Clifford algebras and fermions

Jan Dereziński
Katedra Metod Matematycznych Fizyki
Uniwersytet Warszawski
Hoża 74, 00-682, Warszawa
e-mail jan.derezinski@fuw.edu.pl

May 30, 2023

Contents

1 Introduction-examples of algebras 4
2 Quaternions 6
2.1 Definitions 6
2.2 Embedding complex numbers in quaternions 7
2.3 Matrix representation of quaternions 7
3 Algebras 8
3.1 Definitions 8
3.2 Subalgebras 9
3.3 *-algebras 9
3.4 Ideals 9
3.5 Quaternionic vector spaces 10
3.6 Real and complex simple algebras 10
3.7 Algebras generated by relations 11
4 Second quantization 11
4.1 Vector and Hilbert spaces 11
4.2 Direct sum 12
4.3 Tensor product 12
4.4 Fock spaces 14
4.5 Creation/annihilation operators 15
4.6 Integral kernel of an operator 16
4.7 Position and momentum representation 17
4.8 Second quantization of operators 18
4.9 Symmetric/antisymmetric tensor product 19
4.10 Exponential law 19
4.11 Wick symbol 20
4.12 Wick symbol and coherent states 22
5 Clifford algebras 22
5.1 Clifford algebras 22
5.2 Even Clifford algebras 23
5.3 Bases 23
5.4 Involution 24
5.5 Volume element 24
5.6 The Jordan-Wigner construction 25
5.7 Fock representations of Clifford algebras 26
5.8 Form of Clifford algebras 27
5.9 Charge conjugation 28
6 Matrix Lie groups 29
6.1 Quaternionic determinant 29
6.2 Classical matrix Lie groups 30
6.3 Reflections 32
6.4 Pin and Spin groups 32
6.5 Other Pin groups 33
6.6 Quadratic Hamiltonians 34
6.7 Low-dimensional coincidences 34
$6.8 \quad S L\left(\mathbb{R}^{2}\right)=S p\left(\mathbb{R}^{2}\right)$ 36
$6.9 \quad S U(2) \simeq \operatorname{Spin}(3)$ 36
6.10 $S L(2, \mathbb{R}) \simeq \operatorname{Spin}_{0}(1,2)$ 37
6.11 $S L(2, \mathbb{C}) \simeq \operatorname{Spin}_{0}(1,3)$ 38
$6.12 S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \simeq \operatorname{Spin}_{0}(2,2)$ 38
$6.13 S U(2) \times S U(2) \simeq \operatorname{Spin}(4)$ 39
7 Slater determinants and CAR representations 39
7.1 Reminder about fermionic Fock spaces 39
7.2 Slater determinants 40
7.3 Changing the vacuum 40
7.4 Free fermionic Hamiltonians 41
7.5 Representations of CAR 43
7.6 CAR C*-algebra 44
8 Quantum gases and the Hartree-Fock method 45
8.1 Particle number preserving operators 45
$8.2 \quad N$-body Schrödinger Hamiltonians 46
8.3 Hartree-Fock method for atomic systems 47
8.4 Thomas-Fermi functional 48
8.5 Expectation values of Slater determinants 48
8.6 The Hartree-Fock method 49
9 Squeezed states 51
9.1 1-mode squeezed vector 51
9.2 Many-mode squeezed vector 52
9.3 Single-mode gauge-invariant squeezed vector 53
10 Bose gas and superfluidity 54
10.1 Bogoliubov's approximation in the canonical formalism 56
10.2 Grand-canonical approach 58
10.3 Bogoliubov's approximation in the grand-canonical approach 59
10.4 Landau's argument for superfluidity 61
11 Fermionic Gaussian states 61
11.1 1-mode particle-antiparticle vector 61
11.2 Fermionic oscillator 62
12 Fermi gas and superconductivity 63
12.1 Fermi gas 63
13 Hartree-Fock-Bogoliubov approximation with BCS ansatz 65
14 Basics of representations of $s u(n)$ 67
14.1 Contragradient representation 67
$14.2 s u(n)$ and $s l(n, \mathbb{C})$ 68
14.3 Cartan algebra 68
14.4 Representation weights 69
14.5 Representations of $s u(2)$ 69
14.6 Roots 70
14.7 Representations of $s u(3)$ 70
14.8 Fundamental and antifundamental representation of $s u(3)$ 71
14.9 Triality of $s u(3)$ 72
14.10Negative and positive roots 72
14.11Examples of weight diagrams 72
15 Applications of $s u(3)$ to particle physics 74
15.1 Symmetries in quantum mechanics 74
15.2 Conserved charges 74
15.3 Isospin 74
15.4 Strangeness 75
15.5 Quarks 76
16 Aplications of group theory to Standard Model and Grand Unified Theories 79
16.1 Conventions 79
16.2 Standard Model 79
16.3 Leptons 80
16.4 Higgs scalar 81
16.5 Quarks. 81
16.6 Standard Model Lagrangian 82
16.7 SU (n) 83
16.8 Extending $S U(3) \otimes S U(2) \times U(1)$ to $S U(5)$ 83
16.9 Fields in GUT based on $S U(5)$ 84
16.10Extending $S U(3) \otimes S U(2) \times U(1)$ to $S \operatorname{pin}(10)$. 85
16.11Extending $S U(3) \otimes S U(2) \times U(1)$ to $S U(2) \times S U(2) \times S U(4)$ 85
These lecture notes are devoted to various algebraic constructions, especially those useful in Quantum Physics.

1 Introduction-examples of algebras

Let \mathbb{K} be a field. In practice, we will restrict ourselves to $\mathbb{K}=\mathbb{C}$ or $\mathbb{K}=\mathbb{R}$. $\mathbb{N}_{0}:=\{0,1,2, \ldots\}$.
Let us describe several algebras that appear in quantum physics. All of this section will contain the unit and will be over \mathbb{K}. The unit will be denoted $\mathbb{1}$, and for any element A of the algebra will satisfy

$$
\begin{equation*}
\mathbb{1} A=A \mathbb{1}=A . \tag{1.1}
\end{equation*}
$$

Example 1.1 Algebra generated by x_{1}, \ldots, x_{n} statisfying

$$
\begin{equation*}
x_{i} x_{j}=x_{j} x_{i} . \tag{1.2}
\end{equation*}
$$

It is the algebra of polynomials in variables x_{1}, \ldots, x_{n}. The standard notation: $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$. It has the basis

$$
\begin{equation*}
x_{1}^{m_{1}} \cdots x_{n}^{m_{n}}, \quad m_{1}, \ldots, m_{n} \in \mathbb{N}_{0} . \tag{1.3}
\end{equation*}
$$

The differentiation wrt x_{i}, denoted $\partial_{x_{i}}$ is the unique linear operator satisfying

$$
\begin{align*}
\partial_{x_{i}} F G & =\left(\partial_{x_{i}} F\right) G+F \partial_{x_{i}} G, \tag{1.4}\\
\partial_{x_{i}} x_{j} & =\delta_{i j} . \tag{1.5}
\end{align*}
$$

We have

$$
\begin{equation*}
\partial_{x_{i}} x_{1}^{m_{1}} \cdots x_{i}^{m_{i}} \cdots x_{n}^{m_{n}}=m_{i} x_{1}^{m_{1}} \cdots x_{i}^{m_{i}-1} \cdots x_{n}^{m_{n}} . \tag{1.6}
\end{equation*}
$$

Example 1.2 Algebra over \mathbb{C} generated by $x^{1}, \ldots, x^{n}, p_{1}, \ldots, p_{n}$ satisfying

$$
\begin{align*}
x^{i} x_{j}-x^{j} x^{i}=p_{i} p_{j}-p_{j} p_{i} & =0, \tag{1.7}\\
x^{i} p_{j}-p_{j} x^{i} & =\mathrm{i} \delta_{j}^{i} \mathbb{1} \tag{1.8}
\end{align*}
$$

It goes sometimes under the name of the Weyl algebra (but this is ambiguous). Other possible names are the Heisenberg algebra or the CCR algebra.

Its basis is

$$
\begin{equation*}
\left(x^{1}\right)^{m_{1}} \cdots\left(x^{n}\right)^{m_{n}} p_{1}^{k_{1}} \cdots p_{n}^{k_{n}}, \quad m_{i}, k_{j} \in \mathbb{N}_{0} . \tag{1.9}
\end{equation*}
$$

Standard representation on $\mathbb{C}\left[x^{1}, \ldots, x^{n}\right]$:

$$
\begin{align*}
& \hat{x}^{i}:=\text { multiplication by } x^{i}, \tag{1.10}\\
& \hat{p}_{i}:=\frac{1}{\mathrm{i}} \partial_{x^{i}} . \tag{1.11}
\end{align*}
$$

Example 1.3 Algebra generated by $\theta_{1}, \ldots \theta_{n}$ satisfying

$$
\begin{equation*}
\theta_{i} \theta_{j}+\theta_{j} \theta_{i}=0 \tag{1.12}
\end{equation*}
$$

It is called the Grassman algebra or the algebra of polynomials in anticommuting variables. Another name is the exterior algebra. Sometimes it is denoted $\mathbb{K}\left[\theta_{1}, \ldots, \theta_{n}\right]$. Its basis is

$$
\begin{equation*}
\theta_{1}^{\epsilon_{1}} \cdots \theta_{n}^{\epsilon_{n}}, \quad \epsilon_{i} \in\{0,1\} \tag{1.13}
\end{equation*}
$$

Elements which are linear compbinations of 1.13 with $\epsilon_{1}+\cdots+\epsilon_{n}$ even/odd are called even/odd. Elements which are either even or odd are called pure. If F is a pure element, then $\operatorname{sgn}(F):=1$ if F is even and $\operatorname{sgn}(F):=-1$ if F is odd.

We have two kinds of differentiation: the left differentiation $\overleftarrow{\partial}_{\theta_{i}}=\overleftarrow{\partial}^{i}$ and the right differentiation $\vec{\partial}_{\theta_{i}}=\vec{\partial}^{i}$ They are defined by

$$
\begin{align*}
\overleftarrow{\partial}^{j} \theta_{i}=\overleftarrow{\partial}^{j} \theta_{i} & =\delta_{i}^{j}, \tag{1.14}\\
\vec{\partial}^{j} F G & =\left(\vec{\partial}^{j} F\right) G+\operatorname{sgn}(F) F\left(\vec{\partial}^{j} G\right), \tag{1.15}\\
\overleftarrow{\partial}^{j} F G & =\operatorname{sgn}(G)\left(\overleftarrow{\partial}^{j} F\right) G+F\left(\overleftarrow{\partial}^{j} G\right) . \tag{1.16}
\end{align*}
$$

Thus after acting with $\vec{\partial}^{j}$, resp. $\overleftarrow{\partial}^{j}$ on $\theta_{1}^{\epsilon_{1}} \cdots \theta_{n}^{\epsilon_{n}}$ we obtain 0 if θ_{j} is not present and the same expression with θ_{j} omitted multiplied by $(-1)^{\epsilon_{1}+\cdots+\epsilon_{j-1}}$, resp. $(-1)^{\epsilon_{j+1}+\cdots+\epsilon_{n}}$.

We will treat $\vec{\partial}$ as the standard differentiation, denoting it often by ∂.
Example 1.4 The algebra generated by $\alpha_{1} \ldots \alpha_{n}$ satisfying

$$
\begin{equation*}
\alpha_{i} \alpha_{j}+\alpha_{i} \alpha_{j}=2 \delta_{i j} . \tag{1.17}
\end{equation*}
$$

It is called the Clifford algebra. For $\mathbb{K}=\mathbb{R}$ it will be denoted $\mathrm{Cl}^{+}\left(n \mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)\right.$. For $\mathbb{K}=\mathbb{C}$ it is sometimes called the CAR algebra.

Here is a basis of $\mathrm{Cl}^{+}(n)$

$$
\begin{equation*}
\alpha_{1}^{\epsilon_{1}} \cdots \alpha_{n}^{\epsilon_{n}}, \quad \epsilon_{i} \in\{0,1\} . \tag{1.18}
\end{equation*}
$$

We will discuss this algebra further in more detail.
Example 1.5 Algebra generated by x_{1}, \ldots, x_{n} (with no relations).
It is called the free algebra with the generators x_{1}, \ldots, x_{n}. Its basis are the expressions

$$
\begin{equation*}
x_{i_{1}} \cdots x_{i_{k}}, \quad k=0,1, \ldots, \quad i_{1}, \ldots i_{k} \in\{1, \ldots, k\} . \tag{1.19}
\end{equation*}
$$

The product is just the concatenation of these expressions.

2 Quaternions

2.1 Definitions

The algebra over \mathbb{R} with a basis $1, i, j, k$ satisfying the relations

$$
\begin{equation*}
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=-1, \quad \mathrm{ij}=\mathrm{k}, \quad \mathrm{jk}=\mathrm{i}, \quad \mathrm{ki}=\mathrm{j} \tag{2.1}
\end{equation*}
$$

is called the algebra quaternions and denoted \mathbb{H}. Note that the following identities follow from (2.1):

$$
\begin{equation*}
\mathrm{ji}=-\mathrm{k}, \quad \mathrm{kj}=-\mathrm{i}, \quad \mathrm{ik}=-\mathrm{j} \tag{2.2}
\end{equation*}
$$

\mathbb{H} is endowed with $*$ acting as

$$
1^{*}=1, \quad \mathrm{i}^{*}=-\mathrm{i}, \quad \mathrm{j}^{*}=-\mathrm{j}, \quad \mathrm{k}^{*}=-\mathrm{k}
$$

$*$ is an involution, that is $x^{* *}=x,(x y)^{*}=y^{*} x^{*}, x, y \in \mathbb{H} . x \in \mathbb{H}$ is called Hermitian, resp. anti-Hermitian if $x=x^{*}$, resp. $x=-x^{*}$.

For $x \in \mathbb{H}$ we set

$$
\operatorname{Re} x:=\frac{1}{2}\left(x+x^{*}\right), \quad|x|:=\sqrt{x^{*} x}
$$

(Note that, że $x^{*} x=x x^{*}$ is always positive real).
If $x=x_{1}+x_{\mathrm{i}} \mathrm{i}+x_{\mathrm{j}} \mathrm{j}+x_{\mathrm{k}} \mathrm{k}$, where $x_{1}, x_{\mathrm{i}}, x_{\mathrm{j}}, x_{\mathrm{k}} \in \mathbb{R}$, then

$$
\operatorname{Re} x=x_{1}, \quad|x|=\sqrt{x_{1}^{2}+x_{\mathrm{i}}^{2}+x_{\mathrm{j}}^{2}+x_{\mathrm{k}}^{2}}
$$

Note that $|\cdot|$ is a norm on \mathbb{H}. If $x, y \in \mathbb{H}$, then $|x y|=|x||y|$.
\mathbb{H} is equipped with the quaternionic scalar product $x^{*} y$ and the real scalar product

$$
\langle x \mid y\rangle:=\operatorname{Re} x^{*} y=x_{1} y_{1}+x_{\mathrm{i}} y_{\mathrm{i}}+x_{\mathrm{j}} y_{j}+x_{\mathrm{k}} y_{\mathrm{k}}, \quad x, y \in \mathbb{H}
$$

All non-zero elements of \mathbb{H} are invertible (just as in a field). Such algebras are called division algebras.

An element $x \in \mathbb{H}$ is called unitary if $x^{*} x=1$. Equivalently, x is unitary if $|x|=1$. Every non-zero quaternion can be uniquely written as $x=|x| u$, where u is unitary. Every unitary u can be written as

$$
\begin{equation*}
u=\cos \theta+y \sin \theta=\exp (\theta y) \tag{2.3}
\end{equation*}
$$

where $y^{2}=-1$. From this it is easy to show that unitary quaternions form a group isomorphic to $S U(2)$, see also 2.9 .

Isomorphisms of \mathbb{H} preserve the scalar product $\langle\cdot \mid \cdot\rangle$. They also preserve the 3-dimensional subspace of anti-Hermitian quaternions. This group is isomorphic to $S O(3)$. Every isomorphism of \mathbb{H} has the form

$$
\begin{equation*}
\mathbb{H} \ni x \mapsto u x u^{-1} \in \mathbb{H} \tag{2.4}
\end{equation*}
$$

where u is a unitary anti-Hermitian quaternion.

2.2 Embedding complex numbers in quaternions

It is easy to see that there exists a unique continuous injective homomorphism $\mathbb{R} \rightarrow \mathbb{H}$. Its image is the center of the algebra \mathbb{H}, which can be identified with \mathbb{R}.

There exist many continuous injective homomorphisms $\mathbb{C} \rightarrow \mathbb{H}$. To fix it one has to fix an element of \mathbb{H} whose square is -1 . Let us call it i.

Quaternions can be defined as an algebra over \mathbb{C} spanned by $1, j$, satisfying the relations

$$
\begin{equation*}
z \mathrm{j}=\mathrm{j} \bar{z} \tag{2.5}
\end{equation*}
$$

This fixes a homomorphism $\mathbb{C} \rightarrow \mathbb{H}$. \mathbb{H} is then a vector space over \mathbb{C} of dimension 2 . We have

$$
\begin{equation*}
x=x_{1}+x_{\mathrm{i}} \mathrm{i}+x_{\mathrm{j}} \mathrm{j}+x_{\mathrm{k}} \mathrm{k}=\left(x_{1}+x_{\mathrm{i}} \mathrm{i}\right) 1+\left(x_{\mathrm{j}}+x_{\mathrm{k}} \mathrm{i}\right) \mathrm{j} . \tag{2.6}
\end{equation*}
$$

The map

$$
\begin{equation*}
\mathbb{H} \ni x \mapsto \frac{1}{2}(x-\mathrm{i} x \mathrm{i}) \in \mathbb{C} \tag{2.7}
\end{equation*}
$$

is a projection.
Set

$$
\begin{equation*}
(x \mid y):=\frac{1}{2}\left(y x^{*}-\mathrm{i} y x^{*} \mathrm{i}\right) \tag{2.8}
\end{equation*}
$$

By (2.7), the values of this scalar product are in \mathbb{C}. (2.8) is sesquilinear, because

$$
\begin{aligned}
& (x \mid z y)=\frac{1}{2}\left(z y x^{*}-\mathrm{i} z y x^{*} \mathrm{i}\right)=z(x \mid y) \\
& (z x \mid y)=\frac{1}{2}\left(y x^{*} \bar{z}-\mathrm{i} y x^{*} \bar{z} \mathrm{i}\right)=(x \mid y) \bar{z}, \quad z \in \mathbb{C}
\end{aligned}
$$

Thus (2.8) is a complex sesquilinear scalar product on \mathbb{H}, so that \mathbb{H} becomes a 2-dimensional complex Hilbert space. $1, \mathrm{j}$ is an example of an orthonormal basis in \mathbb{H} wrt (2.8).

2.3 Matrix representation of quaternions

Quaternions can be represented by Pauli matrices multiplied by i:

$$
\pi(1)=\left[\begin{array}{cc}
1 & 0 \tag{2.9}\\
0 & 1
\end{array}\right], \quad \pi(\mathrm{i})=\left[\begin{array}{cc}
\mathrm{i} & 0 \\
0 & -\mathrm{i}
\end{array}\right], \quad \pi(\mathrm{j})=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad \pi(\mathrm{k})=\left[\begin{array}{cc}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right] .
$$

This yields a representation of quaternions acting on the Hilbert space \mathbb{C}^{2}

$$
\begin{equation*}
\pi: \mathbb{H} \rightarrow B\left(\mathbb{C}^{2}\right) \tag{2.10}
\end{equation*}
$$

In this representation

$$
\begin{gather*}
\pi\left(x^{*}\right)=\pi(x)^{*}, \quad|x|^{2}=\operatorname{det} \pi(x) . \tag{2.11}\\
\pi(\mathbb{H})=\{\lambda U: U \in U(2), \quad \lambda \in[0, \infty[\} .
\end{gather*}
$$

Another useful relation within this representation is

$$
\begin{equation*}
\pi(\mathbb{H})=\left\{A \in B\left(\mathbb{C}^{2}\right): A=\pi(\mathrm{j}) \bar{A} \pi(\mathrm{j})^{-1}\right\} \tag{2.12}
\end{equation*}
$$

where \bar{A} denotes the usual complex conjugation of the matrix A. Indeed,

$$
\begin{equation*}
\overline{\pi(1)}=\pi(1), \quad \overline{\pi(\mathrm{i})}=-\pi(\mathrm{i}), \quad \overline{\pi(\mathrm{j})}=\pi(\mathrm{j}), \quad \overline{\pi(\mathrm{k})}=-\pi(\mathrm{k}) . \tag{2.13}
\end{equation*}
$$

Replacing 2.10 by $W \pi(\cdot) W^{-1}$ for some invertible W, we replace $\pi(\mathrm{j})$ by $R:=W \pi(\mathrm{j}) \bar{W}^{-1}$. Note that

$$
\begin{equation*}
R \bar{R}=-\mathbb{1} . \tag{2.14}
\end{equation*}
$$

3 Algebras

3.1 Definitions

Let \mathbb{K} be a field. Let \mathfrak{A} be a vector space over \mathbb{K}. We say that \mathfrak{A} is an algebra over \mathbb{K} if it is equipped with an operation

$$
\mathfrak{A} \times \mathfrak{A} \ni(A, B) \mapsto A B \in \mathfrak{A}
$$

satisfying

$$
\begin{align*}
A(B+C)=A B+A C, & (B+C) A=B A+C A, \\
(\alpha \beta)(A B)=(\alpha A)(\beta B), & A, B, C \in \mathfrak{A}, \quad \alpha, \beta \in \mathbb{K} . \tag{3.1}
\end{align*}
$$

If in addition

$$
A(B C)=(A B) C
$$

we say that it is an associative algebra. (In practice by an algebra we will usually mean an associative algebra).

We say that \mathfrak{A} is commutative if $A, B \in \mathfrak{A}$ implies $A B=B A$.
The center of an algebra \mathfrak{A} equals

$$
\mathfrak{Z}(\mathfrak{A})=\{A \in \mathfrak{A}: A B=B A, B \in \mathfrak{A}\} .
$$

Let $\mathfrak{A}, \mathfrak{B}$ be algebras. A map $\phi: \mathfrak{A} \rightarrow \mathfrak{B}$ is called a homomorphism if it is linear and preserves the multiplication, ie.
(1) $\phi(\lambda A)=\lambda \phi(A)$;
(2) $\phi(A+B)=\phi(A)+\phi(B)$;
(3) $\phi(A B)=\phi(A) \phi(B)$.

The set of all automorphisms of \mathfrak{A} is denoted $\operatorname{Aut}(\mathfrak{A})$.
We say that $\mathbb{1} \in \mathfrak{A}$ is a unit if

$$
\begin{equation*}
\mathbb{1} A=A \mathbb{1}=A, \quad A \in \mathfrak{A} . \tag{3.2}
\end{equation*}
$$

An algebra is called unital if it possesses a unit.

3.2 Subalgebras

Fix an algebra \mathfrak{A}. $\mathfrak{B} \subset \mathfrak{A}$ is called a subalgebra of \mathfrak{A} if it is a vector subspace of \mathfrak{A} and $A, B \in$ $\mathfrak{B} \Rightarrow A B \in \mathfrak{B}$. Obviously, a subalgebra is an algebra.

If a family $\mathfrak{B}_{\alpha} \subset \mathfrak{A}$ consists of subalgebras, then $\cap_{\alpha} \mathfrak{B}_{\alpha}$ is also a subalgebra. Therefore, for any subset $\mathfrak{B} \subset \mathfrak{A}$ there exists the smallest subalgebra containing \mathfrak{B}. It is denoted $\operatorname{Alg}(\mathfrak{B})$ and called the subalgebra generated by \mathfrak{B}.

Let \mathcal{V} be a vector space over \mathbb{K}. Clearly, the set of linear transformations in \mathcal{V}, denoted $L(\mathcal{V})$, is an (associative) algebra.

Subalgebras of $L(\mathcal{V})$ are called concrete algebras.
A homomorphism of an algebra \mathfrak{A} into $L(\mathcal{V})$ is called a representation of \mathfrak{A} on \mathcal{V}.

3.3 *-algebras

We say that an algebra \mathfrak{A} over \mathbb{C} (more rarely over \mathbb{R}) is a $*$-algebra if it is equipped with an antilinear map $\mathfrak{A} \ni A \mapsto A^{*} \in \mathfrak{A}$ such that $(A B)^{*}=B^{*} A^{*}, A^{* *}=A$ and $A \neq 0$ implies $A^{*} A \neq 0$.

If \mathcal{H} is a Hilbert space, then $B(\mathcal{H})$ equipped with the Hermitian conjugation is a $*$-algebra
If $\mathfrak{A}, \mathfrak{B}$ are $*$-algebras, then a homomorphism $\pi: \mathfrak{A} \rightarrow \mathfrak{B}$ satisfying $\pi\left(A^{*}\right)=\pi(A)^{*}$ is called a *-homomorphism.

3.4 Ideals

\mathfrak{B} is an ideal of an algebra \mathfrak{A}, if it is a linear subspace of \mathfrak{A} and $A \in \mathfrak{A}, B \in \mathfrak{B} \Rightarrow A B, B A \in \mathfrak{B}$.
We say that an ideal \mathfrak{B} is proper if $\mathfrak{B} \neq \mathfrak{A}$. We say that an ideal \mathfrak{B} is nontrivial if $\mathfrak{B} \neq \mathfrak{A}$ and $\mathfrak{B} \neq\{0\}$.

Theorem 3.1 The kernel of a homomorphism is an ideal. If \mathfrak{B} is an ideal of \mathfrak{A}, then $\mathfrak{A} / \mathfrak{B}$ has a natural structure of an algebra. The map

$$
\mathfrak{A} \ni A \mapsto A+\mathfrak{B} \in \mathfrak{A} / \mathfrak{B}
$$

is a surjective homomorphism whose kernel is \mathfrak{B}. If $\mathfrak{A} \rightarrow \mathfrak{C}$ is a different surjective homorphism whose kernel is also equal \mathfrak{B}, then $\mathfrak{C} \simeq \mathfrak{A} / \mathfrak{B}$.

Saying that

$$
\mathfrak{B} \xrightarrow{\phi} \mathfrak{A} \xrightarrow{\psi} \mathfrak{H}
$$

is an exact sequence we mean that $\operatorname{Ker} \psi=\operatorname{Ran} \phi$.
In particular,

$$
\begin{equation*}
0 \rightarrow \mathfrak{B} \xrightarrow{\phi} \mathfrak{A} \xrightarrow{\psi} \mathfrak{H} \rightarrow 0 \tag{3.3}
\end{equation*}
$$

means that ϕ is injective, ψ is surjective and $\operatorname{Ker} \psi=\operatorname{Ran} \phi$. Then ψ generates an isomorphism of $\mathfrak{A} / \phi(\mathfrak{B})$ with \mathfrak{H}. (3.3) is called then a short exact sequence We say that \mathfrak{A} is an extension of \mathfrak{B} by \mathfrak{H}.

Theorem 3.2 (1) If \mathfrak{H}, \mathfrak{B} are ideals, then so is $\mathfrak{H}+\mathfrak{B}$ and $\mathfrak{H} \cap \mathfrak{B}=\mathfrak{H} \cdot \mathfrak{B}$.
(2) If $\phi: \mathfrak{A} \rightarrow \mathfrak{B}$ is a surjective homorphism between algebras, then $\mathfrak{C} \mapsto \phi(\mathfrak{C})$ defines a bijection between ideals of \mathfrak{A} containing $\operatorname{Ker} \phi$ and ideals of \mathfrak{B}.

3.5 Quaternionic vector spaces

We say that $(\mathcal{V},+, 0)$ is a quaternionic vector space if it is an abelian group equipped with the operations

$$
\mathbb{H} \times \mathcal{V} \ni(x, v) \mapsto x v \in \mathcal{V}, \quad \mathcal{V} \times \mathbb{H} \ni(v, x) \mapsto v x \in \mathcal{V},
$$

such that

$$
\begin{array}{llll}
(x+y) v=x v+y v, & (x y) v=x(y v), & x, y \in \mathbb{H}, & v \in \mathcal{V} . \\
v(x+y)=v x+v y, & v(x y)=(v x) y, & x, y \in \mathbb{H}, & v \in \mathcal{V} .
\end{array}
$$

For example, \mathbb{H}^{n} are quaternionic vector spaces. Quaternionic vector spaces isomorphic to \mathbb{H}^{n} are said to be of quaternionic dimension n.

Transformations \mathbb{H}-linear from the left/right on a quaternionic vector space have an obvious definition. The set of \mathbb{H}-linear transformations from the right from \mathcal{V} to \mathcal{W} is denoted $L(\mathcal{V}, \mathcal{W})$. As usual, $L(\mathcal{V}):=L(\mathcal{V}, \mathcal{V})$.

Elements of $L\left(\mathbb{H}^{n}, \mathbb{H}^{m}\right)$ can be obviously represented with matrices $m \times n$ of quaternionic elements.

If we fix the embedding (2.7), then quaternionic vector spaces can be reinterpreted as complex vector spaces, and quaternionic Hilbert spaces as complex Hilbert spaces. If \mathcal{V} is a quaternionic vector space, then $\mathcal{V}_{\mathbb{C}}$ denotes \mathcal{V} understood as a complex space. It is called a complex form of the space \mathcal{V}.

3.6 Real and complex simple algebras

An algebra over \mathbb{K} that does not contain nontrivial ideals and is different from \mathbb{K} with the zero product is called a simple algebra.

It is well known by the Wederburn Theorem that one can classify all finite dimensional algebras over \mathbb{C} and \mathbb{R}. The complex case is especially easy:

Theorem 3.3 Let \mathfrak{A} be a complex finite dimensional simple algebra. Then there exists $n \in \mathbb{N}$ such that \mathfrak{A} is isomorphic to $L\left(\mathbb{C}^{n}\right)$.

The corresponding real classification is slightly more complicated:
Theorem 3.4 Let \mathfrak{A} be a real finite dimensional simple algebra. Then thgere exists $n \in \mathbb{N}$ such that \mathfrak{A} is isomorphic to $L\left(\mathbb{C}^{n}\right), L\left(\mathbb{R}^{n}\right)$ or $L\left(\mathbb{H}^{n}\right)$.

Note that $L\left(\mathbb{R}^{n}\right)$ can be embedded in $L\left(\mathbb{C}^{n}\right)$:

$$
L\left(\mathbb{R}^{n}\right)=\left\{A \in L\left(\mathbb{C}^{n}\right): A=\bar{A}\right\} .
$$

$L\left(\mathbb{H}^{n}\right)$ can be embedded in $L^{2}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{n}\right)$:

$$
L\left(\mathbb{H}^{n}\right)=\left\{A \in L\left(\mathbb{C}^{2} \otimes \mathbb{C}^{n}\right): R A=\bar{A} R\right\},
$$

where $R=\pi(\mathrm{j}) \otimes \mathbb{1}$.

3.7 Algebras generated by relations

Suppose that $\left\{e_{i}: i \in I\right\}$ is a set. It is obvious what is the unital algebra generated by $\left\{e_{i}\right\}_{i \in I}$ is a set. Let us denote it $\operatorname{Free}\left\{e_{i}: i \in I\right\}$. Suppose that $R \subset \operatorname{Free}\left\{e_{i}: i \in I\right\}$. Let $\operatorname{Ideal}(R)$ be the ideal generated by R. Then $\operatorname{Free}\left\{e_{i}: i \in I\right\} / \operatorname{Ideal}(R)$ is called the algebra generated by $\left\{e_{i}: i \in I\right\}$ with relations R. We had a few examples oof this construction in the introduction.

4 Second quantization

In this chapter we describe the terminology and notation of multilinear algebra. We will concentrate on the infinite dimensional case, where it is often natural to use the structure of Hilbert spaces. We will introduce Fock spaces and various classes of operators acting on them. In quantum physics the passage from a dynamics on one-particle spaces to a dynamics on Fock spaces is often called second quantization - hence the name of the chapter.

We will consider two setups: that of vector spaces and that of Hilbert spaces. If \mathcal{X}, \mathcal{Y} are vector spaces, then $L(\mathcal{X}, \mathcal{Y})$ will denote the set of linear operators from \mathcal{X} to \mathcal{Y}. If \mathcal{X}, \mathcal{Y} are Hilbert spaces, then $B(\mathcal{X}, \mathcal{Y})$ will denote the set of bounded operators fro \mathcal{X} to \mathcal{Y}.

4.1 Vector and Hilbert spaces

Let \mathcal{V} be a vector space. A set $\left\{e_{i}: i \in I\right\} \subset \mathcal{V}$ is called linearly independent if for any finite subset $\left\{e_{i_{1}}, \ldots, e_{i_{n}}\right\} \subset\left\{e_{i}: i \in I\right\}$

$$
\begin{equation*}
c_{1} e_{i_{1}}+\cdots+c_{n} e_{i_{n}}=0 \Rightarrow c_{1}=\cdots=c_{n}=0 \tag{4.1}
\end{equation*}
$$

$\left\{e_{i}: \quad i \in I\right\}$ is a Hamel basis (or simply a basis) of \mathcal{V} if it is a maximal linearly independent set. It means that it is linearly independent and if we add any $v \in \mathcal{V}$ to $\left\{e_{i}: i \in I\right\} \subset \mathcal{V}$ then it is not linearly independent any more. Note that every $v \in \mathcal{V}$ can be written as a finite linear combination $v=\sum_{i \in I} \lambda_{i} e_{i}$ in a unique way.

Let \mathcal{V} be a vector space over \mathbb{C} or \mathbb{R} equipped with a scalar product $(v \mid w)$ (positive, nondegenerate, sesquilinear form). It defines a metric on \mathcal{V} by

$$
\begin{equation*}
\|v-w\|:=\sqrt{(v-w \mid v-w)} \tag{4.2}
\end{equation*}
$$

We say that $\mathcal{V},(\cdot \mid \cdot)$ is a Hilbert space if \mathcal{V} is complete.
If $\mathcal{V},(\cdot \mid \cdot)$ is not necessarily complete, then we can always complete it, that is find a larger complete space $\mathcal{V}^{\mathrm{cpl}},(\cdot \mid \cdot)$ in which \mathcal{V} is embedded as a dense subspace. $\mathcal{V}^{\text {cpl }}$ is uniquely defined and is called the completion of \mathcal{V}.

For instance, if we take $C_{\mathrm{c}}(\mathbb{R}), C_{\mathrm{c}}^{\infty}(\mathbb{R})$ or $\mathcal{S}(\mathbb{R})$ with the usual scalar product $(f \mid g)=$ $\int \overline{f(x)} g(x) \mathrm{d} x$, then its completion is $L^{2}(\mathbb{R})$.

If \mathcal{V} is a Hilbert space, then $\left\{e_{i}: i \in I\right\}$ is called an orthonormal basis (o.n.b.) if it is a maximal orthonormal set. Note that every $v \in \mathcal{V}$ can be written as a linear combination $v=\sum_{i \in I} \lambda_{i} e_{i}$, where $\sum_{i \in I}\left|\lambda_{i}\right|^{2}<\infty$, in a unique way

Note that in a finite dimensional Hilbert space every orthonormal basis is a basis. This is not true in infinite dimensional Hilbert spaces.

4.2 Direct sum

Let $\left(\mathcal{V}_{i}\right)_{i \in I}$ be a family of vector spaces. The algebraic direct sum of \mathcal{V}_{i} will be denoted

$$
\begin{equation*}
\underset{i \in I}{\underset{i l}{\text { al }}} \mathcal{V}_{i}, \tag{4.3}
\end{equation*}
$$

It consists of sequences $\left(v_{i}\right)_{i \in I}$, which are zero for all but a finite number of elements.
If $\left(\mathcal{V}_{i}\right)_{i \in I}$ is a family of Hilbert spaces, then $\underset{i \in I}{\underset{i}{\text { a }}} \mathcal{V}_{i}$ has a natural scalar product.

$$
\begin{equation*}
\left(\left(y_{i}\right)_{i \in I} \mid\left(v_{i}\right)_{i \in I}\right)=\sum_{i \in I}\left(y_{i} \mid v_{i}\right) . \tag{4.4}
\end{equation*}
$$

The direct sum of \mathcal{V}_{i} in the sense of Hilbert spaces is defined as

$$
\underset{i \in I}{\oplus} \mathcal{V}_{i}:=\left(\underset{i \in I}{\stackrel{\text { ®1 }}{\oplus}} \mathcal{V}_{i}\right)^{\mathrm{cpl}}
$$

If I is finite, then $\underset{i \in I}{\underset{i}{\text { al }}} \mathcal{V}_{i}=\underset{i \in I}{\oplus} \mathcal{V}_{i}$
Let $\left(\mathcal{V}_{i}\right),\left(\mathcal{W}_{i}\right), i \in I$, be families of vector spaces. If $a_{i} \in L\left(\mathcal{V}_{i}, \mathcal{W}_{i}\right), i \in I$, then their direct sum is denoted $\underset{i \in I}{\oplus} a_{i}$ and belongs to $L\left(\underset{i \in I}{\oplus} \mathcal{V}_{i}, \underset{i \in I}{\text { al }} \mathcal{W}_{i}\right)$. It is defined as

$$
\begin{equation*}
\left(\underset{i \in I}{ } a_{i}\right)\left(v_{i}\right)_{i \in I}=\left(a_{i} v_{i}\right)_{i \in I} \tag{4.5}
\end{equation*}
$$

Let $\mathcal{V}_{i}, \mathcal{W}_{i}, i \in I$ be families of Hilbert spaces, and $a_{i} \in B\left(\mathcal{V}_{i}, \mathcal{W}_{i}\right)$ with $\sup _{i \in I}\left\|a_{i}\right\|<\infty$. Then the operator $\underset{i \in I}{\oplus} a_{i}$ is bounded. Its extension in $B\left(\underset{i \in I}{\oplus} \mathcal{V}_{i}, \underset{i \in I}{\oplus} \mathcal{W}_{i}\right)$ will be denoted by the same symbol.

4.3 Tensor product

Let \mathcal{V}, \mathcal{W} be vector spaces. The algebraic tensor product of \mathcal{V} and \mathcal{W} will be denoted $\mathcal{V} \otimes \mathcal{W}$. Here is one of its definitions

Let \mathcal{Z} be the space of finite linear combinations of vectors $(v, w), v \in \mathcal{V}, w \in \mathcal{W}$. In \mathcal{Z} we define the subspace \mathcal{Z}_{0} spanned by

$$
\begin{aligned}
(\lambda v, w)-\lambda(v, w), & (v, \lambda w)-\lambda(v, w), \\
\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right), & \left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right) .
\end{aligned}
$$

We set $\mathcal{V} \stackrel{\text { al }}{\otimes} \mathcal{W}:=\mathcal{Z} / \mathcal{Z}_{0}$. If $v \in \mathcal{V}, w \in \mathcal{W}$, we define $v \otimes w:=(v, w)+\mathcal{Z}_{0}$.
Remark 4.1 Note that (v, w) above is just a symbol and not an element of $\mathcal{V} \oplus \mathcal{W}$. Elements of the space \mathcal{Z} have the form

$$
\begin{equation*}
\sum_{j=1}^{n} \lambda_{n}\left(v_{n}, w_{n}\right) \tag{4.6}
\end{equation*}
$$

In particular, in general

$$
\begin{align*}
\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right) & \nsim\left(v_{1}+v_{2}, w_{1}+w_{2}\right), \tag{4.7}\\
\lambda(v, w) & \nsim(\lambda v, \lambda w) . \tag{4.8}
\end{align*}
$$

$\mathcal{V} \stackrel{\text { al }}{\otimes} \mathcal{W}$ is a vector space and \otimes is an operation satisfying

$$
\begin{aligned}
(\lambda v) \otimes w=\lambda v \otimes w, & v \otimes(\lambda w)=\lambda v \otimes w, \\
\left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w, & v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2} .
\end{aligned}
$$

Vectors of the form $v \otimes w$ are called simple tensors. Not all elements of $\mathcal{V} \otimes \mathcal{W}$ are simple tensors, but they $\operatorname{span} \mathcal{V} \otimes \mathcal{W}$.

If $\left\{e_{i}\right\}_{i \in I}$ and $\left\{f_{j}\right\}_{j \in J}$ are bases of \mathcal{V}, resp. \mathcal{W}, then $\left\{e_{i} \otimes f_{j}\right\}_{(i, j) \in I \times J}$ is a basis of $\mathcal{V} \stackrel{\text { al }}{\otimes} \mathcal{W}$, Note that we can identify

$$
\begin{equation*}
\underset{n=0}{\stackrel{\infty}{\text { al }}} \mathcal{V}^{\text {al }} \underset{\otimes}{\otimes} \simeq \operatorname{Free}\left\{e_{i}: i \in I\right\} . \tag{4.9}
\end{equation*}
$$

If \mathcal{V}, \mathcal{W} are Hilbert spaces, then $\mathcal{V} \otimes \mathcal{Q} \mathcal{W}$ has a unique scalar product such that

$$
\left(v_{1} \otimes w_{1} \mid v_{2} \otimes w_{2}\right):=\left(v_{1} \mid v_{2}\right)\left(w_{1} \mid w_{2}\right), \quad v_{1}, v_{2} \in \mathcal{V}, \quad w_{1}, w_{2} \in \mathcal{W}
$$

To see this it is enough to choose o.n.b's $\left\{e_{i}\right\}_{i \in I}$ and $\left\{f_{j}\right\}_{j \in J}$ in \mathcal{V}, resp. \mathcal{W}. Then every element of $\mathcal{V} \otimes \mathcal{}$ al \mathcal{W} can be written as an (infinite) linear combination of $e_{i} \otimes f_{j}$ and we can use them as an orthonormal set defining this scalar product.

We set

$$
\mathcal{V} \otimes \mathcal{W}:=(\mathcal{V} \otimes \mathcal{W})^{\mathrm{cpl}}
$$

and call it the tensor product of \mathcal{V} and \mathcal{W} in the sense of Hilbert spaces. If $\left\{e_{i}\right\}_{i \in I}$ and $\left\{f_{j}\right\}_{j \in J}$ are o.n.b's of \mathcal{V}, resp. \mathcal{W}, then $\left\{e_{i} \otimes f_{j}\right\}_{(i, j) \in I \times J}$ is an o.n.b. of $\mathcal{V} \otimes \mathcal{W}$,

If one of the spaces \mathcal{V} or \mathcal{W} is finite dimensional, then $\mathcal{V} \otimes \mathcal{W}=\mathcal{V} \otimes \mathcal{W}$.
Proposition 4.2 Let $\mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{W}_{1}, \mathcal{W}_{2}$ be vector spaces. If $a \in L\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right)$ and $b \in L\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right)$, then there exists a unique operator $a \otimes b \in L\left(\mathcal{V}_{1} \stackrel{\text { al }}{\otimes} \mathcal{W}_{1}, \mathcal{V}_{2} \stackrel{\text { al }}{\otimes} \mathcal{W}_{2}\right)$ such that on simple tensors we have

$$
\begin{equation*}
(a \otimes b)(y \otimes w)=(a y) \otimes(b w) \tag{4.10}
\end{equation*}
$$

It is called the tensor product of a and b.
Proof. Choose bases $\left(e_{i}\right)_{i \in I}$ in \mathcal{V}_{1} and $\left(f_{j}\right)_{j \in J}$ in \mathcal{W}_{1}. Define $a \otimes b$ on the basis $\left(e_{i} \otimes f_{j}\right)_{(i, j) \in I \times J}$ by

$$
\begin{equation*}
(a \otimes b) e_{i} \otimes f_{j}:=\left(a e_{i}\right) \otimes\left(b f_{j}\right) \tag{4.11}
\end{equation*}
$$

Then we check that thus defined operator satisfies 4.10). It is unique, because simple tensors span the whole tensor product.

Proposition 4.3 If $\mathcal{V}_{1}, \mathcal{V}_{2}, \mathcal{W}_{1}, \mathcal{W}_{2}$ are Hilbert spaces and $a \in B\left(\mathcal{V}_{1}, \mathcal{V}_{2}\right), b \in B\left(\mathcal{W}_{1}, \mathcal{W}_{2}\right)$, then $a \otimes b$ is bounded. Hence it extends uniquely to an operator in $B\left(\mathcal{V}_{1} \otimes \mathcal{W}_{1}, \mathcal{V}_{2} \otimes \mathcal{W}_{2}\right)$, denoted by the same symbol.

Proof. To prove the boundedness of $a \otimes b=a \otimes \mathbb{1} \mathbb{1} \otimes b$, it is sufficient to consider the operator $a \otimes \mathbb{1}$ from $\mathcal{V}_{1} \stackrel{\text { al }}{\otimes} \mathcal{W}$ to $\mathcal{V}_{2} \stackrel{\text { al }}{\otimes} \mathcal{W}$. Let e_{1}, e_{2}, \ldots and $f_{1}, f_{2} \ldots$ be orthonormal bases in $\mathcal{V}_{1}, \mathcal{W}$ resp. Consider a vector $\sum c_{i j} \mathrm{e}_{i} \otimes f_{j}$.

$$
\begin{aligned}
\left\|a \otimes \mathbb{1} \sum_{i} c_{i j} e_{i} \otimes f_{j}\right\|^{2} & =\sum_{j}\left\|\sum_{i} c_{i j} a e_{i}\right\|^{2} \\
=\sum_{j}\|a\|^{2}\left\|\sum_{i} c_{i j} e_{i}\right\|^{2} & =\sum_{j}\|a\|^{2} \sum_{i}\left|c_{i j}\right|^{2} \\
& =\|a\|^{2}\left\|\sum_{i j} c_{i j} e_{i} \otimes f_{j}\right\|^{2} .
\end{aligned}
$$

4.4 Fock spaces

Let \mathcal{Y} be a vector space. Let S_{n} denote the permutation group of n elements and $\sigma \in S_{n}$.
Proposition 4.4 There exists a unique operator $\Theta(\sigma)$ on ${ }^{\text {al } n}{ }^{n} \mathcal{Y}$ such that

$$
\begin{equation*}
\Theta(\sigma) y_{1} \otimes \cdots \otimes y_{n}=y_{\sigma^{-1}(1)} \otimes \cdots \otimes y_{\sigma^{-1}(n)} . \tag{4.12}
\end{equation*}
$$

Proof. Choose a basis $\left\{e_{i}\right\}_{i \in I}$ of \mathcal{Y}. We define $\Theta(\sigma)$ on the corresponding basis of ${ }^{\text {al }}{ }^{n} \mathcal{Y}$:

$$
\Theta(\sigma) e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}=e_{i_{\sigma^{-1}(1)}} \otimes \cdots \otimes e_{i_{\sigma^{-1}(n)}}
$$

Then we extend by linearity $\Theta(\sigma)$ to the whole ${ }^{\text {al }}{ }^{n} \mathcal{Y}$. It is easy to see that the operator defined in this way satisfies 4.12). The uniqueness is obvious.

We can check that
is a group representation.
We say that a tensor $\Psi \in{ }_{\otimes}^{\text {al }}{ }^{n} \mathcal{Y}$ is symmetric, resp. antisymmetric if

$$
\begin{equation*}
\Theta(\sigma) \Psi=\Psi, \quad \text { resp. } \quad \Theta(\sigma) \Psi=\operatorname{sgn}(\sigma) \Psi . \tag{4.14}
\end{equation*}
$$

We define the symmetrization/antisymmetrization projections

$$
\Theta_{\mathrm{s}}^{n}:=\frac{1}{n!} \sum_{\sigma \in S_{n}} \Theta(\sigma), \quad \Theta_{\mathrm{a}}^{n}:=\frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sgn} \sigma \Theta(\sigma) .
$$

They project onto symmetric/antisymmetric tensors.

We will often write s/a to denote either s or a.
If \mathcal{Y} is a Hilbert space, then $\Theta(\sigma)$ is unitary and $\Theta_{\mathrm{s} / \mathrm{a}}^{n}$ are orthogonal projections.
Let \mathcal{Y} be a vector space. The algebraic n-particle bosonic/fermionic space is defined as

$$
\stackrel{a l}{\mathrm{al}} \mathrm{~s} / \mathrm{a}_{\mathcal{Y}}:=\Theta_{\mathrm{s} / \mathrm{a}}^{n}{ }^{\text {al } n} \mathcal{Y} .
$$

The algebraic bosonic/fermionic Fock space or the symmetric/antisymmetric tensor algebra is

The vacuum vector is $\Omega:=1 \in \otimes_{\mathrm{s} / \mathrm{a}}^{0} \mathcal{Y}=\mathbb{C}$.
If \mathcal{Y} is a Hilbert space, then the n-particle bosonic/fermionic space is defined as

$$
\otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Y}:=\Theta_{\mathrm{s} / \mathrm{a}}^{n} \otimes^{n} \mathcal{Y} .
$$

The bosonic/fermionic Fock space is

$$
\Gamma_{\mathrm{s} / \mathrm{a}}(\mathcal{Y}):=\underset{n=0}{\infty} \otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Y} .
$$

4.5 Creation/annihilation operators

For $z \in \mathcal{Y}$ we define the creation operator

$$
\hat{a}^{*}(z) \Psi:=\Theta_{\mathrm{s} / \mathrm{a}}^{n+1} \sqrt{n+1} z \otimes \Psi, \quad \Psi \in \otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Y},
$$

and the annihilation operator $\hat{a}(z):=\left(\hat{a}^{*}(z)\right)^{*}$. (We often omit the hat). We have

$$
\begin{align*}
& {[a(z), a(w)]_{\mp}=\left[a^{*}(z), a^{*}(w)\right]_{\mp}=0,} \tag{4.15}\\
& {\left[a(z), a^{*}(w)\right]_{\mp}=(z \mid w) .} \tag{4.16}
\end{align*}
$$

We will sometimes write $(z \mid$ and $\mid z)$ for the following operators

$$
\begin{align*}
& \mathcal{V} \ni v \mapsto(z \mid v:=(z \mid v) \in \mathbb{C}, \tag{4.17}\\
& \mathbb{C} \ni \lambda \mapsto \lambda \mid z):=\lambda z \in \mathcal{V} . \tag{4.18}
\end{align*}
$$

Then on $\otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Y}$ we have

$$
\begin{align*}
a^{*}(z) & \left.=\Theta_{\mathrm{s} / \mathrm{a}}^{n+1} \sqrt{n+1} \mid z\right) \otimes \mathbb{1}^{n \otimes}, \tag{4.19}\\
a(z) & =\sqrt{n}\left(z \mid \otimes \mathbb{1}^{(n-1) \otimes} .\right. \tag{4.20}
\end{align*}
$$

Above we used the compact notation for creation/annihilation operators popular among mathematicians. Physicists commonly prefer the traditional notation, which is longer and less canonical.

One version of the traditional notation uses a fixed basis $\left\{e_{i}\right\}_{i \in I}$ of \mathcal{Z} and set $a_{i}^{*}:=a^{*}\left(e_{i}\right)$, $a_{i}:=a\left(e_{i}\right)$. Then if $z=\sum_{i} z_{i} e_{i}$, we write

$$
\begin{align*}
& a^{*}(z)=\sum_{i} z_{i} a_{i}^{*}, \quad a(z)=\sum_{i} \bar{z}_{i} a_{i} \tag{4.21}\\
& {\left[a_{i}, a_{j}^{*}\right]_{\mp}=\delta_{i j}, \quad\left[a_{i}, a_{j}\right]_{\mp}=0} \tag{4.22}
\end{align*}
$$

If $\Phi \in \stackrel{\text { al }}{\mathrm{S}} / \mathrm{a}_{n} \mathcal{Z}$, then it can be represented by a symmetric/antisymmetric matrix $\Phi_{i_{1}, \ldots, i_{n}}$. The annihliation operator acts on Φ as

$$
\begin{equation*}
\left(a_{i} \Phi\right)_{j_{1}, \ldots, j_{n-1}}=\sqrt{n} \Phi_{i, j_{1}, \ldots, j_{n-1}} \tag{4.23}
\end{equation*}
$$

Alternatively, one often identifies \mathcal{Z} with, say, $L^{2}\left(\mathbb{R}^{d}, \mathrm{~d} \xi\right)$. If z equals a function $\Xi \ni \xi \mapsto z(\xi)$, then

$$
a^{*}(z)=\int z(\xi) a_{\xi}^{*} \mathrm{~d} \xi, \quad a(z)=\int \bar{z}(\xi) a_{\xi} \mathrm{d} \xi
$$

Note that formally

$$
\begin{equation*}
\left[a(\xi), a^{*}\left(\xi^{\prime}\right)\right]_{\mp}=\delta\left(\xi-\xi^{\prime}\right), \quad\left[a(\xi), a\left(\xi^{\prime}\right)\right]_{\mp}=0 \tag{4.24}
\end{equation*}
$$

The space $\otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Z}$ can then be identified with the space of symmetric/antisymmetric square integrable functions $L^{2}\left(\mathbb{R}^{n d}\right)$, and then

$$
\begin{equation*}
(a(\xi) \Phi)\left(\xi_{1}^{\prime}, \ldots, \xi_{n-1}^{\prime}\right)=\sqrt{n} \Phi\left(\xi, \xi_{1}^{\prime}, \ldots, \xi_{n-1}^{\prime}\right) \tag{4.25}
\end{equation*}
$$

4.6 Integral kernel of an operator

Every linear operator A on \mathbb{C}^{n} can be represented by a matrix $\left[A_{i}^{j}\right]$.
One would like to generalize this concept to infinite dimensional spaces (say, Hilbert spaces) and continuous variables instead of a discrete variables i, j. Suppose that a given vector space is represented, say, as $L^{2}\left(\mathbb{R}^{d}\right)$, or more generally, $L^{2}(X)$ where X is a certain space with a measure. One often uses the representation of an operator A in terms of its integral kernel $\mathbb{R}^{d} \times \mathbb{R}^{d} \ni(x, y) \mapsto A(x, y)$, so that

$$
A \Psi(x)=\int A(x, y) \Psi(y) \mathrm{d} y
$$

Note that strictly speaking $A(\cdot, \cdot)$ does not have to be a function. E.g. in the case $X=\mathbb{R}^{d}$ it could be a distribution, hence one often says the distributional kernel instead of the integral kernel. (Note that we use the integral notation for distributions, thus writing for a test function $\Phi \int F(x) \Phi(x) \mathrm{d} x$ often means $F(\Phi)$.)

Sometimes $A(\cdot, \cdot)$ is ill-defined anyway. At least formally, we have

$$
\begin{gathered}
A B(x, y)=\int A(x, z) B(z, y) \mathrm{d} z \\
A^{*}(x, y)=\overline{A(y, x)}
\end{gathered}
$$

Here is a situation where there is a good mathematical theory of integral/distributional kernels:

Theorem 4.5 (The Schwartz kernel theorem) B is a continuous linear transformation from $\mathcal{S}\left(\mathbb{R}^{d}\right)$ to $\mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ iff there exists a distribution $B(\cdot, \cdot) \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d} \oplus \mathbb{R}^{d}\right)$ such that

$$
(\Psi \mid B \Phi)=\int \overline{\Psi(x)} B(x, y) \Phi(y) \mathrm{d} x \mathrm{~d} y, \quad \Psi, \Phi \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

Note that \Leftarrow is obvious. The distribution $B(\cdot, \cdot) \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d} \oplus \mathbb{R}^{d}\right)$ is called the distributional kernel of the transformation B. All bounded operators on $L^{2}\left(\mathbb{R}^{d}\right)$ satisfy the Schwartz kernel theorem.

Examples:
(1) $\mathrm{e}^{-\mathrm{i} x y}$ is the kernel of the Fourier transformation
(2) $\delta(x-y)$ is the kernel of identity.
(3) $\partial_{x} \delta(x-y)$ is the kernel of ∂_{x}.

4.7 Position and momentum representation

The standard definition of the Fourier transform of V is

$$
\begin{equation*}
\hat{V}(p)=\int \mathrm{e}^{-\mathrm{i} x p} V(x) \mathrm{d} x, \quad V(x)=\frac{1}{(2 \pi)^{d}} \int \hat{V}(p) \mathrm{d} p \tag{4.26}
\end{equation*}
$$

One uses the unitary Fourier transform

$$
\begin{equation*}
\mathcal{F} f(p):=\frac{1}{(2 \pi)^{\frac{d}{2}}} \int \mathrm{e}^{-\mathrm{i} x p} f(x) \mathrm{d} x, \quad \mathcal{F}^{-1} f(x):=\frac{1}{(2 \pi)^{\frac{d}{2}}} \int \mathrm{e}^{\mathrm{i} x p} f(p) \mathrm{d} p \tag{4.27}
\end{equation*}
$$

to pass from the position to momentum representation. Thus if we have an operator K with integral kernel $K\left(x^{\prime}, x\right)$ in the position representation, then its kernel in the momentum representation is

$$
\begin{equation*}
K\left(p^{\prime}, p\right)=\frac{1}{(2 \pi)^{d}} \int \mathrm{e}^{\mathrm{i} x^{\prime} p^{\prime}-\mathrm{i} x p} K\left(x^{\prime}, x\right) \mathrm{d} x^{\prime} \mathrm{d} x \tag{4.28}
\end{equation*}
$$

For instance, the 1-body potential $V(x)$ acting on $L^{2}\left(\mathbb{R}^{d}\right)$ has the integral kernels

$$
\begin{array}{r}
\delta\left(x^{\prime}-x\right) V(x) \quad \text { in the position representation } \\
\frac{\hat{V}\left(p^{\prime}-p\right)}{(2 \pi)^{d}} \quad \text { in the momentum representation } \tag{4.30}
\end{array}
$$

A 2-body potential $V\left(x_{1}-x_{2}\right)$ acting on $L^{2}\left(\mathbb{R}^{2 d}\right)$ has the integral kernels

$$
\begin{align*}
& \delta\left(x_{1}^{\prime}-x_{1}\right) \delta\left(x_{2}^{\prime}-x_{2}\right) V\left(x_{1}-x_{2}\right) \quad \text { in the position representation } \tag{4.31}\\
= & \delta\left(p_{1}^{\prime}+p_{2}^{\prime}-p_{1}-p_{2}\right) \frac{\hat{V}\left(p_{1}^{\prime}-p_{1}\right)}{(2 \pi)^{d}} \quad \text { in the momentum representation } \tag{4.32}
\end{align*}
$$

In fact, 4.32 equals

$$
\begin{equation*}
\frac{1}{(2 \pi)^{2 d}} \iint \mathrm{e}^{\mathrm{i}\left(x_{1}^{\prime} p_{1}^{\prime}+x_{2}^{\prime} p_{2}^{\prime}-x_{1} p_{1}-x_{2} p_{2}\right)} \delta\left(x_{1}^{\prime}-x_{1}\right) \delta\left(x_{2}^{\prime}-x_{2}\right) V\left(x_{1}-x_{2}\right) \mathrm{d} x_{1}^{\prime} \mathrm{d} x_{2}^{\prime} \mathrm{d} x_{1} \mathrm{~d} x_{2} \tag{4.33}
\end{equation*}
$$

If we replace \mathbb{R}^{d} with $[0, L]^{d}$ with periodic boundary conditions, then the momentum space is $\frac{2 \pi}{L} \mathbb{Z}^{d}$. The standard definition of the Fourier transform of V is

$$
\begin{equation*}
\hat{V}(p)=\int \mathrm{e}^{-\mathrm{i} x p} V(x) \mathrm{d} x, \quad V(x)=\frac{1}{L^{d}} \sum_{p} \hat{V}(p) . \tag{4.34}
\end{equation*}
$$

The unitary Fourier transform is

$$
\begin{equation*}
\mathcal{F} f(p):=\frac{1}{L^{\frac{d}{2}}} \int \mathrm{e}^{-\mathrm{i} x p} f(x) \mathrm{d} x, \quad \mathcal{F}^{-1} f(x):=\frac{1}{L^{\frac{d}{2}}} \sum_{p} \mathrm{e}^{\mathrm{i} x p} f(p) . \tag{4.35}
\end{equation*}
$$

4.8 Second quantization of operators

For a contraction q on \mathcal{Z} the operator $q^{\otimes n}$ commutes with $\Theta(\sigma), \sigma \in S_{n}$. Therefore, it preserves $\otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Z}$. We define the operator $\Gamma(q)$ on $\Gamma_{\mathrm{s} / \mathrm{a}}(\mathcal{Z})$ by

$$
\left.\Gamma(q)\right|_{\otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Z}}=\left.q \otimes \cdots \otimes q\right|_{\otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Z}}
$$

$\Gamma(q)$ is called the second quantization of q.
Similarly, for an operator h on \mathcal{Z} the operator $h \otimes 1^{(n-1) \otimes}+\cdots+1^{(n-1) \otimes} \otimes h$ preserves $\otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Z}$. We define the operator $\mathrm{d} \Gamma(h)$ by

$$
\left.\mathrm{d} \Gamma(h)\right|_{\otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Z}}=h \otimes 1^{(n-1) \otimes}+\cdots+\left.1^{(n-1) \otimes} \otimes h\right|_{\otimes_{\mathrm{s} / \mathrm{a}}^{n} z}
$$

$\mathrm{d} \Gamma(h)$ is called the (infinitesimal) second quantization of h.
Note the identities

$$
\begin{align*}
& \Gamma\left(\mathrm{e}^{\mathrm{i} t h}\right)=\mathrm{e}^{\mathrm{i} t \mathrm{~d} \Gamma(h)}, \quad \Gamma(q) \Gamma(r)=\Gamma(q r), \quad[\mathrm{d} \Gamma(h), \mathrm{d} \Gamma(k)]=\mathrm{d} \Gamma([h, k]), \\
& \Gamma(q) \mathrm{d} \Gamma(h) \Gamma\left(q^{-1}\right)=\mathrm{d} \Gamma\left(q h q^{-1}\right) . \tag{4.36}
\end{align*}
$$

Let $\left\{e_{i} \mid i \in I\right\}$ be an orthonormal basis of \mathcal{Z}. Write $\hat{a}_{i}:=\hat{a}\left(e_{i}\right)$. Let h be an operator on \mathcal{Z} given by the matrix [$h_{i j}$]. Then

$$
\begin{equation*}
\mathrm{d} \Gamma(h)=\sum_{i j} h_{i j} \hat{a}_{i}^{*} \hat{a}_{j} . \tag{4.37}
\end{equation*}
$$

Let us prove it in the bosonic case. Let $\Phi \in \Gamma_{\mathrm{s}}^{n}(\mathcal{Z})$.

$$
\begin{align*}
\hat{a}_{i}^{*} \hat{a}_{j} \Phi & \left.=n \Theta_{\mathrm{s}}^{n} \mid e_{i}\right) \otimes \mathbb{1}^{(n-1) \otimes}\left(e_{j} \mid \otimes \mathbb{1}^{(n-1) \otimes} \Phi\right. \tag{4.38}\\
& \left.=n \Theta_{\mathrm{s}}^{n} \mid e_{i}\right)\left(e_{j} \mid \otimes \mathbb{1}^{(n-1) \otimes} \Phi\right. \tag{4.39}\\
& \left.\left.=\frac{1}{(n-1)!} \sum_{\sigma \in S_{n}} \Theta(\sigma) \right\rvert\, e_{i}\right)\left(e_{j} \mid \otimes \mathbb{1}^{(n-1) \otimes} \Theta(\sigma)^{-1} \Phi\right. \tag{4.40}\\
& \left.=\sum_{k=1}^{n} \mathbb{1}^{(k-1) \otimes} \mid e_{i}\right)\left(e_{j} \mid \otimes \mathbb{1}^{(n-k) \otimes} \Phi .\right. \tag{4.41}
\end{align*}
$$

More generally, if the integral kernel of an operator h is $h(x, y)$, then

$$
\begin{equation*}
\mathrm{d} \Gamma(h)=\int h(x, y) \hat{a}_{x}^{*} \hat{a}_{y} \mathrm{~d} x \mathrm{~d} y . \tag{4.42}
\end{equation*}
$$

For instance, if h is the multiplication operator by $h(\xi)$, then $\mathrm{d} \Gamma(h)=\int h(\xi) \hat{a}_{\xi}^{*} \hat{a}_{\xi} \mathrm{d} \xi$.

4.9 Symmetric/antisymmetric tensor product

Let $\Psi \in \otimes_{\mathrm{s} / \mathrm{a}}^{p} \mathcal{Z}, \Phi \in \otimes_{\mathrm{s} / \mathrm{a}}^{q} \mathcal{Z}$. We set

$$
\begin{equation*}
\Psi \otimes_{\mathrm{s} / \mathrm{a}} \Phi:=\Theta_{\mathrm{s} / \mathrm{a}}^{p+q} \Psi \otimes \Phi . \tag{4.43}
\end{equation*}
$$

Note that

$$
\begin{equation*}
z \otimes \cdots \otimes z=z \otimes_{\mathrm{s}} \cdots \otimes_{\mathrm{s}} z \tag{4.44}
\end{equation*}
$$

If there are n terms, it is often written as $z^{n \otimes}$. In the antisymmetric case one usually prefers

$$
\begin{equation*}
\Psi \wedge \Phi:=\frac{(p+q)!}{p!q!} \Psi \otimes_{\mathrm{a}} \Phi . \tag{4.45}
\end{equation*}
$$

The operations $\otimes_{\mathrm{s}}, \otimes_{\mathrm{a}}, \wedge$ are associative. We have

$$
\begin{array}{r}
y_{1} \wedge \cdots \wedge y_{n}=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) y_{\sigma(1)} \otimes \cdots \otimes y_{\sigma(n)}, \\
y_{1} \otimes_{\mathrm{a}} \cdots \otimes_{\mathrm{a}} y_{n}=\frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) y_{\sigma(1)} \otimes \cdots \otimes y_{\sigma(n)} . \tag{4.47}
\end{array}
$$

Let $\left\{e_{i}\right\}_{i \in I}$ be a linearly ordered orthonormal basis in \mathcal{Z}. Then

$$
\begin{equation*}
\sqrt{n!} e_{i_{1}} \otimes_{\mathrm{a}} \cdots \otimes_{\mathrm{a}} e_{i_{n}}, \quad i_{1}<\cdots<i_{n} \tag{4.48}
\end{equation*}
$$

forms an o.n.b of $\otimes_{a}^{n}(\mathcal{Z})$.

$$
\begin{equation*}
\frac{\sqrt{n!}}{\sqrt{k_{1}!\cdots k_{n}!}} e_{i_{1}}^{\otimes k_{1}} \otimes_{\mathrm{S}} \cdots \otimes_{\mathrm{s}} e_{i_{m}}^{\otimes k_{m}}, \quad k_{1}+\cdots+k_{m}=n \tag{4.4}
\end{equation*}
$$

forms an o.n.b of $\otimes_{\mathrm{s}}^{m}(\mathcal{Z})$.
If $\operatorname{dim} \mathcal{Z}=d$, then

$$
\begin{equation*}
\operatorname{dim} \otimes_{\mathrm{s}}^{n} \mathcal{Z}=\frac{(d+n-1)!}{(d-1)!n!}, \quad \operatorname{dim} \otimes_{\mathrm{a}}^{n} \mathcal{Z}=\frac{d!}{n!(d-n)!} \tag{4.50}
\end{equation*}
$$

4.10 Exponential law

Let \mathcal{Z}, \mathcal{W} be Hilbert spaces. We can treat them as subspaces of $\mathcal{Z} \oplus \mathcal{W}$. Let $\Phi \in \otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Z}$, $\Psi \in \otimes_{\mathrm{s} / \mathrm{a}}^{m} \mathcal{W}$. We can identify $\Phi \otimes \Psi$ with

$$
\begin{equation*}
U \Phi \otimes \Psi:=\sqrt{\frac{(n+m)!}{n!m!}} \Phi \otimes_{\mathrm{s} / \mathrm{a}} \Psi \in \otimes_{\mathrm{s} / \mathrm{a}}^{n+m}(\mathcal{Z} \oplus \mathcal{W}) \tag{4.51}
\end{equation*}
$$

Theorem 4.6 The map 4.51 extends to a unitary map

$$
\begin{equation*}
U: \Gamma_{\mathrm{s} / \mathrm{a}}(\mathcal{Z}) \otimes \Gamma_{\mathrm{s} / \mathrm{a}}(\mathcal{W}) \rightarrow \Gamma_{\mathrm{s} / \mathrm{a}}(\mathcal{Z} \oplus \mathcal{W}) \tag{4.52}
\end{equation*}
$$

It satisfies

$$
\begin{align*}
U \Omega \otimes \Omega & =\Omega \tag{4.53}\\
\mathrm{d} \Gamma(h \oplus g) U & =U(\mathrm{~d} \Gamma(h) \otimes \mathbb{1}+\mathbb{1} \otimes \mathrm{d} \Gamma(g)) \tag{4.54}\\
\Gamma(p \oplus q) U & =U \Gamma(p) \otimes U \Gamma(q) \tag{4.55}\\
a^{*}(z \oplus w) U & =U\left(a^{*}(z) \otimes \mathbb{1}+\mathbb{1} \otimes a^{*}(w)\right), \tag{4.56}\\
a(z \oplus w) U & =U(a(z) \otimes \mathbb{1}+\mathbb{1} \otimes a(w)), \quad \text { in the bosonic case } \tag{4.57}\\
a^{*}(z \oplus w) U & =U\left(a^{*}(z) \otimes \mathbb{1}+(-1)^{N} \otimes a^{*}(z)\right), \tag{4.58}\\
a(z \oplus w) U & =U\left(a(z) \otimes \mathbb{1}+(-1)^{N} \otimes a(z)\right), \quad \text { in the fermionic case. } \tag{4.59}
\end{align*}
$$

Proof. Let us prove the unitarity of this map in the symmetric case:

$$
\begin{align*}
\Phi \otimes_{\mathrm{S}} \Psi & =\frac{1}{(n+m)!} \sum_{\sigma \in S_{n+m}} \Theta(\sigma) \Phi \otimes \Psi \tag{4.60}\\
& =\frac{n!m!}{(n+m)!} \sum_{[\sigma] \in S_{n+m} / S_{n} \times S_{m}} \Theta(\sigma) \Phi \otimes \Psi \tag{4.61}
\end{align*}
$$

The terms on the right are mutually orthogonal. The maps $\Theta(\sigma)$ are unitary. The number of cosets in $S_{n+m} / S_{n} \times S_{m}$ is $\frac{(n+m)!}{n!m!}$. Therefore the square norm of 4.60 is

$$
\begin{equation*}
\frac{n!m!}{(n+m)!}\|\Phi \otimes \Psi\|^{2} \tag{4.62}
\end{equation*}
$$

4.11 Wick symbol

Suppose we fix a basis $\{e(i): i \in I\}$ in the space \mathcal{Z}. Recall that

$$
\begin{equation*}
e\left(i_{1}\right) \otimes \cdots \otimes e\left(i_{k}\right), \quad i_{1}, \ldots, i_{k} \in I \tag{4.63}
\end{equation*}
$$

$$
\begin{equation*}
b\left(i_{1}, \cdots i_{m} ; i_{k}^{\prime}, \cdots, i_{1}^{\prime}\right) \tag{4.64}
\end{equation*}
$$

Thus if $\Phi \in \otimes^{m} \mathcal{Z}$ to $\Psi \in \otimes^{k} \mathcal{Z}$, then

$$
\begin{equation*}
(\Phi \mid b \Psi)=\sum \cdots \sum \overline{\Phi\left(i_{m}, \cdots i_{1}\right)} b\left(i_{1}, \cdots i_{m}, i_{k}^{\prime}, \cdots, i_{1}^{\prime}\right) \Psi\left(i_{k}^{\prime}, \cdots, i_{1}^{\prime}\right) \tag{4.65}
\end{equation*}
$$

(Note that we invert the order of i_{m}, \ldots, i_{1}-this is just a convention).

We can restrict 4.65) to $\Phi \in \otimes_{\mathrm{s} / \mathrm{a}}^{k} \mathcal{Z}$ to $\Psi \in \otimes_{\mathrm{s} / \mathrm{a}}^{m} \mathcal{Z}$. Then 4.65 will depend only on the symmetrization/antisymmetrization of b, that is

$$
\begin{equation*}
b^{\mathrm{s} / \mathrm{a}}:=\Theta_{\mathrm{s} / \mathrm{a}}^{m} b \Theta_{\mathrm{s} / \mathrm{a}}^{k} . \tag{4.66}
\end{equation*}
$$

Thus to describe operators from $\otimes_{\mathrm{s} / \mathrm{a}}^{k} \mathcal{Z}$ to $\otimes_{\mathrm{s} / \mathrm{a}}^{m} \mathcal{Z}$ it is enough to consider matrices symmetric/antisymmetric separately wrt the first m and the last k arguments.

In this subsection we will put "hats" on the creation/annihillation operators. The symbols $a^{*}(i), a(i)$ without hats will be reserved for classical variables, which in the bosonic case commute and in the fermionic anticommute, that is

$$
\begin{equation*}
\left[a^{*}(i), a^{*}(j)\right]_{\mp}=[a(i), a(j)]_{\mp}=\left[a(i), a^{*}(j)\right]_{\mp}=0 . \tag{4.67}
\end{equation*}
$$

As usual, by a (commuting/anticommuting) polynomial in the variables a_{i}^{*}, a_{j} we mean a linear combination of the following expressions

$$
\begin{equation*}
b\left(a^{*}, a\right)=\sum \cdots \sum b\left(i_{1}, \cdots i_{m}, i_{k}^{\prime}, \cdots, i_{1}^{\prime}\right) a^{*}\left(i_{1}\right) \cdots a^{*}\left(i_{m}\right) a\left(i_{k}^{\prime}\right) \cdots a\left(i_{1}^{\prime}\right) \tag{4.68}
\end{equation*}
$$

where b are symmetric/antisymmetric separately wrt the first m and the last k arguments. In the symmetric case this can be interpreted as a usual polynomial In the antisymmetric case it is an element of the Grassmann algebra.

The Wick quantization of $b\left(a^{*}, a\right)$ is defined as

$$
\begin{equation*}
b\left(\hat{a}^{*}, \hat{a}\right)=\sum \cdots \sum b\left(i_{1}, \cdots i_{m}, i_{k}^{\prime}, \cdots, i_{1}^{\prime}\right) \hat{a}^{*}\left(i_{1}\right) \cdots \hat{a}^{*}\left(i_{m}\right) \hat{a}\left(i_{k}^{\prime}\right) \cdots \hat{a}\left(i_{1}^{\prime}\right) \tag{4.69}
\end{equation*}
$$

(Actually, by 4.66), in 4.68) and 4.69) we can consider b which is not symmetric/antisymmetric.)
Here is an equivalent definition of $b\left(\hat{a}^{*}, \hat{a}\right)$: Its only nonzero matrix elements are between $\Phi \in \otimes_{\mathrm{s} / \mathrm{a}}^{p+m} \mathcal{Z}, \Psi \in \otimes_{\mathrm{s} / \mathrm{a}}^{p+k} \mathcal{Z}$, and equal

$$
\begin{equation*}
\left(\Phi \mid b\left(\hat{a}^{*}, \hat{a}\right) \Psi\right)=\frac{\sqrt{(m+p)!(k+p)!}}{p!}\left(\Phi \mid b \otimes 1_{\mathcal{Z}}^{\otimes p} \Psi\right) \tag{4.70}
\end{equation*}
$$

To see this it is enough to check

$$
\begin{align*}
& \left(\Phi \mid \hat{a}^{*}\left(i_{1}\right) \cdots \hat{a}^{*}\left(i_{m}\right) \hat{a}\left(i_{k}^{\prime}\right) \cdots \hat{a}\left(i_{1}^{\prime}\right) \Psi\right) \tag{4.71}\\
= & \left(\hat{a}\left(i_{m}\right) \cdots \hat{a}\left(i_{1}\right) \Phi \mid \hat{a}\left(i_{k}^{\prime}\right) \cdots \hat{a}\left(i_{1}^{\prime}\right) \Psi\right) \tag{4.72}\\
= & \sqrt{(m+p) \cdots(p+1)(k+p) \cdots(p+1)} \tag{4.73}\\
& \times \sum_{j_{p}} \cdots \sum_{j_{1}} \overline{\Phi\left(i_{m}, \ldots, i_{1}, j_{p}, \ldots, j_{1}\right)} \Psi\left(i_{m}^{\prime}, \ldots, i_{1}^{\prime}, j_{p}, \ldots, j_{1}\right) . \tag{4.74}
\end{align*}
$$

Essentially every operator on a Fock space can be written as a linear combination of 4.69).

4.12 Wick symbol and coherent states

In the bosonic case, we have the identities

$$
\begin{align*}
\mathrm{e}^{-\hat{a}^{*}(b)+\hat{a}(b)} \hat{a}(v) \mathrm{e}^{\hat{a}^{*}(b)-\hat{a}(b)} & =\hat{a}(v)+(v \mid b), \tag{4.75}\\
\mathrm{e}^{-\hat{a}^{*}(b)+\hat{a}(b)} \hat{a}^{*}(v) \mathrm{e}^{\hat{a}^{*}(b)-\hat{a}(b)} & =\hat{a}(v)+(v \mid b) . \tag{4.76}
\end{align*}
$$

We also introduce the coherent state corresponding to $b \in \mathcal{Z}$:

$$
\begin{equation*}
\Omega_{b}:=\mathrm{e}^{\hat{a}^{*}(b)-\hat{a}(b)} \Omega . \tag{4.77}
\end{equation*}
$$

Note that $\hat{a}(v) \Omega_{b}=(v \mid b) \Omega_{b}$. We have the identity

$$
\begin{equation*}
\left(\Omega_{b} \mid c\left(\hat{a}^{*}, \hat{a}\right) \Omega_{b}\right)=c\left(b^{*}, b\right) . \tag{4.78}
\end{equation*}
$$

5 Clifford algebras

5.1 Clifford algebras

Let $\phi_{1}, \ldots, \phi_{n}$ satisfy the relations

$$
\begin{equation*}
\left[\phi_{i}, \phi_{j}\right]_{+}=2 \delta_{i j} \mathbb{1} . \tag{5.1}
\end{equation*}
$$

The associative algebra over \mathbb{R} generated by $\mathbb{1}, \phi_{1}, \ldots, \phi_{n}$ satisfying these relations is called the (real) Clifford algebra with positive signature $\mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)=\mathrm{Cl}^{+}(n)$.

Let $\gamma_{1}, \ldots, \gamma_{n}$ satisfy the relations

$$
\begin{equation*}
\left[\gamma_{i}, \gamma_{j}\right]_{+}=-2 \delta_{i j} \mathbb{1} \tag{5.2}
\end{equation*}
$$

The associative algebra over \mathbb{R} generated by $\mathbb{1}, \gamma_{1}, \ldots, \gamma_{n}$ satisfying these relations is called the (real) Clifford algebra with negative signature $\mathrm{Cl}^{-}\left(\mathbb{R}^{n}\right)=\mathrm{Cl}^{-}(n)$.

The associative algebra over \mathbb{C} generated by $\mathbb{1}, \phi_{1}, \ldots, \phi_{n}$ and satisfying (5.1) is called the complex Clifford algebra and will be denoted by $\mathrm{Cl}\left(\mathbb{C}^{n}\right)$. Clearly, it is isomorphic to the algebra over \mathbb{C} generated by $\mathbb{1}, \gamma_{1}, \ldots, \gamma_{n}$ satisfying (5.2), where the isomorphism is given by

$$
\begin{equation*}
\gamma_{i}:=\mathrm{i} \phi_{i} . \tag{5.3}
\end{equation*}
$$

Both $\mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)$ and $\mathrm{Cl}^{-}\left(\mathbb{R}^{n}\right)$ are real subalgebras of $\mathrm{Cl}\left(\mathbb{C}^{n}\right)=\mathrm{Cl}(n, \mathbb{C})$. In what follows we will treat $\mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)$ and $\mathrm{Cl}\left(\mathbb{C}^{n}\right)$ as basic objects, because $\mathrm{Cl}^{-}\left(\mathbb{R}^{n}\right)$ can be obtained by 5.3).

More generally, we can consider Clifford algebras $\mathrm{Cl}(q, p)$ of an arbitrary signature, generated by γ_{i},

$$
\left[\gamma_{i}, \gamma_{j}\right]_{+}= \begin{cases}-2, & i=j=1, \ldots q \tag{5.4}\\ 2, & i=j=q+1, \ldots, q+p \\ 0, & i \neq j\end{cases}
$$

More abstractly, let \mathcal{V} be a vector space over a field \mathbb{K} equipped with a bilinear form $\langle v \mid w\rangle$, $v, w \in \mathcal{V}$. Then we define $\operatorname{Cl}(\mathcal{V})$ as the associative algebra generated by $\phi(v), v \in \mathcal{V}$, with relations

$$
\begin{equation*}
\phi(v+w)=\phi(v)+\phi(w), \quad \phi(\lambda v)=\lambda \phi(v), \quad[\phi(v), \phi(w)]_{+}=2\langle v \mid w\rangle \mathbb{1} . \tag{5.5}
\end{equation*}
$$

Setting

$$
\begin{gather*}
\phi(v)=\sum_{i=1}^{n} v_{i} \phi_{i}, \quad v=\left(v_{1}, \ldots, v_{n}\right), \quad \mathcal{V}=\mathbb{R}^{n}, \tag{5.6}\\
\langle v \mid w\rangle= \pm \sum_{i=1}^{n} v_{i} w_{i} \tag{5.7}
\end{gather*}
$$

we obtain $\mathrm{Cl}^{ \pm}(n)$.

5.2 Even Clifford algebras

The map $\phi_{i} \mapsto-\phi_{i}$ (or equivalently $\gamma_{i} \mapsto-\gamma_{i}$) extends uniquely to an automorphism of a Clifford algebra denoted α. Elements fixed by this automorphism are called even. The subalgebra of even elements of $\mathrm{Cl}\left(\mathbb{C}^{n}\right)$ is denoted $\mathrm{Cl}_{0}\left(\mathbb{C}^{n}\right)$. Elements that flip the sign under α are called odd. The set of odd elements is denoted $\mathrm{Cl}_{1}\left(\mathbb{C}^{n}\right)$.

If we view $\mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)$ and $\mathrm{Cl}^{-}\left(\mathbb{R}^{n}\right)$ as subalgebras of $\mathrm{Cl}\left(\mathbb{C}^{n}\right)$, then the set of even elements in both algebras coincides. We will denote it by $\mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)$ (without indicating the sign \pm).

We have an isomorphism

$$
\begin{align*}
& \psi: \mathrm{Cl}^{-}\left(\mathbb{R}^{n-1}\right) \rightarrow \mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right) \tag{5.8}\\
& \quad \psi\left(\gamma_{j}\right):=\phi_{j} \phi_{n}, \quad j=1, \ldots, n-1 . \tag{5.9}
\end{align*}
$$

In fact,

$$
\left[\psi\left(\gamma_{j}\right), \psi\left(\gamma_{k}\right)\right]_{+}=-2 \delta_{j k} \mathbb{1} .
$$

Similarly,

$$
\mathrm{Cl}\left(\mathbb{C}^{n-1}\right) \simeq \mathrm{Cl}_{0}\left(\mathbb{C}^{n}\right)
$$

5.3 Bases

The set

$$
\begin{equation*}
\phi_{i_{1}} \cdots \phi_{i_{k}}=\frac{1}{k!} \sum_{\sigma \in S_{k}} \operatorname{sgn}(\sigma) \phi_{i_{\sigma(1)}} \cdots \phi_{i_{\sigma(k)}}, \quad i_{1}<\cdots<i_{k} \tag{5.10}
\end{equation*}
$$

is a basis of $\mathrm{Cl}^{+}(n)$. Hence $\mathrm{Cl}^{+}(n)$, as well as $\mathrm{Cl}^{-}(n)$ have a real dimension $2^{n} . \mathrm{Cl}(n, \mathbb{C})$ has a complex dimension 2^{n}. Clearly,

$$
\begin{equation*}
\alpha\left(\phi_{i_{1}} \cdots \phi_{i_{k}}\right)=(-1)^{k} \phi_{i_{1}} \cdots \phi_{i_{k}} . \tag{5.11}
\end{equation*}
$$

One can introduce an identification of the Grassmann algebra and the Clifford algebra. It is the linear map defined by

$$
\begin{align*}
\text { Op }: \mathbb{C}\left[\phi_{1}, \ldots, \phi_{n}\right] & \rightarrow \mathrm{Cl}(n, \mathbb{C}), \tag{5.12}\\
\operatorname{Op}\left(\phi_{i_{1}} \cdots \phi_{i_{k}}\right) & :=\sum_{\sigma \in S_{k}} \phi_{i_{\sigma(1)}} \cdots \phi_{i_{\sigma(k)}}, \quad i_{1}<\cdots<i_{k} . \tag{5.13}
\end{align*}
$$

Clearly, Op is not a homomorphism. It plays a role of quantization for fermionic systems.

5.4 Involution

The algebras $\mathrm{Cl}^{+}(n)$ are equipped with the involution, which is a linear map defined by

$$
\begin{equation*}
\phi_{i}^{*}=\phi_{i}, \quad(A B)^{*}=B^{*} A^{*}, \tag{5.14}
\end{equation*}
$$

and called the (Clifford) conjugation. Another acceptable notation for the conjugation on $\mathrm{Cl}^{+}(n)$ is $A^{\mathrm{T}}=A^{*}$, and another name is the (Clifford) transposition.

In the algebras $\mathrm{Cl}^{-}(n)$ there is an analogous involution defined by

$$
\begin{equation*}
\gamma_{i}^{*}=-\gamma_{i}, \quad(A B)^{*}=B^{*} A^{*} \tag{5.15}
\end{equation*}
$$

Note that on $\mathrm{Cl}^{-}(2) \simeq \mathbb{C}$, the transposition coincides with the complex conjugation, and on $\mathrm{Cl}^{-}(3) \simeq \mathbb{H}$ it coincides with the quaternionic conjugation.

In $\mathrm{Cl}(n, \mathbb{C})$ we have two natural maps that extend (5.15): one by linearity, and then we denote it by A^{T} and call the (Clifford) transposition, the other one by antilinearity, and then we denote it by A^{*}. Thus the action on basis elements is

$$
\begin{align*}
& \left(\lambda \mathrm{Op}\left(\phi_{i_{1}} \cdots \phi_{i_{k}}\right)\right)^{\mathrm{T}}=(-1)^{\frac{k(k-1)}{2}} \lambda \operatorname{Op}\left(\phi_{i_{1}} \cdots \phi_{i_{k}}\right) \tag{5.16}\\
& \left(\lambda \mathrm{Op}\left(\phi_{i_{1}} \cdots \phi_{i_{k}}\right)\right)^{*}=(-1)^{\frac{k(k-1)}{2}} \bar{\lambda} \operatorname{Op}\left(\phi_{i_{1}} \cdots \phi_{i_{k}}\right) \tag{5.17}
\end{align*}
$$

$\mathrm{Cl}(n, \mathbb{C})$ equipped with the antilinear involution $A \mapsto A^{*}$ is a $*$-algebra, called the $C A R$ algebra, denoted $\operatorname{CAR}(n)=\operatorname{CAR}\left(\mathbb{R}^{n}\right)$. It depends on the choice of the real subspace \mathbb{R}^{n} inside \mathbb{C}^{n}.

The transposition on $\mathrm{Cl}(n, \mathbb{C})$ does not depend on the choice of a real subspace of \mathbb{C}^{n}.
The unitary group of $\mathrm{Cl}^{ \pm}(n)$ is defined as

$$
\begin{equation*}
U\left(\mathrm{Cl}^{ \pm}(n)\right):=\left\{U \in \mathrm{Cl}^{ \pm}(n) \mid U^{*} U=\mathbb{1}\right\} . \tag{5.18}
\end{equation*}
$$

(The notation $O\left(\mathrm{Cl}^{+}(n)\right)=U\left(\mathrm{Cl}^{+}(n)\right)$ and the name orthogonal group is also possible.)
In the complex case we have two distinct groups: orthogonal and unitary:

$$
\begin{align*}
U(C A R(n)) & :=\left\{U \in C A R(n) \mid U^{*} U=\mathbb{1}\right\}, \tag{5.19}\\
O(\operatorname{Cl}(n, \mathbb{C})) & :=\left\{U \in \operatorname{Cl}(n, \mathbb{C}) \mid U^{\mathrm{T}} U=\mathbb{1}\right\} . \tag{5.20}
\end{align*}
$$

5.5 Volume element

Sometimes, the following element of $\mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)$ is called the volume element:

$$
\omega:=\phi_{1} \cdots \phi_{n} .
$$

Clearly, $\mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)$ is generated by $\phi_{1}, \ldots, \phi_{n-1}, \omega$. We have

$$
\omega^{2}=(-\mathbb{1})^{\frac{1}{2} n(n-1)}, \quad \omega \phi_{i}=-(-1)^{n} \phi_{i} \omega .
$$

In $\mathrm{Cl}^{-}\left(\mathbb{R}^{n}\right)$ instead we may prefer to use

$$
\mathrm{i}^{n} \omega=\gamma_{1} \cdots \gamma_{n} .
$$

If n is even, then ω (as well as $\mathrm{i} \omega$) implements the authomorphism α :

$$
\begin{equation*}
\omega A \omega^{-1}=\alpha(A), \quad A \in \mathrm{Cl}\left(\mathbb{C}^{n}\right) \tag{5.21}
\end{equation*}
$$

If n is odd ω (or $\mathrm{i} \omega$ commutes with $\mathrm{Cl}\left(\mathbb{C}^{n}\right)$.

5.6 The Jordan-Wigner construction

If $k \leq m$ and $A \in L\left(\otimes^{k} \mathbb{C}^{2}\right)$, then we identify A with $A \otimes \mathbb{1}^{\otimes(m-k)} \in L\left(\otimes^{m} \mathbb{C}^{2}\right)$.
Recall that $\sigma_{1}, \sigma_{2}, \sigma_{3}$ denote the standard Pauli matrices. Note that $\mathbb{1}, \sigma_{1}, \sigma_{2}, \sigma_{3}=\mathrm{i} \sigma_{1} \sigma_{2}$ span $L\left(\mathbb{C}^{2}\right)$. Hence σ_{1}, σ_{2} generate $L\left(\mathbb{C}^{2}\right)$.

Let $n=2 m$. Consider the space $\otimes^{m} \mathbb{C}^{2}$. Introduce the operators

$$
\begin{aligned}
\rho\left(\phi_{1}\right) & :=\sigma_{1}, & \rho\left(\phi_{2}\right):=\sigma_{2} \\
\ldots & & \\
\rho\left(\phi_{2 m-1}\right) & :=\sigma_{3}^{\otimes(m-1)} \otimes \sigma_{1}, & \rho\left(\phi_{2 m}\right):=\sigma_{3}^{\otimes(m-1)} \otimes \sigma_{2}
\end{aligned}
$$

Theorem 5.1ρ extends uniquely to a homomorphism

$$
\begin{equation*}
\rho: \mathrm{Cl}(2 m) \rightarrow L\left(\otimes^{m} \mathbb{C}^{2}\right) \tag{5.22}
\end{equation*}
$$

We have

$$
\begin{gather*}
\rho(\omega)=\mathrm{i}^{m} \sigma_{3}^{\otimes m}, \tag{5.23}\\
\rho\left(\phi_{1} \cdots \phi_{2 k} \phi_{2 k+1}\right)=\mathrm{i}^{k} \mathbb{1}^{\otimes k} \otimes \sigma_{1}, \quad \rho\left(\phi_{1} \cdots \phi_{2 k} \phi_{2 k+2}\right)=\mathrm{i}^{k} \mathbb{1}^{\otimes k} \otimes \sigma_{2} . \tag{5.24}
\end{gather*}
$$

(5.22) is an isomorphism.

Proof. It is easy to check that $\rho\left(\phi_{1}\right), \ldots, \rho\left(\phi_{2 m}\right)$ satisfy the Clifford relations. Hence the map ρ extends to a homorphism.

By (5.24), the image of ρ contains $\mathbb{1}^{\otimes k} \otimes L\left(\mathbb{C}^{2}\right)$. Hence it contains the whole $L\left(\otimes^{m} \mathbb{C}^{2}\right)$.

Theorem 5.2 For $n=2 m+1$ there exist two homorphisms extending $\rho: \operatorname{Cl}(2 n, \mathbb{C}) \rightarrow L\left(\otimes^{m} \mathbb{C}^{2}\right)$:

$$
\begin{align*}
& \rho_{ \pm}: \mathrm{Cl}(2 n+1, \mathbb{C}) \rightarrow L\left(\otimes^{m} \mathbb{C}^{2}\right), \tag{5.25}\\
& \rho_{ \pm}\left(\phi_{2 m+1}\right):= \pm \sigma_{3}^{\otimes(m+1)} \tag{5.26}
\end{align*}
$$

The map

$$
\begin{equation*}
\mathrm{Cl}(2 m+1) \ni A \mapsto\left(\rho_{+}(A), \rho_{-}(A)\right) \in L\left(\otimes^{m} \mathbb{C}^{2}\right) \oplus L\left(\otimes^{m} \mathbb{C}^{2}\right) \tag{5.27}
\end{equation*}
$$

is an isomorphism of algebras.
Proof. First we check that $\rho_{ \pm}\left(\phi_{1}\right), \ldots, \rho_{ \pm}\left(\phi_{2 m+1}\right)$ satisfy the Clifford relations. Hence (5.26) defines two homorphisms $\rho_{ \pm}$.

Let us prove that (5.26) is onto. Let $\tilde{A}, \tilde{B}) \in L\left(\otimes^{m} \mathbb{C}^{2}\right) \oplus L\left(\otimes^{m} \mathbb{C}^{2}\right)$. The maps ρ are onto, hence we will find $A_{+}, A_{-} \in \mathrm{Cl}(2 m, \mathbb{C})$ such that $\rho\left(A_{+}\right)=\tilde{A}_{+}, \rho\left(A_{-}\right)=\tilde{A}_{-}$. Next we put

$$
\pi:=(-\mathrm{i})^{m} \phi_{1} \cdots \phi_{2 m} \phi_{2 m+1} \in \mathrm{Cl}(2 m+1, \mathbb{C})
$$

Then π commutes with $\mathrm{Cl}\left(\mathbb{C}^{2 m+1}\right)$ and $\rho_{ \pm}(\pi)= \pm \mathbb{1}$. Therefore, for $A \in \mathrm{Cl}(2 m, \mathbb{C})$,

$$
\begin{aligned}
& \rho_{ \pm}\left(A \frac{(\mathbb{1} \pm \pi)}{2}\right)=\rho_{ \pm}(A) \rho_{ \pm}\left(\frac{(\mathbb{1} \pm \pi)}{2}\right)=\rho(A), \\
& \rho_{ \pm}\left(A \frac{(\mathbb{1} \mp \pi)}{2}\right)=\rho_{ \pm}(A) \rho_{ \pm}\left(\frac{(\mathbb{1} \pm \pi)}{2}\right)=0 .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\rho_{ \pm}\left(A_{+} \frac{(\mathbb{1}+\pi)}{2}+A_{-} \frac{(\mathbb{1}-\pi)}{2}\right)=\rho\left(A_{ \pm}\right)=\tilde{A}_{ \pm} . \tag{5.28}
\end{equation*}
$$

which proves that 5.26 is onto.

5.7 Fock representations of Clifford algebras

In this subsection we describe a representation of Clifford algebras seemingly different from the Jordan-Wigner contruction. Eventually, it will turn out to be essentially the same representation in disguise.

Consider the Fock space $\Gamma_{\mathrm{a}}\left(\mathbb{C}^{m}\right)$ with the standard creation and annihilation operators a_{i}^{*}, a_{j} satisfying

$$
\left[a_{1}, a_{j}\right]_{+}=\left[a_{i}^{*}, a_{j}^{*}\right]_{+}=0, \quad\left[a_{i}, a_{j}^{*}\right]_{+}=\delta_{i j} \mathbb{1} .
$$

Consider $\mathrm{Cl}(2 m, \mathbb{C})$ with generators $\phi_{1}, \ldots, \phi_{2 m}$. We define

$$
\begin{equation*}
\rho\left(\phi_{2 i-1}\right):=a_{i}^{*}+a_{i}, \quad \rho\left(\phi_{2 i}\right):=\mathrm{i}^{-1}\left(a_{i}^{*}-a_{i}\right), \quad i=1, \ldots, m . \tag{5.29}
\end{equation*}
$$

Clearly, the above operators satisfy Clifford relations and are self-adjoint. Hence ρ extends uniquely to a $*$-isomorphism $\rho: \mathrm{Cl}(2 m, \mathbb{C}) \rightarrow L\left(\Gamma_{\mathrm{a}}\left(\mathbb{C}^{m}\right)\right)$.

We have also the number operator

$$
N=\sum_{i=1}^{m} a_{i}^{*} a_{i}
$$

and the parity operator

$$
(-1)^{N}=(-1)^{\sum_{i} a_{i}^{*} a_{i}}=\prod_{i=1}(-1)^{a_{i}^{*} a_{i}}=\prod_{i}\left(\mathbb{1}-2 a_{i}^{*} a_{i}\right) .
$$

Now

$$
\left[(-1)^{N}, a_{i}\right]_{+}=\left[(-1)^{N}, a_{i}^{*}\right]_{+}=0, \quad\left((-1)^{N}\right)^{2}=\mathbb{1} .
$$

Hence setting

$$
\begin{equation*}
\rho_{ \pm}\left(\phi_{2 m+1}\right):= \pm(-1)^{N}, \tag{5.30}
\end{equation*}
$$

we extend ρ to two isomorphisms $\rho_{ \pm}: \mathrm{Cl}(2 m+1, \mathbb{C}) \rightarrow L\left(\Gamma_{\mathrm{a}}\left(\mathbb{C}^{m}\right)\right)$.
$\mathrm{Cl}(2 m+1, \mathbb{C})$ can be also represented on $\Gamma_{\mathrm{a}}\left(\mathbb{C}^{m+1}\right)$, if we set

$$
\begin{equation*}
\rho\left(\phi_{2 m+1}\right):=a_{m+1}^{*}+a_{m+1} \tag{5.31}
\end{equation*}
$$

Now ρ is not irreducible: $\rho(\mathrm{Cl}(2 m+1, \mathbb{C}))$ commutes with

$$
\begin{equation*}
\left(a_{m+1}^{*}+a_{m+1}\right)(-1)^{\sum_{i=1}^{m} a_{i}^{*} a_{i}} \tag{5.32}
\end{equation*}
$$

ρ is a direct sum of the representations ρ_{+}and ρ_{-}.
Note that the above constructions are fully equivalent to the Jordan-Wigner construction. In fact, first let us check it for $\mathrm{Cl}(3, \mathbb{C})$. We identify $\Gamma_{\mathrm{a}}(\mathbb{C})$ with \mathbb{C}^{2} by

$$
\begin{gathered}
a^{*} \Omega=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \Omega=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad a^{*}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad a=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \\
a^{*}+a=\sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \mathrm{i}^{-1}\left(a^{*}-a\right)=\sigma_{2}=\left[\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right], \quad-(-1)^{N}=\sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
\end{gathered}
$$

Thus the Jordan-Wigner consstruction and the Fock representation coincide for $n=1,2,3$.
Consider now $n=2 m$. We have $\mathbb{C}^{m} \simeq \oplus_{j=1}^{m} \mathbb{C}$. Hence, by the exponential property of Fock spaces,

$$
\begin{equation*}
\Gamma_{\mathrm{a}}\left(\mathbb{C}^{m}\right) \simeq \otimes^{m} \Gamma_{\mathrm{a}}(\mathbb{C})=\otimes^{m} \mathbb{C}^{2} \tag{5.33}
\end{equation*}
$$

and we easily check that under this identification ρ of the Jordan-Wigner representation and of the Fock represention coincide.

5.8 Form of Clifford algebras

Remember that the standard notation for the space of linear maps on space \mathcal{V} is $L(\mathcal{V})$. If $\mathcal{V}=\mathbb{K}^{n}$ where $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$, then $L(\mathcal{V})$ can be identified with $n \times n$ matrices with entries in \mathbb{K}. Below we will often use an alternative notation $\mathbb{K}(n)$ for $L\left(\mathbb{K}^{n}\right)$.

The following table describes the form of various Clifford algebras in tems of $\mathbb{R}\left(2^{m}\right), \mathbb{C}\left(2^{m}\right)$ and $\mathbb{H}\left(2^{m}\right)$. Note that the validity of the column $\mathrm{Cl}(n, \mathbb{C})$ was proven in Theorems 5.1 and 5.2 . It implies the column $\mathrm{Cl}_{0}(n, \mathbb{C})$. Both have an obvious period 2.

The real columns have a period 8 , which involves multiplying the arguments of the entries by $2^{4}=16$. Clearly, the column $\mathrm{Cl}^{-}(n)$ implies the column $\mathrm{Cl}_{0}(n)$.

n	$\mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)$	$\mathrm{Cl}^{-}\left(\mathbb{R}^{n}\right)$	$\mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)$	$\mathrm{Cl}\left(\mathbb{C}^{n}\right)$	$\mathrm{Cl}_{0}\left(\mathbb{C}^{n}\right)$
0	\mathbb{R}	\mathbb{R}			
1	$\mathbb{R} \oplus \mathbb{R}$	\mathbb{C},	\mathbb{R}	$\mathbb{C} \oplus \mathbb{C}$	\mathbb{C}
2	$\mathbb{R}(2)$	\mathbb{H}	\mathbb{C}	$\mathbb{C}(2)$	$\mathbb{C} \oplus \mathbb{C}$
3	$\mathbb{C}(2)$	$\mathbb{H} \oplus \mathbb{H}$,	\mathbb{H}	$\mathbb{C}(2) \oplus \mathbb{C}(2)$	$\mathbb{C}(2)$
4	$\mathbb{H}(2)$	$\mathbb{H}(2)$	$\mathbb{H} \oplus \mathbb{H}$	$\mathbb{C}(4)$	$\mathbb{C}(2) \oplus \mathbb{C}(2)$
5	$\mathbb{H}(2) \oplus \mathbb{H}(2)$	$\mathbb{C}(4)$	$\mathbb{H}(2)$	$\mathbb{C}(4) \oplus \mathbb{C}(4)$	$\mathbb{C}(4)$
6	$\mathbb{H}(4)$	$\mathbb{R}(8)$	$\mathbb{C}(4)$	$\mathbb{C}(8)$	$\mathbb{C}(4) \oplus \mathbb{C}(4)$
7	$\mathbb{C}(8)$	$\mathbb{R}(8) \oplus \mathbb{R}(8)$	$\mathbb{R}(8)$	$\mathbb{C}(8) \oplus \mathbb{C}(8)$	$\mathbb{C}(8)$
8	$\mathbb{R}(16)$	$\mathbb{R}(16)$	$\mathbb{R}(8) \oplus \mathbb{R}(8)$	$\mathbb{C}(16)$	$\mathbb{C}(8) \oplus \mathbb{C}(8)$

Consider a few first entries from the column $\mathrm{Cl}^{-}(n)$:

$$
\begin{array}{cl}
\mathrm{Cl}^{-}(1)=\mathbb{C}: & \mathrm{i}:=\gamma_{1} ; \\
\mathrm{Cl}^{-}(2)=\mathbb{H}: & \mathrm{i}:=\gamma_{1}, \quad \mathrm{j}:=\gamma_{2} ; \\
\mathrm{Cl}^{-}(3)=\mathbb{H} \oplus \mathbb{H}: & (\mathrm{i}, \mathrm{i}):=\gamma_{1}, \quad(\mathrm{j}, \mathrm{j}):=\gamma_{2}, \quad(1,-1):=\gamma_{1} \gamma_{2} \gamma_{3} ; \\
\mathrm{Cl}^{-}(4)=\mathbb{H}(2): & {\left[\begin{array}{ll}
\mathrm{i} & 0 \\
0 & \mathrm{i}
\end{array}\right]:=\gamma_{1}, \quad\left[\begin{array}{cc}
\mathrm{j} & 0 \\
0 & \mathrm{j}
\end{array}\right]:=\gamma_{2},} \\
& {\left[\begin{array}{ll}
\mathrm{k} & 0 \\
0 & \mathrm{k}
\end{array}\right]=\gamma_{3}, \quad\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]:=\gamma_{4}}
\end{array}
$$

Next, $\mathrm{Cl}^{+}(n)$:

$$
\begin{aligned}
\mathrm{Cl}^{+}(4)=\mathbb{H}(2): & {\left[\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right]:=\phi_{1}, \quad\left[\begin{array}{cc}
0 & -\mathrm{j} \\
\mathrm{j} & 0
\end{array}\right]:=\phi_{2}, } \\
& {\left[\begin{array}{cc}
0 & -\mathrm{k} \\
\mathrm{k} & 0
\end{array}\right]=\phi_{3}, \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]:=\phi_{4} }
\end{aligned}
$$

Let us now describe the relationship between $\mathrm{Cl}(2 m)$ and $\mathrm{Cl}(2 m+1)$. ω always belongs to the center of $\mathrm{Cl}^{+}\left(\mathbb{R}^{2 m+1}\right)$ and $\mathrm{i} \omega$ belongs to the center of $\mathrm{Cl}^{-}\left(\mathbb{R}^{2 m+1}\right)$.

We have $\omega^{2}=(-1)^{m},(\mathrm{i} \omega)^{2}=(-1)^{m+1}$. Hence we have the isomorphisms
$m \equiv 0 \quad \bmod (2), \quad \mathrm{Cl}^{+}\left(\mathbb{R}^{2 m}\right) \oplus \mathrm{Cl}^{+}\left(\mathbb{R}^{2 m}\right) \ni\left(A_{1}, A_{2}\right) \mapsto \frac{\mathbb{1}+\omega}{2} A_{1}+\frac{\mathbb{1}-\omega}{2} A_{2} \in \mathrm{Cl}^{+}\left(\mathbb{R}^{2 m+1}\right)$,
$m \equiv 2 \bmod (2), \quad \quad \operatorname{CCl}^{+}\left(\mathbb{R}^{2 m}\right) \ni\left(A_{1}+\mathrm{i} A_{2}\right) \mapsto A_{1}+\omega A_{2} \in \mathrm{Cl}^{+}\left(\mathbb{R}^{2 m+1}\right)$.
$m \equiv 0 \bmod (2), \quad \quad \mathbb{C C l}^{-}\left(\mathbb{R}^{2 m}\right) \ni\left(A_{1}+\mathrm{i} A_{2}\right) \mapsto A_{1}+\mathrm{i} \omega A_{2} \in \mathrm{Cl}^{-}\left(\mathbb{R}^{2 m+1}\right)$,
$m \equiv 2 \quad \bmod (2), \quad \mathrm{Cl}^{-}\left(\mathbb{R}^{2 m}\right) \oplus \mathrm{Cl}^{-}\left(\mathbb{R}^{2 m}\right) \ni\left(A_{1}, A_{2}\right) \mapsto \frac{\mathbb{1}+\mathrm{i} \omega}{2} A_{1}+\frac{\mathbb{1}-\mathrm{i} \omega}{2} A_{2} \in \mathrm{Cl}^{-}\left(\mathbb{R}^{2 m+1}\right)$.
Note also that the complexification of \mathbb{R} is \mathbb{C} and of \mathbb{H} is $\mathbb{C}(2)$.

5.9 Charge conjugation

Consider the Jordan-Wigner representation of $\mathrm{Cl}(n, \mathbb{C}), \rho$ for $n=2 m$ or $\rho_{ \pm}$for $n=2 m+1$. We drop $\rho, \rho_{ \pm}$from the notation. We have $\phi_{i}=\bar{\phi}_{i}$ for odd i, including $\phi_{2 m+1}$, and for $\bar{\phi}_{i}=-\phi_{i}$ for even i. Consider first $n=2 m$. Set

$$
\eta_{+}:=\mathrm{i}^{m} \phi_{2} \phi_{4} \cdots \phi_{2 m}, \quad \eta_{-}:=\phi_{1} \phi_{3} \cdots \phi_{2 m-1},
$$

Then η_{+}and η_{-}are real. Besides,

$$
\begin{aligned}
\eta_{+}^{2} & =(-1)^{\frac{m(m+1)}{2}}, & \eta_{-}^{2} & =(-1)^{\frac{m(m-1)}{2}} ; \\
\eta_{+} \phi_{i} & =(-1)^{m} \overline{\phi_{i}} \eta_{+}, & \eta_{-} \phi_{i} & =-(-1)^{m} \overline{\phi_{i}} \eta, \quad i=1,2, \ldots, 2 m ; \\
\eta_{+} \phi_{2 m+1} & =(-1)^{m} \overline{\phi_{2 m+1}} \eta_{+}, & \eta_{-} \phi_{2 m+1} & =(-1)^{m} \overline{\phi_{2 m+1}} \eta_{-} .
\end{aligned}
$$

Hence for $A \in \operatorname{Cl}(n, \mathbb{C})$

$$
\begin{array}{lllrl}
n \equiv 0 & \bmod (8), & \eta_{+}^{2}=\eta_{-}^{2}=\mathbb{1}, & A=\eta_{+} \bar{A} \eta_{+}^{-1} & \alpha(A)=\eta_{-} \bar{A} \eta_{-}^{-1} ; \\
n \equiv 1 & \bmod (8), & \eta_{+}^{2}=\mathbb{1}, & A=\eta_{+} \bar{A} \eta_{+}^{-1 ;} & \\
n \equiv 2 & \bmod (8), & -\eta_{+}^{2}=\eta_{-}^{2}=\mathbb{1}, & \alpha(A)=\eta_{+} \bar{A} \eta_{+}^{-1} & A=\eta_{-} \bar{A} \eta_{-}^{-1} ; \\
n \equiv 3 & \bmod (8), & -\eta_{+}^{2}=\mathbb{1}, & \alpha(A)=\eta_{+} \bar{A} \eta_{+}^{-1 ;} & \\
n \equiv 4 \bmod (8), & -\eta_{+}^{2}=-\eta_{-}^{2}=\mathbb{1}, & A=\eta_{+} \bar{A} \eta_{+}^{-1} & \alpha(A)=\eta_{-} \bar{A} \eta_{-}^{-1 ;} ; \\
n \equiv 5 & \bmod (8), & -\eta_{+}^{2}=\mathbb{1}, & A=\eta_{+} \bar{A} \eta_{+}^{-1} ; & \\
n \equiv 6 & \bmod (8), & \eta_{+}^{2}=-\eta_{-}^{2}=\mathbb{1}, & \alpha(A)=\eta_{+} \bar{A} \eta_{+}^{-1} & A=\eta_{-} \bar{A} \eta_{-}^{-1} ; \\
n \equiv 7 & \bmod (8), & \eta_{+}^{2}=\mathbb{1}, & \alpha(A)=\eta_{+} \bar{A} \eta_{+}^{-1 ;} &
\end{array}
$$

6 Matrix Lie groups

6.1 Quaternionic determinant

Identify $\mathbb{H} \simeq \mathbb{C}^{2}$ by $v=x+\mathrm{j} y, x, y \in \mathbb{C}$, so that $\mathrm{j} x=\bar{x} \mathrm{j}$, $\mathrm{j} y=-\bar{y} \mathrm{j}$. Similarly, if $V \in L\left(\mathbb{H}^{n}\right)$, then $V=X+\mathrm{j} Y$ with $\mathrm{j} X=\bar{X} \mathrm{j}, \mathrm{j} Y=-\bar{Y} \mathrm{j}$, where $X, Y \in L\left(\mathbb{C}^{n}\right)$. Writing

$$
\pi(\mathrm{j})=\left[\begin{array}{cc}
0 & -\mathbb{1}_{n} \tag{6.1}\\
\mathbb{1}_{n} & 0
\end{array}\right]=: J_{n}
$$

we can represent V as

$$
\pi(V)=\left[\begin{array}{cc}
X & -\bar{Y} \tag{6.2}\\
Y & \bar{X}
\end{array}\right] \in L\left(\mathbb{C}^{2 n}\right)
$$

Thus

$$
\begin{equation*}
\pi\left(L\left(\mathbb{H}^{n}\right)\right)=\left\{V \in L\left(\mathbb{C}^{2 n}\right) \mid J_{n} V=\bar{V} J_{n}\right\} \tag{6.3}
\end{equation*}
$$

In what follows we will often identify $L\left(\mathbb{H}^{n}\right)$ with a subspace of $L\left(\mathbb{C}^{2 n}\right)$ through 6.2), dropping π.

It is well-known that $L\left(\mathbb{R}^{n}\right)$ and $L\left(\mathbb{C}^{n}\right)$ are equipped with the homomorphism into \mathbb{R}, resp. \mathbb{C} called the determinant. Matrices with nonzero determinant are invertible.

If $V \in L\left(\mathbb{H}^{n}\right)$, then its quaternionic determinant is defined as

$$
\operatorname{det} V:=\operatorname{det} \pi(V),
$$

where on the right we use the usual determinant (in the sense of a complex matrix) and the embedding π defined in (6.2), and earlier in (2.9). Note that $\operatorname{det} V W=\operatorname{det} V \operatorname{det} W$. $\operatorname{det} V$ does not depend on the embedding of \mathbb{C} in \mathbb{H} and always has a real value ≥ 0. $\operatorname{det} V$ is nonzero if V is invertible

We also have the quaternionic trace

$$
\begin{equation*}
\operatorname{Tr}(V):=\operatorname{Tr} \pi(V)=2 \operatorname{Re}(\operatorname{Tr}(X)) . \tag{6.4}
\end{equation*}
$$

Clearly, the quaternionic trace is always real and $\operatorname{det}\left(\mathrm{e}^{V}\right)=\mathrm{e}^{\operatorname{Tr}(V)}$.

6.2 Classical matrix Lie groups

Let $\mathbb{K}=\mathbb{R}, \mathbb{C}, \mathbb{H}$. We define

$$
\begin{align*}
G L\left(\mathbb{K}^{n}\right) & =\left\{V \in L\left(\mathbb{K}^{n}\right) \mid \operatorname{det} V \neq 0,\right\}, \tag{6.5}\\
S L\left(\mathbb{K}^{n}\right) & =\left\{V \in L\left(\mathbb{K}^{n}\right) \mid \operatorname{det} V=1,\right\} . \tag{6.6}
\end{align*}
$$

By a classical matrix Lie group we mean a subgroup of $G L\left(\mathbb{K}^{n}\right)$.
We now define several series of such subgroups defined as the sets elements of $G L\left(\mathbb{K}^{n}\right)$ preserving a certain 2-argument form (bilinear or sesquilinear).

$$
\begin{equation*}
\mathbb{K}^{n} \times \mathbb{K}^{n} \ni(v, w) \mapsto B(v, w) \tag{6.7}
\end{equation*}
$$

That is, the general form of these groups are

$$
\begin{equation*}
G_{B}\left(\mathbb{K}^{n}\right):=\left\{V \in G L\left(\mathbb{K}^{n}\right) \mid B(V v, V w)=B(v, w), \quad v, w \in \mathbb{K}^{n}\right\} . \tag{6.8}
\end{equation*}
$$

Their Lie algebras are

$$
\begin{equation*}
g_{B}\left(\mathbb{K}^{n}\right):=\left\{V \in g l\left(\mathbb{K}^{n}\right) \mid B(V v, w)+B(v, V w)=0 \quad v, w \in \mathbb{K}^{n}\right\} . \tag{6.9}
\end{equation*}
$$

Especially important series are the following three, which consist of compact groups:

$$
\begin{array}{lll}
O\left(\mathbb{R}^{n}\right) & =O(n): & v_{1} w_{1}+\cdots v_{n} w_{n}, \\
U\left(\mathbb{C}^{n}\right) & =U(n): & \bar{v}_{1} w_{1}+\cdots \bar{v}_{n} w_{n}, \\
S p\left(\mathbb{H}^{n}\right) & =S p(n): & v_{1}^{*} w_{1}+\cdots v_{n}^{*} w_{n} .
\end{array}
$$

Here are all series of classical matrix Lie groups:

$$
\begin{array}{lrl}
O\left(\mathbb{R}^{q, p}\right) & =O(q, p): & -v_{1} w_{1}-\cdots-v_{q} w_{q}+v_{q+1} w_{q+1}+\cdots v_{n} w_{n}, \\
S p\left(\mathbb{R}^{2 n}\right) & =S p(n, \mathbb{R}): & v_{1} w_{n+1}+\cdots+v_{n} w_{2 n}-v_{n+1} w_{1}+\cdots+v_{n+1} w_{1}, \\
U\left(\mathbb{C}^{q, p}\right) & =U(q, p): & -\bar{v}_{1} w_{1}-\cdots-\bar{v}_{q} w_{q}+\bar{v}_{q+1} w_{q+1}+\cdots+\bar{v}_{q+p} w_{q+p}, \\
O\left(\mathbb{C}^{n}\right) & =O(n, \mathbb{C}): & v_{1} w_{1}+\cdots v_{n} w_{n}, \\
S p\left(\mathbb{C}^{2 n}\right) & =S p(n, \mathbb{C}): & v_{1} w_{n+1}+\cdots+v_{n} w_{2 n}-v_{n+1} w_{1}+\cdots+v_{n+1} w_{1}, \\
S p\left(\mathbb{H}^{q, p}\right) & =S p(q, p): & -v_{1}^{*} w_{1}-\cdots-v_{q}^{*} w_{q}+v_{q+1}^{*} w_{q+1}+\cdots+v_{q+p}^{*} w_{q+p}, \\
O\left(\mathbb{H}^{n}\right) & =O^{*}(n): & v_{1}^{*} \mathrm{j} w_{1}+\cdots v_{n}^{*} \mathrm{j} w_{n} .
\end{array}
$$

Note that $S p(n, \mathbb{R})$, resp. $S p(n, \mathbb{C})$ is sometimes also denoted $S p(2 n, \mathbb{R})$, resp. $S p(2 n, \mathbb{C})$ (which incidentally shows the superiority of the notation $S p\left(\mathbb{R}^{2 n}\right)$, resp. $S p\left(\mathbb{C}^{2 n}\right)$, which is unambiguos). Clearly

$$
\begin{array}{r}
U\left(\mathbb{C}^{n}\right)=U\left(\mathbb{C}^{n, 0}\right)=U\left(\mathbb{C}^{0, n}\right), \\
O\left(\mathbb{R}^{n}\right)=O\left(\mathbb{R}^{n, 0}\right)=O\left(\mathbb{R}^{0, n}\right), \\
S p\left(\mathbb{H}^{n}\right)=S p\left(\mathbb{H}^{n, 0}\right)=S p\left(\mathbb{H}^{0, n}\right) .
\end{array}
$$

We have

$$
\begin{aligned}
& V \in S p\left(\mathbb{R}^{2 n}\right), S p\left(\mathbb{C}^{2 n}\right), S p\left(\mathbb{H}^{q, p}\right) \text { or } O\left(\mathbb{H}^{n}\right) \Rightarrow \operatorname{det} V=1 ; \\
& V \in O\left(\mathbb{R}^{q, p}\right) \text { or } O\left(\mathbb{C}^{n}\right) \Rightarrow \operatorname{det} V \in\{1,-1\} ; \\
& V \in U\left(\mathbb{C}^{q, p}\right) \Rightarrow \operatorname{det} V \in\{z \in \mathbb{C}||z|=1\} .
\end{aligned}
$$

We set

$$
\begin{aligned}
S O\left(\mathbb{R}^{q, p}\right) & :=O\left(\mathbb{R}^{q, p}\right) \cap S L\left(\mathbb{R}^{q+p}\right), \\
S O\left(\mathbb{C}^{n}\right) & :=O\left(\mathbb{C}^{n}\right) \cap S L\left(\mathbb{C}^{n}\right), \\
S U\left(\mathbb{C}^{n}\right) & :=O\left(\mathbb{C}^{n}\right) \cap S L\left(\mathbb{C}^{n}\right) .
\end{aligned}
$$

Let us make some remarks concerning the quaternionic groups identified as subgroups of complex groups. Clearly,

$$
\begin{align*}
G L\left(\mathbb{H}^{n}\right) & =\left\{V \in G L\left(\mathbb{C}^{2 n}\right) \mid J_{n} A=\bar{A} J_{n}\right\}, \tag{6.10}\\
S L\left(\mathbb{H}^{n}\right) & =\left\{V \in S L\left(\mathbb{C}^{2 n}\right) \mid J_{n} A=\bar{A} J_{n}\right\} . \tag{6.11}
\end{align*}
$$

Writing $v_{i}=x_{i}+\mathrm{j} y_{i} \in \mathbb{H}, i=1,2, x_{i}, y_{i} \in \mathbb{C}$, note that

$$
\begin{align*}
v_{1}^{*} v_{2} & =\bar{x}_{1} x_{2}+\bar{y}_{1} y_{2}+\mathrm{j}\left(x_{1} y_{2}-y_{1} x_{2}\right) \tag{6.12}\\
v_{1}^{*} \mathrm{j} v_{2} & =-\bar{x}_{1} y_{2}+\bar{y}_{1} x_{2}+\mathrm{j}\left(x_{1} x_{2}+y_{1} y_{2}\right) . \tag{6.13}
\end{align*}
$$

Therefore, writing $v_{1 i}=x_{1 i}+\mathrm{j} y_{1 i} \in \mathbb{H}^{n} v_{2 i}=x_{2 i}+\mathrm{j} y_{2 i} \in \mathbb{H}^{n}$, we can rewrite the forms defining $S p\left(\mathbb{H}^{n}\right)$, resp. $O\left(\mathbb{H}^{n}\right)$ as

$$
\begin{array}{cc}
& \bar{x}_{11} x_{21}+\cdots+\bar{x}_{1 n} x_{2 n}+\bar{y}_{11} y_{21}+\cdots+\bar{y}_{1 n} y_{2 n} \\
& +\mathrm{j}\left(x_{11} y_{21}+\cdots+x_{1 n} y_{2 n}-y_{11} x_{21}-\cdots-y_{1 n} x_{2 n}\right), \\
\text { resp. } & -\bar{x}_{11} y_{21}-\cdots \bar{x}_{1 n} y_{2 n}+\bar{y}_{11} x_{21}+\cdots+\bar{y}_{1 n} x_{2 n} \\
+\mathrm{j}\left(x_{11} x_{21}+\cdots+x_{1 n} x_{2 n}+y_{11} y_{21}+\cdots+y_{1 n} y_{2 n}\right) . \tag{6.17}
\end{array}
$$

Now $S p\left(\mathbb{H}^{n}\right)$, resp. $O\left(\mathbb{H}^{n}\right)$ can be defined as the set of $V \in G L\left(\mathbb{C}^{2 n}\right)$ preserving separately the form (6.14) and 6.15, resp. 6.16) and 6.17). Note that we do not need to check the conditions (6.3). Thus, we obtain (using a simple change of variabkes in the case of $O\left(\mathbb{H}^{n}\right)$)

$$
\begin{align*}
S p\left(\mathbb{H}^{n}\right) & =S U\left(\mathbb{C}^{2 n}\right) \cap S p\left(\mathbb{C}^{2 n}\right), \tag{6.18}\\
O\left(\mathbb{H}^{n}\right) & \simeq S U\left(\mathbb{C}^{n, n}\right) \cap O\left(\mathbb{C}^{2 n}\right) . \tag{6.19}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
S p\left(\mathbb{H}^{q, p}\right) \simeq S U\left(\mathbb{C}^{2 q, 2 p}\right) \cap S p\left(\mathbb{C}^{2 n}\right) . \tag{6.20}
\end{equation*}
$$

6.3 Reflections

Let $v \in \mathbb{R}^{n}$. The reflection wrt v is the map $R_{v} \in L\left(\mathbb{R}^{n}\right)$

$$
R_{v} y:=y-2 \frac{\langle v \mid y\rangle}{\langle v \mid v\rangle} v .
$$

Clearly, $R_{v}^{2}=\mathbb{1}$ i $R_{v} \in O\left(\mathbb{R}^{n}\right) \backslash S O\left(\mathbb{R}^{n}\right)$.
Theorem 6.1 Reflections generate $O\left(\mathbb{R}^{n}\right)$. The set of even products of reflections coincides with $S O\left(\mathbb{R}^{n}\right)$.

Proof. Consider first $O\left(\mathbb{R}^{2}\right)$ and the rotation

$$
A_{\phi}:=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \tag{6.21}\\
\sin \phi & \cos \phi
\end{array}\right]
$$

Take a pair of normalized vectors v_{1}, v_{2} with angle $\frac{\phi}{2}$. Then it is easy to see that $A_{\phi}=R_{v_{1}} R_{v_{2}}$.
Let $A \in O\left(\mathbb{R}^{n}\right)$. After complexification, we can use the spectral theorem, which yields that in an appropriate basis A is the direct sum of matrices of the form (6.21) and of 1 and -1 .

For $v \in \mathbb{R}^{n}$, define

$$
\phi(v):=\sum_{i} v_{i} \phi_{i}, \quad \gamma(v):=\sum_{i} v_{i} \gamma_{i} .
$$

It is an element o $\mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)$, resp. $\mathrm{Cl}^{-}\left(\mathbb{R}^{n}\right)$. Clearly,

$$
\phi(v)^{*}=\phi(v), \quad \gamma(v)^{*}=-\gamma(v), \quad \phi(v) \phi(v)^{*}=\gamma(v) \gamma(v)^{*}=\langle v \mid v\rangle,
$$

Assume $\langle v \mid v\rangle=1$. Then $\pm \phi(v)$ and $\pm \gamma(v)$ are unitary odd elements of $\mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)$, resp. $\mathrm{Cl}^{-}\left(\mathbb{R}^{n}\right)$, and

$$
\begin{align*}
& (\pm \phi(v)) \phi(y)(\pm \phi(v))^{*}=-\phi\left(R_{v} y\right), \tag{6.22}\\
& (\pm \gamma(v)) \gamma(y)(\pm \gamma(v))^{*}=-\gamma\left(R_{v} y\right) . \tag{6.23}
\end{align*}
$$

6.4 Pin and Spin groups

Let $\operatorname{Pin}^{+}(n)=\operatorname{Pin}{ }^{+}\left(\mathbb{R}^{n}\right)$ be the group of $U \in U\left(\mathrm{Cl}^{+}\left(\mathbb{R}^{n}\right)\right)$ satisfying

$$
\left\{U \phi(v) U^{*}: v \in \mathbb{R}^{n}\right\}=\left\{\phi(v): v \in \mathbb{R}^{n}\right\}
$$

Analogously, let $\operatorname{Pin}^{-}(n)=\operatorname{Pin}^{-}\left(\mathbb{R}^{n}\right)$ be the group of $U \in U\left(\mathrm{Cl}^{-}\left(\mathbb{R}^{n}\right)\right)$ satisfying

$$
\left\{U \gamma(v) U^{*}: v \in \mathbb{R}^{n}\right\}=\left\{\gamma(v): v \in \mathbb{R}^{n}\right\} .
$$

We set

$$
\begin{equation*}
\operatorname{Spin}\left(\mathbb{R}^{n}\right)=\operatorname{Spin}(n):=\operatorname{Pin}^{+}(n) \cap \mathrm{Cl}_{0}(n)=\operatorname{Pin}^{-}(n) \cap \mathrm{Cl}_{0}(n) . \tag{6.24}
\end{equation*}
$$

Theorem 6.2 1. $\operatorname{Pin}^{+}(n)$ is generated by $\phi(v),\langle v \mid v\rangle=1$, and $\operatorname{Pin}^{-}(n)$ generated by $\gamma(v)$, $\langle v \mid v\rangle=1$.
2. If $U \in \operatorname{Spin}\left(\mathbb{R}^{n}\right)$, then there exists $R_{U} \in S O\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
U \phi(y) U^{*}=\phi\left(R_{U} y\right), \quad U \gamma(y) U^{*}=\gamma\left(R_{U} y\right) \tag{6.25}
\end{equation*}
$$

3. If $U \in \operatorname{Pin}^{+}\left(\mathbb{R}^{n}\right) \backslash \operatorname{Spin}\left(\mathbb{R}^{n}\right)$, then there exists $R_{U} \in O\left(\mathbb{R}^{n}\right) \backslash S O\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
U \phi(y) U^{*}=-\phi\left(R_{U} y\right), \tag{6.26}
\end{equation*}
$$

Similarly, if $U \in \operatorname{Pin}^{-}\left(\mathbb{R}^{n}\right) \backslash \operatorname{Spin}\left(\mathbb{R}^{n}\right)$, then there exists $R_{U} \in O\left(\mathbb{R}^{n}\right) \backslash S O\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
U \gamma(y) U^{*}=-\gamma\left(R_{U} y\right) \tag{6.27}
\end{equation*}
$$

4. The maps

$$
\begin{equation*}
\operatorname{Pin}^{ \pm}(n) \ni U \mapsto R_{U} \in O(n) \tag{6.28}
\end{equation*}
$$

are surjective group homomorphisms with kernel $\{\mathbb{1},-\mathbb{1}\}$, satisfying

$$
\begin{equation*}
\alpha(U) \phi(y) U^{*}=U \phi(y) \alpha\left(U^{*}\right)=\phi\left(R_{U} y\right), \quad U \in \operatorname{Pin}^{ \pm}(n) . \tag{6.29}
\end{equation*}
$$

5. We have $R_{U}=R_{-U}$.

$$
\begin{equation*}
R_{ \pm \mathbb{1}}=\mathbb{1}, \quad R_{ \pm \omega}=-\mathbb{1} \tag{6.30}
\end{equation*}
$$

Proof. Let G be the group by $\phi(v),\langle v \mid v\rangle=1$. It is clearly a subgroup of $\operatorname{Pin}^{+}(n)$, and we easily check that it satisfies all properties listed in the theorem. Now suppose that $\operatorname{Pin}^{+}(n)$ is larger than G. Then the kernel of the homomorphism $\operatorname{Pin}^{+} \rightarrow O(n)$ should be larger that $\{\mathbb{1}, \mathbb{1}\}$.

We check that the only unitary elements of $L\left(\mathbb{C}^{2^{m}}\right)$ commuting with $\phi_{i}(v)$ are $\{c \mathbb{1}||c|=1\}$ and only $\pm \mathbb{1}$ belong to $\mathrm{Cl}^{+}(2 m)$. This yields that the kernel is $\{\mathbb{1}, \mathbb{1}\}$ for $n=2 m$.

The only unitary elements of of $L\left(\mathbb{C}^{2^{m}}\right) \oplus L\left(\mathbb{C}^{2^{m}}\right)$ commuting with with $\phi_{i}(v)$ are $\left\{c_{1} \mathbb{1} \oplus\right.$ $c_{2} \mathbb{1}| | c_{1}\left|=\left|c_{2}\right|=1\right\}$ and only $\pm(\mathbb{1}, \mathbb{1})$ and $\pm(\mathbb{1},-\mathbb{1})$ belong to $\mathrm{Cl}^{+}(2 m+1)$. Then we use 6.30) and the fact that ω is odd.
$U \mapsto R_{U}$ defines the 2-fold coverings

$$
\begin{array}{r}
1 \rightarrow \mathbb{Z}_{2} \rightarrow \operatorname{Spin}\left(\mathbb{R}^{n}\right) \rightarrow S O\left(\mathbb{R}^{n}\right) \rightarrow 1 \\
1 \rightarrow \mathbb{Z}_{2} \rightarrow \operatorname{Pin}^{ \pm}\left(\mathbb{R}^{n}\right) \rightarrow O\left(\mathbb{R}^{n}\right) \rightarrow 1
\end{array}
$$

6.5 Other Pin groups

The group $\operatorname{Pin}(q, p)=\operatorname{Pin}\left(\mathbb{R}^{q, p}\right)$ is defined as the subgroup of $\mathrm{Cl}(q, p)$ generated by $\gamma(v)$ with $\gamma(v)^{2}=1$ or $\gamma(v)^{2}=-1$. We have

$$
\begin{aligned}
1 & \rightarrow \mathbb{Z}_{2} \rightarrow \operatorname{Spin}\left(\mathbb{R}^{q, p}\right) \rightarrow S O\left(\mathbb{R}^{q, p}\right) \rightarrow 1 \\
1 & \rightarrow \mathbb{Z}_{2} \rightarrow \operatorname{Pin}^{ \pm}\left(\mathbb{R}^{q, p}\right) \rightarrow O\left(\mathbb{R}^{q, p}\right) \rightarrow 1 .
\end{aligned}
$$

There are also $\operatorname{Pin}^{ \pm}(n, \mathbb{C})=\operatorname{Pin}^{ \pm}\left(\mathbb{C}^{n}\right)$, which are the groups generated by $\phi(v)$ with $\phi(v)^{2}=$ ± 1. We set $\operatorname{Spin}(n, \mathbb{C})=\operatorname{Pin}^{+}(n, \mathbb{C}) \cap \mathrm{Cl}_{0}(n, \mathbb{C})=\operatorname{Pin}^{-}(n, \mathbb{C}) \cap \mathrm{Cl}_{0}(n, \mathbb{C})$. We have

$$
\begin{array}{r}
1 \rightarrow \mathbb{Z}_{2} \rightarrow \operatorname{Spin}\left(\mathbb{C}^{n}\right) \rightarrow S O\left(\mathbb{C}^{n}\right) \rightarrow 1 \\
1 \rightarrow \mathbb{Z}_{2} \rightarrow \operatorname{Pin}^{ \pm}\left(\mathbb{C}^{n}\right) \rightarrow O\left(\mathbb{C}^{n}\right) \rightarrow 1
\end{array}
$$

Especially important in applications is the group

$$
\begin{equation*}
\operatorname{Pin}^{c}(n):=\{c U: c \in \mathbb{C},|c|=1, U \in \operatorname{Pin}(n)\} . \tag{6.31}
\end{equation*}
$$

An equivalent characterization of $\operatorname{Pin}^{\mathrm{c}}(n)$: it is the set of elements U of $U\left(C A R\left(\mathbb{R}^{n}\right)\right)$ such that

$$
\left\{U \phi(v) U^{*}: v \in \mathbb{R}^{n}\right\}=\left\{\phi(v): v \in \mathbb{R}^{n}\right\} .
$$

We have

$$
\begin{aligned}
& 1 \rightarrow U(1) \rightarrow \operatorname{Spin}^{\mathrm{c}}\left(\mathbb{R}^{n}\right) \rightarrow S O\left(\mathbb{R}^{n}\right) \rightarrow 1, \\
& \rightarrow U(1) \rightarrow \operatorname{Pin}^{\mathrm{c}}\left(\mathbb{R}^{n}\right) \rightarrow O\left(\mathbb{R}^{n}\right) \rightarrow 1 .
\end{aligned}
$$

6.6 Quadratic Hamiltonians

Consider $\mathrm{Cl}(n)$. Let $H_{i j}$ be a real antisymmetric matrix. The expressions

$$
\begin{equation*}
\mathrm{Op}(H)=\frac{1}{2} \sum_{i j} H_{i j} \phi_{i} \phi_{j} \tag{6.32}
\end{equation*}
$$

form a Lie algebra, which is isomorphic to $o(n)$. In fact

$$
\begin{equation*}
[\operatorname{Op}(H), \operatorname{Op}(G)]=\operatorname{Op}([H, G]) . \tag{6.33}
\end{equation*}
$$

It is easy to see that $\operatorname{Spin}(n)$ coincides with the set of $\mathrm{e}^{\mathrm{Op}(H)}$ where H are real antisymmetric matrices. In fact, it is enough to consider $\mathrm{Cl}(2)$:

$$
\begin{equation*}
\mathrm{e}^{t \phi_{1} \phi_{2}}=\cos t \mathbb{1}+\sin t \phi_{1} \phi_{2}=\phi_{1}\left(\cos t \phi_{1}+\sin t \phi_{2}\right) . \tag{6.34}
\end{equation*}
$$

6.7 Low-dimensional coincidences

Recall that $U\left(\mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)\right)$ denotes the set of unitary elements of $\mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)$, that is $V \in \mathrm{Cl}_{0}(n)$ satisfying $V^{*} V=\mathbb{1}$. Obviously,

$$
\begin{equation*}
\operatorname{Spin}\left(\mathbb{R}^{n}\right) \subset U\left(\mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)\right) \tag{6.35}
\end{equation*}
$$

Now

n	$\mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)$	$U\left(\mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)\right)$
1	\mathbb{R}	$O(\mathbb{R})$
2	\mathbb{C}	$U(\mathbb{C})$,
3	\mathbb{H}	$S p(\mathbb{H})=S U\left(\mathbb{C}^{2}\right)$,
4	$\mathbb{H} \oplus \mathbb{H}$	$S p(\mathbb{H}) \times S p(\mathbb{H})=S U\left(\mathbb{C}^{2}\right) \times S U\left(\mathbb{C}^{2}\right)$,
5	$\mathbb{H}(2)$	$S p\left(\mathbb{H}^{2}\right)$,
6	$\mathbb{C}(4)$	$U\left(\mathbb{C}^{4}\right)$,
7	$\mathbb{R}(8)$	$O\left(\mathbb{R}^{8}\right)$.

Proposition 6.3 Here are the (real) dimensions of the basic classical groups:

$$
\begin{align*}
\operatorname{dim} S O\left(\mathbb{R}^{n}\right) & =\frac{n(n-1)}{2} \tag{6.37}\\
\operatorname{dim} S U\left(\mathbb{C}^{n}\right) & =(n+1)(n-1), \quad U\left(\mathbb{C}^{n}\right)=n^{2}, \tag{6.38}\\
\operatorname{dim} S p\left(\mathbb{H}^{n}\right) & =n(2 n+1) \tag{6.39}
\end{align*}
$$

Proof. Instead of the groups we will consider their Lie algebras.

$$
\begin{equation*}
o\left(\mathbb{R}^{n}\right)=\left\{A \in g l\left(\mathbb{R}^{n}\right) \mid A=-A^{\mathrm{T}}\right\} . \tag{6.40}
\end{equation*}
$$

Hence each element of $o\left(\mathbb{R}^{n}\right)$ is determned by its strictly upper triangular part. Hence

$$
\begin{equation*}
\operatorname{dim} s o\left(\mathbb{R}^{n}\right)=\operatorname{dim} o\left(\mathbb{R}^{n}\right)=\frac{n(n-1)}{2} \tag{6.41}
\end{equation*}
$$

Clearly, $\operatorname{dim} s u\left(\mathbb{C}^{n}\right)=\operatorname{dim} u\left(\mathbb{C}^{n}\right)-1$. Now

$$
\begin{equation*}
u\left(\mathbb{C}^{n}\right)=\left\{A \in g l\left(\mathbb{R}^{n}\right) \mid A=-A^{*}\right\} \tag{6.42}
\end{equation*}
$$

Hence each element of $u\left(\mathbb{C}^{n}\right)$ is determned by its (real) diagonal and (complex) strictly upper triangular part. Hence

$$
\begin{equation*}
\operatorname{dim} u\left(\mathbb{R}^{n}\right)=n+2 \frac{n(n-1)}{2}=n^{2} \tag{6.43}
\end{equation*}
$$

Finally,

$$
s p\left(\mathbb{H}^{n}\right)=\left\{\left.\left[\begin{array}{cc}
X & -\bar{Y} \tag{6.44}\\
Y & \bar{X}
\end{array}\right] \right\rvert\, X^{*}=X, Y=Y^{\mathrm{T}}\right\} .
$$

The dimension of possible X is n^{2} by what we know about $u\left(\mathbb{C}^{n}\right)$. The dimension of possible Y is $2 n+2 \frac{n(n-1)}{2}=n^{2}+n$. Hence

$$
\begin{equation*}
\operatorname{dim} s p\left(\mathbb{H}^{n}\right)=2 n^{2}+n \tag{6.45}
\end{equation*}
$$

Now table 6.36 and the above proposition yield

n	$\operatorname{dim} S O(n)=\operatorname{dim} \operatorname{Spin}(n)$	$\operatorname{dim} U\left(\mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)\right)$
		$0=\operatorname{dim} O(1)$,
1	0	$1=\operatorname{dim} U(1)$,
2	1	$3=\operatorname{dim} S p(\mathbb{H})=\operatorname{dim} S U(2)$,
3	3	$6=\operatorname{dim} S p(\mathbb{H}) \times S p(\mathbb{H})=\operatorname{dim} S U(2) \times S U(2)$,
4	6	$10=\operatorname{dim} S p\left(\mathbb{H}^{2}\right)$,
5	10	$16=\operatorname{dim} U(4)$,
6	15	$28=\operatorname{dim} O(8)$.

Thus

$$
\begin{array}{ll}
\operatorname{Spin}\left(\mathbb{R}^{n}\right)=U\left(\mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)\right), & n=1,2,3,4,5, \\
\operatorname{Spin}\left(\mathbb{R}^{n}\right) \subsetneq U\left(\mathrm{Cl}_{0}\left(\mathbb{R}^{n}\right)\right), & n \geq 6 \tag{6.47}
\end{array}
$$

Actually, if we consider the Jordan-Wigner representations (in the odd case, the irreducible ones), then $\phi(v)$, the generators of Clifford algebras $\mathrm{Cl}(n)$ have determinant 1 starting from $n=4$. But they also generate the Pin group. So all elements of the $\operatorname{Pin}(n)$ have determinant 1 for $n \geq 4$. Therefore, for $n=6$ we can write $\operatorname{Spin}(6) \subset S U(4)$. We have $\operatorname{dim} S U(4)=15$. Hence $\operatorname{Spin}(6)=S U(4)$. Thus we obtain the coincidences in low dimensions:

$$
\begin{aligned}
& \operatorname{Spin}\left(\mathbb{R}^{2}\right) \simeq S O\left(\mathbb{R}^{2}\right) \\
& \operatorname{Spin}\left(\mathbb{R}^{3}\right) \simeq S U\left(\mathbb{C}^{2}\right) \\
& \operatorname{Spin}\left(\mathbb{R}^{4}\right) \simeq \operatorname{SU}\left(\mathbb{C}^{2}\right) \times \operatorname{SU}\left(\mathbb{C}^{2}\right), \\
& \operatorname{Spin}\left(\mathbb{R}^{5}\right) \simeq \operatorname{Sp}\left(\mathbb{H}^{2}\right), \\
& \operatorname{Spin}\left(\mathbb{R}^{6}\right) \simeq \operatorname{SU}\left(\mathbb{C}^{4}\right)
\end{aligned}
$$

6.8 $\quad S L\left(\mathbb{R}^{2}\right)=S p\left(\mathbb{R}^{2}\right)$

Let

$$
J:=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

Note that for $A \in L\left(\mathbb{R}^{2}\right)$ we have

$$
\begin{aligned}
A^{\mathrm{T}} J A & =(\operatorname{det} A) J, \\
A^{\mathrm{T}} J+J A & =(\operatorname{Tr} A) J
\end{aligned}
$$

Hence $S L\left(\mathbb{R}^{2}\right)=S p\left(\mathbb{R}^{2}\right)$ and $s l\left(\mathbb{R}^{2}\right)=s p\left(\mathbb{R}^{2}\right)$. For later reference note the following identities for 2×2 matrices:

$$
\begin{equation*}
\frac{1}{2} \operatorname{Tr} J A^{\mathrm{T}} J A=-\operatorname{det} A, \quad \operatorname{Tr} A=0 \quad \Rightarrow \quad J A^{\mathrm{T}} J=A . \tag{6.48}
\end{equation*}
$$

6.9 $S U(2) \simeq \operatorname{Spin}(3)$

We can show directly that $S U(2) \simeq S p i n(3)$ using the Jordan-Wigner representation:

$$
\begin{align*}
\operatorname{Spin}\left(\mathbb{R}^{3}\right) & =\left\{a_{0} \mathbb{1}+a_{1} \phi_{2} \phi_{3}+a_{2} \phi_{3} \phi_{1}+a_{3} \phi_{1} \phi_{2}: a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1\right\}, \tag{6.49}\\
S U(2) & =\left\{a_{0} \mathbb{1}+a_{1} \sigma_{1}+a_{2} \sigma_{2}+a_{3} \sigma_{3}: a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1\right\} . \tag{6.50}
\end{align*}
$$

The following construction allows to see directly the 2-fold covering $S U(2) \rightarrow S O$ (3). Identify \mathbb{R}^{3} with Hermitian matrices 2×2 of trace 0 :

$$
\mathbb{R}^{3} \ni(x, y, z) \mapsto X=\left[\begin{array}{cc}
z & x+\mathrm{i} y \\
x-\mathrm{i} y & -z
\end{array}\right] .
$$

Note that

$$
\frac{1}{2} \operatorname{Tr} X_{1} X_{2}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
$$

defines the standard scalar product. Alternatively, the scalar product can be defined through the determinant:

$$
-\operatorname{det} X=x^{2}+y^{2}+z^{2} .
$$

For $A \in S U(2)$ we set

$$
\rho_{A} X:=A X A^{*} .
$$

Then

$$
\operatorname{det} \rho_{A} X=\operatorname{det} X .
$$

Hence ρ_{A} preserves the scalar product.

$$
S U(2) \ni A \mapsto \rho_{A} \in S O(3) .
$$

is a surjective homomorpism. Its kernel is $\{\mathbb{1},-\mathbb{1}\}$.
For $Y \in s u(2)$ we set

$$
\rho_{Y} X:=Y X+X Y^{*}=[Y, X] .
$$

(Note that $\left.Y=-Y^{*}\right)$.
6.10 $S L(2, \mathbb{R}) \simeq \operatorname{Spin}_{0}(1,2)$

We identify \mathbb{R}^{3} with 2×2 matrices of trace 0 :

$$
\mathbb{R}^{3} \ni(x, y, z) \mapsto X=\left[\begin{array}{cc}
z & x+y \\
-x+y & -z
\end{array}\right] .
$$

Note that

$$
\frac{1}{2} \operatorname{Tr} X_{1} X_{2}=-x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}
$$

Hence for $\mathbb{R}=\mathbb{R}$ we obtain a pseudoscalar product of signature $(1,2)$. Alternatively, we can use the determinant

$$
-\operatorname{det} X=-x^{2}+y^{2}+z^{2} .
$$

For $A \in S L(2, \mathbb{R})$ we set

$$
\rho_{A} X:=A X A^{-1} .
$$

Then

$$
\operatorname{det} \rho_{A} X=\operatorname{det} X
$$

Hence ρ_{A} preserves the (pseudo-)scalar product

$$
\begin{aligned}
S L(2, \mathbb{R}) \ni A & \mapsto \rho_{A} \in S O_{0}(1,2), \\
S L(2, \mathbb{C}) \ni A & \mapsto \rho_{A} \in S O(3, \mathbb{C}),
\end{aligned}
$$

are surjective homomorphisms. Their kernel is $\{\mathbb{1},-\mathbb{1}\}$.
For $Y \in \operatorname{sl}(2, \mathbb{R})$,

$$
\rho_{Y} X:=[Y, X] .
$$

6.11 $S L(2, \mathbb{C}) \simeq \operatorname{Spin}_{0}(1,3)$

We identify \mathbb{R}^{4} with 2×2 Hermitian matrices

$$
\mathbb{R}^{4} \ni(t, x, y, z) \mapsto X=\left[\begin{array}{cc}
t+z & x+\mathrm{i} y \\
x-\mathrm{i} y & t-z
\end{array}\right] .
$$

Note that

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr} J X_{1} J X_{2} & =-t_{1} t_{2}+x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} \\
-\operatorname{det} X & =-t^{2}+x^{2}+y^{2}+z^{2}
\end{aligned}
$$

Hence we obtain a pseudoscalar product of signature $(1,3)$.
For $A \in S L(2, \mathbb{C})$ we set

$$
\rho_{A} X:=A X A^{*} .
$$

Then

$$
\operatorname{det} \rho_{A} X=\operatorname{det} X
$$

Hence ρ_{A} preserves the pseudoscalar product.

$$
S L(2, \mathbb{C}) \ni A \mapsto \rho_{A} \in S O_{0}(1,3)
$$

is a surjective homorphism. Its kernel is $\{\mathbb{1},-\mathbb{1}\}$.
6.12 $S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \simeq \operatorname{Spin}_{0}(2,2)$

We identify \mathbb{R}^{4} with 2×2 matrices:

$$
\mathbb{R}^{4} \ni(t, x, y, z) \mapsto X=\left[\begin{array}{cc}
t+z & x+y \\
x-y & t-z
\end{array}\right] .
$$

Note that

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr} J X_{1} J X_{2} & =-t_{1} t_{2}+x_{1} x_{2}-y_{1} y_{2}+z_{1} z_{2} \\
-\operatorname{det} X & =-t^{2}+x^{2}-y^{2}+z^{2}
\end{aligned}
$$

Hence we obtain a pseudo-scalar product of signature $(2,2)$.
For $(A, B) \in S L(2, \mathbb{R}) \times S L(2, \mathbb{R})$ we set

$$
\rho_{(A, B)} X:=A X B^{-1} .
$$

Then

$$
\operatorname{det} \rho_{(A, B)} X=\operatorname{det} X
$$

Hence $\rho_{(A, B)}$ preserves the pseudoscalar product.

$$
\begin{array}{r}
S L(2, \mathbb{R}) \times S L(2, \mathbb{R}) \ni(A, B) \mapsto \rho_{(A, B)} \in S O_{0}(2,2), \\
S L(2, \mathbb{C}) \times S L(2, \mathbb{R}) \ni(A, B) \mapsto \rho_{A} \in S O(4, \mathbb{C})
\end{array}
$$

are surjective homomorphsims with kernel $\{\mathbb{1},-\mathbb{1}\}$.
6.13 $S U(2) \times S U(2) \simeq \operatorname{Spin}(4)$

Let $J:=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$. Identify \mathbb{R}^{4} with complex matrices 2×2 satisfying $J \bar{X}=X J$ (or quaternions) as follows:

$$
\mathbb{R}^{4} \ni(t, x, y, z) \mapsto X=\left[\begin{array}{cc}
t+\mathrm{i} z & \mathrm{i} x+y \\
\mathrm{i} x-y & t-\mathrm{i} z
\end{array}\right] .
$$

Note that

$$
\begin{aligned}
\frac{1}{2} \operatorname{Tr} X_{1}^{*} X_{2} & =t_{1} t_{2}+x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} \\
\operatorname{det} X & =t^{2}+x^{2}+y^{2}+z^{2}
\end{aligned}
$$

defines the standard scalar product.
For $(A, B) \in S U(2) \times S U(2)$ we set

$$
\rho_{(A, B)} X:=A X B^{*} .
$$

Then

$$
\operatorname{det} \rho_{(A, B)} X=\operatorname{det} X
$$

Hence $\rho_{(A, B)}$ preserves the scalar product.

$$
S U(2) \times S U(2) \ni(A, B) \mapsto \rho_{(A, B)} \in S O(4)
$$

is a surjective homorphism. Its kernel is $\{(\mathbb{1}, \mathbb{1}),-(\mathbb{1}, \mathbb{1})\}$.

7 Slater determinants and CAR representations

7.1 Reminder about fermionic Fock spaces

Let \mathcal{W} be a Hilbert space. We consider the fermionic Fock space $\Gamma_{\mathrm{a}}(\mathcal{W})$. Recall that for $\in \mathcal{W}$ we have creation/annihilation operators $a^{*}(w), a(w)=\left(a^{*}(w)\right)^{*}$ satisfying

$$
\begin{equation*}
\left[a(w), a\left(w^{\prime}\right)\right]_{+}=0, \quad\left[a(w), a_{j}^{*}\left(w^{\prime}\right)\right]_{+}=\left(w \mid w^{\prime}\right), \quad a(w) \Omega=0 \tag{7.51}
\end{equation*}
$$

If e_{1}, e_{2}, \ldots is a basis of \mathcal{W}, then we often use a different notation

$$
\begin{gather*}
a_{i}:=a\left(e_{i}\right), \quad a_{i}^{*}:=a^{*}\left(e_{i}\right), \\
a(w)=\sum \bar{w}_{i} a_{i}, \quad a^{*}(w)=\sum w_{i} a_{i}^{*} \\
{\left[a_{i}, a_{j}\right]_{+}=0, \quad\left[a_{i}, a_{j}^{*}\right]_{+}=\delta_{i, j}, \quad a_{i} \Omega=0 .} \tag{7.52}
\end{gather*}
$$

The vectors $a_{i_{1}}^{*} \cdots a_{i_{n}}^{*} \Omega, i_{1}<\cdots<i_{n}$ form an orthonormal basis of $\Gamma_{\mathrm{a}}(\mathcal{W})$.

7.2 Slater determinants

Let \mathcal{W} be a Hilbert space. We consider the fermionic Fock space $\Gamma_{\mathrm{a}}(\mathcal{W})$.
Consider an orthogonal finite dimensional projection π on \mathcal{W} and let e_{1}, \ldots, e_{m} be an orthonormal basis of $\pi \mathcal{W}$. Then

$$
\begin{align*}
& \Phi=a^{*}\left(e_{1}\right) \cdots a^{*}\left(e_{m}\right) \Omega=\frac{1}{\sqrt{m!}} \sum_{\sigma \in S_{m}} \operatorname{sgn} \sigma e_{\sigma(1)} \otimes \cdots \otimes e_{\sigma(m)} \tag{7.53}\\
& =\sqrt{m!} e_{1} \otimes_{\mathrm{a}} \cdots \otimes_{\mathrm{a}} e_{m}=\frac{1}{\sqrt{m!}} e_{1} \wedge \cdots \wedge e_{m} \tag{7.54}
\end{align*}
$$

is a normalized vector. Such vectors are called Slater determinants. If f_{1}, \ldots, f_{m} is another basis of $\pi \mathcal{W}$, so that $e_{i}=\sum_{j} c_{i j} f_{j}$, then

$$
a^{*}\left(e_{1}\right) \cdots a^{*}\left(e_{m}\right) \Omega=\operatorname{det}\left[c_{i j}\right] a^{*}\left(f_{1}\right) \cdots a^{*}\left(f_{m}\right) \Omega
$$

Thus the state

$$
\omega_{\pi}(A):=(\Phi \mid A \Phi)
$$

depends only on π.

7.3 Changing the vacuum

Consider a basis $e_{1}, e_{2}, .$. and the Slater determinant made of the first m vectors:

$$
\begin{equation*}
\Phi:=a_{1}^{*} \cdots a_{m}^{*} \Omega \tag{7.55}
\end{equation*}
$$

It satisfies

$$
\begin{equation*}
a_{i}^{*} \Phi=0, \quad i=1, \ldots, m, \quad a_{j} \Phi=0, \quad j=m+1, \ldots, \tag{7.56}
\end{equation*}
$$

A conjugation is an antilinear operator C such that $C^{2}=\mathbb{1}$. Let us fix a conjugation on $\pi \mathcal{W}$ such that $C e_{i}=e_{i}, i=1, \ldots, m$. Thus

$$
\mathbb{C}^{n} \ni w=\sum w_{n} e_{n} \mapsto C w:=\sum \bar{w}_{i} e_{i} \in \mathcal{W}
$$

Then we can set

$$
\begin{align*}
& \tilde{a}(w):=a^{*}(C \pi w)+a((1-\pi) w), \tag{7.57}\\
& \tilde{a}(w):=a(C \pi w)+a^{*}((1-\pi) w) \tag{7.58}
\end{align*}
$$

Then $\tilde{a}(w), \tilde{a}^{*}(w)$ satisfy the usual commutation relations with vacuum Φ

$$
\begin{equation*}
\left[\tilde{a}(w), \tilde{a}\left(w^{\prime}\right)\right]_{+}=0, \quad\left[\tilde{a}(w), \tilde{a}_{j}^{*}\left(w^{\prime}\right)\right]_{+}=\left(w \mid w^{\prime}\right), \quad \tilde{a}(w) \Phi=0 . \tag{7.59}
\end{equation*}
$$

The vectors $\tilde{a}_{i_{1}}^{*} \cdots \tilde{a}_{i_{n}}^{*} \Omega, i_{1}<\cdots<i_{n}$ form an orthonormal basis of $\Gamma_{\mathrm{a}}(\mathcal{W})$. Thus instead the space $\Gamma_{a}(\mathcal{W})$ is isomorphic to the space $\Gamma(C \pi \mathcal{W} \oplus(1-\pi) \mathcal{W})$.

Often one renames

$$
\begin{equation*}
b_{i}:=a_{i}^{*}, \quad b_{i}^{*}:=a_{i}, \quad i=1, \ldots, m \tag{7.60}
\end{equation*}
$$

so that

$$
\tilde{a}_{i}:=\left\{\begin{array}{ll}
b_{i} & i \leq n, \tag{7.61}\\
a_{j} & j>n ;
\end{array} \quad \tilde{a}_{i}^{*}:= \begin{cases}b_{i}^{*} & i \leq n, \\
a_{j}^{*} & j>n .\end{cases}\right.
$$

We can implement this change by a unitary transformation: Set

$$
U:= \begin{cases}\prod_{i=1}^{m}\left(a_{i}^{*}-a_{i}\right), & m \text { is even } ; \tag{7.62}\\ \prod_{i=1}^{m}\left(a_{i}^{*}-a_{i}\right)(-1)^{N}, & m \text { is odd } .\end{cases}
$$

U is unitary and satisfies

$$
\begin{equation*}
U a^{*}(w) U^{*}=\tilde{a}^{*}(w), \quad U a(w) U^{*}=\tilde{a}(w), \quad U \Omega=\Phi \tag{7.63}
\end{equation*}
$$

In fact, using

$$
\begin{align*}
& \quad\left(a^{*}-a\right) a\left(a-a^{*}\right)=-a^{*} a a^{*}=-a^{*}\left(a a^{*}+a^{*} a\right)=-a^{*}, \tag{7.64}\\
& (-1)^{N} a_{i}(-1)^{N}=-a_{i}, \tag{7.65}
\end{align*}
$$

we see that

$$
\begin{align*}
U a_{i}^{*} U^{*} & =b_{i}, \quad i=1, \ldots, m ; \tag{7.66}\\
U a_{i}^{*} U^{*} & =a_{i}^{*}, \quad i=m+1, \ldots \tag{7.67}\\
U \Omega & =\Phi . \tag{7.68}
\end{align*}
$$

7.4 Free fermionic Hamiltonians

For simplicity, assume that \mathcal{W} is finite dimensional. Consider a self-adjoint operator h on \mathcal{W}. It can be diagonalized, so that

$$
\left.h=\sum_{i} \lambda_{i} \mid e_{i}\right)\left(e_{i} \mid .\right.
$$

Consider the Hamiltonian

$$
\begin{equation*}
H=\mathrm{d} \Gamma(h)=\sum_{i} \lambda_{i} a_{i}^{*} a_{i}^{*} . \tag{7.69}
\end{equation*}
$$

It is easy to see that $\mathrm{d} \Gamma(h)$ possesses a unique ground state iff $0 \notin \sigma(h)$. Indeed, let $\lambda_{1} \leq \lambda_{2} \leq$ $\cdots \leq \lambda_{m}<0<\lambda_{m+1} \leq \ldots$. Then the ground state of $\mathrm{d} \Gamma(h)$ is given by

$$
\Phi:=a_{1}^{*} \cdots a_{m}^{*} \Omega
$$

so that

$$
H \Phi=E \Phi, \quad E=\lambda_{1}+\cdots+\lambda_{m} .
$$

Setting

$$
\begin{equation*}
b_{i}=a_{i}^{*}, \quad b_{i}^{*}=a_{i}, \quad i=1, \ldots, m, \tag{7.70}
\end{equation*}
$$

the Hamiltonian H can be rewritten as

$$
H=\sum_{i \leq m}\left|\lambda_{i}\right| b_{i}^{*} b_{i}+\sum_{i>m} \lambda_{i} a_{i}^{*} a_{i}+\sum_{i \leq m} \lambda_{i} .
$$

We can view this as the Hamiltonian on the Fock space $\Gamma_{\mathrm{a}}(C \pi \mathcal{W} \oplus(\mathbb{1}-\pi) \mathcal{W})$, and treat Φ as the new vacuum, b_{i}, resp. $b_{i}^{*}, i=1, \ldots, m$, as new annihilation/creation operators.

Note that strictly speaking this construction makes sense only for a finite dimensional $\mathbb{1}_{]-\infty, 0]}(h)$. However, it is often used also if this dimension is infinite. The constant E is usually dropped-it is often in fact infinite, and we use then the renormalized Hamiltonian

$$
H_{\mathrm{ren}}=\sum_{i \leq m}\left|\lambda_{i}\right| b_{i}^{*} b_{i}+\sum_{i>m} \lambda_{i} a_{i}^{*} a_{i} .
$$

Example 7.1 Consider the free Fermi gas with the chemical potential μ in volume L.

$$
H=\sum_{k \in \frac{2 \pi}{L} \mathbb{Z}^{d}}\left(k^{2}-\mu\right) a_{k}^{*} a_{k} .
$$

The ground state is called the Fermi sea $\prod_{k^{2}<\mu} a_{k}^{*} \Omega$. It has the energy

$$
E=\sum_{k^{2}<\mu}\left(k^{2}-\mu\right) .
$$

The renormalized Hamiltonian is

$$
H_{\mathrm{ren}}=\sum_{k^{2}<\mu}\left|k^{2}-\mu\right| b_{k}^{*} b_{k}+\sum_{k^{2} \geq \mu}\left(k^{2}-\mu\right) a_{k}^{*} a_{k} .
$$

In infinite volume the Hamiltonian is

$$
H=\int\left(k^{2}-\mu\right) a_{k}^{*} a_{k} \mathrm{~d} k
$$

E is infinite and the Slater determinant is ill defined. However, we can change the representation of CAR replacing H with

$$
H_{\mathrm{ren}}=\int_{k^{2}<\mu}\left|k^{2}-\mu\right| b_{k}^{*} b_{k} \mathrm{~d} k+\int_{k^{2} \geq \mu}\left(k^{2}-\mu\right) a_{k}^{*} a_{k} \mathrm{~d} k .
$$

Example 7.2 Let $\alpha_{i},, i=1,2,3, \beta$ satisfy Clifford relations. Consider the Dirac Hamiltonian

$$
h:=\vec{\alpha} \vec{p}+\beta m .
$$

It is a self-adjoint operator on $L^{2}\left(\mathbb{R}^{3} \otimes \mathbb{C}^{4}\right)$. The operator h has spectrum $\left.\left.\sigma(h)=\right]-\infty,-m\right] \cup$ $\left[m, \infty\left[\right.\right.$. In fact, one easily shows that $h^{2}=p^{2}+m^{2}$, hence $\sigma\left(h^{2}\right)=\left[m^{2}, \infty[\right.$, and there exists a distinguished conjugation C, called the charge conjugation, such that $C h C=-h$.

The naive quantization of h, that is $\mathrm{d} \Gamma(h)$, acts on the space $\Gamma_{\mathrm{a}}\left(L^{2}\left(\mathbb{R}^{3} \otimes \mathbb{C}^{4}\right)\right)$. It is however physically meaningless - it yields an operator unbounded from below. Formally, the ground state of $\mathrm{d} \Gamma(h)$ is the Slater determinant with all negative energy states present. This state is called the Dirac sea.

In practice, we change the representation of CAR. Set

$$
\Lambda^{ \pm}:=\mathbb{1}_{[0, \infty[}(\pm h) .
$$

On can take

$$
C \Lambda^{-} L^{2}\left(\mathbb{R}^{3} \otimes \mathbb{C}^{4}\right) \oplus \Lambda^{+} L^{2}\left(\mathbb{R}^{3} \otimes \mathbb{C}^{4}\right)
$$

as the physical one particle space.
Example 7.3 Let us continue with the previous example. Let add a scalar and magnetic potential:

$$
h:=\vec{\alpha}(\vec{p}-A(x))+\beta m+V(x) .
$$

$\sigma(h)$ is still unbounded from below. (One does not have $C h C=-h$ though). Suppose that $0 \notin \sigma(h)$. Then one can repeat the previous construction.

7.5 Representations of CAR

Let $(\mathcal{V},\langle\cdot \mid \cdot\rangle)$ be a real Hilbert space. Let \mathcal{H} be a complex Hilbert space. We say that

$$
\begin{equation*}
\mathcal{V} \ni v \mapsto \phi_{\bullet}(v) \in B(\mathcal{H}) \tag{7.71}
\end{equation*}
$$

is a representation of Canonical Anticommutation Relations (over \mathcal{V} in \mathcal{H}) or a $C A R$ representation if

$$
\begin{equation*}
\phi_{\bullet}(v)^{*}=\phi_{\bullet}(v), \quad\left[\phi_{\bullet}(v), \phi_{\bullet}(w)\right]_{+}=2\langle v \mid w\rangle . \tag{7.72}
\end{equation*}
$$

We say that it is irreducible if there are no closed subspaces in \mathcal{H} invariant wrt $\phi_{\bullet}(v)$. We say that two representations of $\operatorname{CAR} \mathcal{V} \ni v \mapsto \phi_{i}(v) \in B\left(\mathcal{H}_{i}\right), i=1,2$, are equivalent if there exists a unitary operator $U: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that

$$
\begin{equation*}
U \phi_{1}(v)=\phi_{2}(v) U, \quad v \in \mathcal{V} . \tag{7.73}
\end{equation*}
$$

Example 7.4 If $\operatorname{dim} \mathcal{V}$ is even, then all irreducible $C A R$ representations over \mathcal{V} are equivalent, and given by the Jordan-Wigner (or Fock) construction. If $\operatorname{dim} \mathcal{V}$ is odd, then there exist two inequivalent irreducible $C A R$ representations over \mathcal{V}.

Example 7.5 Let \mathcal{V} be infinite dimensional with an o.n. basis $f_{i, j}, i=1,2,, j=1,2, \ldots$. Consider a space \mathcal{W} with basis $e_{j}, j=1,2 \ldots$ We set

$$
\begin{equation*}
\phi_{\bullet}\left(f_{1, j}\right):=a_{j}^{*}+a_{j}, \quad \phi_{\bullet}\left(f_{2, j}\right):=\frac{1}{\mathrm{i}}\left(a_{j}^{*}-a_{j}\right) . \tag{7.74}
\end{equation*}
$$

Then we obtain a CAR representation over \mathcal{V} in $\Gamma_{\mathrm{a}}(\mathcal{W})$.

Example 7.6 Let us continue with the previous example. Let $I \subset \mathbb{N}$.

$$
\phi_{\bullet}\left(f_{1, j}\right):=a_{j}^{*}+a_{j}, \quad \phi_{\bullet}\left(f_{2, j}\right):=\left\{\begin{array}{ll}
\frac{1}{\mathrm{i}}\left(a_{j}-a_{j}^{*}\right), & j \in I ; \tag{7.75}\\
\frac{1}{\mathrm{i}}\left(a_{j}^{*}-a_{j}\right), & j \notin I .
\end{array} .\right.
$$

Then we also obtain a CAR representation. We will say that it is a representation in $\Gamma_{\mathrm{a}}(C \pi \mathcal{W} \oplus$ $(\mathbb{1}-\pi) \mathcal{W})$, where π is the projection in \mathcal{W} onto $\operatorname{Span}\left\{e_{j} \mid j \in I\right\}$. Note that both representations are equivalent iff π is finite dimensional.

7.6 CAR C^{*}-algebra

\mathfrak{A} is a C^{*}-algebra if it is a Banach *algebra satisfying $\left\|A^{*}\right\|=\|A\|$ and $\left\|A^{*} A\right\|=\|A\|^{2} . \omega$ is a state on \mathfrak{A} if it is a functional on \mathfrak{A} such that $\omega\left(A^{*} A\right) \geq 0$ and $\omega(\mathbb{1})=1 . \pi: \mathfrak{A} \rightarrow B(\mathcal{H})$ is a $*$-representation if it is a $*$-homomorphism.

Every closed $*$-algebra in $B(\mathcal{H})$ is a C^{*}-algebra. Every functional of the form $A \mapsto \operatorname{Tr} A \rho$, where $\operatorname{Tr} \rho=1, \rho \geq 0$ is a state.

Let $(\mathcal{V},\langle\cdot \mid \cdot\rangle)$ be a real Hilbert space. If \mathcal{V} is finite dimensional, then the CAR algebra $\operatorname{CAR}(\mathcal{V})$ was defined before (as the Clifford algebra $\operatorname{Cl}(\mathbb{C} \mathcal{V})$ generated by $\phi(v) v \in \mathcal{V}$, equipped with the involution such that $\phi(v)^{*}=\phi(v)$).

Assume now that \mathcal{V} separable and infinite dimensional. We can associate with it the algebra $\operatorname{CAR}(\mathcal{V})$ as follows. We choose an o.n. basis $f_{i}, i=1,2, \ldots$ Let $\mathcal{V}_{m}:=\operatorname{Span}\left(f_{1}, \ldots, f_{2 m}\right)$. The Jordan-Wigner construction yields $\operatorname{CAR}\left(\mathcal{V}_{m}\right)=B\left(\otimes^{m} \mathbb{C}^{2}\right)$, as the algebra generated by elements $\phi(v), v \in \mathcal{V}_{m}$. We identify

$$
\begin{equation*}
\operatorname{CAR}\left(\mathcal{V}_{m}\right)=B\left(\otimes^{m} \mathbb{C}^{2}\right) \ni A \mapsto A \otimes \mathbb{1}_{\mathbb{C}^{2}} \in B\left(\otimes^{m+1} \mathbb{C}^{2}\right)=\operatorname{CAR}\left(\mathcal{V}_{m+1}\right) \tag{7.76}
\end{equation*}
$$

Thus $\operatorname{CAR}\left(\mathcal{V}_{m}\right)$ is an ascending sequence of C^{*}-algebras. We can define the algebra

$$
\begin{equation*}
\operatorname{CAR}_{0}(\mathcal{V}):=\bigcup_{j=1}^{\infty} \operatorname{CAR}\left(\mathcal{V}_{m}\right) \tag{7.77}
\end{equation*}
$$

It is a normed $*$-algebra. We can take its completion

$$
\begin{equation*}
\operatorname{CAR}(\mathcal{V}):=\operatorname{CAR}_{0}(\mathcal{V})^{\mathrm{cpl}} \tag{7.78}
\end{equation*}
$$

It is a C^{*}-algebra with distinguished elements $\phi(v)$ satisfying

$$
\begin{equation*}
\phi(v)^{*}=\phi(v), \quad[\phi(v), \phi(w)]_{+}=2\langle v \mid w\rangle, \quad v, w \in \mathcal{V} \tag{7.79}
\end{equation*}
$$

If $\mathcal{V} \ni v \mapsto \phi_{\bullet}(v) \in B(\mathcal{H})$ is a CAR representation, then we have a *representation of the C^{*} algebra $\rho_{\bullet}: \mathrm{CAR}_{0}(\mathcal{V}) \rightarrow B(\mathcal{H})$ defined by

$$
\begin{equation*}
\rho_{\bullet}(\phi(v))=\phi_{\bullet}(v) \tag{7.80}
\end{equation*}
$$

This representation extends uniquely by continuity to a representation $\rho_{\bullet}: \operatorname{CAR}(\mathcal{V}) \rightarrow B(\mathcal{H})$.
Thus given the formalism of CAR representations is essentially equivalent to the formalism of representations of CAR C^{*}-algebras.

8 Quantum gases and the Hartree-Fock method

8.1 Particle number preserving operators

Let $b: \otimes^{k} \mathcal{Z} \rightarrow \otimes^{m} \mathcal{Z}$. (We do not require that b preserves the symmetric/antisymmetric tensor product). Recall that the Wick quantization of b, denoted $b\left(\hat{a}^{*}, \hat{a}\right)$, can be defined as follows. Its only nonzero matrix elements are between $\Phi \in \otimes_{\mathrm{s} / \mathrm{a}}^{p+m} \mathcal{Z}, \Psi \in \otimes_{\mathrm{s} / \mathrm{a}}^{p+k} \mathcal{Z}, p=0,1, \ldots$ and are equal

$$
\begin{equation*}
\left(\Phi \mid b\left(\hat{a}^{*}, \hat{a}\right) \Psi\right)=\frac{\sqrt{(m+p)!(k+p)!}}{p!}\left(\Phi \mid b \otimes 1_{\mathcal{Z}}^{\otimes p} \Psi\right) \tag{8.81}
\end{equation*}
$$

Clearly, $b\left(\hat{a}^{*}, \hat{a}\right)$ depends only on $\Theta_{\mathrm{s} / \mathrm{a}}^{m} b \Theta_{\mathrm{s} / \mathrm{a}}^{k}$, but it is convenient to allow for b that are not (anti-)symmetric.

Suppose now that $k=m$, that is, $b: \otimes_{\mathrm{s} / \mathrm{a}}^{m} \mathcal{Z} \rightarrow \otimes_{\mathrm{s} / \mathrm{a}}^{m} \mathcal{Z}$. Then the operator $b\left(\hat{a}^{*}, \hat{a}\right)$ preserves the number of particles. For $\Phi \in \otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Z}, \Psi \in \otimes_{\mathrm{s} / \mathrm{a}}^{n} \mathcal{Z}$ (8.81) can be rewritten as

$$
\begin{equation*}
\left(\Phi \mid b\left(\hat{a}^{*}, \hat{a}\right) \Psi\right)=\frac{n!}{(n-m)!}\left(\Phi \mid b \otimes 1_{\mathcal{Z}}^{\otimes(n-m)} \Psi\right) \tag{8.82}
\end{equation*}
$$

Suppose $1 \leq i_{1}<\cdots i_{m}<n$. We will write $b_{i_{1}, \ldots, i_{m}}$ for the operator b acting on $\otimes^{n} \mathcal{Z}$ whose "legs" are put at the slots i_{1}, \ldots, i_{m}. For instance,

$$
\begin{equation*}
b_{1, \ldots, m}=b \otimes \mathbb{1}^{\otimes(n-m)} . \tag{8.83}
\end{equation*}
$$

Now $\frac{n!}{(n-m)!m!}$ is the number of m-element subsets of $\{1,2, \ldots, n\}$. Therefore we can rewrite (8.82) as

$$
\begin{equation*}
\frac{1}{m!}\left(\Phi \mid b\left(\hat{a}^{*}, \hat{a}\right) \Psi\right)=\sum_{1 \leq i_{1}<\cdots<i_{m} \leq n}\left(\Phi \mid b_{i_{1}, \ldots, i_{m}} \Psi\right) . \tag{8.84}
\end{equation*}
$$

If in addition $b=\Theta(\sigma) b \Theta(\sigma)^{-1}$ for $\sigma \in S_{n}$, then b preserves $\otimes_{\mathrm{s} / \mathrm{a}}^{m} \mathcal{Z}$ and we can write

$$
\begin{equation*}
\frac{1}{m!} b\left(\hat{a}^{*}, \hat{a}\right)=\sum_{1 \leq i_{1}<\cdots<i_{m} \leq n} b_{i_{1}, \ldots, i_{m}} \quad \text { restricted to } \otimes_{\mathrm{s} / \mathrm{a}}^{m} \mathcal{Z} \tag{8.85}
\end{equation*}
$$

In particular, for $m=1$, we obtain the identity that we know:

$$
\begin{equation*}
b\left(\hat{a}^{*}, \hat{a}\right)=\sum_{1 \leq i \leq n} b_{i}=\mathrm{d} \Gamma(b) . \tag{8.86}
\end{equation*}
$$

The case $m=2$ is especially important in applications:

$$
\begin{equation*}
\frac{1}{2} b\left(\hat{a}^{*}, \hat{a}\right)=\sum_{1 \leq i<j \leq n} b_{i j} . \tag{8.87}
\end{equation*}
$$

8.2 N-body Schrödinger Hamiltonians

Consider the N body Schrödinger Hamiltonian and the corresponding total momentum. They are operators on $\otimes^{n} L^{2}\left(\mathbb{R}^{d}\right) \simeq L^{2}\left(\mathbb{R}^{d n}\right)$

$$
\begin{align*}
H_{n} & =-\sum_{i=1}^{n} \frac{1}{2 m_{i}} \Delta_{i}+\sum_{1 \leq i<j \leq n} V_{i j}\left(x_{i}-x_{j}\right) \tag{8.88}\\
P_{n} & =\sum_{i=1}^{n} \frac{1}{\mathrm{i}} \partial_{x_{i}} \tag{8.89}
\end{align*}
$$

In the momentum representation

$$
\begin{aligned}
H_{n} & =\sum_{i=1}^{n} \frac{1}{2 m_{i}} p_{i}^{2}+(2 \pi)^{-d} \sum_{1 \leq i<j \leq N} \delta\left(p_{i}^{\prime}+p_{j}^{\prime}-p_{j}-p_{i}\right) \hat{V}_{i j}\left(p_{i}^{\prime}-p_{i}\right) \\
P_{n} & =\sum_{i=1}^{n} p_{i}
\end{aligned}
$$

Clearly, $\left[H_{n}, P_{n}\right]=0$.
If the particles are identical, then m_{i} are the same, which for simplicity we assume to be $\frac{1}{2}$, and $V_{i j}(x)=V(x)=V(-x)$. We can then restrict the Hamiltonian and total momentum to $\otimes_{\mathrm{s} / \mathrm{a}}^{n} L\left(\mathbb{R}^{d}\right) \simeq L_{\mathrm{s} / \mathrm{a}}^{2}\left(\left(\mathbb{R}^{d}\right)^{N}\right)$. Then we can use the 2 nd quantized formalism on the Fock space $\Gamma_{\mathrm{s} / \mathrm{a}}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$. We have the position representation, with the generic variables x, y and the momentum representation with the generic variables k, k^{\prime}. We can pass from one representation to the other by

$$
\begin{array}{rlrl}
a^{*}(k) & =(2 \pi)^{-\frac{d}{2}} \int a^{*}(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x, & a^{*}(x)=(2 \pi)^{-\frac{d}{2}} \int a^{*}(k) \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} k \\
a(k)=(2 \pi)^{-\frac{d}{2}} \int a(x) \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} x, & a(x)=(2 \pi)^{-\frac{d}{2}} \int a(k) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k \tag{8.91}
\end{array}
$$

In the 2 nd quantized notation we can rewrite all this as

$$
\begin{align*}
& H:=\underset{n=0}{\oplus} H_{n}=-\int a_{x}^{*} \Delta_{x} a_{x} \mathrm{~d} x+\frac{1}{2} \iint \mathrm{~d} x \mathrm{~d} y V(x-y) a_{x}^{*} a_{y}^{*} a_{y} a_{x} \\
&=\int p^{2} a_{p}^{*} a_{p} \mathrm{~d} p+\iiint \int \delta\left(p_{1}^{\prime}+p_{2}^{\prime}-p_{1}-p_{2}\right) \frac{\hat{V}\left(p_{1}^{\prime}-p_{1}\right)}{(2 \pi)^{d}} a_{p_{1}^{\prime}}^{*} a_{p_{2}^{\prime}}^{*} a_{p_{2}} a_{p_{1}} \mathrm{~d} p_{1}^{\prime} \mathrm{d} p_{2}^{\prime} \mathrm{d} p_{1} \mathrm{~d} p_{2} \tag{8.92}\\
&=\int p^{2} a_{p}^{*} a_{p} \mathrm{~d} p+\frac{1}{2(2 \pi)^{d}} \iiint \mathrm{~d} p \mathrm{~d} q \mathrm{~d} k \hat{V}(k) a_{p+k}^{*} a_{q-k}^{*} a_{q} a_{p} \tag{8.93}\\
& P:=\underset{n=0}{\oplus} P_{n}=\int a_{x}^{*} \frac{1}{\mathrm{i}} \partial_{x} a_{x} \mathrm{~d} x \tag{8.94}\\
&=\int p a_{p}^{*} a_{p} \mathrm{~d} p \tag{8.95}
\end{align*}
$$

Passing from (8.92 to 8.93) we evaluate the delta and set $p=p_{1}, q=p_{2}, k=p_{1}^{\prime}-p_{1}$.
Let us now put our system in a box of size L with periodic boundary conditions. That is, we consider $L^{2}\left([0, L]^{d}\right) \simeq L^{2}\left(\frac{2 \pi}{L} \mathbb{Z}^{d}\right)$ and its 2 nd quantization. Again we use x, y in the position representation with periodic boundary conditions and k, k^{\prime} in the momentum representation. We can pass from one representation to the other by

$$
\begin{array}{rlr}
a^{*}(k)=L^{-\frac{d}{2}} \int a(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x, & a^{*}(x)=L^{-\frac{d}{2}} \sum_{k} a(k) \mathrm{e}^{\mathrm{i} k x} \\
a(k)=L^{-\frac{d}{2}} \int a(x) \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} x, & a(x)=L^{-\frac{d}{2}} \sum_{k} a(k) \mathrm{e}^{-\mathrm{i} k x} \tag{8.97}
\end{array}
$$

Here are the analogs of (8.93) and 8.95):

$$
\begin{aligned}
H & =\sum_{p} p^{2} a_{p}^{*} a_{p}+\frac{1}{2 L^{d}} \sum_{p} \sum_{q} \sum_{k} \hat{V}(k) a_{p+k}^{*} a_{q-k}^{*} a_{q} a_{p} \\
P & =\sum_{p} p a_{p}^{*} a_{p} .
\end{aligned}
$$

8.3 Hartree-Fock method for atomic systems

Suppose now that $V(x)=V(-x)$ and

$$
\begin{equation*}
H=-\int a_{x}^{*} \Delta_{x} a_{x} \mathrm{~d} x+\int a_{x}^{*} W(x) a_{x} \mathrm{~d} x+\frac{1}{2} \iint a_{x}^{*} a_{y}^{*} V(x-y) a_{x} a_{y} \mathrm{~d} x \mathrm{~d} y \tag{8.98}
\end{equation*}
$$

Let π be an n-dimensional projection in $L^{2}\left(\mathbb{R}^{d}\right)$. Let $\pi(x, y)$ be its integral kernel and $\rho(x):=$ $\pi(x, x)$ its diagonal. Let ω_{π} be the state defined by the Slater determinant corresponding to π. The Hartree-Fock functional is defined as

$$
\begin{equation*}
\mathcal{E}_{\mathrm{HF}}(\pi):=\omega_{\pi}(H) \tag{8.99}
\end{equation*}
$$

Clearly, $\mathcal{E}_{\mathrm{HF}}(\pi)$ is an upper bound of the ground state energy of H. Here is an explicit formula for the Hartree-Fock functional:

$$
\begin{align*}
\mathcal{E}_{\mathrm{HF}}(\pi)= & \left.\int \partial_{x} \partial_{y} \pi(x, y)\right|_{x=y} \mathrm{~d} x+\int W(x) \rho(x) \mathrm{d} x \tag{8.100}\\
& +\frac{1}{2} \iint V(x-y) \rho(x) \rho(y) \mathrm{d} x \mathrm{~d} y-\frac{1}{2} \iint V(x-y)|\pi(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y
\end{align*}
$$

To see this choose f_{1}, \ldots, f_{n}, an o.n. basis of Ran π. Then

$$
\begin{aligned}
& -\omega_{\pi}\left(\int a_{x}^{*} \Delta_{x} a_{x} \mathrm{~d} x\right) \\
= & \int\left(\nabla_{x} a_{x} a^{*}\left(f_{1}\right) \cdots a^{*}\left(f_{n}\right) \Omega \mid \nabla_{x} a_{x} a^{*}\left(f_{1}\right) \cdots a^{*}\left(f_{n}\right) \Omega\right) \mathrm{d} x \\
= & \sum_{j=1}^{n} \int \overline{\nabla_{x} f_{j}(x)} \nabla_{x} f_{j}(x) \mathrm{d} x=\left.\int \partial_{x} \partial_{y} \pi(x, y)\right|_{x=y} \mathrm{~d} x .
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{\pi}\left(\iint a_{x}^{*} a_{y}^{*} V(x-y) a_{y} a_{x} \mathrm{~d} x\right) \\
= & \iint \mathrm{d} x \mathrm{~d} y V(x-y)\left(a_{x} a_{y} a^{*}\left(f_{1}\right) \cdots a^{*}\left(f_{n}\right) \Omega \mid\left(a_{x} a_{y} a^{*}\left(f_{1}\right) \cdots a^{*}\left(f_{n}\right) \Omega\right)\right. \\
= & \sum_{i \neq j} \iint \mathrm{~d} x \mathrm{~d} y V(x-y)\left(\overline{f_{i}(x) f_{j}(y)} f_{j}(y) f_{i}(x)-\overline{f_{i}(x) f_{j}(y)} f_{i}(y) f_{j}(x)\right) \\
= & \iint \mathrm{d} x \mathrm{~d} y V(x-y)\left(\sum\left|f_{i}(x)\right|^{2}\left|f_{j}(y)\right|^{2}-\left|\sum \overline{f_{i}(x)} f_{i}(y)\right|^{2}\right) \\
= & \iint V(x-y) \mathrm{d} x \mathrm{~d} y\left(\pi(x, x) \pi(y, y)-|\pi(x, y)|^{2}\right)
\end{aligned}
$$

Suppose π_{HF} is a minimizer of $\mathcal{E}_{\mathrm{HF}}$ and $\rho_{\mathrm{HF}}(x):=\pi_{\mathrm{HF}}(x, x)$. Then we can also define the Hartree-Fock Hamiltonian:

$$
h_{\mathrm{HF}}=-\Delta+W(x)+\int \rho_{\mathrm{HF}}(y) V(x-y) \mathrm{d} y-T_{\mathrm{ex}}
$$

where $T_{\text {ex }}$ is a nonlocal operator with the kernel

$$
T_{\mathrm{ex}}(x, y)=V(x-y) \pi_{\mathrm{HF}}(x, y)
$$

We will show later that π_{HF} is the projection onto n lowest levels of h_{HF}.

8.4 Thomas-Fermi functional

A semiclassical argument implies that the first term in (8.100), that is the kinetic energy, can be approximated by

$$
\begin{equation*}
(2 \pi)^{-d} \frac{d}{d+2} c_{d}^{-2 / d} \int \rho^{\frac{d+2}{d}}(x) \mathrm{d} x \tag{8.101}
\end{equation*}
$$

where c_{d} is the volume of a unit ball in d dimensions. We also expect that the last term, that is the exchange energy is relatively small. This leads to the so-called Thomas-Fermi functional, which depends only on the density:

$$
\begin{aligned}
\mathcal{E}_{\mathrm{TF}}(\rho):= & (2 \pi)^{-d} \frac{d}{d+2} c_{d}^{-2 / d} \int \rho^{\frac{d+2}{d}}(x) \mathrm{d} x \\
& +\int W(x) \rho(x) \mathrm{d} x+\frac{1}{2} \iint V(x-y) \rho(x) \rho(y) \mathrm{d} x \mathrm{~d} y .
\end{aligned}
$$

In practice the Thomas-Fermi functional is often applied to atomic systems, where $d=3, W(x)=$ $-\frac{Z}{|x|}$ and $V(x)=\frac{1}{|x|}$.

8.5 Expectation values of Slater determinants

The arguments from the previous subsection about the expectation values of Slater determinants can be generalized to a more abstract setting.

Theorem 8.1 Let b be an operator on $\otimes^{m} \mathcal{W}$. Let π be a projection onto a subspace of \mathcal{W}. Then

$$
\omega_{\pi}\left(b\left(a^{*}, a\right)\right)=\sum_{\sigma \in S_{m}} \operatorname{Tr} b \pi^{\otimes m} \Theta(\sigma) \operatorname{sgn}(\sigma)
$$

Proof. Suppose that ω is given by $a_{1}^{*} \cdots a_{n}^{*} \Omega$. It is enough to assume that

$$
\left.\left.b=\mid e_{i_{1}}\right) \cdots \mid e_{i_{m}}\right)\left(e_{j_{m}} \mid \cdots\left(e_{j_{1}} \mid\right.\right.
$$

corresponding to

$$
b\left(a^{*}, a\right)=a_{i_{1}}^{*} \cdots a_{i_{n}}^{*} a_{j_{n}} \cdots a_{j_{1}}
$$

Now

$$
\begin{equation*}
\left(a_{1}^{*} \cdots a_{n}^{*} \Omega \mid a_{i_{1}}^{*} \cdots a_{i_{m}}^{*} a_{j_{m}} \cdots a_{j_{1}} a_{1}^{*} \cdots a_{n}^{*} \Omega\right) \tag{8.102}
\end{equation*}
$$

is nonzero only if i_{1}, \ldots, i_{m} are distinct,

$$
\left\{i_{1}, \ldots, i_{m}\right\}=\left\{j_{1}, \ldots, j_{m}\right\} \subset\{1, \ldots, n\}
$$

Then it is ± 1, where its sign is determined by the unique permutation that maps $\left\{i_{1}, \ldots, i_{m}\right\}$ onto $\left\{j_{1}, \ldots, j_{m}\right\}$. Now

$$
\left.\left.1=\operatorname{Tr} \pi^{\otimes m} \mid e_{i_{1}}\right) \cdots \mid e_{i_{m}}\right)\left(e_{j_{m}} \mid \cdots\left(e_{j_{1}} \mid \Theta(\sigma)\right.\right.
$$

In particular, we have the cases $n=1,2$:

$$
\begin{align*}
\omega_{\pi}(\mathrm{d} \Gamma(h)) & =\operatorname{Tr} \pi h \tag{8.103}\\
\omega_{\pi}\left(b\left(a^{*}, a\right)\right) & =\operatorname{Tr} b \pi \otimes \pi(\mathbb{1}-\tau) \tag{8.104}
\end{align*}
$$

where $\tau: \mathcal{W} \otimes \mathcal{W} \rightarrow \mathcal{W} \otimes \mathcal{W}$ is the transposition of the factors in the tensor product.

8.6 The Hartree-Fock method

We are now going to consider the Hartree-Fock method from a more abstract point of view. Let h be a self-adjoint operator on \mathcal{W} and b on $\mathcal{W} \otimes \mathcal{W}$. We assume that $\tau b \tau=b$. Consider the particle number preserving operator

$$
H=\mathrm{d} \Gamma(h)+\frac{1}{2} b\left(a^{*}, a\right)
$$

We would like to find the ground state energy of H in the n-body sector.
The Hartree-Fock functional is the expectation value of H in a Slater determinant:

$$
\mathcal{E}_{\mathrm{HF}}(\pi):=\omega_{\pi}(H)=\operatorname{Tr} h \pi+\frac{1}{2} \operatorname{Tr} b \pi \otimes \pi(\mathbb{1}-\tau)
$$

The ground state energy of H is clearly estimated from above by its Hartree-Fock energy

$$
E_{\mathrm{HF}}:=\inf \left\{\mathcal{E}_{\mathrm{HF}}(\pi): \pi \text { is an } n \text {-dimensional orthogonal projection }\right\}
$$

If a minimizer of $\mathcal{E}_{\mathrm{HF}}$ exists, we denote it by π_{HF}. We define the Hartree-Fock Hamiltonian (called also the Fock Hamiltonian) by its expectation value in a trace class matrix γ :

$$
\operatorname{Tr} h_{\mathrm{HF}} \gamma:=\operatorname{Tr} h \gamma+\operatorname{Tr} b \pi_{\mathrm{HF}} \otimes \gamma(\mathbb{1}-\tau)
$$

Notice the absence of $\frac{1}{2}$.
Theorem 8.2 π_{HF} is a projection onto n lowest lying levels of h_{HF}

Proof. Write the integral kernel of π as

$$
\pi(x, y)=\sum_{i=1}^{n} \overline{f_{i}(x)} f_{i}(y)
$$

where f_{1}, \ldots, f_{n} is an orthonormal basis of $\operatorname{Ran} \pi$. The Hartree-Fock functional can be written as

$$
\begin{aligned}
\mathcal{E}_{\mathrm{HF}}(\pi)=: \mathcal{E}\left(f_{1}, \ldots f_{n}\right) & =\sum_{i}\left(f_{i} \mid h f_{i}\right) \\
& +\frac{1}{2} \sum_{i j}\left(f_{i} \otimes f_{j} \mid b f_{i} \otimes f_{j}\right)-\frac{1}{2} \sum_{i j}\left(f_{i} \otimes f_{j} \mid b f_{j} \otimes f_{i}\right)
\end{aligned}
$$

Using the method of Lagrange multipliers, E_{HF} is given as the infimum of

$$
\mathcal{E}_{\mathrm{HF}}\left(f_{1}, \ldots, f_{n}\right)-\sum_{i j} \epsilon_{i j}\left(\left(f_{i} \mid f_{j}\right)-\delta_{i j}\right)
$$

over all f_{i} and Hermitian $\left[\epsilon_{i j}\right]$. Writing $f_{i}+\delta f_{i}, \epsilon_{i j}+\delta \epsilon_{i j}$ for the variations, we find

$$
\begin{align*}
\delta \mathcal{E}_{\mathrm{HF}}= & \sum_{i}\left(f_{i} \mid h_{\mathrm{HF}} \delta f_{i}\right)+\left(\delta f_{i} \mid h_{\mathrm{HF}} f_{i}\right) \tag{8.105}\\
& -\sum_{i j} \epsilon_{i j}\left(f_{i} \mid \delta f_{j}\right)-\sum_{i j} \epsilon_{i j}\left(\delta f_{i} \mid f_{j}\right) \tag{8.106}\\
& +\sum_{i j} \delta \epsilon_{i j}\left(\left(f_{i} \mid f_{j}\right)-\delta_{i j}\right) \tag{8.107}
\end{align*}
$$

Comparing the coefficients at δf_{i} on the right of the scalar product and on the left of the scalar product independently, we obtain

$$
h_{\mathrm{HF}} f_{i}=\sum_{j} \epsilon_{i j} f_{j}
$$

We can diagonalize the matrix $\left[\epsilon_{i j}\right]$ with a unitary transformation, so that $\epsilon_{i j}=\delta_{i j} \epsilon_{i}$, and we obtain

$$
h_{\mathrm{HF}} f_{i}=\epsilon_{i} f_{i}
$$

Thus the minimizing sequence f_{1}, \ldots, f_{n} can consist of normalized eigenvectors of h_{HF}.

Now assume that there is an eigenvector of h_{HF}, say g, orthogonal to $f_{1}, \ldots f_{n}$ and with an eigenvalue β lower than one of the eigenvalues $\epsilon_{1}, \ldots, \epsilon_{n}$. For instance,

$$
h_{\mathrm{HF}} g=\beta g, \quad \beta<\epsilon_{1} .
$$

Then we can consider a variation $f_{1}+\delta f_{1}:=\sqrt{1-t^{2}} f_{1}+t g$. This variation is tangent to the constraints. The first variation is zero. We compute the second variation:

$$
\begin{align*}
& \delta \mathcal{E}_{\mathrm{HF}}\left(f_{1}+\delta f_{1}, f_{2}, \ldots, f_{n}\right) \\
\approx & \frac{\delta^{2}}{\delta f_{1}^{2}} \mathcal{E}_{\mathrm{HF}} \delta f_{1} \delta f_{1}+\frac{\delta^{2}}{\delta \bar{f}_{1}^{2}} \mathcal{E}_{\mathrm{HF}} \delta \bar{f}_{1} \delta \bar{f}_{1}+2 \frac{\delta^{2}}{\delta \bar{f}_{1} \delta f_{1}} \mathcal{E}_{\mathrm{HF}} \delta \bar{f}_{1} \delta f_{1} \\
= & \sum_{i j}\left(f_{i} \otimes f_{j} \mid b \delta f_{1} \otimes \delta f_{1}\right)-\sum_{i j}\left(f_{i} \otimes f_{j} \mid b \delta f_{1} \otimes \delta f_{1}\right) \tag{8.108}\\
& +\sum_{i j}\left(\delta f_{1} \otimes \delta f_{1} \mid b f_{i} \otimes f_{j}\right)-\sum_{i j}\left(\delta f_{1} \otimes \delta f_{1} \mid b f_{j} \otimes f_{i}\right) \tag{8.109}\\
& +\sum_{j}\left(\delta f_{1} \otimes f_{j} \mid b \delta f_{1} \otimes f_{j}\right)-\sum_{j}\left(\delta f_{1} \otimes f_{j} \mid b f_{j} \otimes \delta f_{1}\right) \tag{8.110}\\
= & \left(\delta f_{1} \mid h_{\mathrm{HF}} \delta f_{1}\right)=t^{2}\left(\epsilon_{1}-\beta^{2}\right)<0 . \tag{8.111}
\end{align*}
$$

(8.108) and 8.109) are zero).
Note that the Hartree-Fock energy is in general not equal to the sum of the lowest n eigenvalues of H_{HF}.

9 Squeezed states

9.1 1-mode squeezed vector

Consider $\Gamma_{\mathrm{s}}(\mathbb{C})$.
Theorem 9.1 Let $|c|<1$. Then

$$
\Omega_{c}:=\left(1-|c|^{2}\right)^{\frac{1}{4}} \mathrm{e}^{\frac{c}{2} a^{* 2}} \Omega
$$

is a normalized vector satisfying

$$
\begin{equation*}
\left(a-c a^{*}\right) \Omega_{c}=0 \tag{9.112}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\left(\left.\mathrm{e}^{\frac{c}{2} a^{* 2}} \Omega \right\rvert\, \mathrm{e}^{\frac{c}{2} a^{* 2}} \Omega\right) & =\sum_{n=0}^{\infty} \frac{|c|^{2 n}(2 n)!}{(n!)^{2} 2^{2 n}} \\
& =\sum \frac{(-1)^{n}|c|^{2 n}\left(-\frac{1}{2}\right)\left(-\frac{1}{2}-1\right) \cdots\left(-\frac{1}{2}-n\right)}{n!}=\left(1-|c|^{2}\right)^{-\frac{1}{2}} .
\end{aligned}
$$

Using

$$
\mathrm{e}^{-\frac{c}{2} a^{* 2}} a \mathrm{e}^{\frac{c}{2} a^{* 2}}=a-\frac{c}{2}\left[a^{* 2}, a\right]=a+c a^{*},
$$

we obtain 9.120 .

Theorem 9.2 Set

$$
U_{t}:=\mathrm{e}^{\frac{t}{2}\left(-a^{* 2}+a^{2}\right)} .
$$

Then

$$
\begin{align*}
U_{t} a U_{t}^{-1} & =a \cosh t+a^{*} \sinh t, \tag{9.113}\\
U_{t} a^{*} U_{t}^{-1} & =a^{*} \cosh t+a \sinh t, \tag{9.114}\\
U_{t} & =\frac{1}{\sqrt{\cosh t}} \mathrm{e}^{-\frac{\tanh t}{2} a^{* 2}} \Gamma\left(\frac{1}{\cosh t}\right) \mathrm{e}^{\frac{\tanh t}{2} a^{2}}, \tag{9.115}\\
\Omega_{\mathrm{tanh} t} & =U_{t} \Omega . \tag{9.116}
\end{align*}
$$

Proof. (9.113) and (9.114) are immediate. We next compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} U_{t} & =\frac{1}{2}\left(-a^{* 2}+a^{2}\right) U_{t} \\
& =-\frac{1}{2 \cosh ^{2} t} a^{* 2} U_{t}+\frac{1}{2 \cosh ^{2} t} U_{t} a^{2}-\frac{\sinh t}{\cosh ^{2} t} a^{*} U_{t} a-\frac{\sinh t}{2 \cosh t} U_{t} .
\end{aligned}
$$

Then we use the identity concerning the derivative of $\Gamma\left(\mathrm{e}^{h}\right)=\mathrm{e}^{h a^{*} a}$ contained in 9.117).

Lemma 9.3

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{h(t) a^{*} a}=\dot{h}(t) \mathrm{e}^{h(t)} a^{*} \mathrm{e}^{h(t) a^{*} a} a . \tag{9.117}
\end{equation*}
$$

Proof.

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{h a^{*} a} & =\dot{h} \mathrm{e}^{h a^{*} a} a^{*} a \tag{9.118}\\
=\dot{h} \mathrm{e}^{h a^{*} a} a^{*} \mathrm{e}^{-h a^{*} a} \mathrm{e}^{h a^{*} a} a & =\dot{\mathrm{h}} \mathrm{e}^{h} a^{*} \mathrm{e}^{h a^{*} a} a . \tag{9.119}
\end{align*}
$$

9.2 Many-mode squeezed vector

Suppose c is a symmetric complex matrix on \mathbb{C}^{n}. One can show that then there exists an orthonormal basis such that c is diagonal where all terms on the diagonal are nonnegative. Therefore, we have the many-mode generalizations of the results of the previous subsection to $\Gamma_{\mathrm{s}}\left(\mathbb{C}^{n}\right):$

Theorem 9.4 Let c be a symmetric $n \times n$ matrix such that $\|c\|<1$. Then

$$
\Omega_{c}:=\operatorname{det}\left(1-|c|^{2}\right)^{\frac{1}{4}} \mathrm{e}^{\frac{1}{2} c_{i j} a_{i}^{*} a_{j}^{*} \Omega}
$$

is a normalized vector satisfying

$$
\begin{equation*}
\left(a_{i}-c_{i j} a_{j}^{*}\right) \Omega_{c}=0 \tag{9.120}
\end{equation*}
$$

where we write $|c|:=\sqrt{c^{*} c}$.
Theorem 9.5 Let θ be a symmetric $n \times n$ matrix. Set

$$
U_{\theta}:=\mathrm{e}^{\frac{1}{2}\left(-\theta_{i j} a_{i}^{*} a_{j}^{*}+\bar{\theta}_{i j} a_{j} a_{i}\right)}
$$

Then

$$
\begin{align*}
U_{\theta} a_{i} U_{\theta}^{-1} & =(\overline{\cosh |\theta|})_{i j} a_{j}+\left(\theta \frac{\sinh |\theta|}{|\theta|}\right)_{i j} a_{j}^{*} \tag{9.121}\\
U_{\theta} a_{i}^{*} U_{\theta}^{-1} & =(\cosh |\theta|)_{i j} a_{j}^{*}+\left(\bar{\theta} \frac{\sinh \mid \overline{\theta \mid}}{\overline{|\theta|}}\right)_{i j} a_{j} \tag{9.122}\\
U_{\theta} & =\frac{1}{\sqrt{\operatorname{det} \cosh |\theta|}} \mathrm{e}^{-\left(\theta \frac{\tanh |\theta|}{2|\theta|}\right)_{i j} a_{i}^{*} a_{j}^{*}} \Gamma\left(\frac{1}{\cosh |\theta|}\right) \mathrm{e}^{\left(\bar{\theta} \frac{\tanh \mid \overline{\theta \mid}}{2|\theta|}\right)_{i j} a_{j} a_{i}}, \tag{9.123}\\
U_{\theta} \Omega & =\Omega_{\frac{\tanh |\theta|}{|\theta|} \theta} \tag{9.124}
\end{align*}
$$

9.3 Single-mode gauge-invariant squeezed vector

Consider $\Gamma_{\mathrm{s}}\left(\mathbb{C}^{2}\right)$. The creation/annihilation of first mode are denoted a^{*}, a, of the second b^{*}, b.
We assume that in our space there is a "charge operator"

$$
Q:=a^{*} a-b^{*} b
$$

and we are interested mostly in gauge invariant states, that is satisfying $Q=0$.
Theorem 9.6 Let $|c|<1$. Then

$$
\Omega^{c}:=\left(1-|c|^{2}\right)^{\frac{1}{2}} \mathrm{e}^{c a^{*} b^{*}} \Omega
$$

is a normalized vector satisfying

$$
\begin{align*}
& \left(a-c b^{*}\right) \Omega^{c}=0 \tag{9.125}\\
& \left(b-c a^{*}\right) \Omega^{c}=0 \tag{9.126}
\end{align*}
$$

Proof.

$$
\begin{aligned}
\left(\mathrm{e}^{c a^{*} b^{*}} \Omega \mid \mathrm{e}^{c a^{*} b^{*}} \Omega\right) & =\sum_{n=0}^{\infty} \frac{|c|^{2 n}(n!)^{2}}{(n!)^{2}} \\
& =\left(1-|c|^{2}\right)^{-1}
\end{aligned}
$$

Using

$$
\mathrm{e}^{-c a^{*} b^{*}} a \mathrm{e}^{c a^{*} b^{*}}=a-c\left[a^{*} b^{*}, a\right]=a+c b^{*},
$$

we obtain 9.126).

Remark 9.7 Clearly,

$$
\mathrm{e}^{c a^{*} b^{*}}=\exp \left(\frac{c}{4}\left(a^{*}+b^{*}\right)^{2}-\frac{c}{4}\left(a^{*}-b^{*}\right)^{2}\right) .
$$

Hence a single mode gauge-invariant squeezed vector can be also understood as a 2-mode squeezed state. However, it is often simple to deal with it directly.

Theorem 9.8 Set

$$
U^{t}:=\mathrm{e}^{t\left(-a^{*} b^{*}+a b\right)} .
$$

Then

$$
\begin{align*}
U^{t} a U^{-t} & =a \cosh t+b^{*} \sinh t, \tag{9.127}\\
U^{t} a^{*} U^{-t} & =a^{*} \cosh t+b \sinh t, \tag{9.128}\\
U^{t} b U^{-t} & =b \cosh t+a^{*} \sinh t, \tag{9.129}\\
U^{t} b^{*} U^{-t} & =b^{*} \cosh t+a \sinh t, \tag{9.130}\\
U^{t} & =\frac{1}{\cosh t} \mathrm{e}^{-\tanh t a^{*} b^{*}} \Gamma\left(\frac{1}{\cosh t}\right) \mathrm{e}^{\tanh t b a}, \tag{9.131}\\
U^{t} \Omega & =\Omega^{-\tanh t}=\frac{1}{\cosh t} \mathrm{e}^{-\tanh t a^{*} b^{*}} \Omega . \tag{9.132}
\end{align*}
$$

Proof. We compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} U^{t} & =\left(-a^{*} b^{*}+b a\right) U^{t} \\
& =-\frac{1}{\cosh ^{2} t} a^{*} b^{*} U^{t}+\frac{1}{\cosh ^{2} t} U^{t} b a-\frac{\sinh t}{\cosh ^{2} t}\left(a^{*} U^{t} a+b^{*} U^{t} b\right)-\frac{\sinh t}{\cosh t} U^{t}
\end{aligned}
$$

10 Bose gas and superfluidity

n identical bosonic particles are described by the Hilbert space, the Hamiltonian and the total momentum

$$
\begin{align*}
\mathcal{H}_{n} & :=L_{\mathrm{s}}^{2}\left(\left(\mathbb{R}^{d}\right)^{n}\right)=\otimes_{\mathrm{s}}^{n} L^{2}\left(\mathbb{R}^{d}\right), \tag{10.133}\\
H_{n} & :=-\sum_{i=1}^{n} \Delta_{i}+\lambda \sum_{1 \leq i<j \leq n} V\left(x_{i}-x_{j}\right), \tag{10.134}\\
P_{n} & :=-\sum_{i=1}^{n} \mathrm{i} \partial_{x_{i}} . \tag{10.135}
\end{align*}
$$

We have

$$
P_{n} H_{n}=H_{n} P_{n},
$$

which expresses the translational invariance of our system. The potential V is a real function on \mathbb{R}^{d} that decays at infinity and satisfies $V(x)=V(-x)$.

We enclose these particles in a box of size L with fixed density $\rho:=\frac{n}{L^{d}}$ and n large. Instead of the more physical Dirichlet boundary conditions, to keep translational invariance we impose the periodic boundary conditions, replacing the original V by the periodized potential

$$
V^{L}(x):=\sum_{n \in \mathbb{Z}^{d}} V(x+L n)=\frac{1}{L^{d}} \sum_{p \in(2 \pi / L) \mathbb{Z}^{d}} \mathrm{e}^{\mathrm{i} p x} \hat{V}(p),
$$

well defined on the torus $\left[-L / 2, L / 2\left[{ }^{d}\right.\right.$. (Note that above we used the Poisson summation formula).

The original Hilbert space, Hamiltonian and total momentum are replaced by

$$
\begin{align*}
& \mathcal{H}_{n}^{L}:=L_{\mathrm{s}}^{2}\left(\left(\left[-L / 2, L / 2\left[^{d}\right)^{n}\right)=\otimes_{\mathrm{s}}^{n}\left(L ^ { 2 } \left(\left[-L / 2, L / 2\left[^{d}\right)\right),\right.\right.\right.\right. \tag{10.136}\\
& H_{n}^{L}:=-\sum_{i=1}^{n} \Delta_{i}^{L}+\lambda \sum_{1 \leq i<j \leq n} V^{L}\left(x_{i}-x_{j}\right), \tag{10.137}\\
& P_{n}^{L}:=-\sum_{i=1}^{n} \mathrm{i} \partial_{x_{i}}^{L} . \tag{10.138}
\end{align*}
$$

Because of the periodic boundary conditions we still have

$$
P_{n}^{L} H_{n}^{L}=H_{n}^{L} P_{n}^{L}
$$

In the sequel we drop the superscript L.
We use the second quantized formalism

$$
\begin{aligned}
\mathcal{H}=\underset{n=0}{\infty} \mathcal{H}_{n} & =\Gamma_{\mathrm{s}}\left(L^{2}[0, L]^{d}\right) \\
& \simeq \Gamma_{\mathrm{s}}\left(l^{2}\left(\frac{2 \pi}{L} \mathbb{Z}^{d}\right)\right), \\
H:=\underset{n=0}{\infty} H_{n} & =-\int a_{x}^{*} \Delta_{x} a_{x} \mathrm{~d} x+\frac{\lambda}{2} \iint \mathrm{~d} x \mathrm{~d} y a_{x}^{*} a_{y}^{*} V(x-y) a_{y} a_{x} \\
& =\sum_{p} p^{2} a_{p}^{*} a_{p}+\frac{\lambda}{2 L^{d}} \sum_{p, q, k} \hat{V}(k) a_{p+k}^{*} a_{q-k}^{*} a_{q} a_{p}, \\
P:=\underset{n=0}{\oplus} P_{n} & =\int a_{x}^{*} \frac{1}{\mathrm{i}} \partial_{x} a_{x} \mathrm{~d} x \\
& =\sum_{p} p a_{p}^{*} a_{p} .
\end{aligned}
$$

10.1 Bogoliubov's approximation in the canonical formalism

We assume that the potential is repulsive, more precisely,

$$
\hat{V} \geq 0, \quad V \geq 0
$$

The Hamiltonian H commutes with N. We are interested in its low energy part for a large number of particles N.

We expect that for low energies most particles will be spread evenly over the whole box staying in the zeroth mode, so that $N \simeq N_{0}:=a_{0}^{*} a_{0}$. (The Bose statistics does not prohibit to occupy the same state). Following the arguments of N. N. Bogoliubov from 1947, we drop all terms in the Hamiltonian involving more than two creation/annihilation operators of a nonzero mode. We obtain

$$
\begin{aligned}
H \approx & \frac{\lambda \hat{V}(\mathbf{0})}{2 L^{d}} a_{\mathbf{0}}^{*} a_{\mathbf{0}}^{*} a_{\mathbf{0}} a_{\mathbf{0}}+\sum_{k \neq 0}\left(k^{2}+a_{0}^{*} a_{0} \frac{\lambda}{L^{d}}(\hat{V}(k)+\hat{V}(\mathbf{0}))\right) a_{k}^{*} a_{k} \\
& +\sum_{k \neq \mathbf{0}} \frac{\lambda}{2 L^{d}} \hat{V}(k)\left(a_{\mathbf{0}}^{*} a_{\mathbf{0}}^{*} a_{k} a_{-k}+a_{k}^{*} a_{-k}^{*} a_{\mathbf{0}} a_{\mathbf{0}}\right) \\
= & \frac{\lambda \hat{V}(\mathbf{0}) \rho}{2}(N-1)+H_{\mathrm{Bog}}+R,
\end{aligned}
$$

where we set

$$
\begin{aligned}
\rho:= & \frac{N}{L^{d}}, \\
H_{\mathrm{Bog}}:= & \sum_{k \neq \mathbf{0}}\left(k^{2}+\lambda \rho \hat{V}(k)\right) a_{k}^{*} a_{k}+\frac{1}{2} \sum_{k \neq \mathbf{0}} \lambda \rho \hat{V}(k)\left(a_{k}^{*} a_{-k}^{*}+a_{k} a_{-k}\right), \\
R:= & -\frac{\lambda \hat{V}(0)}{2 L^{d}}\left(N-N_{0}\right)\left(N-N_{0}-1\right) \\
& +\sum_{k \neq \mathbf{0}} \frac{\lambda}{2 L^{d}} \hat{V}(k)\left(\left(a_{\mathbf{0}}^{*} a_{\mathbf{0}}^{*}-N\right) a_{k} a_{-k}+a_{k}^{*} a_{-k}^{*}\left(a_{\mathbf{0}} a_{\mathbf{0}}-N\right)\right) .
\end{aligned}
$$

We used

$$
\begin{aligned}
a_{\mathbf{0}}^{*} a_{\mathbf{0}}^{*} a_{\mathbf{0}} a_{\mathbf{0}} & =N_{0}\left(N_{0}-1\right) \\
& =N(N-1)-2 N_{0}\left(N-N_{0}\right)-\left(N-N_{0}\right)\left(N-N_{0}-1\right) .
\end{aligned}
$$

We argue that R is small because

$$
a_{\mathbf{0}}^{*} a_{\mathbf{0}}^{*} \approx a_{\mathbf{0}} a_{\mathbf{0}} \approx N_{0} \approx N .
$$

A Bogoliubov transformation, is a linear transformation of creation/annihilation operators preserving the commutation relations. If we demand in addition that it should commute with translations, it should have the form

$$
\begin{align*}
& \tilde{a}_{p}:=c_{p} a_{p}+\mathrm{s}_{p} a_{-p}^{*}, \tag{10.139}\\
& \tilde{a}_{p}^{*}:=c_{p} a_{p}^{*}+s_{p} a_{-p}, \quad p \neq \mathbf{0}, \tag{10.140}
\end{align*}
$$

where $c_{p}^{2}-s_{p}^{2}=1$. We are looking for a Bogoliubov transformation that diagonalizes the quadratic Hamiltonian $H_{\text {Bog }}$. Set

$$
\begin{equation*}
A_{k}:=k^{2}+\lambda \rho \hat{V}(k), \quad B_{k}:=\lambda \rho \hat{V}(k) . \tag{10.141}
\end{equation*}
$$

Then

$$
\begin{aligned}
& H_{\text {Bog }}=\frac{1}{2} \sum_{k \neq 0}\left(A_{k}\left(a_{k}^{*} a_{k}+a_{-k}^{*} a_{-k}\right)+B_{k}\left(a_{k}^{*} a_{-k}^{*}+a_{-k} a_{k}\right)\right) \\
& \left.\quad=\frac{1}{2} \sum_{k \neq 0}\left(C_{k} a_{k}^{*}+S_{k} a_{-k}\right)\left(C_{k} a_{k}+S_{k} a_{-k}^{*}\right)-S_{k}^{2}\right) \\
& \quad=\frac{1}{2} \sum_{k \neq 0}\left(\left(C_{k}^{2}-S_{k}^{2}\right)\left(c_{k} a_{k}^{*}+s_{k} a_{-k}\right)\left(c_{k} a_{k}+s_{k} a_{-k}^{*}\right)-S_{k}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \quad C_{k}:=\frac{1}{2}\left(\sqrt{A_{k}+B_{k}}+\sqrt{A_{k}-B_{k}}\right), \quad S_{k}:=\frac{1}{2}\left(\sqrt{A_{k}+B_{k}}-\sqrt{A_{k}-B_{k}}\right), \\
& c_{p}:=\frac{C_{p}}{\sqrt{C_{p}^{2}-S_{p}^{2}}}=\frac{\sqrt{|p|^{2}+2 \lambda \rho \hat{V}(p)}+|p|}{2 \sqrt{\omega(p)}}, \\
& s_{p}:=\frac{S_{p}}{\sqrt{C_{p}^{2}-S_{p}^{2}}}=\frac{\sqrt{|p|^{2}+2 \lambda \rho \hat{V}(p)}-|p|}{2 \sqrt{\omega(p)}} .
\end{aligned}
$$

Set

$$
\begin{aligned}
& \omega(k)=C_{k}^{2}-S_{k}^{2}=\sqrt{A_{k}^{2}-B_{k}^{2}}=|p| \sqrt{|p|^{2}+2 \lambda \rho \hat{V}(p)} \\
& E_{\mathrm{Bog}}:=-\frac{1}{2} \sum_{p \neq 0} S_{p}^{2}=-\frac{1}{2} \sum_{p \neq \mathbf{0}}\left(|p|^{2}+\lambda \rho \hat{V}(p)-|p| \sqrt{|p|^{2}+2 \lambda \rho \hat{V}(p)}\right)
\end{aligned}
$$

$\omega(p)$ is called the Bogoliubov dispersion relation and $E_{\text {Bog }}$ the Bogoliubov energy. Using the rotated creaton/annihilation operators, the Hamiltonian and total momentum can be written as

$$
\begin{aligned}
H_{\mathrm{Bog}} & =E_{\mathrm{Bog}}+\sum_{p \neq \mathbf{0}} \omega(p) \tilde{a}_{p}^{*} \tilde{a}_{p}, \\
P & =\sum_{p \neq \mathbf{0}} p \tilde{a}_{p}^{*} \tilde{a}_{p},
\end{aligned}
$$

We can introduce β_{p} by

$$
\begin{equation*}
\cosh \beta_{p}=c_{p}, \quad \cosh \beta_{p}=s_{p} \tag{10.142}
\end{equation*}
$$

and the unitary operator

$$
U=\exp \left(\sum_{p \neq \mathbf{0}} \frac{\beta_{p}}{2}\left(-a_{p}^{*} a_{-p}^{*}+a_{p} a_{-p}\right)\right) .
$$

Then U implements the Bogoiubov transformation:

$$
\begin{aligned}
\tilde{a}_{p} & =U a_{p} U^{*}, \\
\tilde{a}_{p}^{*} & =U a_{p}^{*} U^{*}, \\
H_{\mathrm{Bog}} & =E_{\mathrm{Bog}}+U \sum_{p \neq \mathbf{0}} \omega(p) a_{p}^{*} a_{p} U^{*}, \\
P & =U \sum_{p \neq \mathbf{0}} p a_{p}^{*} a_{p} U^{*} .
\end{aligned}
$$

We have

$$
\tanh \left(\beta_{p}\right):=\frac{|p|^{2}+\lambda \rho \hat{V}(p)-|p| \sqrt{|p|^{2}+2 \lambda \rho \hat{V}(p)}}{\lambda \rho \hat{V}(p)}
$$

The ground state of the Bogoliubov Hamiltonian is a squeezed state in the non-zero mode sector:

$$
\frac{a_{0}^{* n}}{\sqrt{n!}} U \Omega=\frac{a_{0}^{* n}}{\sqrt{n!}} \exp \left(\frac{1}{2} \sum_{p \neq 0} \tanh \left(\beta_{p}\right) a_{p}^{*} a_{-p}^{*}\right) \Omega .
$$

The Bogoliubov dispersion relation depends on λ and ρ only through $\lambda \rho=\frac{\lambda n}{L^{d}}$.
The Bogoliubov Hamiltonian depends on L only through the choice of the lattice spacing $\frac{2 \pi}{L}$. Note that formally we can even take the limit $L \rightarrow \infty$ obtaining

$$
\begin{aligned}
H_{\mathrm{Bog}}-E_{\mathrm{Bog}} & =(2 \pi)^{-d} \int \omega(p) \tilde{a}_{p}^{*} \tilde{a}_{p} \mathrm{~d} p, \\
P & =(2 \pi)^{-d} \int p \tilde{a}_{p}^{*} \tilde{a}_{p} \mathrm{~d} p .
\end{aligned}
$$

We expect that the low energy part of the excitation spectra of H_{n} and $H_{\text {Bog }}$ are close to one another for large n, hoping that then $n-n_{0}$ is small. We expect some kind of uniformity wrt L.

10.2 Grand-canonical approach

Suppose that $H=\oplus_{n=0}^{\infty} H^{n}$ is a particle-preserving Hamiltonian decomposed in n-particle sectors. Let N denote the number operator. Instead of studying it inside the nth sector it is often useful to consider its grand-canonical vdersion, that is $H_{\mu}:=H-\mu N$, where $\mu \in \mathbb{R}$ is the parameter called the chemical potential. Instead of looking for the ground state of H_{n} it is often more convenient to look for the ground state of H_{μ}. The following simple fact justifies partly this approach:

Theorem 10.1 Suppose that E_{n} is a sequence with $E_{0}=0$ and $\mu_{j}:=E_{j}-E_{j-1}$ increasing. Let $\mu \in\left[\mu_{n}, \mu_{n+1}\right]$. Then

$$
\begin{equation*}
\inf _{k}\left(E_{k}-\mu k\right)=E_{n}-\mu n . \tag{10.143}
\end{equation*}
$$

Proof. Clearly,

$$
\begin{equation*}
E_{k}-\mu k=\sum_{j=1}^{k}\left(E_{j}-E_{j-1}-\mu\right) \tag{10.144}
\end{equation*}
$$

Now

$$
\begin{align*}
E_{j}-E_{j-1}-\mu \leq E_{j}-E_{j-1}-\mu_{n} \leq 0 & \text { for } j \leq n ; \tag{10.145}\\
E_{j}-E_{j-1}-\mu \geq E_{j}-E_{j-1}-\mu_{n+1} \leq 0 & \text { for } j \geq n . \tag{10.146}
\end{align*}
$$

Hence the choice of k that minimizes 10.144 is $k=n$.

10.3 Bogoliubov's approximation in the grand-canonical approach

Let us present an alternative derivation of the Bogoliubov dispersion relation based on the grandcanonical approach. For a chemical potential $\mu>0$, we define the grand-canonical Hamiltonian

$$
H_{\mu}:=H-\mu N=\sum_{p}\left(p^{2}-\mu\right) a_{p}^{*} a_{p}+\frac{\lambda}{2 L^{d}} \sum_{p, q, k} \hat{V}(k) a_{p+k}^{*} a_{q-k}^{*} a_{q} a_{p}
$$

We will mostly set $\lambda=1$.
If E_{μ} is the ground state energy of H_{μ}, then it is realized in the sector n satisfying

$$
\partial_{\mu} E_{\mu}=-n
$$

In what follows we drop the subscript μ.
For $\alpha \in \mathbb{C}$, we define the displacement or Weyl operator of the zeroth mode: $W_{\alpha}:=\mathrm{e}^{-\alpha a_{0}^{*}+\bar{\alpha} a_{0}}$. Let $\Omega_{\alpha}:=W_{\alpha} \Omega$ be the corresponding coherent vector. Note that $P \Omega_{\alpha}=0$. The expectation of the Hamiltonian in Ω_{α} is

$$
\left(\Omega_{\alpha} \mid H \Omega_{\alpha}\right)=-\mu|\alpha|^{2}+\frac{\hat{V}(0)}{2 L^{d}}|\alpha|^{4}
$$

It is minimized for $\alpha=\mathrm{e}^{\mathrm{i} \tau} \frac{\sqrt{L^{d} \mu}}{\sqrt{\hat{V}(0)}}$, where τ is an arbitrary phase.
We apply the Bogoliubov translation to the zero mode of H by W_{α} :

$$
\tilde{a}_{k}=W_{\alpha}^{*} a_{k} W_{\alpha}, \quad \tilde{a}_{k}^{*}=W_{\alpha}^{*} a_{k}^{*} W_{\alpha}
$$

and thus the operators with and without tildes satisfy the same commutation relations. This means making the substitution

$$
\begin{aligned}
& a_{0}=\tilde{a}_{0}+\alpha, \quad a_{0}^{*}=\tilde{a}_{0}^{*}+\bar{\alpha} \\
& \quad a_{k}=\tilde{a}_{k}, \quad a_{k}^{*}=\tilde{a}_{k}^{*}, \quad k \neq 0
\end{aligned}
$$

We drop the tildes.
Here is the translated Hamiltonian:

$$
\begin{aligned}
H:= & -L^{d} \frac{\mu^{2}}{2 \hat{V}(0)} \\
& +\sum_{k}\left(\frac{1}{2} k^{2}+\hat{V}(k) \frac{\mu}{\hat{V}(0)}\right) a_{k}^{*} a_{k} \\
& +\sum_{k} \hat{V}(k) \frac{\mu}{2 \hat{V}(0)}\left(\mathrm{e}^{-\mathrm{i} 2 \tau} a_{k} a_{-k}+\mathrm{e}^{\mathrm{i} 2 \tau} a_{k}^{*} a_{-k}^{*}\right) \\
& +\sum_{k, k^{\prime}} \frac{\hat{V}(k) \sqrt{\mu}}{\sqrt{\hat{V}(0) L^{d}}}\left(\mathrm{e}^{-\mathrm{i} \tau} a_{k+k^{\prime}}^{*} a_{k} a_{k^{\prime}}+\mathrm{e}^{\mathrm{i} \tau} a_{k}^{*} a_{k^{\prime}}^{*} a_{k+k^{\prime}}\right) \\
& +\sum_{k_{1}+k_{2}=k_{3}+k_{4}} \frac{\hat{V}\left(k_{2}-k_{3}\right)}{2 L^{d}} a_{k_{1}}^{*} a_{k_{2}}^{*} a_{k_{3}} a_{k_{4}} .
\end{aligned}
$$

If we (temporarily) replace the potential $V(x)$ with $\lambda V(x)$, where λ is a (small) positive constant, the translated Hamiltonian can be rewritten as

$$
H^{\lambda}=\lambda^{-1} H_{-1}+H_{0}+\sqrt{\lambda} H_{\frac{1}{2}}+\lambda H_{1} .
$$

Thus the 3rd and 4th terms are in some sense small, which suggests dropping them. Thus

$$
H \approx-L^{d} \frac{\mu^{2}}{2 \hat{V}(\mathbf{0})}+\mu\left(\mathrm{e}^{\mathrm{i} \tau} a_{\mathbf{0}}^{*}+\mathrm{e}^{-\mathrm{i} \tau} a_{\mathbf{0}}\right)^{2}+H_{\mathrm{Bog}}
$$

where

$$
\begin{aligned}
H_{\mathrm{Bog}}= & \sum_{k \neq \mathbf{0}}\left(\frac{1}{2} k^{2}+\hat{V}(k) \frac{\mu}{\hat{V}(0)}\right) a_{k}^{*} a_{k} \\
& +\sum_{k \neq \mathbf{0}} \hat{V}(k) \frac{\mu}{2 \hat{V}(0)}\left(\mathrm{e}^{-\mathrm{i} 2 \tau} a_{k} a_{-k}+\mathrm{e}^{\mathrm{i} 2 \tau} a_{k}^{*} a_{-k}^{*}\right)
\end{aligned}
$$

Then we proceed as before obtaining the Bogoliubov dispersion relation

$$
\omega(p)=|p| \sqrt{|p|^{2}+2 \mu \frac{\hat{V}(p)}{\hat{V}(\mathbf{0})}} .
$$

and the Bogoliubov energy

$$
E_{\mathrm{Bog}}:=-\frac{1}{2} \sum_{p \neq \mathbf{0}}\left(|p|^{2}+\mu \frac{\hat{V}(p)}{\hat{V}(\mathbf{0})}-|p| \sqrt{|p|^{2}+2 \mu \frac{\hat{V}(p)}{\hat{V}(\mathbf{0})}}\right)
$$

Thus, as compared with the canonical approach, we have μ in place of $\lambda \rho$.
Note that the grand-canonical Hamiltonian H_{μ} is invariant wrt the $U(1)$ symmetry $\mathrm{e}^{\mathrm{i} \tau N}$. The parameter α has an arbitrary phase. Thus we broke the symmetry when translating the Hamiltonian.

The zero mode is not a harmonic oscillator - it has continuous spectrum and it can be interpreted as a kind of a Goldstone mode.

10.4 Landau's argument for superfluidity

A translation invariant system such as homogeneous Bose gas is described by a family of commuting self-adjoint operators (H, P), where $P=\left(P_{1}, \ldots, P_{d}\right)$ is the momentum. If the translation invariance is on \mathbb{R}^{d}, then the momentum spectrum is \mathbb{R}^{d}. If it is in a box of side length L with periodic boundary conditions then $\mathrm{e}^{\mathrm{i} P_{i} L}=\mathbb{1}$, therefore the momentum spectrum is $\frac{2 \pi}{L} \mathbb{Z}^{d}$.

Thus the energy-momentum spectrum $\sigma(H, P)$ is

$$
\sigma(H, P) \subset \begin{cases}\mathbb{R} \times \mathbb{R}^{d}, & L=\infty \\ \mathbb{R} \times \frac{2 \pi}{L} \mathbb{Z}^{d}, & L<\infty\end{cases}
$$

By general arguments the momentum of the ground state of a Bose gas is zero. Let E denote the ground state energy of H. We define the critical velocity by

$$
c_{\text {crit }}:=\sup \{c: H \geq E+c|P|\} .
$$

Suppose that our n-body system is described by (H, P) with critical velocity $c_{\text {crit }}$. We add to H a perturbation u travelling at a speed w :

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t} \Psi_{t}=\left(H+\lambda \sum_{i=1}^{n} u\left(x_{i}-\mathrm{w} t\right)\right) \Psi_{t} .
$$

We go to the moving frame:

$$
\Psi_{t}^{\mathrm{w}}\left(x_{1}, \ldots, x_{n}\right):=\Psi_{t}\left(x_{1}-\mathrm{w} t, \ldots, x_{n}-\mathrm{w} t\right) .
$$

We obtain a Schrödinger equation with a time-independent Hamiltonian

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t} \Psi_{t}^{\mathrm{w}}=\left(H-\mathrm{w} P+\lambda \sum_{i=1}^{n} u\left(x_{i}\right)\right) \Psi_{t}^{\mathrm{w}}
$$

Let Ψ_{gr} be the ground state of H. Is it stable against a travelling perturbation? We need to consider the tilted Hamiltonian $H-\mathrm{w} P$.

If $|\mathrm{w}|<c_{\text {crit }}$, then $H-\mathrm{w} P \geq E$ and Ψ_{gr} is still a ground state of $H-\mathrm{w} P$. So Ψ_{gr} is stable.
If $|\mathrm{w}|>c_{\text {crit }}$, then $H-\mathrm{w} P$ is unbounded from below. So Ψ_{gr} is not stable any more.

11 Fermionic Gaussian states

11.1 1-mode particle-antiparticle vector

Consider $\Gamma_{\mathrm{a}}\left(\mathbb{C}^{2}\right)$. The creation/annihilation of first mode are denoted a^{*}, a, of the second b^{*}, b.
We assume that in our space there is a "charge operator"

$$
Q:=a^{*} a-b^{*} b,
$$

and we are interested mostly in states with $Q=0$.

Theorem 11.1 Let $c \in \mathbb{C}$. Then

$$
\Omega^{c}:=\left(1+|c|^{2}\right)^{-\frac{1}{2}} \mathrm{e}^{c a^{*} b^{*}} \Omega=\left(1+|c|^{2}\right)^{-\frac{1}{2}}\left(\Omega+c a^{*} b^{*} \Omega\right)
$$

is a normalized vector satisfying

$$
\begin{aligned}
\left(a-c b^{*}\right) \Omega^{c} & =0, \\
\left(b+c a^{*}\right) \Omega^{c} & =0 .
\end{aligned}
$$

Theorem 11.2 Set

$$
U^{t}:=\mathrm{e}^{t\left(-a^{*} b^{*}+b a\right)} .
$$

Then

$$
\begin{align*}
U^{t} a U^{-t} & =a \cos t+b^{*} \sin t, \tag{11.147}\\
U^{t} a^{*} U^{-t} & =a^{*} \cos t+b \sin t, \tag{11.148}\\
U^{t} b U^{-t} & =b \cos t-a^{*} \sin t, \tag{11.149}\\
U^{t} b^{*} U^{-t} & =b^{*} \cos t-a \sin t, \tag{11.150}\\
U^{t} & =\cos t \mathrm{e}^{-\tan t a^{*} b^{*}} \Gamma\left(\frac{1}{\cos t}\right) \mathrm{e}^{\tan t b a}, \tag{11.151}\\
\Omega^{-\tan t} & =U^{t} \Omega . \tag{11.152}
\end{align*}
$$

Proof. First we derive 11.147 - 11.150 . Then we compute

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} U^{t} & =\left(-a^{*} b^{*}+b a\right) U^{t} \\
& =-\frac{1}{\cos ^{2} t} a^{*} b^{*} U^{t}+\frac{1}{\cos ^{2} t} U^{t} b a+\frac{\sin t}{\cos ^{2} t}\left(a^{*} U^{t} a+b^{*} U^{t} b\right)-\frac{\sin t}{\cos t} U^{t}
\end{aligned}
$$

11.2 Fermionic oscillator

Let

$$
H=\left(a^{*}+a\right)\left(b^{*}+b\right)
$$

Theorem 11.3 We have $H^{2}=-\mathbb{1}, H^{*}=-H$

$$
\begin{aligned}
\mathrm{e}^{t H} & =\cos t \mathbb{1}+\sin t H, \\
\mathrm{e}^{t H}\left(a^{*}+a\right) \mathrm{e}^{-t H} & =\cos 2 t\left(a^{*}+a\right)-\sin 2 t\left(b^{*}+b\right), \\
\mathrm{e}^{t H}\left(b^{*}+b\right) \mathrm{e}^{-t H} & =\cos 2 t\left(b^{*}+b\right)+\sin 2 t\left(a^{*}+a\right), \\
\mathrm{e}^{t H}\left(a^{*}-a\right) \mathrm{e}^{-t H} & =a^{*}-a, \\
\mathrm{e}^{t H}\left(b^{*}-b\right) \mathrm{e}^{-t H} & =b^{*}-b, \\
\Omega^{\tan t} & =\mathrm{e}^{t H} \Omega .
\end{aligned}
$$

In particular,

$$
\begin{array}{rlr}
\mathrm{e}^{ \pm \frac{\pi}{2} H} & = \pm H, \\
H a^{*} H^{-1} & =-a, & H a H^{-1} \\
H b^{*} H^{-1} & =-b, & H b H^{*}, \\
& =-b^{*} .
\end{array}
$$

12 Fermi gas and superconductivity

12.1 Fermi gas

We consider fermions with spin $\frac{1}{2}$ described by the Hilbert space

$$
\mathcal{H}_{n}:=\otimes_{\mathrm{a}}^{n}\left(L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{2}\right)\right) .
$$

We use the chemical potential from the beginning and we do not assume the locality of interaction, so that the Hamiltonian is

$$
H_{n}=-\sum_{i=1}^{n}\left(\Delta_{i}-\mu\right)+\lambda \sum_{1 \leq i<j \leq n} v_{i j} .
$$

The interaction will be given by a 2 -body operator on $\otimes^{2}\left(L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{2}\right)\right)$ given by

$$
(v \Phi)_{i_{1}, i_{2}}\left(x_{1}, x_{2}\right)=\iint v\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \Phi_{i_{1}, i_{2}}\left(x_{3}, x_{4}\right) \mathrm{d} x_{3} \mathrm{~d} x_{4} .
$$

We will assume that v is invariant wrt the exchange of particles, Hermitian, real and translation invariant:

$$
\begin{aligned}
v\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =v\left(x_{2}, x_{1}, x_{4}, x_{3}\right) \\
& =\overline{v\left(x_{1}, x_{2}, x_{3}, x_{4}\right)} \\
& =\overline{v\left(x_{4}, x_{3}, x_{2}, x_{1}\right)} \\
& =v\left(x_{1}+y, x_{2}+y, x_{3}+y, x_{4}+y\right) .
\end{aligned}
$$

By the invariance wrt the exchange of particles v preserves $\otimes_{\mathrm{a}}^{2}\left(L^{2}\left(\mathbb{R}^{d}, \mathbb{C}^{2}\right)\right)$. By translation invariance, v can be written as

$$
\begin{aligned}
v\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =(2 \pi)^{-4 d} \int \mathrm{e}^{\mathrm{i} k_{1} x_{1}+\mathrm{i} k_{2} x_{2}-\mathrm{i} k_{3} x_{3}-\mathrm{i} k_{4} x_{4}} q\left(k_{1}, k_{2}, k_{3}, k_{4}\right) \\
& \times \delta\left(k_{1}+k_{2}-k_{3}-k_{4}\right) \mathrm{d} k_{1} \mathrm{~d} k_{2} \mathrm{~d} k_{3} \mathrm{~d} k_{4},
\end{aligned}
$$

where q is a function defined on the subspace $k_{1}+k_{2}=k_{3}+k_{4}$. An example of such interaction is a local 2-body potential $V(x)$ such that $V(x)=V(-x)$, which corresponds to

$$
\begin{aligned}
v\left(x_{1}, x_{2}, x_{3}, x_{4}\right) & =V\left(x_{1}-x_{2}\right) \delta\left(x_{1}-x_{4}\right) \delta\left(x_{2}-x_{3}\right), \\
q\left(k_{1}, k_{2}, k_{3}, k_{4}\right) & =\int \mathrm{d} p \hat{V}(p) \delta\left(k_{1}-k_{4}-p\right) \delta\left(k_{2}-k_{3}+p\right) .
\end{aligned}
$$

Similarly, as before, we periodize the interaction

$$
\begin{aligned}
& v^{L}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \\
= & \sum_{\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3} \in \mathbb{Z}^{d}} v\left(x_{1}+\mathrm{n}_{1} L, x_{2}+\mathrm{n}_{2} L, x_{3}+\mathrm{n}_{3} L, x_{4}\right) \\
= & \frac{1}{L^{3 d}} \sum_{k_{1}+k_{2}=k_{3}+k_{4}} \mathrm{e}^{\mathrm{i} k_{1} \cdot x_{1}+\mathrm{i} k_{2} x_{2}-\mathrm{i} k_{3} x_{3}-\mathrm{i} k_{4} x_{4}} q\left(k_{1}, k_{2}, k_{3}, k_{4}\right),
\end{aligned}
$$

where $k_{i} \in \frac{2 \pi}{L} \mathbb{Z}^{d}$. The Hamiltonian

$$
H^{L, n}=\sum_{1 \leq i \leq n}\left(-\Delta_{i}^{L}-\mu\right)+\sum_{1 \leq i<j \leq n} v_{i j}^{L}
$$

acts on $\mathcal{H}^{n, L}:=\otimes_{\mathrm{a}}^{n}\left(L^{2}\left([-L / 2, L / 2]^{d}, \mathbb{C}^{2}\right)\right)$. We drop the superscript L.
We will denote the spins by $i=\uparrow, \downarrow$. It is convenient to put all the n-particle spaces into a single Fock space

$$
\underset{n=0}{\infty} \mathcal{H}^{n}=\Gamma_{\mathrm{a}}\left(L^{2}\left([L / 2, L / 2]^{d}, \mathbb{C}^{2}\right)\right)
$$

and rewrite the Hamiltonian and momentum in the language of 2 nd quantization:

$$
\begin{aligned}
H:=\underset{n=0}{\oplus} H^{n} & =\sum_{i} \int a_{x, i}^{*}\left(\Delta_{x}-\mu\right) a_{x, i_{2}} \mathrm{~d} x \\
& +\frac{1}{2} \sum_{i, j} \iint a_{x_{1}, i}^{*} a_{x_{2}, j}^{*} v\left(x_{1}, x_{2}, x_{3}, x_{4}\right) a_{x_{3}, j} a_{x_{4}, i} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \mathrm{~d} x_{3} \mathrm{~d} x_{4}, \\
P:=\underset{n=0}{\oplus} P^{n} & =-\sum_{i} \mathrm{i} \int a_{x, i}^{*} \nabla_{x} a_{x, i} \mathrm{~d} x .
\end{aligned}
$$

In the momentum representation,

$$
\begin{aligned}
H & =\sum_{i} \sum_{k}\left(k^{2}-\mu\right) a_{k, i}^{*} a_{k, i} \\
& +\frac{1}{2 L^{d}} \sum_{i, j} \sum_{k_{1}+k_{2}=k_{3}+k_{4}} q\left(k_{1}, k_{2}, k_{3}, k_{4}\right) a_{k_{1}, i}^{*} a_{k_{2}, j}^{*} a_{k_{3}, j} a_{k_{4}, i}, \\
P & =\sum_{i} \sum_{k} k a_{k, i}^{*} a_{k, i} .
\end{aligned}
$$

We also have the generators of the spin $s u(2)$.

$$
\begin{align*}
S_{x} & =\frac{1}{2} \sum_{k}\left(a_{k \uparrow}^{*} a_{k \downarrow}+a_{k \downarrow}^{*} a_{k \uparrow}\right), \tag{12.153}\\
S_{y} & =\frac{i}{2} \sum_{k}\left(a_{k \uparrow}^{*} a_{k \downarrow}-a_{k \downarrow}^{*} a_{k \uparrow}\right), \tag{12.154}\\
S_{z} & =\frac{1}{2} \sum_{k}\left(a_{k \uparrow}^{*} a_{k \uparrow}-a_{k \downarrow}^{*} a_{k \downarrow}\right) . \tag{12.155}
\end{align*}
$$

The Hamiltonian is invariant with respect to the spin $s u(2)$.

13 Hartree-Fock-Bogoliubov approximation with BCS ansatz

We try to compute the excitation spectrum of the Fermi gas by approximate methods. We look for a minimum of the energy among Gaussian states. We assume that a minimizer is invariant wrt translations and the spin $s u(2)$. We use the Hartree-Fock-Bogoliubov approximation with the Bardeen-Cooper-Schrieffer ansatz.

For a sequence $\frac{2 \pi}{L} \mathbb{Z}^{d} \ni k \mapsto \theta_{k}$ such that $\theta_{k}=\theta_{-k}$, set

$$
U_{\theta}:=\prod_{k} \mathrm{e}^{\frac{1}{2} \theta_{k}\left(-a_{k \uparrow}^{*} a_{-k \downarrow}^{*}+a_{-k \downarrow} a_{k \uparrow}-a_{-k \uparrow}^{*} a_{k \downarrow}^{*}+a_{k \downarrow} a_{-k \uparrow}\right)}
$$

(Note the double counting for $k \neq \mathbf{0}$). We are looking for a minimizer of the form $U_{\theta} \Omega$.
Note that U_{θ} commutes with P and the spin $s u(2)$. Therefore, $U_{\theta} \Omega$ is translation and $s u(2)$ invariant.

We want to compute

$$
\left(U_{\theta} \Omega \mid H U_{\theta} \Omega\right)=\left(\Omega \mid U_{\theta}^{*} H U_{\theta} \Omega\right)
$$

To do this we can use the fact that U_{θ} implements Bogoliubov rotations:

$$
\begin{aligned}
U_{\theta}^{*} a_{k \uparrow}^{*} U_{\theta} & =\cos \theta_{k} a_{k \uparrow}^{*}+\sin \theta_{k} a_{-k \downarrow}, \\
U_{\theta}^{*} a_{k \uparrow} U_{\theta} & =\cos \theta_{k} a_{k \uparrow}+\sin \theta_{k} a_{-k \downarrow}^{*}, \\
U_{\theta}^{*} a_{k \downarrow}^{*} U_{\theta} & =\cos \theta_{k} a_{k \downarrow}^{*}-\sin \theta_{k} a_{-k \uparrow}, \\
U_{\theta}^{*} a_{k \downarrow} U_{\theta} & =\cos \theta_{k} a_{k \downarrow}-\sin \theta_{k} a_{-k \uparrow}^{*},
\end{aligned}
$$

After inserting this into $U_{\theta}^{*} H U_{\theta}$ the resulting expression can be Wick ordered.
In practice, this is usually presented differently. One makes the substitution

$$
\begin{aligned}
a_{k \uparrow} & =\cos \theta_{k} b_{k \uparrow}^{*}+\sin \theta_{k} b_{-k \downarrow}, \\
a_{k \uparrow} & =\cos \theta_{k} b_{k \uparrow}+\sin \theta_{k} b_{-k \downarrow}^{*}, \\
a_{k \downarrow}^{*} & =\cos \theta_{k} b_{k \downarrow}^{*}-\sin \theta_{k} b_{-k \uparrow}, \\
a_{k \downarrow} & =\cos \theta_{k} b_{k \downarrow}-\sin \theta_{k} b_{-k \uparrow}^{*},
\end{aligned}
$$

in the Hamiltonian. Note that

$$
\begin{aligned}
U_{\theta} a_{k \uparrow}^{*} U_{\theta}^{*} & =b_{k \uparrow}^{*}, \\
U_{\theta} a_{k \uparrow} U_{\theta}^{*} & =b_{k \uparrow}, \\
U_{\theta} a_{k \downarrow}^{*} U_{\theta}^{*} & =b_{k \downarrow}^{*}, \\
U_{\theta} a_{k \downarrow} U_{\theta}^{*} & =b_{k \downarrow} .
\end{aligned}
$$

Then one Wick orders wrt the operators b^{*}, b. Our Hamiltonian becomes

$$
\begin{aligned}
H & =B+\sum_{k} D(k)\left(b_{k \uparrow}^{*} h_{k \uparrow}+b_{k \downarrow}^{*} b_{k \downarrow}\right) \\
& +\frac{1}{2} \sum_{k} O(k)\left(b_{k \uparrow}^{*} b_{-k \downarrow}^{*}+b_{-k \uparrow}^{*} b_{k \downarrow}^{*}\right)+\frac{1}{2} \sum_{k} \bar{O}(k)\left(b_{-k \downarrow} b_{k \uparrow}+b_{k \downarrow} b_{-k \uparrow}\right) \\
& + \text { terms higher order in } b \text { 's. }
\end{aligned}
$$

Note that

$$
\left(\Omega_{\theta} \mid H \Omega_{\theta}\right)=B .
$$

By the Beliaev Theorem, minimizing B is equivalent to $O(k)=0$.
If we choose the Bogoliubov transformation according to the minimization procedure, the Hamiltonian equals

$$
H=B+\sum_{k} D(k)\left(b_{k \uparrow}^{*} b_{k \uparrow}+b_{k \downarrow}^{*} b_{k \downarrow}\right)+\text { terms higher order in } b \text { 's }
$$

with

$$
\begin{aligned}
B= & \sum_{k}\left(k^{2}-\mu\right)\left(1-\cos 2 \theta_{k}\right) \\
& +\frac{1}{4 L^{d}} \sum_{k, k^{\prime}} \alpha\left(k, k^{\prime}\right) \sin 2 \theta_{k} \sin 2 \theta_{k^{\prime}} \\
& +\frac{1}{4 L^{d}} \sum_{k, k^{\prime}} \beta\left(k, k^{\prime}\right)\left(1-\cos 2 \theta_{k}\right)\left(1-\cos 2 \theta_{k^{\prime}}\right)
\end{aligned}
$$

Here,

$$
\begin{aligned}
\alpha\left(k, k^{\prime}\right) & :=\frac{1}{2}\left(q\left(k,-k,-k^{\prime}, k^{\prime}\right)+q\left(-k, k,-k^{\prime}, k^{\prime}\right)\right), \\
\beta\left(k, k^{\prime}\right) & =2 q\left(k, k^{\prime}, k^{\prime}, k\right)-q\left(k^{\prime}, k, k^{\prime}, k\right) .
\end{aligned}
$$

In particular, in the case of local potentials we have

$$
\begin{aligned}
\alpha\left(k, k^{\prime}\right) & :=\frac{1}{2}\left(\hat{V}\left(k-k^{\prime}\right)+\hat{V}\left(k+k^{\prime}\right)\right), \\
\beta\left(k, k^{\prime}\right) & =2 \hat{V}(\mathbf{0})-\hat{V}\left(k-k^{\prime}\right) .
\end{aligned}
$$

The condition $\partial_{\theta_{k}} B=0$, or equivalently $O(k)=0$, has many solutions. We can have

$$
\sin 2 \theta_{k}=0, \quad \cos 2 \theta_{k}= \pm 1,
$$

They correspond to Slater determinants and have a fixed number of particles. The solution of this kind minimizing B, is called a normal or Hartree-Fock solution.

Under some conditions the global minimum of B is reached by a non-normal configuration satisfying

$$
\sin 2 \theta_{k}=-\frac{\delta(k)}{\sqrt{\delta^{2}(k)+\xi^{2}(k)}}, \quad \cos 2 \theta_{k}=\frac{\xi(k)}{\sqrt{\delta^{2}(k)+\xi^{2}(k)}},
$$

where

$$
\begin{aligned}
\delta(k) & =\frac{1}{2 L^{d}} \sum_{k^{\prime}} \alpha\left(k, k^{\prime}\right) \sin 2 \theta_{k^{\prime}}, \\
\xi(k) & =k^{2}-\mu+\frac{1}{2 L^{d}} \sum_{k^{\prime}} \beta\left(k, k^{\prime}\right)\left(1-\cos 2 \theta_{k^{\prime}}\right)
\end{aligned}
$$

and at least some of $\sin 2 \theta_{k}$ are different from 0 . It is sometimes called a superconducting solution.
For a superconducting solution we get

$$
D(k)=\sqrt{\xi^{2}(k)+\delta^{2}(k)} .
$$

Thus we obtain a positive dispersion relation. One can expect that it is strictly positive, since otherwise the two functions δ and ξ would have a coinciding zero, which seems unlikely. Thus we expect that the dispersion relation $D(k)$ has a positive energy gap.

Conditions guaranteeing that a superconducting solution minimizes the energy should involve some kind of negative definiteness of the quadratic form α - this is what we vaguely indicated by saying that the interaction is attractive. Indeed, multiply the definition of $\delta(k)$ with $\sin 2 \theta_{k}$ and sum it up over k. We then obtain

$$
\begin{aligned}
& \sum_{k} \sin ^{2} 2 \theta_{k} \sqrt{\delta^{2}(k)+\xi^{2}(k)} \\
= & -\frac{1}{2 L^{d}} \sum_{k, k^{\prime}} \sin 2 \theta_{k} \alpha\left(k, k^{\prime}\right) \sin 2 \theta_{k^{\prime}} .
\end{aligned}
$$

The left hand side is positive. This means that the quadratic form given by the kernel $\alpha\left(k, k^{\prime}\right)$ has to be negative at least at the vector given by $\sin 2 \theta_{k}$.

14 Basics of representations of $s u(n)$

14.1 Contragradient representation

Let \mathfrak{g} be a Lie algebra. Consider a representation $\mathfrak{g} \ni A \mapsto \pi(A) \in L(\mathcal{V})$ on a finite dimensional space \mathcal{V}. The representation contragradient to π is defined as

$$
\begin{equation*}
\pi^{\operatorname{ctg}}(A):=-\pi(A)^{\mathrm{T}} \in L\left(\mathcal{V}^{\mathrm{T}}\right) \tag{14.1}
\end{equation*}
$$

where \mathcal{V}^{T} denotes the dual of \mathcal{V}.

Let \mathcal{V} be in addition a Hilbert space. By saying that π is infinitesimally unitary we mean that the corresponding group representation is unitary. Equivalently, $\pi(A)$ are antiself-adjoint:

$$
\begin{equation*}
\pi(A)=-\pi(A)^{*}=-\overline{\pi(A)}^{\mathrm{T}} \tag{14.2}
\end{equation*}
$$

Thus for an infinitesimally unitary representation we have

$$
\begin{equation*}
\pi^{\operatorname{ctg}}(A)=\overline{\pi(A)} \tag{14.3}
\end{equation*}
$$

When speaking of representations we will usually omit the symbol π. Various representations will be recognized by the space on which they act.
$14.2 \operatorname{su}(n)$ and $\operatorname{sl}(n, \mathbb{C})$
We will mostly speak about representations of

$$
\operatorname{su}(n):=\left\{A \in L\left(\mathbb{C}^{n}\right): A^{*}=-A, \quad \operatorname{Tr} A=0\right\}
$$

The complexification of $s u(n)$ is

$$
s l(n, \mathbb{C}):=\left\{A \in L\left(\mathbb{C}^{n}\right): \quad \operatorname{Tr} A=0\right\}=s u(n)+\mathrm{i} s u(n)
$$

Every finite dimensional representation of $s u(3)$ extends to a complex representation of $s l(n, \mathbb{C})$. Conversely, for every finite dimensional complex representation of $\operatorname{sl}(n, \mathbb{C})$ we can choose a scalar product so that its restriction to $s u(n)$ is infinitesimally unitary. A representation of $s u(n)$ is irreducible iff so is the corresponding representation of $\operatorname{sl}(n, \mathbb{C})$.

Thus we can pass from representations of $s u(n)$ to complex representations of $s l(n, \mathbb{C})$ and back. It is often convenient to use the complexified version.
$\operatorname{sl}(n, \mathbb{C})$ has the obvious representation on \mathbb{C}^{n}. It will be called fundamental. Its contragradient representation, acting on $\mathbb{C}^{n \mathrm{~T}}$ will be called antifundamental. When restricted to $s u(n)$ we can write $\overline{\mathbb{C}}^{n}$ instead of $\mathbb{C}^{n \mathrm{~T}}$.

14.3 Cartan algebra

Let $|1\rangle, \ldots,|n\rangle$ denote the canonical basis of \mathbb{C}^{n}. Let $\langle 1|, \ldots,\langle n|$ denote its dual basis, which is a basis of $\mathbb{C}^{n \mathrm{~T}} . \operatorname{sl}(n, \mathbb{C})$ is embedded in the obvious way in $g l(n, \mathbb{C})$, which is spanned by the operators $A_{i j}:=|i\rangle\langle j| . g l(n, \mathbb{C})$ has a natural scalar product

$$
\begin{equation*}
\langle A \mid B\rangle=\operatorname{Tr} A^{\mathrm{T}} B \tag{14.4}
\end{equation*}
$$

in which $A_{i j}$ is an orthonormal basis.
The set of diagonal elements of $\operatorname{sl}(n, \mathbb{C})$ is called the Cartan algebra of $s l(n, \mathbb{C})$ and denoted \mathfrak{h}. It is a maximal commutative algebra in $\operatorname{sl}(n, \mathbb{C})$. It is spanned by $H_{i, j}=-H_{j i}=A_{i i}-A_{j j}$, $i \neq j$. Note that

$$
\begin{equation*}
\left\langle H_{i, j} \mid H_{i, k}\right\rangle=-1, \quad j \neq k ; \quad\left\langle H_{i, j} \mid H_{i, j}\right\rangle=2 \tag{14.5}
\end{equation*}
$$

Hence the angle between $H_{i j}$ and $H_{i k}$ is $\frac{2 \pi}{3} . H_{i, i+1}, i=1, \ldots, n-1$ is a (non-orthogonal) basis.

14.4 Representation weights

Suppose π is a representation of the Lie algebra $\operatorname{su}(n)$ (or $s l(n, \mathbb{C})$) on a finite dimensional space \mathcal{V}. Elements of \mathcal{V} that are eigenvectors jointly of all elements of the Cartan algebra are called weight vectors of this representation. Their eigenvalues depend linearly on \mathfrak{h}, hence they can be interpreted as elements of $\mathfrak{h}^{\mathrm{T}}$. They are called weights. Denote by \mathcal{V}_{β} the space of eigenvectors for the weight $\beta \in \mathfrak{h}^{\mathrm{T}}$. We thus have

$$
H v=\langle\beta \mid H\rangle v, \quad v \in \mathcal{V}_{\beta}, \quad H \in \mathfrak{h} .
$$

For instance, consider the fundamental representation on \mathbb{C}^{n}. We have

$$
\begin{equation*}
H_{i j}|i\rangle=|i\rangle, \quad H_{j i}|i\rangle=-|i\rangle, \quad H_{j k}|i\rangle=0, \quad i \notin\{j, k\} . \tag{14.6}
\end{equation*}
$$

Hence $|i\rangle$ is a weight vector and the corresponding weight, denoted L_{i}, satisfies

$$
\begin{equation*}
\left\langle L_{i} \mid H_{i j}\right\rangle=-\left\langle L_{i} \mid H_{j i}\right\rangle=1, \quad\left\langle L_{i} \mid H_{j k}\right\rangle=0, \quad i \notin\{j, k\} . \tag{14.7}
\end{equation*}
$$

Note that \mathfrak{h} is n-1-dimensional, so L_{1}, \ldots, L_{n} have to be linearly dependent. In fact,

$$
\begin{equation*}
L_{1}+\cdots+L_{n}=0 . \tag{14.8}
\end{equation*}
$$

For the antifundamental representation weight vectors are $\langle i|, i=1, \ldots, n$, and the corresponding weight is $-L_{i}$.

14.5 Representations of $s u(2)$

It is easy to describe all representations of $\operatorname{su}(2)$. For every $n \in \mathbb{N}_{0}$ there exists exactly one n dimensional representation and it acts on $\otimes_{\mathrm{s}}^{n-1} \mathbb{C}^{2}$, where \mathbb{C}^{2} is the fundamental representation. The antifundamental representation is equivalent to the fundamental, because for $A \in \operatorname{sl}(2, \mathbb{C})$

$$
\left[\begin{array}{cc}
0 & -1 \tag{14.9}\\
1 & 0
\end{array}\right] A\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]^{-1}=-A^{\mathrm{T}}
$$

The Cartan algebra of $s u(2)$ is $H_{12} . s u(2)$ is spanned by H_{12}, A_{12}, A_{21} satisfying

$$
\left[A_{12}, A_{21}\right]=H_{12},\left[H_{12}, A_{12}\right]=2 A_{12},\left[H_{12}, A_{21}\right]=-2 A_{21} .
$$

Eigenvalues of H_{12} in all representations are integers. The n-dimensional representation, called also the spin $\frac{n-1}{2}$ representation, has weights $-n+1,-n+3, \ldots, n-1$, e.g.

14.6 Roots

Every Lie algebra has a representation on itself

$$
\begin{equation*}
\mathfrak{g} \ni A \mapsto[A, \cdot] \in L(\mathfrak{g}) . \tag{14.10}
\end{equation*}
$$

This representation is called the adjoint representation. Let us describe it in the case of $s u(n)$.
$s u(n)$ is spanned by $A_{i j}, a \neq j$ and the Cartan algebra \mathfrak{h}. The Cartan algebra consists of weight vectors for the adjoint representation with weight 0 . The operators $A_{i j}$ are called roots operators and satisfy

$$
\left[H, A_{i j}\right]=\alpha_{i j}(H) A_{i j}, \quad H \in \mathfrak{h}
$$

where $\alpha_{i j}$ is a linear functional on \mathfrak{h} called a root. If i, j, k are distinct, then

$$
\alpha_{i j}\left(H_{i j}\right)=2, \quad \alpha_{i j}\left(H_{j k}\right)=-1, \quad \alpha_{i j}\left(H_{k i}\right)=-1 .
$$

Identifying $\mathfrak{h}^{\mathrm{T}}$ with \mathfrak{h} with the help of the scalar product 14.4 we obtain the identification $\alpha_{i j}=\left\langle H_{i j} \mid \cdot\right\rangle$, because

$$
\begin{equation*}
\left\langle H_{i j} \mid H\right\rangle=\alpha_{i j}(H) . \tag{14.11}
\end{equation*}
$$

Hence $A_{i j}$ are weight vectors for the adjoint representation and $\alpha_{i j}$ are the corresponding weights.
$A_{i j}, A_{j i}$ and $H_{i j}$ satisfy the relations $\operatorname{sl}(2, \mathbb{C})$

$$
\left[A_{i j}, A_{j i}\right]=H_{i j},\left[H_{i j}, A_{i j}\right]=2 A_{i j},\left[H_{i j}, A_{j i}\right]=-2 A_{j i} .
$$

Hence eigenvalues of $H_{i j}$ have to be integers.
The set of elements of $\mathfrak{h}^{\mathrm{T}}$ which are integer linear combinations of roots is called the root lattice. \mathcal{U}. Clearly, $\mathcal{U} \subset \mathcal{W}$.

The set of elements of $\mathfrak{h}^{\mathrm{T}}$, which on $H_{i j}$ have integer values, is called the weight lattice \mathcal{W}. Weights of all representations belong to the weight lattice.

Let $\beta \in \mathcal{W}$ be a weight of a certain representation. We have

$$
A_{i j} \mathcal{V}_{\beta} \subset \mathcal{V}_{\beta+\alpha_{i j}}
$$

Clearly, the Cartan algebra preserves \mathcal{V}_{β}. Therefore, if a representation is irreducible and has a weight $\beta \in \mathcal{W}$, then all other weights belong to $\beta+\mathcal{U}$.

14.7 Representations of $s u(3)$

It is easy to describe all irreducble representations of $s l(3, \mathbb{C})$. We consider $(p, q) \in \mathbb{N}_{0}^{2}$. On the space

$$
\otimes_{\mathrm{s}}^{p} \mathbb{C}^{3} \otimes \otimes_{\mathrm{s}}^{q} \mathbb{C}^{3 \mathrm{~T}}
$$

we have the obvious representation

$$
\begin{equation*}
\pi_{p, q}(A)=\sum_{k=0}^{p-1} \mathbb{1}^{\otimes k} \otimes A \otimes \mathbb{1}^{\otimes(p-1-k)} \otimes \mathbb{1}^{\otimes q}-\mathbb{1}^{\otimes p} \otimes \sum_{k=0}^{p-1} \mathbb{1}^{\otimes k} \otimes A^{\mathrm{T}} \otimes \mathbb{1}^{\otimes(q-1-k)} \tag{14.12}
\end{equation*}
$$

Its elements are tensors

$$
\sum\left|i_{1}\right\rangle \otimes \cdots \otimes\left|i_{p}\right\rangle \otimes\left\langle j_{1}\right| \otimes \cdots \otimes\left\langle j_{q}\right| t_{j_{1}, \ldots, j_{q}}^{i_{1}, \ldots, i_{p}},
$$

which for brevity can be written as $\left[t_{j_{1}, \ldots, j_{q}}^{i_{1}, \ldots, i_{p}}\right]$. We can introduce the contraction

$$
\left[t_{j_{1}, \ldots, j_{q}}^{i_{1}, \ldots, i_{p}}\right] \mapsto\left[t_{j_{1}, \ldots, j_{q-1}, k}^{i_{1}, \ldots, i_{p-1}, k}\right],
$$

where we use the Einstein summation convention. The contraction operator intertwines the representation on na $\otimes_{\mathrm{s}}^{p} \mathbb{C}^{3} \otimes \otimes_{\mathrm{s}}^{q} \mathbb{C}^{3 \mathrm{~T}}$ with a representation on $\otimes_{\mathrm{s}}^{p-1} \mathbb{C}^{3} \otimes \otimes_{\mathrm{S}}^{q-1} \mathbb{C}^{3 \mathrm{~T}}$. Its kernel is an invariant subspace and is an irreducible representation of $s l(3, \mathbb{C})$, which will be called the representation of type (p, q). The representation contravariant to (p, q) is (q, p).
$s l(3, \mathbb{C})$ can be also represented on the antisymmetric tensor product. However, this does not lead to additional irreducible representations. In fact, $\otimes_{a}^{3} \mathbb{C}^{3}$ and $\otimes_{a}^{3} \mathbb{C}^{3 T}$ are one-dimensional, and hence $s l(3, \mathbb{C})$ acts on them trivially. Besides, the representation on $\otimes_{a}^{2} \mathbb{C}^{3}$ is equivalent to the antifundamental representation and on $\otimes_{a}^{2} \mathbb{C}^{3 \mathrm{~T}}$ - to the fundamental one.

14.8 Fundamental and antifundamental representation of $s u(3)$

The Cartan algebra of $s u(3)$ is spanned by $H_{12}=-H_{21}$ and $H_{13}=-H_{31}$. We also have $H_{23}=-H_{32}=H_{21}+H_{13}$,

$$
\left\langle H_{12} \mid H_{12}\right\rangle=2, \quad\left\langle H_{13} \mid H_{13}\right\rangle=\left\langle H_{12} \mid H_{13}\right\rangle=1
$$

In the fudamental representation

$$
\left\langle L_{1} \mid H_{12}\right\rangle=1, \quad\left\langle L_{1} \mid H_{13}\right\rangle=1 .
$$

We check that $L_{1}=\frac{1}{3}\left\langle\left(H_{12}+H_{13}\right) \mid \cdot\right\rangle$. Thus we can identify

$$
L_{1}=\frac{1}{3}\left(H_{12}+H_{13}\right), \quad L_{2}=\frac{1}{3}\left(H_{23}+H_{21}\right), \quad L_{3}=\frac{1}{3}\left(H_{31}+H_{32}\right) .
$$

Thus

$$
L_{1}-L_{2}=\frac{1}{3}\left(H_{12}+H_{13}\right)-\frac{1}{3}\left(H_{21}+H_{23}\right)=\frac{1}{3}\left(2 H_{12}-H_{31}-H_{23}\right)=H_{12} .
$$

Clearly, $L_{1}+L_{2}+L_{3}=0$. If we choose L_{1}, L_{2} as a basis, then

$$
\begin{aligned}
H_{12} & =L_{1}-L_{2}, \\
H_{23} & =L_{2}-L_{3}=L_{1}+2 L_{2}, \\
H_{31} & =L_{3}-L_{1}=-2 L_{1}-L_{2} .
\end{aligned}
$$

The vectors L_{i} span the weight lattice. Together with $-L_{i}$ they are situated on vertices of a regular hexagon:

$$
\begin{array}{ccc}
& -L_{3} & \\
L_{2} & & L_{1} \\
-L_{1} & & -L_{2} \\
& L_{3} &
\end{array}
$$

14.9 Triality of $s u(3)$

The lattice \mathcal{W} can be partitioned into three sublattices:

$$
\mathcal{W}_{k}:=\left\{n_{1} L_{1}+n_{2} L_{2}: n_{1}+n_{2} \in 3 \mathbb{Z}+k\right\} .
$$

Equivalently,

$$
\mathcal{W}_{0}=\mathcal{U}, \quad \mathcal{W}_{1}=L_{1}+\mathcal{U}, \quad \mathcal{W}_{2}=2 L_{1}+\mathcal{U} .
$$

$k \in \mathbb{Z}_{3}$ is called the triality of the sublattice. The weights of a representation of type (p, q) belong to \mathcal{W}_{p-q}. In particular, roots have triality 0 .

The center of $S U(3)$ is $\left\{\mathrm{e}^{\mathrm{i} \frac{2 \pi k}{3}} \mathbb{1}: k=0,1,2\right\} \simeq \mathbb{Z}_{3} . \mathbb{Z}_{3}$ has three irreducible representations, also numbered by \mathbb{Z}_{3}. The triality of a given representation corresponds to the representation of the center.

14.10 Negative and positive roots

Among root operators we distinguish negative roots:

$$
A_{12}, A_{13}, A_{23}
$$

and positive roots:

$$
A_{21}, A_{31}, A_{32}
$$

A highest weight vector is annihilated by negative roots. Every irreducible representation has up to a multiplier a unique highest weight vector. Let us denote it by Ψ. Then every vector is a linear combination of vectors of the form $B_{1} \cdots B_{n} \Psi$, where B_{1}, \ldots are positive roots.

Let e_{1}, e_{2}, e_{3} be a basis of \mathbb{C}^{3} and e^{1}, e^{2}, e^{3} its dual basis in $\mathbb{C}^{3 T}$. The representation of type (p, q) on $\otimes_{\mathbb{S}}^{p} \mathbb{C}^{3} \otimes \otimes_{\mathbb{S}}^{q} \mathbb{C}^{3 \#}$ has a highest weight vector $\otimes^{p} e_{1} \otimes \otimes^{q} e^{3}$ with weight $p L_{1}-q L_{3}=$ $(p+q) L_{1}+q L_{2}$.

14.11 Examples of weight diagrams

Fundamental representation, that is $(1,0)$: weights $\left\{L_{i}\right\}$, heighest weight L_{1}
$1_{1} \underline{1}$
$(2,0):$ weights $\left\{L_{i}+L_{j}\right\}$, heighest weight $2 L_{1}$

1		1		1
	1		1	
		1		

$(3,0):$ weights $\left\{L_{i}+L_{j}+L_{k}\right\}$, heighest weight $3 L_{1}$

1

Antifundamental representation, that is, $(0,1)$: weights $\left\{-L_{i}\right\}$, heighest weight $-L_{3}$

$$
1_{1}{ }_{1}^{1}
$$

$(0,2)$: weights $\left\{-L_{i}-L_{j}\right\}$, heighest weight $-2 L_{3}$

1
11
1
$1 \quad 1$
$(0,3):$ weight $\left\{-L_{i}-L_{j}-L_{k}\right\}$, heighest weight $-3 L_{3}$

				$\underline{1}$			
		1		1			
	1		1		1		
1		1		1		1	

Adjoint representation, that is $(1,1)$, acts in $\mathbb{C}^{3} \otimes \mathbb{C}^{3 \mathrm{~T}}$, weight $\left\{L_{i}-L_{j}, i \neq j ; 2 \times 0\right\}$, heighest weight $L_{1}-L_{3}$

	1		$\underline{1}$	
1		2		1
	1		1	

Representation $(2,1)$ has weights $\left\{2 L_{i}-L_{j}, i \neq j ;-2 L_{i} ; 2 \times L_{i}\right\}$ heighest weight $2 L_{1}-L_{3}$

1		1			
	2		2		
1		2		1	1
	1		1		

The set of weight and their multiplicities for any representation has to satisfy the following properties:
(1) It is symmetric wrt reflections in any axis determined byej z osi zadanej przez L_{k}.
(2) Intersecting with an arbitrary line passing through the origin and orthogonal to L_{k} we obtain multiplicities of a certain representation of $S U(2)$.
(3) If the representation is irreducible, its weights are contained in one of the sublattices \mathcal{W}_{0}, \mathcal{W}_{1} or \mathcal{W}_{2}.
to see (1) note that $B \mapsto W_{i j} A W_{i j}^{-1}$ is an isomorphism of the Lie algebra $\operatorname{sl}(3, \mathbb{C})$, where

$$
W_{i j}=W_{i j}^{-1}:=A_{k k}+A_{i j}+A_{j i} .
$$

This isomorphism exchanges $H_{i j}$ with $-H_{j i}$ and $H_{i k}$ with $H_{j k}$.
To see (2) we note that if \mathcal{H}_{β} is a weight space, then $\oplus \mathcal{H}_{\beta+\mu}$, where μ are certain multiples of $\alpha_{i j}$, span a representation of $s l(2, \mathbb{C})$.

The weight multiplicities (the dimensions of weight spaces) for irreducible representations satisfy the following properties. The weights on the boundary have multiplicity 1. In every next level they are increased by 1 unless we reach a level of the form of a triangle, when we stop increasing the multiplicity. In particular, for representations (n, n), which have triangular boundaries, all multiplicities ar 1 .

15 Applications of $s u(3)$ to particle physics

15.1 Symmetries in quantum mechanics

Let \mathcal{H} be a Hilbert space describing a quantum system and $G \ni g \mapsto U(g) \in U(\mathcal{H})$ a unitary representation of a group G. Assume that A_{1}, \ldots, A_{n} is a set of commuting self-adjoint observables. Let $U(g), g \in G$, commute with A_{1}, \ldots, A_{n}. Then eigenspaces of A_{1}, \ldots, A_{n} are invariant wrt G.

The most common application of the group theory to quantum mechanics involves approximate symmetries. Suppose that the observables A_{i} slowly change in time. For instance, if $H=H_{0}+V$ is an unperturbed Hamiltonian and V is in an appropriate sense small, then one of these observables can be H_{0}.

A different application consists in assuming that G is a gauge group. This means that both the Hamiltonian H and all physical observables commute with $U(g), g \in G$.

Instead of representations of Lie groups, we will usually speak about representations of the corresponding Lie algebras.

15.2 Conserved charges

Every elementary particle, if left alone, eventually will decay and split into photons, neutrinos, electrons, protons and their antiparticles.

The following quantities do not depend on the decay channel: the electric charge

$$
Q:=\# p+\# \bar{e}-\# \bar{p}-\# e,
$$

and the barion number

$$
B:=\# p-\# \bar{p}
$$

They are always conserved.

15.3 Isospin

A proton p and a neutron n have similar masses and properties unrelated to electromagnetic interactions. Similarly mesons $\pi^{+}, \pi^{0}, \pi^{-}$.

Let us describe Heisenbergs proposal meant to explain this: The Hamiltonian has a decomposition

$$
H=H_{\text {strong }}+H_{\mathrm{em}}
$$

where $H_{\text {strong }}$ is describes strong interactions and is invariant wrt the isospin group $S U(2)$, unlike the Hamiltonian of electromagnetic interactions H_{em}. Denote by I_{1}, I_{2}, I_{3} the generators of $s u(2)$. The electromagnetic interaction commutes only with I_{3}.

A proton p and a neutron n are eigenvectors of I_{3} in the fundamental representation of $S U(2)$, which has the isospin $\frac{1}{2}$:

$$
I_{3} p=\frac{1}{2} p, \quad I_{3} n=-\frac{1}{2} n .
$$

Similarly, mesons π belong to the isospin 1 representation:

$$
I_{3} \pi^{+}=\pi^{+}, \quad I_{3} \pi^{0}=0, \quad I_{3} \pi^{-}=-\pi^{-} .
$$

More generally, it has been noticed that particles can be arranged in isospin multiplets. Inside each isospin multiplet particles have a similar mass and some other properties, however they have a different charge and the value of I_{3}.

It was noticed that interactions among particles can be divided into strong, which occur very fast and weak, which are much slower, and electromagnetc. The isospin is conserved in strong interactions, but not in weak interactions. Here is an example of a weak interaction that violates the isospin conservation:

$$
\pi^{+} \rightarrow \pi^{0}+\mu^{+}+\nu_{\mu} .
$$

Taking into account strong interactions one can asign to each particle a value of I_{3}.
Note that for the nucleon and pion multiplets we have the relation

$$
\begin{equation*}
Q=I_{3}+\frac{1}{2} B . \tag{15.1}
\end{equation*}
$$

15.4 Strangeness

It was noticed that there exists another number which is conserved in strong interactions and in weak interactions it changes by ± 1. It was called strangeness and denoted S. It was assumed that the "standard particles" such as p, n, π, e have a zero strangeness.

It turned out that strongly interacting particles can be grouped in larger multiplets containing particles not only with different I_{3}, but also S. Inside each multiplet particles the masses are quite similar and the barion number is the same. It was noticed that these multiplets have a symmetric form if as coordinates we use I_{3} and the hypercharge

$$
Y=B+S
$$

The following relation, called the Gell-Mann - Nishijima formula, generalizes 15.1):

$$
Q=I_{3}+\frac{1}{2} Y
$$

Hadrons with a zero barion number are called mesons. On the diagrams below the vertical axis is parametrized by Y, and the horizontal axis by I_{3}.

The pseudoscalar nonet consists of the octet

$$
\begin{array}{ccccc}
& K^{0} & & K^{+} & \\
\pi^{-} & & \pi^{0}, \eta & & \\
& & & \\
K^{+}
\end{array}
$$

and the singlet η^{\prime}.
The pseudovector nonet consists of the octet

$$
\begin{array}{ccccc}
& K^{* 0} & & K^{*+} & \\
\rho^{-} & & \rho^{0}, \omega & & \rho^{+} \\
& K^{*-} & & K^{* \overline{0}}
\end{array}
$$

the singlet ω^{\prime}.
There are also two barion $(B=1)$ multiplets. The spin $\frac{1}{2}$ octet:

\[

\]

The spin $\frac{3}{2}$ decuplet:

Finally, there are two antibarion $(B=-1)$ multiplets consisting of antiparticles of the barion multiplets.

15.5 Quarks

Here is how one can explain the above properties of elementary particles. Introduce 3 quarks: u, d and s. We treat them as weight vectors for the fundamental representation of $S U(3)$:
$d \quad u$
S
We also have antiquarks, which correspond to the antifundamental representation:
\bar{s}
\bar{u}
\bar{d}

We assume that they have the following quantum numbers:

$$
\begin{equation*}
Q=\frac{1}{3}(2 \# u-\# d-\# s), \quad B=\frac{1}{3}(\# u+\# d+\# s), \quad S=-\# s . \tag{15.2}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
Y=B+S=\frac{1}{3}(\# u+\# d-2 \# s), \quad I_{3}=Q-\frac{1}{2}(B+S)=\frac{1}{2}(\# u-\# d) . \tag{15.3}
\end{equation*}
$$

Then all the above described multiplets of hadrons correspond to weight diagrams of certain irreducible representations of $s u(3)$ with triality 0 . Let us try to understand why precisely these representations show up.

Consider the group $S U(3)_{\mathrm{fl}}$ describing the flavors u, d, s, the group $S U(2)_{\text {spin }}$ describing the spin and $S U(3)_{\text {col }}$ describing the color. Quarks can be treated as elements of $\mathbb{C}_{\mathrm{fl}}^{3} \otimes \mathbb{C}_{\text {spin }}^{2} \otimes \mathbb{C}_{\text {col }}^{3}$, and antiquarks as elements of $\overline{\mathbb{C}}_{\mathrm{fl}}^{3} \otimes \overline{\mathbb{C}}_{\text {spin }}^{2} \otimes \overline{\mathbb{C}}_{\text {col }}^{3}$. The group $S U(3)_{\mathrm{fl}} \times S U(2)_{\text {spin }} \times S U(3)_{\text {col }}$ acts on them.

We will ignore the position degrees of freedom of quarks, remembering only their flavor, color and spin degrees of freedom. They are fermions, hence we will describe them by elements of the Fock space

$$
\begin{equation*}
\Gamma_{\mathrm{a}}\left(\mathbb{C}_{\mathrm{fl}}^{3} \otimes \mathbb{C}_{\mathrm{spin}}^{2} \otimes \mathbb{C}_{\mathrm{col}}^{3} \oplus \overline{\mathbb{C}}_{\mathrm{fl}}^{3} \otimes \overline{\mathbb{C}}_{\mathrm{spin}}^{2} \otimes \overline{\mathbb{C}}_{\mathrm{col}}^{3}\right) \tag{15.4}
\end{equation*}
$$

We will often use the exponential property of (fermionic) Fock spaces, which implies

$$
\begin{equation*}
\otimes_{\mathrm{a}}^{n}(\mathcal{Z} \oplus \mathcal{W}) \simeq \underset{k=0}{\oplus_{\mathrm{a}}} \otimes_{\mathrm{a}}^{k} \mathcal{Z} \otimes \otimes_{\mathrm{a}}^{n-k} \mathcal{W} . \tag{15.5}
\end{equation*}
$$

Thus bound states of p quarks and q antiquarks are described by elements of

$$
\begin{equation*}
\otimes_{\mathrm{a}}^{p}\left(\mathbb{C}_{\mathrm{fl}}^{3} \otimes \mathbb{C}_{\mathrm{spin}}^{2} \otimes \mathbb{C}_{\mathrm{col}}^{3}\right) \otimes \otimes_{a}^{q}\left(\overline{\mathbb{C}}_{\mathrm{fl}}^{3} \otimes \overline{\mathbb{C}}_{\mathrm{spin}}^{2} \otimes \overline{\mathbb{C}}_{\mathrm{col}}^{3}\right) \tag{15.6}
\end{equation*}
$$

The confinement conjecture says that in physics we have only "'colorless"' states, that is states on which the color group acts trivially. If we embed 15.6) in the space

$$
\begin{equation*}
\otimes^{p}\left(\mathbb{C}_{\mathrm{fl}}^{3} \otimes \mathbb{C}_{\mathrm{spin}}^{2}\right) \otimes \otimes^{q}\left(\overline{\mathbb{C}}_{\mathrm{fl}}^{3} \otimes \overline{\mathbb{C}}_{\mathrm{spin}}^{2}\right) \otimes\left(\otimes^{p} \mathbb{C}_{\mathrm{col}}^{3} \otimes \otimes^{q} \overline{\mathbb{C}}_{\mathrm{col}}^{3}\right), \tag{15.7}
\end{equation*}
$$

they will have the form $\Psi \otimes \Phi$, where Φ, corresponding to "'color"' degrees of freedom, is a singlet wrt $s u_{\text {col }}(3)$.

The smallest (p, q) for which $s u_{\text {col }}(3)$ has a singlet representation on $\otimes^{p} \mathbb{C}_{\text {col }}^{3} \otimes \otimes^{q} \overline{\mathbb{C}}_{\text {col }}^{3}$ are $(1,1)$ (mesons), $(3,0)$ (barions) and $(0,3)$ (antibarions).

In particular, mesons are elements of

$$
\begin{aligned}
& \left(\mathbb{C}_{\mathrm{fl}}^{3} \otimes \mathbb{C}_{\mathrm{spin}}^{2} \otimes \mathbb{C}_{\mathrm{col}}^{3}\right) \otimes\left(\overline{\mathbb{C}}_{\mathrm{fl}}^{3} \otimes \overline{\mathbb{C}}_{\mathrm{spin}}^{2} \otimes \overline{\mathbb{C}}_{\mathrm{col}}^{3}\right) \\
\simeq & \left(\mathbb{C}_{\mathrm{fl}}^{3} \otimes \overline{\mathbb{C}}_{\mathrm{fl}}^{3}\right) \otimes\left(\mathbb{C}_{\mathrm{spin}}^{2} \otimes \otimes \overline{\mathbb{C}}_{\mathrm{spin}}^{2}\right) \otimes\left(\mathbb{C}_{\mathrm{col}}^{3} \otimes \overline{\mathbb{C}}_{\mathrm{col}}^{3}\right) .
\end{aligned}
$$

(Note that there is no antisymmetrization). The colorlessness condition yields

$$
\left.\left.\left.\Psi \otimes \frac{1}{\sqrt{3}}(\mid 1, \overline{1})+\mid 2, \overline{2}\right)+\mid 2, \overline{2}\right)\right),
$$

where $1,2,3$ corresponds to the three colors and

$$
\Psi \in \mathbb{C}_{\mathrm{fl}}^{3} \otimes \mathbb{C}_{\mathrm{spin}}^{2} \otimes \overline{\mathbb{C}}_{\mathrm{fl}}^{3} \otimes \overline{\mathbb{C}}_{\mathrm{spin}}^{2} \simeq\left(\mathbb{C}_{\mathrm{fl}}^{3} \otimes \overline{\mathbb{C}}_{\mathrm{fl}}^{3}\right) \otimes\left(\mathbb{C}_{\mathrm{spin}}^{2} \otimes \overline{\mathbb{C}}_{\text {spin }}^{2}\right)
$$

For the representation of $S U(3)_{\mathrm{fl}}$ we have $3 \otimes \overline{3}=8+1$. For the representation of $S U(2)_{\mathrm{spin}}$ we have $2 \otimes 2=3+1$, which yields spin 0 and 1 . Hence we obtain both meson nonets.

Here is the "'quark content"' of meson nonets:

$$
\begin{array}{ccc}
& d \bar{s} & \\
d \bar{u} & & \\
& & d \bar{d}, u \bar{u}, s \bar{s} \\
& & \\
& s \bar{u} & \\
& & \\
& & \\
\hline \bar{d}
\end{array}
$$

Mesons of zero charge differ with their quark content. Assuming exact $s u(3)$ symmetry they are

$$
\begin{aligned}
\pi^{0} & =\frac{1}{\sqrt{2}}(d \bar{d}-u \bar{u}) \\
\eta & =\frac{1}{\sqrt{6}}(2 s \bar{s}-d \bar{d}-u \bar{u}) \\
\eta^{\prime} & =\frac{1}{\sqrt{3}}(s \bar{s}+d \bar{d}+u \bar{u})
\end{aligned}
$$

Barions are elements of

$$
\otimes_{\mathrm{a}}^{3}\left(\mathbb{C}_{\mathrm{f}}^{3} \otimes \mathbb{C}_{\mathrm{spin}}^{2} \otimes \mathbb{C}_{\mathrm{col}}^{3}\right) \subset \otimes^{3}\left(\mathbb{C}_{\mathrm{fl}}^{3} \otimes \mathbb{C}_{\mathrm{spin}}^{2}\right) \otimes \otimes^{3} \mathbb{C}_{\mathrm{col}}^{3} .
$$

The colorlessness condition yields

$$
\left.\left.\left.\left.\left.\left.\Psi \otimes \frac{1}{\sqrt{3!}}(\mid 1,2,3)+\mid 2,3,1\right)+\mid 3,1,2\right)-\mid 1,3,2\right)-\mid 3,2,1\right)-\mid 1,3,2\right)\right) .
$$

The color part of the vector is antisymmetric. Hence Ψ has to be an element of $\otimes_{\mathrm{s}}^{3}\left(\mathbb{C}_{\mathrm{f}}^{3} \otimes\right.$ $\mathbb{C}_{\text {spin }}^{2}$), whose dimension is $\frac{6 \cdot 7 \cdot 8}{1 \cdot 2 \cdot 3}=56$. The action of the group $S U(3)_{\mathrm{fl}} \times S U(2)_{\text {spin }}$ has inside $\otimes_{\mathrm{s}}^{3}\left(\mathbb{C}_{\mathrm{fl}}^{3} \otimes \mathbb{C}_{\mathrm{spin}}^{2}\right)$ a representation $\otimes_{\mathrm{s}}^{3} \mathbb{C}_{\mathrm{f}}^{3} \otimes \otimes_{\mathrm{s}}^{3} \mathbb{C}_{\text {spin }}^{2}$. Its dimension is 10×4. What remains is the representation of dimension $56-40=16$. It is equivalent to the adjoint representation of $S U(3)_{\mathrm{f}}$ times the identity on \mathbb{C}^{2}. Thus we have the decomposition

$$
\mathbb{C}^{10} \otimes \mathbb{C}^{4} \oplus \mathbb{C}^{8} \otimes \mathbb{C}^{2}
$$

The first is a $s u_{\mathrm{f}}(3)$ decuplet (the representation of type (3,0), that is, on $\otimes_{\mathrm{s}}^{3} \mathbb{C}^{3}$), and its spin is $\frac{3}{2}$. The second is an $s u_{\mathrm{ff}}(3)$ octet (the representation of type $(1,1)$, that is, the adjoint representation) and its spin is $\frac{1}{2}$.

Here is the "'quark content"' of the barion multiplets:

Here are the spin states of the the barions in the middle of the diagram, where there is the greatest degeneracy:

$$
\begin{array}{ll}
\Sigma^{* 0} \quad & d \uparrow u \uparrow s \uparrow, \\
& \frac{1}{\sqrt{3}}(d \uparrow u \uparrow s \downarrow+d \uparrow u \downarrow s \uparrow+d \downarrow u \uparrow s \uparrow), \\
& \frac{1}{\sqrt{3}}(d \downarrow u \downarrow s \uparrow+d \uparrow u \downarrow s \downarrow+d \downarrow u \uparrow s \downarrow), \\
& d \downarrow u \downarrow s \downarrow ; \\
\Sigma^{0} \quad & \frac{1}{\sqrt{6}}(2 d \uparrow u \uparrow s \downarrow-d \uparrow u \downarrow s \uparrow-d \downarrow u \uparrow s \uparrow), \\
& \frac{1}{\sqrt{6}}(2 d \downarrow u \downarrow s \uparrow-d \uparrow u \downarrow s \downarrow-d \downarrow u \uparrow s \downarrow) ; \\
\Lambda^{0} \quad & \frac{1}{\sqrt{2}}(d \uparrow u \downarrow s \uparrow-d \downarrow u \uparrow s \uparrow), \\
& \frac{1}{\sqrt{2}}(d \uparrow u \downarrow s \downarrow-d \downarrow u \uparrow s \downarrow) .
\end{array}
$$

The states of Σ^{*-} and Σ^{-}are obtained from $\Sigma^{* 0}$, resp Σ^{0} by replacing u with d.
All the physical representations of $S U(3)_{\mathrm{fl}}$ have the triality 0 - this is essentially the meaning of the "'colorlessness"'.

16 Aplications of group theory to Standard Model and Grand Unified Theories

16.1 Conventions

As usual, instead of representations of Lie groups, we will usually speak about representations of the corresponding Lie algebras.

Unitary representations of $u(1)$ are one-dimensional and are given by $q \in \mathbb{R}$, called the charge:

$$
u(1) \simeq \mathbb{R} \ni \theta \mapsto \mathrm{e}^{\mathrm{i} \theta q} .
$$

When we apply the tensor product, we add the charges.
An irreducible representation of $s u(n), s o(n)$ are usually denoted by the number of their dimension. For the conjugate representation we add the bar. Thus the fundamental representation of $s u(n)$ is denoted by n and the antifundamental by \bar{n}.

16.2 Standard Model

The Standard Model is based on the gauge group $S U(3) \times S U(2) \times U(1)$.
Suppose that the (self-adjoint) generators of $s u(2)$ are denoted T_{1}, T_{2}, T_{3}. They are the generators of the so-called weak isospin. The self-adjoint generator of $u(1)$ will be denoted Y. It is the so-called weak hypercharge, which should not be confused with the so-called hypercharge, which has the same symbol.

The main assumption of the Weinberg-Salam model (which is the part of the standard model describing the weak and electromagnetic interactions) is the following: the electric charge Q comes partly from $S U(2)$ and partly from $U(1)$. This can be expressed as

$$
\begin{equation*}
Q=T_{3}+Y \tag{16.1}
\end{equation*}
$$

(We use the convention from the book by S.Srednicki. Often one replaces Y with $2 Y$, so that one obtains $Q=T_{3}+\frac{Y}{2}$, which is analogous to the Gell-Mann-Nishijima formula).

Beside the gauge bosons, which correspond the Lie algebra $s u(3) \oplus s u(2) \oplus u(1)$, the Lagrangian contains charged particles corresponding to varrious irreducible representations (multiplets) of the group $S U(3) \oplus S U(2) \oplus U(1)$. Each particle has an antiparticle posessing the opposite chirality and charges. They can be divided as follows:
(1) A multiplet (or several multiplets) of complex scalar (Higgs) bosons needed to break the gauge symmetry $S U(2) \times U(1)$.
(2) Several multiplets of Weyl (chiral) fermions. Every multiplet appears in 3 generations. Fermionic multiplets can be divided in two families:
(i) Leptons, which do not take part in strong interactions, in other words are singlets wrt $S U(3)$.
(ii) Quarks, which are nontrivially transformed by $S U(3)$.
(By a multiplet we mean an irreducible, usually multidimensional representation of the gauge group.)

There exist two versions of the Standard Model: the original version, which we denote $S M$, does not contain the right-handed neutrinos. In a newer version, denoted $\nu S M$, there are additional right-handed neutrinos.

We will consistently use the terminology related to the first generation.

16.3 Leptons

Leptons can be divided into electrons and neutrinos. Electrons are both left- and right-handed. The left- and right-handed electrons have the same mass. From the point of view of electromagnetic and strong interactions they can be treated as Dirac fermions. They are denoted $e=\left(e_{\mathrm{L}}, e_{\mathrm{R}}\right)$, They have $Q=-1$. The antiparticle for the electron is called the positron and denoted \bar{e}.

Neutrinos have $Q=0$. Electronic neutrinos, denoted ν_{e} or $\nu_{e, \mathrm{~L}}$, are in SM left-chiral and have a zero mass.
($e_{\mathrm{L}}, \nu_{e, \mathrm{~L}}$) form a doublet wrt $S U(2)$. We have

$$
T_{3} e_{\mathrm{L}}=-\frac{1}{2} e_{\mathrm{L}}, \quad T_{3} \nu_{e, \mathrm{~L}}=\frac{1}{2} \nu_{e, \mathrm{~L}}
$$

Using (16.1), we obtain

$$
Y e_{\mathrm{L}}=-\frac{1}{2} e_{\mathrm{L}}, \quad Y \nu_{e, \mathrm{~L}}=-\frac{1}{2} \nu_{e, \mathrm{~L}}
$$

e_{R} is a singlet for $S U(2)$. Thus $T_{3} e_{\mathrm{R}}=0$ and (16.1) implies

$$
Y e_{\mathrm{R}}=-e_{\mathrm{R}}
$$

When describing the multiplets, it is convenient to restrict oneself to left-handed multiplets. Therefore, instead of the right-handed electron we take into account the left-handed positron. It has $Q=1$ and $T_{3}=0$. Here is its hypercharge:

$$
Y \bar{e}_{\mathrm{R}}=\bar{e}_{\mathrm{R}} .
$$

In $\nu S M$ additionally one introduces a right-handed neutrino $\nu_{e, \mathrm{R}}$, which transforms trivially under the gauge group. When describing multiplets we take into account its antiparticle $\bar{\nu}_{e, \mathrm{R}}$, which is left-handed.

Summing up, we have the following multiplets of left-handed leptons:

$$
\begin{array}{ccl}
L & := & \left(e_{\mathrm{L}}, \nu_{e, \mathrm{~L}}\right) \\
\left(1,2,-\frac{1}{2}\right), \\
\bar{E} & :=\bar{e}_{\mathrm{R}} & (1,1,1) \\
\bar{N} & :=\bar{\nu}_{e, \mathrm{R}} & (1,1,0) .
\end{array}
$$

16.4 Higgs scalar

In order to build invariant mass terms in the Lagrangian we need an additional scalar ϕ, which is a singlet for $S U(3)$ and a doublet for $S U(2)$. It has $Q=0$ and the weak isospin $-\frac{1}{2}$. Hence $Y=\frac{1}{2}$. Therefore, its representation is

$$
\left(1,2, \frac{1}{2}\right)
$$

16.5 Quarks

We have two quarks: u and d (recall that we consider a single generation). Proton and neutron, for instance, are built as follows

$$
p=u u d, \quad n=u d d
$$

Therefore, the quarks have the following electric charge:

$$
Q u=\frac{2}{3} u, \quad Q d=-\frac{1}{3} d .
$$

They are triplets wrt $S U(3)$ - they transform according to the fundamental representation.
The antiquarks have the oposite electric charges

$$
Q \bar{u}=-\frac{2}{3} \bar{u}, \quad Q \bar{d}=\frac{1}{3} \bar{d}
$$

and transform according to the antifundamental representation.
Left-handed quarks are a doublet wrt $S U(2)$:

$$
T_{3} u_{\mathrm{L}}=\frac{1}{2} u_{\mathrm{L}}, \quad T_{3} d_{\mathrm{L}}=-\frac{1}{2} d_{\mathrm{L}}
$$

Hence,

$$
Y u_{\mathrm{L}}=\frac{1}{6} u_{\mathrm{L}}, \quad Y d_{\mathrm{L}}=\frac{1}{6} d_{\mathrm{L}} .
$$

Right-handed quarks are singlets wrt $S U(2)$. Therefore,

$$
T_{3} u_{\mathrm{R}}=0, \quad T_{3} d_{\mathrm{R}}=0
$$

Hence,

$$
Y u_{\mathrm{R}}=\frac{2}{3} u_{\mathrm{R}}, \quad Y d_{\mathrm{R}}=-\frac{1}{3} d_{\mathrm{R}} .
$$

Summing up, we have the following multiplets of left-handed quarks:

$$
\begin{aligned}
Q=\left(u_{\mathrm{L}}, d_{\mathrm{L}}\right) & \left(3,2, \frac{1}{6}\right), \\
\bar{U}=\bar{u}_{\mathrm{R}} & \left(\overline{3}, 1,-\frac{2}{3}\right), \\
\bar{D}=\bar{d}_{\mathrm{R}} & \left(\overline{3}, 1, \frac{1}{3}\right) .
\end{aligned}
$$

16.6 Standard Model Lagrangian

The Standard Model Lagrangian is a singlet wrt the gauge group. One could distinguish the following terms in the Lagrangian:
(1) The kinetic term for gauge fields.
(2) The kinetic terms for fermions.
(3) The kinetic term for scalar bosons.
(4) The scalar boson potential (a "Mexican hat"?)-because of renormalizabilty, it should be a polynomial of maximally degree 4 . One also assumes it to be invariant wrt $\phi \rightarrow-\phi$.
(5) Mass terms, that is 2 -linear terms in fermions without derivatives. They have to be singlets wrt the gauge group, and therefore most of them involve the scalar boson.
Let ψ, ψ^{\prime} transform according to the fundamental representation of $S U(3)$. All invariant real 2-linear/antilinear expressions built out of ψ, ψ^{\prime} have the form

$$
\bar{\psi}^{\alpha} \psi_{\alpha}^{\prime}
$$

and their complex conjugates.
Let ψ, ψ^{\prime} transform according to the fundamental representation of $S U(2)$. Then invariant two-linear/antilinear expressions built out of ψ, ψ^{\prime} have the form

$$
\begin{aligned}
& \bar{\psi}^{i} \psi_{i}^{\prime} \\
& \epsilon^{i j} \psi_{i} \psi_{j}^{\prime}
\end{aligned}
$$

and their complex conjugates.

If $\psi_{1}, \ldots, \psi_{n}$ have charges y_{1}, \ldots, y_{n} wrt $U(1)$, then $\psi_{1} \cdots \psi_{n}$ is invariant iff $y_{1}+\cdots+y_{n}=0$. Therefore, possible non-kinetic terms in the ν SM Lagrangian involving only left-handed fermions are

$$
\begin{align*}
& \bar{\phi}_{i} \phi^{i}, \quad\left(\bar{\phi}_{i} \phi^{i}\right)^{2}, \tag{16.2}\\
& \epsilon^{i j} \phi_{i} \bar{E} L_{j}, \epsilon^{i j} \phi_{i} \bar{D}^{\alpha} Q_{\alpha j}, \bar{\phi}^{i} \bar{U}^{\alpha} Q_{\alpha i}, \tag{16.3}\\
& \bar{\phi}^{i} L_{i} \bar{N}, \bar{N} C \bar{N} . \tag{16.4}
\end{align*}
$$

Right-handed fermions appear in expressions conjugate to (16.3) and 16.4. α runs over the color index, i, j runs over the indices $1,2 . C$ is the charge conjugation matrix. SM contains only (16.2) and 16.3 .

16.7 $S U(n)$

$S U(n)$ has a fundamental and antifundamental representation in \mathbb{C}^{n}, resp. $\overline{\mathbb{C}}^{n}$. We will need the following irreducible representations:

$$
\begin{array}{ll}
\otimes_{\mathrm{s}}^{p} \mathbb{C}^{n}, & p=1,2, \ldots,
\end{array} \quad \operatorname{dim} \otimes_{\mathrm{s}}^{n} \mathbb{C}^{d}=\frac{(d+n-1)!}{(d-1)!n!} .
$$

We have

$$
\begin{gathered}
\otimes_{\mathrm{a}}^{q} \mathbb{C}^{n} \simeq \otimes_{\mathrm{a}}^{n-q} \overline{\mathbb{C}}^{n} \\
\otimes^{2} \mathcal{Z}=\otimes_{\mathrm{s}}^{2} \mathcal{Z} \oplus \otimes_{\mathrm{a}}^{2} \mathcal{Z}
\end{gathered}
$$

We will use the following relations for any pair of spaces \mathcal{Z}, \mathcal{W} :

$$
\otimes_{\mathrm{s} / \mathrm{a}}^{p}(\mathcal{Z} \oplus \mathcal{W}) \simeq \underset{j=0}{p} \otimes_{\mathrm{s} / \mathrm{a}}^{j} \mathcal{Z} \oplus \otimes_{\mathrm{s} / \mathrm{a}}^{p-j} \mathcal{W} .
$$

16.8 Extending $S U(3) \otimes S U(2) \times U(1)$ to $S U(5)$

The following analysis is based partly on the book by Srednicki and the article by Baez-Huerta.
Set

$$
Y=\left[\begin{array}{lllll}
-\frac{1}{3} & & & & \\
& -\frac{1}{3} & & & \\
& & -\frac{1}{3} & & \\
& & & \frac{1}{2} & \\
& & & & \frac{1}{2}
\end{array}\right]
$$

Let $A \in s u(3), B \in s u(2)$ and $s \in \mathbb{R} \simeq u(1)$. Then

$$
\left[\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right]+s Y \in s u(5)
$$

Thus we have the inclusion $s u(3) \oplus s u(2) \oplus u(1) \subset s u(5)$, where Y is the generator of $u(1)$.
The fundamental representation of $s u(5)$ can be decomposed as follows:

$$
5 \rightarrow\left(3,1,-\frac{1}{3}\right) \oplus\left(1,2, \frac{1}{2}\right) .
$$

Hence,

$$
\begin{equation*}
\overline{5} \rightarrow\left(\overline{3}, 1, \frac{1}{3}\right) \oplus\left(1,2,-\frac{1}{2}\right) . \tag{16.5}
\end{equation*}
$$

$\otimes_{\mathrm{a}}^{2} 5=10$, the representation of $s u(5)$, can be decomposed as

$$
\begin{align*}
\otimes_{\mathrm{a}}^{2} 5 & \rightarrow \otimes_{\mathrm{a}}^{2}\left(3,1,-\frac{1}{3}\right) \oplus\left(3,1,-\frac{1}{3}\right) \otimes\left(1,2, \frac{1}{2}\right) \oplus \otimes_{\mathrm{a}}^{2}\left(1,2, \frac{1}{2}\right) \\
& =\left(\overline{3}, 1,-\frac{2}{3}\right) \oplus\left(3,2, \frac{1}{6}\right) \oplus(1,1,1), \tag{16.6}
\end{align*}
$$

where we used the property $\otimes_{\mathrm{a}}^{2} 3=\overline{3}$ of the representation of $s u(3)$.
All left-handed multiplets of SM wrt $S U(3) \times S U(2) \times U(1)$ can be found in two multiplets wrt $S U(5): 16.5$ and 16.6 :

$$
\begin{aligned}
\otimes_{\mathrm{a}}^{4} 5=\overline{5}: & \bar{D}, L ; \\
\otimes_{\mathrm{a}}^{2} 5=10: & \bar{U}, Q, E .
\end{aligned}
$$

16.9 Fields in GUT based on $S U(5)$

In GUT based on $S U(5)$, without a right-handed neutrino, beside gauge bosons parametrized by $s u(5)$, we have the following fields:
(1) Complex scalar bosons
(1) The boson Φ in the adjoint representation of $S U(5)$, responsible for breaking $S U(5)$ to $S U(3) \times S U(2) \times U(1)$. It couples only to gauge bosons and to ϕ.
(2) The boson ϕ in the antifundamental representation of $S U(5)$ responsible for breaking $S U(2) \times U(1)$ to $U(1)$.
(3) Weyl left-handed fermions (and their antiparticles):
(1) The multiplet $\psi=(L, \bar{D})=\left(e_{\mathrm{L}}, \nu_{\mathrm{L}}, \bar{d}_{\mathrm{R}}\right)$ in $\overline{5}$ (the antifundamental representation).
(2) The multiplet $\chi=(\bar{E}, Q, \bar{U})=\left(\bar{e}_{\mathrm{R}}, u_{\mathrm{L}}, d_{\mathrm{L}}, \bar{u}_{\mathrm{R}}\right)$ in 10 (the antisymmetric representation).

Possible non-kinetic terms in the Lagrangian:

$$
\begin{aligned}
& \operatorname{Tr} \Phi^{2}, \operatorname{Tr} \Phi^{4},(\operatorname{Tr} \Phi)^{2} \\
& \bar{\phi} \cdot \phi,(\bar{\phi} \cdot \phi)^{2}, \bar{\phi} \cdot \Phi^{2} \phi \\
& \phi^{i} \psi^{j} \chi_{i j}, \quad \epsilon^{i j k l m} \bar{\phi}_{i} \chi_{j k} \chi_{l m} .
\end{aligned}
$$

If we want neutrinos to have a mass, we need to add the field ν_{R}, which is a singlet for $S U(5)$ and the term

$$
\bar{\phi}_{i} \psi^{i} \bar{\nu}_{\mathrm{R}}
$$

16.10 Extending $S U(3) \otimes S U(2) \times U(1)$ to $\operatorname{Spin}(10)$

All the left-handed multiplets of the Standard Model wrt $S U(3) \times S U(2) \times U(1)$ can be found in the following two multiplets wrt $S U(5): \otimes_{\mathrm{a}}^{4} 5$ 16.5) and $\otimes_{\mathrm{a}}^{2} 5$ 16.6). To obtain antiparticles it suffices to add $\otimes_{\mathrm{a}}^{1} 5$ and $\otimes_{\mathrm{a}}^{3} 5$. To include right-handed neutrinos and their antiparticles it suffices to add $\otimes_{\mathrm{a}}^{0} 5$ and $\otimes_{\mathrm{a}}^{5} 5$. We obtain a space that naturally identifies with the Fock space $\Gamma_{\mathrm{a}}\left(\mathbb{C}^{5}\right)$. It decomposes in two irreducible representations of $\operatorname{SPin}(10)$ corresponding to left- and right-handed particles.

We consider the fermionic Fock space with the basis u, d, r, g, b. (u, d are not up and down quarks, although they are related to them). The antiparticles of left-handed leptons are u, d, and the righthanded down quark is r, g, b, depending on the color. The antiparticle to the righthanded up quark is made out of missing colors. The left-handed quarks are made of the "color" and of u, d. The antiparticle to the righthanded positron is $u d$.

The righthanded neutrino is identified with the "ceiling vector". The antiparicles are always made out of the missing constituents.

In the following list c denotes one of the colors r, g, b, and $c, c^{\prime}, c^{\prime \prime}$ is one of cyclic permutations of r, g, b. We write $a_{1} \cdots a_{n}$ instead of $\frac{1}{\sqrt{n!}} a_{1} \wedge \cdots \wedge a_{n}$.

| $1, \mathrm{~L}$ | $5, \mathrm{R}$ | $10, \mathrm{~L}$ | $\overline{10}, \mathrm{R}$ | $\overline{5}, \mathrm{~L}$ |
| :---: | :---: | :---: | :---: | :---: |$\quad 1, \mathrm{R}$

$$
\begin{array}{ccccc}
\bar{\nu}_{\mathrm{R}}=1 & \bar{e}_{\mathrm{L}}=u & \bar{e}_{\mathrm{R}}=u d & e_{\mathrm{R}}=c c^{\prime} c^{\prime \prime} & e_{\mathrm{L}}=c c^{\prime} c^{\prime \prime} d \\
\bar{\nu}_{\mathrm{L}}=d & u_{\mathrm{L}}^{c}=c u & \bar{u}_{\mathrm{R}}^{c}=c^{\prime} c^{\prime \prime} c^{\prime} c^{\prime \prime} u d & \nu_{\mathrm{L}}=c c^{\prime} c^{\prime \prime} u \\
& d_{\mathrm{R}}^{c}=c & d_{\mathrm{L}}^{c}=c d & \bar{d}_{\mathrm{L}}^{c}=c^{\prime} c^{\prime \prime} u & \bar{d}_{\mathrm{R}}^{c}=c^{\prime} c^{\prime \prime} u d \\
& & \bar{u}_{\mathrm{R}}^{c}=c^{\prime} c^{\prime \prime} & u_{\mathrm{R}}^{c}=c u d
\end{array}
$$

16.11 Extending $S U(3) \otimes S U(2) \times U(1)$ to $S U(2) \times S U(2) \times S U(4)$

In the Pati-Salam Theory we assume the existence of the fourth color "'white"', denoted w representing leptons. $S U(4)$ acts in two representations: the fundamental with basis r, g, b, w and antifundamental with basis $\bar{r}, \bar{g}, \bar{b}, \bar{w} . c$ will denote r, g, or b.

The "left" group $S U(2)$ acts on \mathbb{C}^{2} with basis $u_{\mathrm{L}}, d_{\mathrm{L}}$. The "right" group $S U(2)$ acts on \mathbb{C}^{2} with basis $u_{\mathrm{R}}, d_{\mathrm{R}}$. These are "prequarks". The notation u and d now corresponds to the "isospin". The charge conjugation switches the "isospin" and chirality. Therefore, $\bar{u}_{\mathrm{L}}=d_{\mathrm{R}}, \bar{d}_{\mathrm{L}}=u_{\mathrm{R}}$.

Leptons are obtained by multiplying prequarks with w or \bar{w}. Quarks are obtained by multiplying prequarks with colors. Particles (including the right neutrino) are organized into four representations of $S U(2) \times S U(2) \times S U(4)$:

$(2,1,4)$	$(1,2,4)$	$(2,1, \overline{4})$	$(1,2, \overline{4})$
$\nu_{\mathrm{L}}=u_{\mathrm{L}} \otimes w$	$\nu_{\mathrm{R}}=u_{\mathrm{R}} \otimes w$	$\bar{e}_{\mathrm{R}}=u_{\mathrm{L}} \otimes \bar{w}$	$\bar{e}_{\mathrm{L}}=u_{\mathrm{R}} \otimes \bar{w}$
$e_{\mathrm{L}}=d_{\mathrm{L}} \otimes w$	$e_{\mathrm{R}}=d_{\mathrm{R}} \otimes w$	$\bar{\nu}_{\mathrm{R}}=d_{\mathrm{L}} \otimes \bar{w}$	$\bar{\nu}_{\mathrm{L}}=d_{\mathrm{R}} \otimes \bar{w}$
$u_{\mathrm{L}}^{c}=u_{\mathrm{L}} \otimes c$	$u_{\mathrm{R}}^{c}=u_{\mathrm{R}} \otimes c$	$\bar{d}_{\mathrm{R}}^{c}=u_{\mathrm{L}} \otimes \bar{c}$	$\bar{d}_{\mathrm{L}}^{c}=u_{\mathrm{R}} \otimes \bar{c}$
$d_{\mathrm{L}}^{c}=d_{\mathrm{L}} \otimes c$	$d_{\mathrm{R}}^{c}=d_{\mathrm{R}} \otimes c$	$\bar{u}_{\mathrm{R}}^{\bar{c}}=d_{\mathrm{L}} \otimes \bar{c}$	$\bar{u}_{\mathrm{L}}^{\bar{c}}=d_{\mathrm{R}} \otimes \bar{c}$

Let us introduce the operators of "left and right isospin", and the "color operator":

$$
\begin{align*}
& T_{3}^{\mathrm{L}} u_{\mathrm{L}}=\frac{1}{2} u_{\mathrm{L}}, \tag{16.7}\\
& T_{3}^{\mathrm{R}} u_{\mathrm{R}}=\frac{1}{2} u_{\mathrm{R}}^{\mathrm{L}}, \tag{16.8}\\
& d_{\mathrm{L}}=-\frac{1}{2} d_{\mathrm{L}} \tag{16.9}\\
& Z w T_{3}^{\mathrm{L}} d_{\mathrm{R}}=-\frac{1}{2} d_{\mathrm{R}} \\
& Z=-\frac{1}{2} w, \quad Z c=\frac{1}{6} c .
\end{align*}
$$

They can be used to express the usual weak isospin and the weak hypercharge:

$$
\begin{equation*}
T=T^{\mathrm{L}}, \quad Y=T^{\mathrm{R}}+Z \tag{16.10}
\end{equation*}
$$

Thus $S U(3) \times S U(2) \times U(1) \subset S U(2) \times S U(2) \times S U(4)$, where $S U(3)$ is embedded in $S U(4)$, the weak $S U(2)$ coincides with the first Pati-Salam $S U(2)$ and $U(1)$ is defined by Y in 16.10 .

We have the isomorphism $S U(4) \simeq \operatorname{Spin}(6)$. We can reorganize the representation space of $S U(4)$ as a representation space of $\operatorname{Spin}(6)$ as follows:

$$
\begin{aligned}
\langle w, r, g, b\rangle \oplus\langle\bar{w}, \bar{r}, \bar{g}, \bar{b}\rangle & \simeq \mathbb{C}^{4} \oplus \overline{\mathbb{C}}^{4} \\
\simeq\langle\bar{w}\rangle \oplus\langle r, g, b\rangle \oplus\langle\bar{r}, \bar{g}, \bar{b}\rangle \oplus\langle w\rangle & \simeq \mathbb{C} \oplus \mathbb{C}^{3} \oplus \mathbb{C}^{3} \oplus \mathbb{C} \simeq \Gamma_{\mathrm{a}}\left(\mathbb{C}^{3}\right),
\end{aligned}
$$

using the dictionary

$$
\begin{equation*}
w=r g b, \quad \bar{w}=1, \quad \bar{r}=g b, \quad \bar{g}=b r, \quad \bar{b}=r g . \tag{16.11}
\end{equation*}
$$

We also have the isomorphism $S U(2) \times S U(2) \simeq S \operatorname{pin}(4)$. We can reorganize the representation of $S U(2) \times S U(2)$ as a representation of $\operatorname{Spin}(4)$ as follows:

$$
\begin{aligned}
\left\langle u_{L}, d_{L}\right\rangle \oplus\left\langle u_{R}, d_{R}\right\rangle & \simeq \mathbb{C}^{2} \otimes \mathbb{C} \oplus \mathbb{C} \otimes \mathbb{C}^{2} \\
\simeq\left\langle u_{L}\right\rangle \oplus\left\langle d_{L}, d_{R}\right\rangle \oplus\left\langle u_{R}\right\rangle & \simeq \mathbb{C} \oplus \mathbb{C}^{2} \oplus \mathbb{C} \simeq \Gamma_{\mathrm{a}}\left(\mathbb{C}^{2}\right) .
\end{aligned}
$$

using the dictionary

$$
u_{L}=1, \quad u_{R}=d_{L} d_{R}
$$

Hence the group $S U(2) \times S U(2) \times S U(4)$ can be identified with $\operatorname{Spin}(4) \times \operatorname{Spin}(6)$. Clearly, $\operatorname{Spin}(4) \times \operatorname{Spin}(6) / \mathbb{Z}_{2}$ is a subgroup of $\operatorname{Spin}(10)$.

