉 ⊕ 〈r, g, b〉 ⊕ 〈r, g, b〉 ⊕ 〈w〉 ' C⊕ C3 ⊕ C3 ⊕ C ' Γa(C3),

using the dictionary

w = rgb, w = 1, r = gb, g = br, b = rg. (16.11)

We also have the isomorphism SU(2) × SU(2) ' Spin(4). We can reorganize the represen-
tation of SU(2)× SU(2) as a representation of Spin(4) as follows:

〈uL, dL〉 ⊕ 〈uR, dR〉 ' C2⊗C⊕ C⊗C2

' 〈uL〉 ⊕ 〈dL, dR〉 ⊕ 〈uR〉 ' C⊕ C2 ⊕ C ' Γa(C2).

using the dictionary
uL = 1, uR = dLdR.

Hence the group SU(2) × SU(2) × SU(4) can be identified with Spin(4) × Spin(6). Clearly,
Spin(4)× Spin(6)/Z2 is a subgroup of Spin(10).
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