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Schrödinger operators that can be solved in terms of
well-understood special functions play an important role
in applications.

It is natural to organize them in holomorphic families of
closed operators. Clearly, for most values of parame-
ters these operators are non-self-adjoint. Even if we are
interested mostly in self-adjoint cases, the existence of
(non-self-adjoint) analytic continuation plays sometimes
an important role in applications. Let me mention e.g.
Regge poles, which were famous in the 60’s.



HOMOGENEOUS SCHRÖDINGER OPERATORS

(in collaboration with LAURENT BRUNEAU
and VLADIMIR GEORGESCU)

Consider a formal differential expression

Lα = −∂2
x +

(
− 1

4
+ α
) 1

x2
.

We would like to interpret it as a well-defined (unbounded)
operator on L2[0,∞[. To do this we need to specify its
domain.



Lα, and closely related operators Hm and Hm,κ, which
we introduce shortly, appear in various important and
iteresting applications:

• The radial part of the Laplacian in dimension d on
spherical harmonics of order l is expressed by Lα with
α = (l + d−2

2 )2.

• These operators appear in the decomposition of the
Aharonov-Bohm Hamiltonian, in the membranes with
conical singularities, in the theory of many body sys-
tems with contact interactions and in the Efimov effect.



• They have a surprisingly rich mathematical phenomenol-
ogy, which should be close to physicists’ hearts: the
“running coupling constant” flows under the action of
the “renormalization group”, there are two ”phase tran-
sitions”, attractive and repulsive fixed points, limit cy-
cles, breakdown of conformal symmetry, etc.

• They have rather subtle and rich properties illustrat-
ing various concepts of the operator theory in Hilbert
spaces (eg. the Friedrichs and Krein extensions, holo-
morphic families of closed operators). They naturally
appear in representations of sl(2,R).



• Essentially all basic objects related to Hm, such as
their resolvents, spectral projections, wave and scat-
tering operators and the evolution, can be explicitly
computed in terms of special functions. A number of
nontrivial identities involving functions from the Bessel
family find an appealing operator-theoretical interpre-
tation in terms of the operators Hm. Eg. the Barnes
identity leads to the formula for wave operators.



Let Uτ be the group of dilations on L2[0,∞[, that is

(Uτf )(x) = eτ/2f (eτx).

We say that B is homogeneous of degree ν if

UτBU
−1
τ = eντB.

Clearly, Lα is homogeneous of degree −2.



Here are two natural questions:

1. If α ∈ R, how to interpret Lα as a self-adjoint operator
on L2[0,∞[? When is it homogeneous of degree −2?

2. If α ∈ C, how to interpret Lα as a closed operator on
L2[0,∞[? When is it homogeneous of degree −2?



Two naive interpretations of Lα:

1. The minimal operator Lmin
α : We start from Lα on C∞c ]0,∞[,

and then we take its closure.

2. The maximal operator Lmax
α : We consider the domain

consisting of all
f ∈ L2[0,∞[ such that Lαf ∈ L2[0,∞[.

Clearly, Dom(Lmin) ⊂ Dom(Lmax) and

Lmax

∣∣∣
Dom(Lmin)

= Lmin.

In other words Lmin ⊂ Lmax.



We will see that it is often natural to write α = m2

Theorem 1. .

1. For 1 ≤ Rem, Lmin
m2 = Lmax

m2 .

2. For−1 < Rem < 1, Lmin
m2 ( Lmax

m2 , and the codimension of

their domains is 2.

3. (Lmin
α )∗ = Lmax

α . Hence, for α ∈ R, Lmin
α is Hermitian.

4. Lmin
α and Lmax

α are homogeneous of degree −2.



Notice that
Lx

1
2±m = 0.

Let ξ be a compactly supported cutoff equal 1 around 0.

Let −1 < Rem. Note that x
1
2+mξ belongs to DomLmax

m2 .

This suggests to define the operator Hm to be the re-
striction of Lmax

m2 to

DomLmin
m2 + Cx

1
2+mξ.



Theorem 2. .

1. For 1 ≤ Rem, Lmin
m2 = Hm = Lmax

m2 .

2. For −1 < Rem < 1, Lmin
m2 ( Hm ( Lmax

m2 and the codi-

mension of the domains is 1.

3.H∗m = Hm. Hence, for m ∈]− 1,∞[, Hm is self-adjoint.

4.Hm is homogeneous of degree −2.

5. spHm = [0,∞[.

6. {Rem > −1} 3 m 7→ Hm is a holomorphic family of

closed operators.
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Theorem 3. .

1. For α ≥ 1, Lmin
α = H√α is essentially self-adjoint on

C∞c ]0,∞[.

2. For α < 1, Lmin
α is not essentially self-adjoint onC∞c ]0,∞[.

3. For 0 ≤ α < 1, the operator H√α is the Friedrichs exten-

sion and H−
√
α is the Krein extension of Lmin

α .

4.H1
2

is the Dirichlet Laplacian and H−1
2

is the Neumann

Laplacian on halfline.

5. For α < 0, Lmin
α has no homogeneous selfadjoint exten-

sions.



It is easy to see that

x−
1
2

(
− ∂2

x +
(
− 1

4
+ α
) 1

x2
± 1
)
x

1
2

= −∂2
x −

1

x
∂x +

(
− 1

4
+ α
) 1

x2
± 1,

which is the (modified) Bessel operator.

Therefore, it is not surprising that various objects related
to Hm can be computed with help of functions from the
Bessel family.



Theorem 4. . If Rm(λ;x, y) is the integral kernel of the oper-

ator (λ−Hm)−1, then for Re k > 0 we have

Rm(−k2;x, y) =

{√
xyIm(kx)Km(ky) if x < y,
√
xyIm(ky)Km(kx) if x > y,

where Im is the modified Bessel function and Km is the Mac-

Donald function.



Proposition 5. . For 0 < a < b < ∞, the integral kernel of

1l[a,b](Hm) is

1l[a,b](Hm)(x, y) =

∫ √b
√
a

√
xyJm(kx)Jm(ky)kdk,

where Jm is the Bessel function.



Let Fm be the operator on L2[0,∞[ given by

Fm : f (x) 7→
∫ ∞

0
Jm(kx)

√
kxf (x)dx

Fm is the so-called Hankel transformation. Define also
the operator Xf (x) := xf (x).

Theorem 6. . Fm is a bounded invertible involution onL2[0,∞[

diagonalizingHm and anticommuting with the self-adjoint gen-

erator o dilations A = 1
2i(x∂x + ∂xx):

F2 = 1l,

FmHmF−1
m = X2,

FmA = −AFm.



Theorem 7. Set

If (x) = x−1f (x−1), Ξm(t) = ei ln(2)tΓ(m+1+it
2 )

Γ(m+1−it
2 )

.

Then

Fm = Ξm(A)I.

Therefore, we have the identity

Hm := Ξ−1
m (A)X−2Ξm(A)

(Result obtained independently by Bruneau, Georgescu,
D, and by Richard and Pankrashkin).



Theorem 8. The wave operators associated to the pairHm, Hk
exist and

Ω±m,k := lim
t→±∞

eitHme−itHk

= e±i(m−k)π/2FmFk
= e±i(m−k)π/2 Ξk(A)

Ξm(A)
.



The formula

Hm := Ξ−1
m (A)X−2Ξm(A) (1)

valid for Rem > −1 can be used as an alternative defini-
tion of the family Hm also beyond this domain. It defines
a family of closed operators for the parameter m that be-
longs to

{m | Rem 6= −1,−2, . . . } ∪ R. (2)

Its spectrum is always equal to [0,∞[ and it is analytic in
the interior of (2).



In fact, Ξm(A) is a unitary operator for all real values of
m. Therefore, for m ∈ R, (1) is well-defined and self-
adjoint.

Ξm(A) is bounded and invertible also for all m such that
Rem 6= −1,−2, . . . . Therefore, the formula (1) defines an
operator for all such m.



One can then pose various questions:

•What happens with this operator along the lines Rem =

−1,−2, . . .?

•What is the meaning of the operator to the left of Re =

−1? (It is not a differential operator!)



The definition (or actually a number of equivalent defi-
nitions) of a holomorphic family of bounded operators is
quite obvious and does not need to be recalled. In the
case of unbounded operators the situation is more sub-
tle.



Suppose that Θ is an open subset of C, H is a Banach
space, and Θ 3 z 7→ H(z) is a function whose values
are closed operators on H. We say that this is a holo-
morphic family of closed operators if for each z0 ∈ Θ

there exists a neighborhood Θ0 of z0, a Banach space K
and a holomorphic family of injective bounded operators
Θ0 3 z 7→ B(z) ∈ B(K,H) such that RanB(z) = D(H(z))

and
Θ0 3 z 7→ H(z)B(z) ∈ B(K,H)

is a holomorphic family of bounded operators.



We have the following practical criterion:

Theorem 9. . Suppose that {H(z)}z∈Θ is a function whose

values are closed operators on H. Suppose in addition that

for any z ∈ Θ the resolvent set of H(z) is nonempty. Then

z 7→ H(z) is a holomorphic family of closed operators if and

only if for any z0 ∈ Θ there exists λ ∈ C and a neighborhood

Θ0 of z0 such that λ belongs to the resolvent set of H(z) for

z ∈ Θ0 and z 7→ (H(z) − λ)−1 ∈ B(H) is holomorphic on

Θ0.



The above theorem indicates that it is more difficult to
study holomorphic families of closed operators that for
some values of the complex parameter have an empty
resolvent set.

Conjecture 10. . It is impossible to extend

{Rem > −1} 3 m 7→ Hm

to a holomorphic family of closed operators on a larger con-

nected open subset of C.



RADIAL COULOMB SCHRÖDINGER
OPERATORS

(in collaboration with SERGE RICHARD)

Consider

Lβ,α := −∂2
x +

(
α− 1

4

) 1

x2
− β

x
,

where the parameters β, α are complex numbers. It is
natural to write α = m2.



Its eigenvalue equation(
− ∂2

x +
(
α− 1

4

) 1

x2
− β

x
− 1

4

)
u(x) = 0

is known as the Whittaker equation. Therefore, its solu-
tions can be expressed in terms of Whittaker functions,
or equivalently, 1F1 and 2F0 confluent functions.



For any m ∈ C with Re (m) > −1 we introduce the closed
operator Hβ,m that equals Lβ,m2 on functions that be-
have as

x
1
2+m(1− β

1 + 2m
x
)

near zero. We obtain a family

C× {m ∈ C | Re (m) > −1} 3 (β,m) 7→ Hβ,m ,

which is holomorphic except for a singularity at (0,−1
2).



If Re (m) ≥ 1 the boundary codition is not needed. If
Re (m) ≥ −1

2, then we can use a simplified boundary
condition

x
1
2+m.

For −1 < Re (m) < 1 the family Hβ,m does not describe
all possible well-posed extensions of Lmin

β,m2 (extensions
with a non-empty resolvent set). It describes all exten-
sions with pure boundary conditions. I will not discuss
mixed boundary conditions, which can also be analyzed
(work in progress together with J. Faupin, Q. N. Nguyen
and S. Richard).



Let us present

e−i2φσ
(
Hβ,−0.75+3.2i

)
β = eiφ for φ =

n

8
π with n = 0, . . . , 15.

By dilation analyticity, the point spectrum does not move,
the continuous spectrum, on the other hand, rotates as
e−i2φ, like a giant hand of a clock. Eigenvalues hit by
the continuous spectrum disappear and become reso-
nances. Then they reappear when the hand of the clock
comes again.

Spectrum is blue, resonances are red.
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The singularity at (β,m) = (0,−1
2) is quite curious: it is

invisible when we consider just the variable m. In fact,

m 7→ Hm = H0,m

is holomorphic around m = −1
2, and H−1

2
has the Neu-

mann boundary condition. It is also holomorphic around
m = 1

2, and H1
2

has the Dirichlet boundary condition.
Thus one has

H
0,−1

2
6= H

0,12
.



If we introduce the Coulomb potential, then

whenever β 6= 0, H
β,−1

2
= H

β,12
.

The function
(β,m) 7→ Hβ,m (∗)

is holomorphic around (0, 1
2), in particular,

lim
β→0

(1l + H
β,12

)−1 = (1l + H
0,12

)−1.

But

lim
β→0

(1l + H
β,−1

2
)−1 = (1l + H

0,12
)−1 6= (1l + H

0,−1
2
)−1

Thus (∗) is not even continuous near (0,−1
2).



ALMOST HOMOGENEOUS SCHRÖDINGER
OPERATORS
(in collaboration with SERGE RICHARD)

Let us go back to

Lα = −∂2
x +

(
− 1

4
+ α
) 1

x2
.

Recall that we defined Lmax
m2 and Lmin

m2 .



For any κ ∈ C ∪ {∞} let Hm,κ be the restriction of Lmax
m2

to the domain

Dom(Hm,κ) =
{
f ∈ Dom(Lmax

m2 ) | for some c ∈ C,
f (x)− c

(
x1/2−m + κx1/2+m) ∈ Dom(Lmin

m2 )

around 0
}
, κ 6=∞;

Dom(Hm,∞) =
{
f ∈ Dom(Lmax

m2 ) | for some c ∈ C,
f (x)− cx1/2+m ∈ Dom(Lmin

m2 ) around 0
}
.



For ν ∈ C ∪ {∞}, let Hν
0 be the restriction of Lmax

0 to

Dom(Hν
0 ) =

{
f ∈ Dom(Lmax

0 ) | for some c ∈ C,
f (x)− c

(
x1/2 lnx + νx1/2) ∈ Dom(Lmin

0 )

around 0
}
, ν 6=∞;

Dom(H∞0 ) =
{
f ∈ Dom(Lmax

0 ) | for some c ∈ C,
f (x)− cx1/2 ∈ Dom(Lmin

0 ) around 0
}
.



Proposition 11. .

1. For any |Re (m)| < 1, κ ∈ C ∪ {∞}

Hm,κ = H−m,κ−1.

2.H0,κ does not depend on κ, and these operators coincide

with H∞0 .



Proposition 12. .

H∗m,κ = Hm,κ and Hν∗
0 = Hν

0 .

In particular,

(i)Hm,κ is self-adjoint for m ∈]− 1, 1[ and κ ∈ R∪{∞}, and

for m ∈ iR and |κ| = 1.

(ii)Hν
0 is self-adjoint for ν ∈ R ∪ {∞}.



Proposition 13. . For any m with |Re (m)| < 1 and any κ, ν ∈
C ∪ {∞}, we have

UτHm,κU−τ = e−2τHm,e−2τmκ,

UτH
ν
0U−τ = e−2τHν+τ

0 .

In particular, only

Hm,0 = Hm,

Hm,∞ = H−m,

H∞0 = H0 are homogeneous.

The renormalization group action: Rτ (A) := e2τUτAU−τ .

The homogeneous extensions are its only fixed points.



Self-adjoint extensions of the Hermitian operator

Lα = −∂2
x +

(
− 1

4
+ α
) 1

x2
.

K—Krein, F—Friedrichs, dashed line—single bound state,
dotted line—infinite sequence of bound states.



The essential spectrum of Hm,κ and Hν
0 is [0,∞[.

Theorem 14. .

1. z ∈ C\[0,∞[ belongs to the point spectrum of Hm,κ iff

(−z)−m = κ
Γ(m)

Γ(−m)
.

2.Hν
0 possesses an eigenvalue iff −π < Im 2ν < π, and then

it is z = −e−2ν.



For a given m,κ all eigenvalues form a geometric se-
quence that lies on a logarithmic spiral, which should be
viewed as a curve on the Riemann surface of the loga-
rithm. Only its “physical sheet” gives rise to eigenvalues.

For m which are not purely imaginary, only a finite piece
of the spiral is on the “physical sheet” and therefore the
number of eigenvalues is finite.

If m is purely imaginary, this spiral degenerates to a half-
line starting at the origin.

If m is real, the spiral degenerates to a circle. But then
the operator has at most one eigenvalue.



Theorem 15. . Let m = mr + imi ∈ C× with |mr| < 1.

(i) Let mr = 0.

(a) If
ln
∣∣κ Γ(m)

Γ(−m)

∣∣
mi

∈]− π, π[, then #σp(Hm,λ) =∞,

(a) if
ln
∣∣κ Γ(m)

Γ(−m)

∣∣
mi

6∈]− π, π[ then #σp(Hm,λ) = 0.

(ii) If mr 6= 0 and if N ∈ N satisfies N <
m2

r+m2
i

|mr| ≤ N + 1,

then

#σp(Hm,λ) ∈ {N,N + 1}.
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HOMOGENEOUS RANK ONE PERTURBATIONS

Consider the Hilbert space H = L2(R+) and operator X

Xf (x) := xf (x).

Let m ∈ C, λ ∈ C ∪ {∞}. We consider a family of opera-
tors formally given by

Hm,λ := X + λ|x
m
2 〉〈x

m
2 |.



Note that X is homogeneous of degree 1.

|x
m
2 〉〈x

m
2 | is homogeneous of degree 1 + m. However

strictly speaking, it is not a well defined operator, be-
cause x

m
2 is never square integrable.



If −1 < Rem < 0, the perturbation |x
m
2 〉〈x

m
2 | is form

bounded relatively to X and then Hm,λ can be defined.
The perturbation is formally rank one. Therefore,

(z −Hm,λ)−1 = (z −X)−1

+

∞∑
n=0

(z −X)−1|x
m
2 〉(−λ)n+1〈x

m
2 |(z −X)−1|x

m
2 〉n〈x

m
2 |(z −X)−1

= (z −X)−1

+
(
λ−1 − 〈x

m
2 |(z −X)−1|x

m
2 〉
)−1

(z −X)−1|x
m
2 〉〈x

m
2 |(z −X)−1.



By straightforward complex analysis methods we obtain

〈x
m
2 |(z −X)−1|x

m
2 〉

=

∫ ∞
0

xm(z − x)−1dx = (−z)m
π

sinπm
.

Therefore, the resolvent of Hm,λ can be given in a closed
form:

(z −Hm,λ)−1 = (z −X)−1

+
(
λ−1 − (−z)m

π

sinπm

)−1
(z −X)−1|x

m
2 〉〈x

m
2 |(z −X)−1.



The above formula defines a resolvent of a closed opera-
tor for all −1 < Rem < 1 and λ ∈ C∪{∞}. This allows us
to define a holomorphic family of closed operators Hm,λ.

Note that Hm,0 = X.

m = 0 is special: H0,λ = X for all λ.



We introduce Hρ
0 for any ρ ∈ C ∪ {∞} by

(z −Hρ
0 )−1 = (z −X)−1

−
(
ρ + ln(−z)

)−1
(z −X)−1|x0〉〈x0|(z −X)−1.

In particular, H∞0 = X.



The group of dilations (“the renormalization group”) acts
on our operators in a simple way:

UτHm,λU
−1
τ = eτHm,eτmλ,

UτH
ρ
0U
−1
τ = eτH

ρ+τ
0 .



Define the unitary operator

(If )(x) := x−
1
4f (2
√
x).

Its inverse is

(I−1f )(x) :=
(y

2

)1
2
f
(y2

4

)
.

Note that

I−1XI =
X2

4
,

I−1AI =
A

2
.



We change slightly notation: the almost homogeneous
Schrödinger operators Hm, Hm,κ and Hν

0 will be denoted
H̃m, H̃m,κ and H̃ν

0

Recall that we introduced the Hankel transformation Fm,
which is a bounded invertible involution satisfying

FmH̃mF−1
m = X2,

FmAF−1
m = −A.



Theorem 16. .

1.

F−1
m I−1Hm,λIFm =

1

4
H̃m,κ,

where

λ
π

sin(πm)
= κ

Γ(m)

Γ(−m)
,

2.

F−1
m I−1H

ρ
0 IFm =

1

4
H̃ν

0 ,

where ρ = −2ν.


