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Abstract
According to the Bogoliubov theory the low energy behaviour of the Bose gas at zero temper-
ature can be described by non-interacting bosonic quasiparticles called phonons. In this work
the damping rate of phonons at low momenta, the so-called Beliaev damping, is explained
and computed with simple arguments involving the Fermi Golden Rule and Bogoliubov’s
quasiparticles.

Keywords Many-body quantum mechanics · Bogoliubov approximation · Fermi Golden
Rule · Spectral Theory

1 Introduction

The Bose gas near the zero temperature has curious properties that can be partly explained
from the first principles by a beautiful argument that goes back to Bogoliubov [5]. In Bogoli-
ubov’s approach the Bose gas at zero temperature can be approximately described by a gas of
weakly interacting quasiparticles. The dispersion relation of these quasiparticles, that is, their
energy in function of the momentum is described by a function k �→ ek with an interesting
shape. At lowmomenta these quasiparticles are called phonons and ek ≈ ck, where c > 0 and
k := |k|. Thus the low-energy dispersion relation is very different from the non-interacting,
quadratic one. It is responsible for superfluidity of the Bose gas.

It is easy to see that phonons could be metastable, because the energy-momentum conser-
vation may not prohibit them to decay into two or more phonons. This decay rate was first
computed in perturbation theory by Beliaev [2], hence the name Beliaev damping. According
to his computation, the imaginary part of the dispersion relation behaves for small momenta
as −cBelk5. This implies the exponential decay of phonons with the decay rate 2cBelk5. The
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Beliaev damping has been observed in experiments, and appears to be consistent with its
theoretical predictions [28, 31].

In our paper we present a systematic derivation of Beliaev damping. Our presentation
differs in several points from similar accounts found in the physics literature. We try to make
all the arguments as transparent as possible, without hiding some of less rigorous steps.
We avoid using diagrammatic techniques, in favor of a mathematically much clearer picture
involving a Bogoliubov transformation and the 2nd order perturbation computation (the so-
called Fermi Golden Rule) applied to what we call the effective Friedrichs Hamiltonian. We
use the grand-canonical picture instead of the canonical one found in a part of the literature.
This is a minor difference; on this level both pictures should lead to the same final result.
We believe that the derivation of Beliaev damping is a beautiful illustration of methods
many-body quantum physics, which is quite convincing even if not fully rigorous.

In the remaining part of the introduction we provide a brief sketch of the main steps of
Beliaev’s argument. In the main body of our article we discuss these steps in more detail,
indicating which parts can be easily made rigorous.

Let v be a real function satisfying v(x) = v(−x). Later onwewill needmore assumptions:
in particular, we will assume that v(x) is rotationally invariant, both v(x) and its Fourier
transform v̂(k) decay sufficiently fast at infinity and that v̂(k) ≥ 0. The homogeneous Bose
gas of N particles interacting with the pair potential v is described by the Hamiltonian and
the total momentum

HN = −
N∑

i=1

1

2m
�i +

∑

1≤i< j≤N

v(xi − x j ), (1)

PN =
N∑

i=1

1

i
∂xi . (2)

These operators act on L2
s

(
(R3)N

)
, the space of functions symmetric in the positions of

N 3-dimensional particles. Note that HN commutes with PN , which expresses the spatial
homogeneity of the system. From now on we will set m = 1.

Wewould like to describe a Bose gas of positive density in infinite volume. This is difficult
to do in terms of the Hamiltonian acting on the whole space R3. Therefore we replace (1)
and (2) with a system enclosed in a box of size L , and then take the thermodynamic limit.
In order to preserve translation symmetry we consider periodic boundary conditions. They
are not very physical, but it is believed that they should not affect the overall picture in the
thermodynamic limit.

Thus v is replaced by its periodized version adapted to the box of size L . The new
Hilbert space is L2

s

(
([−L/2, L/2]3)N )

. We will use the same symbols HN , PN to denote the
Hamiltonian and total momentum in the box. Note that they still commute with one another.

It is very convenient to consider at the same time all numbers of particles. In order to control
the density, that is N

L3 , we introduce the chemical potential given by a positive numberμ > 0,
and we use the grand-canonical formalism. It is also convenient to pass from the position to
the momentum representation. Thus we replace HN , PN with

H := ∞⊕
N=0

(HN − μN ) =
∫

a∗
x

(
− 1

2
�x − μ

)
ax dx + 1

2

∫ ∫
dx dyv(x − y)a∗

x a
∗
yayax

=
∑

p

(1
2
p2 − μ

)
a∗
pap dp + 1

2L3

∑

p

∑

q

∑

k

v̂(k)a∗
p+ka

∗
q−kaqap, (3)
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P := ∞⊕
N=0

PN =
∫

a∗
x
1

i
∂xax dx =

∑

p

pa∗
pap. (4)

a∗
x and ax are the usual creation/annihilation operators for x ∈ [−L/2, L/2]3 in the position

representation, commuting to the Dirac delta. a∗
p, ap are the usual creration/annihilation

operators for p ∈ 2πZ3/L in the momentum representation commuting to the Kronecker
delta. H , P act on the bosonic Fock space with the one-particle space L2

([−L/2, L/2]3) in
the position representation, and l2

(
2πZ3/L

)
in the momentum representation. H and P still

commute with one another.
Now there comes the main idea of the Bogoliubov approach. At zero temperature, one

expects complete Bose–Einstein condensation. This is expressed by assuming that the zero
mode is populated macroscopically and there are only very few particles in nonzero modes.
The zero mode is treated classically, and essentially removed from the picture. One obtains
an approximate Hamiltonian, which does not preserve the number of particles. One argues
that its most important component is the quadratic part which involves operators of the form
aka−k, a∗

ka
∗−k and a∗

kak, k �= 0. It can be diagonalized by a linear transformation which
mixes creation and annihilation operators, called since [5] a Bogoliubov transformation, and
becomes

HBog :=
∑

k �=0

ekb
∗
kbk, (5)

ek :=
√
1

4
|k|4 + v̂(k)

v̂(0)
μ|k|2. (6)

Thus, the Bogoliubov approximation states that

H ≈ EBog + HBog (7)

where EBog is a constant, which will not be relevant for our analysis. The operator b∗
k is the

creation operator of the quasiparticlewithmomentum k. It is a linear combination of a∗
k, a−k.

(5) is sometimes called a Bogoliubov Hamiltonian. It describes independent quasiparticles
with the dispersion relation ek. The Bogoliubov vacuum, annihilated by bk and denoted
�Bog, is its ground state, and can be treated as an approximate ground state of the many-body
system. The Bogoliubov Hamiltonian is still translation invariant: in fact, it commutes with
the total momentum, described (without any approximation) by

P =
∑

k �=0

kb∗
kbk. (8)

It is easy to describe the thermodynamic limit of (5) and (8): we simply replace the
summation by integration, without changing the dispersion relation:

HBog =
∫

ekb
∗
kbk dk, (9)

P =
∫

kb∗
kbk dk. (10)

It is interesting to visualize possible energy-momentum values predicted by the Bogoli-
ubov approximation or, in a more precise mathematical language, the joint spectrum of the
total momentum P and the Bogoliubov Hamiltonian HBog. On the 1-quasiparticle space this
joint spectrum is given by the graph of the function k �→ ek. On Fig. 1 we show a typical
form of the dispersion relation in the low momentum region, marked with the black line.
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Fig. 1 Joint spectrum of (HBog, P) for generic potentials

We assume that the potential v satisfies the usual assumptions stated before (1) and the
second derivative of v̂ near zero is small enough. The green line denotes the bottom of the
2-quasiparticle spectrum, that is the joint spectrum of (HBog, P) in the 2-quasiparticle sector.
The bottom of the full joint spectrum of (HBog, P) is marked with an orange dashed line.1

For more details concerning the construction of the excitation spectrum we refer to [12, 18,
19].

One can perform an additional step in the Bogoliubov approach. If the potential v has a
very small support, one can argue that v̂(k)

v̂(0) can be approximated by 1. One then usually says
that the interaction is given by contact potentials, which in the physics literature are often
presented in the position representation as v(x) = 4πaδ(x), where a is a constant, called
the scattering length. Strictly speaking, this is however not correct. The delta function needs
a renormalization to become a well-defined interaction in the two-body case; in the N -body
case the situation is even more problematic. In some cases one can justify this approximation
in the dilute case using the so-called Gross-Pitaevski limit. Anyway, in this approximation
we obtain a simpler dispersion relation

ek =
√
1

4
|k|4 + μ|k|2. (11)

On Fig. 2 we show the energy-momentum spectrum corresponding to (11).
The Hamiltonian HBog, both with the dispersion relation (6) and (11) has remarkable

physical consequences. Note first that the dispersion relation k �→ ek has a linear cusp at the
bottom. It also has a positive critical velocity, that is,

ccrit := sup{c | ek ≥ ck, k ∈ R3} > 0. (12)

In other words, the graph k �→ ek is above k �→ ccritk. The full joint spectrum σ(P, HBog)

is still above k �→ ccritk. This is interpreted as one of the most important properties of

1 Strictly speaking, Figures 1 and 2 should be interpreted as follows. We choose coordinates, so that P =
(P1, P2, P3). We assume that P2 = P3 = 0, on the horizontal axis we put P1, and on the vertical axis H . The
full 4-dimensional joint spectrum is rotationally invariant in P , hence easily reconstructed from our pictures.
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Fig. 2 Joint spectrum of (HBog, P) for contact potentials

superfluidity: a droplet of the Bose gas travelling with velocity less than ccritk has negligible
friction (see e.g. [12]).

Of course, HBog yields only an approximate description of the Bose gas. In reality, one
cannot treat the quasiparticles given by b∗

k, bk as fully independent. In the derivation of the
Bogoliubov Hamiltonian various terms were neglected. In particular, terms of the third and
fourth degree in b∗

k, bk were dropped. Replacing v by κv we obtain an (artificial) coupling
constant, to be set to 1 at the end. The third order terms are multiplied by

√
κ and the quartic

terms by κ . We argue that the quartic terms are of lower order and can be dropped. The third
order terms have the form

1√
L3

∑

k,p,k+p�=0

uk,pb
∗
kb

∗
pbk+p + uk,pbk+pb

∗
kb

∗
p (13)

+ 1√
L3

∑

k,p,k+p�=0

wk,pb
∗
kb

∗
pb

∗−k−p + wk,pb−k−pbkbp. (14)

We will argue (see Sect. 6) that triple creation and triple annihilation terms do not contribute
to the decay of phonons. Thus we drop also (14).

Let us investigate what happens with the quasiparticle state b∗
k�Bog under the perturbation

(13). To this end we first need to check with which states have non-zero matrix elements with
b∗
k�Bog. We easily see that it is directly coupled by (13) only to the 2-quasiparticle sector. By

taking the thermodynamic limit we can assume that the variable k is continuous. Thus the
perturbed quasiparticle can be described by the space C⊕ L2(R3/Z2) with the Hamiltonian

HFried(k) :=
[
ek (hk|

|hk) ep + ek−p

]
, (15)

where hk can be derived from (13). Here, the action of Z2 onR3 is p �→ k−p, and is related
to the Bose symmetry b∗

pb
∗
k−p�Bog = b∗

k−pb
∗
p�Bog.

Hamiltonians similar to (15) are well understood. They are often used as toy models in
quantum physics, and are sometimes called Friedrichs Hamiltonians.
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It is important to notice that if we set hk = 0, so that the off-diagonal terms in (15)
disappear, the unperturbed quasiparticle energy ek lies inside the continuous spectrum of
2-quasiparticle excitations {ep + ek−p | p ∈ R

3}, at least for small momenta. (To be able to
say this we need the thermodynamic limit which makes the momentum continuous.) To see
this, note that if k �→ ek is convex we have a particularly simple expression (cf. Lemma 4)
for the infimum of the 2-quasiparticle spectrum:

inf
p

{ep + ek−p} = 2ek/2. (16)

Now (11) is strictly convex, hence ek lies inside the continuous spectrum of 2-quasiparticle
excitations. If the second derivative of v̂ near 0 is small enough, then the generic dispersion
relation (6) is convex for small momenta, hence then this property is true at least for small
momenta.

Because of that, one can expect that the position of the singularity of the resolvent of (15)
becomes complex—it describes a resonance and not a bound state. This is interpreted as the
unstability of the quasiparticle: its decay rate is twice the imaginary part of the resonance.

The second order perturbation theory, often called the Fermi Golden Rule, says that in
order to compute the (complex) energy shift of an eigenvalue we need to find the so-called
self-energy 	k(z), which for z /∈ R in our case is given by the integral

	k(z) = 1

2(2π)3

∫
h2k(p) dp

(z − ep − ek−p)
. (17)

Then 	k(ek + i0) should give the energy shift of the eigenvalue ek.
The imaginary part of this shift is much easier to compute. In fact, let P 1

x denote the
principal value of 1

x . Applying the Sochocki-Plemelj formula

1

x + i0
= P 1

x
− iπδ(x), (18)

we obtain

Im	k(ek + i0) = −1

16π2

∫
h2k(p)δ(ek − ep − ek−p) dp. (19)

In the main result of our paper we make an assumption which is a compromise between
the usual regular case and a contact potential. We assume that v̂, the Fourier transform of
the potential in a neighborhood of zero is constant, however it decays for large k sufficiently
fast. In Theorem 6 we prove that under these assumptions

Im	k(ek + i0) = −cBelk
5 + O(k6) as k → 0, cBel = 3v̂(0)

640πμ
. (20)

Physically (20) means that quasiparticles are almost stable for small k with the lifetime
proportional to k−5.

We remark that our analysis is based on the grand-canonical approach where μ is the
chemical potential. In the canonical picture the dispersion relation in the thermodynamic
limit is conjectured to be

ek =
√
1

4
|k|4 + 4πaρ|k|2. (21)

Comparing (11) with (21) we obtain 4πaρ ≈ μ. Actually, at positive temperatures ρ should
be replaced by the condensate density ρ0. It is well-known that for weak potentials v̂(0) ≈
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4πa. Thus (20) can be rewritten as

cBel = 3

640πρ0
, (22)

which is the form of the Beliaev constant usually stated in the physics literature ( [14, 25,
34, 43]). In particular, to the leading order the damping rate depends on the potential only
through ρ0.

The Fermi Golden Rule predicts that the real part of the dispersion relation of the inter-
acting system is approximately given by ek + Re	k(ek + i0), where

Re	k(ek + i0) = 1

2(2π)3
Re

∫
hk(p)2 dp

(ek − ep − ek−p + i0)
. (23)

If v̂(k) has a sufficient decay and we use the dispersion relation (6), then (23) is well defined.
However if we use the formula (11) for contact potentials, then (23) is divergent for large k.
This is related to the fact that constant v̂(k) does not correspond to a well-defined potential
(one has to renormalize its coupling constant).

Unfortunately, (23) yields an unphysical prediction for small momenta. Under the same
assumptions as in the main theorem, we show that lim

k→0
	k(0) = ∞. Thus the Fermi Golden

Rule predicts an infinite energy shift at zero momenta, which is certainly incorrect. This is
in agreement with second-order perturbation theory results from physics literature [43].

Similar results about both imaginary and real part of the shift of the dispersion relation can
be obtained for more general potentials. We indicate possible generalizations of our result in
remarks.

One can conclude that perturbation theory around the Bogoliubov Hamiltonian provides
a reasonable method to find the second order imaginary correction to the dispersion relation.
However, the computation of its real part seems more dubious, at least for small momenta.

The above problem is an indication of the crudeness of the Bogoliubov approximation.
Throwing out the zero mode from the picture (or, which is essentially the same, treating
it as a classical quantity), as well as throwing out higher order terms, is a very violent act
and we should not be surprised by a punishment. By the way, one expects that the true
dispersion relation of phonons goes to zero as k → 0. This is the content of the so called
“Hugenholtz-Pines Theorem” [30], which is a (non-rigorous) argument based on the gauge
invariance. Perturbation theory around the Bogoliubov Hamiltonian is compatible with this
theorem where it comes to the imaginary part. For the real part it fails.

Better results of computations of the imaginary part over the real part based on the Fermi
Golden Rule are not very surprising. It is a general property of Friedrichs Hamiltonians with
singular off-diagonal terms: the imaginary part of the perturbed eigenvalue can be computed
much more reliably than its real part. We describe this phenomenon briefly in Sects. 2 and 3.

Readers who like clean mathematical results illustrating physical phenomena (which
includes the authors) may be somewhat dissatisfied with a relatively long chain of argu-
ments presented in this paper. One of its aspects is the use of a finite system in a box at some
of the steps (e.g. Bogoliubov approximation and removal of the zeroth mode), and of the
thermodynamical limit in others (computation of the resonance, which requires continuous
spectrum, hence, infinite volume). Unfortunately, we do not know a better description. We
are just trying to follow the usual physicist’s reasoning, without hiding its non-rigorous steps.

Let us now make a few remarks about the literature. The theory of metastable states and
their exponential decay goes back to the work of Dirac [21]. The concept of a resonance
as a pole on the “unphysical sheet of the complex plane” is usually attributed to Wigner-
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Weisskopf [44]. It is discussed, including its historical background, in Chap. XII.6 of [41].
In his lecture notes [23] Fermi formulated two “golden rules” that describe 2nd order theory
for eigenvalues and their decay rate. The Friedrichs Hamiltonian is a useful pedagogical toy
model, which nicely ilustrates the Fermi Golden Rule. It goes back to [24], see also [17].
An elegant rigorous description of exponential decay expressing the Fermi Golden Rule was
given by Davies in his theorem about the weak coupling limit [13], see also [15, 16].

The original paper ofBogoliubov [5]was heuristic, however in recent years there have been
many rigorous papers justifying Bogoliubov’s approximation in several cases. The first result
justifying (7) has been obtained in themean-field scaling by Seiringer in [42] (see also [19, 26,
32, 38] for related results). Recently, corresponding results have been obtained in the Gross-
Pitaevskii regime [3, 10, 39] and even beyond [9]. A time-dependent version of Bogoliubov
theory has been successful in describing the dynamics of Bose-Einstein condensates and
excitations thereof (see [36, 40] for reviews).

As explained above, to describe damping one has to go beyond Bogoliubov theory. In
the mean-field regime this has been done for the ground state energy expansion in [8, 37],
including singular interactions [6], and for the dynamics in [7]. Very recently, the results
beyond Bogoliubov theory have been obtained in the Gross-Pitaevskii regime [11].

None of the above rigorous papers, with exception of [19], addressed the energy-
momentum spectrum. In fact, it is very difficult to study rigorously the dispersion relation in
the thermodynamic limit—which is essentially necessary to analyze phonon damping.

The quasiparticle picture of the Bose gas at low temperatures has been confirmed in exper-
iments. The dispersion relation of 4He can be observed in neutron scattering experiments,
and is remarkably sharp. It has beenmeasured within a large range of wave numbers covering
not only phonons, but also the so-called maxons and rotons, see e.g. [27]. In particular, one
can see that the dispersion relation is slightly higher than the 2-quasiparticle spectrum for
low wave numbers. The quasiparticle picture has also been confirmed by experiments on
Bose Einstein condensates involving alkali atoms. The Beliaev damping has been observed
in experiments on Bose Einstein condensates. The results are consistent with theoretical
predictions [28, 31]. Note, however, that the precise prediction (19) is difficult to verify
experimentally. Bose-Einstein condensates created in labs are not very large, so it is difficult
to probe the large wavelength region.

Let us mention that there exists another related phenomenon found in Bose-Einstein
condensates, the so-called Landau damping, which involves instability of quasiparticles due
to thermal excitations. The Landau damping is absent at zero temperature and becomes
dominant at higher temperatures. The Beliaev damping occurs at zero temperature, and for
very small temperatures it is still stronger than the Landau damping.

In the physics literature, the dampingof phononswasfirst computedbyBeliaev [2]. Landau
damping has been for the first time computed by Hohenberg and Martin in [29] (see also
[35]). Both these results have been reproduced in [43], also using the formalism of Feynman
diagrams and many-body Green’s functions. In [34] the damping rate was derived starting
from an effective action in the spirit of Popov’s hydrodynamical approach. [25] repeated the
same computation in the time-dependent mean-field approach. In [14] the mean-field and
hydrodynamic approaches were applied to the 2D case. Our derivation is consistent with
the above works, however, in our opinion, avoids some unnecessary elements obscuring the
simple mechanism of the Beliaev damping.

The plan of the paper is as follows. Sections2 and 3 concern general well-known facts
about about 2nd order perturbation theory of embedded eigenvalues. In Sect. 4 we define the
Bose gas Hamiltonian and describe the Bogoliubov approach in the grand-canonical setting.
In Sect. 5 we derive heuristically the effective model that we consider. Then, in Sect. 6 we
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discuss the shape of the energy-momentum spectrum and explain why the contribution from
term (14) is irrelevant for the damping rate computation, which is the main result of the paper
is proven in Sect. 8 as Theorem 6. The analysis of the real part of the self-energy, and of its
(unphysical) behavior at small momenta by the method of this paper is described in Sect. 9.

2 Friedrichs Hamiltonian

Suppose thatH is a Hilbert space with a self-adjoint operator H . Let� ∈ H be a normalized
vector. We can write H 
 C ⊕ K, where C 
 C� and K := {�}⊥. First assume that �

belongs to the domain of H and set

E0 := (�|H�), h := H� − E0�. (24)

Note that h ∈ K. Let K denote H compressed to K. That means, if I : K → H is the
embedding, then K := I ∗H I . Then in terms of C ⊕ K we can write

H =
[
E0 (h|
|h) K

]
. (25)

Operators of this form were studied by Friedrichs in [24]. Therefore, sometimes they are
referred to as Friedrichs Hamiltonians, e.g. in [15, 17]:

Let z ∈ C. The following identity is a special case of the so-called Feshbach-Schur
formula:

(�|(H − z)−1�) = 1

E0 + 	(z) − z
, (26)

	(z) := −(h|(K − z)−1h). (27)

Following a part of the physics literature, we will call 	(z) the self-energy. For further
reference let us rewrite (26) as

	(z) = 1

(�|(H − z)−1�)
+ z − E0. (28)

Note that the full resolvent of H can be computed, see e.g. [17], or Equation (1.2) of [20]:

(H − z)−1 =
[
0 0
0 (K − z)−1

]
(29)

+
[

1
(K − z)−1|h)

]
1

E0 + 	(z) − z

[
1 (h|(K − z)−1

]
.

If K has continuous spectrum, it often happens that 	(z) can be continued analytically
from the upper complexhalfplane across the spectrum to thenon-physical sheet of the complex
plane. Then (�|(H − z)−1�) may have a singularity for z = E = ER − i�2 with � > 0.
This singularity E is called a resonance. Suppose that� is small. A well-known non-rigorous
argument, involving a change of the contour of integration and described e.g. in Chap. XII.6
of [41] (see also [22]), shows that over a long period of time (not too small and not too large)
we have

(�|e−it H�) 
 Ce−iERt− �
2 t. (30)

This is interpreted as exponential decay of the state � with the decay rate �.
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We can apply the formulas (26)- (29) also if � does not belong to the domain of H , but
belongs to its form domain, so that (�|H�) is well defined. Note that E0 and 	(z) are then
uniquely defined by (24) and (28).

If � does not belong to the form domain of H , then strictly speaking the self-energy
is ill defined. In practice in such situations one often introduces a cutoff Hamiltonian H
,
which in some sense approximates H . Then, setting h
 := H
�, E


0 := (�|H
�), and
denoting by K
 the operator H
 compressed to K, one can use the cutoff version of the
Feshbach-Schur formula:

(�|(H
 − z)−1�) = 1

E

0 + 	
(z) − z

, (31)

	
(z) = −(h
|(K
 − z)−1h
). (32)

The resolvent of the original Hamiltonian H can be retrieved [17] in the limit 
 → ∞:

(H − z)−1 = lim

→∞(H
 − z)−1. (33)

Note that E

0 is a sequence of real numbers, typically converging to ∞. They can be treated

as counterterms renormalizing the self-energy 	
(z).

3 Fermi Golden Rule

The meaning of the self-energy is especially clear in perturbation theory. Again, let � be a
normalized vector in H. Consider a family of self-adjoint operators Hλ = H0 + λV such
that H0� = E0�. In order to avoid discussing 1st order perturbation theory we assume that
(�|V�) = 0. Let h := V� − 1

λ
E0� and Kλ be Hλ compressed to K. Thus we rewrite (25)

as

Hλ =
[
E0 λ(h|

λ|h) Kλ

]
. (34)

We extract λ2 from the definition of the self-energy, so that (26) and (27) are rewritten as

(�|(Hλ − z)−1�) = (
E0 + λ2	λ(z) − z

)−1
, (35)

	λ(z) := −(h|(Kλ − z)−1h) = 	0(z) + O(λ). (36)

Now (35) has a pole at
E0 + λ2	0(E0 + i0) + O(λ3). (37)

This is often formulated as the Fermi Golden Rule: the pole of the resolvent, originally at an
eigenvalue E0, is shifted in the second order by λ2	0(E0+ i0). This shift can have a negative
imaginary part, and then the eigenvalue disappears, and instead we have a resonance.

For small couplings λ a rigorous meaning of the decay property (30) is provided by the
following version of the weak coupling limit ( [13], see also [15, 16])

lim
λ→0

(
�

∣∣ exp
( − i t

λ2
(Hλ − E0)

)
�

) = e−it	0(E0+i0). (38)

If the perturbation is singular, so that � does not belong to the domain of V , then 	0(z)
is in general ill defined and (37) may lose its meaning. Strictly speaking, one then needs
to introduce a cutoff on the perturbation and a counterterm, and only then to apply the
appropriately modified Fermi Golden Rule.
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Note that it is enough to consider real counterterms. Therefore, if we know that the
renormalized energy is close to E0, thenwe can still expect that (37) gives a correct prediction
for the imaginary part of the resonance. In other words, the imaginary part of the singularity
of the resolvent (Hλ − z)−1 is

λ2Im	0(E0 + i0) + O(λ3), (39)

where we do not need to cut off the perturbation.
In practice, we start from a singular expression of the form (34). To make it well-defined

we need to choose a cutoff and counterterms. These choices will not affect the imaginary part
of the resonance, however in principle, one can add an arbitrary real constant to a counterterm,
which will affect the real part of the resonance. Therefore, for singular perturbations it may
be more difficult to predict the real part of the resonance.

4 Bose Gas and Bogoliubov Ansatz

We consider a homogeneous Bose gas of N particles with a two-body potential described by
a function v : R3 → R with the Fourier transform v̂(k) = ∫

R3 v(x)e−ik·x dx. In the grand
canonical setting and the momentum representation such a system is governed by the (second
quantized) Hamiltonian

H =
∫ (

k2

2
− μ

)
a∗
kak dk + κ

2(2π)3

∫
dp

∫
dq

∫
dkv̂(k)a∗

p−ka
∗
q+kapaq, (40)

where μ ≥ 0 is the chemical potential and a∗
k/ak the creation/annihilation operators for

particles of mode k. It acts on the bosonic Fock space F = �s
(
L2(R3)

)
, and for each N

it leaves invariant its N -particle sector L2
s

(
(R3)N

)
. Recall that the creation and annihilation

operators satisfy the canonical commutation relation (CCR):

[ap, aq] = 0 = [a∗
p, a

∗
q], [ap, a∗

q] = δ(p − q), (41)

where [ ] is the usual commutator. We introduce the coupling constant κ > 0 mostly for
bookkeeping purposes; note that in the introduction we set κ = 1.

In most of the paper we will make the following assumption on the potentials:

v ∈ L1(R3), so that v̂ is a continuous function; (42a)

v̂(k) ≥ 0, k ∈ R
3; (42b)

v̂(k) = v̂(0) > 0, for |k| < 
, 
 > 0; (42c)

|v̂(k)| ≤ C(1 + |k|)− 1
2−ε, for some ε > 0; (42d)

v is rotationally invariant . (42e)

Remark 1 One can relax the condition (42c) to allow for generic potentials. One could also
consider potentials which for some constant ν satisfy

v̂(k) = v̂(0) + ν

2
|k|2 + O(|k|2+ε), ε > 0. (43)

Wewill comment about possible extensions of our results to potentials satisfying (43) instead
of (42c).
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For the reasons explained in the introduction, we replace the infinite space R
3 by the

torus [−L/2, L/2]3 with periodic boundary conditions. In the momentum representation the
Hamiltonian becomes

H =
∑

k∈2πZ3/L

(
k2

2
− μ

)
a∗
kak + κ

2 L3

∑

p,q,k∈2πZ3/L

v̂(k)a∗
p−ka

∗
q+kapaq. (44)

Note that v̂ is the same function as in (40), however it is now sampled only on the lattice
2πZ3/L . The commutation relations involve now the Kronecker delta:

[ap, aq] = 0 = [a∗
p, a

∗
q], [ap, a∗

q] = δp,q. (45)

Let us now pass to the quasiparticle representation. To this end we follow the well-known
grand-canonical version of the Bogoliubov approach (see e.g. [12]). It involves two unitary
transformations.

The first one is a Weyl transformation that introduces a macroscopic occupation of the
zero-momentum mode, the Bose-Einstein condensate. (In the canonical version Bogoliubov
approach this corresponds to the c-number substitution [33].) To this end, for α ∈ C, we
introduce the Weyl operator of the mode k = 0

Wα = exp(−αa∗
0 + ᾱa0). (46)

Then
W ∗

αa
∗
kWα = a∗

k − ᾱδk,0 =: ã∗
k.

The new annihilation operators with tildes kill the “new vacuum” �α = W ∗
α�. We express

our Hamiltonian in terms of ã∗
k, ãk. To simplify the notation, in what follows we drop the

tildes and we obtain

H = −μ|α|2 + κv̂(0)

2L3 |α|4 +
(

κv̂(0)

L3 |α|2 − μ

)
(αa∗

0 + ᾱa0)

+
∑

k

(
k2

2
− μ + κ(v̂(k) + v̂(0))

L3 |α|2
)
a∗
kak +

∑

k

κv̂(k)

2L3

(
α2a∗

ka
∗−k + ᾱ2aka−k

)

+ κ

L3

∑

k1,k2

v̂(k1)
(
ᾱa∗

k1+k2ak1ak2 + αa∗
k1a

∗
k2ak1+k2

)

+ κ

2L3

∑

k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)v̂(k2 − k3)a∗
k1a

∗
k2ak3ak4 .

Note that we have

(�α|H�α) = −μ|α|2 + κv̂(0)

2L3 |α|4,

and we choose α =
√

μL3

κv̂(0) , so that �α minimizes this expectation value. This leads to

H = κ−1H0 + H2 + √
κH3 + κH4, (47)

H0 := −μ2L3

2v̂(0)
,

H2 :=
∑

k

(
k2

2
+ μv̂(k)

v̂(0)

)
a∗
kak +

∑

k

μv̂(k)

2v̂(0)

(
a∗
ka

∗−k + aka−k
)
,

123



Beliaev Damping in Bose Gas Page 13 of 30 110

H3 := 1

L3/2

∑

k1,k2

v̂(k1)
√

μ
√

v̂(0)

(
a∗
k1+k2ak1ak2 + a∗

k1a
∗
k2ak1+k2

)
,

H4 := 1

2L3

∑

k1,k2,k3,k4

δ(k1 + k2 − k3 − k4)v̂(k2 − k3)a∗
k1a

∗
k2ak3ak4 .

We extract from the above Hamiltonian all terms containing only non-zero modes:

H2 = μ

2
(a∗2

0 + a20 + 2a∗
0a0) + H exc

2 ,

H exc
2 :=

∑

k �=0

(
k2

2
+ μv̂(k)

v̂(0)

)
a∗
kak +

∑

k �=0

μv̂(k)

2v̂(0)

(
a∗
ka

∗−k + aka−k
) ; (48)

H3 = 1

L3/2

∑

k

√
μv̂(0)(a∗

0a
∗
kak + a∗

kaka0)

+ 1

L3/2

∑

k �=0

√
μv̂(k)

√
v̂(0)

(
(a∗

0 + a0)a
∗
kak + a0a

∗
ka

∗−k + a∗
0aka−k

) + H exc
3 ,

H exc
3 := 1

L3/2

∑

k1,k2,k1+k2 �=0

v̂(k1)
√

μ
√

v̂(0)

(
a∗
k1+k2ak1ak2 + a∗

k1a
∗
k2ak1+k2

) ; (49)

H4 = 1

2L3 v̂(0)
(
a∗
0a

∗
0a0a0 + 2

∑

k �=0

a∗
0a0a

∗
kak

)

+ 1

2L3

∑

k �=0

v̂(k)(a∗
0a

∗
0aka−k + a0a0a

∗
ka

∗−k + 2a∗
0a0a

∗
kak)

+ 1

L3

∑

k1,k2,k1+k2 �=0

v̂(k1)
(
a∗
0a

∗
k1+k2ak1ak2 + a0a

∗
k1a

∗
k2ak1+k2

) + H exc
4 ,

H exc
4 := 1

2L3

∑

k1,k2,k3,k4 �=0

δ(k1 + k2 − k3 − k4)v̂(k2 − k3)a∗
k1a

∗
k2ak3ak4 . (50)

Let

σk =

√√
e2k + B2

k + ek
√
2ek

, γk =

√√
e2k + B2

k − ek
√
2ek

,

βk = cosh−1(σk) = sinh−1(γk),

ek :=
√
1

4
|k|4 + Bk|k|2, Bk := v̂(k)

v̂(0)
μ. (51)

Sometimes we will write ek , σk , γk , instead of ek, σk, γk. We are going to apply a Bogoliubov
transformation

UBog := exp

( ∑

k �=0

βk(a
∗
ka

∗−k − aka−k)

)
, (52)

which transforms non-zero mode operators a∗
k, ak into quasi-particle operators b∗

k, bk:

bk := UBogakU
∗
Bog = σkak + γka

∗−k,

b∗
k := UBoga

∗
kU

∗
Bog = σka

∗
k + γka−k, (53)
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Let us also note the relation inverse to (53):

ak = σkbk − γkb
∗−k,

a∗
k = σkb

∗
k − γkb−k.

It is well known that (53) diagonalizes H exc
2 in terms of the quasi-particle operators:

H exc
2 = EBog + HBog, (54)

where

EBog := −1

2

∑

k �=0

(
1

2
|k|2 + v̂(k)

v̂(0)
μ − ek

)
, (55)

HBog :=
∑

k �=0

ekb
∗
kbk. (56)

We also express H exc
3 in terms of quasiparticles:

H exc
3 = 1

L3/2

∑

k1,k2,k1+k2 �=0

√
μv̂(k1)√
v̂(0)

(57)

((
σk1+k2b

∗
k1+k2 − γ−k1−k2b−k1−k2

)(
σk1bk1 − γ−k1b

∗−k1

)(
σk2bk2 − γ−k2b

∗−k2

)

+ (
σk1b

∗
k1 − γ−k1b−k1

)(
σk2b

∗
k2 − γ−k2b−k2

)(
σk1+k2bk1+k2 − γ−k1−k2b

∗−k1−k2

))
.

After opening the brackets and using σk = σ−k and γk = γ−k, we transform this into

H exc
3 = H exc

3,1 + H exc
3,2 , (58)

H exc
3,1 =

∑

k1,k2,k1+k2 �=0

(b∗
k1+k2bk1bk2 + b∗

k1b
∗
k2bk1+k2) (59)

( √
μv̂(k1)

L3/2
√

v̂(0)

(
σk1+k2σk1σk2 − γk1+k2γk1γk2 + γk1+k2σk1γk2 − σk1+k2γk1σk2

)

+
√

μv̂(k1 + k2)

L3/2
√

v̂(0)

(
γk1+k2 − σk1+k2

)
γk1σk2

)
,

H exc
3,2 =

∑

k1,k2,k1+k2 �=0

(b∗−k1−k2b
∗
k1b

∗
k2 + b−k1−k2bk1bk2) (60)

√
μv̂(k1)

L3/2
√

v̂(0)

(
γk1γk2σk1+k2 − σk1σk2γk1+k2

)
.

We could also compute H4, but we will not need it.

5 Effective Friedrichs Hamiltonian

Recall that �α = W ∗
α�. Let �Bog := U∗

Bog�α be the quasiparticle vacuum. Let Spancl(K )

denote the closure of the span of the set K ⊂ F . Introduce the space Fexc consisting of the
Bogoliubov vacuum and quasiparticle excitations, and its n-quasiparticle sector:

Fexc := Spancl{b∗
k1 · · · b∗

kn�Bog | k1, . . . ,kn �= 0, n = 0, 1, . . . },
Fexc
n := Spancl{b∗

k1 · · · b∗
kn�Bog | k1, . . . ,kn �= 0}.

123



Beliaev Damping in Bose Gas Page 15 of 30 110

Themost “violent” approximation that we are going to make is compressing the Hamiltonian
H into the space Fexc. We also drop the uninteresting constant κ−1H0 and the (somewhat
more interesting) constant EBog. Thus we introduce the excitation Hamiltonian

H exc := I exc∗
(
H − κ−1H0 − EBog

)
I exc,

where I exc denotes the embedding of Fexc in F . Thus H exc is an operator on Fexc and

H exc = HBog + √
κH exc

3 + κH exc
4 , (61)

where H exc
3 and H exc

4 are defined in (49) and (50).

Remark 2 Let us make some remarks concerning the algebraic meaning of the above con-
struction. Our physical space (in finite volume and in the momentum representation) is the
bosonic Fock space over the 1-particle space l2

( 2π
L Z

)
. By the exponential property of Fock

spaces (see e.g. [20]) we have the following identification:

�s

(
l2

( 2π
L Z

)) 
 �s(C) ⊗ �s

(
l2

( 2π
L Z \ {0})

)
, (62)

where the first factor describes the “zeroth mode” treated as the “condensate” and the second
“excitations outside of the condensate”. We will denote by U the (unitary and canonical)
identification described in (62). Note that creation and annihilation operators of non-zero
modes, a∗

k, ak, k �= 0, as well as of quasiparticles b∗
k, bk act only in the second factor. The

translations also act only in the second factor. The coherent vector �α = W ∗
α� is translation

invariant and can be understood as an element of the first factor. ThusU identifies Fexc with

�α ⊗ �s

(
l2

( 2π
L Z \ {0})

)
, (63)

The compressed Hamiltonian H exc can be then interpreted as

H exc = (�α| UHU∗|�α), (64)

which is an operator on �s

(
l2

( 2π
L Z \ {0})

)
.

The idea of decomposing the Fock space as in (62), where the first factor describes the
“codensate”, is common in the literature. It is e.g. used in [19] and (implicitly) in the paper
by Lewin-Nam-Serfaty-Solovej [32].

Our compression construction is essentially themost direct interpretation of the “replacing
the zeroth mode by a c-number”, which is a very common procedure in the physics literature.
Physicists expect that this procedure yields physically relevant results. And so do we, at least
concerning the imaginary part of the dispersion relation.

However, of course, compression produces an operator which is not unitarily equivalent
to the initial operator. Therefore, it is certainly a rather fishy step in our analysis: rigorously
it is not clear how much the analysis of H exc will say about H .

We make two more approximations. We drop κH4, which is of higher order in κ than√
κH3. We also drop H3,2, which involves 3-quasiparticle creation/annihilation operators,

and does not contribute to the damping rate (see Sect. 6 for a justification). Thus H exc is
replaced with

H eff := HBog + √
κH exc

3,1 . (65)

To make our following discussion consistent with Sect. 3 about the Fermi Golden Rule, we
introduce a new coupling constant

λ := √
κ. (66)

123



110 Page 16 of 30 J. Dereziński et al.

Let k �= 0. Clearly, b∗
k�Bog is an eigenstate of H eff for λ = 0. We would like to compute

the self-energy for the vector b∗
k�Bog and the Hamiltonian H eff :

λ2	eff
k (z) := −1

(b∗
k�Bog|(z − H eff )−1b∗

k�Bog)
+ z − ek. (67)

Introduce the subspaces of Fexc and Fexc
n with the total momentum k:

Fexc(k) := Spancl{b∗
k1 · · · b∗

kn�Bog, k1 + · · · kn = k, k1, . . . ,kn �= 0, n = 0, 1, . . . },
Fexc
n (k) := Spancl{b∗

k1 · · · b∗
kn�Bog, k1 + · · · kn = k, k1, . . . ,kn �= 0}.

b∗
k�Bog is contained in the spaceFexc(k), which is preserved by H eff . Let H eff (k) denote the

operator H eff restricted to Fexc(k). Thus we can restrict ourselves to the fiber space Fexc(k)

and the fiber Hamiltonian H eff (k). In particular, in (67) we can replace H eff with H eff (k).
For simplicity, we will assume that 1

2k /∈ 2π
L Z, so that at least one coordinate of k is odd.

This guarantees that p �= k − p. Let Z L
k denote the set of (unordered) pairs {p,k − p} ⊂

2π
L Z

3 \ {0,k}. Then Fexc
2 (k) can be identified with l2(ZL

k ).
For our analysis it is enough to know only H eff (or H eff (k)) compressed to Fexc

1 (k) ⊕
Fexc
2 (k).Note that the one-quasiparticle stateb∗

k|�Bog〉 spansFexc
1 (k), andFexc

2 (k) is spanned
by b∗

pb
∗
k−p�Bog with {p,k − p} ∈ Z L

k . We compute:

Theorem 3

(b∗
k�Bog|H effb∗

k�Bog) = ek, (68)

(b∗
pb

∗
k−p�Bog|H effb∗

pb
∗
k−p�Bog) = ep + ek−p, (69)

(b∗
pb

∗
k−p�Bog|H effb∗

k�Bog) = λ

L3/2 hk(p), (70)

(b∗
k�Bog|H effb∗

pb
∗
k−p�Bog) = λ

L3/2 hk(p) (71)

with

hk(p) =
√

μv̂2(k)

v̂(0)

(
γk − σk

)(
γpσk−p + σpγk−p

)
(72)

+
√

μv̂2(p)

v̂(0)

(
σkσpσk−p − γkγpγk−p + γkσpγk−p − σkγpσk−p

)

+
√

μv̂2(k − p)

v̂(0)

(
σkσpσk−p − γkγpγk−p + γkγpσk−p − σkσpγk−p

)
.

Proof (68) and (69) are straightforward. Let us prove (70). We have

(b∗
pb

∗
k−p�Bog|H effb∗

k�Bog) (73)

=(b∗
pb

∗
k−p�Bog|H exc

3,1 b
∗
k�Bog). (74)

Remembering that we have p �= k − p, we see that the only terms in H exc
3,1 which contribute

to (74) are

b∗
pb

∗
k−pbk

( √
μv̂(p)

L3/2
√

v̂(0)

(
σkσpσk−p − γkγpγk−p + γkσpγk−p − σkγpσk−p

)
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+
√

μv̂(k)

L3/2
√

v̂(0)

(
γk − σk

)
γpσk−p (75)

+
√

μv̂(k − p)

L3/2
√

v̂(0)

(
σkσpσk−p − γkγpγk−p + γkγpσk−p − σkσpγk−p

)

+
√

μv̂(k)

L3/2
√

v̂(0)

(
γk − σk

)
σpγk−p

)
(76)

This yields (70). ��
The Hamiltonian H eff compressed to Fexc

1 (k) ⊕ Fexc
2 (k) will be called the effective

Friedrichs Hamiltonian (for volume L3 and momentum k). It is denoted HL
Fried(k) and given

by

HL
Fried(k) :=

[
ek

λ
L3/2 (hk|

λ
L3/2 |hk) ep + ek−p

]
, (77)

on Fexc
1 (k) ⊕ Fexc

2 (k) 
 C ⊕ l2(ZL
k ), (78)

where we explicitly introduced a reference to the volume L3 in the notation. Thus we end up
in a situation described in Sect. 3, with b∗

k�Bog, resp. l2(ZL
k ) corresponding to �, resp. K.

According to the Fermi Golden Rule (37) the self-energy of HL
Fried(k) is

	L
k (z) = 1

2L3

∑

p,k−p�=0

h2k(p)

(z − ep − ek−p)
, (79)

where 1
2 in front of the sum accounts for double counting.

The function p �→ ep is well defined for all p ∈ R
3, and not only for p ∈ 2π

L Z
3\{0}.

Similarly, hk(p) are well defined for all p ∈ R
3 \ {0,k}, and not only for 2π

L Z
3 \ {0,k}. The

expression (79) can be interpreted as the Riemann sum converging as L → ∞ to the integral

	k(z) = 1

2(2π)3

∫
hk(p)2 dp

(z − ep − ek−p)
. (80)

We can also introduce the infinite volume effective Friedrichs Hamiltonian

HFried(k) :=
[

ek λ(hk|
λ|hk) ep + ek−p

]
,

on C ⊕ L2(R3/Z2),

(81)

where Z2 is the two-element group generated by p �→ k − p. The Fermi Golden Rule
predicts that 	k(ek + i0) describes the energy shift of the eigenvalue of the infinite volume
Hamiltonian HFried(k).

It is maybe worth mentioning that all the steps that lead to HL
Fried(k) and HFried(k) are

translation invariant.

6 The Shape of the Quasiparticle Spectrum

If k �→ ek is a dispersion relation of quasiparticles, then the infimum of the n-quasiparticle
spectrum is

inf{ep1 + · · · epn | p1 + · · · + pn = k}. (82)
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Sometimes, it is possible to compute (82) exactly, as shown in the following lemma.

Lemma 4 Let k �→ ek be a convex function. Then

inf
p

{ep + ek−p} = 2ek/2. (83)

In particular,
inf
p

{ep + ek−p} ≤ ek. (84)

If in addition k �→ ek is a strictly convex function, then

inf
p

{ep + ek−p} < ek, k �= 0. (85)

Proof The left hand side of (83) is called infimal involution and is often denoted as

e�e(k) := inf
p

{ep + ek−p}. (86)

Since ek is a convex function so is e�e(k) [1, Chapter 12] and it satisfies

(e�e)∗ = e∗ + e∗ = 2e∗ (87)

where e∗ denotes the Legendre-Fenchel transform of e. Hence

inf
p

{ep + ek−p} = e�e(k) = (e�e)∗∗(k) = (2e∗)∗(k) = 2ek/2

which proves (83). Now (84) follows from convexity. Indeed,

2ep/2 = 2ep/2+0/2 ≤ ep.

��
Now ek in (11), that is

ek =
√
1

4
|k|4 + μ|k|2, (88)

is strictly convex. Therefore, (85) is true, and so the dispersion relation is embedded inside
the 2-quasiparticle spectrum.

Remark 5 If we replace Assumption (42c) with Assumption (43), and suppose

1 + 2μ
ν

v̂(0)
> 0, (89)

then the dispersion relation is still embedded inside the unperturbed 2-quasiparticle spectrum,
at least for smallmomenta. The same is true for the effective FriedrichsHamiltonian HFried(k)

for small k.

The Hamiltonian H exc couples b∗
k�Bog with 4-quasiparticle states through H exc

3,2 . The
bottom of 4-quasiparticle spectrum lies below the dispersion relation (in fact, if it is given
by (11), it is equal to 4ek/4 < ek). However, H exc

3,2 does not couple b∗
k�Bog to all pos-

sible 4-quasiparticle states with the total momentum k, but only to states of the form
bp1bp2bp3bk�Bog with p1 + p2 + p3 = 0. Their energy is

ek + ep1 + ep2 + ep3 ≥ ek. (90)

Thus the state b∗
k�Bog is situated at the boundary of the energy-momentum spectrum and the

only coupling is through p1 = p2 = p3 = 0. Before going to the thermodynamic limit this
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is excluded, because on the excited space all momenta are different from zero. Assuming
that this effect survives the thermodynamic limit, we expect that the term H exc

3,2 does not
lead to damping and we therefore drop it from HFried, even though in terms of the coupling
parameter κ this term is of the same order as H exc

3,1 , which we keep in our analysis.
Two-quasiparticle states are coupled to three-quasiparticle states through H exc

31 and to five-
quasiparticle states through H exc

32 . These couplings, however, do not contribute to our Fermi
Golden Rule computation—they affect the damping rate in a higher order of the coupling
constant. Therefore, we do not include these states in our Hilbert space Fexc

1 (k) ⊕ Fexc
2 (k)

on which our effective Friedrichs Hamiltonian acts.

7 Computing the Self-Energy

In the remaining part of our paper, the main goal will be to compute approximately the
3-dimensional integral (80). To do this efficiently it is important to choose a convenient
coordinate system.

Let us introduce the notation k = |k|, p = |p|, l = |l|, where l = k − p.
One could try to compute (80) using the spherical coordinates for p with respect to
the axis determined by k. This means using p = |p|, w = cos θ, φ, so that p =
(p

√
1 − w2 cosφ, p

√
1 − w2 sin φ, pw). The self-energy in these coordinates is

	k(z) = 1

2(2π)3

∫ ∞

0

∫ 1

−1

∫ 2π

0

hk(p, w)2 p2 dp dw dφ

(z − ep − el(p,w))
(91)

where, with abuse of notation, hk(p, w) is the function hk(p) in the variables p, w, φ. The
variableφ can be easily integrated out. hk(p) depends only on k, p, l and (91) can be rewritten
as

	k(z) = 1

2(2π)2

∫ ∞

0

∫ 1

−1

(hk(p, l(p, w)))2 p2 dp dw

(z − ep − el(p,w))
,

The coordinates p, w are not convenient because they break the natural symmetry p →
k − p of the system. Instead of p, w it is much better to use the variables p, l. Note the
constraints

|p − l| ≤ k, (92)

k ≤ p + l, (93)

that follow from the triangle inequality. We have w = k2+p2−l2

2kp . The Jacobian is easily
computed:

p2 dp dw = pl

k
dp dl = 1

4k
dp2 dl2. (94)

Let us make another change of variables:

t = p + l, s = p − l; p = t + s

2
, l = t − s

2
; (95)

dp2 dl2 = t2 − s2

2
dt ds. (96)
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The limits of integration following from the constraints (92) and (93) are very easy to impose:

	k(z) = 1

2(2π)2

∫ ∞

k
dt

∫ k

−k
ds

hk(t, s)2(t2 − s2)

8k(z − e t+s
2

− e t−s
2

)
, (97)

Another choice of variables can also be useful. If k �→ ek is an increasing function, which
is always the case for small k, but also for the important case of constant v̂(k)

v̂(0) , we can use
the variables u := ep and w := el . Set

f (ek) := dk2

de2k
. (98)

Thus we change the variables

1

4k
dp2 dl2 = 1

4k
f (u) f (w) du2 dw2. (99)

	k(z) = 1

2(2π)2

∫
hk(u, w)2 f (u) f (w) du2 dw2

4k(z − u − w)
,

We then perform a further change of variable

x = u + w, y = u − w; u = x + y

2
, w = x − y

2
; (100)

du2 dw2 = x2 − y2

2
dx dy. (101)

Now we can write

	k(z) = 1

16π2k

∫∫
hk(x, y)2 f (

x+y
2 ) f ( x−y

2 )(x2 − y2) dy dx

4(z − x)
,

where the limits of integration are somewhat more difficult to describe.
When v̂(k)

v̂(0) is a constant, so that

ek = k

√

μ + k2

4
, k2 = 2

(√
e2k + μ2 − μ

)
, (102)

we can compute the function f :

f (u) = 1√
u2 + μ2

. (103)

We also have

σk =

√√√√√√
k2
2 + μ +

√
k4
4 + μk2

2
√

k4
4 + μk2

, γk =

√√√√√√
k2
2 + μ −

√
k4
4 + μk2

2
√

k4
4 + μk2

. (104)
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8 Damping Rate

The following theorem is the main result of this paper.

Theorem 6 Suppose that the potential satisfies Assumption (42). Then

	k(ek + i0) = −cBelk
5 + O(k6) as k → 0, cBel = 3v̂(0)

640πμ
. (105)

Remark 7 If we replace Assumption (42c) with Assumption (43) with ν = 0, then Theorem
6 remains true.

Proof of Theorem 6 We will use the variables x, y:

	k(ek + i0) = 1

16π2k

∫∫
hk(x, y)2(x2 − y2) dy dx

(ek − x + i0)
√

(x + y)2 + 4μ2
√

(x − y)2 + 4μ2
. (106)

It follows from (106) and the Sochocki-Plemelj formula (18) that

	k(ek + i0) = Re	k(ek + i0) + iIm	k(ek + i0),

Re	k(ek + i0) = 1

16π2k

∫∫
hk(x, y)2(x2 − y2) dy dx

(ek − x)
√

(x + y)2 + 4μ2
√

(x − y)2 + 4μ2
(107)

Im	k(ek + i0) = − π

16π2k

∫∫
hk(x, y)2(x2 − y2)δ(ek − x) dy dx√

(x + y)2 + 4μ2
√

(x − y)2 + 4μ2
(108)

= − π

16π2k

∫
hk(ek, y)2(e2k − y2) dy

√
(ek + y)2 + 4μ2

√
(ek − y)2 + 4μ2

. (109)

Our starting point is the expression (109). Obviously, we first need to establish the integra-
tion limits in y. Recall that y = ep − el but under the additional constraint that ek = ep + el
which comes from the constraint δ(x−ek) in (108). It follows immediately that−ek ≤ y ≤ ek .
Thus, for |k| small enough we can replace v̂ with v̂(0), so that

hk(p) = 2
√

μv̂(0)
(
σpγ−kγp−k + σk−pγ−kγp + σpσk−pσk (110)

− γpσ−kσp−k − γk−pσ−kσp − γpγk−pγk

)
.

Hence

hk(p)

2
√

μv̂(0)
= σk(σpσl − σlγp − σpγl) + γk(σpγl + σlγp − γpγl).

= σk

2
√
uw

(√√
u2 + μ2 + u

√√
w2 + μ2 + w −

√√
w2 + μ2 + w

√√
u2 + μ2 − u

−
√√

u2 + μ2 + u

√√
w2 + μ2 − w

)

+ γk

2
√
uw

(√√
u2 + μ2 + u

√√
w2 + μ2 − w +

√√
w2 + μ2 + w

√√
u2 + μ2 − u

−
√√

u2 + μ2 − u

√√
w2 + μ2 − w

)
(111)

= 1

2
√
x2 − y2

(
σk

√
(A1 + x + y)(A2 + x − y)) − γk

√
(A1 − x − y)(A2 − x + y)
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+ (γk − σk)
√

(A1 − x − y)(A2 + x − y)) + (γk − σk)
√

(A1 + x + y)(A2 − x + y))

)
,

(112)

where

A1 := A1(x, y) =
√

(x + y)2 + 4μ2, A2 := A2(x, y) =
√

(x − y)2 + 4μ2. (113)

Therefore the integrand in (109) becomes

(hk(x, y))2(x2 − y2)√
(x + y)2 + 4μ2

√
(x − y)2 + 4μ2

(114)

= μv̂(0)

A1A2

(
σk

√
(A1 + x + y)(A2 + x − y)) − γk

√
(A1 − x − y)(A2 − x + y)

+ (γk − σk)
√

(A1 − x − y)(A2 + x − y)) + (γk − σk)
√

(A1 + x + y)(A2 − x + y))

)2
.

= μv̂(0)

A1A2

(
σ 2
k

(
3A1A2 + (x + y)A2 + (x − y)A1 − (x2 − y2) − 4μ(A1 + A2 + 2x) + 8μ2

)

+ γ 2
k

(
3A1A2 − (x + y)A2 − (x − y)A1 − (x2 − y2) − 4μ(A1 + A2 − 2x) + 8μ2

)

+ 2σkγk
(
4μA1 + 4μA2 − 2A1A2 + 2(x2 − y2) − 12μ2

) )
. (115)

Thus the equation in (109) becomes

− 1

16πk

∫ ek

−ek
dy

h2k(x, y)(x2 − y2)
√

(x + y)2 + 4μ2
√

(x − y)2 + 4μ2
(116)

=
(

−μv̂(0)

16πk

) ∫ ek

−ek
dy

((
3σ 2

k + 3γ 2
k − 4σkγk

)
+ (σ 2

k − γ 2
k )

(
x − y

A2
+ x + y

A1
− 8μx

A1A2

)

+ (−σ 2
k − γ 2

k + 4σkγk )
x2 − y2

A1A2
− 4μ(σk − γk )

2 A1 + A2
A1A2

+ 8μ2(σ 2
k + γ 2

k − 3σkγk )
1

A1A2

)
.

(117)

The integrals involving x±y
A j

and 1
A j

(where j = 1, 2 ) can be computed explicitly. In partic-
ular, setting x = ek , it follows that for j = 1, 2

∫ ek

−ek
dy

ek ± y

A j (ek , y)
=

∫ ek

−ek
dy

(
ek ± y√

(ek ± y)2 + 4μ2

)
= 2

√
μ2 + e2k − 2μ, (118)

∫ ek

−ek
dy

1

A j (ek , y)
=

∫ ek

−ek
dy

(
1√

(ek ± y)2 + 4μ2

)
= log

⎛

⎝ ek
μ

+
√

1 + e2k
μ2

⎞

⎠ . (119)

This yields
(

− 1

16πk

)∫ ek

−ek
dy

⎛

⎝ h2k(ek , y)(e
2
k − y2)

√
(ek + y)2 + 4μ2

√
(ek − y)2 + 4μ2

⎞

⎠ (120)

=
(

− μv̂(0)

16πk

) ⎛

⎝2
(
3σ2

k + 3γ 2
k − 4σkγk

)
ek + 4

√
μ2 + e2k − 4μ − 8μ(σk − γk )

2 log

⎛

⎝ ek
μ

+
√

1 + e2k
μ2

⎞

⎠

⎞

⎠
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+
(

− μv̂(0)

16πk

)∫ ek

−ek
dy

( −(σ2
k − 4σkγk + γ 2

k )(e2k − y2) − 8μek + 8μ2(σ2
k + γ 2

k − 3σkγk )

A1A2

)
. (121)

where two types of integrals, namely
∫ ( −y2

A1A2

)
dy and

∫ (
1

A1A2

)
dy, (122)

still appear as they cannot be computed explicitly. We will approximate them by expansions
in ek(which is small, as k is small). To this end, we recall

σk =

√√√√
√
e2k + μ2 + ek

2ek
, γk =

√√√√
√
e2k + μ2 − ek

2ek
, (123)

which gives

σ 2
k + γ 2

k =
√
e2k + μ2

ek
, σkγk = μ

2ek
. (124)

Then (121) equals to

(
− μv̂(0)

16πk

) ⎛

⎝2
(
3σ2

k + 3γ 2
k − 4σkγk

)
ek + 4

√
μ2 + e2k − 4μ − 8μ(σk − γk )

2 × log

⎛

⎝ ek
μ

+
√

1 + e2k
μ2

⎞

⎠

⎞

⎠

+
(

− μv̂(0)

16πk

)∫ ek

−ek
dy

( −(σ2
k − 4σkγk + γ 2

k )(e2k − y2) − 8μek + 8μ2(σ2
k + γ 2

k − 3σkγk )

A1A2

)

=
(

− μv̂(0)

16πk

)⎛

⎝2(3
√
e2k + μ2 − 2μ) + 2(2

√
μ2 + e2k − 2μ) − 8μ

√
e2k + μ2 − μ

ek
× log

⎛

⎝ ek
μ

+
√

1 + e2k
μ2

⎞

⎠

⎞

⎠

+
(

μv̂(0)

16πk

)
√
e2k + μ2 − 2μ

ek

∫ ek

−ek
dy

(
e2k − y2

A1A2

)

+
(

1

16πk

)⎛

⎝8μ2 v̂(0)ek − 8μ3 v̂(0)
2
√
e2k + μ2 − 3μ

2ek

⎞

⎠
∫ ek

−ek
dy

(
1

A1A2

)

=
(

− μv̂(0)

16πk

)⎛

⎝10μ
√

(ek/μ)2 + 1 − 8μ − 8μ

√
(ek/μ)2 + 1 − 1

ek/μ
log

⎛

⎝ ek
μ

+
√

1 + e2k
μ2

⎞

⎠

⎞

⎠ (125)

+
(

μv̂(0)

16πk

)
√

(ek/μ)2 + 1 − 2

ek/μ

∫ ek

−ek
dy

(
e2k − y2

A1A2

)
(126)

+
(

μv̂(0)

16πk

) ⎛

⎝
8μe2k − 4μ3(2

√
(ek/μ)2 + 1 − 3)

ek

⎞

⎠
∫ ek

−ek
dy

(
1

A1A2

)
. (127)

We expand (125) up to order O(e8k ). A tedious computation yields

(125) =
(

−μv̂(0)

16πk

) (
2μ + e2k

μ
+ 5e4k

12μ3 − 41e6k
120μ5

+ O(e8k )

)
. (128)

We shall now deal with the terms (126) and (127). To this end we write

A1A2 =
√
4μ2 + (ek + y)2

√
4μ2 + (ek − y)2 (129)

= 4μ2

√

1 +
(
ek + y

2μ

)2
√

1 +
(
ek − y

2μ

)2

(130)
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= 4μ2

√√√√1 + e2k + y2

2μ2 +
(
e2k − y2

4μ2

)2

(131)

= 4μ2
√
1 + Q1 (132)

= 4μ2
(
1 + 1

2
Q1 − 1

8
Q2

1 + 1

16
Q3

1

)
+ O(Q4

1). (133)

where

Q1 := e2k + y2

2μ2 +
(
e2k − y2

4μ2

)2

(134)

Then
1

A1A2
= 1

4μ2(1 + Q2)
= 1

4μ2 (1 − Q2 + Q2
2 − Q3

2) + O(Q4
2) (135)

where

Q2 := 1

2
Q1 − 1

8
Q2

1 + 1

16
Q3

1. (136)

This leads to

1

A1A2
= 1

4μ2 − e2k
16μ4 + e4k

64μ6 − e6k
256μ8 − y2

16μ4 + e2k y
2

16μ6 − 9e4k y
2

256μ8

+ y4

64μ6 − 9e2k y
4

256μ8 − y6

256μ8 + O(eι1
k y

ι2) (137)

where ι1 + ι2 = 7. In turn

∫ ek

−ek

1

A1A2
dy = ek

2μ2 − e3k
6μ4 + 19e5k

240μ6 − 13e7k
280μ8 + O(e8k ) (138)

and ∫ ek

−ek

e2k − y2

A1A2
dy = e3k

3μ2 − e5k
10μ4 + 11e7k

280μ6 + O(e8k ). (139)

This implies

(126) =
(

μv̂(0)

16πk

) (
− e2k
3μ

+ 4e4k
15μ3 − 11e6k

84μ5

)
+ O(e8k ), (140)

and

(127) =
(

μv̂(0)

16πk

) (
2μ + 4e2k

3μ
+ 3e4k

20μ3 − 2e6k
7μ5

)
+ O(e8k ). (141)

Combining (140), (141) and (128) we obtain

− 1

16πk

∫ ek

−ek

(h

k (ek, y))2(e2k − y2)

√
(ek + y)2 + 4μ2

√
(ek − y)2 + 4μ2

dy

=
(

−μv̂(0)

16πk

) (
5

12
− 41

120

)
e6k
μ5

= − 3v̂(0)

640πμ4

e6k
k

. (142)

This yields (105). ��
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9 Full Self-Energy

Recall that the self-energy is given by

	k(z) = 1

2(2π)2

∫ ∞

k
dt

∫ k

−k
ds

hk(t, s)2(t2 − s2)

8k(z − e t+s
2

− e t−s
2

)
, (143)

For contact potentials hk(p), that is, if v̂(k) = v̂(0) for all k, then h(k) is given by

hk(p)

2
√

μv̂(0)
= 1

2
(σk + γk)(σpσl − γpγl) + 1

2
(σk − γk)(σpσl + γpγl − 2σpγl − 2γpσl).

(144)

We easily see that the self-energy is then divergent in the ultraviolet regime. Indeed, for
large t , hk(t, s) is asymptotic to a nonzero constant, e t+s

2
and e t−s

2
behave as t2 and we

have t2 in the numerator. Therefore, (143) is linearly divergent at large t . We should not
be surprised—contact potentials are not true potentials, they need a renormalization of the
coupling constant, therefore they may lead to problems.

For generic potentials hk is given by (72):

hk(p) =
√

μv̂2(k)

v̂(0)

(
γk − σk

)(
γpσk−p + σpγk−p

)
(145)

+
√

μv̂2(p)

v̂(0)

(
σkσpσk−p − γkγpγk−p + γkσpγk−p − σkγpσk−p

)

+
√

μv̂2(k − p)

v̂(0)

(
σkσpσk−p − γkγpγk−p + γkγpσk−p − σkσpγk−p

)
.

If we assume (42d), then v̂ decays sufficiently fast and provides a natural cutoff, so that the
self-energy is well-defined. We formulate this as a theorem:

Theorem 8 Suppose that Assumption (42) holds. Then for k �= 0, the self-energy 	k(z) for
Imz > 0 is finite. One can also take its limit on the real line:

	k(ek + i0) := lim
ε↘0

	k(ek + iε). (146)

The same is true the cutoff self-energy 	

k (z) involving contact potentials.

Proof Let us sketch a proof of the first statement. For large |k| we have

σk 
 1, γk 
 2v̂(k)

k2
. (147)

hk(t, s)2 contains several terms. Those containing γ t±s
2

are integrable because of (147) and

(42d). The only dangerous terms in hk(t, s)2 are

μv̂( t±s
2 )2

v̂(0)
σ 2
k σ 2

t+s
2

σ 2
t−s
2

. (148)

They are integrable by (42d). ��
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Unfortunately, there are also bad news. The energy shift has a non-physical feature: it
diverges as k → 0, as follows from the theorem below. Therefore, we cannot treat seriously
the results obtained from the Fermi Golden Rule concerning the real part of the excitation
spectrum.

Theorem 9 Suppose that Assumption (42) holds. Then

lim
k→0

	k(0) = −∞. (149)

Remark 10 The same statement could be obtained for more general potentials, e.g. satisfying
Assumption (43) instead of (42c)

First note that under Assumption (42c), for |k|, |p|, |k − p| < 
 we have

ek = (88), hk(p) = (144), (150)

as for contact potentials.
Let |k| < 
/2 and let us split the integral for the self-energy as

(143) =
∫ 
/2

0
dt +

∫ ∞


/2
dt . (151)

Taking into account |s| < |k|we see that the first integral involves only |k|, |p|, |k−p| < 
.
Therefore, in this integral all quantities such as ek , σk , γk , ep , σp , γp , el , σl , γl , are as for
contact potentials. Let us prove some lemmas about these quantities.

Lemma 11 For small p, l, we have

e t
2

ep + el
− 1

2
= O(s2), (152)

pl

epel
− t2

4e2t
2

= O(s2), (153)

σpσl
√
epel − σ 2

t
2
e t
2

= O(s2), (154)

γpγl
√
epel − γ 2

t
2
e t
2

= O(s2). (155)

Proof e can assume that s ≥ 0.

e′
p = ( p2

2 + μ
)( p2

4 + μ
)− 1

2 , e′′
p = p

( p2

8 + 3μ
4

)( p2

4 + μ
)− 3

2 = O(p). (156)

Therefore,

2e t
2

− ep − el = −
∫ s

2

− s
2

( s
2 − |v|)e′′

t
2+v

dv = O(ts2),

and hence
e t
2

ep + el
− 1

2
=

2e t
2

− ep − el

2(ep + el)

is O(s2), which proves (152).
Next, set f (p) := p

ep
. We have

d

dp
f (p) = −2p

(p2 + 4μ)
3
2

= O(p),
d2

dp2
f (p) = 4(p2 − 2μ)

(p2 + 4μ)
5
2

= O(1). (157)
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Hence

pl

epel
− t2

4e2t
2

= f (p) f (l) − f
( t
2

)2 (158)

=
∫ s

2

0

( s
2 − v

)(
f ′′( t

2 + v
)
f
( t
2 − v

) − 2 f ′( t
2 + v

)
f ′( t

2 − v
) + f

( t
2 + v

)
f ′′( t

2 − v
))

dv,

which is O(s2), which proves (153).
We check that the 0th, 1st and 2nd derivatives of

σp
√
ep = 1√

2

√
p2

2 + μ +
√

p4

4 + μp2, (159)

γp
√
ep = 1√

2

√
p2

2 + μ −
√

p4

4 + μp2 (160)

are bounded. Then we argue as in (158), proving (154) and (155). ��

Lemma 12

lim
k→0

∫ 


k
dt

∫ k

−k
ds

(σpσl − γpγl)
2 pl

8k(ep + el)
=

∫ 


0
dt

t2

64e t
2

, (161)

where the right hand side is a finite positive number.

Proof We have

(σpσl − γpγl)
2 pl

8k(ep + el)
− t2

8 · 8ke t
2

(162)

=
(
(σpσl − γpγl)

√
epel + e t

2

)
pl

8k(ep + el)epel

(
(σpσl − γpγl)

√
epel − e t

2

))
(163)

+
e2t
2

8k(ep + el)

( pl

epel
− t2

4e2t
2

)
(164)

+ t2

32ke t
2

( e t
2

ep + el
− 1

2

)
. (165)

By Lemma 11 the terms in the big brackets on the right of (163), (164) and (165) are O(s2).
The terms in (164), (165) on the left are all 1

k O(t). The most singular in t term is the one on
the left of (163) and it is of order 1

k O(t−1). Therefore,

∫ 


k
dt

∫ k

−k
ds

(
(σpσl − γpγl)

2 pl

8k(ep + el)
− t2

64e t
2

)
(166)

=
∫ 


k
dt

∫ k

−k
dsO(t−1)

O(s2)

k
=

∫ 


k
dt O(t−1k2) = O(k2 ln k) → 0. (167)

��
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Proof of Theorem 9 The second integral on the right of (151) is convergent as k → 0. Let us
consider the first integral:

1

2(2π)2

∫ 
/2

k
dt

∫ k

−k
ds

hk(t, s)2(t2 − s2)

8k(z − e t+s
2

− e t−s
2

)
(168)

= (σk + γk)
2
∫ 
/2

k
dt

∫ k

−k
ds

(σpσl − γpγl)
2 pl

2k(ep + el)
(169)

+ 2
∫ 
/2

k
dt

∫ k

−k
ds

(σpσl − γpγl)(σpσl + γpγl − 2σpγl − 2γpσl)pl

2k(ep + el)
(170)

+ (σk − γk)
2
∫ 
/2

k
dt

∫ k

−k
ds

(σpσl + γpγl − 2σpγl − 2γpσl)
2 pl

2k(ep + el)
(171)

where we used that σ 2
k − γ 2

k = 1. Since 
/2 is fixed we are only interested in the small t
region. Since k is small too, this implies also p and l are small. For such we have

(σk + γk)
2 ≥ Ck−1, C > 0 (172)

(σk − γk)
2 = O(k), (173)

(σpσl − γpγl)
√
pl = O(p) + O(l) = O(t), (174)

(σpσl + γpγl − 2σpγl − 2γpσl)
√
pl = O(1), (175)

1

ep + el
= O(t−1). (176)

By Lemma 12 and (172),

|(169)| ≥ C1k
−1 → +∞. (177)

By (174), (175) and (176),

|(170)| ≤ C
∫ 
/2

k
dt

∫ k

−k
ds

1

k
→ C
 as k → 0. (178)

By (173), (175) and (176),

|(171)| ≤ Ck
∫ 


k
dt

∫ k

−k
ds

1

kt
≤ Ck| ln(k)| → 0, (179)

Hence (143) converges to −∞. ��
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