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Abstract. Our paper investigates one-dimensional Schrödinger operators defined
as closed operators on L2(R) or L2(R+) that are exactly solvable in terms of con-
fluent functions (or, equivalently, Whittaker functions). We allow the potentials to
be complex. They fall into three families: Whittaker operators (or radial Coulomb
Hamiltonians), Schrödinger operators with Morse potentials and isotonic oscilla-
tors. For each of them, we discuss the corresponding basic holomorphic family
of closed operators and the integral kernel of their resolvents. We also describe
transmutation identities that relate these resolvents. These identities interchange
spectral parameters with coupling constants across different operator families. A
similar analysis is performed for one-dimensional Schrödinger operators solvable
in terms of Bessel functions (which are reducible to special cases of Whittaker
functions). They fall into two families: Bessel operators and Schrödinger oper-
ators with exponential potentials. To make our presentation self-contained, we
include a short summary of the theory of closed one-dimensional Schrödinger op-
erators with singular boundary conditions. We also provide a concise review of
special functions that we use.

1. Introduction

One-dimensional Schrödinger operators are operators of the form

L := −∂2
x + V (x), (1.1)

where V (x) is the potential, which in this paper is allowed to be a complex-valued
function. In some rare cases, (not necessarily square integrable) eigenfunctions of
(1.1) can be computed in terms of standard special functions. We call such operators
exactly solvable.

Our paper is devoted to several families of operators of the form (1.1), inter-
preted as closed operators on L2(]a, b[) for appropriate −∞ ≤ a < b ≤ +∞, which
are exactly solvable in terms of confluent functions, or equivalently, Whittaker func-
tions.
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We study three categories of one-dimensional Schrödinger operators:

(1) those reducible to the Bessel equation, having two families: the Bessel operator
and the Schrödinger operator with an exponential potential [8,15,18,21,28,34];

(2) those associated with the Whittaker equation, which includes three families:
the Whittaker operator, the isotonic oscillator, and the Schrödinger operator
with Morse potential [15,32];

(3) finally, for completeness, we include the (well-known) harmonic oscillator, re-
ducible to the Weber equation.

Note that Bessel and Weber functions can be reduced to subclasses of Whittaker
functions. One can also remark that there exist several classes of one-dimensional
Schrödinger equations exactly solved in terms of the Gauss hypergeometric function
[2,15,24,44], which are not considered in this paper.

On the algebraic level, all these families are discussed in many references, e.g.,
[4,5,15,19]. They are usually treated as formal differential expressions without a
functional-analytic setting. In this paper, we consider them as closed operators on
an appropriate Hilbert space. For exactly solvable Schrödinger operators, we are
able to express their resolvent in terms of special functions. We can do the same
with eigenprojections and the spectral measure. Sometimes we can also compute
other related operators, such as their exponential or Møller (wave) operators.

Exactly solvable Schrödinger operators, interpreted as closed (usually self-
adjoint) operators, are essential in applications, serving as reference models for
various perturbation and scattering problems. They are widely used by theoretical
physicists to model real quantum systems and for instructional purposes in quantum
mechanics (see, e.g., [23,27]).

Sturm–Liouville operators, which are given by an expression of the form

− 1
w(x)

∂xp(x)∂x +
q(x)
w(x)

, (1.2)

can be reduced to one-dimensional Schrödinger operators by the so-called Liouville
transformation (at least for real p(x)

w(x)) [20,31] (see also [15] Subsections 2.1 and 2.3).
Therefore, our paper is also related to many works describing Sturm–Liouville

operators, such as [22,25,26,38,39], which, however, are usually restricted to real
potentials.

We always choose the Hilbert space to be L2(]a, b[), where a and b are singular
points of the corresponding eigenvalue equation, with the possibility that a = −∞
and b = +∞. With these endpoints, for most parameters, in order to define a closed
realization of (1.1), there is no need to choose boundary conditions (b.c.). There
are, however, exceptional parameter ranges where b.c. must be selected. Following,
e.g., [13], we will say that the endpoint has index 0 if b.c. are not needed. We will
say that it has index 2 otherwise.

Remark 1.1. Throughout the paper, we use terminology appropriate for complex
potentials. Most readers are probably more familiar with related concepts applicable
to real potentials, where one is usually interested in finding self-adjoint realizations
of (1.1). For real potentials, the case of index 2 is often called “limit circle,” and the
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case of index 0 “limit point,” which is not quite appropriate for real potentials (see
Remark 2.1).

Note also that for real potentials the operator (1.1) restricted to C∞
c (]a, b[)

is Hermitian (or, as it is commonly termed, symmetric). The three cases - both
endpoints have index 0, one of them has index 0 and the other index 2, and both
have index 2 - correspond to the deficiency indices (0, 0), (1, 1), and (2, 2), respec-
tively. However, if the potential is not real, then this operator is not Hermitian, and
deficiency indices are, in principle, not well-defined.

The operators that we study depend on (complex) parameters. We try to or-
ganize them into holomorphic families of closed operators, as advocated, e.g., in
[6,16]. To find such families, first, we identify a subset of parameters that uniquely
determine a closed extension. In the terminology we use, L has index zero at both
endpoints. In all cases that we consider, this subset forms a large set of parameters
with a non-empty interior. We obtain a holomorphic family of closed realizations of
L, which is then extended to its largest possible domain of holomorphy. The holo-
morphic family obtained in this way will be called basic. In Table 1, we describe all
basic holomorphic families of Schrödinger operators considered in this paper.

Schrödinger operators with potentials from Table 1 can have realizations that
do not belong to their basic holomorphic families. This occurs, in particular, when
the index of an endpoint is 2 for a given parameter. In such cases, there is a whole
family of closed realizations of a single formal expression, of which at most two are
basic. Boundary conditions that define a closed realization that does not belong
to a basic holomorphic family will be called mixed b.c. In particular, Bessel and
Whittaker operators, as well as the isotonic oscillator, can have mixed b.c. at 0 for
−1 < Re(m) < 1. They are not discussed in this paper. For further details, see [10]
for Bessel operators and [12] for Whittaker operators.

The domain of holomorphy, by definition, is an open set. Schrödinger opera-
tors with exponential and Morse potentials, as well as the harmonic and isotonic
potentials, have a domain of holomorphy with a boundary at Re(k) = 0. The basic
holomorphic family can be extended by continuity to this boundary. In all cases,
operators with parameters on this boundary must be treated separately. We discuss
them all, with the exception of Morse potentials.

If A is an operator on L2(]a, b[), then the integral (or possibly distributional)
kernel of the operator A will be denoted A(x, y), x, y ∈ ]a, b[. I.e.,

(f |Ag) =
∫

f(x)A(x, y)g(y) dxdy. (1.3)

As mentioned above, for all operators from Table 1, we will compute their spectrum
σ, their point spectrum σp, and for parameters outside their spectrum the integral
kernel of their resolvent. (By the point spectrum we mean the set of eigenvalues
with square integrable eigenfunctions). We will see that Hamiltonians with very
different properties can be solved in terms of the same class of special functions.
It is curious to observe that they are linked by somewhat mysterious identities
involving their resolvents. In these identities, we can observe a “transmutation” of
spectral parameters where the resolvents are evaluated into coupling constants.
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Here is the transmutation identity involving the resolvent of the Bessel operator
and of the Schrödinger operator with the exponential potential:

(Mk + m2)−1(x, y) = e− x
2 (Hm + k2)−1(ex, ey) e− y

2 . (1.4)

Note that on the left m2 is the spectral parameter, and on the right it is the coupling
constant. On the left k2 is the coupling constant, on the right it is the spectral
parameter. Thus, their roles are curiously interchanged.

For the three families solved in terms of Whittaker functions, we have trans-
mutations involving three parameters: m, k, and β:

(Nk,m − 2β)−1(u, v) = 2
(u2

2

)− 1
4
(Hβ, m

2
+ k2)−1

(u2

2
,
v2

2

)(v2

2

)− 1
4
, (1.5)

(Mβ,k + m2)−1(x, y) = e− x
2 (Hβ,m + k2)−1(ex, ey)e− y

2 , (1.6)

(Nk,m − 2β)−1(u, v) = 2
(u2

2

) 1
4
(
Mβ,k +

(m

2

)2 )−1(
log

u2

2
, log

v2

2

)(v2

2

) 1
4
. (1.7)

The case Re(k) = 0 of the exponential potential is quite curious and analyzed
in our paper. Setting k = i�, we can rewrite it as:

Mγ
i� := −∂2

x − �2e2x. (1.8)

In this operator, we need to fix a b.c. at ∞, which can be naturally parametrized by
γ ∈ C ∪ {∞}. The parameter � > 0 is not very interesting—in fact, the translation
by ln � yields unitary equivalence with the case � = 1. Note that γ �→ Mγ

i� is a family
of operators holomorphic away from 0 or ∞. We prove that Mγ

i� with γ = 0, ∞ can
be reached as limits of the family Mk. The transmutation of the resolvents for Mγ

i�

into resolvents of Hm is quite interesting:

(Mγ
i� + m2)−1(x, y) =

eimπ

(eimπ − γ)
e− x

2 �(−�2 + i0 + Hm)−1(ex, ey)e− y
2

+
γ

(eimπ − γ)
e− x

2 �(−�2 − i0 + Hm)−1(ex, ey)e− y
2 . (1.9)

Note also that Mγ
i� for γ �= 0, ∞ possess point spectrum at eimπ = γ. This spectrum

was recently described independently in [42].
Let us briefly describe the structure of the paper. We begin with a concise

overview of the basic theory of 1-dimensional Schrödinger operators, presented in
Sect. 2. This is a classic subject covered in various textbooks. We primarily follow
the presentation in [13]. We explain how to determine when boundary conditions
are needed to define a closed realization with a non-empty resolvent set. We also
demonstrate how to fix b.c. with the help of the Wronskian. Finally, we describe
the integral kernel for a candidate of the resolvent.

In Sect. 3, we discuss families of closed operators solved in terms of Bessel
functions; in Sect. 4, the families solved in terms of Whittaker functions; and in
Sect. 5, the harmonic oscillator, solved in terms of Weber functions.

In the appendices, we concisely describe elements of the theory of special func-
tions used in our paper. In Appendix A, we discuss various kinds of Bessel functions,
as well as the 0F1 functions. First of all, one can distinguish between the trigono-
metric and hyperbolic Bessel equations. The former has oscillating solutions, while
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the solutions of the latter behave exponentially. One can pass from the former to the
latter by rotating the complex plane by the angle ±π

2 . Secondly, both the trigono-
metric and hyperbolic Bessel equations have forms adapted to all dimensions. In
most of the literature, the standard Bessel equation, which is 2-dimensional and
trigonometric, and the modified Bessel equation, which is 2-dimensional and hyper-
bolic, are considered. In our paper, it is also convenient to use functions that solve
the 1-dimensional Bessel equation, both trigonometric and hyperbolic. All these
variations of the Bessel equation are equivalent to one another, and they are also
equivalent to the so-called 0F1 equation. They can also be reduced to a subclass of
the confluent equation.

The Whittaker equation is equivalent to the confluent equation, which exists
in two equivalent variants: 1F1 and 2F0. Therefore, the confluent equation, which
we put in the title of this manuscript, can be replaced by the Whittaker equation.
There are also varieties of the Whittaker equation for any dimension. In our paper,
we use those corresponding to d = 1 and d = 2. We also introduce modifications
of Whittaker functions adapted to the isotonic oscillator. All of this is described in
Appendix B.

Finally, in Appendix C, we briefly describe the Weber equation, which is equiv-
alent to the Hermite equation and to a subclass of the Whittaker equation.

In order to define closed realizations of (1.1), we will specify their operator do-
main and compute their resolvents. There exists a different strategy for dealing with
unbounded operators: one can try to specify their form domain. Strictly speaking,
the latter strategy, in its orthodox version, is limited to certain classes of operators,
such as positive operators that are bounded from below [38,39].

In our paper, we do not discuss the form domains of the operators under study.
We expect that this topic will be addressed in a separate paper, generalizing the
analysis of Bessel operators defined as bilinear forms in [14].

2. Basic Theory of 1-Dimensional Schrödinger Operators

2.1. Boundary Conditions

Let us sketch the theory of closed realizations of 1-dimensional Schrödinger operators
with complex potentials. This is a classic subject, discussed in various textbooks and
presented in several forms. Our presentation follows mostly [13]. Note that we avoid
using the so-called boundary triplets and Krein-type formulas.

Consider an open interval ]a, b[, where −∞ ≤ a < b ≤ +∞. (In our paper,
we will consider only R and R+; however, the theory in this section applies to an
arbitrary interval ]a, b[). Consider a complex function V ∈ L1

loc(]a, b[). Suppose L is
formally given by

L := −∂2
x + V (x). (2.1)

We would like to describe closed realizations of L on L2(]a, b[) possessing a non-
empty resolvent set and compute its resolvent. (A linear operator possessing a non-
empty resolvent set is sometimes called well-posed [13,21]).
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Note that in most of the literature only real V are considered, and the authors
are interested only in self-adjoint realizations of L. If L• is such a realization of L, its
spectrum, denoted σ(L•), is contained in R. Thus its resolvent set is automatically
non-empty. In our paper, however, we will consider also complex potentials and
non-self-adjoint realizations.

Let z ∈ C. Let AC1(]a, b[) denote the set of functions on the open interval ]a, b[
whose derivative is absolutely continuous. The space

N (L − z) :=
{
Ψ ∈ AC1(]a, b[) | (L − z)Ψ(x) = 0

}
(2.2)

is 2-dimensional. Let Ua(z) denote the subspace of N (L − z) solutions square inte-
grable near a. One can show that one of the following holds:

either dim Ua(z) = 2 for all z ∈ C; (2.3)

or dim Ua(z) ≤ 1 for all z ∈ C. (2.4)

In the first case we say that the index of the endpoint a, denoted νa(L), is 2, and
in the second case it is 0. There are analogous definitions associated to the second
endpoint b.

Remark 2.1. In the context of real potentials, the case νa(L) = 2 is called “limit
circle” and νa(L) = 0 is called “limit point”. This terminology goes back to an old
paper by H. Weyl [43] and is explained, e.g., in [38, Appendix to X.1.]. These names
are not fully appropriate for complex potentials. For example, if ImV < 0, then an
analysis similar to Weyl’s yields a trichotomy instead of a dichotomy [41]; see also
[13, Subsection 8.5].

Let us define

D(Lmax) :=
{
f ∈ L2(]a, b[) ∩ AC1(]0, ∞[) | Lf ∈ L2(]a, b[)

}
, (2.5)

D(Lmin) := the closure in the graph norm of {f ∈ D(Lmax) | f = 0 near a and b}.
(2.6)

(The graph norm is ‖f‖A :=
√‖Lf‖2 + ‖f‖2.) One can show that

dim D(Lmax)/D(Lmin) = νa(L) + νb(L). (2.7)

We define the maximal and minimal realization of L:

Lmax := L
∣∣∣
D(Lmax)

, Lmin := L
∣∣∣
D(Lmin)

. (2.8)

In what follows, we will need the Wronskian for two functions Φ and Ξ, defined
as

W(Φ, Ξ)(x) := Φ(x)Ξ′(x) − Φ′(x)Ξ(x). (2.9)

Note that if Φ, Ξ ∈ N (L − z), then W(Φ, Ξ)(x) is a constant. In this case, we will
simply write W(Φ, Ξ) without specifying the argument. Besides, if Φ, Ξ ∈ D(Lmax),
then the Wronskian, a priori defined in ]a, b[, can be extended to the endpoints:

W(Φ, Ξ)(a) := lim
x↘a

W(Φ, Ξ)(x), W(Φ, Ξ)(b) := lim
x↗b

W(Φ, Ξ)(x). (2.10)
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We also can equip D(Lmax)/D(Lmin) with a non-degenerate bilinear antisymmetric
form:

W(Φ, Ξ)(a) − W(Φ, Ξ)(b) = −(LΦ|Ξ) + (Φ|LΨ). (2.11)
(The identity in (2.11) is sometimes called the Lagrange identity or the integrated
Green identity.)

If (2.7)= 0, then there exists a unique closed realization of L, which coincides
with Lmax = Lmin. Otherwise σ(Lmax) = σ(Lmin) = C, and therefore the operators
Lmax and Lmin are not well-posed. In order to define operators that may have a
non-empty resolvent set, one needs to select a space D(L•) such that

D(Lmin) ⊂ D(L•) ⊂ D(Lmax), (2.12)

dim D(Lmax)/D(L•) = dim D(L•)/D(Lmin) =
1
2
(νa + νb). (2.13)

Then we set L• := Lmax
∣∣∣
D(L•)

.

To do this it is convenient to introduce the boundary space

B :=
(D(Lmax)/D(Lmin)

)′
, (2.14)

where the prime denotes the dual. Clearly dimB = 2νa + 2νb.
If dimB = 2, in order to define L• satisfying (2.13) we need to fix a single

nonzero functional φ• ∈ B to define the domain of an operator

D(L•) = {Ξ ∈ D(Lmax) | φ•(Ξ) = 0}. (2.15)

This corresponds to two possibilities. If νa(L) = 2 and νb(L) = 0, a convenient
way to define a functional φ• is to choose Φa �= 0, which near a belongs to D(Lmax)
but does not belong to D(Lmin), and then to set

φ(Ξ) := W(Φa, Ξ)(a) = 0. (2.16)

A good choice for Φa is an element of Ua(z) for some z ∈ C. (Usually, z = 0 is most
convenient). The condition (2.16) will be called the boundary condition (b.c.) at a
set by Φa.

Note that what is important in (2.16) is a nonzero functional on D(Lmax)
vanishing on D(Lmin), which depends only on the behavior of Ξ near a. Sometimes
for this end it is convenient to use a well chosen Φa, which does not belong to
D(Lmax). We will see an example of this in the definition of the Whittaker operator.

Similarly, we proceed if νa(L) = 0 and νb(L) = 2. We select Φb �= 0 which near
b belongs to D(Lmax) but not D(Lmin), and set

φ•(Ξ) := W(Φb, Ξ)(b). (2.17)

In our paper, we will not consider operators with dimB = 4, that is, νa(L) =
νb(L) = 2. Nevertheless, for completeness let us discuss briefly this case. To define
a realization satisfying (2.13), we need to fix two linearly independent functionals
φ•1, φ•2 ∈ B and set

D(L•) =
{
Ξ ∈ D(Lmax) | φ•1(Ξ) = φ•2(Ξ) = 0

}
. (2.18)

In particular, often one considers the so-called separated boundary conditions, where
φ•1 is a b.c. at a and φ•2 is a b.c. at b.
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2.2. Candidate for Resolvent

Suppose now that we want to describe the spectrum and resolvent of L•. First
consider the case νa(L) = νb(L) = 0. Suppose z ∈ C satisfies dim Ua(z) ≥ 1 and
dim Ub(z) ≥ 1. We select

Ψa(z, ·) ∈ Ua(z)\{0}, Ψb(z, ·) ∈ Ub(z)\{0}, and set

W(z) := W(
Ψb(z, ·), Ψa(z, ·)).

Then, we define

R•(z; x, y) :=
1

W(z)

{
Ψa(z, x)Ψb(z, y) if a < x < y < b,

Ψa(z, y)Ψb(z, x) if a < y < x < b.
(2.19)

If νa(L) = 2, νb(L) = 0, then we need to select Φa, setting the b.c. at a, and
we define

D(L•) = {Ξ ∈ D(Lmax) | W(Ξ, Φa)(a) = 0}. (2.20)

Similarly, if νa(L) = 0, νb(L) = 2, then we need to select Φb, setting the b.c. at b,
so that

D(L•) = {Ξ ∈ D(Lmax) | W(Ξ, Φb)(b) = 0}. (2.21)

If νa(L) = 2, νb(L) = 2 and we use separated b.c, then

D(L•) = {Ξ ∈ D(Lmax) | W(Ξ, Φa)(a) = W(Ξ, Φb)(b) = 0}. (2.22)

Note that Ψa and Ψb above are defined uniquely up to a multiplicative constant.
R•(z; x, y) does not depend on this choice. The operator R•(z) defined by the kernel
R•(z; x, y) sends Cc(]a, b[) into functions in L2(]a, b[) satisfying the b.c.. Besides, we
have( − ∂2

x + V (x) − z
)
R•(z; x, y) =

( − ∂2
y + V (y) − z

)
R•(z; x, y) = δ(x − y). (2.23)

The following theorem is proven in [13, Propositions 7.8 and 7.9]:

Theorem 2.2. The following conditions are equivalent:

1. dim Ua(z) ≥ 1, dim Ub(z) ≥ 1 and R•(z) is bounded;
2. z ∈ C\σ(L•).

If the above conditions hold, then

(L• − z)−1(x, y) = R•(z; x, y). (2.24)

Hence, the strategy for studying 1-dimensional Schrödinger operators on
L2(]a, b[) given by the expression (2.1) is the following:

1. For each z ∈ C, determine N (L − z).
2. Determine Ua(z) and Ub(z).
3. If νa(L) = 2 or νb(L) = 2, fix b.c. defining L•.
4. For these b.c. (if needed), and if dimUa(z) ≥ 1 and dim Ub(z) ≥ 1, write down

R•(z), using equation (2.19), which is a candidate for the resolvent (L• − z)−1.
5. Check whether R•(z) is bounded. If so, z ∈ C\σ(L•) and R• = (L• − z)−1.
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2.3. Boundedness of Resolvent

Let us quote two useful lemmas for proving the boundedness of an operator K on
L2(]a, b[) given by the integral kernel K(x, y).

Lemma 2.3. The Hilbert–Schmidt norm of K is given by

‖K‖2 :=
√

TrK∗K =
( ∫

|K(x, y)|2 dxdy
) 1

2
, (2.25)

and we have ‖K‖ ≤ ‖K‖2.

Lemma 2.4. (Special case of Schur’s Criterion) Suppose that

sup
x∈ ]a,b[

∫ b

a

|K(x, y)| dy = c1, sup
y∈ ]a,b[

∫ b

a

|K(x, y)| dx = c2. (2.26)

Then ‖K‖ ≤ √
c1c2.

Note that, if applicable, Lemma 2.3 is superior to Lemma 2.4, because it esti-
mates a stronger norm. For translation-invariant operators, we can also use a special
case of the Young inequality, which actually follows from Schur’s criterion:

Lemma 2.5. If K(x, y) = f(x − y), then

‖K‖ ≤
∫

|f(x)| dx. (2.27)

Let us make some remarks on how to check the boundedness of an operator
of the form (2.19). More precisely, suppose that R is an operator with the integral
kernel

R(x, y) :=

{
Ψa(x)Ψb(y) if a < x < y < b,

Ψa(y)Ψb(x) if a < y < x < b;
(2.28)

where Ψa, resp. Ψb is square integrable near a, resp. b. Choose c such that a < c < b.
Then we can split the operator R into the sum of four operators

R = R−− + R−+ + R+− + R++ (2.29)

with kernels

R−−(x, y) := θ(c − x)θ(c − y)R(x, y), (2.30a)

R+−(x, y) := θ(x − c)θ(c − y)R(x, y), (2.30b)

R−+(x, y) := θ(c − x)θ(y − c)R(x, y), (2.30c)

R++(x, y) := θ(x − c)θ(y − c)R(x, y). (2.30d)

Now R+− and R−+ are bounded because both ‖R+−‖2
2 and ‖R−+‖2

2 can be
estimated by ∫ c

a

|Ψa(x)|2 dx

∫ b

c

|Ψb(y)|2 dy. (2.31)

Thus, we obtain the following criterion:

Lemma 2.6. R is bounded iff R−− and R++ are bounded.
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2.4. Krein Formula

We will always use equation (2.19) to construct the resolvent of a Schrödinger op-
erator. In the literature, in similar situations, one often uses the so-called Krein
formula and the formalism of boundary triplets [1,17]. In this subsection, we com-
pare the two approaches. We will not use boundary triplets in this paper; however,
we discuss them briefly for the convenience of the reader.

Suppose, for definiteness, that νa(L) = 2 and νb(L) = 0. Suppose we fix a basis
{φ0, φ1} of the boundary space B defined in (2.14). (This is equivalent to fixing two
distinct b.c. at a.) Then, for any κ ∈ C∪{∞}, we can define a closed realization Lκ

of L by setting

D(Lκ) := {Ξ ∈ D(Lmax) | φ0(Ξ) + κφ1(Ξ) = 0}, κ ∈ C; (2.32)

D(L∞) := {Ξ ∈ D(Lmax) | φ1(Ξ) = 0}, κ = ∞. (2.33)

Let z ∈ C and 0 �= Ψb(z, ·) ∈ Ub(z). Note that under our assumptions Ψb(z, ·) ∈
L2(]a, b[).

Let 0 �= Ψi
a(z, ·) ∈ Ua(z) = N (L − z) with φi

a

(
Ψi

a(z, ·)) = 0, i = 0, 1. Set

Wi(z) := W(
Ψb(z, ·), Ψi

a(z, ·)), i = 0, 1. (2.34)

It follows from (2.19) that

Rκ(z; x, y) :=
1(W0(z) + κW1(z)

)
{(

Ψ0
a(z, x) + κΨ1

a(z, x)
)
Ψb(z, y) if a < x < y < b,(

Ψ0
a(z, y) + κΨ1

a(z, y)
)
Ψb(z, x) if a < y < x < b.

(2.35)

is a candidate for the kernel of Rκ(z) := (Lκ − z)−1. It is easy to check that

W
(
Ψ1

a(z, ·) − W1(z)
W0(z)

Ψ0
a(z, x), Ψb(z, ·)

)
= 0. (2.36)

Therefore, changing if needed the normalization of Ψb(z, ·), we can assume that

Ψ1
a(z, ·) − W1(z)

W0(z)
Ψ0

a(z, ·) = Ψb(z, ·). (2.37)

Using this we can rewrite (2.35) as

Rκ(z; x, y) = R0(z; x, y) +
Ψb(z, x)Ψb(z, y)

κ−1W0(z) + W1(z)
. (2.38)

This is often called Krein formula, which is the basis of the boundary triplet ap-
proach. It expresses the resolvent with mixed b.c. by the resolvent with unperturbed
b.c. plus a rank one perturbation. Note that if we check the boundedness of R0(z),
then Rκ(z) is well-defined and bounded unless κ−1W0(z) + W1(z) = 0.

Thus, in the above approach, one introduces three objects: the space B and
a pair of its distinguished linearly independent elements φ0 and φ1. Jointly, they
are often called a boundary triplet [1,17]. If V is integrable near a ∈ R, one usually
chooses the Dirichlet and Neumann b.c., that is, φ0(Ξ) = Ξ(a) and φ1(Ξ) = Ξ′(a).
More generally, in most (but not all) Hamiltonians considered in this paper, we have
a similar distinguished pair. For example, for the Bessel operator with |Re(m)| < 1,
m �= 0, these are the b.c. set by r

1
2+m and r

1
2−m. For m = 0, one can choose r

1
2 and

r
1
2 ln r; however, one can argue that only the first is truly distinguished.
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3. Schrödinger Operators Related to the Bessel Equation

3.1. Bessel Operator

Various elements of the material of this subsection can be found in the literature,
e.g., in [26,29,34]. We treat [6,10] as the main references.

Let m ∈ C. The Bessel operator is formally given by

Hm := −∂2
r +

(
m2 − 1

4

) 1
r2

. (3.1)

We would like to interpret it as a closed operator on L2(R+).
Note that when we deal with (3.1), it is more convenient to use 1d Bessel func-

tions rather than the (usual) 2d Bessel functions. Depending on the circumstances,
one may prefer to use hyperbolic or elliptic Bessel functions—therefore, for some
quantities, we provide expressions in terms of both. For more detail about 1d Bessel
functions, see Appendix A, especially Sects. A.3 and A.5.

In the following table, for each parameter and for each eigenvalue, we provide a
few functions that span the space of eigenfunctions of (3.1) (usually, but not always,
a basis of this space). After checking the square integrability of these functions near

Eigenvalue Parameters Eigenfunctions

−k2 with k �= 0 I±m(kx), Km(kx)
0 m �= 0 x

1
2±m

0 m = 0 x
1
2 , x

1
2 ln x

the endpoints, we see that the endpoints have the following types:

Endpoint Parameters Index

0 |Re(m)| < 1 2
0 |Re(m)| ≥ 1 0
+∞ 0

The following theorem describes the basic holomorphic family of Bessel opera-
tors:

Theorem 3.1. For Re(m) ≥ 1, there exists a unique closed operator Hm in the
sense of L2(R+), which on C∞

c (]0, ∞[) is given by (3.1). The family m �→ Hm is
holomorphic and possesses a unique holomorphic extension to Re(m) > −1.

The spectrum and the point spectrum of Hm are

σ(Hm) = [0, ∞[ , σp(Hm) = ∅ , (3.2)

and its resolvent is

(Hm + k2)−1(x, y) =
1
k

{Im(kx)Km(ky) if 0 < x < y,
Im(ky)Km(kx) if 0 < y < x,

Re(k) > 0; (3.3)

(Hm − k2)−1(x, y) = ± i
k

{Jm(kx)H±
m(ky) if 0 < x < y,

Jm(ky)H±
m(kx) if 0 < y < x,

±Im(k) > 0. (3.4)
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Proof. For Re(m) > −1, we define Hm to be the closed realization of (3.1) with the
b.c. at 0 given by x

1
2+m. From the table above, we see that for Re(m) ≥ 1, it is the

unique realization of (3.1).
We check that, for such Re(m) > −1,

lim
x→0

W(Im(kx), x
1
2+m) = 0, (3.5)

and Im(kx) is square integrable near zero. Moreover, Km(kx) is square integrable
near +∞ if and only if Re(k) > 0. We also find

W(Im(kx), Km(kx)) = k. (3.6)

Next we apply (2.19), which yields the kernel on the rhs of (3.3) as a candidate for
the resolvent of Hm. We check that it is bounded. Hence it equals (Hm +k2)−1. We
also verify that it depends holomorphically on m on a larger domain {Re(m) > −1}.
Therefore, {Re(m) > −1} � m �→ Hm is a holomorphic family.

See [6] for the details. �
Here is a description of the basic family of Bessel operators with real m. Again,

its proof can be found, e.g., in [6].

Theorem 3.2. For m ∈] − 1, ∞[, the operator Hm defined in Theorem 3.1 is self-
adjoint. For m ∈ [1, ∞[, Hm is essentially self-adjoint on C∞

c (]0, ∞[). For m ∈
[0, ∞[, it is the Friedrichs extension of (3.1) restricted to C∞

c (]0, ∞[). For m ∈
] − 1, 0], it is the Krein extension of (3.1) restricted to C∞

c (]0, ∞[).

Let us go back to complex m satisfying Re(m) > −1. The Bessel operator is
exactly solvable in a very strong sense. Besides the resolvent, one can also compute
the integral kernel of the holomorphic semigroup generated by Hm, see, e.g., [29].
It can also be written in two equivalent ways.

e− t
2Hm(x, y) =

√
2
πt

Im

(xy

t

)
e− x2+y2

2t , Re(t) ≥ 0; (3.7)

e± it
2 Hm(x, y) = e±i π

2 (m+1)

√
2
πt

Jm

(xy

t

)
e

∓ix2∓iy2
2t , ±Im(t) ≥ 0. (3.8)

As noted in [6,34], we have the identity

Hm = Ξ−1
m (A)K−1Ξm(A), (3.9)

where

Ξm(t) := ei ln(2)t Γ(m+1+it
2 )

Γ(m+1−it
2 )

, A :=
1
2i

(x∂x + ∂xx), and K := x2. (3.10)

The operator Ξm(A) is called the Hankel transformation. Its integral kernel can be
also computed:

Ξm(A)(x, y) =

√
2
π

Jm(xy). (3.11)

Note that (3.9) describes diagonalization of the Bessel operator—transforming it
into the multiplication operator K−1.

Remark 3.3. For −1 < Re(m) < 1, we can also consider mixed b.c.. For more
details, see e.g. [10].
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3.2. Exponential Potentials

For k ∈ C, the Schrödinger operator with the exponential potential is formally given
by

Mk := −∂2
x + k2e2x. (3.12)

We will interpret it as a closed operator on L2(R). Without restricting the generality
we can assume that Re(k) ≥ 0.

Note that Mk is very common in the literature. For example, it has important
applications in Liouville CFT, see, e.g., [40, Chapter 4], and on hyperbolic manifolds.

For r = ex, we have the following formal identity:

r2
(

− ∂2
r +

(
m2 − 1

4

) 1
r2

+ k2
)

= e
x
2

(
− ∂2

x + k2e2x + m2
)
e− x

2 . (3.13)

Using this, we can express eigenfunctions of Mk in terms of Bessel functions. In this
case, 2-dimensional Bessel functions are more convenient than 1-dimensional ones,
see Appendix, Sect. A.2.

Eigenvalues and corresponding eigenfunctions of (3.12) are given by:

Eigenvalue Parameters Eigenfunctions

−m2 Re(k) ≥ 0, k �= 0 I±m(kex), Km(kex)
−m2 m �= 0 k = 0 e±mx

0 k = 0 1, x

After checking the square integrability of these functions near the endpoints, we see
that the endpoints have the following indices:

Endpoint Parameters Index

−∞ Re(k) ≥ 0 0
+∞ Re(k) > 0 or k = 0 0
+∞ Re(k) = 0, k �= 0 2

The following theorem describes the basic holomorphic family of Schrödinger
operators with the exponential potential:

Theorem 3.4. For Re(k) > 0 or k = 0, the expression (3.12) defines a unique closed
operator on L2(R), which will be denoted Mk. The spectrum and point spectrum are
σ(Mk) = [0, ∞[, σp(Mk) = ∅.

Moreover, {Re(k) > 0} � k �→ Mk is a holomorphic family of closed operators,
and for Re(m) > 0, the resolvent is given by

(Mk + m2)−1(x, y) =

{
Im(kex)Km(key) if x < y,

Im(key)Km(kex) if y < x.
(3.14)

Proof. The case k = 0 is well known, let us restrict ourselves to Re(k) > 0. We check
that for Re(m) > 0 Im(kex) is up to a multiplicative constant the only eigensolution
square integrable close to −∞. Similarly for Km(kex) close to +∞. We check that

W(
Im(kex), Km(kex)) = 1. (3.15)
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Next, we apply (2.19), which yields the kernel on the rhs of (3.14) as a candidate for
the resolvent of Mk. Let us denote it by Rk(−m2; x, y). In Lemma 3.5, following the
strategy given in Sect. 2.3, we check the boundedness of Rk(−m2) and its analyticity
wrt k. This ends the proof of the theorem. �
Lemma 3.5. (Boundedness of Kernel) Let Re(m) > 0 and Re(k) > 0. Let Rk(−m2)
be the operator with kernel (3.14). Then Rk(−m2) is a bounded operator and the
map k �→ Rk(−m2) is a holomorphic family of bounded operators, which does not
have a holomorphic extension to a larger subset of the complex plane.

Proof. Since (a) both modified Bessel functions Im and Km are analytic for fixed m
with Re(m) > 0 and (b) the function kex is analytic in k, the kernel Rk(−m2; x, y)
is an analytic function of parameter k. It is easy to see that for any f, g ∈ C∞

c (R),
the quantity

(f |Rk(−m2) g) =
∫

f(x) Rk(−m2; x, y) g(y) dxdy

is analytic in k. Since C∞
c (R) is a dense subset of L2(R), it remains to prove that

Rk(−m2; x, y) is locally bounded in k.
To proceed further, we use the method of Sect. 2.3. We split the resolvent as in

(2.29) and (2.30) with c = 0. By Lemma 2.6, we need to prove the boundedness of
R−− and R++.

We have, for x → 0,

Im(x) ∼ 1
Γ(m + 1)

(x

2

)m

, m �= −1, −2, . . . ,

Km(x) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Re(Γ(m)
(

2
x

)m) if Re(m) = 0, m �= 0,

− ln
(

x
2

) − γ if m = 0,
Γ(m)

2

(
2
x

)m if Re(m) > 0,
Γ(−m)

2

(
2
x

)m if Re(m) < 0,

and, for x → ∞,

Im(x) ∼ 1√
2πx

ex and Km(x) ∼
√

π

2x
e−x.

We check∣∣R−−
k (−m2; x, y)

∣∣
≤ Cm,k

(
e−Re(m)xeRe(m)y1−∞<y<x<0(x, y) + eRe(m)xe−Re(m)y1−∞<x<y<0(x, y)

)
.

Since

sup
x∈ ]−∞,0]

∫
e−Re(m)xeRe(m)y1−∞<y<x<0(x, y) dy

= sup
x∈ ]−∞,0]

e−Re(m)x

∫ x

−∞
eRe(m)y dy = sup

x∈ ]−∞,0]
e−Re(m)x 1

Re(m)
eRe(m)x =

1

Re(m)
,

sup
y∈ ]−∞,0]

∫
e−Re(m)xeRe(m)y1−∞<y<x<0(x, y) dx

= sup
y∈ ]−∞,0]

eRe(m)y

∫ 0

y
e−Re(m)x dx = sup

y∈ ]−∞,0]
eRe(m)y 1

Re(m)
(−

∫ −y

0
eRe(m)x dx) =

1

Re(m)
,
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by Schur’s criterion we obtain∥∥R−−
k (−m2)

∥∥ ≤ 2Cm,k.

For the R++
k (−m2), we have the following: Since Re(k) > 0, we obtain∣∣R++
k (−m2; x, y)

∣∣ ≤ Cm,ke− x+y
2 e−Re(k)|ex−ey| ≤ Cm,ke− x+y

2 .

Therefore, the Hilbert–Schmidt norm of R++
k (−m2) is finite.

Now, we prove that Rk(−m2) cannot be extended to a holomorphic family of
bounded operators beyond the axis Re(k) = 0. Let us fix g ∈ C∞

c (R). For k �→
Rk(−m2)g, with values in L2

loc(R) is entire analytic. If Rk(−m2) could be extended
to a holomorphic family of bounded operators, when applied to the function g this
extension should coincide with Rk(−m2)g. Then, for x below the support of g, we
have

Rk(−m2)g(x) =

∫
Im(kex)Km(key)g(y) dy = Im(kex)

∫
Km(key)g(y) dy = Cm,kIm(kex)

and

Rk(−m2)g(x) =

∫
Km(kex)Im(key)g(y) dy = Km(kex)

∫
Im(key)g(y) dy = Cm,kIm(kex)

for some constant Cm,k.
If Re(k) < 0, then Im(kex) �∈ L2(R) because |Im(x)| diverges as |Re(x)| → ∞.

Hence, the map cannot be extend to Re(k) < 0. �
Remark 3.6. One of applications of perturbed Bessel operators to quantum physics
is the concept of Regge poles [36]. They are defined as poles of the holomorphic
function m �→ (Hm + V + k2)−1, where V is typically a short-range potential.
Substituting r = ex similarly to (3.13), we obtain

r2(Hm + V (r) + k2) = e
x
2

(
− ∂2

x + kex + e2xV (ex) + m2
)
e− x

2 .

This substitution is quite useful in many cases and sometimes called the Langer
substitution [30, Eq. (22)]. Set W (x) := e2xV (ex). Then, the transmutation property
(1.4) can be generalized to include a potential:

(Mk + W + m2)−1(x, y) = e− x
2 (Hm + V + k2)−1(ex, ey) e− y

2 . (3.16)

Thus Regge poles coincide with the poles of m �→ (Mk + W + m2)−1. Therefore, we
have another equivalent definition of Regge poles, which is used e.g. in [3].

3.3. Negative Exponential Potential

The previous subsection covered the case Re(k) > 0. In this subsection, we consider
the case Re(k) = 0, k �= 0, that is, the Schrödinger operator with a negative expo-
nential potential. Surprisingly, it appears in interesting physical applications, e.g.,
it is the main ingredient of the Feynman propagator on the Poincaré patch of the
de Sitter and anti-de Sitter space. Clearly, it defines a Hermitian operator, which
possesses a 1-parameter family of closed realizations on L2(R).

In this section, for convenience, we introduce the parameter � > 0, so that
k = i�, and we consider the formal expression

Mi� := −∂2
x − �2e2x. (3.17)
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Figure 1 Domains of the parameters k and c = k2.

The corresponding maximal and minimal operators of Mi� in L2(R) are denoted
Mmax

i� and Mmin
i� . The domain of Mmax

i� is given by

D(Mmax
i� ) = {f ∈ L2(R) | (−∂2

x − �2e2x)f ∈ L2(R)},

and Mmin
i� is the closure of the restriction of (3.17) to C∞

c (R).
In order to set b.c., we will use the Hankel functions

H±
1
2
(r) = ∓i

( 2
πr

) 1
2
e±ir.

(We could use H±
m(r) with other m, but the parameter 1

2 gives especially simple
elementary functions.)

First, we describe the two distinguished realizations:

Theorem 3.7. Let � > 0. Then there exists two closed operators in the sense of L2(R)
that on C∞

c (]0, ∞[) is given by (3.17) and satisfy the following b.c. at +∞:

D(M0
i�) =

{
Ξ ∈ D(Mmax

i� ) | lim
x→∞ W(

H+
1
2
(�ex) , Ξ(x)

)
= 0

}
, (3.18)

D(M∞
i� ) =

{
Ξ ∈ D(Mmax

i� ) | lim
x→∞ W(

H−
1
2
(�ex) , Ξ(x)

)
= 0

}
. (3.19)

Both M0
i� and M∞

i� do not have point spectrum, more precisely,

σ(M0
i�) = σ(M∞

i� ) = [0, ∞[ , σp(M0
i�) = σp(M∞

i� ) = ∅ , (3.20)

and, for Re(m) > 0,

(M0
i� + m2)−1(x, y) =

πi
2

{
Jm(�ex)H+

m(�ey) if x < y,

Jm(�ey)H+
m(�ex) if y < x;

(3.21)

(M∞
i� + m2)−1(x, y) = −πi

2

{
Jm(�ex)H−

m(�ey) if x < y,

Jm(�ey)H−
m(�ex) if y < x.

(3.22)

Proof. First we check that

lim
x→∞ W(

H±
1
2
(�ex), H±

m(�ex)
)

= 0. (3.23)

Therefore, the rhs of (3.21), resp. (3.22) are good candidates for the inverses of
M∞

i� +m2, resp. M0
i� +m2. But the rhs of (3.21), resp. (3.22) coincide with Rk(−m2)
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for k = i�, resp. k = −i�, in the notation of Lemma 3.5 (see the proof of Thm 3.8).
And the proof of this lemma applies. �

In the following theorem, we prove that the realizations described above are
limiting cases of the basic holomorphic family from the previous subsection.

Theorem 3.8. We have the following weak convergence:
1. We have

w− lim
ε↘0

(Mε + m2)−1 = (−∂2
x + m2)−1. (3.24)

2. For � > 0 and Re(m) > 0, we have

w− lim
ε↘0

(Mε+i� + m2)−1 = (M∞
i� + m2)−1, (3.25)

w− lim
ε↘0

(Mε−i� + m2)−1 = (M0
i� + m2)−1. (3.26)

Proof. Note that

Jm(�ex) = e±i π
2 mIm(∓i�ex) and H±

m(�ey) =
2
π

e∓i π
2 (m+1)Km(∓�ey).

Then, for all x < y, either

Im ((ε + i�)ex) Km ((ε + i�)ey) → π

2
Jm(�ex)H−

m(�ey) = Im(i�ex)Km(i�ey)

or

Im ((ε + i�)ex) Km ((ε + i�)ey) → π

2
Jm(−�ex)H+

m(−�ey) = Im(−i�ex)Km(−i�ey)

as ε → 0. Similar convergence can be obtained for y < x. Then, as � �= 0 with
uniform boundness of Im and Km and Lebesgue dominate convergence theorem
gives the norm convergence. �

From Theorem 3.8, we see that by setting

M0 := −∂2
x, Mi� := M∞

i� , M−i� := M0
i�; � > 0, (3.27)

we extend the basic holomorphic family {Re(k) > 0} � k �→ Mk to a continuous
family {Re(k) ≥ 0} � k �→ Mk.

Before we continue, let us note that Jm(�ex) belong to L2(R) for Re(m) > 0.
Indeed, ∫

R

|Jm(�ex)|2 dx =
∫
R

|Jm(y)|2
y

dy =
1

2m
, (3.28)

where the last identity is e.g. in [33, Eq. (10.22.57)] with a = 1, μ = ν = m, and
λ = 1.

Now, we are ready describe the remaining mixed realizations (see [42] for a
similar result).

Theorem 3.9. Let � > 0 and γ ∈ C \ {0}. There exists a unique closed operator in
the sense of L2(R) that on C∞

c (]0, ∞[) is given by (3.17) and satisfies the following
b.c. at +∞:

D(Mγ
i�) =

{
Ξ ∈ D(Mmax

i� ) | lim
x→∞ W(

H+
1
2
(�ex) + γH−

1
2
(�ex) , Ξ(x)

)
= 0

}
. (3.29)
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C\{0} � γ �→ Mγ
i� is a holomorphic family of closed operators. If γ = eiα, the

eigenvalues and eigenfunctions of Mγ
i� are

−(α + n)2, Jα+n(�ex), n ∈ 2Z, Re(α + n) > 0. (3.30)

its spectrum, point spectrum and resolvent are

σ(Mγ
i�) = [0, ∞[ ∪ σp(Mγ

i�), (3.31)

σp(Mγ
i�) = {−(n + α)2 | Re(n + α) > 0, n ∈ 2Z}, (3.32)

(Mγ
i� + m2)−1(x, y) =

πi
2(eimπ − γ)

{
Jm(�ex)

(
eimπH+

m(�ey) + γH−
m(�ey)

)
if x < y,

Jm(�ey)
(
eimπH+

m(�ex) + γH−
m(�ex)

)
if y < x.

(3.33)

4. Schrödinger Operators Related to the Whittaker Equation

4.1. Whittaker Operator

This is another classic problem, described in many sources. We treat [11,12] as the
main references for this subsection.

Let m, β ∈ C. The Whittaker operator is formally defined by

Hβ,m := −∂2
r +

(
m2 − 1

4

) 1
r2

− β

r
. (4.1)

It is the radial part of the Schrödinger operator with the Coulomb potential, in
dimension 3 used to describe the Hydrogen atom. We will interpret it as a closed
operator on L2(R+).

We will use 1d Whittaker functions with conventions described in Appendix,
Subsect. B.3.

We first find eigenvalues and corresponding eigenfunctions of (4.1):

Eigenvalue Parameters Eigenfunctions

−k2 with k �= 0 I β
2k ,±m(2kr), K β

2k ,m(2kr)
0 β �= 0 r

1
4 J±2m(2

√
βr), r

1
4 H±

2m(2
√

βr)
0 β = 0, m �= 0 r

1
2±m

0 β = 0, m = 0 r
1
2 , r

1
2 ln(r)

After checking the square integrability of these functions near the endpoints, we see
that the endpoints have the following indices:

Endpoint Parameters Index

0 |Re(m)| < 1 2
0 |Re(m)| ≥ 1 0
+∞ 0

Let us describe the basic holomorphic family of Whittaker operators:
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Theorem 4.1. For Re(m) ≥ 1, there exists a unique closed operator Hβ,m in the
sense of L2(R+), which on C∞

c (]0, ∞[) is given by (4.1). It depends holomorphically
on β, m. It can be uniquely extended to a holomorphic family of closed operators on
L2(R+) defined for Re(m) > −1, β ∈ C, (β, m) �= (0, −1

2). Its spectrum and point
spectrum are

σ(Hβ,m) = [0, ∞[ ∪ σp(Hβ,m) (4.2)

σp(Hβ,m) =
{

− β2

4(n + m + 1
2)2

∣∣∣ n + m +
1
2

�= 0, Re
( β

n + m + 1
2

)
> 0, n ∈ N0

}
.

(4.3)

Outside of the spectrum, the kernel of the resolvent of Hβ,m is

(Hβ,m +k2)−1(x, y) := 1
2k Γ

(
1
2 +m− β

2k

) {
I β

2k ,m(2kx)K β
2k ,m(2ky) for 0 < x < y,

I β
2k ,m(2ky)K β

2k ,m(2kx) for 0 < y < x.

(4.4)

Proof of Theorem 4.1. We define Hβ,m for Re(m) > −1, (β, m) �= (0, −1
2) by the

b.c. at 0 given by x
1
4 J2m(2

√
βx). We check that for Re(m) > −1

lim
x→0

W
(
I β

2k ,±m(2kx), x
1
4 J2m(2

√
βx)

)
= 0. (4.5)

Moreover, K β
2k ,m(2kx) is square integrable near +∞. We also find

W
(
I β

2k ,m(2kx), K β
2k ,m(2kx)

)
=

2k

Γ
(

1
2 + m − β

2k

) . (4.6)

Next, we apply (2.19), which yields the kernel on the right-hand side of (3.3) as a
candidate for the resolvent of Hβ,m. We check that it is bounded. Hence, it equals
(Hβ,m + k2)−1. We also verify that it depends analytically on β and m. Therefore,

C × {Re(m) > −1}\(0, −1
2) � (β, m) �→ Hβ,m (4.7)

is an analytic family. For Re(m) ≥ 1, the b.c. is not needed, hence Hβ,m is then
uniquely defined.

See [11] for details. �

The operator Hβ,m is sometimes called the Whittaker operator with pure b.c..
Note that for m > −1

2 , we can simplify the b.c. — we can set it by x
1
2+m. For −1 <

Re(m) ≤ −1
2 , interestingly, this does not work. Instead, we can use x

1
2+m(1− β

1+2m)
to set the b.c.. Details can be found in [11].

Note that (0, −1
2) is a singularity of the holomorphic function (β, m) �→ Hβ,m.

Additionally, we set H0,− 1
2

:= H− 1
2
. Then, the basic family of Whittaker operators

extends the basic family of Bessel operators:

H0,m = Hm, Re(m) > −1. (4.8)

Remark 4.2. For −1 < Re(m) < 1, β ∈ C, we can also consider mixed b.c.. We do
not study them here, see e.g. [12].
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4.2. Morse Potentials

The Schrödinger operator with the Morse potential is formally given by

Mβ,k := −∂2
x + k2e2x − βex. (4.9)

We will interpret it as a closed operator on L2(R). Without restricting the generality
we can assume that Re(k) ≥ 0.

For r = ex, we have the following formal identity:

r2
(

− ∂2
r +

(
m2 − 1

4

) 1
r2

− β

r
+ k2

)
= e

x
2

(
− ∂2

x + k2e2x − βex + m2
)
e− x

2 . (4.10)

Therefore, eigenfunctions of Mβ,k can be expressed in terms of Whittaker func-
tions. In this subsection instead of the standard (1-dimensional) Whittaker func-
tions Iβ,m, Kβ,m it is more convenient to use 2d Whittaker functions Iβ,m, Kβ,m,
see Appendix B.4.

We first find eigenvalues and corresponding eigenfunctions of (4.17):

Eigenvalue Parameters Eigenfunctions

−m2 Re(k) ≥ 0, k �= 0 I β
2k ,±m(2kex), K β

2k ,m(2kex)
−m2 k = 0, β �= 0 I±2m(

√−4β e
x
2 ), K2m(

√−4β e
x
2 )

−m2 with m �= 0 k = 0, β = 0 e±mx

0 k = 0, β = 0 1, x

After checking the square integrability of these functions near the endpoints, we see
that the endpoints have the following indices:

Endpoint Parameters Index

−∞ 0
+∞ Re(k) > 0 0
+∞ k = 0, β ∈ C \ R>0 0
+∞ Re(k) = 0, k �= 0 2
+∞ k = 0, β > 0 2

Here is a description of the basic holomorphic family of Schrödinger operators with
Morse potentials:

Theorem 4.3. For β, k ∈ C with Re(k) > 0 there exists a unique closed operator in
the sense of L2(R), denoted Mβ,k which on C∞

c (R) it is given by (4.9). It forms a
holomorphic family of closed operators.

Its spectrum and point spectrum are

σ(Mβ,k) = [0, ∞[ ∪ σp(Mβ,k), (4.11)

σp(Mβ,k) =
{

− m2
∣∣∣ m =

β

2k
− n − 1

2
, Re(m) > 0, n ∈ N0

}
. (4.12)
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Outside of the spectrum, its resolvent is given by

(Mβ,k + m2)−1(x, y) := Γ
(

1
2 + m − β

2k

) {
I β

2k ,m(2kex)K β
2k ,m(2key), if x < y,

I β
2k ,m(2key)K β

2k ,m(2kex), if y < x.

(4.13)

Proof. The uniqueness of a closed realization of Nk,m for Re(k) > 0 follows from
the table above. I β

2k ,m(2kex) is then square integrable near −∞ and K β
2k ,m(2kex)

is square integrable near +∞. We compute the Wronskian:

W(I β
2k ,m(2kex), K β

2k ,m(2kex)) =
1

Γ
(

1
2 + m − β

2k

) . (4.14)

Now, by (2.19) the kernel on the rhs of (4.13) is a candidate of the resolvent of
Mβ,k. The boundedness is obtained with the help of Lemma 4.4, similarly as in the
previous (sub)section. �

Lemma 4.4. Let k, β ∈ C with Re(k) > 0 and fix m with Re(m) > 0 and −m2

outside of (4.12). Let Rβ,k(−m2) be the operator with the kernel on the right hand
side of (4.13). Then Rβ,k(−m2) is bounded and depends analytically on β, k.

Proof. The proof is very similar to that of Lemma 3.5. We use the method of
Sect. 2.3. We split the resolvent as in (2.29) and (2.30) with c = 0. Then we prove
the boundedness of R−− and R++. �

Remark 4.5. Clearly, the family of Morse potentials extends the family of exponen-
tial potentials:

M0,k = Mk, (4.15)

i.e., if β = 0, then the Morse potential is the exponential potential covered in
Sect. 3.2.

Remark 4.6. If k = 0 and β ∈ C \ R+, then after scaling, the Morse potential is
the exponential potential covered in Sect. 3.2. This case is covered in Fig. 1b with
β = −c. If k = 0 and β > 0, then after scaling, Morse potentials is the negative
exponential covered in Sect. 3.3.

Let A = xp+px
2 where p = −i∂x. Let Uτ := eiτA be the dilation operator. It acts

on functions as follows:

(Uτf)(x) = e
τ
2 f(eτx).

Then with Uτ , we have the following identity:

U−1
ln 2 Mβ,0 Uln 2 = U−1

ln 2

(
− ∂2

x − βex
)
Uln 2 =

1
4

(
− ∂2

x + (−4β)e2x
)

=
1
4
M√−4β .

(4.16)

Remark 4.7. We have not analyzed the case Re(k) = 0, except for k = 0, which is
discussed above. We leave it for future research.
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4.3. Isotonic Oscillator

The isotonic harmonic oscillator is formally defined by

Nk,m := −∂2
v +

(
m2 − 1

4

) 1
v2

+ k2v2. (4.17)

It appears in physics as the radial part of the radially symmetric harmonic oscillator
in any dimension > 1. The name “isotonic” indicates that the frequencies in all
directions are the same. We will interpret (4.17) as a closed operator on L2(R+).
Without restricting the generality, we can assume that Re(k) ≥ 0.

Consider the change of variables r = v2

2 . We have the formal identity, which
connects the Whittaker operator with the isotonic oscillator:

− ∂2
r +

(
m2

4 − 1
4

) 1
r2

− β

r
+ k2 = v− 3

2

(
− ∂2

v +
(
m2 − 1

4

) 1
v2

+ k2v2 − 2β
)
v− 1

2 . (4.18)

Therefore, eigenfunctions of the isotonic oscillator can be expressed in terms of
the Whittaker functions. The details are described in Appendix B.5, where the
functions I and K are introduced. We will use them in the following table describing
eigenvalues and corresponding eigenfunctions of (4.17):

Eigenvalue Parameters Eigenfunctions

2β Re(k) ≥ 0, k �= 0 Iβ
k ,±m(

√
kv), Kβ

k ,m(
√

kv)
−p2 with p �= 0 k = 0 I±m(pv), Km(pv)
0 k = 0, m �= 0 v

1
2±m

0 k = 0, m = 0 v
1
2 , v

1
2 ln v

After checking the square integrability of these functions near the endpoints, we see
that the endpoints have the following indices:

Endpoint Parameters Index

0 |Re(m)| < 1 2
0 |Re(m)| ≥ 1 0
+∞ 0

Let us describe the basic family of isotonic harmonic oscillators:

Theorem 4.8. For Re(k) ≥ 0 and Re(m) ≥ 1 there exists a unique closed operator
Nk,m in the sense of L2(R+) given on C∞

c (]0, ∞[) by (4.17). It uniquely extends by
analyticity in m to Re(k) ≥ 0 and Re(m) > −1.

1. For Re(k) > 0, Re(m) > −1 we have a holomorphic family with the spectrum

σ(Nk,m) = σp(Nk,m) = {2β = 2k
(
2n + m + 1

) | n ∈ N0}. (4.19)

Outside of its spectrum, its resolvent is given by

(Nk,m − 2β)−1(u, v) := 1
2 Γ

(
1
2 + m

2 − β
2k

) {
Iβ

k ,m(
√

ku) Kβ
k ,m(

√
kv) if 0 < u < v,

Iβ
k ,m(

√
kv) Kβ

k ,m(
√

ku) if 0 < v < u.

(4.20)
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2. Let Re(k) = 0, k �= 0 with k = i�, � > 0. Then, we have σ(Nk,m) = R,
σp(Nk,m) = ∅ and, for ±Im2β > 0

(Nk,m −2β)−1(u, v) := 1
2

Γ
(

1
2
+ m

2
− β

∓2k

) ⎧⎨
⎩
I β

∓k
,m

(
√∓ku) K β

∓k
,m

(
√∓kv) if 0 < u < v,

I β
∓k

,m
(
√∓kv) K β

∓k
,m

(
√∓ku) if 0 < v < u.

(4.21)

For Re(k) = 0, k �= 0 with k = −i�, � > 0, we set Nk,m = N−k,m.
3. The case k = 0 coincides with the Bessel operators: N0,m = Hm.

Proof. For Re(k) ≥ 0 and Re(m) > −1, we define Nk,m by setting the b.c. at zero
with v

1
2+m. We check that

W(
v

1
2+m, Iβ

k ,m(
√

kv)
)

= 0 (4.22)

and Iβ
k ,m(

√
kv) is square integrable near 0.

Let us now consider Cases 1,2,3 separately.
For Re(k) > 0, Kβ

k ,m(
√

kv) is square integrable near +∞. We check that

W(
Iβ

k ,m(
√

kv),Kβ
k ,m(

√
kv)

)
=

2
Γ
(

1
2 + m

2 − β
2k

) . (4.23)

Now, (2.19) yields the kernel on the rhs of (4.20) as a candidate of the resolvent of
Nk,m. In Lemma 4.9.1., we check that it is bounded and depends analytically on
parameters k, m. This proves Case 1.

For k = i�, � > 0, and ±Im(2β) > 0, we have

Re
( β

∓k

)
= ∓ Imβ

�
< 0, (4.24)

thus, K β
∓k

(
√∓kv), which can be estimated by Cv− 1

2+Re β
∓k , is square integrable

near +∞. Therefore, using (2.19) the rhs of (4.21) is a candidate of the kernel of
the resolvent of Nk,m. We check that ±Imβ < 0 and Re(m) > −1, � > 0 implies
that there are no solutions of

2β = 2(∓i�)(2n + m + 1). (4.25)

Therefore, besides R there is no spectrum of Nk,m. In Lemma 4.9.2, we check that
(4.21) is bounded and depends analytically on m. This proves Case 2.

Finally, Case 3 was treated before. �

Lemma 4.9. For k �= 0, let Rk,m(2β) denote the operator with the integral kernel
(4.20). Let Re(m) > −1.

1. If Re(k) > 0 and 2β is outside of the spectrum, then Rk,m(2β) is bounded and
depends analytically on k, m.

2. If k = ∓i�, � > 0, and ±Im(2β) > 0, then Rk,m(2β) is bounded and depends
analytically on m.

Proof. We use Lemma 2.6 with, say, c = 1√
|k| , to split Rk,m. We have the estimates

|R−−
k,m(−2β; u, v)| ≤

{
Cu

1
2+Re(m)v

1
2−Re(m) if 0 < u < v < c,

Cv
1
2+Re(m)u

1
2−Re(m) if 0 < v < u < c,

m �= 0; (4.26)
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|R−−
k,0 (−2β; u, v)| ≤

{
Cu

1
2 v

1
2 | ln(v)| if 0 < u < v < c,

Cv
1
2 u

1
2 | ln(u)| if 0 < v < u < c,

(4.27)

|R++
k,m(−2β; u, v)| ≤

{
Cu− 1

2−Re β
k v− 1

2+Reβ
k e(u2−v2)Re(k) if c < u < v,

Cv− 1
2−Re β

k u− 1
2+Reβ

k e(v2−u2)Re(k) if c < v < u.
(4.28)

Now, we use (4.26), (4.27) and the Hilbert-Schmidt estimate to prove the bounded-
ness of R−−

k,m(2β), both in Case 1 and 2. Then, we use (4.28) to prove the boundedness
of R++

k,m(2β). We treat separately for Case 1 and Case 2.
Let Re(k) > 0. Set b := −Re(β

k ). Using (4.28) we see that that

R++
k,m(−2β; u, v) ≤ C1e

−|u−v|( (ln u−ln v)
(u−v) b+(u+v)Re(k)). (4.29)

The function

[c,∞[×[c,∞[ � (u, v) �→ lnu − ln v

u − v
b + (u + v)Re(k)

is continuous and goes to +∞ as u → +∞ or v → +∞. Therefore, away from
a bounded set, it can be bounded from below by some ε > 0. Hence, (4.29) can
be estimated from above by ≤ C1e−|u−v|ε. Now (4.29) is the kernel of a bounded
operator by Young’s inequality or Schur’s criterion. This proves Case 1.

Now assume Re(k) = 0. Let b := −Re
(

β
k

)
, as before. We now have b > 0. We

have

|R++
k,m(−2β; u, v)| ≤

{
Cu− 1

2+bv− 1
2−b if c < u < v,

Cv− 1
2+bu− 1

2−b if c < v < u.
(4.30)

Without loss of generality, one may let c = 0. Making substitutions u = et,
v = es, we obtain

(f |R++
k,m(−2β; u, v)g) =

∫ ∞

0

∫ ∞

u

|f(u)||g(v)|u− 1
2+bv− 1

2−b + (u ↔ v) dvdu (4.31)

=
∫ ∞

−∞

∫ ∞

t

|f(et)||g(es)|e t
2+ s

2−b|t−s| + (s ↔ t) dsdt

≤ 2
b

( ∫
|f(et)|2et dt

) 1
2
( ∫

|g(es)|2es ds
) 1

2

=
2
b

( ∫
|f(u)|2 du

) 1
2
( ∫

|g(v)|2 dv
) 1

2
. (4.32)

This shows Case 2. �

Remark 4.10. The operators Nk,∓ 1
2

are the harmonic oscillators on R+ with the
Neumann and Dirichlet conditions, respectively. We can denote them as follows:

Nk,− 1
2

=: NN
k , Nk, 12

=: ND
k . (4.33)

Here are their spectra:

σ(NN
k ) = {k

(
4n + 1

) | n ∈ N0}, (4.34)

σ(ND
k ) = {k

(
4n + 3

) | n ∈ N0}. (4.35)
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In the next section we will consider them again.

Remark 4.11. For −1 < Re(m) < 1, we can also consider mixed b.c.. They can be
analyzed similarly as for Bessel operators.

5. Harmonic Oscillator

This section is devoted to the harmonic oscillator, formally defined on L2(R) by

Nk := −∂2
v + k2v2. (5.1)

We will consider its closed realizations on L2(R). Without loss of generality, we
assume that Re(k) ≥ 0.

For real k, the self-adjoint realization of Nk is one of the best-known operators in
Quantum Mechanics. For complex k, its closed realization is an interesting example
of an operator with sometimes surprising properties, and has been studied, e.g., in
[7,35].

To describe the eigenfunctions of (4.17), we will use Weber functions, defined
in Appendix C.

Eigenvalue Parameters Eigenfunctions

2β Re(k) ≥ 0, k �= 0 Iβ
k ,±(

√
kv), Kβ

k
(±√

kv)
−p2 with p �= 0 k = 0 epv, e−pv

0 k = 0 v, 1

The endpoints have always index 0:

Endpoint Parameters Index

−∞ Re(k) ≥ 0 0
+∞ Re(k) ≥ 0 0

For the harmonic oscillator, we have a unique closed realization for all param-
eters:

Theorem 5.1. Let Re(k) ≥ 0. There exist a unique closed operator in the sense of
L2(R), which on C∞

c (R) coincides with (5.1). It will be denoted Nk.
1. {Re(k) > 0} � k �→ Nk is a holomorphic family of closed operators with the

following spectrum:

σ(Nk) = σp(Nk) = {k(2n + 1) | n ∈ N0}. (5.2)

For 2β away of its spectrum, its resolvent is given by

(Nk − 2β)−1(u, v) = 1
2
√

2π
2

β
k Γ(1

2 − β
k )

{
Kβ

k
(−√

ku) Kβ
k
(
√

kv) if u < v,

Kβ
k
(−√

kv) Kβ
k
(
√

ku) if v < u.
(5.3)
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2. Let Re(k) = 0, k �= 0 with k = i�, � > 0. Then, we have σ(Nk) = R, σp(N0) = ∅
and, for ±Im2β > 0,

(Nk − 2β)−1(u, v) = 1
2
√

2π
2

β
∓k Γ(1

2 − β
∓i�)

⎧⎨
⎩
K β

∓k
(−√∓ku) K β

∓k
(
√∓kv) if u < v,

K β
∓k

(−√∓kv) K β
∓k

(
√∓ku) if v < u.

(5.4)
For Re(k) = 0, k �= 0 with k = −i�, � > 0, we set Nk = N−k.

3. Finally, σ(N0) = [0, ∞[, σp(N0) = ∅ and, for Re(p) > 0,

(N0 + p2)−1(u, v) =
e−p|u−v|

2p
. (5.5)

Proof. The uniqueness of a closed realization follows immediately from the table.
For Re(k) > 0, Kβ

k
(−√

kv) is square integrable near −∞ and Kβ
k
(
√

kv) is
square integrable near −∞. Using (C.5) and (C.6), and then Legendre’s duplication
formula, we get the Wronskian:

W(Kβ
k
(−

√
ku),Kβ

k
(
√

ku)) =
4π

Γ(1
4 − β

2k ) Γ(3
4 − β

2k )
=

2
√

2π

2
β
k Γ(1

2 − β
k )

. (5.6)

Now, we apply (2.19) to have the kernel on the rhs of (5.3) as a candidate of the
resolvent of Nk, denoting it by Rk(−2β). The boundedness of Rk(−2β) is immediate
from the subsection on the isotonic oscillator.

For k = i�, � > 0, and ±Im(2β) > 0, we have

Re
( β

∓i�

)
= ∓ Imβ

�
< 0, (5.7)

thus, K β
∓i�

(
√∓i�v) is square integrable near +∞ and K β

∓i�
(−√∓i�v) near −∞. The

boundedness of Rk(−2β) is proven as for the isotonic oscillator.
The case k = 0 is just the well-known free 1d Laplacian. �

As is well-known, the propagator for Nk can be expressed in elementary func-
tions. It is given by the so-called Mehler’s formula

e−it 1
2N1(u, v) =

1√
π

√
ρ

1 − ρ2
exp

(
−(1 + ρ2)(u2 + v2) − 2ρuv

2(1 − ρ2)

)
, (5.8)

where ρ = e−it.

Remark 5.2. Recall that in (4.33) we introduced the harmonic oscillators with the
Neumann and Dirichlet boundary conditions N

N/D
k = Nk,∓ 1

2
on R+, as special

cases of the isotonic harmonic oscillator. They are closely related to the harmonic
oscillator Nk on R.

Let L2
±(R) denote the subspace of L2(R) consisting of even, resp. odd functions.

Let us define the unitary operators

U± : L2(R+) → L2
±(R), (5.9)

(U+g)(v) :=
1√
2
g(|v|), v ∈ R; (5.10)
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(U−g)(v) :=
sgn(v)√

2
g(|v|), v ∈ R; (5.11)

so that

(U∗
±f)(v) =

√
2f(v), v ∈ R+. (5.12)

Then
Nk = U+NN

k U∗
+ + U−ND

k U∗
−, (5.13)

where “+” can be replaced by “⊕” in the sense of the direct sum L2(R) = L2
+(R)⊕

L2
−(R). Consequently,

σ(Nk) = σ(ND
k ) ∪ σ(NN

k ) (5.14)

where the spectra of ND
k and NN

k were computed in (4.34).
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A. Bessel Equation

There are several kinds of Bessel equations, all equivalent to one another. Their
main application is the Helmholtz equation in d dimensions:

(−Δd + E)f = 0. (A.1)

If E > 0, (A.1) can be simplified to E = 1, a case often referred to as hyperbolic.
Conversely, if E < 0, which can similarly be simplified to E = −1, the case is
sometimes known as trigonometric. The radial part of (A.1) on spherical harmonics
of order � is(

− ∂2
r − (d − 1)

r
∂r +

((
� + d

2 − 1
)2 − (

d
2 − 1

)2
) 1

r2
+ E

)
f = 0. (A.2)
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The versions of (A.2) for various dimensions are equivalent by gauging (or conju-
gating) the operator with a power of r.1

The standard Bessel equation corresponds to the 2d trigonometric case, while
the so-called modified Bessel equation corresponds to the 2d hyperbolic case. How-
ever, sometimes it is convenient to use versions of the Bessel equation for other
dimensions. In our paper, in some cases 1d Bessel functions are more convenient; in
others, 2d Bessel functions. Therefore, we will discuss both.

All forms of the Bessel equation are equivalent to the so-called 0F1 equation,
which is not as well-known. In fact, one could argue that the 0F1 equation and its
standard solutions Fα and Uα have a simpler theory than the usual Bessel equation
and functions.

In this section, we first discuss the 0F1 equation and its solutions. Then we
describe hyperbolic and trigonometric 1d and 2d Bessel equations and functions.

In the whole appendix, the variables w, z, v, and r are complex, although
elsewhere in this paper we usually restrict them to ]0, ∞[.

A.1. 0F1 Equation

Let c ∈ C. The standard solution of the the 0F1 equation

(w ∂2
w + c ∂w − 1)f(w) = 0 (A.3)

is the hypergeometric 0F1 function

0F1(c; w) :=
∞∑

n=0

wn

(c)nn!
(A.4)

where for k ∈ N0

(c)k =
Γ(c + k)

Γ(c)
=

{
c(c + 1)(c + 2) · · · (c + k − 1), if k ≥ 1 ;
1, if k = 0 .

If c �= 0, −1, −2, . . . , then it is the only solution of the 0F1 equation ∼ 1 at 0. It is
convenient to normalize it differently:

0F1(c; w) := 0F1(c; w)
Γ(c)

=
∞∑

n=0

wn

n!Γ(c + n)
, (A.5)

so that it is defined for all c.
The 0F1 equation can be reduced to a special class of the confluent equation

by the so-called Kummer’s 2nd transformation:

z ∂2
z + c ∂z − 1 =

4
w

e− w
2

(
z ∂2

w + (2c − 1 − w) ∂w − c +
1
2

)
e

w
2 , (A.6)

where w = ±4
√

z, z = 1
16w2. Using this, we can derive an expression for the 0F1

function in terms of the confluent function (B.3):

0F1(c; z) = e∓2
√

z
1F1

(2c − 1
2

; 2c − 1; ±4
√

z
)
.

1By gauging (or conjugating) the operator A with a function f(r), we mean replacing it with
f(r)Af(r)−1. See, for example, (A.6), (A.12), (A.19), (B.10), or (B.23) for gauging with a power of
r, and (A.6) and (B.10) for gauging with an exponential.
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Instead of c, it is often more natural to use α := c − 1, and rewrite (A.3) as

(z ∂2
z + (α + 1) ∂z − 1)v(z) = 0, (A.7)

and set
Fα(z) := 0F1(α + 1; z), Fα(z) := 0F1(α + 1; z). (A.8)

The following function is also a solution of the 0F1 equation (A.7):

Uα(z) := e−2
√

zz− α
2 − 1

4 2F0

(1
2

+ α,
1
2

− α; −; − 1
4
√

z

)
,

where we used the 2F0 function (B.7). Obviously,

Uα(z) = z−αU−α(z).

As |z| → ∞ and | arg z| < π
2 − ε, we have

Uα(z) ∼ exp(−2z
1
2 )z− α

2 − 1
4 . (A.9)

Uα is a unique solution of (A.7) with this property.
We can express Uα in terms of the solutions of with a simple behavior at zero

Uα(z) =
√

π

sin π(−α)
Fα(z) +

√
π

sin πα
z−αF−α(z). (A.10)

A.2. Hyperbolic 2d Bessel Equation

The usual modified Bessel equation has the form
(

− ∂2
r − 1

r
∂r +

m2

r2
+ 1

)
g = 0. (A.11)

We use the name the hyperbolic 2d Bessel equation for (A.11). It is equivalent to
the 0F1 equation:

w
m
2
(
w ∂2

w + (1 + m) ∂w − 1
)
w− m

2 = ∂2
r +

1
r
∂r − 1 − m2

r2
, (A.12)

where w = r2

4 , r = ±2
√

w.
The hyperbolic 2d Bessel function Im is defined by

Im(r) :=
(r

2

)m

0F1

(
m + 1;

r2

4

)
. (A.13)

We have the Wronskian

W(Im, I−m) = −2 sin(πm)
πr

, (A.14)

and for m ∈ Z

Im(r) = I−m(r). (A.15)

The 2d Macdonald function Km is defined by

K−m(r) = Km(r) :=
√

π

2

(r

2

)m

Um

(r2

4

)
(A.16)

=
π

2 sin(πm)
(
I−m(r) − Im(r)

)
. (A.17)
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A.3. Hyperbolic 1d Bessel Equation

The hyperbolic 1d Bessel equation
(

− ∂2
r +

(
m2 − 1

4

) 1
r2

+ 1
)
g = 0 (A.18)

is equivalent to the hyperbolic 2d Bessel equation by a simple gauge transformation:

r− 1
2

(
− ∂2

r +
(
m2 − 1

4

) 1
r2

+ 1
)
r

1
2 = −∂2

r − 1
r
∂r +

m2

r2
+ 1. (A.19)

The hyperbolic 1d Bessel function Im is defined by

Im(r) :=
√

π
(r

2

) 1
2+m

0F1

(
m + 1;

r2

4

)
=

√
πr

2
Im(r). (A.20)

We have the Wronskian:

W(Im, I−m) = − sin(πm) (A.21)

and for m ∈ Z,

Im(r) = I−m(r). (A.22)

The 1d Macdonald function Km is defined by

K−m(r) := Km(r) =
(r

2

) 1
2+m

Um

(r2

4

)
=

√
2r

π
Km(r) (A.23)

=
1

sin(πm)
(I−m(r) − Im(r)

)
. (A.24)

A.4. Trigonometric 2d Bessel Equation

The usual Bessel equation, which can be called the trigonometric 2d Bessel equation,
has the form (

− ∂2
r − 1

r
∂r +

m2

r2
− 1

)
g = 0. (A.25)

We can pass from the hyperbolic 2d to the trigonometric 2d Bessel equation by the
substitution r → ir.

The (usual) Bessel function (or the trigonometric 2d Bessel function) is

Jm(r) = e±i π
2 mIm(e∓i π

2 r). (A.26)

We also have two Hankel functions:

H±
m(r) =

2
π

e∓i π
2 (m+1)Km(e∓i π

2 r). (A.27)

Note that the traditional notation for H±
m is H

(1)
m and H

(2)
m . The authors believe

that their notation is more handy.
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A.5. Trigonometric 1d Bessel Equation

We also have the trigonometric 1d Bessel equation:
(

− ∂2
r +

(
m2 − 1

4

) 1
r2

− 1
)
g = 0. (A.28)

We can pass from hyperbolic 1d to trigonometric Bessel equations by the substitu-
tion r → ir.

We can introduce various kinds of solutions of the 1d trigonometric Bessel
equation: the 1d Bessel function

Jm(r) := e±i π
2 (m+ 1

2 )Im(e∓i π
2 r) =

√
πr

2
Jm(r), (A.29)

and the 1d Hankel function of the 1st/2nd kind

H±
m(r) := e∓i π

2 (m+ 1
2 )Km(e∓i π

2 r) =
√

πr

2
H±

m(r). (A.30)

B. Whittaker Equation

The 1F1 equation, the 2F0 equation, and the Whittaker equation are equivalent to
one another by certain substitutions and gauge transformations. In this section, we
briefly describe conventions and properties of solutions to these equations.

Note that our definitions of Whittaker functions differ slightly from some of
the literature, e.g., [33]. In particular, we use what is sometimes called Olver’s nor-
malization, which is advantageous because it avoids singularities for the parameters
under consideration. We follow the conventions of [9,11].

The Whittaker equation is equivalent to the radial part of the Schrödinger
equation with the Coulomb potential in any dimension:

(
− Δd − β

r
+

1
4

)
f = 0. (B.1)

Therefore, there exists a variant of the Whittaker equation for any dimension. The
standard one corresponds to d = 1. We will also find it convenient to consider the
Whittaker equation for d = 2.

In the following subsections, we review several equations, equivalent to one
another: the 1F1 equation, the 2F0 equation, the 1d Whittaker equation, the 2d
Whittaker equation, and the eigenequation of the isotonic oscillator.

B.1. 1F1 Equation

The 1F1 hypergeometric equation, also called the confluent equation has the form(
r ∂2

r + (c − r) ∂r − a
)
f(r) = 0. (B.2)

Its standard solution is Kummer’s confluent hypergeometric function 1F1(a; c; ·)

1F1(a; c; r) :=
∞∑

k=0

(a)k

(c)k

rk

k!
. (B.3)
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It is the only solution of (B.2) behaving as 1 in the vicinity of r = 0. It is often
convenient to normalize it differently:

1F1(a; c; r) :=
∞∑

k=0

(a)k

Γ(c + k)
rk

k!
= 1F1(a; c; r)

Γ(c)
. (B.4)

It satisfies 1st Kummer’s identity

1F1(a; c; r) = er
1F1(c − a; c; −r). (B.5)

B.2. 2F0 Equation

The 2F0 hypergeometric equation has the form(
w2∂2

w + (−1 + (1 + a + b)w) ∂w + ab
)
v(w) = 0. (B.6)

The 2F0 equation has a distinguished solution, which can be expressed as a limit of
the Gauss hypergeometric function:

2F0(a, b; −; w) := lim
c→∞ 2F1(a, b; c; cw), (B.7)

where we take the limit over | arg(c)−π| < π−ε with ε > 0, and the above definition
is valid for w ∈ C\[0, +∞[. Obviously one has

2F0(a, b; −; w) = 2F0(b, a; −; w). (B.8)

The function extends to an analytic function on the universal cover of C\{0} with
a branch point of an infinite order at 0, and the following asymptotic expansion
holds:

2F0(a, b; −; w) ∼
∞∑

n=0

(a)n(b)n

n!
wn, | arg(w)| < π − ε.

B.3. The 1d Whittaker Equation

The usual Whittaker equation corresponds to dimension 1 and has the following
form: (

− ∂2
r +

(
m2 − 1

4
) 1
r2

− β

r
+

1
4

)
v(r) = 0. (B.9)

It can be reduced to the 1F1-equation,

− r
1
2∓me

r
2

(
− ∂2

r +
(
m2 − 1

4
) 1
r2

− β

r
+

1
4

)
r

1
2±me− r

2 = r∂2
r + (c − r)∂r − a (B.10)

for the parameters c = 1 ± 2m and a = 1
2 ± m − β. Here the sign ± has to be

understood as two possible choices. The following function solves the Whittaker
equation (B.9):

Iβ,m(r) := r
1
2+me∓ r

2 1F1

(1
2

+ m ∓ β; 1 + 2m; ±r
)
. (B.11)

Note that the sign independence comes from the 1st Kummer’s identity. We have
the Wronskian

W(Iβ,m, Iβ,−m) = −sin(2πm)
π

. (B.12)
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The Whittaker equation is also equivalent to the 2F0 equation. Indeed by setting
w = −r−1 we obtain

− r2−βe
r
2

(
− ∂2

r +
(
m2 − 1

4
) 1
r2

− β

r
+

1
4

)
rβe− r

2

= w2∂2
w + (−1 + (1 + a + b)w) ∂w + ab

for the parameters a = 1
2 + m − β and b = 1

2 − m − β.
We define

Kβ,m(r) := rβe− r
2 2F0

(1
2

+ m − β,
1
2

− m − β; −; −r−1
)
,

which is thus a solution of the Whittaker equation (B.9). The symmetry relation
(B.8) implies that

Kβ,m(r) = Kβ,−m(r). (B.13)

The following connection formulas hold for 2m /∈ Z:

Kβ,m(r) =
π

sin(2πm)

(
− Iβ,m(r)

Γ(1
2 − m − β)

+
Iβ,−m(r)

Γ(1
2 + m − β)

)
, (B.14)

Iβ,m(r) =
Γ(1

2 − m + β)
2π

(
eiπmK−β,m(eiπr) + e−iπmK−β,m(e−iπr)

)
. (B.15)

Here is an estimate for small r:

Iβ,m(r) =
r

1
2+m

Γ(1 + 2m)
(1 + O(r)). (B.16)

If Re(m) > 0, then

Kβ,m(r) =
Γ(2m)

Γ(1
2 + m − β)

(
r

1
2−m + o(|r| 12−m)

)
. (B.17)

For large r, if ε > 0, then for | arg r| < π − ε,

Kβ,m(r) = rβe− r
2
(
1 + O(r−1)

)
. (B.18)

This together with (B.15) implies the estimates

Iβ,m(r) =
1

Γ(1
2 + m − β)

r−βe
r
2 (1 + O(r−1)), | arg r| <

π

2
− ε; (B.19)

|Iβ,m(r)| ≤ 1
|Γ(1

2 + m − β)|r
−Re(β)(1 + O(r−1)), | arg r| =

π

2
. (B.20)

The relation of the functions I0,m and K0,m with Im and Km reads

I0,m(r) =
2

Γ(1
2 + m)

Im

(r

2

)
, K0,m(r) = Km

(r

2

)
. (B.21)
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B.4. The 2d Whittaker Equation

The 2d Whittaker equation has the form
(

− ∂2
r − 1

r
∂r +

m2

r2
− β

r
+

1
4

)
v = 0. (B.22)

It is equivalent to the 1d Whittaker equation by a simple gauge transformation

r− 1
2

(
− ∂2

r +
(
m2 − 1

4

) 1
r2

− β

r
+

1
4

)
r

1
2 = −∂2

r − 1
r
∂r +

m2

r2
− β

r
+

1
4
. (B.23)

In order to make our presentation more transparent, similarly as in the case of
Bessel functions, beside the usual (1d) Whittaker functions, we define 2d Whittaker
functions, which solve the 2d Whittaker equation:

Iβ,m(r) :=

√
2
πr

Iβ,m(r) Kβ,m(r) :=
√

π

2r
Kβ,m(r). (B.24)

B.5. Eigenequation of Isotonic Oscillator

The eigenequation of the isotonic harmonic oscillator (4.17) (with k = 1) has the
form (

− ∂2
v +

(
m2 − 1

4

) 1
v2

+ v2 − 2β
)
f(v) = 0. (B.25)

Let us recall the following identity (4.18) involving the change of variables
r = v2

2 :

−∂2
r +

(
m2

4 − 1
4

) 1
r2

− β

r
+k2 = v− 3

2

(
−∂2

v +
(
m2 − 1

4

) 1
v2

+k2v2 − 2β
)
v− 1

2 . (B.26)

I β
2k , m

2
(2r), K β

2k , m
2
(2r) are annihilated by the left hand side of (B.26). Therefore,

(B.25) is solved in terms of the following functions:

Iβ,m(v) := v
1
2+me∓ 1

2v2

1F1

(1 + m ∓ β

2
; 1 + m; ±v2

)
(B.27)

= v− 1
2 Iβ

2 , m
2
(v2), (B.28)

Kβ,m(v) := vβ− 1
2 e− 1

2v2

2F0

(1 + m − β

2
,
1 − m − β

2
; −; −v−2

)
(B.29)

= v− 1
2 Kβ

2 , m
2
(v2). (B.30)

Note from (B.13) that Kβ,m(r) = Kβ,−m(r),

W(Iβ,m, Iβ,−m) = −2 sin πm

π
, (B.31)

Kβ,m(v) =
π

sin(πm)

(
− Iβ,m(v)

Γ(1−m−β
2 )

+
Iβ,−m(v)
Γ(1+m−β

2 )

)
, (B.32)

Iβ,m(v) =
Γ(1−m+β

2 )
2π

(
ei π

2 m
K−β,m(ei π

2 v) + e−i π
2 m

K−β,m(e−i π
2 v)

)
. (B.33)

For small v, we have

Iβ,m(v) =
v

1
2+m

Γ(1 + m)
(1 + O(v2)). (B.34)
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Hence,

Kβ,m(v) =
Γ(m)

Γ(1+m−β
2 )

(
v

1
2−m + o(|v| 12−m)

)
. (B.35)

For large v we have the asymptotics

Kβ,m(v) = vβ− 1
2 e− v2

2 (1 + O(v−2)), | arg v| <
π

2
− ε, ε > 0. (B.36)

Together with (B.33), this implies

Iβ,m(v) =
1

Γ(1+m−β
2 )

v−β− 1
2 e

v2
2 (1 + O(v−2)), | arg v| <

π

4
− ε; (B.37)

|Iβ,m(v)| ≤ 1
|Γ(1+m−β

2 )|v
−Re(β)− 1

2 (1 + O(v−2)), | arg v| =
π

4
. (B.38)

C. Weber Equation

The Weber equation (also called the parabolic cylinder equation) has the form

(−∂2
v + v2 − 2β

)
f(v) = 0. (C.1)

It is the eigenequation of the harmonic oscillator and a special case of (B.25), the
eigenequation of the isotonic oscillator, with m = ±1

2 .
Note that (C.1), unlike (B.25), does not have a singularity at v = 0. Therefore,

its solutions are analytic at v = 0.
Let us introduce notation for distinguished solutions of (C.1):

Iβ,±(v) := Iβ,∓ 1
2
(v), (C.2)

Kβ(v) := Kβ,± 1
2
(v). (C.3)

(In the literature, they are called Weber(-Hermite) functions or parabolic cylinder
functions). Note that (C.2) and (C.3) should be understood as follows: we first define
the functions on [0, ∞[ as in (B.27) and (B.28); then we extend them analytically
to the whole complex plane.

The equation (C.1) is invariant with respect to the mirror symmetry. Therefore,
it is spanned by even and odd solutions. It is easy to see that Iβ,+ is even and Iβ,−
is odd:

Iβ,±(−v) = ±Iβ,±(v). (C.4)

The function Kβ(v) has the decaying asymptotics (B.36) in the positive direc-
tion. In the negative direction, it usually blows up. Kβ(−v) is also a solution of the
Weber equation. It decays in the negative direction.

We have

Kβ(±v) = ± Iβ,−(v)
Γ(3

4 − β
2 )

− Iβ,+(v)
Γ(1

4 − β
2 )

, (C.5)

W(Iβ,+, Iβ,−) =
2
π

. (C.6)
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[9] Dereziński, J.: Hypergeometric type functions and their symmetries. Ann. Henri
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