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Abstract: We show that properties of hypergeometric class equations and func-
tions become transparent if we derive them from appropriate 2nd order differential
equations with constant coefficients. More precisely, properties of the hypergeo-
metric and Gegenbauer equation can be derived from generalized symmetries of
the Laplace equation in 4, resp. 3 dimension. Properties of the confluent, resp.
Hermite equation can be derived from generalized symmetries of the heat equa-
tion in 2, resp. 1 dimension. Finally, the theory of the 1𝐹1 equation (equivalent
to the Bessel equation) follows from the symmetries of the Helmholtz equation
in 2 dimensions. All these symmetries become very simple when viewed on the
level of the 6- or 5-dimensional ambient space.
Crucial role is played by the Lie algebra of generalized symmetries of these 2nd
order PDE’s, its Cartan algebra, the set of roots and the Weyl group. Standard
hypergeometric class functions are special solutions of these PDE’s diagonalizing
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1 Introduction
These lecture notes are devoted to the properties of the following equations:

the Gauss hypergeometric equation, called also the 2𝐹1 equation,(︁
𝑤(1 − 𝑤)𝜕2

𝑤 +
(︀
𝑐− (𝑎+ 𝑏+ 1)𝑤

)︀
𝜕𝑤 − 𝑎𝑏

)︁
𝐹 (𝑤) = 0; (1.1)

the Gegenbauer equation(︁
(1 − 𝑤2)𝜕2

𝑤 − (𝑎+ 𝑏+ 1)𝑤𝜕𝑤 − 𝑎𝑏
)︁
𝐹 (𝑤) = 0; (1.2)

Kummer’s confluent equation, called also the 1𝐹1 equation,(︁
𝑤𝜕2

𝑤 + (𝑐− 𝑤)𝜕𝑤 − 𝑎
)︁
𝐹 (𝑤) = 0; (1.3)

the Hermite equation (︁
𝜕2

𝑤 − 2𝑤𝜕𝑤 − 2𝑎
)︁
𝐹 (𝑤) = 0; (1.4)

and the 0𝐹1 equation (equivalent to the better known Bessel equation, see eg.
[De]) (︁

𝑤𝜕2
𝑤 + 𝑐𝜕𝑤 − 1

)︁
𝐹 (𝑤) = 0. (1.5)

Here, 𝑤 is a complex variable, 𝜕𝑤 is the differentiation with respect to 𝑤, and
𝑎, 𝑏, 𝑐 are arbitrary complex parameters.

These equations are typical representatives of the so-called hypergeometric
class equations [NU]. (Nikiforov and Uvarov call them hypergeometric type equa-
tions; following [SL], we prefer in this context to use the word class, reserving
type for narrower families of equations). We refer the reader to Sect. 2, where we
discuss the terminology concerning hypergeometric class equations and functions
that we use.

The equations (1.1)–(1.5) and their solutions belong to the most natural
objects of mathematics and often appear in applications [Flü, MF, WW].

The aim of these notes is to elucidate the mathematical structure of a large
class of identities satisfied by hypergeometric class equations and functions. We
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believe that our approach brings order and transparency to this subject, usually
considered to be complicated and messy.

We will restrict ourselves to generic parameters 𝑎, 𝑏, 𝑐. We will not discuss
special properties of two distingushed classes of parameters, when additional
identities are true:
(1) the polynomial case (which corresponds to negative integer values of 𝑎);
(2) the degenerate case (which corresponds to integer values of 𝑐).

The notes are to a large extent based on [De] and [DeMaj], with some
additions and improvements.

1.1 From 2nd order PDE’s with constant coefficients to
hypergeometric class equations

In our approach, each of the equations (1.1)–(1.5) is derived from a certain
complex 2nd order PDE with constant coefficients. The identities satisfied by
this PDE and their solutions are very straightforward—they look obvious and
symmetric. After an appropriate change of variables, we derive (1.1)–(1.5) and
identities satisfied by their solutions. They look much more complicated and
messy.

We will argue that the main source of these identities are generalized sym-
metries of the parent PDE. Let us briefly recall this concept.

Suppose that we are given an equation

𝒦𝑓 = 0, (1.6)

where 𝒦 is a linear differential operator. Let 𝑔 be a Lie algebra and 𝐺 a group
equipped with pairs of representations

𝑔 ∋ 𝐵 ↦→ 𝐵♭, 𝐵#, (1.7a)

𝐺 ∋ 𝛼 ↦→ 𝛼♭, 𝛼#, (1.7b)

where (1.7a) has its values in 1st order differential operators and (1.7b) in point
transformations with multipliers. We say that (1.7a) and (1.7b) are generalized
symmetries of (1.6) if

𝐵♭𝒦 = 𝒦𝐵#, (1.8a)

resp. 𝛼♭𝒦 = 𝒦𝛼#. (1.8b)

Note that (1.8a), resp. (1.8b) imply that 𝐵# and 𝛼# preserve the space of
solutions of (1.6).
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We will omit the word “generalized” if 𝐵# = 𝐵♭ and 𝛼♭ = 𝛼#.
We can distinguish 3 kinds of PDE’s with constant coefficients in complex

domain. Below we list these PDE’s, together with the Lie algebra and group of
their generalized symmetries:
(1) The Laplace equation on C𝑛

Δ𝑛𝑓 = 0, 𝑛 > 2. (1.9)

The orthogonal Lie algebra and group in 𝑛+2 dimensions, denoted
so(𝑛+2,C), resp. O(𝑛+2,C), both acting conformally in 𝑛 dimensions.
(For 𝑛 = 1, 2 there are additional conformal symmetries).

(2) The heat equation on C𝑛−2 ⊕ C:

(Δ𝑛−2 + 2𝜕𝑠)𝑓 = 0. (1.10)

The Schrödinger Lie algebra and group in 𝑛−2 dimensions, denoted
sch(𝑛−2,C), resp. Sch(𝑛−2,C).

(3) The Helmholtz equation on C𝑛−1,

(Δ𝑛−1 − 1)𝑓 = 0. (1.11)

The affine orthogonal Lie algebra and group in 𝑛−1 dimensions, denoted
aso(𝑛−1,C), resp. AO(𝑛−1,C).

(The reason for the strange choice of dimensions in (1.10) and (1.11) will be
explained later).

The basic idea of our approach is as follows. Let us start from the equation
(1.6), where 𝒦 is appropriately chosen from among (1.9), (1.10) and (1.11). In the
Lie algebra of its generalized symmetries we fix a certain maximal commutative
algebra, which we will call the “Cartan algebra”. Operators that are eigenvectors
of the adjoint action of the “Cartan algebra” will be called “root operators”.

In the group of generalized symmetries we fix a subgroup, which we call the
“Weyl group”. It is chosen in such a way, that its adjoint action fixes the “Cartan
algebra”.

Note that in some cases the Lie algebra of symmetries is simple, and then
the names Cartan algebra, root operators amd Weyl symmetries correspond to
the standard names. In other cases the Lie algebra is not semisimple, and then
the names are less standard – this is the reason for the quotation marks that we
use above. In the sequel we drop the quotation marks.

Let us fix a basis of the Cartan algebra 𝑁1, . . . , 𝑁𝑘. Suppose that the
dimension of the underlying space is by 1 greater than the dimension of the
Cartan algebra. Then we introduce new variables, say 𝑤, 𝑢1, . . . , 𝑢𝑘 such that
𝑁𝑖 = 𝑢𝑖𝜕𝑢𝑖 .
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Substituting a function of the form

𝑓 = 𝑢𝛼1
1 · · ·𝑢𝛼𝑘

𝑘 𝐹 (𝑤), (1.12)

to the equation (1.6), and using

𝑁𝑖𝑢
𝛼𝑖 = 𝛼𝑖𝑢

𝛼𝑖 (1.13)

we obtain the equation
ℱ𝛼1,...,𝛼𝑘𝐹 = 0, (1.14)

which coincides with one of the equations (1.1)–(1.5). The eigenvalues of the
Cartan operators become the parameters of this equation.

Root operators shift the Cartan elements, typically by 1 or −1 (like the well-
known creation and annihilation operators). Therefore, root operators inserted
into the relations (1.8a) lead to transmutation relations for (1.1)–(1.5).

Similarly, elements of the Weyl group permute Cartan elements or change
their signs. Therefore, Weyl symmetries inserted into (1.8b) leads to discrete
symmetries of (1.1)–(1.5).

Of course, one can apply (1.8b) to elements of 𝐺 other than Weyl symmetries,
obtaining interesting integral and addition identities for hypergeometric class
functions. They are, however, outside of the scope of these notes.

There are five 2nd order PDE with constant coefficients where we can perform
this procedure. They are all listed in the following table:

PDE Lie
algebra

dimension of
Cartan algebra

discrete
symmetries

equation

Δ4 so(6,C) 3 cube 2𝐹1;

Δ3 so(5,C) 2 square Gegenbauer;

Δ2 + 2𝜕𝑡 sch(2,C) 2 Z2 × Z2 1𝐹1 or 2𝐹0;

Δ1 + 2𝜕𝑡 sch(1,C) 1 Z4 Hermite;

Δ2 − 1 aso(2,C) 1 Z2 0𝐹1.

Note that some other 2nd order PDE’s have too few variables to be in the
above list: this is the case of Δ1 and Δ2. Others have too many variables: one can
try to perform the above procedure, however it leads to a differential equation in
more than one variable.
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1.2 Conformal invariance of the Laplace equation

The key tool of our approach is the conformal invariance of the Laplace equation.
Let us sketch a derivation of this invariance. For simplicity we restrict our
attention to the complex case, for which we do not need to distinguish between
various signatures of the metric tensor.

In order to derive the conformal invariance of the Laplacian on C𝑛, or on
other complex manifolds with maximal conformal symmetry, it is convenient to
start from the so-called ambient space C𝑛+2, where the actions of so(𝑛+2,C)
and O(𝑛+2,C) are obvious. In the next step these actions are restricted to the
null quadric, and finally to the projective null quadric. Thus the dimension of
the manifold goes down from 𝑛+2 to 𝑛. The null quadric can be viewed as a line
bundle over the projective null quadric. By choosing an appropriate section we
can identify the projective null quadric, or at least its open dense subset, with
the flat space C𝑛 or some other complex manifolds with a complex Riemannian
structure, e.g. the product of two spheres. The Lie algebra so(𝑛+2,C) and the
group O(𝑛+2,C) act conformally on these manifolds.

What is more interesting, the above construction leads to a definition of an
invariantly defined operator, which we denote Δ◇, transforming functions on the
null quadric homogeneous of degree 1 − 𝑛

2 onto functions homogeneous of degree
−1 − 𝑛

2 . After fixing a section, this operator can be identified with the conformal
Laplacian on the corresponding complex Riemannian manifold of dimension 𝑛. For
instance, one obtains the Laplacian Δ𝑛 on C𝑛. The representations of so(𝑛+2,C)
and O(𝑛+2,C) on the level of the ambient space were true symmetries of Δ𝑛+2.
After the reduction to 𝑛 dimensions, they become generalized symmetries of the
conformal Laplacian.

The fact that conformal transformations of the Euclidean space are general-
ized symmetries of the Laplace equation was apparently known already to Lord
Kelvin. Its explanation in terms of the null quadric first appeared in [Boc], and
is discussed e.g. in [CGT]. The reduction of Δ𝑛+2 to Δ𝑛 mentioned above, is
based on a beautiful idea of Dirac in [Dir], which was later rediscovered e.g. in
[HH, FG]—see a discussion by Eastwood [East].

The construction indicated above gives a rather special class of (pseudo-)Rie-
mannian manifolds—those having a conformal group of maximal dimension,
see e.g. [EMN]. However, conformal invariance can be generalized to arbitrary
(pseudo-)Riemannian manifolds. In fact, the Laplace-Beltrami operator plus
an appropriate multiple of the scalar curvature, sometimes called the Yamabe
Laplacian, is invariant in a generalized sense with respect to conformal maps, see
e.g. [Tay, Or].
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1.3 The Schrödinger Lie algebra and Lie algebra as
generalized symmetries of the Heat equation

The heat equation (1.10) possesses a large Lie algebra and group of generalized
symmetries, which in the complex case, as we already indicated, we denote
by sch(𝑛−2,C) and Sch(𝑛−2,C). Apparently, they were known already to Lie
[L]. They were rediscovered (in the essentially equivalent context of the free
Schrödinger equation) by Schrödinger [Sch]. They were then studied e.g. in
[Ha, Ni].

By adding an additional variable, one can consider the heat equation as
the Laplace equation acting on functions with an exponential dependence on
one of the variables. This allows us to express generalized symmetries of (1.10)
by generalized symmetries of (1.9). They can be identified as a subalgebra of
so(𝑛+2,C), resp. a subgroup of O(𝑛+2,C) consisting of elements commuting
with a certain distinguished element of so(𝑛+2,C).

1.4 Affine orthogonal group and algebra as symmetries of
the Helmholtz equation

Recall that the affine orthogonal group AO(𝑛−1,C) is generated by rotations and
translations of C𝑛−1. It is obvious that elements of AO(𝑛−1,C) commute with
the Helmholtz operator Δ𝑛−1 − 1. The same is true concerning the affine orthog-
onal Lie algebra aso(𝑛−1,C). Therefore, they are symmetries of the Helmholtz
equation (1.11).

The Helmholtz equation is conceptually simpler than that of the Laplace
and heat equation, because all generalized symmetries are true symmetries.

Note that one can embed the symmetries of the Helmholtz equation in
conformal symmetries of the Laplace equation, similarly as was done with the
heat equation. In fact, aso(𝑛−1,C) is a subalgebra of so(𝑛+2,C), and AO(𝑛−1,C)
is a subgroup of O(𝑛+2,C).

1.5 Factorization relations

Another important class of identities satisfied by hypergeometric class operators
are factorizations [IH]. They come in pairs. They are identities of the form

ℱ1 = 𝒜−𝒜+ + 𝑐1, (1.15a)
ℱ2 = 𝒜+𝒜− + 𝑐2, (1.15b)
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where 𝒜+, 𝒜− are 1st order differential operators, 𝑐1, 𝑐2 are numbers and ℱ1,
ℱ2 are operators coming from (1.1)—(1.5) with slightly shifted parameters.

The number of such factorizations is the same as the number of roots of the
Lie algebra of generalized symmetries. They can be derived from certain identities
in the enveloping algebra. They are closely related to the Casimir operators of
its subalgebras.

Factorizations imply transmutation relations. In fact, it is easy to see that
(1.15b) and (1.15a) imply

𝒜−ℱ2 = (ℱ1 + 𝑐2 − 𝑐1)𝒜−, (1.16a)
𝒜+ℱ1 = (ℱ2 + 𝑐1 − 𝑐2)𝒜+. (1.16b)

Note that (1.16a) implies that the operator 𝒜− maps the kernel of ℱ2 to
the kernel of ℱ1 + 𝑐2 − 𝑐1. Similarly, (1.16b) implies that the operator 𝒜+ maps
the kernel of ℱ1 to the kernel of ℱ2 + 𝑐1 − 𝑐2. The above construction is usually
called the Darboux transformation.

1.6 Standard solutions of hypergeometric class equations

So far we discussed only identities satisfied by the operators corresponding to
the equations (1.1)—(1.5). The approach discussed in these notes is also helpful
in deriving and classifying the identities for their solutions.

The equations (1.1)—(1.5) have at least 1 and at most 3 singular points
on the Riemann sphere. One can typically find two solutions with a simple
behavior at each of these points. We call them standard solutions. (If it is a
regular–singular point, then the solutions are given by convergent power series,
otherwise we have to use other methods to define them). The discrete symmetries
map standard solutions on standard solutions. The best known example of
this method of generating solutions is Kummer’s table [Ku], which lists various
possible expressions for solutions of the hypergeometric equation.

1.7 Recurrence relations of hypergeometric class functions

All transmutation relations have the form

𝒜ℱ1 = ℱ2𝒜, (1.17)

where 𝒜 is a first order differential operator and ℱ1, ℱ2 is a pair of hypergeometric
class operators of the same type. Typically, some parameters of ℱ2 differ from the
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corresponding parameters of ℱ1 by ±1. Clearly, if a function 𝐹1 solves ℱ1𝐹1 = 0,
then 𝒜𝐹1 solves ℱ2𝒜𝐹1 = 0.

It turns out that if 𝐹1 is a standard solution of ℱ1, then 𝒜𝐹1 is proportional
to one of standard solutions of ℱ2, say 𝐹2. Thus we obtain an identity

𝒜𝐹1 = 𝑎𝐹2, (1.18)

called a recurrence relation, or a contiguity relation.
The recurrence relation (1.18) is fixed by the transmutation relation (1.17)

except for the coefficient 𝑎. In practice it is not difficult to determine 𝑎.

1.8 From wave packets to integral representations

Hypergeometric class functions possess integral representations, where integrands
are elementary functions. We show that integral representations come from
certain natural solutions of the parent 2nd order PDE, which at the same time
are eigenfunctions of Cartan operators. It will be convenient to have a name for
this kind of solutions—we will call them wave packets.

Let us describe how to construct wave packets for the Laplace equation. It
is easy to see that each function depending only on variables from an isotropic
subspace is harmonic, that is, satisfies the Laplace equation. By assuming that
the function is homogeneous in appropriate variables we can make sure that it is
an eigenfunction of Cartan operators.

Unfortunately, the above class of functions is too narrow for our purposes.
There is still another construction that can be applied: we can rotate a function
and integrate it (“smear it out”) with respect to a weight. This procedure does
not destroy the harmonicity. By choosing the weight appropriately, we can
make sure that the resulting wave packet is an eigenfunction of Cartan perators.
(The “smearing out” is essentially a generalization of the Fourier (or Mellin)
transformation to the complex domain.)

After substituting special coordinates to a wave packet, we obtain a function
of the form (1.12) with 𝐹 solving (1.14), and having the form of an integral of
an elementary function.

Wave packets for the heat and Helmholtz equation can be derived from wave
packets for the Laplace equation.
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1.9 Plan of the lecture notes

In Sect. 2 we give a concise introduction to hypergeometric class equations
and functions. One can view this section as an extension of the introduction,
concentrated on the terminology and classification of equations and functions we
consider in these notes.

The remaining sections can be divided into two categories. The first category
consists of Sects 3, 4 and 7. They have a general character and are devoted
to basic geometric analysis in any dimension. The most important one among
them is Sect. 4, devoted to the conformal invariance of the Laplace equation.
Of comparable importance is Sect. 7, where the Schrödinger Lie algebra and
group are introduced. In Subsect. 3.10—3.13 we explain how to construct “wave
packets”. No special functions appear in Sects 3, 4 and 7. They can be read
independently of the rest of the notes.

The second category consists of Sects 5, 6, 8, 9 and 10. They are devoted to a
detailed analysis of equations (1.1), (1.2), (1.3), (1.4), resp. (1.5). Typically, each
section starts with the ambient space corresponding to the 2nd order PDE from
the left column of the table in Subsect. 1.1. In the ambient space these symmetries
are very easy to describe. Then we reduce the dimension and introduce special
coordinates, which leads to the equation in the right column of the table.

We made serious efforts to make Sects 5, 6, 8, 9 and 10 as parallel as possible.
there is a one to one correspondence between subsections in all these 5 sections.
We try to use a uniform terminology and analogous conventions. This makes our
text somewhat repetitive—we believe that this is helpful to the reader. Note also
that these sections are to a large extent independent of one another.

We use various (minor but helpful) ideas to make our presentation as short
and transparent as possible. One of them is the use of two kinds of parameters.
The parameters that appear in (1.1), (1.2), (1.3), (1.4), and (1.5), denoted
𝑎, 𝑏, 𝑐, are called classical parameters. They are convenient when one defines
𝑘𝐹𝑚 functions by power series. However, in most of our text we prefer to use a
different set of parameters, denoted by Greek letters 𝛼, 𝛽, 𝜇, 𝜃, 𝜆. They are much
more convenient when we describe symmetries.

Another helpful idea is a consistent use of split coordinates in C𝑛 or R𝑛. In
these coordinates root operators and Weyl symmetries have an especially simple
form.

The notes are full of long lists of identities. We are convinced that most of
them are easy to understand and appreciate without much effort. Typically, they
are highly symmetric and parallel to one another.

We hesitated whether to use the complex or real setting for these notes. The
complex setting was e.g. in [DeMaj]. It offers undoubtedly some simplifications:
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there is no need to consider various signatures of the scalar product. However, the
complex setting can also be problematic: analytic functions are often multivalued,
which causes issues with some global constructions. Therefore, in these notes,
except for the introduction, we use the real setting as the basic one. At the same
time we keep in mind that all our formulas have obvious analytic continuations
to appropriate complex domains.

In most of our notes, we do not make explicit the signature of the scalar
product in our notation for Lie algebras and groups. E.g. by writing so(𝑛) we
mean so(𝑞, 𝑝) for some 𝑛 = 𝑞 + 𝑝 or 𝑠𝑜(𝑛,C). Specifying each time the signature
would be overly pedantic, especially since we usually want to complexify all
objects, so that the signature loses its importance.

1.10 Comparison with literature

The literature about hypergeometric class functions is enormous—after all it
is one of the oldest subjects of mathematics. Let us mention e.g. the books
[BE, SL, AAR, EMOT, Ho, MOS, NIST, R, WW].

The relationship of special functions to Lie groups and algebras was noticed
long time ago. For instance, the papers by Weisner [We1, We2] from the 50’s
describe Lie algebras associated with Bessel and Hermite functions.

The idea of studying hypergeometric class equations with help of Lie algebras
was developed further by Miller. His early book [M1] considers mostly small
Lie algebras/Lie groups, typically sl(2,C)/SL(2,C) and their contractions, and
applies them to obtain various identities about hypergeometric class functions.
These Lie algebras have 1-dimensional Cartan algebras and a single pair of
roots. This kind of analysis is able to explain only a single pair of transmutation
relations for each equation. To explain bigger families of transmutation relations
one needs larger Lie algebras.

A Lie algebra strictly larger than sl(2,C) is so(4,C). There exists a large
literature on the relation of the hypergeometric equation with so(4,C) and its
real forms, see eg. [KM, KMR]. This Lie algebra is however still too small to
account for all symmetries of the hypergeometric equation—its Cartan algebra
is only 2-dimensional, whereas the equation has three parameters.

An explanation of symmetries of the Gegenbauer equation in terms of so(5,C)
and of the hypergeometric equation in terms of so(6,C) ≃ sl(4,C) was first given
by Miller, see [M4], and especially [M5].

Miller and Kalnins wrote a series of papers where they studied the symmetry
approach to separation of variables for various 2nd order partial differential
equations, such as the Laplace and wave equation, see eg. [KM1]. A large part
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of this research is summed up in the book by Miller [M3]. As an important
consequence of this study, one obtains detailed information about symmetries of
hypergeometric class equations.

The main tool that we use to describe properties of hypergeometric class
functions are generalized symmetries of 2nd order linear PDE’s. Their theory is
described in another book by Miller [M2], and further developed in [M3].

A topic that is extensively treated in the literature on the relation of special
functions to group theory, such as [V, Wa, M1, VK], is derivation of various
addition formulas. Addition formulas say that a certain special function can be
written as a sum, often infinite, of some related functions. As we mentioned
above, they are outside of the scope of this text—we concentrate on the simplest
identities.

The relationship of Kummer’s table with the group of symmetries of a cube
(which is the Weyl group of so(6,C)) was discussed in [LSV]. A recent paper,
where symmetries of the hypergeometric equation play an important role is [Ko].

The use of transmutation relations as a tool to derive recurrence relations
for hypergeometric class functions is well known and can be found eg. in the
book by Nikiforov-Uvarov [NU], in the books by Miller [M1] or in older works
such as [Tr, We1, We2].

There exist various generalizations of hypergeometric class functions. Let
us mention the class of 𝒜-hypergeometric functions, which provides a natural
generalization of the usual hypergeometric function to many-variable situations
[Be, Bod]. Saito [Sa] considers generalized symmetries in the framework of 𝒜-
hypergeometric functions.

Another direction of generalizations of hypergeometric functions is the family
of Gel’fand-Kapranov-Zelevinsky hypergeometric functions [G, GKZ]. Similar
constructions were explored by Aomoto and others [A, AK, M-H]. The main idea
is to generalize integral representations of hypergeometric functions, rather than
hypergeometric equations. There exist also interesting confluent versions of these
functions [KHT].

A systematic presentation and derivation of symmetries of hypergeometric
class equations and functions from 2nd order PDE’s with constant coefficients was
given in [De] and [DeMaj]. These papers consistently use Lie-algebraic parameters,
describe transmutation relations, discrete symmetries and factorizations. [De]
describes integral representations and recurrence relations. [DeMaj] concentrates
on the study of hypergeometric class operators, leaving out the properties of
hypergeometric class functions.

These lecture notes are to a large extent based on [De] and [DeMaj]. There
are some corrections and minor changes of conventions. There are also some
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additions. A systematic derivation of all integral representations from “wave
packets” in higher dimensions seems to be new.

There are a number of topics related to the hypergeometric class equation
that we do not touch. Let us mention the question whether hypergeometric
functions can be expressed in terms of algebraic functions. This topic, in the
context of 𝒜-hypergeometric functions was considered eg. in the interesting
papers [Be, Bod].

We stick to a rather limited class of equations and functions (1.1)–(1.5). They
have a surprisingly rich structure, which often seems to be lost in more general
classes. Nevertheless, it is natural to ask how far one can generalize the ideas of
these notes to other equations and functions, such as higher hypergeometric func-
tions, multivariable hypergeometric functions, Heun functions, 𝑞-hypergeometric
functions, Painlevé equations.

Acknowledgments. The support of the National Science Center under the grant
UMO-2014/15/B/ST1/00126 is gratefully acknowledged. The author thanks
P. Majewski for collaboration at [DeMaj]. He is also grateful to A. Latosiński,
T. Koornwinder, M. Eastwood, S.-Y. Matsubara-Heo and Y. Haraoka for useful
remarks.

2 Hypergeometric class equations
In this short section we fix our terminology concerning hypergeometric class
equations and functions.

2.1 Remarks on notation

We use 𝜕𝑤 for the operator of differentiation in the variable 𝑤. We will understand
that the operator 𝜕𝑤 acts on the whole expression on its right:

𝜕𝑤𝑓(𝑤)𝑔(𝑤) = 𝜕𝑤

(︀
𝑓(𝑤)𝑔(𝑤)

)︀
. (2.1)

If we want to restrict the action of 𝜕𝑤 to the term immediately to the right, we
will write 𝑓(𝑤),𝑤, or simply 𝑓 ′(𝑤).

We use lhs and rhs as the abbreviations for the left hand side and right hand
side.
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2.2 Generalized hypergeometric series

For 𝑎 ∈ C and 𝑛 ∈ N we define the Pochhammer symbol

(𝑎)𝑗 := 𝑎(𝑎+ 1) · · · (𝑎+ 𝑗 − 1).

For 𝑎1, . . . , 𝑎𝑘 ∈ C, 𝑐1, . . . , 𝑐𝑚 ∈ C∖{0,−1,−2, . . . }, we define the 𝑘𝐹𝑚

generalized hypergeometric series, or for brevity the 𝑘𝐹𝑚 series:

𝑘𝐹𝑚(𝑎1, . . . , 𝑎𝑘; 𝑐1, . . . , 𝑐𝑚;𝑤) :=
∞∑︁

𝑗=0

(𝑎1)𝑗 · · · (𝑎𝑘)𝑗𝑤
𝑗

(𝑐1)𝑗 · · · (𝑐𝑚)𝑗𝑗!
. (2.2)

By the d’Alembert criterion,
(1) if 𝑚+ 1 > 𝑘, the series (2.2) is convergent for 𝑤 ∈ C;
(2) if 𝑚+ 1 = 𝑘, the series (2.2) is convergent for |𝑤| < 1;
(3) if 𝑚 + 1 < 𝑘, the series (2.2) is divergent, however sometimes a certain

function can be naturally associated with (2.2).
The corresponding analytic function will be called the 𝑘𝐹𝑚 function.

The zeroth order term of the series (2.2) is 1. A different normalization of
(2.2) is often useful:

𝑘F𝑚(𝑎1, . . . , 𝑎𝑘; 𝑐1, . . . , 𝑐𝑚;𝑤) := 𝑘𝐹𝑚(𝑎1, . . . , 𝑎𝑘; 𝑐1, . . . , 𝑐𝑚;𝑤)
Γ(𝑐1) · · · Γ(𝑐𝑚)

=
∞∑︁

𝑗=0

(𝑎1)𝑗 · · · (𝑎𝑘)𝑗𝑤
𝑗

Γ(𝑐1 + 𝑗) · · · Γ(𝑐𝑚 + 𝑗)𝑗! . (2.3)

In (2.3) we do not have to restrict the values of 𝑐1, . . . , 𝑐𝑚 ∈ C.

2.3 Generalized hypergeometric equations

Theorem 2.1. The 𝑘𝐹𝑚 function (2.2) solves the dfferential equation

(𝑐1 + 𝑤𝜕𝑤) · · · (𝑐𝑚 + 𝑤𝜕𝑤)𝜕𝑤𝐹 (𝑎1, . . . , 𝑎𝑘; 𝑐1, . . . , 𝑐𝑚;𝑤)

= (𝑎1 + 𝑤𝜕𝑤) · · · (𝑎𝑘 + 𝑤𝜕𝑤)𝐹 (𝑎1, . . . , 𝑎𝑘; 𝑐1, . . . , 𝑐𝑚;𝑤).
(2.4)

Proof. We check that both the left and right hand side of (2.4) are equal to

𝑎1 · · · 𝑎𝑘𝐹 (𝑎1 + 1, . . . , 𝑎𝑘 + 1; 𝑐1, . . . , 𝑐𝑚;𝑤).

2

We will call (2.4) the 𝑘ℱ𝑚 equation. It has the order max(𝑘,𝑚+ 1). Below we
list all 𝑘𝐹𝑚 functions with equations of the order at most 2.
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– The 2𝐹1 function or the Gauss hypergeometric function

𝐹 (𝑎, 𝑏; 𝑐;𝑤) =
∞∑︀

𝑛=0

(𝑎)𝑛(𝑏)𝑛

𝑛!(𝑐)𝑛
𝑤𝑛.

The series is convergent for |𝑤| < 1, and it extends to a multivalued function
on a covering of C∖{0, 1}. It is a solution of the Gauss hypergeometric equation
or the 2ℱ1 equation(︀

𝑤(1 − 𝑤)𝜕2
𝑤 + (𝑐− (𝑎+ 𝑏+ 1)𝑤)𝜕𝑤 − 𝑎𝑏

)︀
𝑓(𝑤) = 0.

– The 1𝐹1 function or Kummer’s confluent function

𝐹 (𝑎; 𝑐;𝑤) =
∞∑︀

𝑛=0

(𝑎)𝑛

𝑛!(𝑐)𝑛
𝑤𝑛.

The series is convergent for all 𝑤 ∈ C. It is a solution of Kummer’s confluent
equation or the 1ℱ1 equation(︀

𝑤𝜕2
𝑤 + (𝑐− 𝑤)𝜕𝑤 − 𝑎

)︀
𝑓(𝑤) = 0.

– The 0𝐹1 function

𝐹 (−; 𝑐;𝑤) = 𝐹 (𝑐;𝑤) =
∞∑︀

𝑛=0

1
𝑛!(𝑐)𝑛

𝑤𝑛.

The series is convergent for all 𝑤 ∈ C. It is a solution of the 0ℱ1 equation
(related to the Bessel equation)

(𝑤𝜕2
𝑤 + 𝑐𝜕𝑤 − 1)𝑓(𝑤) = 0.

– The 2𝐹0 function
For arg𝑤 ̸= 0 we define

𝐹 (𝑎, 𝑏; −;𝑤) := lim
𝑐→∞

𝐹 (𝑎, 𝑏; 𝑐; 𝑐𝑤).

It extends to an analytic function on the universal cover of C∖{0} with a
branch point of an infinite order at 0. It has the following divergent but
asymptotic expansion:

𝐹 (𝑎, 𝑏; −;𝑤) ∼
∞∑︁

𝑛=0

(𝑎)𝑛(𝑏)𝑛

𝑛! 𝑤𝑛, | arg𝑤 − 𝜋| < 𝜋 − 𝜖, 𝜖 > 0.

It is a solution of the 2ℱ0 equation(︀
𝑤2𝜕2

𝑤 + (−1 + (𝑎+ 𝑏+ 1)𝑤)𝜕𝑤 + 𝑎𝑏
)︀
𝑓(𝑤) = 0.

By a simple transformation described in Subsect. 8.10 it is equivalent to the
1ℱ1 equation.
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– The 1𝐹0 function or the power function

𝐹 (𝑎; −;𝑤) = (1 − 𝑤)−𝑎 =
∞∑︀

𝑛=0

(𝑎)𝑛

𝑛! 𝑤
𝑛

It solves (︀
(𝑤 − 1)𝜕𝑤 − 𝑎

)︀
𝑓(𝑤) = 0.

– The 0𝐹0 function or the exponential function

𝐹 (−; −;𝑤) = e𝑤 =
∞∑︀

𝑛=0

1
𝑛!𝑤

𝑛.

It solves
(𝜕𝑤 − 1)𝑓(𝑤) = 0.

2.4 Hypergeometric class equations

Following [NU], equations of the form(︀
𝜎(𝑤)𝜕2

𝑤 + 𝜏(𝑤)𝜕𝑤 + 𝜂
)︀
𝑓(𝑤) = 0, (2.5)

where

𝜎 is a polynomial of degree ≤ 2, (2.6a)
𝜏 is a polynomial of degree ≤ 1, (2.6b)
𝜂 is a number, (2.6c)

will be called hypergeometric class equations. Solutions of (2.5) will go under the
name of hypergeometric class functions. Operators 𝜎(𝑤)𝜕2

𝑤 + 𝜏(𝑤)𝜕𝑤 + 𝜂 with
𝜎, 𝜏, 𝜂 satisfying (2.6) will be called hypergeometric class operators.

Let us review basic classes of hypergeometric class equations. We will always
assume that 𝜎(𝑤) ̸= 0. Every class will be simplified by dividing by a constant
and, except for (2.14), by an affine change of the complex variable 𝑤.

The 2ℱ1 or Gauss hypergeometric equation(︀
𝑤(1 − 𝑤)𝜕2

𝑤 + (𝑐− (𝑎+ 𝑏+ 1)𝑤)𝜕𝑤 − 𝑎𝑏
)︀
𝑓(𝑤) = 0. (2.7)

The 2𝐹0 equation(︀
𝑤2𝜕2

𝑤 + (−1 + (1 + 𝑎+ 𝑏)𝑤)𝜕𝑤 + 𝑎𝑏
)︀
𝑓(𝑤) = 0. (2.8)

The 1ℱ1 or Kummer’s confluent equation

(𝑤𝜕2
𝑤 + (𝑐− 𝑤)𝜕𝑤 − 𝑎)𝑓(𝑤) = 0. (2.9)
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The 0ℱ1 equation
(𝑤𝜕2

𝑤 + 𝑐𝜕𝑤 − 1)𝑓(𝑤) = 0. (2.10)

The Hermite equation

(𝜕2
𝑤 − 2𝑤𝜕𝑤 − 2𝑎)𝑓(𝑤) = 0. (2.11)

2nd order Euler equation(︀
𝑤2𝜕2

𝑤 + 𝑏𝑤𝜕𝑤 + 𝑎
)︀
𝑓(𝑤) = 0. (2.12)

1st order Euler equation for the derivative

(𝑤𝜕2
𝑤 + 𝑐𝜕𝑤)𝑓(𝑤) = 0. (2.13)

2nd order equation with constant coefficients

(𝜕2
𝑤 + 𝑐𝜕𝑤 + 𝑎)𝑓(𝑤) = 0. (2.14)

Note that the equations (2.12), (2.13) and (2.14) are elementary. The remain-
ing ones (2.7), (2.8), (2.9), (2.10) and (2.11) are the subject of these lecture notes.
This is why they are contained in the list (1.1)–(1.5) given at the beginning of
these notes. (Actually, (2.8) is not explicitly mentioned in this list, however it is
equivalent to (2.9), so that these two equations are treated together). This list
contains also

The Gegenbauer equation(︀
(1 − 𝑤2)𝜕2

𝑤 − (𝑎+ 𝑏+ 1)𝑤𝜕𝑤 − 𝑎𝑏
)︀
𝑓(𝑤) = 0, (2.15)

which can be reduced to a subclass of 2ℱ1 equations by a simple affine trans-
formation. Its distinguishing property is the invariance with respect to the
reflection. The Gegenbauer equation has special properties, which justify its
separate treatment.

3 (Pseudo-)Euclidean spaces
In this section we introduce basic terminology and notation related to Lie
algebras and groups acting on functions on R𝑛 or, more generally, on manifolds.
Lie algebras will be usually represented as 1st order differential operators. Lie
groups will typically act as point transformations times multipliers.
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We will discuss various operators related to (pseudo-)orthogonal Lie algebras
and groups. In particular, we will introduce a convenient notation to describe
their Cartan algebras, root operators and Weyl groups. We will also discuss
briefly the Laplacian and the Casimir operator.

We will show how to some special classes of harmonic functions—solutions of
the Laplace equation. Of particular importance will be solutions that at the same
time are eigenfunctions of the Cartan algebra. This construction will involve a
contour integral, which can be viewed as a modification of the Fourier or Mellin
transformation. These solutions will be informally called wave packets.

Finally, in the last subsection we will show how to construct a harmonic
function in 𝑛−1 dimension from a harmonic function in 𝑛 dimensions.

3.1 Basic notation

We will write R× for R∖{0}, R+ for ]0,∞[ and R− for ] − ∞, 0[. We write C×

for C∖{0}.
We will treat R𝑛 as a (real) subspace of C𝑛. If possible, we will often extend

functions from real domains to holomorphic functions on complex domains.
In the following two subsections, Ω,Ω1,Ω2 are open subsets of R𝑛, or more

generally, manifolds.
Often it is advantageous to consider a similar formalism where Ω,Ω1,Ω2 are

open subsets of C𝑛, or more generally, complex manifolds. We will usually stick
to the terminology typical for the real case. The reader can easily translate it to
the complex picture, if needed.

3.2 Point transformations with multipliers

Let 𝛼 : Ω1 → Ω2 be a diffeomorphism. The transport of functions by the
map 𝛼 will be also denoted by 𝛼.1 More precisely, for 𝑓 ∈ 𝐶∞(Ω1) we define
𝛼𝑓 ∈ 𝐶∞(Ω2) by

(𝛼𝑓)(𝑦) := 𝑓(𝛼−1(𝑦)).

If 𝑚 ∈ 𝐶∞(Ω2), then we have a map 𝑚𝛼 : 𝐶∞(Ω1) → 𝐶∞(Ω2) given by

(𝑚𝛼𝑓)(𝑦) := 𝑚(𝑦)𝑓(𝛼−1(𝑦)). (3.1)

1 An alternative notation used often in mathematical literature for the transport by 𝛼 is
𝛼* or (𝛼*)−1.
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Transformations of the form (3.1) will be called point transformations with a
multiplier.

Clearly, transformations of the form (3.1) with Ω = Ω1 = Ω2 and 𝑚 every-
where nonzero form a group.

3.3 1st order differential operators

A vector field 𝑋 on Ω will be identified with the differential operator

𝑋𝑓(𝑦) =
∑︁

𝑖

𝑋𝑖(𝑦)𝜕𝑦𝑖𝑓(𝑦), 𝑓 ∈ 𝐶∞(Ω),

where 𝑋𝑖 ∈ 𝐶∞(Ω), 𝑖 = 1, . . . , 𝑛. More generally, we will often use 1st order
differential operators

(𝑋 +𝑀)𝑓(𝑦) :=
∑︁

𝑖

𝑋𝑖(𝑦)𝜕𝑦𝑖𝑓(𝑦) +𝑀(𝑦)𝑓(𝑦), (3.2)

where 𝑀 ∈ 𝐶∞(Ω). Clearly, the set of operators of the form (3.2) is a Lie algebra.
Let 𝛼 : Ω1 → Ω2 be a diffeomorphism. If 𝑋 is a vector field on Ω1, then

𝛼(𝑋) is the vector field on Ω2 defined as

𝛼(𝑋) := 𝛼𝑋𝛼−1.

3.4 Affine linear transformations

The general linear group is denoted GL(R𝑛). It has a natural extension
AGL(R𝑛) := R𝑛 ⋊ GL(R𝑛) called the affine general linear group. (𝑤,𝛼) ∈
AGL(R𝑛) acts on R𝑛 by

R𝑛 ∋ 𝑦 ↦→ 𝑤 + 𝛼𝑦 ∈ R𝑛.

The permutation group 𝑆𝑛 can be naturally identified with a subgroup of
GL(R𝑛). If 𝜋 ∈ 𝑆𝑛, then

(𝜋𝑦)𝑖 := 𝑦𝜋−1
𝑖 .

On the level of functions, we have

𝜋𝑓(𝑦1, . . . , 𝑦𝑛) = 𝑓(𝑦𝜋1 , . . . , 𝑦𝜋𝑛).

The Lie algebra gl(R𝑛) represented by vector fields on R𝑛 is spanned by
𝑦𝑖𝜕𝑦𝑗 .
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The Lie algebra agl(R𝑛) := R𝑛 ⋊ gl(R𝑛) is spanned by gl(R𝑛) and by 𝜕𝑦𝑖 .
A special element of gl(R𝑛) is the generator of dilations, known also as the

Euler vector field,

𝐴𝑛 :=
𝑛∑︁

𝑖=1
𝑦𝑖𝜕𝑦𝑖 . (3.3)

We will often use the complex versions of the above groups, with R replaced
with C. We will write GL(𝑛) and gl(𝑛), where the choice of the field follows from
the context.

3.5 (Pseudo-)orthogonal group

A pseudo-Euclidean space is R𝑛 equipped with a symmetric nondegenerate 𝑛× 𝑛

matrix 𝑔 = [𝑔𝑖𝑗 ]. 𝑔 defines the scalar product of vectors 𝑥, 𝑦 ∈ R𝑛 and the square
of a vector 𝑥 ∈ R𝑛:

⟨𝑥|𝑦⟩ :=
∑︁

𝑖𝑗

𝑥𝑖𝑔𝑖𝑗𝑦
𝑗 , ⟨𝑥|𝑥⟩ =

∑︁
𝑖𝑗

𝑥𝑖𝑔𝑖𝑗𝑥
𝑗 .

The matrix [𝑔𝑖𝑗 ] will denote the inverse of [𝑔𝑖𝑗 ].
We will denote by S𝑛−1(𝑅) the sphere in R𝑛 of squared radius 𝑅 ∈ R:

S𝑛−1(𝑅) := {𝑦 ∈ R𝑛 : ⟨𝑦|𝑦⟩ = 𝑅}. (3.4)

We will write S𝑛−1 := S𝑛−1(1).
Actually, S𝑛−1 is the usual sphere only for the Euclidean signature. For

non-Euclidean spaces it is a hyperboloid. Usually we will keep a uniform notation
for all signatures. Occasionally, if we want to stress that S𝑛−1 has a specific
signature, it will be denoted S𝑞,𝑝−1, where the signature of the ambient space is
(𝑞, 𝑝) (see (3.7)).

We also introduce the null quadric

𝒱𝑛−1 := S𝑛−1(0)∖{0}. (3.5)

The (pseudo-)orthogonal and the special (pseudo-)orthogonal group of 𝑔 is
defined as

O(𝑔) := {𝛼 ∈ GL(𝑛) : ⟨𝛼𝑦|𝛼𝑥⟩ = ⟨𝑦|𝑥⟩, 𝑦, 𝑥 ∈ R𝑛},
SO(𝑔) := {𝛼 ∈ O(𝑔) : det𝛼 = 1}.

We also have the affine (special) orthogonal group AO(𝑔) := R𝑛 ⋊ ‰(𝑔),
ASO(𝑔) := R𝑛 ⋊ SO(𝑔).
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It is easy to see that the pseudo-orthogonal Lie algebra, represented by vector
fields on R𝑛, can be defined by

so(𝑔) := {𝐵 ∈ gl(𝑛) : 𝐵⟨𝑦|𝑦⟩ = 0}.

For 𝑖, 𝑗 = 1, . . . , 𝑛, define

𝐵𝑖𝑗 :=
∑︁

𝑘

(𝑔𝑖𝑘𝑦
𝑘𝜕𝑦𝑗 − 𝑔𝑗𝑘𝑦

𝑘𝜕𝑦𝑖).

{𝐵𝑖𝑗 : 𝑖 < 𝑗} is a basis of so(𝑔). Clearly, 𝐵𝑖𝑗 = −𝐵𝑗𝑖 and 𝐵𝑖𝑖 = 0.
The affine pseudo-orthogonal Lie algebra aso(𝑔) := R𝑛 ⋊ so(𝑔) is spanned by

𝜕𝑦𝑖 and so(𝑔).
We will often use the complex versions of the above groups and Lie algebras.

In the real formalism we have to distinguish between various signatures of 𝑔—in
the complex formalism there is only one signature and we can drop the prefix
pseudo.

3.6 Invariant operators

Consider a pseudo-Euclidean space R𝑛. We define the Laplacian and the Casimir
operator

Δ𝑛 :=
𝑛∑︁

𝑖,𝑗=1
𝑔𝑖𝑗𝜕𝑦𝑖𝜕𝑦𝑗 ,

𝒞𝑛 := 1
2

𝑛∑︁
𝑖,𝑗,𝑘,𝑙=1

𝑔𝑖𝑘𝑔𝑗𝑙𝐵𝑖𝑗𝐵𝑘𝑙.

The above definitions do not depend on the choice of a basis. Δ𝑛 commutes with
AO(𝑔) and aso(𝑔). 𝒞𝑛 commutes with O(𝑔) and so(𝑔).

Note the identity

⟨𝑦|𝑦⟩Δ𝑛 = 𝐴2
𝑛 + (𝑛− 2)𝐴𝑛 + 𝒞𝑛, (3.6)

where 𝐴𝑛 is defined in (3.3).

3.7 Orthonormal coordinates

Suppose that 𝑞 + 𝑝 = 𝑛. Every scalar product of signature (𝑞, 𝑝) can be brought
to the form

⟨𝑦|𝑦⟩ = −
𝑞∑︁

𝑖=1
𝑦2

𝑖 +
𝑞+𝑝∑︁

𝑗=𝑞+1
𝑦2

𝑗 . (3.7)
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so(𝑔) has a basis consisting of

𝐵𝑖𝑗 = −𝑦𝑖𝜕𝑦𝑗 + 𝑦𝑗𝜕𝑦𝑖 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑞 (3.8a)
𝐵𝑖𝑗 = 𝑦𝑖𝜕𝑦𝑗 + 𝑦𝑗𝜕𝑦𝑖 1 ≤ 𝑖 ≤ 𝑞, 𝑞 < 𝑗 ≤ 𝑛; (3.8b)
𝐵𝑖𝑗 = 𝑦𝑖𝜕𝑦𝑗 − 𝑦𝑗𝜕𝑦𝑖 , 𝑞 < 𝑖 < 𝑗 ≤ 𝑛. (3.8c)

The Laplacian and the Casimir operator are

Δ𝑛 = −
∑︁

1≤𝑖≤𝑞

𝜕2
𝑦𝑖

+
∑︁

𝑞<𝑗≤𝑛

𝜕2
𝑦𝑗
, (3.9)

𝒞𝑛 =
∑︁

1≤𝑖<𝑗≤𝑞

𝐵2
𝑖𝑗 +

∑︁
𝑞<𝑖<𝑗≤𝑛

𝐵2
𝑖𝑗 −

∑︁
1≤𝑖≤𝑞,

𝑞<𝑗≤𝑛

𝐵2
𝑖𝑗 . (3.10)

We will rarely use orthonormal coordinates.
In the context of the signature (𝑞, 𝑝) the standard notation for the orthogoanl

groups/Lie algebras is O(𝑞, 𝑝), AO(𝑞, 𝑝), so(𝑞, 𝑝), aso(𝑞, 𝑝). We will however often
use the notation O(𝑛), AO(𝑛), so(𝑛), aso(𝑛), without specifying the signature of
the quadratic form, and even allowing for an arbitrary choice of the field (R or
C).

3.8 Split coordinates

Suppose that 2𝑚 = 𝑛. (𝑚,𝑚) will be called the split signature. If the scalar
product has such a signature, we can find coordinates such that

⟨𝑦|𝑦⟩ =
𝑚∑︁

𝑖=1
2𝑦−𝑖𝑦𝑖. (3.11)

We will say that (3.11) is a scalar product in split coordinates.
so(2𝑚) has a basis consisting of

𝑁𝑖 := 𝐵−𝑖𝑖 = −𝑦−𝑖𝜕𝑦−𝑖 + 𝑦𝑖𝜕𝑦𝑖 , 𝑗 = 1, . . . ,𝑚, (3.12a)
𝐵𝑖𝑗 = 𝑦−𝑖𝜕𝑦𝑗 − 𝑦−𝑗𝜕𝑦𝑖 , 1 ≤ |𝑖| < |𝑗| ≤ 𝑚. (3.12b)

The subalgebra of so(2𝑚) spanned by (3.12a) is maximal commutative. It is
called the Cartan algebra of so(2𝑚). (3.12b) are its root operators. They satisfy

[𝑁𝑘, 𝐵𝑖𝑗 ] = −(sgn(𝑖)𝛿𝑘,|𝑖| + sgn(𝑗)𝛿𝑘,|𝑗|)𝐵𝑖𝑗 .



Group-theoretical origin of symmetries of hypergeometric class equations and functions 23

The Laplacian and the Casimir operator are

Δ2𝑚 =
𝑚∑︁

𝑖=1
2𝜕𝑦−𝑖𝜕𝑦𝑖 , (3.13)

𝒞2𝑚 =
∑︁

1≤|𝑖|<|𝑗|≤𝑚

𝐵𝑖𝑗𝐵−𝑖−𝑗 −
𝑚∑︁

𝑖=1
𝑁2

𝑖 . (3.14)

Suppose now that 2𝑚+ 1 = 𝑛. In this case, (𝑚,𝑚+ 1) will be called the split
signature. Every scalar product of such signature can be brought to the form

⟨𝑦|𝑦⟩ = 𝑦2
0 +

𝑚∑︁
𝑖=1

2𝑦−𝑖𝑦𝑖. (3.15)

We will say that (3.15) is a scalar product in split coordinates.
so(2𝑚+ 1) has then a basis consisting of the above described basis of so(2𝑚)

and

𝐵0𝑗 = 𝑦0𝜕𝑦𝑗 − 𝑦−𝑗𝜕𝑦0 , |𝑗| = 1, . . . ,𝑚. (3.16)

The additional roots satisfy

[𝑁𝑘, 𝐵0𝑗 ] = −sgn(𝑗)𝛿𝑘,|𝑗|𝐵0𝑗 . (3.17)

The subalgebra spanned by (3.12a) is still maximal commutative in so(2𝑚+ 1).
It is called a Cartan algebra of so(2𝑚+ 1).

We have

Δ2𝑚+1 = 𝜕2
𝑦0 +

𝑚∑︁
𝑖=1

2𝜕𝑦−𝑖𝜕𝑦𝑖 , (3.18)

𝒞2𝑚+1 =
𝑚∑︁

|𝑖|=1

𝐵0𝑖𝐵0−𝑖 +
∑︁

1≤|𝑖|<|𝑗|≤𝑚

𝐵𝑖𝑗𝐵−𝑖−𝑗 −
𝑚∑︁

𝑖=1
𝑁2

𝑖 . (3.19)

In the real case we will most often consider the split signature, both in even
and odd dimensions. In both real and complex cases we will usually prefer split
coordinates. We will often write (3.11) and (3.15) in the form

⟨𝑦|𝑦⟩ =
∑︁

|𝑖|≤𝑚

𝑦−𝑖𝑦𝑖 (3.20)

where it is understood that 𝑖 ∈ {−𝑚, . . . ,−1, 1, . . . ,𝑚} in the even case and
𝑖 ∈ {−𝑚, . . . ,−1, 0, 1, . . . ,𝑚} in the odd case.
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3.9 Weyl group

In this subsection we introduce a certain finite subgroup of O(𝑛), which will be
called the Weyl group. We will also introduce a notation for elements of these
groups. The reader is referred to Subsects 5.1 and 6.1, for examples of application
of this notation. We will assume that the signature is split and split coordinates
have been chosen.

Consider first dimension 2𝑚. Permutations of {−1, . . . ,−𝑚} ∪ {1, . . . ,𝑚}
that preserve the pairs {−1, 1}, . . . {−𝑚,𝑚} define elements of O(2𝑚). They
form a group, that we will call denote 𝐷𝑚. It is isomorphic to Z𝑚

2 ⋊ 𝑆𝑚. It is
the Weyl group of O(2𝑚).

The flip interchanging −𝑖, 𝑖 will be denoted 𝜏𝑖. The flips 𝜏𝑖, with 𝑖 = 1, . . . ,𝑚,
generate a subgroup of 𝐷𝑚 isomorphic to Z𝑚

2 .
To every 𝜋 ∈ 𝑆𝑚 there corresponds an element of 𝐷𝑚 denoted 𝜎𝜋, that

permutes pairs (−𝑖, 𝑖). We have

𝜎𝜋𝑓(𝑦−1, 𝑦1, . . . , 𝑦−𝑚, 𝑦𝑚) := 𝑓(𝑦−𝜋1 , 𝑦𝜋1 , . . . , 𝑦−𝜋𝑚 , 𝑦𝜋𝑚). (3.21)

Let 𝜖 = (𝜖1, . . . , 𝜖𝑚) and 𝜖1, . . . , 𝜖𝑚 ∈ {1,−1}. We will write 𝜖𝜋 as the
shorthand for 𝜖1𝜋1, . . . , 𝜖𝑚𝜋𝑚. We will use the notation

𝜎𝜖𝜋 := 𝜎𝜋

∏︁
𝜖𝑗=−1

𝜏𝑗 . (3.22)

We have

𝜎𝜖𝜋𝐵𝑖𝑗𝜎
−1
𝜖𝜋 = 𝐵𝜖𝑖𝜋𝑖,𝜖𝑗𝜋𝑗 ; 𝜎𝜖𝜋𝑁𝑗𝜎

−1
𝜖𝜋 = 𝜖𝑗𝑁𝜋𝑗 .

Using R2𝑚+1 = R ⊕ R2𝑚, we embed 𝐷𝑚 in O(2𝑚+ 1). We also introduce
𝜏0 ∈ O(2𝑚+ 1) given by

𝜏0𝑓(𝑦0, 𝑦−1, 𝑦1, . . . , 𝑦−𝑚, 𝑦𝑚) := 𝑓(−𝑦0, 𝑦−1, 𝑦1, . . . , 𝑦−𝑚, 𝑦𝑚). (3.23)

Clearly, 𝜏0 commutes with 𝐷𝑚. The group 𝐵𝑚 is defined as the group generated
by 𝐷𝑚 and 𝜏0. It is isomorphic to Z2 × Z𝑚

2 ⋊ 𝑆𝑚. It is the Weyl group of
O(2𝑚+ 1).

We set
𝜏𝜖𝜋 := 𝜏0𝜎𝜖𝜋.

We have

𝜏𝜖𝜋𝐵0𝑗𝜏
−1
𝜖𝜋 = −𝐵0,𝜖𝑗𝜋𝑗 , 𝜏𝜖𝜋𝐵𝑖𝑗𝜏

−1
𝜖𝜋 = 𝐵𝜖𝑖𝜋𝑖,𝜖𝑗𝜋𝑗 , 𝜏𝜖𝜋𝑁𝑗𝜏

−1
𝜖𝜋 = 𝜖𝑗𝑁𝜋𝑗 .
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3.10 Harmonic functions

Suppose that R𝑛 is equipped with a scalar product. We say that a function 𝐹

on R𝑛 is harmonic if
Δ𝑛𝐹 = 0. (3.24)

Proposition 3.1. Let 𝑒1, . . . 𝑒𝑘 ∈ R𝑛 satisfy

⟨𝑒𝑖|𝑒𝑗⟩ = 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑘.

In other words, assume that 𝑒1, . . . , 𝑒𝑘 span an isotropic subspace of R𝑛. Let 𝑓
be a function of 𝑘 variables. Then

𝐹 (𝑧) := 𝑓
(︀
⟨𝑒1|𝑧⟩, . . . , ⟨𝑒𝑘|𝑧⟩

)︀
is harmonic.

For instance, consider R𝑛 with a split scalar product, where 𝑛 = 2𝑚 or 𝑛 = 2𝑚+1.
Then any function 𝑓(𝑦1, . . . , 𝑦𝑚) is harmonic, for instance

𝐹𝛼1,...𝛼𝑚 := 𝑦𝛼1
1 · · · 𝑦𝛼𝑚

𝑚 , (3.25)

which in addition satisfies

𝑁𝑗𝐹𝛼1,...𝛼𝑚 = 𝛼𝑗𝐹𝛼1,...𝛼𝑚 . (3.26)

Harmonic functions satisfying in addition the eigenvalue equations (3.26)
will play an important role in our approach. Unfortunately, functions of the form
(3.25) constitute a rather narrow class. We need more general harmonic functions,
which we will call wave packets. They are obtained by smearing a rotated (3.25)
with an appropriate weight, so that it is an eigenfunction of Cartan operators.
This construction will be explained in the Subsect. 3.11–3.13. It is essentially
a version of the Fourier (or Mellin) transformation, possibly with a deformed
complex contour of integration.

Note that the aim of Subsects 3.11 and 3.12 is to provide motivation, based
on the concept of the Fourier transformation, for Subsect. 3.13, which contains
the construction that will be used in what follows.

3.11 Eigenfunctions of angular momentum I

Suppose that R𝑛 = R2 ⊕ R𝑛−2, where we write 𝑧 = (𝑥, 𝑦, 𝑧′) ∈ R𝑛 and

⟨𝑥, 𝑦, 𝑧′|𝑥, 𝑦, 𝑧′⟩ = 𝑥2 + 𝑦2 + ⟨𝑧′|𝑧′⟩.
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Set
𝑁1 := −i(𝑥𝜕𝑦 − 𝑦𝜕𝑥).

Let 𝑚 ∈ Z. Consider a function 𝑓(𝑥, 𝑦, 𝑧′). Then

𝐹𝑚(𝑥, 𝑦, 𝑧′) := 1
2𝜋

2𝜋∫︁
0

𝑓(cos𝜑𝑥− sin𝜑𝑦, sin𝜑𝑥+ cos𝜑𝑦, 𝑧′)e−i𝑚𝜑d𝜑, (3.27)

satisfies 𝑁1𝐹𝑚(𝑥, 𝑦, 𝑧′) = 𝑚𝐹𝑚(𝑥, 𝑦, 𝑧′). (3.28)

Note that if 𝑓 is harmonic, then so is 𝐹𝑚. This construction is essentially the
Fourier transformation.

Introduce complex coordinates

𝑧±1 := 1√
2

(𝑥± i𝑦). (3.29)

We will write 𝑓(𝑧−1, 𝑧1, 𝑧
′) = 𝑓(𝑥, 𝑦, 𝑧′), 𝐹𝑚(𝑧−1, 𝑧1, 𝑧

′) = 𝐹 (𝑥, 𝑦, 𝑧′). The oper-
ator 𝑁1 takes the familiar form

𝑁1 = −𝑧−1𝜕𝑧−1 + 𝑧1𝜕𝑧1 , (3.30)

and the metric becomes

⟨𝑧−1, 𝑧1, 𝑧
′|𝑧−1, 𝑧1, 𝑧

′⟩ = 2𝑧−1𝑧1 + ⟨𝑧′|𝑧′⟩. (3.31)

Then (3.27) and (3.28) can be rewritten as

𝐹𝑚(𝑧−1, 𝑧1, 𝑧
′) := 1

2𝜋i

∫︁
𝛾

𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧
′)𝜏−𝑚−1d𝜏, (3.32)

𝑁1𝐹𝑚(𝑧−1, 𝑧1, 𝑧
′) = 𝑚𝐹𝑚(𝑧−1, 𝑧1, 𝑧

′), (3.33)

where 𝛾 is the closed contour [0, 2𝜋[∋ 𝜑 ↦→ 𝜏 = ei𝜑.

3.12 Eigenfunctions of angular momentum II

We again consider R𝑛 = R2 ⊕ R𝑛−2, but we change the signature of the metric.
We assume that the scalar product is given by

⟨𝑧−1, 𝑧1, 𝑧
′|𝑧−1, 𝑧1, 𝑧

′⟩ = 2𝑧−1𝑧1 + ⟨𝑧′|𝑧′⟩. (3.34)

We start from a function 𝑓(𝑧−1, 𝑧1, 𝑧
′). We would like to construct an eigenfunc-

tion of 𝑁1 with a generic eigenvalue 𝛼, and not only with an integer eigenvalues
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as (3.32). To do this we repeat a similar procedure as in the previous subsection.
Now, however, we need to integrate over a half-line, so we need conditions at the
ends: we assume that

𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧
′)𝜏−𝛼

⃒⃒⃒𝜏=∞

𝜏=0
= 0. (3.35)

We set

𝐹𝛼 := 1
2𝜋i

∞∫︁
0

𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧
′)𝜏−𝛼−1d𝜏. (3.36)

Then, with 𝑁1 given by (3.30),

𝑁1𝐹𝛼(𝑧−1, 𝑧1, 𝑧
′) = 𝛼𝐹𝛼(𝑧−1, 𝑧1, 𝑧

′). (3.37)

Indeed,

𝜕𝜏𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧
′)𝜏−𝛼

= − 𝛼𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧
′)𝜏−𝛼−1

− 𝜏−2𝑧−1𝜕1𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧
′)𝜏−𝛼 + 𝑧1𝜕2𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧

′)𝜏−𝛼

=
(︀

− 𝛼− 𝑧−1𝜕𝑧−1 + 𝑧1𝜕𝑧1

)︀
𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧

′)𝜏−𝛼−1.

Hence

0 = 1
2𝜋i

∞∫︁
0

d𝜏𝜕𝜏𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧
′)𝜏−𝛼 = (−𝛼+𝑁1)𝐹𝛼. (3.38)

Note that 𝐹𝛼 is the Mellin transform of 𝜏 ↦→ 𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧
′). If 𝑓 is

harmonic, then so is 𝐹𝛼.

3.13 Eigenfunctions of angular momentum III

Assume now that 𝑧−1, 𝑧1, 𝑧
′ are complex variables and 𝑓 is holomorphic. Then

we can formulate a result that includes (3.28) and (3.37), allowing for a greater
flexibility of the choice of the contour of integration:

Proposition 3.2. Suppose that ]0, 1[∋ 𝑠
𝛾↦→ 𝜏(𝑠) is a contour on the Riemann

surface of
𝜏 ↦→ 𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧

′)𝜏−𝛼

that satisfies

𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧
′)𝜏−𝛼

⃒⃒⃒𝜏(1)

𝜏(0)
= 0. (3.39)
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Then
𝐹𝛼 := 1

2𝜋i

∫︁
𝛾

𝑓(𝜏−1𝑧−1, 𝜏𝑧1, 𝑧
′)𝜏−𝛼−1d𝜏 (3.40)

solves
𝑁1𝐹𝛼 = 𝛼𝐹𝛼.

Proof. We repeat the arguments of the previous subsection, where we replace
[0,∞[ with 𝛾. 2

3.14 Dimensional reduction

In this subsection we describe how to construct harmonic functions in 𝑛 − 1
dimensions out of a harmonic function in 𝑛 dimensions.

Suppose that R𝑛 is equipped with the scalar product

⟨𝑧−1, 𝑧1, 𝑧
′|𝑧−1, 𝑧1, 𝑧

′⟩𝑛 = 2𝑧−1𝑧1 + ⟨𝑧′|𝑧′⟩𝑛−2.

As usual, we write

𝑁1 = −𝑧−1𝜕𝑧−1 + 𝑧1𝜕𝑧1 , (3.41)
Δ𝑛 = 2𝜕𝑧−1𝜕𝑧1 + Δ𝑛−2. (3.42)

Introduce new variables and the Laplacian in 𝑛−1 dimensions.

𝑧0 : =
√︀

2𝑧−1𝑧1, 𝑢 :=
√︂

𝑧1
𝑧−1

, (3.43)

Δ𝑛−1 := 𝜕2
𝑧0 + Δ𝑛−2. (3.44)

In the new variables,

𝑁1 = 𝑢𝜕𝑢, (3.45)

Δ𝑛 = 𝜕2
𝑧0 + 1

𝑧0
𝜕𝑧0 − 1

𝑧2
0

(𝑢𝜕𝑢)2 + Δ𝑛−2. (3.46)

Consequently,

𝑧
1
2
0 Δ𝑛𝑧

− 1
2

0 = − 1
𝑧2

0

(︁
𝑁1 − 1

2

)︁(︁
𝑁1 + 1

2

)︁
+ Δ𝑛−1. (3.47)

Therefore, if we set

𝐹±(𝑧0, 𝑢, 𝑧
′) = 𝑢± 1

2 𝑧
− 1

2
0 𝑓±(𝑧0, 𝑧

′), (3.48)
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then

𝑁1𝐹± = ±1
2𝐹±, (3.49)

𝑧
1
2
0 𝑢

∓ 1
2 Δ𝑛𝐹± = Δ𝑛−1𝑓±. (3.50)

Hence, the 𝑛−1-dimensional Laplace equation Δ𝑛−1𝑓 = 0 is essentially equivalent
to the 𝑛-dimensional Laplace equation Δ𝑛𝐹 = 0 restricted to the eigenspace of
𝑁1 = ± 1

2 .

4 Conformal invariance of the Laplacian
Conformal manifolds are manifolds equipped with a conformal stucture—a pseudo-
Euclidean metric defined up to a positive multiplier. Conformal transformations
are transformations that preserve the conformal structure.

The main objects of this section are projective null quadrics. They possess
a natural conformal structure with an exceptionally large group of conformal
transformations. In fact, on the 𝑛 + 2 dimensional pseudo-Euclidean ambient
space we have the obvious action of the pseudo-orthogonal Lie algebra and group.
This action is inherited by the 𝑛+ 1 dimensional null quadric 𝒱, and then by
its 𝑛-dimensional projectivization 𝒴. One can view 𝒴 as the base of the line
bundle 𝒱 → 𝒴. By choosing a section 𝛾 of this bundle we can equip 𝒴 with a
pseudo-Riemannian structure. Choosing various sections defines metrics that
differ only by a positive multiple—thus 𝒴 has a natural conformal structure. If
the signature of the ambient space is (𝑞 + 1, 𝑝+ 1), then the signature of 𝒴 is
(𝑞, 𝑝).

We discuss a few examples of pseudo-Riemannian manifolds conformally
equivalent to 𝒴 or to its open dense subset. The main example is the flat pseudo-
Euclidean space. Another example is the product of two spheres S𝑞 × S𝑝, which
is conformally equivalent to the entire 𝒴 of signature (𝑞, 𝑝).

Especially simple and important are the low dimensional cases: in 1 dimension
𝒴 ≃ S1 and in 2 dimensions 𝒴 ≃ S1 × S1. One should however remark that
the dimensions 1 and 2 are somewhat special— in these dimensions the full
conformal Lie algebra is infinite dimensional, and the above construction gives
only its subalgebra.

Conformal transformations are generalized symmetries of the Laplacian. One
can see this with help of a beautiful argument that goes back to Dirac. Its
first step is the construction of a certain geometrically defined operator denoted
Δ◇

𝑛+2, that transforms functions on 𝒱 homogeneous of degree 1− 𝑛
2 into functions

homogeneous of degree −1− 𝑛
2 . After fixing a section 𝛾 of the line bundle 𝒱 → 𝒴 ,
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we can identify the somewhat abstract operator Δ◇
𝑛+2 with a concrete operator

Δ𝛾
𝑛+2 acting on fuctions on 𝛾(𝒴). This operator turns out to be the Yamabe

Laplace-Beltrami operator for the corresponding pseudo-Riemannian structure.
On the 𝑛 + 2-dimensional ambient space the Laplacian Δ𝑛+2 obviously

commutes with the pseudo-orthogonal Lie algebra and group. On the level of
𝛾(𝒴) this commutation becomes a transmutation of Δ𝛾

𝑛+2 with two different
representations—one corresponding to the degree 1 − 𝑛

2 , the other corresponding
to the degree −1 − 𝑛

2 .
At the end of this section we consider in more detail the conformal action

of the pseudo-orthogonal Lie algebra and group corresponding to the degree of
homogeneity 𝜂 on the flat pseudo-Euclidean space. In particular, we compute
the representations for all elements of the pseudo-orthogonal Lie algebra. For the
pseudo-orthogonal group, we compute the representations of Weyl symmetries.

4.1 Pseudo-Riemannian manifolds

We say that a manifold 𝒴 is pseudo-Riemannian if it is equipped with a nonde-
generate symmetric covariant 2-tensor

𝒴 ∋ 𝑦 ↦→ 𝑔(𝑦) = [𝑔𝑖𝑗(𝑦)],

called the metric tensor. For any vector field 𝑌 it defines a function 𝑔(𝑌, 𝑌 ) ∈
𝐶∞(𝒴):

𝒴 ∋ 𝑦 ↦→ 𝑔(𝑌, 𝑌 )(𝑦) := 𝑔𝑖𝑗(𝑦)𝑌 𝑖(𝑦)𝑌 𝑗(𝑦).

Let 𝛼 be a diffeomorphism of 𝒴. As is well known, the tensor 𝑔 can be
transported by 𝛼. More precisely, 𝛼*(𝑔) is defined by

𝛼*(𝑔)(𝑌, 𝑌 ) := 𝑔
(︀
𝛼(𝑌 ), 𝛼(𝑌 )

)︀
,

where 𝑌 is an arbitrary vector field. We say that 𝛼 is isometric if 𝛼*𝑔 = 𝑔.
Let 𝑋 be a vector field. The Lie derivative in the direction of 𝑋 can be

applied to the tensor 𝑔. More precisely, ℒ𝑋𝑔 is defined by

(ℒ𝑋𝑔)(𝑌, 𝑌 ) := 𝑔
(︀
[𝑋,𝑌 ], 𝑌

)︀
+ 𝑔
(︀
𝑌, [𝑋,𝑌 ]

)︀
.

We say that a vector field 𝑋 is Killing if ℒ𝑋𝑔 = 0.
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4.2 Conformal manifolds

We say that the metric tensor 𝑔1 is conformally equivalent to 𝑔 if there exists a
positive function 𝑚 ∈ 𝐶∞(𝒴) such that

𝑚(𝑦)𝑔(𝑦) = 𝑔1(𝑦).

Clearly, the conformal equivalence is an equivalence relation in the set of metric
tensors. We say that a manifold 𝒴 is equipped with a conformal structure, if it is
equipped with an equivalence class of conformally equivalent metric tensors.

We say that a diffeomorphism 𝛼 is conformal if for some metric tensor 𝑔
in the conformal class of 𝒴, 𝛼*𝑔 is conformally equivalent to 𝑔. Clearly, this is
equivalent to saying that for all 𝑔 in the conformal class of 𝒴 , 𝛼*𝑔 is conformally
equivalent to 𝑔.

We say that a vector field 𝑋 is conformal Killing if for any metric tensors
from the conformal class of 𝒴 there exists a smooth function 𝑀 ∈ 𝐶∞(𝒴) such
that

ℒ𝑋𝑔 = 𝑀𝑔. (4.1)

Clearly, if (4.1) is true for one metric tensor 𝑔 from the conformal class of 𝒴, it
is true for all metric tensors conformally equivalent to 𝑔.

4.3 Projective null quadric

Consider a pseudo-Euclidean vector space (R𝑛+2, 𝑔) of signature (𝑞 + 1, 𝑝+ 1),
which we will call the ambient space. Recall that

𝒱𝑛+1 := {𝑧 ∈ R𝑛+2 : ⟨𝑧|𝑧⟩ = 0, 𝑧 ̸= 0}.

is the null quadric. For simplicity, we will often write 𝒱 for 𝒱𝑛+1.
The scaling, that is the action of R×, preserves 𝒱. Let 𝒴 := 𝒱/R× be the

projective null quadric. We obtain a line bundle 𝒱 → 𝒴 with the base 𝒴 and the
fiber R×.

Let 𝒴𝑖 be an open subset of 𝒴 and 𝒱𝑖 be the corresponding open subset of
𝒱. Let

𝒴𝑖 ∋ 𝑦 ↦→ 𝛾𝑖(𝑦) ∈ 𝒱𝑖

be a section of the bundle 𝒱𝑖 → 𝒴𝑖, that is a smooth map satisfying 𝑦 = R×𝛾𝑖(𝑦).
Let 𝑔𝛾𝑖 be the metric tensor 𝑔 restricted to 𝛾𝑖(𝒴𝑖) transported to 𝒴𝑖.

It is easy to prove the following fact:
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Proposition 4.1. Let 𝛾𝑖, 𝑖 = 1, 2, be sections of 𝒱𝑖 → 𝒴𝑖. Then 𝑔𝛾𝑖 are metrics
on 𝒴𝑖 of signature (𝑞, 𝑝). The metrics 𝑔𝛾1 and 𝑔𝛾2 restricted to 𝒴1 ∩ 𝒴2 are
conformally equivalent.

Prop. 4.1 equips 𝒴 with a conformal structure.
Choosing a section in the bundle 𝒱 → 𝒴 endows 𝒴 with the structure of a

pseudo-Riemannian manifold. For some special sections we obtain in particular
various symmetric spaces together with an explicit description of their conformal
structure. In following subsections we present a few examples of this construction.

Instead of 𝒴 one can consider 𝒴 := 𝒱/R+. We obtain a bundle 𝒱 → 𝒴
with fibre R+, which has similar properties as the bundle 𝒱 → 𝒴 . It is a double
covering of 𝒴, which means that we have a canonical 2 − 1 surjection 𝒴 → 𝒴.

Let 𝛾 be a section of 𝒱 → 𝒴. Every 𝑦 ∈ 𝒴 equals R×𝛾(𝑦), and hence it is
the disjoint union of 𝑦+ := R+𝛾(𝑦) and 𝑦− := R−𝛾(𝑦). Clearly {𝑦+, 𝑦−} ⊂ 𝒴 is
the preimage of 𝑦 under the canonical covering. Let us set

𝛾(𝑦+) := 𝛾(𝑦), 𝛾(𝑦−) := −𝛾(𝑦). (4.2)

Then 𝛾 is a section of the bundle 𝒱 → 𝒴 . With help of 𝛾 we can equip 𝒴 with a
metric 𝑔𝛾 . Obviously, if 𝒴 is equipped with the metric 𝑔𝛾 , the canonical surjection
𝒴 → 𝒴 is isometric.

We would like to treat 𝒴 as the principal object, since it has a direct
generalization to the complex case. However, for some purposes 𝒴 is preferable.

4.4 Projective null quadric as a compactification of a
pseudo-Euclidean space

Consider a pseudo-Euclidean space (R𝑛, 𝑔𝑛) of signature (𝑞, 𝑝) embedded in the
pseudo-Euclidean space (R𝑛+2, 𝑔𝑛+2) of signature (𝑞+ 1, 𝑝+ 1). We assume that
the square of a vector (𝑧′, 𝑧−, 𝑧+) ∈ R𝑛+2 = R𝑛 ⊕ R2 is

⟨𝑧′, 𝑧−, 𝑧+|𝑧′, 𝑧−, 𝑧+⟩𝑛+2 := ⟨𝑧′|𝑧′⟩𝑛 + 2𝑧+𝑧−.

Set
𝒱0 := {(𝑧′, 𝑧−, 𝑧+) ∈ 𝒱 : 𝑧− ̸= 0}, 𝒴0 := 𝒱0/R×.

𝒴0 is dense and open in 𝒴.
We have a bijection and a section

𝒴0 ∋ R×

⎡⎢⎣ 𝑦

1
− ⟨𝑦|𝑦⟩𝑛

2

⎤⎥⎦ ↔ 𝑦∈

R𝑛

↦→

⎡⎢⎣ 𝑦

1
− ⟨𝑦|𝑦⟩𝑛

2

⎤⎥⎦ ∈ 𝒱0. (4.3)
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Thus R𝑛 is identified with 𝒴0. The metric on 𝒴0 given by the above section
coincides with the original metric on R𝑛. We have thus embedded R𝑛 with its
conformal structure as a dense open subset of 𝒴.

4.5 Projective null quadric as a sphere/compactification of
a hyperboloid

Consider a Euclidean space (R𝑛+1, 𝑔𝑛+1) embedded in a pseudo-Euclidean space
(R𝑛+2, 𝑔𝑛+2) of signature (1, 𝑛 + 1). We assume that the square of a vector
(𝑧′, 𝑧0) ∈ R𝑛+1 ⊕ R = R𝑛+2 is

⟨𝑧′, 𝑧0|𝑧′, 𝑧0⟩𝑛+2 = ⟨𝑧′|𝑧′⟩𝑛+1 − 𝑧2
0 .

Recall that
S𝑛 := {𝜔 ∈ R𝑛+1 : ⟨𝜔|𝜔⟩ = 1}

is the unit sphere of dimension 𝑛.
We have a bijection and a section

𝒴 ∋ R×
[︂
𝜔

1

]︂
↔ 𝑦∈

S𝑛

↦→
[︂
𝜔

1

]︂
∈ 𝒱. (4.4)

Thus S𝑛 is identified with 𝒴 . The metric on 𝒴 given by the above section coincides
with the usual metric on S𝑛.

𝒴 is in this case simply the disjoint sum of two copies of S𝑛.
The above construction can be repeated with minor changes for a general

signature. Indeed, let the signature of (R𝑛+1, 𝑔𝑛+1) be (𝑞, 𝑝 + 1), so that the
signature of (R𝑛+2, 𝑔𝑛+2) is (𝑞 + 1, 𝑝+ 1). Set

𝒱0 := {(𝑧′, 𝑧0) ∈ 𝒱 : 𝑧0 ̸= 0}, 𝒴0 := 𝒱0/R×.

We have then the bijection and section

𝒴0 ∋ R×
[︂
𝜔

1

]︂
↔ 𝜔∈

S𝑞,𝑝

↦→
[︂
𝜔

1

]︂
∈ 𝒱0. (4.5)

Note that now instead of the unit Euclidean sphere we have the unit hyperboloid
of signature (𝑞, 𝑝), which has been identified with 𝒴0, a dense open subset of 𝒴.
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4.6 Projective null quadric as the Cartesian product of
spheres

Consider now the space R𝑛+2 of signature (𝑞 + 1, 𝑝+ 1). The square of a vector
(⃗𝑡, 𝑥⃗) = (𝑡0, . . . , 𝑡𝑞, 𝑥0, . . . , 𝑥𝑝) is defined as

⟨⃗𝑡, 𝑥⃗|⃗𝑡, 𝑥⃗⟩ := −𝑡20 − · · · − 𝑡2𝑞 + 𝑥2
0 + · · · + 𝑥2

𝑝. (4.6)

Note that S𝑞 × S𝑝 is contained in 𝒱. It is easy to see that the map

𝒴 ∋ R×(𝜌⃗, 𝜔⃗) ↦→(𝜌⃗, 𝜔⃗) ∈ S𝑞 × S𝑝 ⊂ 𝒱. (4.7)

is a double covering. Indeed, we easily see that the map is onto and

R×(𝜌⃗, 𝜔⃗) = R×(−𝜌⃗,−𝜔⃗).

Thus
𝒴 ≃ S𝑞 × S𝑝/Z2, 𝒴 ≃ S𝑞 × S𝑝.

The map (4.7) can be interpreted as a section of 𝒱 → 𝒴 . The corresponding
metric tensor on 𝒴 is minus the standard metric tensor on S𝑞 plus the standard
metric tensor on S𝑝. Its signature is (𝑞, 𝑝).

Again, similarly as in the previous subsection, the above construction can
be generalized. Indeed, replace (4.6) with

⟨⃗𝑡, 𝑥⃗|⃗𝑡, 𝑥⃗⟩ := − 𝑡20 − · · · − 𝑡2𝑞1 + 𝑡2𝑞1+1 + · · · + 𝑡2𝑞1+𝑝1

+ 𝑥2
0 + · · · + 𝑥2

𝑝1 − 𝑥2
𝑝1+1 − · · ·𝑥2

𝑝2+𝑞2 .

We then obtain a map

𝒴 ∋ R×(𝜌⃗, 𝜔⃗) ↦→(𝜌⃗, 𝜔⃗) ∈ S𝑝1,𝑞1 × S𝑞2,𝑝2 ⊂ 𝒱. (4.8)

Unlike (4.7), the map (4.8) is in general not onto—it doubly covers only an open
dense subset of 𝒴.

4.7 Dimension 𝑛 = 1

Consider now the dimension 𝑛 = 1 in more detail. The ambient space is R3 with
the split scalar product

⟨𝑧|𝑧⟩ = 𝑧2
0 + 2𝑧−1𝑧+1.

The 1-dimensional projective quadric is isomorphic to S1 or, what is the
same, the 1-dimensional projective space:

𝒴1 ≃ S1 ≃ R ∪ {∞} = 𝑃 1R.
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Indeed, it is easy to see that

𝜑 : R ∪ {∞} → 𝒴1

defined by

𝜑(𝑠) :=
(︁
𝑠, 1,−1

2𝑠
2
)︁
R×, 𝑠 ∈ R;

𝜑(∞) := (1, 0, 0)R×

is a homeomorphism.
The group O(1, 2) acts on 𝑃 1R by homographies (Möbius transformations).
The Lie algebra so(1, 2) is spanned by

𝐵0,1, 𝐵0,−1, 𝑁1,

with the commutation relations

[𝐵0,1, 𝐵0,−1] = 𝑁1,

[𝐵0,1, 𝑁1] = 𝐵0,1,

[𝐵0,−1, 𝑁1] = −𝐵0,−1.

Appying (3.19) with 𝑚 = 1 we obtain its Casimir operator:

𝒞3 = 2𝐵0,1𝐵0,−1 −𝑁2
1 −𝑁1 (4.9a)

= 2𝐵0,−1𝐵0,1 −𝑁2
1 +𝑁1. (4.9b)

4.8 Dimension 𝑛 = 2

Consider finally the dimension 𝑛 = 2 in the signature (1, 1). The ambient space
is R4 with the split scalar product

⟨𝑧|𝑧⟩ = 2𝑧−1𝑧+1 + 2𝑧−2𝑧+2.

The 2-dimensional projective quadric is isomorphic to the product of two
circles:

𝒴2 ≃ 𝑃 1R × 𝑃 1R.

Indeed, define
𝜑 :
(︀
R ∪ {∞}

)︀
×
(︀
R ∪ {∞}

)︀
→ 𝒴2
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by

𝜑(𝑡, 𝑠) := (−𝑡𝑠, 1, 𝑡, 𝑠)R×, (4.10a)
𝜑(∞, 𝑠) := (−𝑠, 0, 1, 0)R×, (4.10b)
𝜑(𝑡,∞) := (−𝑡, 0, 0, 1)R×, (4.10c)
𝜑(∞,∞) := (−1, 0, 0, 0)R×, (4.10d)

where 𝑡, 𝑠 ∈ R. We easily check that 𝜑 is a homeomorphism. In fact, rewriting
(4.10a) as

𝜑(𝑡, 𝑠) =
(︁

− 𝑠,
1
𝑡
, 1, 𝑠

𝑡

)︁
R×

=
(︁

− 𝑡,
1
𝑠
,
𝑡

𝑠
, 1
)︁
R×

=
(︁

− 1, 1
𝑡𝑠
,

1
𝑠
,

1
𝑡
)R×,

we see the continuity of 𝜑 at (4.10b), (4.10c), resp. (4.10d).
The Lie algebra so(2, 2) is spanned by

𝑁1, 𝑁2, 𝐵1,2, 𝐵1,−2, 𝐵−1,2, 𝐵−1,−2.

Appying (3.19) with 𝑚 = 2 we obtain its Casimir operator:

𝒞4 = 2𝐵1,2𝐵−1,−2 + 2𝐵1,−2𝐵−1,2 −𝑁2
1 −𝑁2

2 − 2𝑁1.

As is well known, so(2, 2) decomposes into a direct sum of two copies of
so(1, 2). Concretely,

so(2, 2) = so+(1, 2) ⊕ so−(1, 2),

where so+(1, 2), resp. so−(1, 2), both isomorphic to so(1, 2), are spanned by

𝐵1,2, 𝐵−1,−2, 𝑁1 +𝑁2; resp. 𝐵1,−2, 𝐵−1,2, 𝑁1 −𝑁2.

They have the commutation relations[︁𝐵1,2√
2
,
𝐵−1,−2√

2

]︁
= 𝑁1 +𝑁2

2 ,
[︁𝐵1,−2√

2
,
𝐵−1,2√

2

]︁
= 𝑁1 −𝑁2

2 ,[︁𝑁1 +𝑁2
2 ,

𝐵−1,−2√
2

]︁
=
𝐵−1,−2√

2
,

[︁𝑁1 −𝑁2
2 ,

𝐵−1,2√
2

]︁
=
𝐵−1,2√

2
,[︁𝑁1 +𝑁2

2 ,
𝐵1,2√

2
] = −

𝐵1,2√
2

;
[︁𝑁1 −𝑁2

2 ,
𝐵1,−2√

2

]︁
= −2

𝐵1,−2√
2
.
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The corresponding Casimir operators are

𝒞+
3 = 𝐵1,2𝐵−1,−2 − 1

4(𝑁1 +𝑁2)2 − 1
2𝑁1 − 1

2𝑁2

= 𝐵−1,−2𝐵1,2 − 1
4(𝑁1 +𝑁2)2 + 1

2𝑁1 + 1
2𝑁2,

𝒞−
3 = 𝐵1,−2𝐵−1,2 − 1

4(𝑁1 −𝑁2)2 − 1
2𝑁1 + 1

2𝑁2

= 𝐵−1,2𝐵1,−2 − 1
4(𝑁1 −𝑁2)2 + 1

2𝑁1 − 1
2𝑁2.

Thus
𝒞4 = 2𝒞+

3 + 2𝒞−
3 .

In the enveloping algebra of so(2, 2) the operators 𝒞+
3 and 𝒞−

3 are distinct.
They satisfy 𝛼(𝒞−) = 𝒞+ for 𝛼 ∈ O(2, 2)∖SO(2, 2), for instance for 𝛼 = 𝜏𝑖,
𝑖 = 1, 2.

However, inside the associative algebra of differential operators on R4 we
have the identity

𝐵1,2𝐵−1,−2 −𝐵−1,2𝐵1,−2 = 𝑁1𝑁2 +𝑁1,

which implies
𝒞+

3 = 𝒞−
3

inside this algebra. Therefore, represented in the algebra of differential operators
we have

𝒞4 = 4𝐵1,2𝐵−1,−2 − (𝑁1 +𝑁2)2 − 2𝑁1 − 2𝑁2 (4.11a)
= 4𝐵−1,−2𝐵1,2 − (𝑁1 +𝑁2)2 + 2𝑁1 + 2𝑁2 (4.11b)
= 4𝐵1,−2𝐵−1,2 − (𝑁1 −𝑁2)2 − 2𝑁1 + 2𝑁2 (4.11c)
= 4𝐵−1,2𝐵1,−2 − (𝑁1 −𝑁2)2 + 2𝑁1 − 2𝑁2. (4.11d)

4.9 Conformal invariance of the projective null quadric

Obviously, O(𝑛+ 2) and so(𝑛+ 2) preserve 𝒱. They commute with the scaling
(the action of R×). Therefore, we obtain the action on 𝒴 = 𝒱/R×, which we
denote as follows:

so(𝑛+ 2) ∋ 𝐵 ↦→ 𝐵◇, (4.12a)
O(𝑛+ 2) ∋ 𝛼 ↦→ 𝛼◇. (4.12b)



38 J. Dereziński

Clearly, the vector fields 𝐵◇ are conformal Killing and the diffeomorphisms 𝛼◇

are conformal.
Let 𝜂 ∈ C. We define Λ𝜂

+(𝒱) to be the set of smooth functions on 𝒱 (positively)
homogeneous of degree 𝜂, that is, satisfying

𝑓(𝑡𝑦) = 𝑡𝜂𝑓(𝑦), 𝑡 > 0, 𝑦 ∈ 𝒱.

Clearly, 𝐵 ∈ so(𝑛 + 2) and 𝛼 ∈ O(𝑛 + 2) preserve Λ𝜂
+(𝒱). We will de-

note by 𝐵◇,𝜂, resp. 𝛼◇,𝜂 the restriction of 𝐵, resp. 𝛼 to Λ𝜂
+(𝒱). Thus we have

representations

so(𝑛+ 2) ∋ 𝐵 ↦→ 𝐵◇,𝜂, (4.13a)
O(𝑛+ 2) ∋ 𝛼 ↦→ 𝛼◇,𝜂, (4.13b)

acting on Λ𝜂
+(𝒴).

Clearly, Λ0
+(𝒱) can be identified with 𝐶∞(𝒴). Moreover, (4.12a), resp. (4.12b)

coincide with (4.13a), resp. (4.13b) for 𝜂 = 0.
If 𝜂 ∈ Z one can use another concept of homogeneity. We define Λ𝜂(𝒱) to be

the set of smooth functions on 𝒱 satisfying

𝑓(𝑡𝑦) = 𝑡𝜂𝑓(𝑦), 𝑡 ̸= 0, 𝑦 ∈ 𝒱.

The properties of Λ𝜂(𝒱) are similar to Λ𝜂
+(𝒱), except that Λ0(𝒱) can be identified

with 𝐶∞(𝒴).

4.10 Laplacian on homogeneous functions

The following theorem according to Eastwood [East] goes back to Dirac [Dir].
We find it curious because it allows in some situations to restrict a second order
differential operator to a submanifold.

Theorem 4.2. Let Ω ⊂ R𝑛+2 be an open conical set. Let 𝐾 ∈ 𝐶∞(Ω) be
homogeneous of degree 1 − 𝑛

2 such that

𝐾
⃒⃒⃒
𝒱∩Ω

= 0.

Then
Δ𝑛+2𝐾

⃒⃒⃒
𝒱∩Ω

= 0.
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Before we give two proofs of this theorem, let us describe some of its consequences.
Let 𝑘 ∈ Λ1− 𝑛

2
+ (𝒱). We can always find Ω, a conical neighborhood of 𝒱, and

𝐾 ∈ 𝒜(Ω) homogeneous of degree 1 − 𝑛
2 such that

𝑘 = 𝐾
⃒⃒⃒
𝒱
.

Note that Δ𝑛+2𝐾 is homogeneous of degree −1 − 𝑛
2 . We set

Δ◇
𝑛+2𝑘 := Δ𝑛+2𝐾

⃒⃒⃒
𝒱
. (4.14)

By Theorem 4.2, the above definition (4.14) does not depend on the choice of Ω
and 𝐾. We have thus defined a map

Δ◇
𝑛+2 : Λ1− 𝑛

2
+ (𝒱) → Λ−1− 𝑛

2
+ (𝒱). (4.15)

Obviously,

𝐵Δ𝑛+2 = Δ𝑛+2𝐵, 𝐵 ∈ so(𝑛+ 2), (4.16a)
𝛼Δ𝑛+2 = Δ𝑛+2𝛼, 𝛼 ∈ O(𝑛+ 2). (4.16b)

Restricting (4.16) to Λ1− 𝑛
2

+ (𝒱) we obtain

𝐵◇,−1− 𝑛
2 Δ◇

𝑛+2 = Δ◇
𝑛+2𝐵

◇,1− 𝑛
2 , 𝐵 ∈ so(𝑛+ 2), (4.17a)

𝛼◇,−1− 𝑛
2 Δ◇

𝑛+2 = Δ◇
𝑛+2𝛼

◇,1− 𝑛
2 , 𝛼 ∈ O(𝑛+ 2). (4.17b)

1st proof of Thm 4.2. We use the decomposition R𝑛+2 = R𝑛 ⊕ R2 described
in Subsect. 4.4, with the distinguished coordinates denoted 𝑧−, 𝑧+. We denote
the square of a vector, the Laplacian, the Casimir, resp. the generator of dilations
on R𝑛+2 by 𝑅𝑛+2, Δ𝑛+2, 𝒞𝑛+2, resp. 𝐴𝑛+2. Similarly, we denote the square of
a vector, the Laplacian, the Casimir, resp. the generator of dilations on R𝑛 by
𝑅𝑛, Δ𝑛, 𝒞𝑛 resp. 𝐴𝑛. We will also write

𝑁𝑚+1 := 𝑧+𝜕𝑧+ − 𝑧−𝜕𝑧− .

We have

𝑅𝑛+2 = 𝑅𝑛 + 2𝑧+𝑧−,

Δ𝑛+2 = Δ𝑛 + 2𝜕𝑧+𝜕𝑧− ,

𝐴𝑛+2 = 𝐴𝑛 + 𝑧+𝜕𝑧+ + 𝑧−𝜕𝑧− .
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The following identity is a consequence of (3.6):

𝑅𝑛Δ𝑛+2 = 𝑅𝑛Δ𝑛 +
(︀
𝑅𝑛+2 − 2𝑧+𝑧−

)︀
2𝜕𝑧+𝜕𝑧−

= 𝒞𝑛 +
(︁
𝐴𝑛 − 1 + 𝑛

2

)︁2
−
(︁𝑛

2 − 1
)︁2

+𝑅𝑛+22𝜕𝑧+𝜕𝑧− − (𝑧+𝜕𝑧+ + 𝑧−𝜕𝑧−)2 +𝑁2
𝑚+1

= 𝑅𝑛+22𝜕𝑧+𝜕𝑧−

+
(︁
𝐴𝑛 − 1 + 𝑛

2 − 𝑧+𝜕𝑧+ − 𝑧−𝜕𝑧−

)︁(︁
𝐴𝑛+2 − 1 + 𝑛

2

)︁
−
(︁𝑛

2 − 1
)︁2

+ 𝒞𝑛 +𝑁2
𝑚+1. (4.18)

(︀
𝑛
2 − 1

)︀2 is a scalar. 𝒞𝑛 and 𝑁2
𝑚+1 are polynomials in elements of so(𝑛 + 2),

which are tangent to 𝒱. Therefore, all operators in the last line of (4.18) can be
restricted to 𝒱. The operator 𝐴𝑛+2 − 1 + 𝑛

2 vanishes on functions in Λ1− 𝑛
2

+ (Ω).
The operator 𝑅𝑛+22𝜕𝑧+𝜕𝑧− is zero when restricted to 𝒱 (because 𝑅𝑛+2 vanishes
on 𝒱).

Therefore, if 𝐾 is homogeneous of degree 1 − 𝑛
2 vanishing on 𝒱, then

𝑅𝑛Δ𝑛+2𝐾 vanishes on 𝒱. We are free to choose different coordinates which
give different 𝑅𝑛’s. Therefore we can conclude that Δ𝑛+2𝐾 vanishes on 𝒱. 2

Corollary 4.3. Using the operator Δ◇
𝑛+2, we can write

𝑅𝑛Δ◇
𝑛+2 = −

(︁𝑛
2 − 1

)︁2
+ 𝒞◇,1− 𝑛

2
𝑛 +

(︀
𝑁

◇,1− 𝑛
2

𝑚+1
)︀2
. (4.19)

2nd proof of Thm 4.2. We use the decomposition R𝑛+2 = R𝑛+1 ⊕R with the
distinguished variable denoted by 𝑧0, as in Subsect. 4.5. We denote the square of
a vector, the Laplacian, the Casimir, resp. the generator of dilations on R𝑛+1 by
𝑅𝑛+1, Δ𝑛+1, 𝒞𝑛+1, resp. 𝐴𝑛+1. We have

𝑅𝑛+2 = 𝑅𝑛+1 + 𝑧2
0 ,

𝐴𝑛+2 = 𝐴𝑛+1 + 𝑧0𝜕𝑧0 ,

Δ𝑛+2 = Δ𝑛+1 + 𝜕2
𝑧0 .
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We have the following identity

𝑅𝑛+1Δ𝑛+2 = 𝑅𝑛+1Δ𝑛+1 +
(︀
𝑅𝑛+2 − 𝑧2

0
)︀
𝜕2

𝑧0

= 𝒞𝑛+1 +
(︁
𝐴𝑛+1 + 𝑛− 1

2

)︁2
−
(︁𝑛− 1

2

)︁2

+𝑅𝑛+2𝜕
2
𝑧0 −

(︁
𝑧0𝜕𝑧0 − 1

2

)︁2
+
(︁1

2

)︁2

= 𝑅𝑛+2𝜕
2
𝑧0 +

(︁
𝐴𝑛+1 + 𝑛

2 − 𝑧0𝜕𝑧0

)︁(︁
𝐴𝑛+2 + 𝑛

2 − 1
)︁

−
(︁𝑛

2 − 1
)︁𝑛

2 + 𝒞𝑛+1. (4.20)

Then we argue similarly as in the 1st proof. 2

Corollary 4.4. Using the operator Δ◇
𝑛+2, we can write

𝑅𝑛+1Δ◇
𝑛+2 = −

(︁𝑛
2 − 1

)︁𝑛
2 + 𝒞◇,1− 𝑛

2
𝑛+1 . (4.21)

4.11 Fixing a section

For nonzero 𝜂, in order to identify functions from Λ𝜂
+(𝒱) with functions on 𝒴 we

need to fix a section of the line bundle 𝒱 → 𝒴. Let us describe this in detail.
Let 𝒱0 be an open homogeneous subset of 𝒱 and 𝒴0 := 𝒱0/R+. Consider a

section 𝛾 : 𝒴0 → 𝒱0. We then have the obvious identification 𝜓𝛾,𝜂 : Λ𝜂
+(𝒱0) →

𝐶∞(𝒴0): for 𝑘 ∈ Λ𝜂
+(𝒱0) we set(︀

𝜓𝛾,𝜂𝑘
)︀
(𝑦) := 𝑘

(︀
𝛾(𝑦)

)︀
, 𝑦 ∈ 𝒴0. (4.22)

The map 𝜓𝛾,𝜂 is bijective and we can introduce its inverse, denoted 𝜑𝛾,𝜂,
defined for any 𝑓 ∈ 𝐶∞(𝒴0) by(︀

𝜑𝛾,𝜂𝑓
)︀(︀
𝑠𝛾(𝑦)

)︀
= 𝑠𝜂𝑓(𝑦), 𝑠 ∈ R+, 𝑦 ∈ 𝒴0. (4.23)

Let 𝐵 ∈ so(𝑛+ 2) and 𝛼 ∈ O(𝑛+ 2). As usual, 𝐵 and 𝛼 are interpreted as
transformations acting on functions on R𝑛+2. Both 𝐵 and 𝛼 preserve Λ𝜂

+(𝒱0).
Therefore, we can define

𝐵𝛾,𝜂 := 𝜓𝛾,𝜂𝐵𝜑𝛾,𝜂, (4.24a)
𝛼𝛾,𝜂 := 𝜓𝛾,𝜂𝛼𝜑𝛾,𝜂. (4.24b)

𝐵𝛾,𝜂 is a 1st order differential operator on 𝒴0. 𝛼𝛾,𝜂 maps 𝐶∞(︀𝒴0 ∩ (𝛼◇)−1(𝒴0)
)︀

onto 𝐶∞(︀𝒴0 ∩ 𝛼◇(𝒴0)
)︀
.
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It is easy to see that for any 𝐵 ∈ so(𝑛 + 2) and 𝛼 ∈ O(𝑛 + 2) there exist
𝑀𝐵 ∈ 𝐶∞(𝒴0) and 𝑚𝛼 ∈ 𝐶∞(︀𝒴0 ∩ 𝛼◇(𝒴0)

)︀
such that

𝐵◇,𝜂𝑓(𝑦) = 𝐵◇𝑓(𝑦) + 𝜂𝑀𝐵(𝑦)𝑓(𝑦), (4.25a)
𝛼◇,𝜂𝑓(𝑦) = 𝑚𝜂

𝛼(𝑦)𝛼◇𝑓(𝑦). (4.25b)

We define also
Δ𝛾

𝑛+2 := 𝜓𝛾,−1− 𝑛
2 Δ◇

𝑛+2𝜑
𝛾,1− 𝑛

2 . (4.26)

This is a second order differential operator on 𝒴0. It satisfies

𝐵𝛾,−1− 𝑛
2 Δ𝛾

𝑛+2 = Δ𝛾
𝑛+2𝐵

𝛾,1− 𝑛
2 , 𝐵 ∈ so(𝑛+ 2), (4.27a)

𝛼𝛾,−1− 𝑛
2 Δ𝛾

𝑛+2 = Δ𝛾
𝑛+2𝛼

𝛾,1− 𝑛
2 , 𝛼 ∈ O(𝑛+ 2). (4.27b)

Note that for even 𝑛 the numbers ±1 − 𝑛
2 are integers. Therefore, Λ±1− 𝑛

2 (𝒱)
are well defined. In the above construction, we can then use 𝒴 instead of its
double cover 𝒴. We also do not have problems in the complex case.

For odd 𝑛 the numbers ±1 − 𝑛
2 are not integers, and so Λ±1− 𝑛

2 (𝒱) are ill
defined. Therefore, we have to use Λ±1− 𝑛

2
+ (𝒱) and 𝒴.

4.12 Conformal invariance of the flat Laplacian

In this subsection we illustrate the somewhat abstract theory of the previous
subsections with the example of the flat section described in (4.3). Recall that
the flat section identifies an open subset of 𝒴 with R𝑛. Therefore we obtain an
action of so(𝑛+ 2) and O(𝑛+ 2) on R𝑛. As a result we will obtain the invariance
of the Laplacian on the flat pseudo-Euclidean space with respect to conformal
transformations. The results of this subsection will be needed for our discussion
of symmetries of the heat equation.

We will use the notation of (4.24a) and (4.24b), where instead of 𝛾 we write
“fl”, for the flat section. We will describe conformal symmetries on two levels:
(a) the ambient space R𝑛+2

(b) the space R𝑛.
We will use the split coordinates, that is, 𝑧 ∈ R𝑛+2 and 𝑦 ∈ R𝑛 have the

square

⟨𝑧|𝑧⟩ =
∑︁

|𝑗|≤𝑚+1

𝑧−𝑗𝑧𝑗 , (4.28a)

⟨𝑦|𝑦⟩ =
∑︁

|𝑗|≤𝑚

𝑦−𝑗𝑦𝑗 . (4.28b)
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As a rule, if a given operator does not depend on 𝜂, we omit the subscript 𝜂.
Derivation of all the following identities will be sketched in Subsect. 4.13.

Cartan algebra of so(𝑛+ 2)

Cartan operators of so(𝑛), 𝑖 = 1, . . . ,𝑚:

𝑁𝑖 = −𝑧−𝑖𝜕𝑧−𝑖 + 𝑧𝑖𝜕𝑧𝑖 , (4.29a)
𝑁fl

𝑖 = −𝑦−𝑖𝜕𝑦−𝑖 + 𝑦𝑖𝜕𝑦𝑖 . (4.29b)

Generator of dilations:

𝑁𝑚+1 = −𝑧−𝑚−1𝜕𝑧−𝑚−1 + 𝑧𝑚+1𝜕𝑧𝑚+1 , (4.30a)

𝑁fl,𝜂
𝑚+1 =

∑︁
|𝑖|≤𝑚

𝑦𝑖𝜕𝑦𝑖 − 𝜂 = 𝐴𝑛 − 𝜂. (4.30b)

Root operators

Roots of so(𝑛), |𝑖| < |𝑗| ≤ 𝑚:

𝐵𝑖,𝑗 = 𝑧−𝑖𝜕𝑧𝑗 − 𝑧−𝑗𝜕𝑧𝑖 , (4.31a)
𝐵fl

𝑖,𝑗 = 𝑦−𝑖𝜕𝑦𝑗 − 𝑦−𝑗𝜕𝑦𝑖 . (4.31b)

Generators of translations, |𝑗| ≤ 𝑚:

𝐵𝑚+1,𝑗 = 𝑧−𝑚−1𝜕𝑧𝑗 − 𝑧−𝑗𝜕𝑧𝑚+1 , (4.32a)
𝐵fl

𝑚+1,𝑗 = 𝜕𝑦𝑗 . (4.32b)

Generators of special conformal transformations, |𝑗| ≤ 𝑚:

𝐵−𝑚−1,𝑗 = 𝑧𝑚+1𝜕𝑧𝑗 − 𝑧−𝑗𝜕𝑧−𝑚−1 , (4.33a)

𝐵fl,𝜂
−𝑚−1,𝑗 = −1

2 ⟨𝑦|𝑦⟩𝜕𝑦𝑗 + 𝑦−𝑗

∑︁
|𝑖|≤𝑚

𝑦𝑖𝜕𝑦𝑖 − 𝜂𝑦−𝑗 . (4.33b)

Weyl symmetries
We will write 𝐾 for a function on R𝑛+2 and 𝑓 for a function on R𝑛. We only
give some typical elements that generate the whole Weyl group.

Reflection in the 0th coordinate (for odd 𝑛):

𝜏0𝐾(𝑧0, . . . ) = 𝐾(−𝑧0, . . . ), (4.34a)
𝜏fl

0 𝑓(𝑦0, . . . ) = 𝑓(−𝑦0, . . . ). (4.34b)
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Flips, 𝑗 = 1, . . . ,𝑚:

𝜏𝑗𝐾(. . . , 𝑧−𝑗 , 𝑧𝑗 , . . . , 𝑧−𝑚−1, 𝑧𝑚+1)
= 𝐾(. . . , 𝑧𝑗 , 𝑧−𝑗 , . . . , 𝑧−𝑚−1, 𝑧𝑚+1), (4.35a)

𝜏fl
𝑗 𝑓(. . . , 𝑦−𝑗 , 𝑦𝑗 , . . . ) =𝑓(. . . 𝑦𝑗 , 𝑦−𝑗 , . . . ). (4.35b)

Inversion:

𝜏𝑚+1𝐾(. . . , 𝑧−𝑚−1, 𝑧𝑚+1) = 𝐾(. . . , 𝑧𝑚+1, 𝑧−𝑚−1), (4.36a)

𝜏fl,𝜂
𝑚+1𝑓(𝑦) =

(︁
−⟨𝑦|𝑦⟩

2

)︁𝜂

𝑓
(︁

− 2𝑦
⟨𝑦|𝑦⟩

)︁
. (4.36b)

Permutations, 𝜋 ∈ 𝑆𝑚:

𝜎𝜋𝐾(. . . , 𝑧−𝑗 , 𝑧𝑗 , . . . , 𝑧−𝑚−1, 𝑧𝑚+1)
= 𝐾(. . . , 𝑧−𝜋𝑗 , 𝑧𝜋𝑗 , . . . , 𝑧−𝑚−1, 𝑧𝑚+1), (4.37a)

𝜎fl
𝜋𝑓(. . . , 𝑦−𝑗 , 𝑦𝑗 , . . . ) = 𝑓(. . . 𝑦−𝜋𝑗 , 𝑦𝜋𝑗 , . . . ). (4.37b)

Special conformal transformations, 𝑗 = 1, . . . ,𝑚:

𝜎(𝑗,𝑚+1)𝐾(𝑧−1, 𝑧1, . . . , 𝑧−𝑗 , 𝑧𝑗 , . . . , 𝑧−𝑚−1, 𝑧𝑚+1)
= 𝐾(𝑧−1, 𝑧1, . . . , 𝑧−𝑚−1, 𝑧𝑚+1, . . . , 𝑧−𝑗 , 𝑧𝑗), (4.38a)

𝜎fl,𝜂
(𝑗,𝑚+1)𝑓(𝑦−1, 𝑦1, . . . , 𝑦−𝑗 , 𝑦𝑗 , . . . )

= 𝑦𝜂
−𝑗𝑓

(︁𝑦−1
𝑦−𝑗

,
𝑦1
𝑦−𝑗

, . . . ,
1
𝑦−𝑗

,−⟨𝑦|𝑦⟩
2𝑦−𝑗

. . .
)︁
. (4.38b)

Laplacian

Δ𝑛+2 =
∑︁

|𝑖|≤𝑚+1

𝜕𝑧𝑖𝜕𝑧−𝑖 , (4.39a)

Δfl
𝑛+2 =

∑︁
|𝑖|≤𝑚

𝜕𝑦𝑖𝜕𝑦−𝑖 = Δ𝑛. (4.39b)

We have the representations on functions on R𝑛:

so(𝑛+ 2) ∋ 𝐵 ↦→ 𝐵fl,𝜂, (4.40a)
O(𝑛+ 2) ∋ 𝛼 ↦→ 𝛼fl,𝜂. (4.40b)

They yield generalized symmetries:

𝐵fl, −2−𝑛
2 Δ𝑛 = Δ𝑛𝐵

fl, 2−𝑛
2 , 𝐵 ∈ so(𝑛+ 2), (4.41a)

𝛼fl, −2−𝑛
2 Δ𝑛 = Δ𝑛𝛼

fl, 2−𝑛
2 , 𝛼 ∈ O(𝑛+ 2). (4.41b)
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4.13 Computations

Below we sketch explicit computations that lead to the formulas on from the
previous subsection. Consider R𝑛 × R× × R (defined by 𝑧−𝑚−1 ̸= 0), which is
an open dense subset of R𝑛+2. Clearly, 𝒱0 is contained in R𝑛 × R× × R.

We will write Λ𝜂(R𝑛 × R× × R) for the space of functions homogeneous of
degree 𝜂 on R𝑛 × R× × R.

Instead of using the maps 𝜑fl,𝜂 and 𝜓fl,𝜂, as in (4.23) and (4.22), we will prefer
Φfl,𝜂 : 𝐶∞(R𝑛) → Λ𝜂(R𝑛 × R× × R) and Ψfl,𝜂 : Λ𝜂(R𝑛 × R× × R) → 𝐶∞(R𝑛)
defined below.

For 𝐾 ∈ Λ𝜂
(︀
R𝑛 × R× × R

)︀
, we define Ψfl,𝜂𝐾 ∈ 𝐶∞(R𝑛) by(︀

Ψfl,𝜂𝐾
)︀
(𝑦) = 𝐾

(︁
𝑦, 1,−⟨𝑦|𝑦⟩

2

)︁
, 𝑦 ∈ R𝑛.

Let 𝑓 ∈ 𝐶∞(R𝑛). Then there exists a unique function in Λ𝜂
(︀
R𝑛 × R× × R

)︀
that extends 𝑓 and does not depend on 𝑧𝑚+1. It is given by(︀

Φfl,𝜂𝑓
)︀
(𝑧, 𝑧−𝑚−1, 𝑧𝑚+1) := 𝑧𝜂

−𝑚−1𝑓
(︁ 𝑧

𝑧−𝑚−1

)︁
, 𝑧 ∈ R𝑛.

The map Ψfl,𝜂 is a left inverse of Φfl,𝜂:

Ψfl,𝜂Φfl,𝜂 = 𝜄,

where 𝜄 denotes the identity. Clearly,

Φfl,𝜂𝑓
⃒⃒⃒
𝒱0

= 𝜑fl,𝜂𝑓,

Ψfl,𝜂𝐾 = 𝜓fl,𝜂
(︁
𝐾
⃒⃒⃒
𝒱0

)︁
.

Moreover, functions in Λ𝜂(R𝑛 ×R× ×R) restricted to 𝒱0 are in Λ𝜂(𝒱0). Therefore,

𝐵fl,𝜂 = Ψfl,𝜂𝐵Φfl,𝜂, 𝐵 ∈ so(R𝑛+2),
𝛼fl,𝜂 = Ψfl,𝜂𝛼Φfl,𝜂, 𝛼 ∈ O(R𝑛+2).

(Note that 𝛼,𝐵 preserve Λ𝜂(R𝑛 × R× × R)). Note also that

Δfl
𝑛+2 = Ψfl,𝜂Δ𝑛+2Φfl,𝜂 = Δ𝑛.

In practice, the above idea can be implemented by the following change of
coordinates on R𝑛+2:

𝑦𝑖 := 𝑧𝑖
𝑧−𝑚−1

, |𝑖| ≤ 𝑚,

𝑅 :=
∑︀

|𝑖|≤𝑚+1
𝑧𝑖𝑧−𝑖,

𝑝 := 𝑧−𝑚−1.
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The inverse transformation is

𝑧𝑖 = 𝑝𝑦𝑖, |𝑖| ≤ 𝑚,

𝑧𝑚+1 = 1
2 ( 𝑅

𝑝 − 𝑝
∑︀

|𝑖|≤𝑚

𝑦𝑖𝑦−𝑖),

𝑧−𝑚−1 = 𝑝

The derivatives are equal to

𝜕𝑧𝑖 = 𝑧−1
−𝑚−1𝜕𝑦𝑖 + 2𝑧−𝑖𝜕𝑅, |𝑖| ≤ 𝑚,

𝜕𝑧𝑚+1 = 2𝑧−𝑚−1𝜕𝑅,

𝜕𝑧−𝑚−1 = 𝜕𝑝 − 𝑧−2
−𝑚−1

∑︀
|𝑖|≤𝑚

𝑧𝑖𝜕𝑦𝑖 + 2𝑧𝑚+1𝜕𝑅.

Note that these coordinates are defined on R𝑛 ×R× ×R. The set 𝒱0 is given
by the condition 𝑅 = 0. The flat section is given by 𝑝 = 1.

For a function 𝑦 ↦→ 𝑓(𝑦) we have(︀
Φfl,𝜂𝑓

)︀
(𝑦,𝑅, 𝑝) = 𝑝𝜂𝑓(𝑦).

For a function (𝑦,𝑅, 𝑝) ↦→ 𝐾(𝑦,𝑅, 𝑝) we have(︀
Ψfl,𝜂𝐾

)︀
(𝑦) = 𝐾(𝑦, 1, 0).

Note also that on Λ𝜂(R𝑛 × R× × R) we have

𝑝𝜕𝑝 + 2𝑅𝜕𝑅 = 𝜂.

5 Laplacian in 4 dimensions and the
hypergeometric equation

The goal of this section is to derive the 2ℱ1 equation together with its symmetries
from the Laplacian in 4 dimensions, or actually from the Laplacian in 6 dimensions,
if one takes into account the ambient space. Let us describe the main steps of
this derivation:
(1) We start from the 4 + 2 = 6 dimensional ambient space, with the obvious

representations of so(6) and O(6), and the Laplacian Δ6.
(2) As explained in Subsect. 4.9, we introduce the representations so(6) ∋ 𝐵 ↦→

𝐵◇,𝜂 and O(6) ∋ 𝛼 ↦→ 𝛼◇,𝜂. Besides, as explained in Subsect. 4.10, we obtain
the reduced Laplacian Δ◇

6. The most relevant values of 𝜂 are 1 − 4
2 = −1

and −1 − 4
2 = −3, which yield generalized symmetries of Δ◇

6.
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(3) We fix a section 𝛾 of the null quadric. It allows us to construct the represen-
tations 𝐵𝛾,𝜂, 𝛼𝛾,𝜂 and the operator Δ𝛾

6 , acting on a 4 dimensional manifold
whose pseudo-Riemannian structure depends on 𝛾.

(4) We choose coordinates 𝑤, 𝑢1, 𝑢2, 𝑢3, so that the Cartan operators are ex-
pressed in terms of 𝑢1, 𝑢2, 𝑢3. We compute Δ𝛾

6 , 𝐵𝛾,𝜂, and 𝛼𝛾,𝜂 in the new
coordinates.

(5) We make an ansatz that diagonalizes the Cartan operators, whose eigenval-
ues, denoted by 𝛼, 𝛽, 𝜇, become parameters. Δ𝛾

6 , 𝐵𝛾,𝜂, and 𝛼𝛾,𝜂 involve
now only the single variable 𝑤. Δ𝛾

6 turns out to be the 2ℱ1 hypergeometric
operator. The generalized symmetries of Δ𝛾

6 yield transmutation relations
and discrete symmetries of the 2ℱ1 operator.

Step 1 is described in Subsect. 5.1.
We have a considerable freedom in the choice of the section 𝛾 of Step 3. For

instance, it can be the flat section, which we described in Subsects 4.4 and 4.12.
However, to simplify computations we prefer to choose a different section, which
we call the spherical section. (Both approaches are described in [DeMaj]).

We perform Steps 2, 3 and 4 at once. They are described jointly in Subsect.
5.2. We choose coordinates 𝑤, 𝑟, 𝑝, 𝑢1, 𝑢2, 𝑢3 in 6 dimensions, so that the null
quadric, the spherical section and the homogeneity of functions are expressed
in a simple way. In these coordinates, after the reductions of Steps 2 and 3, the
variables 𝑟, 𝑝 disappear. We are left with the variables 𝑤, 𝑢1, 𝑢2, 𝑢3, and we are
ready for Step 5.

Step 5 is described in Subsects 5.3 and 5.4.
Subsects 5.5 and 5.6 are devoted to factorizations of the 2ℱ1 operator. Again,

we see that the additional dimensions make all the formulas more symmetric.
The role of factorizations is explained in Subsect. 1.5.

Subsects 5.4 and 5.6 contain long lists of identities for the hypergeometric
operator. We think that it is easy to appreciate and understand them at a glance,
without studying them line by line. Actually, the analogous lists of identities in
the next sections, corresponding to other types of equations, are shorter but in a
sense more complicated, because they correspond to “less symmetric” groups.

All the material so far has been devoted to the 2ℱ1 operator and its multidi-
mensional “parents”. Starting with Subsect. 5.7 we discuss the 2𝐹1 function and,
more generally, distinguished solutions of the 2ℱ1 equation. The symmetries of
the 2ℱ1 operator are helpful in deriving and organizing the identities concerning
these solutions.

Subsects 5.10, 5.11, 5.12 are devoted to integral representations of solutions
of the 2ℱ1 equation. In particular, Subsect. 5.10 shows that these representation
are disguised “wave packets” solving the Laplace equation and diagonalizing
Cartan operators.
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In Subsect. 5.13 we derive connection formulas, where we use the pairs of
solutions with a simple behavior at 0 and at ∞ as two bases of solutions. The
connection formulas follow easily from integral representations. These identities
look symmetric when expressed in terms of the Lie-algebraic parameters.

5.1 so(6) in 6 dimensions

We consider R6 with the split coordinates

𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3 (5.1)

and the scalar product given by

⟨𝑧|𝑧⟩ = 2𝑧−1𝑧1 + 2𝑧−2𝑧2 + 2𝑧−3𝑧3. (5.2)

The Lie algebra so(6) acts naturally on R6. Below we describe its natural
basis. Then we consider its Weyl group, 𝐷3, acting on functions on R6. For
brevity, we list only elements from its subgroup 𝐷3 ∩ SO(6). Finally, we write
down the Laplacian.

Lie algebra so(6). Cartan algebra

𝑁1 = −𝑧−1𝜕𝑧−1 + 𝑧1𝜕𝑧1 , (5.3a)
𝑁2 = −𝑧−2𝜕𝑧−2 + 𝑧2𝜕𝑧2 , (5.3b)
𝑁3 = −𝑧−3𝜕𝑧−3 + 𝑧3𝜕𝑧3 . (5.3c)

Root operators

𝐵−2,−1 = 𝑧2𝜕𝑧−1 − 𝑧1𝜕𝑧−2 , (5.4a)
𝐵2,1 = 𝑧−2𝜕𝑧1 − 𝑧−1𝜕𝑧2 , (5.4b)

𝐵2,−1 = 𝑧−2𝜕𝑧−1 − 𝑧1𝜕𝑧2 , (5.4c)
𝐵−2,1 = 𝑧2𝜕𝑧1 − 𝑧−1𝜕𝑧−2 ; (5.4d)

𝐵−3,−2 = 𝑧3𝜕𝑧−2 − 𝑧2𝜕𝑧−3 , (5.4e)
𝐵3,2 = 𝑧−3𝜕𝑧2 − 𝑧−2𝜕𝑧3 , (5.4f)

𝐵3,−2 = 𝑧−3𝜕𝑧−2 − 𝑧2𝜕𝑧3 , (5.4g)
𝐵−3,2 = 𝑧3𝜕𝑧2 − 𝑧−2𝜕𝑧−3 ; (5.4h)

𝐵−3,−1 = 𝑧3𝜕𝑧−1 − 𝑧1𝜕𝑧−3 , (5.4i)
𝐵3,1 = 𝑧−3𝜕𝑧1 − 𝑧−1𝜕𝑧3 , (5.4j)

𝐵3,−1 = 𝑧−3𝜕𝑧−1 − 𝑧1𝜕𝑧3 , (5.4k)
𝐵−3,1 = 𝑧3𝜕𝑧1 − 𝑧−1𝜕𝑧−3 . (5.4l)
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Weyl symmetries

𝜎123𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3), (5.5a)
𝜎−12−3𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧1, 𝑧−1, 𝑧−2, 𝑧2, 𝑧3, 𝑧−3), (5.5b)
𝜎1−2−3𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−1, 𝑧1, 𝑧2, 𝑧−2, 𝑧3, 𝑧−3), (5.5c)
𝜎−1−23𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧1, 𝑧−1, 𝑧2, 𝑧−2, 𝑧−3, 𝑧3); (5.5d)

𝜎213𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−2, 𝑧2, 𝑧−1, 𝑧1, 𝑧−3, 𝑧3), (5.5e)
𝜎−21−3𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧2, 𝑧−2, 𝑧−1, 𝑧1, 𝑧3, 𝑧−3), (5.5f)
𝜎2−1−3𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−2, 𝑧2, 𝑧1, 𝑧−1, 𝑧3, 𝑧−3), (5.5g)
𝜎−2−13𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧2, 𝑧−2, 𝑧1, 𝑧−1, 𝑧−3, 𝑧3); (5.5h)

𝜎321𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−3, 𝑧3, 𝑧−2, 𝑧2, 𝑧−1, 𝑧1), (5.5i)
𝜎−32−1𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧3, 𝑧−3, 𝑧−2, 𝑧2, 𝑧1, 𝑧−1), (5.5j)
𝜎3−2−1𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−3, 𝑧3, 𝑧2, 𝑧−2, 𝑧1, 𝑧−1), (5.5k)
𝜎−3−21𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧3, 𝑧−3, 𝑧2, 𝑧−2, 𝑧−1, 𝑧1); (5.5l)

𝜎312𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−3, 𝑧3, 𝑧−1, 𝑧1, 𝑧−2, 𝑧2), (5.5m)
𝜎−31−2𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧3, 𝑧−3, 𝑧−1, 𝑧1, 𝑧2, 𝑧−2), (5.5n)
𝜎3−1−2𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−3, 𝑧3, 𝑧1, 𝑧−1, 𝑧2, 𝑧−2), (5.5o)
𝜎−3−12𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧3, 𝑧−3, 𝑧1, 𝑧−1, 𝑧−2, 𝑧2); (5.5p)

𝜎231𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−2, 𝑧2, 𝑧−3, 𝑧3, 𝑧−1, 𝑧1), (5.5q)
𝜎−23−1𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧2, 𝑧−2, 𝑧−3, 𝑧3, 𝑧1, 𝑧−1), (5.5r)
𝜎2−3−1𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−2, 𝑧2, 𝑧3, 𝑧−3, 𝑧1, 𝑧−1), (5.5s)
𝜎−2−31𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧2, 𝑧−2, 𝑧3, 𝑧−3, 𝑧−1, 𝑧1); (5.5t)

𝜎132𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−1, 𝑧1, 𝑧−3, 𝑧3, 𝑧−2, 𝑧2), (5.5u)
𝜎−13−2𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧1, 𝑧−1, 𝑧−3, 𝑧3, 𝑧2, 𝑧−2), (5.5v)
𝜎1−3−2𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧−1, 𝑧1, 𝑧3, 𝑧−3, 𝑧2, 𝑧−2), (5.5w)
𝜎−1−32𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧1, 𝑧−1, 𝑧3, 𝑧−3, 𝑧−2, 𝑧2). (5.5x)

Laplacian
Δ6 = 2𝜕𝑧−1𝜕𝑧1 + 2𝜕𝑧−2𝜕𝑧2 + 2𝜕𝑧−3𝜕𝑧3 . (5.6)
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5.2 so(6) on the spherical section

In this subsection we perform Steps 2, 3 and 4 described in the introduction to
this section. Recall that in Step 2 we use the null quadric

𝒱5 := {𝑧 ∈ R6∖{0} : 2𝑧−1𝑧1 + 2𝑧−2𝑧2 + 2𝑧−3𝑧3 = 0}.

Then, in Step 3, we fix a section of the null quadric. We choose the section given
by the equations

4 = 2 (𝑧−1𝑧1 + 𝑧−2𝑧2) = −2𝑧3𝑧−3.

We will call it the spherical section, because it coincides with S3(4) × S1(−4).
The superscript used for this section will be “sph” for spherical.

In Step 4 we introduce the coordinates

𝑟 =
√︀

2 (𝑧−1𝑧1 + 𝑧−2𝑧2) , 𝑤 = 𝑧−1𝑧1
𝑧−1𝑧1 + 𝑧−2𝑧2

, (5.7a)

𝑢1 = 𝑧1√
𝑧−1𝑧1 + 𝑧−2𝑧2

, 𝑢2 = 𝑧2√
𝑧−1𝑧1 + 𝑧−2𝑧2

, (5.7b)

𝑝 =
√︀

−2𝑧3𝑧−3 , 𝑢3 =
√︂

− 𝑧3
𝑧−3

. (5.7c)

with the inverse transformation

𝑧−1 = 𝑟𝑤√
2𝑢1

, 𝑧1 = 𝑢1𝑟√
2
, (5.8a)

𝑧−2 = 𝑟(1 − 𝑤)√
2𝑢2

, 𝑧2 = 𝑢2𝑟√
2
, (5.8b)

𝑧−3 = − 𝑝√
2𝑢3

, 𝑧3 = 𝑝𝑢3√
2
. (5.8c)

The null quadric in these coordinates is given by 𝑟2 = 𝑝2. We will restrict
ourselves to the sheet 𝑟 = 𝑝. The generator of dilations is

𝐴6 = 𝑟 𝜕𝑟 + 𝑝 𝜕𝑝.

The spherical section is given by the condition 𝑟2 = 4.
All the objects of the previous subsection will be now presented in the above

coordinates after the reduction to the spherical section. This reduction allows us
to eliminate the variables 𝑟, 𝑝. We omit the superscript 𝜂, whenever there is no
dependence on this parameter.

Lie algebra so(6). Cartan operators:

𝑁 sph
1 = 𝑢1 𝜕𝑢1 ,

𝑁 sph
2 = 𝑢2 𝜕𝑢2 ,

𝑁 sph
3 = 𝑢3 𝜕𝑢3 .
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Roots:

𝐵sph
−2,−1 = 𝑢1𝑢2𝜕𝑤,

𝐵sph
2,1 = 1

𝑢1𝑢2
((1 − 𝑤)𝑤𝜕𝑤 + (1 − 𝑤)𝑢1𝜕𝑢1 − 𝑤𝑢2𝜕𝑢2) ,

𝐵sph
2,−1 = 𝑢1

𝑢2
((1 − 𝑤)𝜕𝑤 − 𝑢2𝜕𝑢2) ,

𝐵sph
−2,1 = 𝑢2

𝑢1
(𝑤𝜕𝑤 + 𝑢1𝜕𝑢1) ;

𝐵sph,𝜂
−3,−2=−𝑢2𝑢3

(︂
𝑤𝜕𝑤 + 1

2
(︀
𝑢1𝜕𝑢1 + 𝑢2𝜕𝑢2 + 𝑢3𝜕𝑢3 − 𝜂

)︀)︂
,

𝐵sph,𝜂
3,2 =− 1

𝑢2𝑢3

(︂
𝑤(𝑤−1)𝜕𝑤+(𝑤−1)

2 (𝑢1𝜕𝑢1+𝑢2𝜕𝑢2−𝑢3𝜕𝑢3−𝜂)+𝑢2𝜕𝑢2

)︂
,

𝐵sph,𝜂
3,−2 = 𝑢2

𝑢3

(︂
𝑤𝜕𝑤 + 1

2
(︀
𝑢1𝜕𝑢1 + 𝑢2𝜕𝑢2 − 𝑢3𝜕𝑢3 − 𝜂

)︀)︂
,

𝐵sph,𝜂
−3,2 =𝑢3

𝑢2

(︂
𝑤(𝑤−1)𝜕𝑤+(𝑤−1)

2 (𝑢1𝜕𝑢1+𝑢2𝜕𝑢2+𝑢3𝜕𝑢3−𝜂)+𝑢2𝜕𝑢2

)︂
;

𝐵sph,𝜂
−3,−1=−𝑢1𝑢3

(︂
(𝑤 − 1)𝜕𝑤 + 1

2
(︀
𝑢1𝜕𝑢1 + 𝑢2𝜕𝑢2 + 𝑢3𝜕𝑢3 − 𝜂

)︀)︂
,

𝐵sph,𝜂
3,1 = 1

𝑢1𝑢3

(︁
𝑤(𝑤−1)𝜕𝑤+𝑤

2
(︀
𝑢1𝜕𝑢1+𝑢2𝜕𝑢2−𝑢3𝜕𝑢3−𝜂

)︀
−𝑢1𝜕𝑢1

)︁
,

𝐵sph,𝜂
3,−1 = 𝑢1

𝑢3

(︂
(𝑤 − 1)𝜕𝑤 + 1

2
(︀
𝑢1𝜕𝑢1 + 𝑢2𝜕𝑢2 − 𝑢3𝜕𝑢3 − 𝜂

)︀)︂
;

𝐵sph,𝜂
−3,1 =−𝑢3

𝑢1

(︁
𝑤(𝑤−1)𝜕𝑤+𝑤

2
(︀
𝑢1𝜕𝑢1+𝑢2𝜕𝑢2+𝑢3𝜕𝑢3−𝜂

)︀
−𝑢1𝜕𝑢1

)︁
.

Weyl symmetries

𝜎sph,𝜂
123 𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =𝑓 (𝑤, 𝑢1, 𝑢2, 𝑢3) ,

𝜎sph,𝜂
−12−3𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =𝑓

(︂
𝑤,

𝑤

𝑢1
, 𝑢2,

1
𝑢3

)︂
,

𝜎sph,𝜂
1−2−3𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =𝑓

(︂
𝑤, 𝑢1,

1 − 𝑤

𝑢2
,

1
𝑢3

)︂
,

𝜎sph,𝜂
−1−23𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =𝑓

(︂
𝑤,

𝑤

𝑢1
,

1 − 𝑤

𝑢2
, 𝑢3

)︂
;
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𝜎sph,𝜂
213 𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =𝑓 (1 − 𝑤, 𝑢2, 𝑢1, 𝑢3) ,

𝜎sph,𝜂
−21−3𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =𝑓

(︂
1 − 𝑤,

1 − 𝑤

𝑢2
, 𝑢1,

1
𝑢3

)︂
,

𝜎sph,𝜂
2−1−3𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =𝑓

(︂
1 − 𝑤, 𝑢2,

𝑤

𝑢1
,

1
𝑢3

)︂
,

𝜎sph,𝜂
−2−13𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =𝑓

(︂
1 − 𝑤,

1 − 𝑤

𝑢2
,
𝑤

𝑢1
, 𝑢3

)︂
;

𝜎sph,𝜂
321 𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =

(︀√
−𝑤
)︀𝜂
𝑓

(︂
1
𝑤
,
𝑢3√
−𝑤

,
𝑢2√
−𝑤

,
𝑢1√
−𝑤

)︂
,

𝜎sph,𝜂
−32−1𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =

(︀√
−𝑤
)︀𝜂
𝑓

(︂
1
𝑤
,

1√
−𝑤𝑢3

,
𝑢2√
−𝑤

,

√
−𝑤
𝑢1

)︂
,

𝜎sph,𝜂
3−2−1𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =

(︀√
−𝑤
)︀𝜂
𝑓

(︂
1
𝑤
,
𝑢3√
−𝑤

,
(𝑤 − 1)√

−𝑤𝑢2
,

√
−𝑤
𝑢1

)︂
,

𝜎sph,𝜂
−3−21𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =

(︀√
−𝑤
)︀𝜂
𝑓

(︂
1
𝑤
,

1√
−𝑤𝑢3

,
(𝑤 − 1)√

−𝑤𝑢2
,
𝑢1√
−𝑤

)︂
;

𝜎sph,𝜂
312 𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3)=

(︀√
𝑤−1

)︀𝜂
𝑓

(︂
1

1−𝑤
,

𝑢3√
𝑤−1

,
𝑢1√
𝑤−1

,
𝑢2√
𝑤−1

)︂
,

𝜎sph,𝜂
−31−2𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3)=

(︀√
𝑤−1

)︀𝜂
𝑓

(︂
1

1−𝑤
,

1√
𝑤−1𝑢3

,
𝑢1√
𝑤−1

,

√
𝑤−1
𝑢2

)︂
,

𝜎sph,𝜂
3−1−2𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3)=

(︀√
𝑤−1

)︀𝜂
𝑓

(︂
1

1−𝑤
,

𝑢3√
𝑤−1

,
𝑤√

𝑤−1𝑢1
,

√
𝑤−1
𝑢2

)︂
,

𝜎sph,𝜂
−3−12𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3)=

(︀√
𝑤−1

)︀𝜂
𝑓

(︂
1

1−𝑤
,

1√
𝑤−1𝑢3

,
𝑤√

𝑤−1𝑢1
,

𝑢2√
𝑤−1

)︂
;

𝜎sph,𝜂
231 𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =

(︀√
−𝑤
)︀𝜂
𝑓

(︂
𝑤 − 1
𝑤

,
𝑢2√
−𝑤

,
𝑢3√
−𝑤

,
𝑢1√
−𝑤

)︂
,

𝜎sph,𝜂
−23−1𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =

(︀√
−𝑤
)︀𝜂
𝑓

(︂
𝑤 − 1
𝑤

,
(𝑤 − 1)√

−𝑤𝑢2
,
𝑢3√
−𝑤

,

√
−𝑤
𝑢1

)︂
,

𝜎sph,𝜂
2−3−1𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =

(︀√
−𝑤
)︀𝜂
𝑓

(︂
𝑤 − 1
𝑤

,
𝑢2√
−𝑤

,
1√

−𝑤𝑢3
,

√
−𝑤
𝑢1

)︂
,

𝜎sph,𝜂
−2−31𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =

(︀√
−𝑤
)︀𝜂
𝑓

(︂
𝑤 − 1
𝑤

,
(𝑤 − 1)√

−𝑤𝑢2
,

1√
−𝑤𝑢3

,
𝑢1√
−𝑤

)︂
;
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𝜎sph,𝜂
132 𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =

(︀√
𝑤−1

)︀𝜂
𝑓

(︂
𝑤

𝑤−1 ,
𝑢1√
𝑤−1

,
𝑢3√
𝑤−1

,
𝑢2√
𝑤−1

)︂
,

𝜎sph,𝜂
−13−2𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3) =

(︀√
𝑤−1

)︀𝜂
𝑓

(︂
𝑤

𝑤−1 ,
𝑤√

𝑤−1𝑢1
,

𝑢3√
𝑤−1

,

√
𝑤−1
𝑢2

)︂
,

𝜎sph,𝜂
1−3−2𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3)=

(︀√
𝑤−1

)︀𝜂
𝑓

(︂
𝑤

𝑤−1 ,
𝑢1√
𝑤−1

,
1√

𝑤−1𝑢3
,

√
𝑤−1
𝑢2

)︂
,

𝜎sph,𝜂
−1−32𝑓(𝑤, 𝑢1, 𝑢2, 𝑢3)=

(︀√
𝑤−1

)︀𝜂
𝑓

(︂
𝑤

𝑤−1 ,
𝑤√

𝑤−1𝑢1
,

1√
𝑤−1𝑢3

,
𝑢2√
𝑤−1

)︂
.

Laplacian

Δsph
6 = 𝑤(1 − 𝑤)𝜕2

𝑤 −
(︀
(1 + 𝑢1𝜕𝑢1)(𝑤 − 1) + (1 + 𝑢2𝜕𝑢2)𝑤

)︀
𝜕𝑤

− 1
4(𝑢1𝜕𝑢1 + 𝑢2𝜕𝑢2 + 1)2 + 1

4(𝑢3𝜕𝑢3)2. (5.9)

Let us give the computations that yield (5.9). Using

𝜕𝑧−1 = 𝑢1√
2𝑟

(︁
− 𝑢1𝜕𝑢1 − 𝑢2𝜕𝑢2 + 𝑟𝜕𝑟 + 2(1 − 𝑤)𝜕𝑤

)︁
,

𝜕𝑧1 =
√

2
𝑟𝑢1

(︁(︀
1 − 𝑤

2
)︀
𝑢1𝜕𝑢1 − 𝑤

2 𝑢2𝜕𝑢2 + 𝑤

2 𝑟𝜕𝑟 + 𝑤(1 − 𝑤)𝜕𝑤

)︁
,

𝜕𝑧−2 = 𝑢2√
2𝑟

(︁
− 𝑢1𝜕𝑢1 − 𝑢2𝜕𝑢2 + 𝑟𝜕𝑟 − 2𝑤𝜕𝑤

)︁
,

𝜕𝑧2 =
√

2
𝑟𝑢2

(︁ (𝑤 − 1)
2 𝑢1𝜕𝑢1 + (𝑤 + 1)

2 𝑢2𝜕𝑢2 + (1 − 𝑤)
2 𝑟𝜕𝑟 + 𝑤(𝑤 − 1)𝜕𝑤

)︁
,

𝜕𝑧−3 = 𝑢3√
2𝑝

(︁
𝑢3𝜕𝑢3 − 𝑝𝜕𝑝

)︁
,

𝜕𝑧3 = 1√
2𝑝𝑢3

(︁
𝑢3𝜕𝑢3 + 𝑝𝜕𝑝

)︁
,

we compute the Laplacian in coordinates (5.7):

Δ6 = 1
𝑟2

(︁
4𝑤(1 − 𝑤)𝜕2

𝑤 − 4
(︀
(1 + 𝑢1𝜕𝑢1)(𝑤 − 1) + (1 + 𝑢2𝜕𝑢2)𝑤

)︀
𝜕𝑤

− (𝑢1𝜕𝑢1 + 𝑢2𝜕𝑢2 + 1)2 + (𝑟𝜕𝑟)2 + 2𝑟𝜕𝑟 + 1
)︁

+ 1
𝑝2

(︁
(𝑢3𝜕𝑢3)2 − (𝑝𝜕𝑝)2

)︁
. (5.10)

Next we note that
1
𝑟2
(︀
(𝑟𝜕𝑟)2 + 2𝑟𝜕𝑟 − (𝑝𝜕𝑝)2 + 1

)︀
= 1
𝑟2
(︀
𝑟𝜕𝑟 − 𝑝𝜕𝑝 + 1

)︀(︀
𝑟𝜕𝑟 + 𝑝𝜕𝑝 + 1

)︀
. (5.11)
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Using 𝑝2 = 𝑟2 and 𝑟𝜕𝑟 + 𝑝𝜕𝑝 = −1, we see that (5.11) is zero on functions of
degree −1. Thus we obtain

Δ◇
6 = 4

𝑟2

(︁
𝑤(1 − 𝑤)𝜕2

𝑤 −
(︀
(1 + 𝑢1𝜕𝑢1)(𝑤 − 1) + (1 + 𝑢2𝜕𝑢2)𝑤

)︀
𝜕𝑤

− 1
4(𝑢1𝜕𝑢1 + 𝑢2𝜕𝑢2 + 1)2 + 1

4(𝑢3𝜕𝑢3)2
)︁
. (5.12)

To convert Δ◇
6 into the Δsph

6 , we simply remove the prefactor 4
𝑟2 .

5.3 Hypergeometric equation

Let us make the ansatz

𝑓(𝑢1, 𝑢2, 𝑢3, 𝑤) = 𝑢𝛼
1 𝑢

𝛽
2𝑢

𝜇
3𝐹 (𝑤). (5.13)

Clearly,

𝑁 sph
1 𝑓 = 𝛼𝑓, (5.14a)

𝑁 sph
2 𝑓 = 𝛽𝑓, (5.14b)

𝑁 sph
3 𝑓 = 𝜇𝑓, (5.14c)

𝑢−𝛼
1 𝑢−𝛽

2 𝑢−𝜇
3 Δsph

6 𝑓 = ℱ𝛼,𝛽,𝜇(𝑤, 𝜕𝑤)𝐹 (𝑤), (5.14d)

where

ℱ𝛼,𝛽,𝜇(𝑤, 𝜕𝑤) :=𝑤(1 − 𝑤)𝜕2
𝑤 −

(︀
(1 + 𝛼)(𝑤 − 1) + (1 + 𝛽)𝑤

)︀
𝜕𝑤

− 1
4(𝛼+ 𝛽 + 1)2 + 1

4𝜇
2, (5.15)

which is the 2ℱ1 hypergeometric operator in the Lie-algebraic parameters.
Traditionally, the hypergeometric equation is given by the operator

ℱ(𝑎, 𝑏; 𝑐;𝑤, 𝜕𝑤) := 𝑤(1 − 𝑤)𝜕2
𝑤 +

(︀
𝑐− (𝑎+ 𝑏+ 1)𝑤

)︀
𝜕𝑤 − 𝑎𝑏, (5.16)

where 𝑎, 𝑏, 𝑐 ∈ C will be called the classical parameters. Here is the relationship
between the Lie-algebraic and classical parameters:

𝛼 := 𝑐− 1, 𝛽 := 𝑎+ 𝑏− 𝑐, 𝜇 := 𝑎− 𝑏; (5.17a)

𝑎 = 1 + 𝛼+ 𝛽 + 𝜇

2 , 𝑏 = 1 + 𝛼+ 𝛽 − 𝜇

2 , 𝑐 = 1 + 𝛼. (5.17b)

Note that the Lie-algebraic parameters 𝛼, 𝛽, 𝜇 are differences of the indices
of the singular points 0, 1,∞. For many purposes, they are more convenient than
the traditional parameters 𝑎, 𝑏, 𝑐. They are used e.g. in Subsect. 2.7.2 of [BE],
where they are called 𝜆, 𝜈, 𝜇. In the standard notation for Jacobi Polynomials
𝑃𝛼,𝛽

𝑛 , the parameters 𝛼, 𝛽 correspond to our 𝛼, 𝛽 (where the singular points have
been moved from 0, 1 to −1, 1).



Group-theoretical origin of symmetries of hypergeometric class equations and functions 55

5.4 Transmutation relations and discrete symmetries

By (4.17), we have the following generalized symmetries

𝐵sph,−3Δsph
6 = Δsph

6 𝐵sph,−1, 𝐵 ∈ so(6), (5.18a)

𝛼sph,−3Δsph
6 = Δsph

6 𝛼sph,−1, 𝛼 ∈ O(6). (5.18b)

Applying (5.18a) to the roots of so(6) we obtain the transmutation relations for
the hypergeometric operator:

𝜕𝑤ℱ𝛼,𝛽,𝜇

= ℱ𝛼+1,𝛽+1,𝜇𝜕𝑤,(︀
𝑤(1 − 𝑤)𝜕𝑤 + (1 − 𝑤)𝛼− 𝑤𝛽

)︀
ℱ𝛼,𝛽,𝜇

= ℱ𝛼−1,𝛽−1,𝜇

(︀
𝑤(1 − 𝑤)𝜕𝑤 + (1 − 𝑤)𝛼− 𝑤𝛽

)︀
,(︀

(1 − 𝑤)𝜕𝑤 − 𝛽
)︀
ℱ𝛼,𝛽,𝜇

= ℱ𝛼+1,𝛽−1,𝜇

(︀
(1 − 𝑤)𝜕𝑤 − 𝛽

)︀
,

(𝑤𝜕𝑤 + 𝛼)ℱ𝛼,𝛽,𝜇

= ℱ𝛼−1,𝛽+1,𝜇(𝑤𝜕𝑤 + 𝛼);

(︁
𝑤𝜕𝑤 + 1

2(𝛼+ 𝛽 + 𝜇+ 1)
)︁
𝑤ℱ𝛼,𝛽,𝜇

= 𝑤ℱ𝛼,𝛽+1,𝜇+1

(︁
𝑤𝜕𝑤 + 1

2(𝛼+ 𝛽 + 𝜇+ 1)
)︁
,(︁

𝑤(𝑤−1)𝜕𝑤+1
2(𝑤−1)(𝛼+𝛽−𝜇+1)−𝛽

)︁
𝑤ℱ𝛼,𝛽,𝜇

= 𝑤ℱ𝛼,𝛽−1,𝜇−1

(︁
𝑤(𝑤−1)𝜕𝑤+1

2(𝑤−1)(𝛼+𝛽−𝜇+1)−𝛽
)︁
,(︁

𝑤𝜕𝑤+1
2(𝛼+𝛽−𝜇+1)

)︁
𝑤ℱ𝛼,𝛽,𝜇

= 𝑤ℱ𝛼,𝛽+1,𝜇−1

(︁
𝑤𝜕𝑤+1

2(𝛼+𝛽−𝜇+1
)︁
,(︁

𝑤(𝑤−1)𝜕𝑤−1
2(1−𝑤)(𝛼+𝛽+𝜇+1)+𝛽

)︁
𝑤ℱ𝛼,𝛽,𝜇

= 𝑤ℱ𝛼,𝛽−1,𝜇+1

(︁
𝑤(𝑤−1)𝜕𝑤−1

2(1−𝑤)(𝛼+𝛽+𝜇+1)+𝛽
)︁

;
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(︁
(𝑤 − 1)𝜕𝑤 + 1

2(𝛼+ 𝛽 + 𝜇+ 1)
)︁

(1 − 𝑤)ℱ𝛼,𝛽,𝜇

= (1 − 𝑤)ℱ𝛼+1,𝛽,𝜇+1

(︁
(𝑤 − 1)𝜕𝑤 + 1

2(𝛼+ 𝛽 + 𝜇+ 1
)︁
,(︁

𝑤(𝑤−1)𝜕𝑤+1
2𝑤(𝛼+𝛽−𝜇+1)+𝛼

)︁
(1 − 𝑤)ℱ𝛼,𝛽,𝜇

= (1 − 𝑤)ℱ𝛼−1,𝛽,𝜇−1

(︁
𝑤(𝑤−1)𝜕𝑤+1

2𝑤(𝛼+𝛽−𝜇+1)+𝛼
)︁
,(︁

(𝑤 − 1)𝜕𝑤 + 1
2(𝛼+ 𝛽 − 𝜇+ 1)

)︁
(1 − 𝑤)ℱ𝛼,𝛽,𝜇

= (1 − 𝑤)ℱ𝛼+1,𝛽,𝜇−1

(︁
(𝑤 − 1)𝜕𝑤 + 1

2(𝛼+ 𝛽 − 𝜇+ 1)
)︁
,(︁

𝑤(𝑤−1)𝜕𝑤+1
2𝑤(𝛼+𝛽+𝜇+1) − 𝛼

)︁
(1 − 𝑤)ℱ𝛼,𝛽,𝜇

= (1 − 𝑤)ℱ𝛼−1,𝛽,𝜇+1

(︁
𝑤(𝑤−1)𝜕𝑤+1

2𝑤(𝛼+𝛽+𝜇+1)−𝛼
)︁
.

Applying (5.18b) to the Weyl group 𝐷3 we obtain the discrete symmetries
of the hypergeometric operator. We describe them below, restricting ourselves to
𝐷3 ∩ SO(6).

All the operators below equal ℱ𝛼,𝛽,𝜇(𝑤, 𝜕𝑤) for the corresponding 𝑤:

𝑤 = 𝑣 : ℱ𝛼,𝛽,𝜇(𝑣, 𝜕𝑣),
(−𝑣)−𝛼(𝑣 − 1)−𝛽 ℱ−𝛼,−𝛽,𝜇(𝑣, 𝜕𝑣) (−𝑣)𝛼(𝑣 − 1)𝛽

(𝑣 − 1)−𝛽 ℱ𝛼,−𝛽,−𝜇(𝑣, 𝜕𝑣) (𝑣 − 1)𝛽 ,

(−𝑣)−𝛼 ℱ−𝛼,𝛽,−𝜇(𝑣, 𝜕𝑣) (−𝑣)𝛼;

𝑤 = 1 − 𝑣 : ℱ𝛽,𝛼,𝜇(𝑣, 𝜕𝑣),
(𝑣 − 1)−𝛼(−𝑣)−𝛽 ℱ−𝛽,−𝛼,𝜇(𝑣, 𝜕𝑣) (𝑣 − 1)𝛼(−𝑣)𝛽 ,

(𝑣 − 1)−𝛼 ℱ𝛽,−𝛼,−𝜇(𝑣, 𝜕𝑣) (𝑣 − 1)𝛼,

(−𝑣)−𝛽 ℱ−𝛽,𝛼,−𝜇(𝑣, 𝜕𝑣) (−𝑣)𝛽 ;

𝑤 = 1
𝑣 : (−𝑣)

𝛼+𝛽+𝜇+1
2 (−𝑣)ℱ𝜇,𝛽,𝛼(𝑣, 𝜕𝑣) (−𝑣)

−𝛼−𝛽−𝜇−1
2 ,

(−𝑣)
𝛼+𝛽−𝜇+1

2 (𝑣 − 1)−𝛽 (−𝑣)ℱ−𝜇,−𝛽,𝛼(𝑣, 𝜕𝑣) (−𝑣)
−𝛼−𝛽+𝜇−1

2 (𝑣 − 1)𝛽 ,

(−𝑣)
𝛼+𝛽+𝜇+1

2 (𝑣 − 1)−𝛽 (−𝑣)ℱ𝜇,−𝛽,−𝛼(𝑣, 𝜕𝑣) (−𝑣)
−𝛼−𝛽−𝜇−1

2 (𝑣 − 1)𝛽 ,

(−𝑣)
𝛼+𝛽−𝜇+1

2 (−𝑣)ℱ−𝜇,𝛽,−𝛼(𝑣, 𝜕𝑣) (−𝑣)
−𝛼−𝛽+𝜇−1

2 ;

𝑤 = 𝑣−1
𝑣 : (−𝑣)

𝛼+𝛽+𝜇+1
2 (−𝑣)ℱ𝜇,𝛼,𝛽(𝑣, 𝜕𝑣) (−𝑣)

−𝛼−𝛽−𝜇−1
2 ,

(−𝑣)
𝛼+𝛽−𝜇+1

2 (𝑣 − 1)−𝛼 (−𝑣)ℱ−𝜇,−𝛼,𝛽(𝑣, 𝜕𝑣) (−𝑣)
−𝛼−𝛽+𝜇−1

2 (𝑣 − 1)𝛼,

(−𝑣)
𝛼+𝛽+𝜇+1

2 (𝑣 − 1)−𝛼 (−𝑣)ℱ𝜇,−𝛼,−𝛽(𝑣, 𝜕𝑣) (−𝑣)
−𝛼−𝛽−𝜇−1

2 (𝑣 − 1)𝛼,

(−𝑣)
𝛼+𝛽−𝜇+1

2 (−𝑣)ℱ−𝜇,𝛼,−𝛽(𝑣, 𝜕𝑣) (−𝑣)
−𝛼−𝛽+𝜇−1

2 ;
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𝑤= 1
1−𝑣 : (𝑣−1)

𝛼+𝛽+𝜇+1
2 (𝑣−1)ℱ𝛽,𝜇,𝛼(𝑣, 𝜕𝑣) (𝑣−1)

−𝛼−𝛽−𝜇−1
2 ,

(−𝑣)−𝛽(𝑣−1)
𝛼+𝛽−𝜇+1

2 (𝑣−1)ℱ−𝛽,−𝜇,𝛼(𝑣, 𝜕𝑣) (−𝑣)𝛽(𝑣−1)
−𝛼−𝛽+𝜇−1

2 ,

(𝑣−1)
𝛼+𝛽−𝜇+1

2 (𝑣−1)ℱ𝛽,−𝜇,−𝛼(𝑣, 𝜕𝑣) (𝑣−1)
−𝛼−𝛽+𝜇−1

2 ,

(−𝑣)−𝛽(𝑣−1)
𝛼+𝛽+𝜇+1

2 (𝑣−1)ℱ−𝛽,𝜇,−𝛼(𝑣, 𝜕𝑣) (−𝑣)𝛽(𝑣−1)
−𝛼−𝛽−𝜇−1

2 ;

𝑤= 𝑣
𝑣−1 : (𝑣−1)

𝛼+𝛽+𝜇+1
2 (𝑣−1)ℱ𝛼,𝜇,𝛽(𝑣, 𝜕𝑣) (𝑣−1)

−𝛼−𝛽−𝜇−1
2 ,

(−𝑣)−𝛼(𝑣−1)
𝛼+𝛽−𝜇+1

2 (𝑣−1)ℱ−𝛼,−𝜇,𝛽(𝑣, 𝜕𝑣) (−𝑣)𝛼(𝑣−1)
−𝛼−𝛽+𝜇−1

2 ,

(𝑣−1)
𝛼+𝛽−𝜇+1

2 (𝑣−1)ℱ𝛼,−𝜇,−𝛽(𝑣, 𝜕𝑣) (𝑣−1)
−𝛼−𝛽+𝜇−1

2 ,

(−𝑣)−𝛼(𝑣−1)
𝛼+𝛽+𝜇+1

2 (𝑣−1)ℱ−𝛼,𝜇,−𝛽(𝑣, 𝜕𝑣) (−𝑣)𝛼(𝑣−1)
−𝛼−𝛽−𝜇−1

2 .

5.5 Factorizations of the Laplacian

In the Lie algebra so(6) represented on R6 we have 3 distinguished Lie subalgebras
isomorphic to so(4):

so12(4), so23(4), so13(4), (5.19)
where we use a hopefully obvious notation. By (4.11), the corresponding Casimir
operators are

𝒞12 = 4𝐵1,2𝐵−1,−2 − (𝑁1 +𝑁2 + 1)2 + 1 (5.20a)
= 4𝐵−1,−2𝐵1,2 − (𝑁1 +𝑁2 − 1)2 + 1 (5.20b)
= 4𝐵1,−2𝐵−1,2 − (𝑁1 −𝑁2 + 1)2 + 1 (5.20c)
= 4𝐵−1,2𝐵1,−2 − (𝑁1 −𝑁2 − 1)2 + 1; (5.20d)

𝒞23 = 4𝐵2,3𝐵−2,−3 − (𝑁2 +𝑁3 + 1)2 + 1 (5.20e)
= 4𝐵−2,−3𝐵2,3 − (𝑁2 +𝑁3 − 1)2 + 1 (5.20f)
= 4𝐵2,−3𝐵−2,3 − (𝑁2 −𝑁3 + 1)2 + 1 (5.20g)
= 4𝐵−2,3𝐵2,−3 − (𝑁2 −𝑁3 − 1)2 + 1; (5.20h)

𝒞13 = 4𝐵1,3𝐵−1,−3 − (𝑁1 +𝑁3 + 1)2 + 1 (5.20i)
= 4𝐵−1,−3𝐵1,3 − (𝑁1 +𝑁3 − 1)2 + 1 (5.20j)
= 4𝐵1,−3𝐵−1,3 − (𝑁1 −𝑁3 + 1)2 + 1 (5.20k)
= 4𝐵−1,3𝐵1,−3 − (𝑁1 −𝑁3 − 1)2 + 1. (5.20l)

Of course, for any 𝜂 we can append the superscript ◇,𝜂 to all the operators in
(5.20).

After the reduction described in (4.19), we obtain the identities

(2𝑧−1𝑧1 + 2𝑧−2𝑧2)Δ◇
6 = −1 + 𝒞◇,−1

12 + (𝑁◇,−1
3 )2, (5.21a)

(2𝑧−2𝑧2 + 2𝑧−3𝑧3)Δ◇
6 = −1 + 𝒞◇,−1

23 + (𝑁◇,−1
1 )2, (5.21b)

(2𝑧−1𝑧1 + 2𝑧−3𝑧3)Δ◇
6 = −1 + 𝒞◇,−1

13 + (𝑁◇,−1
2 )2. (5.21c)
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We insert (5.20) with superscript ◇,−1 to (5.21), obtaining

(2𝑧−1𝑧1 + 2𝑧−2𝑧2)Δ◇
6

=4𝐵1,2𝐵−1,−2 − (𝑁1 +𝑁2 +𝑁3 + 1)(𝑁1 +𝑁2 −𝑁3 + 1) (5.22a)
=4𝐵−1,−2𝐵1,2 − (𝑁1 +𝑁2 +𝑁3 − 1)(𝑁1 +𝑁2 −𝑁3 − 1) (5.22b)
=4𝐵1,−2𝐵−1,2 − (𝑁1 −𝑁2 +𝑁3 + 1)(𝑁1 −𝑁2 −𝑁3 + 1) (5.22c)
=4𝐵−1,2𝐵1,−2 − (𝑁1 −𝑁2 +𝑁3 − 1)(𝑁1 −𝑁2 −𝑁3 − 1); (5.22d)

(2𝑧−2𝑧2 + 2𝑧−3𝑧3)Δ◇
6

=4𝐵2,3𝐵−2,−3 − (𝑁1 +𝑁2 +𝑁3 + 1)(−𝑁1 +𝑁2 +𝑁3 + 1) (5.22e)
=4𝐵−2,−3𝐵2,3 − (𝑁1 +𝑁2 +𝑁3 − 1)(−𝑁1 +𝑁2 +𝑁3 − 1) (5.22f)
=4𝐵2,−3𝐵−2,3 − (𝑁1 +𝑁2 −𝑁3 + 1)(−𝑁1 +𝑁2 −𝑁3 + 1) (5.22g)
=4𝐵−2,3𝐵2,−3 − (𝑁1 +𝑁2 −𝑁3 − 1)(−𝑁1 +𝑁2 −𝑁3 − 1); (5.22h)

(2𝑧−1𝑧1 + 2𝑧−3𝑧3)Δ◇
6

=4𝐵1,3𝐵−1,−3 − (𝑁1 +𝑁2 +𝑁3 + 1)(𝑁1 −𝑁2 +𝑁3 + 1) (5.22i)
=4𝐵−1,−3𝐵1,3 − (𝑁1 +𝑁2 +𝑁3 − 1)(𝑁1 −𝑁2 +𝑁3 − 1) (5.22j)
=4𝐵1,−3𝐵−1,3 − (𝑁1 +𝑁2 −𝑁3 + 1)(𝑁1 −𝑁2 −𝑁3 + 1) (5.22k)
=4𝐵−1,3𝐵1,−3 − (𝑁1 +𝑁2 −𝑁3 − 1)(𝑁1 −𝑁2 −𝑁3 − 1); (5.22l)

where for typographical reasons we omitted the superscript ◇,−1 at all the
operators 𝐵 and 𝑁 .

If we use the coordinates (5.7) and the spherical section, then we have to
rewrite (5.22) by making the replacements

2𝑧−1𝑧1 + 2𝑧−2𝑧2 → 1, (5.23a)
2𝑧−2𝑧2 + 2𝑧−3𝑧3 → −𝑤, (5.23b)
2𝑧−1𝑧1 + 2𝑧−3𝑧3 → 𝑤 − 1, (5.23c)

as well as replacing the superscript ◇ with sph.
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5.6 Factorizations of the hypergeometric operator

The factorizations of Δsph
6 described in Subsect. 5.5 yield the following factoriza-

tions of the hypergeometric operator:

ℱ𝛼,𝛽,𝜇

=
(︁
𝑤(1 − 𝑤)𝜕𝑤 +

(︀
(1 + 𝛼)(1 − 𝑤) − (1 + 𝛽)𝑤

)︀)︁
𝜕𝑤

− 1
4(𝛼+ 𝛽 + 𝜇+ 1)(𝛼+ 𝛽 − 𝜇+ 1)

=𝜕𝑤

(︁
𝑤(1 − 𝑤)𝜕𝑤 +

(︀
𝛼(1 − 𝑤) − 𝛽𝑤

)︀)︁
− 1

4(𝛼+ 𝛽 + 𝜇− 1)(𝛼+ 𝛽 − 𝜇− 1)

=
(︁
𝑤𝜕𝑤 + 𝛼+ 1

)︁(︁
(1 − 𝑤)𝜕𝑤 − 𝛽

)︁
− 1

4(𝛼− 𝛽 + 𝜇+ 1)(𝛼− 𝛽 − 𝜇+ 1)

=
(︁

(1 − 𝑤)𝜕𝑤 − 𝛽 − 1
)︁(︁
𝑤𝜕𝑤 + 𝛼

)︁
− 1

4(𝛼− 𝛽 + 𝜇− 1)(𝛼− 𝛽 − 𝜇− 1);

𝑤ℱ𝛼,𝛽,𝜇

=
(︁
𝑤𝜕𝑤+1

2(𝛼+𝛽+𝜇−1)
)︁(︁
𝑤(1−𝑤)𝜕𝑤+1

2(1−𝑤)(𝛼+𝛽−𝜇+1)−𝛽
)︁

−1
4(𝛼+𝛽+𝜇−1)(𝛼−𝛽−𝜇+1)

=
(︁
𝑤(1−𝑤)𝜕𝑤+1

2(1−𝑤)(𝛼+𝛽−𝜇+1)−𝛽−1
)︁(︁
𝑤𝜕𝑤+1

2(𝛼+𝛽+𝜇+1)
)︁

−1
4(𝛼+𝛽+𝜇+1)(𝛼−𝛽−𝜇−1)

=
(︁
𝑤𝜕𝑤+1

2(𝛼+𝛽−𝜇−1)
)︁(︁
𝑤(1−𝑤)𝜕𝑤+1

2(1−𝑤)(𝛼+𝛽+𝜇+1)−𝛽
)︁

−1
4(𝛼+𝛽−𝜇−1)(𝛼−𝛽+𝜇+1)

=
(︁
𝑤(1−𝑤)𝜕𝑤+1

2(1−𝑤)(𝛼+𝛽+𝜇+1)−𝛽−1
)︁(︁
𝑤𝜕𝑤+1

2(𝛼+𝛽−𝜇+1)
)︁

−1
4(𝛼+𝛽−𝜇+1)(𝛼−𝛽+𝜇−1);
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(𝑤−1)ℱ𝛼,𝛽,𝜇

=
(︁
𝑤(𝑤−1)𝜕𝑤+1

2𝑤(𝛼+𝛽−𝜇+1)−𝛼−1
)︁(︁

(𝑤−1)𝜕𝑤+1
2(𝛼+𝛽+𝜇+1)

)︁
−1

4(𝛼+𝛽+𝜇+1)(𝛼−𝛽+𝜇+1)

=
(︁

(𝑤−1)𝜕𝑤+1
2(𝛼+𝛽+𝜇−1)

)︁(︁
𝑤(𝑤−1)𝜕𝑤+1

2𝑤(𝛼+𝛽−𝜇+1)−𝛼
)︁

−1
4(𝛼+𝛽+𝜇−1)(𝛼−𝛽+𝜇−1)

=
(︁
𝑤(𝑤−1)𝜕𝑤+1

2𝑤(𝛼+𝛽+𝜇+1)−𝛼−1
)︁(︁

(𝑤−1)𝜕𝑤+1
2(𝛼+𝛽−𝜇+1)

)︁
−1

4(𝛼+𝛽−𝜇+1)(𝛼−𝛽−𝜇+1)

=
(︁

(𝑤−1)𝜕𝑤+1
2(𝛼+𝛽−𝜇−1)

)︁(︁
𝑤(𝑤−1)𝜕𝑤+1

2𝑤(𝛼+𝛽+𝜇+1)−𝛼
)︁

−1
4(𝛼+𝛽−𝜇−1)(𝛼−𝛽−𝜇−1).

5.7 The 2𝐹1 hypergeometric function

0 is a regular singular point of the 2ℱ1 hypergeometric equation. Its indices are 0
and 1 − 𝑐. For 𝑐 ̸= 0,−1,−2, . . . the Frobenius method yields the unique solution
of the hypergeometric equation equal to 1 at 0, given by the series

𝐹 (𝑎, 𝑏; 𝑐;𝑤) =
∞∑︁

𝑗=0

(𝑎)𝑗(𝑏)𝑗

(𝑐)𝑗

𝑤𝑗

𝑗!

convergent for |𝑤| < 1. The function extends to the whole complex plane cut at
[1,∞[ and is called the hypergeometric function. Sometimes it is more convenient
to consider the function

F(𝑎, 𝑏; 𝑐;𝑤) := 𝐹 (𝑎, 𝑏, 𝑐, 𝑤)
Γ(𝑐) =

∞∑︁
𝑗=0

(𝑎)𝑗(𝑏)𝑗

Γ(𝑐+ 𝑗)
𝑤𝑗

𝑗!

defined for all 𝑎, 𝑏, 𝑐 ∈ C. Another useful function proportional to 𝐹 is

FI(𝑎, 𝑏; 𝑐;𝑤) := Γ(𝑏)Γ(𝑐− 𝑏)
Γ(𝑐) 𝐹 (𝑎, 𝑏; 𝑐;𝑤) =

∞∑︁
𝑗=0

Γ(𝑏+ 𝑗)Γ(𝑐− 𝑏)(𝑎)𝑗

Γ(𝑐+ 𝑗)
𝑤𝑗

𝑗! .



Group-theoretical origin of symmetries of hypergeometric class equations and functions 61

We will usually prefer to parametrize all varieties of the hypergeometric
function with the Lie-algebraic parameters:

𝐹𝛼,𝛽,𝜇(𝑤) = 𝐹
(︁1 + 𝛼+ 𝛽 + 𝜇

2 ,
1 + 𝛼+ 𝛽 − 𝜇

2 ; 1 + 𝛼;𝑤
)︁
,

F𝛼,𝛽,𝜇(𝑤) = F
(︁1 + 𝛼+ 𝛽 + 𝜇

2 ,
1 + 𝛼+ 𝛽 − 𝜇

2 ; 1 + 𝛼;𝑤
)︁

= 1
Γ(𝛼+ 1)𝐹𝛼,𝛽,𝜇(𝑤),

FI
𝛼,𝛽,𝜇(𝑤) = FI

(︁1 + 𝛼+ 𝛽 + 𝜇

2 ,
1 + 𝛼+ 𝛽 − 𝜇

2 ; 1 + 𝛼;𝑤
)︁

=
Γ
(︀ 1+𝛼+𝛽−𝜇

2
)︀
Γ
(︀1+𝛼−𝛽+𝜇

2
)︀

Γ(𝛼+ 1) 𝐹𝛼,𝛽,𝜇(𝑤).

5.8 Standard solutions

The hypergeometric equation has 3 singular points. With each of them we can
associate two solutions with a simple behavior. Therefore, we obtain 6 standard
solutions.

Applying the discrete symmetries from 𝐷3 ∩ SO(6) to the hypergeometric
function, we obtain 24 expressions for solutions of the hypergeometric equation,
which go under the name of Kummer’s table. Some of them coincide as functions,
so that we obtain 6 standard solutions, each expressed in 4 ways:

Solution ∼ 1 at 0: 𝐹𝛼,𝛽,𝜇(𝑤)
=(1 − 𝑤)−𝛽𝐹𝛼,−𝛽,−𝜇(𝑤)

=(1 − 𝑤)
−1−𝛼−𝛽+𝜇

2 𝐹𝛼,−𝜇,−𝛽( 𝑤

𝑤 − 1)

=(1 − 𝑤)
−1−𝛼−𝛽−𝜇

2 𝐹𝛼,𝜇,𝛽( 𝑤

𝑤 − 1);

Solution ∼ 𝑤−𝛼 at 0: 𝑤−𝛼𝐹−𝛼,𝛽,−𝜇(𝑤)
=𝑤−𝛼(1 − 𝑤)−𝛽𝐹−𝛼,−𝛽,𝜇(𝑤)

=𝑤−𝛼(1 − 𝑤)
−1+𝛼−𝛽+𝜇

2 𝐹−𝛼,−𝜇,𝛽( 𝑤

𝑤 − 1)

=𝑤−𝛼(1 − 𝑤)
−1+𝛼−𝛽−𝜇

2 𝐹−𝛼,𝜇,−𝛽( 𝑤

𝑤 − 1);
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Solution ∼ 1 at 1: 𝐹𝛽,𝛼,𝜇(1 − 𝑤)
=𝑤−𝛼𝐹𝛽,−𝛼,−𝜇(1 − 𝑤)

=𝑤
−1−𝛼−𝛽+𝜇

2 𝐹𝛽,−𝜇,−𝛼(1 − 𝑤−1)

=𝑤
−1−𝛼−𝛽−𝜇

2 𝐹𝛽,𝜇,𝛼(1 − 𝑤−1);

Solution ∼ (1 − 𝑤)−𝛽 at 1: (1 − 𝑤)−𝛽𝐹−𝛽,𝛼,−𝜇(1 − 𝑤)
=𝑤−𝛼(1 − 𝑤)−𝛽𝐹−𝛽,−𝛼,𝜇(1 − 𝑤)

=𝑤
−1−𝛼+𝛽−𝜇

2 (1 − 𝑤)−𝛽𝐹−𝛽,𝜇,−𝛼(1 − 𝑤−1)

=𝑤
−1−𝛼+𝛽+𝜇

2 (1 − 𝑤)−𝛽𝐹−𝛽,−𝜇,𝛼(1 − 𝑤−1);

Solution ∼ 𝑤−𝑎 at ∞: (−𝑤)
−1−𝛼−𝛽−𝜇

2 𝐹𝜇,𝛽,𝛼(𝑤−1)

=(−𝑤)
−1−𝛼+𝛽−𝜇

2 (1 − 𝑤)−𝛽𝐹𝜇,−𝛽,−𝛼(𝑤−1)

=(1 − 𝑤)
−1−𝛼−𝛽−𝜇

2 𝐹𝜇,𝛼,𝛽((1 − 𝑤)−1)

=(−𝑤)−𝛼(1 − 𝑤)
−1+𝛼−𝛽−𝜇

2 𝐹𝜇,−𝛼,−𝛽((1 − 𝑤)−1);

Solution ∼ 𝑤−𝑏 at ∞: (−𝑤)
−1−𝛼−𝛽+𝜇

2 𝐹−𝜇,𝛽,−𝛼(𝑤−1)

=(−𝑤)
−1−𝛼+𝛽+𝜇

2 (1 − 𝑤)−𝛽𝐹−𝜇,−𝛽,𝛼(𝑤−1)

=(1 − 𝑤)
−1−𝛼−𝛽+𝜇

2 𝐹−𝜇,𝛼,−𝛽((1 − 𝑤)−1)

=(−𝑤)−𝛼(1 − 𝑤)
−1+𝛼−𝛽+𝜇

2 𝐹−𝜇,−𝛼,𝛽((1 − 𝑤)−1).

5.9 Recurrence relations

To each root of so(6) there corresponds a recurrence relation:

𝜕𝑤FI
𝛼,𝛽,𝜇(𝑤) = 1+𝛼+𝛽+𝜇

2 FI
𝛼+1,𝛽+1,𝜇(𝑤),

−(𝑤(1−𝑤)𝜕𝑤+𝛼(1−𝑤)−𝛽𝑤)FI
𝛼,𝛽,𝜇(𝑤) = 1−𝛼−𝛽+𝜇

2 FI
𝛼−1,𝛽−1,𝜇(𝑤),

((1 − 𝑤)𝜕𝑤 − 𝛽)FI
𝛼,𝛽,𝜇(𝑤) = 1+𝛼−𝛽−𝜇

2 FI
𝛼+1,𝛽−1,𝜇(𝑤),

−(𝑤𝜕𝑤 + 𝛼)FI
𝛼,𝛽,𝜇(𝑤) = 1−𝛼+𝛽−𝜇

2 FI
𝛼−1,𝛽+1,𝜇(𝑤);
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(︂
𝑤𝜕𝑤 + 1 + 𝛼+ 𝛽 + 𝜇

2

)︂
FI

𝛼,𝛽,𝜇(𝑤) = 1+𝛼+𝛽+𝜇
2 FI

𝛼,𝛽+1,𝜇+1(𝑤),

−
(︂
𝑤(𝑤−1)𝜕𝑤+𝛽+1+𝛼+𝛽−𝜇

2 (𝑤−1)
)︂

FI
𝛼,𝛽,𝜇(𝑤) = 1+𝛼−𝛽−𝜇

2 FI
𝛼,𝛽−1,𝜇−1(𝑤),

−
(︂
𝑤𝜕𝑤 + 1 + 𝛼+ 𝛽 − 𝜇

2

)︂
FI

𝛼,𝛽,𝜇(𝑤) = 1−𝛼+𝛽−𝜇
2 FI

𝛼,𝛽+1,𝜇−1(𝑤),(︂
𝑤(𝑤−1)𝜕𝑤+𝛽+1+𝛼+𝛽+𝜇

2 (𝑤−1)
)︂

FI
𝛼,𝛽,𝜇(𝑤) = 1−𝛼−𝛽+𝜇

2 FI
𝛼,𝛽−1,𝜇+1(𝑤);

(︂
(𝑤 − 1)𝜕𝑤 + 1 + 𝛼+ 𝛽 + 𝜇

2

)︂
FI

𝛼,𝛽,𝜇(𝑤) = 1+𝛼+𝛽+𝜇
2 FI

𝛼+1,𝛽,𝜇+1(𝑤),(︂
𝑤(𝑤 − 1)𝜕𝑤−𝛼+1+𝛼+𝛽−𝜇

2 𝑤

)︂
FI

𝛼,𝛽,𝜇(𝑤) = 1−𝛼+𝛽−𝜇
2 FI

𝛼−1,𝛽,𝜇−1(𝑤),(︂
(𝑤 − 1)𝜕𝑤 + 1 + 𝛼+ 𝛽 − 𝜇

2

)︂
FI

𝛼,𝛽,𝜇(𝑤) = 1+𝛼−𝛽−𝜇
2 FI

𝛼+1,𝛽,𝜇−1(𝑤),(︂
𝑤(𝑤 − 1)𝜕𝑤−𝛼+1+𝛼+𝛽+𝜇

2 𝑤

)︂
FI

𝛼,𝛽,𝜇(𝑤) = 1−𝛼−𝛽+𝜇
2 FI

𝛼−1,𝛽,𝜇+1(𝑤).

The recurrence relations are essentially fixed by the transmutation relations. The
only missing piece of information is the coefficient on the right hand side, which
can be derived by analyzing the behavior of both sides around zero. Another
way to obtain these coefficients is to use the integral representations described in
the following subsections.

5.10 Wave packets in 6 dimensions

We start with the following easy fact:

Lemma 5.1. For any 𝜏 , the following function is harmonic on R6:

(𝑧1 − 𝜏−1𝑧−2)𝛼+𝜈(𝑧2 + 𝜏−1𝑧−1)𝛽+𝜈𝑧𝜇
3 (5.24)

Proof. Set 𝑒1 := (1, 0, 0,−𝜏−1), 𝑒2 := (0, 𝜏−1, 1, 0). Then

⟨𝑒1|𝑒1⟩ = ⟨𝑒2|𝑒2⟩ = ⟨𝑒2|𝑒1⟩ = 0.

Hence, (5.24) is harmonic by Prop. 3.1. 2
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Let us make a wave packet out of (5.24), which is an eigenfunction of the Cartan
operators:

𝐾𝛼,𝛽,𝜇,𝜈(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3)

:=
∫︁
𝛾

(𝑧1 − 𝜏−1𝑧−2)𝛼+𝜈(𝑧2 + 𝜏−1𝑧−1)𝛽+𝜈𝑧𝜇
3 𝜏

𝜈−1 d𝜏
2𝜋i . (5.25)

Proposition 5.2. Let the contour ]0, 1[∋ 𝑠
𝛾↦→ 𝜏(𝑠) satisfy

(𝑧1 − 𝜏−1𝑧−2)𝛼+𝜈(𝑧2 + 𝜏−1𝑧−1)𝛽+𝜈𝜏𝜈−1
⃒⃒⃒𝜏(1)

𝜏(0)
= 0. (5.26)

Then 𝐾𝛼,𝛽,𝜇,𝜈 is harmonic and

𝑁1𝐾𝛼,𝛽,𝜇,𝜈 = 𝛼𝐾𝛼,𝛽,𝜇,𝜈 , (5.27a)
𝑁2𝐾𝛼,𝛽,𝜇,𝜈 = 𝛽𝐾𝛼,𝛽,𝜇,𝜈 , (5.27b)
𝑁3𝐾𝛼,𝛽,𝜇,𝜈 = 𝜇𝐾𝛼,𝛽,𝜇,𝜈 . (5.27c)

Proof. 𝐾𝛼,𝛽,𝜇,𝜈 is harmonic by Lemma 5.1. Writing

𝐾𝛼,𝛽,𝜇,𝜈(𝑧) =
∫︁
𝛾

(𝜏𝑧1 − 𝑧−2)𝛼+𝜈(𝑧2 + 𝜏−1𝑧−1)𝛽+𝜈𝑧𝜇
3 𝜏

−𝛼−1 d𝜏
2𝜋i (5.28a)

=
∫︁
𝛾

(𝑧1 − 𝜏−1𝑧−2)𝛼+𝜈(𝜏𝑧2 + 𝑧−1)𝛽+𝜈𝑧𝜇
3 𝜏

−𝛽−1 d𝜏
2𝜋i , (5.28b)

we see that (5.27a) and (5.27b) follow from assumption (5.26) by Prop. 3.2.
(5.27c) is obvious. 2

Proposition 5.3. If in addition to (5.26) we assume that

(𝑧1 − 𝜏−1𝑧−2)𝛼+𝜈(𝑧2 + 𝜏−1𝑧−1)𝛽+𝜈𝜏𝜈
⃒⃒⃒𝜏(1)

𝜏(0)
= 0, (5.29)
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and that we are allowed to differentiate under the integral sign, we obtain the
recurrence relations

𝐵−12𝐾𝛼,𝛽,𝜇,𝜈 = (𝛽 + 𝜈)𝐾𝛼+1,𝛽−1,𝜇,𝜈 , (5.30a)
𝐵1−2𝐾𝛼,𝛽,𝜇,𝜈 = −(𝛼+ 𝜈)𝐾𝛼−1,𝛽+1,𝜇,𝜈 , (5.30b)
𝐵12𝐾𝛼,𝛽,𝜇,𝜈 = (𝜈 + 1)𝐾𝛼−1,𝛽−1,𝜇,𝜈+1, (5.30c)

𝐵−1−2𝐾𝛼,𝛽,𝜇,𝜈 = −(𝛼+ 𝛽 + 𝜈 + 1)𝐾𝛼+1,𝛽+1,𝜇,𝜈−1, (5.30d)
𝐵1−3𝐾𝛼,𝛽,𝜇,𝜈 = −(𝛼+ 𝜈)𝐾𝛼−1,𝛽,𝜇+1,𝜈 , (5.30e)

𝐵−1−3𝐾𝛼,𝛽,𝜇,𝜈 = −(𝛽 + 𝜈)𝐾𝛼+1,𝛽,𝜇+1,𝜈−1, (5.30f)
𝐵2−3𝐾𝛼,𝛽,𝜇,𝜈 = −(𝛽 + 𝜈)𝐾𝛼,𝛽−1,𝜇+1,𝜈 , (5.30g)

𝐵−2−3𝐾𝛼,𝛽,𝜇,𝜈 = (𝛼+ 𝜈)𝐾𝛼,𝛽+1,𝜇+1,𝜈−1. (5.30h)

Proof. Relations (5.30a), (5.30b), (5.30e), (5.30f), (5.30g) and (5.30h) are
elementary. They follow by simple differentiation under the integral sign and do
not need assumptions (5.29) and (5.26).
Relations (5.30c) and (5.30d) require assumption (5.26) and follow by the follow-
ing computations:

𝐵12(𝑧1 − 𝜏−1𝑧−2)𝛼+𝜈(𝑧2 + 𝜏−1𝑧−1)𝛽+𝜈𝜏𝜈+1 (5.31)
= 𝜕𝜏−1(𝑧1 − 𝜏−1𝑧−2)𝛼+𝜈(𝑧2 + 𝜏−1𝑧−1)𝛽+𝜈𝜏𝜈+1

+ (𝜈 + 1)(𝑧1 − 𝜏−1𝑧−2)𝛼+𝜈(𝑧2 + 𝜏−1𝑧−1)𝛽+𝜈𝜏𝜈 ,

𝐵−1−2(𝜏𝑧1 − 𝑧−2)𝛼+𝜈(𝜏𝑧2 + 𝑧−1)𝛽+𝜈𝜏−𝛼−𝛽−𝜈−1 (5.32)
= − 𝜕𝜏 (𝜏𝑧1 − 𝑧−2)𝛼+𝜈(𝜏𝑧2 + 𝑧−1)𝛽+𝜈𝜏−𝛼−𝛽−𝜈−1

− (𝛼+ 𝛽 + 𝜈 + 1)(𝜏𝑧1 − 𝑧−2)𝛼+𝜈(𝜏𝑧2 + 𝑧−1)𝛽+𝜈𝜏−𝛼−𝛽−𝜈−2,

where in (5.32) we used yet another representation:

𝐾𝛼,𝛽,𝜇,𝜈(𝑧) :=
∫︁
𝛾

(𝜏𝑧1 − 𝑧−2)𝛼+𝜈(𝜏𝑧2 + 𝑧−1)𝛽+𝜈𝑧𝜇
3 𝜏

−𝛼−𝛽−𝜈−1 d𝜏
2𝜋i . (5.33)

2

If in addition
𝜈 = −𝛼− 𝛽 − 𝜇− 1

2 ,

then (5.25) is homogeneous of degree −1, so that we can reduce it to 4 dimensions.
Let us substitute the coordinates (5.7), and then set 𝜏 = 𝑠

𝑢1𝑢2
, 𝑠 = 𝑡− 𝑤:

𝐾𝛼,𝛽,𝜇,𝜈(𝑢1, 𝑢2, 𝑢3, 𝑟, 𝑝, 𝑤) = 2
1
2 𝑢𝛼

1 𝑢
𝛽
2𝑢

𝜇
3 𝑟

−𝜇−1𝑝𝜇𝐹 (𝑤), (5.34)
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𝐹 (𝑤) =
∫︁
𝛾

(𝑠− 1 + 𝑤)
𝛼−𝛽−𝜇−1

2 (𝑠+ 𝑤)
−𝛼+𝛽−𝜇−1

2 𝑠
−𝛼−𝛽+𝜇−1

2 d𝑠

=
∫︁
𝛾

(𝑡− 1)
𝛼−𝛽−𝜇−1

2 𝑡
−𝛼+𝛽−𝜇−1

2 (𝑡− 𝑤)
−𝛼−𝛽+𝜇−1

2 d𝑡. (5.35)

On the spherical section we can remove 𝑟 and 𝑝. Therefore, the function 𝐹 given
by (5.35) satisfies the hypergeometric equation:

ℱ𝛼,𝛽,𝜇(𝑤, 𝜕𝑤)𝐹 (𝑤) = 0. (5.36)

From (5.30) we can also easily obtain the recurrence relations for 𝐹 . Note that
in this list the recurrence relations corresponding to 𝐵1,3, 𝐵−1,3, 𝐵2,3 and 𝐵−2,3
are missing. However, they can be obtained after the reduction to 4 dimensions
by an application of the factorization formulas.

5.11 Integral representations

Below we independently prove (5.36), without going through the additional
variables. We will use the classical parameters.

Theorem 5.4. Let [0, 1] ∋ 𝜏
𝛾↦→ 𝑡(𝜏) satisfy

𝑡𝑎−𝑐+1(1 − 𝑡)𝑐−𝑏(𝑡− 𝑤)−𝑎−1
⃒⃒⃒𝑡(1)

𝑡(0)
= 0.

Then
ℱ(𝑎, 𝑏; 𝑐;𝑤, 𝜕𝑤)

∫︁
𝛾

𝑡𝑎−𝑐(1 − 𝑡)𝑐−𝑏−1(𝑡− 𝑤)−𝑎d𝑡 = 0. (5.37)

Proof. We check that for any contour 𝛾

lhs of (5.37) = −𝑎
∫︁
𝛾

d𝑡 𝜕𝑡𝑡
𝑎−𝑐+1(1 − 𝑡)𝑐−𝑏(𝑡− 𝑤)−𝑎−1.

2

Analogous (and nonequivalent) integral representations can be obtained by
interchanging 𝑎 and 𝑏 in Theorem 5.4.
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The hypergeometric function with the type I normalization has the integral
representation

∞∫︁
1

𝑡𝑎−𝑐(𝑡− 1)𝑐−𝑏−1(𝑡− 𝑤)−𝑎d𝑡 (5.38)

= FI(𝑎, 𝑏; 𝑐;𝑤), Re(𝑐− 𝑏) > 0, Re𝑏 > 0, 𝑤 ̸∈ [1,∞[.

Indeed, by Theorem 5.4 the left hand side of (5.38) is annihilated by the hyper-
geometric operator (5.16). Besides, by Euler’s identity it equals Γ(𝑏)Γ(𝑐−𝑏)

Γ(𝑐) at 0.
So does the right hand side. Therefore, (5.38) follows by the uniqueness of the
solution by the Frobenius method.

5.12 Integral representations of standard solutions

The integrand of (5.37) has four singularities: {0, 1,∞, 𝑤}. It is natural to chose
𝛾 as the interval joining a pair of singularities. This choice leads to 6 standard
solutions with the I-type normalization:

∼ 1 at 0: [1,∞];
∼ 𝑤−𝛼 at 0: [0, 𝑤];

∼ 1 at 1: [0,∞];
∼ (1 − 𝑤)−𝛽 at 1: [1, 𝑤];

∼ 𝑤−𝑎 at ∞: [𝑤,∞];
∼ 𝑤−𝑏 at ∞: [0, 1].

Below we give explicit formulas. To highlight their symmetry, we use Lie-algebraic
parameters.

Re(1 + 𝛼) > |Re(𝛽 − 𝜇)| : (5.39)
∞∫︁

1

𝑡
−1−𝛼+𝛽+𝜇

2 (𝑡− 1)
−1+𝛼−𝛽+𝜇

2 (𝑡− 𝑤)
−1−𝛼−𝛽−𝜇

2 d𝑡

= FI
𝛼,𝛽,𝜇(𝑤), 𝑤 ̸∈ [1,∞[;
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Re(1 − 𝛼) > |Re(𝛽 − 𝜇)| : (5.40)
𝑤∫︁

0

𝑡
−1−𝛼+𝛽+𝜇

2 (1 − 𝑡)
−1+𝛼−𝛽+𝜇

2 (𝑤 − 𝑡)
−1−𝛼−𝛽−𝜇

2 d𝑡

= 𝑤−𝛼FI
−𝛼,𝛽,−𝜇(𝑤), 𝑤 ̸∈]−∞, 0]∪[1,∞[,

0∫︁
𝑤

(−𝑡)
−1−𝛼+𝛽+𝜇

2 (1 − 𝑡)
−1+𝛼−𝛽+𝜇

2 (𝑡− 𝑤)
−1−𝛼−𝛽−𝜇

2 d𝑡

= (−𝑤)−𝛼FI
−𝛼,𝛽,−𝜇(𝑤), 𝑤 ̸∈ [0,∞[;

Re(1 + 𝛽) > |Re(𝛼− 𝜇)| : (5.41)
0∫︁

−∞

(−𝑡)
−1−𝛼+𝛽+𝜇

2 (1 − 𝑡)
−1+𝛼−𝛽+𝜇

2 (𝑤 − 𝑡)
−1−𝛼−𝛽−𝜇

2 d𝑡

= FI
𝛽,𝛼,𝜇(1 − 𝑤), 𝑤 ̸∈] − ∞, 0];

Re(1 − 𝛽) > |Re(𝛼+ 𝜇)| : (5.42)
1∫︁

𝑤

𝑡
−1−𝛼+𝛽+𝜇

2 (1 − 𝑡)
−1+𝛼−𝛽+𝜇

2 (𝑡− 𝑤)
−1−𝛼−𝛽−𝜇

2 d𝑡

= (1 − 𝑤)−𝛽FI
−𝛽,𝛼,−𝜇(1 − 𝑤), 𝑤 ̸∈] − ∞, 0] ∪ [1,∞[,

𝑤∫︁
1

𝑡
−1−𝛼+𝛽+𝜇

2 (𝑡− 1)
−1+𝛼−𝛽+𝜇

2 (𝑤 − 𝑡)
−1−𝛼−𝛽−𝜇

2 d𝑡

= (𝑤 − 1)−𝛽FI
−𝛽,𝛼,−𝜇(1 − 𝑤), 𝑤 ̸∈] − ∞, 1];

Re(1 − 𝜇) > |Re(𝛼+ 𝛽)| : (5.43)
∞∫︁

𝑤

𝑡
−1−𝛼+𝛽+𝜇

2 (𝑡− 1)
−1+𝛼−𝛽+𝜇

2 (𝑡− 𝑤)
−1−𝛼−𝛽−𝜇

2 d𝑡

= 𝑤
−1−𝛼−𝛽+𝜇

2 FI
−𝜇,𝛽,−𝛼(𝑤−1), 𝑤 ̸∈] − ∞, 1],

𝑤∫︁
−∞

(−𝑡)
−1−𝛼+𝛽+𝜇

2 (1 − 𝑡)
−1+𝛼−𝛽+𝜇

2 (𝑤 − 𝑡)
−1−𝛼−𝛽−𝜇

2 d𝑡

= (−𝑤)
−1−𝛼−𝛽+𝜇

2 FI
−𝜇,𝛽,−𝛼(𝑤−1), 𝑤 ̸∈]0,∞];
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Re(1 + 𝜇) > |Re(𝛼− 𝛽)| : (5.44)
1∫︁

0

𝑡
−1−𝛼+𝛽−𝜇

2 (1 − 𝑡)
−1+𝛼−𝛽+𝜇

2 (𝑡− 𝑤)
−1−𝛼−𝛽−𝜇

2 d𝑡

= (−𝑤)
−1−𝛼−𝛽−𝜇

2 FI
𝜇,𝛽,𝛼(𝑤−1), 𝑤 ̸∈ [0,∞[,

1∫︁
0

𝑡
−1−𝛼+𝛽−𝜇

2 (1 − 𝑡)
−1+𝛼−𝛽+𝜇

2 (𝑤 − 𝑡)
−1−𝛼−𝛽−𝜇

2 d𝑡

= 𝑤
−1−𝛼−𝛽−𝜇

2 FI
𝜇,𝛽,𝛼(𝑤−1), 𝑤 ̸∈ [−∞, 1[.

5.13 Connection formulas

Generically, each pair of standard solution is a basis of solutions to the hypergeo-
metric equation. For instance, we can use the pair of solutions ∼ 1 and ∼ 𝑤−𝛼 at
0 as one basis, and the pair ∼ 𝑤−𝑎 and ∼ 𝑤−𝑏 as another basis. We also assume
that 𝑤 ̸∈ [0,∞[.

Introduce the matrix

𝐴𝛼,𝛽,𝜇 := 𝜋

sin(𝜋𝜇)

⎡⎢⎣ −1
Γ( 1+𝛼+𝛽−𝜇

2 )Γ( 1+𝛼−𝛽−𝜇
2 )

1
Γ( 1+𝛼+𝛽+𝜇

2 )Γ( 1+𝛼−𝛽+𝜇
2 )

−1
Γ( 1−𝛼−𝛽−𝜇

2 )Γ( 1−𝛼+𝛽−𝜇
2 )

1
Γ( 1−𝛼−𝛽+𝜇

2 )Γ( 1−𝛼+𝛽+𝜇
2 )

⎤⎥⎦ .
Then ⎡⎣ F𝛼,𝛽,𝜇(𝑤)

(−𝑤)−𝛼F−𝛼,𝛽,−𝜇(𝑤)

⎤⎦ (5.45)

= 𝐴𝛼,𝛽,𝜇

⎡⎣ (−𝑤)
−1−𝛼−𝛽−𝜇

2 F𝜇,𝛽,𝛼(𝑤−1)

(−𝑤)
−1−𝛼−𝛽+𝜇

2 F−𝜇,𝛽,−𝛼(𝑤−1)

⎤⎦ .
Note that in the Lie-algebraic parameters the matrix 𝐴𝛼,𝛽,𝜇 has a very

symmetric form. Here are some of its properties:

𝐴𝛼,𝛽,𝜇 = 𝐴𝛼,−𝛽,𝜇 = −
[︂
0 1
1 0

]︂
𝐴−𝛼,𝛽,−𝜇

[︂
0 1
1 0

]︂
= 𝐴−1

𝜇,𝛽,𝛼, (5.46)

det𝐴𝛼,𝛽,𝜇 = − sin(𝜋𝛼)
sin(𝜋𝜇) . (5.47)

Relation (5.45) can be derived from the integral representations. Indeed,
consider Im𝑤 < 0. Take the branches of the powers of −𝑡 and 1 − 𝑡 and 𝑤 − 𝑡
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continued from the left clockwise onto the upper halfplane. Then (under some
conditions on 𝛼, 𝛽, 𝜇) we can write(︃ 0∫︁

−∞

+
1∫︁

0

+
+∞∫︁
1

)︃
(−𝑡)

−1−𝛼+𝛽±𝜇
2 (1 − 𝑡)

−1+𝛼−𝛽±𝜇
2 (𝑤 − 𝑡)

−1−𝛼−𝛽∓𝜇
2 d𝑡 = 0.

We obtain

FI
𝛽,𝛼,±𝜇(1−𝑤) − ei𝜋𝛼(−𝑤)

−1−𝛼−𝛽∓𝜇
2 FI

±𝜇,𝛽,𝛼(𝑤−1) − iei𝜋 𝛼+𝛽∓𝜇
2 FI

𝛼,𝛽,±𝜇(𝑤) = 0.

Using

FI
𝛼,𝛽,𝜇(𝑤) = Γ

(︁1 + 𝛼+ 𝛽 − 𝜇

2

)︁
Γ
(︁1 + 𝛼− 𝛽 + 𝜇

2

)︁
F𝛼,𝛽,𝜇(𝑤),

we express everything in terms of F. We eliminate F𝛽,𝛼,𝜇(1−𝑤) = F𝛽,𝛼,−𝜇(1−𝑤).
We find

F𝛼,𝛽,𝜇(𝑤) = −
𝜋(−𝑤)

−1−𝛼−𝛽−𝜇
2 F𝜇,𝛽,𝛼(𝑤−1)

sin(𝜋𝜇)Γ
(︁

1+𝛼+𝛽−𝜇
2

)︁
Γ
(︁

1+𝛼−𝛽−𝜇
2

)︁
+

𝜋(−𝑤)
−1−𝛼−𝛽+𝜇

2 F−𝜇,𝛽,−𝛼(𝑤−1)

sin(𝜋𝜇)Γ
(︁

1+𝛼+𝛽+𝜇
2

)︁
Γ
(︁

1+𝛼−𝛽+𝜇
2

)︁ ,
which is the first line of (5.45). A similar argument, starting with the integral∫︀ 0

−∞ +
∫︀ 𝑤

0 +
∫︀ +∞

𝑤
, yields the second line of (5.45).

6 Laplacian in 3 dimensions and the
Gegenbauer equation

The Gegenbauer equation is equivalent to a subclass of the 2ℱ1 equation. Never-
theless, not all its symmetries are directly inherited from the symmetries of the
2ℱ1 equation. Therefore it deserves a separate treatment, which is given in this
section. We start from the Laplacian in 5 dimensions, pass through 3 dimensions,
and eventually we derive the Gegenbauer equation.

This section is to a large extent parallel to the previous one, devoted to the
2ℱ1 equation. The number of symmetries, parameters, etc. is now smaller than
in the previous section, since we are in lower dimensions. Nevertheless, some
things are here more complicated and less symmetric. This is related to the fact
that the number of dimensions is odd, which corresponds to a less symmetric
orthogonal group and Lie algebra.
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Let us describe the main steps of our derivation of the Gegenbauer equation,
even though they are almost the same as for the 2ℱ1 equation.
(1) We start from the 3 + 2 = 5 dimensional ambient space, with the obvious

representation of so(5) and O(5), and the Laplacian Δ5.
(2) We go to the representations so(5) ∋ 𝐵 ↦→ 𝐵◇,𝜂 and O(5) ∋ 𝛼 ↦→ 𝛼◇,𝜂 and

to the reduced Laplacian Δ◇
5. The most relevant values of 𝜂 are 1 − 3

2 = − 1
2

and −1 − 3
2 = − 5

2 .
(3) We fix a section 𝛾 of the null quadric, obtaining the representations 𝐵𝛾,𝜂

and 𝛼𝛾,𝜂, as well as the operator Δ𝛾
5 , acting on an appropriate pseudo-

Riemannian 3 dimensional manifold.
(4) We choose coordinates 𝑤, 𝑢2, 𝑢3, so that the Cartan elements can be ex-

pressed in terms of 𝑢2, 𝑢3. We compute 𝐵𝛾,𝜂, 𝛼𝛾,𝜂 and Δ𝛾
5 in the new

coordinates.
(5) We make an ansatz that diagonalizes the Cartan elements. The eigenvalues,

denoted by 𝛼, 𝜆, become parameters. 𝐵𝛾,𝜂, 𝛼𝛾,𝜂 and Δ𝛾
5 involve now only

the single variable 𝑤. Δ𝛾
5 turns out to be the Gegenbauer operator. We

obtain its transmutation relations and discrete symmetries.
Again, we choose a special section which makes computations relatively

easy. We perform Steps 2, 3 and 4 at once, by choosing convenient coordinates
𝑤, 𝑟, 𝑝, 𝑢2, 𝑢3 in 5 dimensions. After the reductions of Steps 2 and 3, we are left
with the variables 𝑤, 𝑢2, 𝑢3, and we can perform Step 5.

The remaining material of this section is parallel to the analogous material of
the previous section except for Subsect. 6.4, which describes a quadratic relation
reducing the Gegenbauer equation to the 2ℱ1 equation. We describe a derivation
of this relation starting from the level of the ambient space.

6.1 so(5) in 5 dimensions

We consider R5 with the coordinates

𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3 (6.1)

and the scalar product given by

⟨𝑧|𝑧⟩ = 𝑧2
0 + 2𝑧−2𝑧2 + 2𝑧−3𝑧3. (6.2)

Note that we omit the indices −1, 1; this makes it easier to compare R5 with R6.
The Lie algebra so(5) acts naturally on R5. Below we describe its natural

basis. Then we consider the Weyl group 𝐵2 acting on functions on R5. For brevity,
we list only elements from its subgroup 𝐵2 ∩ SO(5). Finally, we write down the
Laplacian.
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Lie algebra so(5). Cartan algebra

𝑁2 = −𝑧−2𝜕𝑧−2 + 𝑧2𝜕𝑧2 , (6.3a)
𝑁3 = −𝑧−3𝜕𝑧−3 + 𝑧3𝜕𝑧3 . (6.3b)

Root operators

𝐵0,−2 = 𝑧0𝜕𝑧−2 − 𝑧2𝜕𝑧0 , (6.4a)
𝐵0,2 = 𝑧0𝜕𝑧2 − 𝑧−2𝜕𝑧0 , (6.4b)

𝐵0,−3 = 𝑧0𝜕𝑧−3 − 𝑧3𝜕𝑧0 , (6.4c)
𝐵0,3 = 𝑧0𝜕𝑧3 − 𝑧−3𝜕𝑧0 ; (6.4d)

𝐵−3,−2 = 𝑧3𝜕𝑧−2 − 𝑧2𝜕𝑧−3 , (6.4e)
𝐵3,2 = 𝑧−3𝜕𝑧2 − 𝑧−2𝜕𝑧3 , (6.4f)

𝐵3,−2 = 𝑧−3𝜕𝑧−2 − 𝑧2𝜕𝑧3 , (6.4g)
𝐵−3,2 = 𝑧3𝜕𝑧2 − 𝑧−2𝜕𝑧−3 . (6.4h)

Weyl symmetries

𝜎23𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3), (6.5a)
𝜏2−3𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(−𝑧0, 𝑧−2, 𝑧2, 𝑧3, 𝑧−3), (6.5b)

𝜎−2−3𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧0, 𝑧2, 𝑧−2, 𝑧3, 𝑧−3), (6.5c)
𝜏−23𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(−𝑧0, 𝑧2, 𝑧−2, 𝑧−3, 𝑧3); (6.5d)

𝜎32𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧0, 𝑧−3, 𝑧3, 𝑧−2, 𝑧2), (6.5e)
𝜏3−2𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(−𝑧0, 𝑧−3, 𝑧3, 𝑧2, 𝑧−2), (6.5f)

𝜎−3−2𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(𝑧0, 𝑧3, 𝑧−3, 𝑧2, 𝑧−2), (6.5g)
𝜏−32𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) =𝐾(−𝑧0, 𝑧3, 𝑧−3, 𝑧−2, 𝑧2). (6.5h)

Laplacian
Δ5 = 𝜕2

𝑧0 + 2𝜕𝑧−2𝜕𝑧2 + 2𝜕𝑧−3𝜕𝑧3 . (6.6)

6.2 so(5) on the spherical section

In this subsection we perform Steps 2, 3 and 4, as described in the introduction
to this section. Recall that Step 2 involves restricting to the null quadric

𝒱4 := {𝑧 ∈ R5 : 𝑧2
0 + 2𝑧−2𝑧2 + 2𝑧−3𝑧3 = 0}.
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To perform Step 3 we need to fix a section of this quadric. We choose the section
given by the equations

1 = 𝑧2
0 + 2𝑧−2𝑧2 = −2𝑧3𝑧−3.

We will call it the spherical section, because it is S2(1) ×S1(−1). The superscript
used for this section will be “sph” for spherical.

We introduce the coordinates 𝑤, 𝑟, 𝑝, 𝑢2, 𝑢3:

𝑟 =
√︁
𝑧2

0 + 2𝑧−2𝑧2 , (6.7a)

𝑤 = 𝑧0√︀
2𝑧−2𝑧2 + 𝑧2

0
, 𝑢2 =

√
2𝑧2√︀

𝑧2
0 + 2𝑧−2𝑧2

, (6.7b)

𝑝 =
√︀

−2𝑧3𝑧−3 , 𝑢3 =
√︂

− 𝑧3
𝑧−3

. (6.7c)

Here is the inverse transformation:

𝑧0 = 𝑤𝑟, 𝑧−2 = 𝑟(1 − 𝑤2)√
2𝑢2

, 𝑧2 = 𝑢2𝑟√
2
, (6.8a)

𝑧−3 = − 𝑝√
2𝑢3

, 𝑧3 = 𝑝𝑢3√
2
. (6.8b)

Similarly as in the previous section, the null quadric in these coordinates is
given by 𝑟2 = 𝑝2. We choose the sheet 𝑟 = 𝑝. The generator of dilations is

𝐴5 = 𝑟 𝜕𝑟 + 𝑝 𝜕𝑝.

The spherical section is given by the condition 𝑟2 = 1.

Lie algebra so(5). Cartan operators

𝑁 sph
2 = 𝑢2 𝜕𝑢2 ,

𝑁 sph
3 = 𝑢3 𝜕𝑢3 .

Roots

𝐵sph
0,−2 = − 𝑢2√

2
𝜕𝑤,

𝐵sph
0,2 = 1√

2𝑢2

(︁
(𝑤2 − 1)𝜕𝑤 + 2𝑤𝑢2𝜕𝑢2

)︁
,

𝐵sph,𝜂
0,−3 = 𝑢3√

2

(︁
(𝑤2 − 1)𝜕𝑤 + 𝑤𝑢2𝜕𝑢2 + 𝑤𝑢3𝜕𝑢3 − 𝑤𝜂

)︁
,

𝐵sph,𝜂
0,3 = 1√

2𝑢3

(︁
(1 − 𝑤2)𝜕𝑤 − 𝑤𝑢2𝜕𝑢2 + 𝑤𝑢3𝜕𝑢3 + 𝑤𝜂

)︁
;
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𝐵sph,𝜂
−3,−2 = 𝑢2𝑢3

2 (−𝑤𝜕𝑤 − 𝑢2𝜕𝑢2 − 𝑢3𝜕𝑢3 + 𝜂) ,

𝐵sph,𝜂
3,2 = 1

2𝑢2𝑢3

(︀
𝑤(1 − 𝑤2)𝜕𝑤 − (1 + 𝑤2)𝑢2𝜕𝑢2 + (𝑤2 − 1)𝑢3𝜕𝑢3 + (𝑤2 − 1)𝜂

)︀
,

𝐵sph,𝜂
3,−2 = 𝑢2

2𝑢3
(𝑤𝜕𝑤 + 𝑢2𝜕𝑢2 − 𝑢3𝜕𝑢3 − 𝜂) ,

𝐵sph,𝜂
−3,2 = 𝑢3

2𝑢2

(︀
𝑤(𝑤2 − 1)𝜕𝑤 + (1 + 𝑤2)𝑢2𝜕𝑢2 + (𝑤2 − 1)𝑢3𝜕𝑢3 + (1 − 𝑤2)𝜂

)︀
.

Weyl symmetries

𝜎sph,𝜂
23 𝑓(𝑤, 𝑢2, 𝑢3) =𝑓(𝑤, 𝑢2, 𝑢3),

𝜏 sph,𝜂
2−3 𝑓(𝑤, 𝑢2, 𝑢3) =𝑓

(︁
− 𝑤, 𝑢2,

1
𝑢3

)︁
,

𝜎sph,𝜂
−2−3𝑓(𝑤, 𝑢2, 𝑢3) =𝑓

(︁
𝑤,

1 − 𝑤2

𝑢2
,

1
𝑢3

)︁
,

𝜏 sph,𝜂
−23 𝑓(𝑤, 𝑢2, 𝑢3) =𝑓

(︁
− 𝑤,

1 − 𝑤2

𝑢2
, 𝑢3

)︁
;

𝜎sph,𝜂
32 𝑓(𝑤, 𝑢2, 𝑢3) =(𝑤2 − 1)

𝜂
2 𝑓
(︁ 𝑤√

𝑤2 − 1
,

𝑢3√
𝑤2 − 1

,
𝑢2√
𝑤2 − 1

)︁
,

𝜏 sph,𝜂
3−2 𝑓(𝑤, 𝑢2, 𝑢3) =(𝑤2 − 1)

𝜂
2 𝑓
(︁ −𝑤√

𝑤2 − 1
,

𝑢3√
𝑤2 − 1

,

√
𝑤2 − 1
𝑢2

)︁
,

𝜎sph,𝜂
−3−2𝑓(𝑤, 𝑢2, 𝑢3) =(𝑤2 − 1)

𝜂
2 𝑓
(︁ 𝑤√

𝑤2 − 1
,

−1
𝑢3

√
𝑤2 − 1

,

√
𝑤2 − 1
𝑢2

)︁
,

𝜏 sph,𝜂
−32 𝑓(𝑤, 𝑢2, 𝑢3) =(𝑤2 − 1)

𝜂
2 𝑓
(︁ −𝑤√

𝑤2 − 1
,

−1
𝑢3

√
𝑤2 − 1

,
𝑢2√
𝑤2 − 1

)︁
.

Laplacian

Δsph
5 =(1 − 𝑤2)𝜕2

𝑤 − 2(1 + 𝑢2𝜕𝑢2)𝑤𝜕𝑤 −
(︁
𝑢2𝜕𝑢2 + 1

2

)︁2
+ (𝑢3𝜕𝑢3)2.

Let us sketch the computations that lead to (6.9). Using

𝜕𝑧0 = 1
𝑟

(︁
𝑤𝑟𝜕𝑟 − 𝑤𝑢2𝜕𝑢2 + (1 − 𝑤2)𝜕𝑤

)︁
,

𝜕𝑧−2 = 𝑢2√
2𝑟

(︁
𝑟𝜕𝑟 − 𝑢2𝜕𝑢2 − 𝑤𝜕𝑤

)︁
,

𝜕𝑧2 = 1√
2𝑟𝑢2

(︁
(1 − 𝑤2)𝑟𝜕𝑟 + (1 + 𝑤2)𝑢2𝜕𝑢2 + (𝑤2 − 1)𝑤𝜕𝑤

)︁
,

𝜕𝑧−3 = 𝑢3√
2𝑝

(︁
𝑢3𝜕𝑢3 − 𝑝𝜕𝑝

)︁
,

𝜕𝑧3 = 1√
2𝑝𝑢3

(︁
𝑢3𝜕𝑢3 + 𝑝𝜕𝑝

)︁
.
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we change the variables in the Laplacian:

Δ5 = 1
𝑟2

(︁
(1 − 𝑤2)𝜕2

𝑤 − 2(1 + 𝑢2𝜕𝑢2)𝑤𝜕𝑤 − (𝑢2𝜕𝑢2)2 − 𝑢2𝜕𝑢2

+ (𝑟𝜕𝑟)2 + 𝑟𝜕𝑟

)︁
+ 1
𝑝2

(︁
− (𝑝𝜕𝑝)2 + (𝑢3𝜕𝑢3)2

)︁
. (6.9)

Now,

(𝑟 𝜕𝑟)2 + 𝑟 𝜕𝑟 − 𝑟2

𝑝2 (𝑝 𝜕𝑝)2 =
(︂
𝑟 𝜕𝑟 − 𝑝𝜕𝑝 + 1

2

)︂(︂
𝑟 𝜕𝑟 + 𝑝𝜕𝑝 + 1

2

)︂
+
(︂

1 − 𝑟2

𝑝2

)︂
(𝑝𝜕𝑝)2 − 1

4 .

Therefore, using 𝑟2 = 𝑝2, 𝑟𝜕𝑟 + 𝑝𝜕𝑝 = − 1
2 , we obtain

Δ◇
5 = 1

𝑟2

(︁
(1 − 𝑤2)2𝜕2

𝑤 − 2(1 + 𝑢2𝜕𝑢2)𝑤𝜕𝑤

−
(︀
𝑢2𝜕𝑢2 + 1

2
)︀2 + (𝑢3𝜕𝑢3)2

)︁
. (6.10)

To obtain the Laplacian at the spherical section we drop 1
𝑟2 .

6.3 The Gegenbauer operator

Let us make the ansatz

𝑓(𝑢2, 𝑢3, 𝑤) = 𝑢𝛼
2 𝑢

𝜆
3𝑆(𝑤). (6.11)

Clearly,

𝑁 sph
2 𝑓 = 𝛼𝑓, (6.12a)

𝑁 sph
3 𝑓 = 𝜆𝑓, (6.12b)

𝑢−𝛼
2 𝑢−𝜆

3 Δsph
5 𝑓 = 𝒮𝛼,𝜆(𝑤, 𝜕𝑤)𝑆(𝑤), (6.12c)

where

𝒮𝛼,𝜆(𝑤, 𝜕𝑤) := (1 − 𝑤2)𝜕2
𝑤 − 2(1 + 𝛼)𝑤𝜕𝑤 + 𝜆2 −

(︁
𝛼+ 1

2

)︁2
(6.13)

is the Gegenbauer operator. Here is another parametrization of the Gegenbauer
operator, which we call classical:

𝒮(𝑎, 𝑏;𝑤, 𝜕𝑤) := (1 − 𝑤2)𝜕2
𝑤 − (𝑎+ 𝑏+ 1)𝑤𝜕𝑤 − 𝑎𝑏. (6.14)
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Here is the relationship between the classical and Lie-algebraic parameters:

𝛼 := 𝑎+ 𝑏− 1
2 , 𝜆 := 𝑏− 𝑎

2 , (6.15a)

𝑎 = 1
2 + 𝛼− 𝜆, 𝑏 = 1

2 + 𝛼+ 𝜆. (6.15b)

The Gegenbauer operator is the 2ℱ1 operator with its finite singular points
moved to −1 and 1, which in addition is reflection invariant. Because of the
reflection invariance, the third classical parameter can be obtained from the first
two: 𝑐 = 𝑎+𝑏+1

2 . Therefore, we use only 𝑎, 𝑏 ∈ C as the (classical) parameters of
the Gegenbauer equation.

We can reduce the Gegenbauer equation to the 2ℱ1 equation by two affine
transformations. They move the singular points from −1, 1 to 0, 1 or 1, 0:

𝒮(𝑎, 𝑏;𝑤, 𝜕𝑤) = ℱ
(︀
𝑎, 𝑏; 𝑎+𝑏+1

2 ; 𝑣, 𝜕𝑣

)︀
, (6.16)

where

𝑣 = 1 − 𝑤

2 , 𝑤 = 1 − 2𝑣, (6.17a)

or 𝑣 = 1 + 𝑤

2 , 𝑤 = −1 + 2𝑣. (6.17b)

In the Lie-algebraic parameters

𝒮𝛼,𝜆(𝑤, 𝜕𝑤) = ℱ𝛼,𝛼,2𝜆(𝑣, 𝜕𝑣). (6.18)

6.4 Quadratic transformation

Let us go back to 6 dimensions and the Laplacian

Δ6 = 2𝜕𝑧−1𝜕𝑧1 + 2𝜕𝑧−2𝜕𝑧2 + 2𝜕𝑧−3𝜕𝑧3 . (6.19)

Let us use the reduction described in Subsect. 3.14. Introduce new variables

𝑧0 :=
√︀

2𝑧−1𝑧1, 𝑢 :=
√︂

𝑧1
𝑧−1

. (6.20)

In the new variables,

𝑁1 =𝑢𝜕𝑢, (6.21)

Δ6 =
(︁
𝜕𝑧0 + 1

2𝑧0

)︁2
− 1
𝑧2

0

(︁
𝑢𝜕𝑢 − 1

2

)︁(︁
𝑢𝜕𝑢 + 1

2

)︁
+ 2𝜕𝑧−2𝜕𝑧2 + 2𝜕𝑧−3𝜕𝑧3 . (6.22)
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Therefore,

(𝑢𝑧0)
1
2 Δ6(𝑢𝑧0)− 1

2 = − 1
𝑧2

0
𝑁1

(︁
𝑁1 − 1

)︁
+ Δ5, (6.23a)

(𝑢−1𝑧0)
1
2 Δ6(𝑢−1𝑧0)− 1

2 = − 1
𝑧2

0
𝑁1

(︁
𝑁1 + 1

)︁
+ Δ5. (6.23b)

Compare the coordinates the coordinates (5.7) for 6 dimensions and (6.7) for
5 dimensions. The coordinates 𝑝, 𝑢3 are the same. Taking into account 𝑧0 :=√

2𝑧−1𝑧1, the coordinates 𝑟, 𝑢2 also coincide. This is not the case of 𝑤, so let us
rename 𝑤 from (6.7) as 𝑣. We then have 𝑤 = 𝑣2. We also have

𝑢𝑧0 =
√

2𝑧1 = 𝑢1𝑟, 𝑢−1𝑧0 =
√

2𝑧−1 = 𝑟𝑤𝑢−1
1 .

Hence on functions that do not depend on 𝑢 we obtain

𝑟
1
2 𝑢

1
2
1 Δ6𝑟

− 1
2 𝑢

− 1
2

1 = Δ5, (6.24a)

𝑟
1
2 𝑢

− 1
2

1 𝑣Δ6𝑟
− 1

2 𝑢
1
2
1 𝑣

−1 = Δ5. (6.24b)

This implies that a quadratic substitution transforms the 2ℱ1 operator with
𝛼 = ± 1

2 into the Gegenbauer operator. Explicitly, if

𝑤 = 𝑣2, 𝑣 =
√
𝑤;

then in the classical parameters

𝒮(𝑎, 𝑏; 𝑣, 𝜕𝑣) = 4ℱ
(︁𝑎

2 ,
𝑏

2 ; 1
2 ;𝑤, 𝜕𝑤

)︁
, (6.25a)

𝑣−1𝒮(𝑎, 𝑏; 𝑣, 𝜕𝑣)𝑣 = 4ℱ
(︁𝑎+ 1

2 ,
𝑏+ 1

2 ; 3
2 ;𝑤, 𝜕𝑤

)︁
, (6.25b)

and in the Lie-algebraic parameters

𝒮𝛼,𝜆(𝑣, 𝜕𝑣) = 4ℱ− 1
2 ,𝛼,𝜆(𝑤, 𝜕𝑤), (6.26a)

𝑣−1𝒮𝛼,𝜆(𝑣, 𝜕𝑣)𝑣 = 4ℱ 1
2 ,𝛼,𝜆(𝑤, 𝜕𝑤). (6.26b)

6.5 Transmutation relations and discrete symmetries

We have the following generalized symmetries:

𝐵sph,− 5
2 Δsph

5 = Δsph
5 𝐵sph,− 1

2 , 𝐵 ∈ so(5); (6.27a)
𝛼sph,− 5

2 Δsph
5 = Δsph

5 𝛼sph,− 1
2 , 𝛼 ∈ O(5). (6.27b)
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Equality (6.27a) applied to the roots of so(5) yield the following transmutation
relations:

𝜕𝑤 𝒮𝛼,𝜆

= 𝒮𝛼+1,𝜆 𝜕𝑤,

((1 − 𝑤2)𝜕𝑤 − 2𝛼𝑤) 𝒮𝛼,𝜆

= 𝒮𝛼−1,𝜆 ((1 − 𝑤2)𝜕𝑤 − 2𝛼𝑤),
((1 − 𝑤2)𝜕𝑤 − (𝛼+ 𝜆+ 1

2 )𝑤) (1 − 𝑤2)𝒮𝛼,𝜆

= (1 − 𝑤2)𝒮𝛼,𝜆+1 ((1 − 𝑤2)𝜕𝑤 − (𝛼+ 𝜆+ 1
2 )𝑤),

((1 − 𝑤2)𝜕𝑤 − (𝛼− 𝜆+ 1
2 )𝑤) (1 − 𝑤2)𝒮𝛼,𝜆

= (1 − 𝑤2)𝒮𝛼,𝜆−1 ((1 − 𝑤2)𝜕𝑤 − (𝛼− 𝜆+ 1
2 )𝑤);

(𝑤𝜕𝑤 + 𝛼− 𝜆+ 1
2 ) 𝑤2𝒮𝛼,𝜆

= 𝑤2𝒮𝛼+1,𝜆−1 (𝑤𝜕𝑤 + 𝛼− 𝜆+ 1
2 ),

(𝑤(1−𝑤2)𝜕𝑤−𝛼−𝜆+ 1
2 −(𝛼−𝜆+ 1

2 )𝑤2) 𝑤2𝒮𝛼,𝜆

= 𝑤2𝒮𝛼−1,𝜆+1 (𝑤(1−𝑤2)𝜕𝑤−𝛼−𝜆+ 1
2 −(𝛼−𝜆+ 1

2 )𝑤2),
(𝑤𝜕𝑤 + 𝛼− 𝜆+ 1

2 ) 𝑤2𝒮𝛼,𝜆

= 𝑤2𝒮𝛼+1,𝜆+1 (𝑤𝜕𝑤 + 𝛼− 𝜆+ 1
2 ),

(𝑤(1−𝑤2)𝜕𝑤−𝛼+𝜆+ 1
2 −(𝛼+𝜆+ 1

2 )𝑤2) 𝑤2𝒮𝛼,𝜆

= 𝑤2𝒮𝛼−1,𝜆−1 (𝑤(1−𝑤2)𝜕𝑤−𝛼+𝜆+ 1
2 −(𝛼+𝜆+ 1

2 )𝑤2).

Next we describe discrete symmetries of the Gegenbauer operator, which
follow from Relation (6.27b) applied to Weyl symmetries. All the operators below
equal 𝒮𝛼,𝜆(𝑤, 𝜕𝑤) for the appropriate 𝑤:

𝑤 = ±𝑣 : 𝒮𝛼,±𝜆(𝑣, 𝜕𝑣),

𝑤 = ±𝑣 : (𝑣2 − 1)−𝛼 𝒮−𝛼,∓𝜆(𝑣, 𝜕𝑣) (𝑣2 − 1)𝛼,

𝑤 = ±𝑣

(𝑣2−1)
1
2

: (𝑣2 − 1) 1
2 (𝛼+𝜆+ 5

2 ) 𝒮𝜆,±𝛼(𝑣, 𝜕𝑣) (𝑣2 − 1) 1
2 (−𝛼−𝜆− 1

2 ),

𝑤 = ±𝑣

(𝑣2−1)
1
2

: (𝑣2 − 1) 1
2 (𝛼−𝜆+ 5

2 ) 𝒮−𝜆,∓𝛼(𝑣, 𝜕𝑣) (𝑣2 − 1) 1
2 (−𝛼+𝜆− 1

2 ).

Note that we use ± to describe two symmetries at once. Therefore, the above
list has all 2 × 4 = 8 symmetries corresponding to the lists of Weyl symmetries
(6.5).
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6.6 Factorizations of the Laplacian

In the Lie algebra so(5) represented on R5 we have 3 distinguished Lie subalgebras:
two isomorphic to so(3) and one isomorphic to so(4):

so02(3), so03(3), so23(4), (6.28)

where we use an obvious notation. By (4.9) and (4.11), the corresponding Casimir
operators are

𝒞02 = 2𝐵0,−2𝐵0,2 −
(︁
𝑁2 − 1

2

)︁2
+ 1

4 (6.29a)

= 2𝐵0,2𝐵0,−2 −
(︁
𝑁2 + 1

2

)︁2
+ 1

4 , (6.29b)

𝒞03 = 2𝐵0,−3𝐵0,3 −
(︁
𝑁3 − 1

2

)︁2
+ 1

4 (6.29c)

= 2𝐵0,3𝐵0,−3 −
(︁
𝑁3 + 1

2

)︁2
+ 1

4 , (6.29d)

𝒞23 = 4𝐵2,3𝐵−2,−3 − (𝑁2 +𝑁3 + 1)2 + 1 (6.29e)
= 4𝐵−2,−3𝐵2,3 − (𝑁2 +𝑁3 − 1)2 + 1 (6.29f)
= 4𝐵2,−3𝐵−2,3 − (𝑁2 −𝑁3 + 1)2 + 1 (6.29g)
= 4𝐵−2,3𝐵2,−3 − (𝑁2 −𝑁3 − 1)2 + 1. (6.29h)

After the reduction described in (4.21) and (4.19), we obtain the identities

(𝑧2
0 + 2𝑧−2𝑧2)Δ◇

5 = −1
4 + 𝒞◇,− 1

2
02 + (𝑁◇,− 1

2
3 )2, (6.30a)

(𝑧2
0 + 2𝑧−3𝑧3)Δ◇

5 = −1
4 + 𝒞◇,− 1

2
03 + (𝑁◇,− 1

2
2 )2, (6.30b)

(2𝑧−2𝑧2 + 2𝑧−3𝑧3)Δ◇
5 = −3

4 + 𝒞◇,− 1
2

23 . (6.30c)
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Inserting (6.29) into (6.30), we obtain

(𝑧2
0 + 2𝑧−2𝑧2)Δ◇

5

=2𝐵0,−2𝐵0,2 −
(︁
𝑁2 +𝑁3 − 1

2

)︁(︁
𝑁2 −𝑁3 − 1

2

)︁
(6.31a)

=2𝐵0,2𝐵0,−2 −
(︁
𝑁2 +𝑁3 + 1

2

)︁(︁
𝑁2 −𝑁3 + 1

2

)︁
, (6.31b)

(𝑧2
0 + 2𝑧−3𝑧3)Δ◇

5

=2𝐵0,−3𝐵0,3 −
(︁
𝑁2 +𝑁3 − 1

2

)︁(︁
−𝑁2 +𝑁3 − 1

2

)︁
(6.31c)

=2𝐵0,3𝐵0,−3 −
(︁
𝑁2 +𝑁3 + 1

2

)︁(︁
−𝑁2 +𝑁3 + 1

2

)︁
, (6.31d)

(2𝑧−2𝑧2 + 2𝑧−3𝑧3)Δ◇
5

=4𝐵2,3𝐵−2,−3 −
(︁
𝑁2 +𝑁3 + 3

2

)︁(︁
𝑁2 +𝑁3 + 1

2

)︁
(6.31e)

=4𝐵−2,−3𝐵2,3 −
(︁
𝑁2 +𝑁3 − 3

2

)︁(︁
𝑁2 +𝑁3 − 1

2

)︁
(6.31f)

=4𝐵2,−3𝐵−2,3 −
(︁
𝑁2 −𝑁3 + 3

2

)︁(︁
𝑁2 −𝑁3 + 1

2

)︁
(6.31g)

=4𝐵−2,3𝐵2,−3 −
(︁
𝑁2 −𝑁3 − 3

2

)︁(︁
𝑁2 −𝑁3 − 1

2

)︁
, (6.31h)

where all the 𝐵 and 𝑁 operators need to have the superscript ◇,− 1
2 .

If we use the spherical section, we need to make the replacements

𝑧2
0 + 2𝑧−2𝑧2 → 1, (6.32a)
𝑧2

0 + 2𝑧−3𝑧3 → 𝑤2 − 1, (6.32b)
2𝑧−2𝑧2 + 2𝑧−3𝑧3 → −𝑤2, (6.32c)

and replace the superscript ◇ with sph.

6.7 Factorizations of the Gegenbauer equation

The factorizations of Δsph
5 of Subsect. 6.6 yield the following factorizations of

the Gegenbauer operator:
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𝒮𝛼,𝜆 =𝜕𝑤

(︁
(1 − 𝑤2)𝜕𝑤 − 2𝛼𝑤

)︁
+
(︁
𝛼+ 𝜆− 1

2

)︁(︁
− 𝛼+ 𝜆+ 1

2

)︁
=
(︁

(1 − 𝑤2)𝜕𝑤 − 2(1 + 𝛼)𝑤
)︁
𝜕𝑤

+
(︁
𝛼+ 𝜆+ 1

2

)︁(︁
− 𝛼+ 𝜆− 1

2

)︁
,

(1−𝑤2)𝒮𝛼,𝜆 =
(︁

(1 − 𝑤2)𝜕𝑤 −
(︀
𝛼+ 𝜆− 1

2
)︀
𝑤
)︁(︁

(1 − 𝑤2)𝜕𝑤 −
(︀
𝛼− 𝜆+ 1

2
)︀
𝑤
)︁

+
(︁
𝛼+ 𝜆− 1

2

)︁(︁
𝛼− 𝜆+ 1

2

)︁
=
(︁

(1 − 𝑤2)𝜕𝑤 −
(︀
𝛼− 𝜆− 1

2
)︀
𝑤
)︁(︁

(1 − 𝑤2)𝜕𝑤 −
(︀
𝛼+ 𝜆+ 1

2
)︀
𝑤
)︁

+
(︁
𝛼+ 𝜆+ 1

2

)︁(︁
𝛼− 𝜆− 1

2

)︁
,

𝑤2𝒮𝛼,𝜆 =
(︁
𝑤(1 − 𝑤2)𝜕𝑤 − 𝛼− 𝜆− 3

2 +
(︀

− 𝛼+ 𝜆− 1
2
)︀
𝑤2
)︁(︁
𝑤𝜕𝑤 + 𝛼+ 𝜆+ 1

2

)︁
+
(︁
𝛼+ 𝜆+ 1

2

)︁(︁
𝛼+ 𝜆+ 3

2

)︁
=
(︁
𝑤𝜕𝑤 + 𝛼+ 𝜆− 3

2

)︁(︁
𝑤(1 − 𝑤2)𝜕𝑤 − 𝛼− 𝜆+ 1

2 +
(︀

− 𝛼+ 𝜆− 1
2
)︀
𝑤2
)︁

+
(︁
𝛼+ 𝜆− 1

2

)︁(︁
𝛼+ 𝜆− 3

2

)︁
=
(︁
𝑤(1 − 𝑤2)𝜕𝑤 − 𝛼+ 𝜆− 3

2 +
(︀

− 𝛼− 𝜆− 1
2
)︀
𝑤2
)︁(︁
𝑤𝜕𝑤 + 𝛼− 𝜆+ 1

2

)︁
+
(︁
𝛼− 𝜆+ 1

2

)︁(︁
𝛼− 𝜆+ 3

2

)︁
=
(︁
𝑤𝜕𝑤 + 𝛼− 𝜆− 3

2

)︁(︁
𝑤(1 − 𝑤2)𝜕𝑤 − 𝛼+ 𝜆+ 1

2 +
(︀

− 𝛼− 𝜆− 1
2
)︀
𝑤2
)︁

+
(︁
𝛼− 𝜆− 1

2

)︁(︁
𝛼− 𝜆− 3

2

)︁
.

6.8 Standard solutions

As usual, by standard solutions we mean solutions with a simple behavior around
singular points. The singular points of the Gegenbauer equation are {1,−1,∞}.
The discussion of the point −1 can be easily reduced to that of 1. Therefore, it is
enough to discuss 2 × 2 = 4 solutions corresponding to two indices at 1 and ∞.
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The standard solutions can be expressed in terms of the function

𝑆𝛼,𝜆(𝑤) = 𝑆(𝑎, 𝑏;𝑤) := 𝐹
(︁
𝑎, 𝑏; 𝑎+ 𝑏+ 1

2 ; 1 − 𝑤

2

)︁
= 𝐹

(︁𝑎
2 ,
𝑏

2 ; 𝑎+ 𝑏+ 1
2 ; 1 − 𝑤2

)︁
. (6.33)

Here are the 4 standard solutions. We consistently use the Lie-algebraic
parameters.

∼ 1 at 1: 𝑆𝛼,𝜆(𝑤)

=𝐹𝛼,𝛼,2𝜆

(︁1 − 𝑤

2

)︁
=𝐹𝛼,− 1

2 ,𝜆(1 − 𝑤2),

∼ 1
2𝛼(1 − 𝑤)𝛼

at 1: (1 − 𝑤2)−𝛼𝑆−𝛼,−𝜆(𝑤)

=2−𝛼(1 − 𝑤)−𝛼𝐹−𝛼,𝛼,−2𝜆

(︁1 − 𝑤

2

)︁
= (1 − 𝑤2)−𝛼𝐹−𝛼,− 1

2 ,−𝜆(1 − 𝑤2),

∼ 𝑤−𝑎 at ∞: (𝑤2 − 1)
−1−2𝛼+2𝜆

4 𝑆−𝜆,−𝛼

(︁ 𝑤√
𝑤2 − 1

)︁
=(1 + 𝑤)− 1

2 −𝛼+𝜆𝐹−2𝜆,𝛼,−𝛼

(︁ 2
1 + 𝑤

)︁
= 𝑤− 1

2 −𝛼+𝜆𝐹−𝜆,𝛼, 1
2
(𝑤−2),

∼ 𝑤−𝑏 at ∞: (𝑤2 − 1)
−1−2𝛼−2𝜆

4 𝑆𝜆,𝛼

(︁ 𝑤√
𝑤2 − 1

)︁
=(1 + 𝑤)− 1

2 −𝛼−𝜆𝐹2𝜆,𝛼,𝛼

(︁ 2
1 + 𝑤

)︁
= 𝑤− 1

2 −𝛼−𝜆𝐹𝜆,𝛼, 1
2
(𝑤−2).

6.9 Recurrence relations

We will use the following normalization to express recurrence relations:

S𝛼,𝜆(𝑤) := 1
Γ(𝛼+ 1)𝑆𝛼,𝜆(𝑤)

= 1
Γ( 𝑎+𝑏+1

2 )
𝐹
(︁
𝑎, 𝑏; 𝑎+ 𝑏+ 1

2 ; 1 − 𝑤

2

)︁
= F𝛼,𝛼,2𝜆

(︁1 − 𝑤

2

)︁
. (6.34)
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To each root of so(5) there corresponds a recurrence relation:

𝜕𝑤S𝛼,𝜆(𝑤) = −1
2

(︁1
2 + 𝛼− 𝜆

)︁(︁1
2 + 𝛼+ 𝜆

)︁
S𝛼+1,𝜆(𝑤),(︀

(1 − 𝑤2)𝜕𝑤 − 2𝛼𝑤
)︀

S𝛼,𝜆(𝑤) = −2S𝛼−1,𝜆(𝑤),(︂
(1 − 𝑤2)𝜕𝑤 −

(︁1
2 + 𝛼+ 𝜆

)︁
𝑤

)︂
S𝛼,𝜆(𝑤) = −

(︁1
2 + 𝛼+ 𝜆

)︁
S𝛼,𝜆+1(𝑤),(︂

(1 − 𝑤2)𝜕𝑤 −
(︁1

2 + 𝛼− 𝜆
)︁
𝑤

)︂
S𝛼,𝜆(𝑤) = −

(︁1
2 + 𝛼− 𝜆

)︁
S𝛼,𝜆−1(𝑤);

(︂
𝑤𝜕𝑤 + 1

2 + 𝛼− 𝜆

)︂
S𝛼,𝜆(𝑤) = 1

2

(︁1
2 + 𝛼− 𝜆

)︁(︁3
2 + 𝛼− 𝜆

)︁
S𝛼+1,𝜆−1(𝑤),(︂

𝑤(1−𝑤2)𝜕𝑤+
(︁1

2−𝛼+𝜆
)︁

(1−𝑤2)−2𝛼𝑤2
)︂

S𝛼,𝜆(𝑤) = −2S𝛼−1,𝜆+1(𝑤),

(︂
𝑤𝜕𝑤 + 1

2 + 𝛼+ 𝜆

)︂
S𝛼,𝜆(𝑤) = 1

2

(︁1
2 + 𝛼+ 𝜆

)︁(︁3
2 + 𝛼+ 𝜆

)︁
S𝛼+1,𝜆+1(𝑤),(︂

𝑤(1−𝑤2)𝜕𝑤+
(︁1

2−𝛼−𝜆
)︁

(1−𝑤2)−2𝛼𝑤2
)︂

S𝛼,𝜆(𝑤) = −2S𝛼−1,𝜆−1(𝑤).

6.10 Wave packets in 5 dimensions

We easily check the following lemma:

Lemma 6.1. For any 𝜏 , the function 𝑧𝛼
2
(︀√

2𝑧0 − 𝜏−1𝑧−3 + 𝜏𝑧3
)︀𝜈 is harmonic.

Let us make a wave packet from the above functions.

Proposition 6.2. Let the contour ]0, 1[∋ 𝑠
𝛾↦→ 𝜏(𝑠) satisfy(︀√

2𝑧0 − 𝜏−1𝑧−3 + 𝜏𝑧3
)︀𝜈
𝜏−𝜆

⃒⃒⃒𝜏(1)

𝜏(0)
= 0. (6.35)

Then the function

𝐾𝛼,𝜈,𝜆(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) :=
∫︁
𝛾

𝑧𝛼
2
(︀√

2𝑧0 − 𝜏−1𝑧−3 + 𝜏𝑧3
)︀𝜈
𝜏−𝜆−1d𝜏

is harmonic and

𝑁2𝐾𝛼,𝜈,𝜆 = 𝛼𝐾𝛼,𝜈,𝜆, (6.36a)
𝑁3𝐾𝛼,𝜈,𝜆 = 𝜆𝐾𝛼,𝜈,𝜆. (6.36b)
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Proof. (6.36a) is obvious. To obtain (6.36b) we use Prop. 3.2. 2

If in addition
𝜈 = −𝛼− 1

2 ,

then 𝐾𝛼,𝜈,𝜆 is homogeneous of degree − 1
2 . Therefore, we can reduce it to dimen-

sion 3. Let us express it in the coordinates 𝑤, 𝑟, 𝑝, 𝑢2, 𝑢3:

𝐾(𝑤, 𝑟, 𝑝, 𝑢2, 𝑢3) =
∫︁
𝑢𝛼

2 𝑟
𝛼
(︁
𝑤𝑟

√
2 + 𝑝

𝜏𝑢3
√

2
+ 𝜏𝑝𝑢3√

2

)︁−𝛼− 1
2
𝜏−𝜆−1d𝜏

= (
√

2)𝛼+ 1
2 𝑢𝛼

2 𝑢
𝜆
3𝑟

− 1
2

∫︁ (︁
2𝑤𝜎 + (1 + 𝜎2)𝑝

𝑟

)︁−𝛼− 1
2
𝜎𝛼−𝜆− 1

2 d𝜎,

where we set 𝜎 := 𝑢3𝜏 . Noting that on the spherical section 𝑝 = 𝑟, we see that

𝑆(𝑤) :=
∫︁ (︀

2𝑤𝜎 + 1 + 𝜎2)︀−𝛼− 1
2 𝜎𝛼−𝜆− 1

2 d𝜎 (6.37)

satisfies the Gegenbauer equation.

6.11 Integral representations

In this subsection we describe two kinds of integral representations for solutions to
the Gegenbauer equation. The first is essentially inherited from the 2ℱ1 equation.
The second was derived using additional variables in the previous subsection.
Here we give independent derivations. We will use classical parameters.

Theorem 6.3. a) Let [0, 1] ∋ 𝜏
𝛾↦→ 𝑡(𝜏) satisfy

(𝑡2 − 1)
𝑏−𝑎+1

2 (𝑡− 𝑤)−𝑏−1
⃒⃒⃒𝑡(1)

𝑡(0)
= 0.

Then
𝒮(𝑎, 𝑏;𝑤, 𝜕𝑤)

∫︁
𝛾

(𝑡2 − 1)
𝑏−𝑎−1

2 (𝑡− 𝑤)−𝑏d𝑡 = 0. (6.38)

b) Let [0, 1] ∋ 𝜏
𝛾↦→ 𝑡(𝜏) satisfy

(𝑡2 + 2𝑡𝑤 + 1)
−𝑏−𝑎

2 +1𝑡𝑏−2
⃒⃒⃒𝑡(1)

𝑡(0)
= 0.

Then
𝒮(𝑎, 𝑏;𝑤, 𝜕𝑤)

∫︁
𝛾

(𝑡2 + 2𝑡𝑤 + 1)
−𝑏−𝑎

2 𝑡𝑏−1d𝑡 = 0. (6.39)
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Proof. For any contour 𝛾 we have

lhs of (6.38) = 𝑎

∫︁
𝛾

d𝑡 𝜕𝑡(𝑡2 − 1)
𝑏−𝑎+1

2 (𝑡− 𝑤)−𝑏−1,

lhs of (6.39) =
∫︁
𝛾

d𝑡 𝜕𝑡(𝑡2 + 2𝑡𝑤 + 1)
−𝑏−𝑎

2 +1𝑡𝑏−2.

2

Note that in the above theorem we can interchange 𝑎 and 𝑏. Thus we obtain four
kinds of integral representations.

6.12 Integral representations of the standard solutions

As described in Thm 6.3, we have two types of integral representations of solutions
of Gegenbauer equations: a) and b). It is natural to use singular points of the
integrands as the endpoints of the contours of integration. For the representations
of type a) we have singular points at ∞,−1, 1, 𝑤. For representations of type
b) singular points are at ∞, 0 and the two roots of 𝑡2 + 2𝑡𝑤 + 1 = 0. Choosing
an appropriate contour we obtain all standard solutions with both types of
representations with some special normalizations. It is convenient to introduce
special notation for these normalizations:

SI
𝛼,𝜆(𝑤) := 2− 1

2 −𝛼−𝜆 Γ( 1+2𝛼+2𝜆
2 )Γ( 1−2𝜆

2 )
Γ(𝛼+ 1) 𝑆𝛼,𝜆(𝑤) (6.40)

= 2−𝑏 Γ(𝑏)Γ( 𝑎−𝑏+1
2 )

Γ( 𝑎+𝑏+1
2 )

𝐹
(︁
𝑎, 𝑏; 𝑎+ 𝑏+ 1

2 ; 1 − 𝑤

2

)︁
= 2− 1

2 −𝛼−𝜆FI
𝛼,𝛼,2𝜆

(︁1 − 𝑤

2

)︁
,

SII
𝛼,𝜆(𝑤) :=

Γ( 1+2𝛼−2𝜆
2 )Γ( 1+2𝛼+2𝜆

2 )
Γ(2𝛼+ 1) 𝑆𝛼,𝜆(𝑤) (6.41)

= Γ(𝑎)Γ(𝑏)
Γ(𝑎+ 𝑏) 𝐹

(︁
𝑎, 𝑏; 𝑎+ 𝑏+ 1

2 ; 1 − 𝑤

2

)︁
,

S0
𝛼,𝜆(𝑤) :=

√
𝜋

Γ( 1+2𝛼
2 )

Γ(𝛼+ 1)𝑆𝛼,𝜆(𝑤) (6.42)

=
√
𝜋

Γ( 1+2𝛼
2 )

Γ(𝛼+ 1)𝐹
(︁
𝑎, 𝑏; 𝑎+ 𝑏+ 1

2 ; 1 − 𝑤

2

)︁
.
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In the following table we list all standard solutions together with the contours
of integration and the corresponding normalizations.

a) b)

∼ 1 at 1: ]−∞,−1],

I;

[0,∞[,

II;

∼ 1
2𝛼(1−𝑤)𝛼

at 1: ]−1, 𝑤],

I;

[−i
√
1−𝑤2 − 𝑤, i

√
1−𝑤2−𝑤],

0;

∼ 𝑤−𝑎 at ∞: ]− 1, 1],

0;

[
√
𝑤2 − 1− 𝑤, 0[,

I;

∼ 𝑤−𝑏 at ∞: ]𝑤,∞],

II;

]−∞,−
√
𝑤2 − 1− 𝑤],

I.

Here are representations of type a):

1
2 > Re𝜆 > −1

2 − Re𝛼 : (6.43)
−1∫︁

−∞

(𝑡2 − 1)− 1
2 −𝜆(𝑤 − 𝑡)− 1

2 −𝛼+𝜆d𝑡

= SI
𝛼,𝜆(𝑤), 𝑤 ̸∈] − ∞,−1];

1
2 > Re𝜆 > −1

2 + Re𝛼 : (6.44)
1∫︁

𝑤

(1 − 𝑡2)− 1
2 −𝜆(𝑤 − 𝑡)− 1

2 −𝛼+𝜆d𝑡

= (1 − 𝑤2)−𝛼SI
−𝛼,−𝜆(𝑤), 𝑤 ̸∈] − ∞,−1] ∪ [1,∞[;

1
2 > Re𝜆 : (6.45)

1∫︁
−1

(1 − 𝑡2)− 1
2 −𝜆(𝑤 − 𝑡)− 1

2 −𝛼+𝜆d𝑡

= (𝑤2 − 1)
−1−2𝛼+2𝜆

4 S0
−𝜆,𝛼

(︁ 𝑤√
𝑤2 − 1

)︁
, 𝑤 ̸∈] − ∞, 1];
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Re𝜆+ 1
2 > |Re𝛼| : (6.46)

∞∫︁
𝑤

(𝑡2 − 1)− 1
2 −𝜆(𝑡− 𝑤)− 1

2 −𝛼+𝜆d𝑡

= (𝑤2 − 1)
−1−2𝛼−2𝜆

4 SII
𝜆,𝛼

(︁ 𝑤√
𝑤2 − 1

)︁
, 𝑤 ̸∈] − ∞, 1].

Next we list representations of type b):

Re𝛼+ 1
2 > |Re𝜆| : (6.47)

∞∫︁
0

(𝑡2 + 2𝑡𝑤 + 1)−𝛼− 1
2 𝑡−

1
2 +𝛼+𝜆d𝑡

= SII
𝛼,𝜆(𝑤) 𝑤 ̸∈] − ∞,−1];

1
2 > Re𝛼 : (6.48)

i
√

1−𝑤2−𝑤∫︁
−i

√
1−𝑤2−𝑤

(𝑡2 + 2𝑡𝑤 + 1)−𝛼− 1
2 (−𝑡)− 1

2 +𝛼+𝜆d𝑡

= i(1 − 𝑤2)−𝛼S0
−𝛼,−𝜆(𝑤), 𝑤 ̸∈] − ∞,−1] ∪ [1,∞[;

−Re𝜆+ 1
2 > −Re𝛼 > −1

2 : (6.49)
0∫︁

√
𝑤2−1−𝑤

(𝑡2 + 2𝑡𝑤 + 1)−𝛼− 1
2 (−𝑡)− 1

2 +𝛼−𝜆d𝑡

= (𝑤2 − 1)
−1−2𝛼+2𝜆

4 SI
−𝜆,𝛼

(︁ 𝑤√
𝑤2 − 1

)︁
, 𝑤 ̸∈] − ∞, 1];

Re𝜆+ 1
2 > −Re𝛼 > −1

2 : (6.50)

−
√

𝑤2−1−𝑤∫︁
−∞

(𝑡2 + 2𝑡𝑤 + 1)−𝛼− 1
2 (−𝑡)− 1

2 +𝛼−𝜆d𝑡

= (𝑤2 − 1)− 1
4 − 𝛼

2 − 𝜆
2 SI

𝜆,𝛼

(︁ 𝑤√
𝑤2 − 1

)︁
, 𝑤 ̸∈] − ∞, 1].
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7 The Schrödinger Lie algebra and the heat
equation

By the heat equation on R𝑛 ⊕R we mean the equation given by the heat operator

ℒ𝑛 := Δ𝑛 + 2𝜕𝑡. (7.1)

This operator has a large family of generalized symmetries, the so-called
Schrödinger Lie algebra and group. They can be derived from conformal symme-
tries of the Laplace equation. In this section we describe this derivation.

In order to be consistent with Sect. 4, it is convenient to consider ℒ𝑛−2
instead of ℒ𝑛. Then the starting point, just as in Sect. 4, is the 𝑛+ 2-dimensional
ambient space. The Schrödinger Lie algebra and group are naturally contained
in the pseudo-orhogonal Lie algebra and group for 𝑛+ 2 dimensions. Then, as
described in Sect. 4.12, we descend to the (flat) 𝑛 dimensional space and the
corresponding Laplacian Δ𝑛. We assume that our functions depend on 𝑦𝑚 only
through the factor e𝑦𝑚 . The variable 𝑦−𝑚 is renamed to 𝑡 (the “time”). The
Schrödinger Lie algebra and group respects functions of that form. The Laplacian
Δ𝑛 on such fuctions becomes the heat operator ℒ𝑛−2. From the generalized
symmetries of Δ𝑛 we obtain generalized symmetries of ℒ𝑛−2.

7.1 sch(𝑛−2) as a subalgebra of so(𝑛+2)

We consider again the space R𝑛+2 with the split scalar product. A special role
will be played by the operator

𝐵𝑚+1,𝑚 = 𝑧−𝑚−1𝜕𝑧𝑚 − 𝑧−𝑚𝜕𝑧𝑚+1 ∈ so(𝑛+ 2).

We define the Schrödinger Lie algebra and the Schrödinger group as the commu-
tants (centralizers) of this element:

sch(𝑛− 2) := {𝐵 ∈ so(𝑛+ 2) : [𝐵,𝐵𝑚+1,𝑚] = 0}, (7.2a)
Sch(𝑛− 2) := {𝛼 ∈ O(𝑛+ 2) : 𝛼𝐵𝑚+1,𝑚 = 𝐵𝑚+1,𝑚𝛼}. (7.2b)

7.2 Structure of sch(𝑛−2)

Let us describe the structure of sch(𝑛−2).
We will use our usual notation for elements of so(𝑛+2) and O(𝑛+2). In

particular,

𝑁𝑚 = −𝑧−𝑚𝜕𝑧−𝑚 + 𝑧𝑚𝜕𝑧𝑚 , 𝑁𝑚+1 = −𝑧−𝑚−1𝜕𝑧−𝑚−1 + 𝑧𝑚+1𝜕𝑧𝑚+1 .
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Define
𝑀 := −𝑁𝑚 +𝑁𝑚+1. (7.3)

Note that 𝑀 belongs to sch(𝑛−2) and commutes with so(𝑛−2), which is naturally
embedded in sch(𝑛−2).

The Lie algebra sch(𝑛−2) is spanned by the following operators:
(1) 𝐵𝑚+1,𝑚, which spans the center of sch(𝑛−2).
(2) 𝐵𝑚,𝑗 , 𝐵𝑚+1,𝑗 , |𝑗| = 1, . . . ,𝑚 − 1, which have the following nonzero com-

mutator:
[𝐵𝑚,𝑗 , 𝐵𝑚+1,−𝑗 ] = 𝐵𝑚+1,𝑚. (7.4)

(3) 𝐵𝑚+1,−𝑚, 𝐵−𝑚−1,𝑚, 𝑀 , which have the usual commutation relations of
sl(2) ≃ so(3):

[𝐵𝑚+1,−𝑚, 𝐵−𝑚−1,𝑚] = 𝑀, (7.5a)
[𝑀,𝐵𝑚+1,−𝑚] = −2𝐵𝑚+1,−𝑚, (7.5b)
[𝑀,𝐵−𝑚−1,𝑚] = 2𝐵−𝑚−1,𝑚. (7.5c)

(4) 𝐵𝑖,𝑗 , |𝑖| < |𝑗| ≤ 𝑚− 1, 𝑁𝑖, 𝑖 = 1, . . . ,𝑚− 1, with the usual commutation
relations of so(𝑛−2).

The span of (2) can be identified with R𝑛−2 ⊕ R𝑛−2 ≃ R2 ⊗ R𝑛−2, which
has a natural structure of a symplectic space. The span of (1) and (2) is the
central extension of the abelian algebra R2 ⊗ R𝑛−2 by (7.4). Such a Lie algebra
is usually called the Heisenberg Lie algebra over R2 ⊗R𝑛−2 and can be denoted
by

heis(2(𝑛−2)) = R⋊ (R2 ⊗ R𝑛−2). (7.6)

Lie algebras sl(2) and so(𝑛−2) act in the obvious way on R2, resp. R𝑛−2.
Thus sl(2) ⊕ so(𝑛− 2) acts on R2 ⊗ R𝑛−2. Thus

sch(𝑛−2) ≃ R⋊(R2 ⊗ R𝑛−2) ⋊ (sl(2) ⊕ so(𝑛−2)) . (7.7)

Note, in particular, that sch(𝑛−2) is not semisimple.
The subalgebra spanned by the usual Cartan algebra of so(𝑛−2), 𝑀 and

𝐵−𝑚−1,𝑚 is a maximal commutative subalgebra of sch(𝑛−2). It will be called
the Cartan algebra of sch(𝑛−2).

Let us introduce 𝜅 ∈ SO(𝑛+2):

𝜅(. . . , 𝑧−𝑚, 𝑧𝑚, 𝑧−𝑚−1, 𝑧𝑚+1) := (. . . , 𝑧−𝑚−1, 𝑧𝑚+1,−𝑧−𝑚,−𝑧𝑚). (7.8)

Note that 𝜅4 = 𝜄 and 𝜅 ∈ Sch(𝑛− 2). On the level of functions

𝜅𝐾(. . . , 𝑧−𝑚, 𝑧𝑚, 𝑧−𝑚−1, 𝑧𝑚+1) := 𝐾(. . . ,−𝑧−𝑚−1,−𝑧𝑚+1, 𝑧−𝑚, 𝑧𝑚). (7.9)

The subgroup of Sch(𝑛−2) generated by the Weyl group of O(𝑛−2) and 𝜅

will be called the Weyl group of sch(𝑛−2).
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7.3 sch(𝑛+2) in 𝑛 dimensions

Recall from Subsect. 4.12 that using the decomposition R𝑛+2 = R𝑛 ⊕ R2 we
obtain the representations

so(𝑛+2) ∋ 𝐵 ↦→ 𝐵fl,𝜂, (7.10a)
O(𝑛+2) ∋ 𝛼 ↦→ 𝛼fl,𝜂 (7.10b)

acting on functions on R𝑛. The Laplacian Δ𝑛+2 becomes the Laplacian Δ𝑛 and
it satisfies the generalized symmetry

𝐵fl, −2−𝑛
2 Δ𝑛 = Δ𝑛𝐵

fl, 2−𝑛
2 , 𝐵 ∈ so(𝑛+2), (7.11a)

𝛼fl, −2−𝑛
2 Δ𝑛 = Δ𝑛𝛼

fl, 2−𝑛
2 , 𝛼 ∈ O(𝑛+2). (7.11b)

The operator 𝐵𝑚+1,𝑚 becomes

𝐵fl,𝜂
𝑚+1,𝑚 = 𝜕𝑦𝑚 . (7.12)

Therefore, all elements of sch(𝑛−2) in the representation (7.10a) and all elements
of Sch(𝑛−2) in the representation (7.10b) have the form

𝐵fl,𝜂 = 𝐶 +𝐷𝜕𝑦𝑚 , (7.13a)
𝛼fl,𝜂𝑓(. . . , 𝑦−𝑚, 𝑦𝑚) = 𝛽𝑓

(︀
. . . , 𝑦−𝑚, 𝑦𝑚 + 𝑑(. . . , 𝑦−𝑚)

)︀
, (7.13b)

where 𝐶, 𝐷, 𝛽, 𝑑, do not involve the variable 𝑦𝑚.

7.4 sch(𝑛−2) in (𝑛− 2) + 1 dimensions

We consider now the space R𝑛−2 ⊕ R with the generic variables (𝑦, 𝑡) =
(. . . , 𝑦𝑚−1, 𝑡). Note that 𝑡 should be understood as the new name for 𝑦−𝑚, and
we keep the old names for the first 𝑛−2 coordinates.

We define the map 𝜃 : 𝐶∞(R𝑛−2 ⊕ R) → 𝐶∞(R𝑛) by setting

(𝜃ℎ)(. . . , 𝑦𝑚−1, 𝑦−𝑚, 𝑦𝑚) := ℎ(. . . , 𝑦𝑚−1, 𝑦−𝑚)e𝑦𝑚 . (7.14)

We also define 𝜁 : 𝐶∞(R𝑛) → 𝐶∞(R𝑛−2 ⊕ R)

(𝜁𝑓)(. . . , 𝑦𝑚−1, 𝑡) := 𝑓(. . . , 𝑦𝑚−1, 𝑡, 0). (7.15)

Clearly, 𝜁 is a left inverse of 𝜃:
𝜁 ∘ 𝜃 = 𝜄. (7.16)

Therefore, 𝜃 ∘ 𝜁 = 𝜄 is true on the range of 𝜃.
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The heat operator in 𝑛 − 2 spatial dimensions can be obtained from the
Laplacian in 𝑛 dimension:

ℒ𝑛−2 := Δ𝑛−2 + 2𝜕𝑡 = 𝜁Δ𝑛𝜃. (7.17)

For 𝐵 ∈ sch(𝑛− 2) ⊂ so(𝑛+ 2) and 𝛼 ∈ Sch(𝑛− 2) ⊂ O(𝑛+ 2) we define

𝐵sch,𝜂 := 𝜁𝐵fl,𝜂𝜃, (7.18a)
𝛼sch,𝜂 := 𝜁𝛼fl,𝜂𝜃. (7.18b)

It is easy to see, using (7.13), that sch(𝑛−2), Sch(𝑛−2) and Δ𝑛 preserve the
range of 𝜃. Therefore, for any 𝜂 we obtain representations

sch(𝑛− 2) ∋ 𝐵 ↦→ 𝐵sch,𝜂, (7.19a)
Sch(𝑛− 2) ∋ 𝛼 ↦→ 𝛼sch,𝜂 (7.19b)

acting on functions on R𝑛−2 ⊕R. By (7.11), we also have generalized symmetries:

𝐵sch, −2−𝑛
2 ℒ𝑛−2 = ℒ𝑛−2𝐵

sch, 2−𝑛
2 , 𝐵 ∈ sch(𝑛−2), (7.20a)

𝛼sch, −2−𝑛
2 ℒ𝑛−2 = ℒ𝑛−2𝛼

sch, 2−𝑛
2 , 𝛼 ∈ Sch(𝑛−2). (7.20b)

7.5 Schrödinger symmetries in coordinates

In this subsection we sum up information about Schrödinger symmetries on 3
levels described in the previous subsections.

We start with generic names of the variables and the corresponding squares:

𝑧 ∈ R𝑛+2, ⟨𝑧|𝑧⟩𝑛+2 =
∑︁

|𝑗|≤𝑚+1

𝑧−𝑗𝑧𝑗 , (7.21a)

𝑦 ∈ R𝑛, ⟨𝑦|𝑦⟩𝑛 =
∑︁

|𝑗|≤𝑚

𝑦−𝑗𝑦𝑗 , (7.21b)

(𝑦, 𝑡) ∈ R𝑛−2 ⊕ R, ⟨𝑦|𝑦⟩𝑛−2 =
∑︁

|𝑗|≤𝑚−1

𝑦−𝑗𝑦𝑗 . (7.21c)

Cartan algebra of sch(𝑛−2). Central element

𝐵𝑚+1,𝑚 = 𝑧−𝑚−1𝜕𝑧𝑚 − 𝑧−𝑚𝜕𝑧𝑚+1 , (7.22a)
𝐵fl

𝑚+1,𝑚 = 𝜕𝑦𝑚 , (7.22b)
𝐵sch

𝑚+1,𝑚 = 1. (7.22c)
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Cartan algebra of so(𝑛−2), 𝑗 = 1, . . . ,𝑚− 1,

𝑁𝑗 = −𝑧−𝑗𝜕𝑧−𝑗 + 𝑧𝑗𝜕𝑧𝑗 , (7.23a)
𝑁fl

𝑗 = −𝑦−𝑗𝜕𝑦−𝑗 + 𝑦𝑗𝜕𝑦𝑗 , (7.23b)
𝑁 sch

𝑗 = −𝑦−𝑗𝜕𝑦−𝑗 + 𝑦𝑗𝜕𝑦𝑗 . (7.23c)

Generator of scaling

𝑀 = 𝑧−𝑚𝜕𝑧−𝑚−𝑧𝑚𝜕𝑧𝑚−𝑧−𝑚−1𝜕𝑧−𝑚−1+𝑧𝑚+1𝜕𝑧𝑚+1 , (7.24a)

𝑀fl,𝜂 =
∑︁

|𝑗|≤𝑚−1

𝑦𝑗𝜕𝑦𝑗 + 2𝑦−𝑚𝜕𝑦−𝑚 − 𝜂, (7.24b)

𝑀 sch,𝜂 =
∑︁

|𝑗|≤𝑚−1

𝑦𝑗𝜕𝑦𝑗 + 2𝑡𝜕𝑡 − 𝜂. (7.24c)

Root operators of sch(𝑛−2). Roots of so(𝑛−2), |𝑖| < |𝑗| ≤ 𝑚− 1,

𝐵𝑖,𝑗 = 𝑧−𝑖𝜕𝑧𝑗 − 𝑧−𝑗𝜕𝑧𝑖 , (7.25a)
𝐵fl

𝑖,𝑗 = 𝑦−𝑖𝜕𝑦𝑗 − 𝑦−𝑗𝜕𝑦𝑖 , (7.25b)
𝐵sch

𝑖,𝑗 = 𝑦−𝑖𝜕𝑦𝑗 − 𝑦−𝑗𝜕𝑦𝑖 . (7.25c)

Space translations, |𝑗| ≤ 𝑚− 1,

𝐵𝑚+1,𝑗 = 𝑧−𝑚−1𝜕𝑧𝑗 − 𝑧−𝑗𝜕𝑧𝑚+1 , (7.26a)
𝐵fl

𝑚+1,𝑗 = 𝜕𝑦𝑗 , (7.26b)
𝐵sch

𝑚+1,𝑗 = 𝜕𝑦𝑗 . (7.26c)

Time translation

𝐵𝑚+1,−𝑚 = 𝑧−𝑚−1𝜕𝑧−𝑚 − 𝑧𝑚𝜕𝑧𝑚+1 , (7.27a)
𝐵fl

𝑚+1,−𝑚 = 𝜕𝑦−𝑚 , (7.27b)
𝐵sch

𝑚+1,−𝑚 = 𝜕𝑡. (7.27c)

Additional roots, |𝑗| ≤ 𝑚− 1,

𝐵𝑚,𝑗 = 𝑧−𝑚𝜕𝑧𝑗 − 𝑧−𝑗𝜕𝑧𝑚 , (7.28a)
𝐵fl

𝑚,𝑗 = 𝑦−𝑚𝜕𝑦𝑗 − 𝑦−𝑗𝜕𝑦𝑚 , (7.28b)
𝐵sch

𝑚,𝑗 = 𝑡𝜕𝑦𝑗 − 𝑦−𝑗 ; (7.28c)
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𝐵−𝑚−1,𝑚 = 𝑧𝑚+1𝜕𝑧𝑚 − 𝑧−𝑚𝜕𝑧−𝑚−1 , (7.29a)

𝐵fl,𝜂
−𝑚−1,𝑚 = 𝑦−𝑚

(︀ ∑︁
|𝑗|≤𝑚−1

𝑦𝑗𝜕𝑦𝑗 + 𝑦−𝑚𝜕𝑦−𝑚 − 𝜂
)︀

−1
2

∑︁
|𝑗|≤𝑚−1

𝑦−𝑗𝑦𝑗𝜕𝑦𝑚 , (7.29b)

𝐵sch,𝜂
−𝑚−1,𝑚 = 𝑡

(︀ ∑︁
|𝑗|≤𝑚−1

𝑦𝑗𝜕𝑦𝑗 + 𝑡𝜕𝑡 − 𝜂
)︀

−1
2

∑︁
|𝑗|≤𝑚−1

𝑦−𝑗𝑦𝑗 . (7.29c)

Weyl symmetries. We present a representative selection of elements of the
Weyl group of Sch(𝑛−2). We will write 𝐾 for a function on R𝑛+2, 𝑓 for a function
on R𝑛, ℎ for a function on R𝑛−2 ⊕ R in the coordinates

(︀
. . . , 𝑦𝑚−1, 𝑡

)︀
.

Reflection (for odd 𝑛)

𝜏0𝐾(𝑧0, . . . , . . . , 𝑧−𝑚, 𝑧𝑚, 𝑧−𝑚−1, 𝑧𝑚+1)
= 𝐾(−𝑧0, . . . , 𝑧−𝑚, 𝑧𝑚, 𝑧−𝑚−1, 𝑧𝑚+1), (7.30a)

𝜏fl
0 𝑓(𝑦0, . . . , 𝑦−𝑚, 𝑦𝑚)

= 𝑓(−𝑦0, . . . , 𝑦−𝑚, 𝑦𝑚), (7.30b)
𝜏 sch

0 ℎ(𝑦0, . . . , 𝑡) = ℎ(−𝑦0, . . . , 𝑡). (7.30c)

Flips, 𝑗 = 1, . . . ,𝑚− 1,

𝜏𝑗𝐾(. . . , 𝑧−𝑗 , 𝑧𝑗 , . . . , 𝑧−𝑚, 𝑧𝑚, 𝑧−𝑚−1, 𝑧𝑚+1)
= 𝐾(. . . , 𝑧𝑗 , 𝑧−𝑗 , . . . , 𝑧−𝑚, 𝑧𝑚, 𝑧−𝑚−1, 𝑧𝑚+1), (7.31a)

𝜏fl
𝑗 𝑓(. . . , 𝑦−𝑗 , 𝑦𝑗 , . . . , 𝑦−𝑚, 𝑦𝑚)

= 𝑓(. . . , 𝑦𝑗 , 𝑦−𝑗 , . . . , 𝑦−𝑚, 𝑦𝑚), (7.31b)
𝜏 sch

𝑗 ℎ(. . . , 𝑦−𝑗 , 𝑦𝑗 , . . . , 𝑡) = ℎ(. . . , 𝑦𝑗 , 𝑦−𝑗 , . . . , 𝑡). (7.31c)

Permutations, 𝜋 ∈ 𝑆𝑚−1,

𝜎𝜋𝐾(. . . , 𝑧−𝑚+1, 𝑧𝑚−1, 𝑧−𝑚, 𝑧𝑚, 𝑧−𝑚−1, 𝑧𝑚+1)
= 𝐾(. . . , 𝑧−𝜋𝑚−1 , 𝑧𝜋𝑚−1 , 𝑧−𝑚, 𝑧𝑚, 𝑧−𝑚−1, 𝑧𝑚+1), (7.32a)
𝜎fl

𝜋𝑓(. . . , 𝑦−𝑚+1, 𝑦𝑚−1, 𝑦−𝑚, 𝑦𝑚)
= 𝑓(. . . , 𝑦−𝜋𝑚−1 , 𝑦𝜋𝑚−1 , 𝑦−𝑚, 𝑦𝑚), (7.32b)

𝜎sch
𝜋 ℎ(. . . , 𝑦−𝑚+1, 𝑦𝑚−1, 𝑡)

= ℎ(. . . , 𝑦−𝜋𝑚−1 , 𝑦𝜋𝑚−1 , 𝑡). (7.32c)
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Special transformation 𝜅

𝜅𝐾(. . . , 𝑧𝑚−1, 𝑧−𝑚, 𝑧𝑚, 𝑧−𝑚−1, 𝑧𝑚+1)
= 𝐾(. . . , 𝑧𝑚−1,−𝑧−𝑚−1,−𝑧𝑚+1, 𝑧−𝑚, 𝑧𝑚), (7.33a)
𝜅fl,𝜂𝑓(. . . , 𝑦𝑚−1, 𝑦−𝑚, 𝑦𝑚)

= 𝑦𝜂
−𝑚𝑓

(︁
. . . ,

𝑦𝑚−1
𝑦−𝑚

,− 1
𝑦−𝑚

,
1

2𝑦−𝑚

∑︁
|𝑗|≤𝑚

𝑦−𝑗𝑦𝑗

)︁
, (7.33b)

𝜅sch,𝜂ℎ(. . . , 𝑦𝑚−1, 𝑡)

= 𝑡𝜂 exp
(︁ 1

2𝑡
∑︁

|𝑗|≤𝑚−1

𝑦−𝑗𝑦𝑗

)︁
ℎ
(︁
. . . ,

𝑦𝑚−1
𝑡

,−1
𝑡

)︁
. (7.33c)

Square of 𝜅

𝜅2𝐾(. . . , 𝑧𝑚−1, 𝑧−𝑚, 𝑧𝑚, 𝑧−𝑚−1, 𝑧𝑚+1)
= 𝐾(. . . , 𝑧𝑚−1,−𝑧−𝑚,−𝑧𝑚,−𝑧−𝑚−1,−𝑧𝑚+1), (7.34a)
(𝜅fl,𝜂)2𝑓(. . . , 𝑦𝑚−1, 𝑦−𝑚, 𝑦𝑚)

= 𝑓(. . . ,−𝑦𝑚−1, 𝑦−𝑚, 𝑦𝑚), (7.34b)
(𝜅sch,𝜂)2ℎ(. . . , 𝑦𝑚−1, 𝑡) = ℎ(. . . ,−𝑦𝑚−1, 𝑡). (7.34c)

Laplacian/Laplacian / Heat operator

Δ𝑛+2 =
∑︁

|𝑗|≤𝑚+1

𝜕𝑧−𝑗𝜕𝑧𝑗 , (7.35a)

Δ𝑛 =
∑︁

|𝑗|≤𝑚

𝜕𝑦−𝑗𝜕𝑦𝑗 , (7.35b)

ℒ𝑛−2 =
∑︁

|𝑗|≤𝑚−1

𝜕𝑦−𝑗𝜕𝑦𝑗 + 2𝜕𝑡. (7.35c)

7.6 Special solutions of the heat equation

Let us describe how to obtain solutions of the heat equation from solutions of
the Laplace equation.

Consider first a function on the level of R𝑛+2

𝐾(𝑧) = 𝑧
1− 𝑛

2
−𝑚 𝑔

(︁ 𝑧1
𝑧−𝑚

, . . . ,
𝑧𝑚−1
𝑧−𝑚

)︁
exp

(︁
− 𝑧𝑚+1

𝑧−𝑚

)︁
, (7.36)

where 𝑔 is a harmonic function on R𝑛−2. It is easy to see that 𝐾 is harmonic
and satisfies

𝐵𝑚+1,𝑚𝐾 = 𝐾. (7.37)
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Besides, 𝐾 is homogeneous of degree 1 − 𝑛
2 . Therefore, we can descend on

the level of dimension 𝑛, obtaining the function

𝑘(𝑦) = 𝑦
1− 𝑛

2
−𝑚 𝑔

(︁ 𝑦1
𝑦−𝑚

, . . . ,
𝑦𝑚−1
𝑦−𝑚

)︁
exp

(︁ ∑︁
|𝑖|≤𝑚−1

𝑦−𝑖𝑦𝑖

𝑦−𝑚
+ 𝑦𝑚

)︁
. (7.38)

It is harmonic and satisfies

𝐵fl
𝑚+1,𝑚𝑘 = 𝑘. (7.39)

Descending on the level of R𝑛−2 ⊕ R we obtain

ℎ(𝑦, 𝑡) = 𝑡1− 𝑛
2 𝑔
(︁𝑦1
𝑡
, . . . ,

𝑦𝑚−1
𝑡

)︁
exp

(︁ ∑︁
|𝑖|≤𝑚−1

𝑦−𝑖𝑦𝑖

𝑡

)︁
. (7.40)

which solves the heat equation:

ℒ𝑛−2ℎ = 0. (7.41)

7.7 Wave packets for the heat equation

Let us use the coordinates (𝑦, 𝑡) ∈ R𝑛−2 ⊕ R. Recall that

𝑀 sch,𝜂 =
∑︁

|𝑗|≤𝑚−1

𝑦𝑗𝜕𝑦𝑗 + 2𝑡𝜕𝑡 − 𝜂. (7.42)

The following proposition is proven by analogous arguments as Prop. 3.2. It
allows us to form wave packets that are eigenfunctions of 𝑀 :

Proposition 7.1. Suppose that ]0, 1[∋ 𝑠
𝛾↦→ 𝜏(𝑠) is a contour satisfying

𝑓(𝜏𝑦, 𝜏2𝑡)𝜏−𝜈
⃒⃒⃒𝜏(1)

𝜏(0)
= 0. (7.43)

Set
ℎ𝜈(𝑦, 𝑡) :=

∫︁
𝛾

𝑓(𝜏𝑦, 𝜏2𝑡)𝜏−1−𝜈d𝜏. (7.44)

Then
𝑀 sch,𝜂ℎ𝜈 = (𝜈 − 𝜂)ℎ𝜈 . (7.45)



96 J. Dereziński

8 Heat equation in 2 dimensions and the
confluent equation

The goal of this section is to derive the 1ℱ1 equation together with its symmetries
from the heat equation in 2 dimensions, which in turn comes from the Laplace
equation in 6 and 4 dimensions. Let us describe the main steps of this derivation:
(1) We start from the Schrödinger Lie algebra sch(2) and group Sch(2) con-

sidered as a subalgebra of so(6), resp. a subgroup of O(6), acting in 6
dimensions. The main initial operator is the Laplacian Δ6.

(2) We descend onto 4 dimensions. The 6-dimensional Laplacian Δ6 becomes
the 4-dimensional Laplacian Δ4.

(3) We assume that the variable 𝑦2 appears only in the exponential e𝑦2 and the
variable 𝑦−2 is renamed 𝑡. The Laplacian Δ4 becomes the heat operator ℒ2.
The representations 𝐵sch,𝜂 and 𝛼sch,𝜂 preserve our class of functions. With
𝜂 = −1 and 𝜂 = −3 they are generalized symmetries of the heat operator.

(4) We choose coordinates 𝑤, 𝑠, 𝑢1, so that the Cartan operators are expressed
in terms of 𝑠, 𝑢1. We compute ℒ2, 𝐵sch,𝜂, and 𝛼sch,𝜂 in the new coordinates.

(5) We make an ansatz that diagonalizes the Cartan operators, whose eigenval-
ues, denoted by −𝜃 and 𝛼, become parameters. The operators ℒ2, 𝐵sch,𝜂,
and 𝛼sch,𝜂 involve now only the single variable 𝑤. The operator 𝑠2

2 ℒ2 be-
comes the 1ℱ1 operator. Generalized symmetries of ℒ2 yield transmutation
relations and discrete symmetries of the 1ℱ1 operator.

The first part of this section is devoted to a description of the above steps,
except for Step 2, discussed in detail in Sect. 7.

The remaining part of this section is devoted to the theory of the 1ℱ1
equation and its solutions. Its organization is parallel to that of Sect. 5 on the
2ℱ1 equation. The main additional complication is the fact that besides the 1ℱ1
equation and the 1𝐹1 function, it is useful to discuss the closely related 2ℱ0
equation and the 2𝐹0 function. In fact, some of the standard solutions of the 1ℱ1
equation are expressed in terms of the 1𝐹1 function, others in terms of the 2𝐹0
function.

8.1 sch(2) in 6 dimensions

We again consider R6 with the coordinates (5.1) and the product given by (5.2):

⟨𝑧|𝑧⟩ = 2𝑧−1𝑧1 + 2𝑧−2𝑧2 + 2𝑧−3𝑧3.
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We describe various object related to the Lie algebra sch(2) treated as a subalgebra
of so(6). We also list a few typical Weyl symmetries of Sch(2).
Lie algebra sch(2). Cartan algebra

𝑀 = 𝑧−2𝜕𝑧−2 − 𝑧2𝜕𝑧2 − 𝑧−3𝜕𝑧−3 + 𝑧3𝜕𝑧3 , (8.1a)
𝑁1 = −𝑧−1𝜕𝑧−1 + 𝑧1𝜕𝑧1 , (8.1b)
𝐵3,2 = 𝑧−3𝜕𝑧2 − 𝑧−2𝜕𝑧3 . (8.1c)

Root operators

𝐵3,−1 = 𝑧−3𝜕𝑧−1 − 𝑧1𝜕𝑧3 , (8.2a)
𝐵2,1 = 𝑧−2𝜕𝑧1 − 𝑧−1𝜕𝑧2 , (8.2b)
𝐵3,1 = 𝑧−3𝜕𝑧1 − 𝑧−1𝜕𝑧3 , (8.2c)

𝐵2,−1 = 𝑧−2𝜕𝑧−1 − 𝑧1𝜕𝑧2 , (8.2d)
𝐵3,−2 = 𝑧−3𝜕𝑧−2 − 𝑧2𝜕𝑧3 , (8.2e)
𝐵−3,2 = 𝑧3𝜕𝑧2 − 𝑧−2𝜕𝑧−3 . (8.2f)

Weyl symmetries

𝜄𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) = 𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3), (8.3a)
𝜏1𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) = 𝐾(𝑧1, 𝑧−1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3), (8.3b)
𝜅𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) = 𝐾(𝑧−1, 𝑧1,−𝑧−3,−𝑧3, 𝑧−2, 𝑧2), (8.3c)

𝜏1𝜅𝐾(𝑧−1, 𝑧1, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) = 𝐾(𝑧1, 𝑧−1,−𝑧−3,−𝑧3, 𝑧−2, 𝑧2). (8.3d)

Laplacian
Δ6 = 2𝜕𝑧−1𝜕𝑧1 + 2𝜕𝑧−2𝜕𝑧2 + 2𝜕𝑧−3𝜕𝑧3 . (8.4)

8.2 sch(2) in 4 dimensions

We descend on the level of R4, with the coordinates (𝑦−1, 𝑦1, 𝑦−2, 𝑦2) and the
scalar product given by

⟨𝑦|𝑦⟩ = 2𝑦−1𝑦1 + 2𝑦−2𝑦2.

Lie algebra sch(2). Cartan algebra

𝑀fl,𝜂 = 𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 + 2𝑦−2𝜕𝑦−2 − 𝜂,

𝑁fl
1 = −𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 ,

𝐵fl
3,2 = 𝜕𝑦2 .
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Root operators

𝐵fl
3,−1 = 𝜕𝑦−1 ,

𝐵fl
2,1 = 𝑦−2𝜕𝑦1 − 𝑦1𝜕𝑦2 ,

𝐵fl
3,1 = 𝜕𝑦1 ,

𝐵fl
2,−1 = 𝑦−2𝜕𝑦−1 − 𝑦1𝜕𝑦2 ,

𝐵fl
3,−2 = 𝜕𝑦−2 ,

𝐵fl,𝜂
−3,2 = 𝑦−2(𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 + 𝑦−2𝜕𝑦−2 − 𝜂) − 𝑦−1𝑦1𝜕𝑦2 .

Weyl symmetries

𝜄𝑓(𝑦−1, 𝑦1, 𝑦−2, 𝑦2) = 𝑓(𝑦−1, 𝑦1, 𝑦−2, 𝑦2),
𝜏fl

1 𝑓(𝑦−1, 𝑦1, 𝑦−2, 𝑦2) = 𝑓(𝑦1, 𝑦−1, 𝑦−2, 𝑦2),

𝜅fl,𝜂𝑓(𝑦−1, 𝑦1, 𝑦−2, 𝑦2) = 𝑦𝜂
−2𝑓

(︁𝑦−1
𝑦−2

,
𝑦1
𝑦−2

,− 1
𝑦−2

,
𝑦−1𝑦1 + 𝑦−2𝑦2

𝑦−2

)︁
,

𝜏1𝜅
fl,𝜂𝑓(𝑦−1, 𝑦1, 𝑦−2, 𝑦2) = 𝑦𝜂

−2𝑓
(︁ 𝑦1
𝑦−2

,
𝑦−1
𝑦−2

,− 1
𝑦−2

,
𝑦−1𝑦1 + 𝑦−2𝑦2

𝑦−2

)︁
.

8.3 sch(2) in 2 + 1 dimensions

We apply the ansatz involving the exponential e𝑦2 . We rename 𝑦−2 to 𝑡.
Lie algebra sch(2). Cartan algebra

𝑀 sch,𝜂 = 𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 + 2𝑡𝜕𝑡 − 𝜂, (8.8a)
𝑁 sch

1 = −𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 , (8.8b)
𝐵sch

32 = 1. (8.8c)

Root operators

𝐵sch
3,−1 = 𝜕𝑦−1 , (8.9a)
𝐵sch

2,1 = 𝑡𝜕𝑦1 − 𝑦−1, (8.9b)
𝐵sch

3,1 = 𝜕𝑦1 , (8.9c)
𝐵sch

2,−1 = 𝑡𝜕𝑦−1 − 𝑦1, (8.9d)
𝐵sch

3,−2 = 𝜕𝑡, (8.9e)

𝐵sch,𝜂
−3,2 = 𝑡(𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 + 𝑡𝜕𝑡 − 𝜂) − 𝑦−1𝑦1. (8.9f)
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Weyl symmetries

𝜄𝑔(𝑦−1, 𝑦1, 𝑡) = 𝑔(𝑦−1, 𝑦1, 𝑡), (8.10a)
𝜏 sch

1 ℎ(𝑦−1, 𝑦1, 𝑡) = ℎ(𝑦1, 𝑦−1, 𝑡), (8.10b)

𝜅sch,𝜂ℎ(𝑦−1, 𝑦1, 𝑡) = 𝑡𝜂 exp
(︁𝑦−1𝑦1

𝑡

)︁
ℎ
(︁𝑦−1

𝑡
,
𝑦1
𝑡
,−1

𝑡

)︁
, (8.10c)

𝜏1𝜅
sch,𝜂ℎ(𝑦−1, 𝑦1, 𝑡) = 𝑡𝜂 exp

(︁𝑦−1𝑦1
𝑡

)︁
ℎ
(︁𝑦1
𝑡
,
𝑦−1
𝑡
,−1

𝑡

)︁
. (8.10d)

Heat operator
ℒ2 = 2𝜕𝑦−1𝜕𝑦1 + 2𝜕𝑡. (8.11)

8.4 sch(2) in the coordinates 𝑤, 𝑠, 𝑢1

We introduce new coordinates 𝑤, 𝑠, 𝑢1

𝑤 = 𝑦−1𝑦1
𝑡

, 𝑢1 = 𝑦1√
𝑡
, 𝑠 =

√
𝑡 , (8.12)

with the reverse transformations

𝑦−1 = 𝑠𝑤

𝑢1
, 𝑦1 = 𝑢1𝑠 , 𝑡 = 𝑠2 . (8.13)

Lie algebra sch(2). Cartan algebra

𝑀 sch,𝜂 = 𝑠 𝜕𝑠 − 𝜂,

𝑁 sch
1 = 𝑢1𝜕𝑢1 ,

𝐵sch
32 = 1.

Root operators

𝐵sch
3,−1 = 𝑢1

𝑠
𝜕𝑤,

𝐵sch
2,1 = 𝑠

𝑢1
(𝑤𝜕𝑤 + 𝑢1𝜕𝑢1 − 𝑤),

𝐵sch
3,1 = 1

𝑢1𝑠
(𝑤𝜕𝑤 + 𝑢1𝜕𝑢1),

𝐵sch
2,−1 = 𝑠𝑢1(𝜕𝑤 − 1),

𝐵sch
3,−2 = 1

𝑠2
(︀

− 𝑤𝜕𝑤 − 1
2𝑢1𝜕𝑢1 + 1

2𝑠𝜕𝑠

)︀
,

𝐵sch,𝜂
−3,2 = 𝑠2(︀𝑤𝜕𝑤 + 1

2𝑢1𝜕𝑢1 + 1
2𝑠𝜕𝑠 − 𝑤 − 𝜂

)︀
.
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Weyl symmetries

𝜄ℎ(𝑤, 𝑢1, 𝑠) = ℎ(𝑤, 𝑢1, 𝑠),

𝜏 sch
1 ℎ

(︁
𝑤, 𝑢1, 𝑠

)︁
= ℎ
(︁
𝑤,

𝑤

𝑢1
, 𝑠
)︁
,

𝜅sch,𝜂ℎ(𝑤, 𝑢1, 𝑠) = 𝑠2𝜂e𝑤ℎ
(︁

− 𝑤,−i𝑢1,
i
𝑠

)︁
,

𝜏1𝜅
sch,𝜂ℎ(𝑤, 𝑢1, 𝑠) = 𝑠2𝜂e𝑤ℎ

(︁
− 𝑤,− i𝑤

𝑢1
,

i
𝑠

)︁
.

Heat operator

ℒ2 = 2
𝑠2

(︁
𝑤𝜕2

𝑤 + (𝑢1𝜕𝑢1 + 1 − 𝑤)𝜕𝑤 + 1
2(−𝑢1𝜕𝑢1 + 𝑠𝜕𝑠)

)︁
. (8.17)

8.5 Confluent operator

Let us make the ansatz

ℎ(𝑤, 𝑢1, 𝑠) = 𝑢1
𝛼𝑠−𝜃−1𝐹 (𝑤). (8.18)

Clearly,

𝑀 sch,−1ℎ = −𝜃ℎ, (8.19a)
𝑁 sch

1 ℎ = 𝛼ℎ, (8.19b)

𝑢−𝛼
1 𝑠𝜃+1 𝑠

2

2 ℒ2ℎ = ℱ𝜃,𝛼(𝑤, 𝜕𝑤)𝐹 (𝑤), (8.19c)

where we have introduced the 1ℱ1 operator

ℱ𝜃,𝛼(𝑤, 𝜕𝑤) = 𝑤𝜕2
𝑤 + (1 + 𝛼− 𝑤)𝜕𝑤 − 1

2(1 + 𝜃 + 𝛼). (8.20)

Let us also define the closely related 2ℱ0 operator

ℱ̃𝜃,𝛼(𝑤, 𝜕𝑤) = 𝑤2𝜕2
𝑤 + (−1 + (2 + 𝜃)𝑤)𝜕𝑤 + 1

4(1 + 𝜃)2 − 1
4𝛼

2. (8.21)

It is equivalent to the 1ℱ1 operator. In fact, if 𝑧 = −𝑤−1, then

(−𝑧)
3+𝛼+𝜃

2 ℱ̃𝜃,𝛼(𝑧, 𝜕𝑧)(−𝑧)− 1+𝛼+𝜃
2 = ℱ𝜃,𝛼(𝑤, 𝜕𝑤). (8.22)

We will treat ℱ𝜃,𝛼(𝑤, 𝜕𝑤) as the principal operator.
Traditionally, one uses the classical parameters 𝑎, 𝑏, 𝑐:

𝛼 := 𝑐− 1 = 𝑎− 𝑏, 𝜃 := −𝑐+ 2𝑎 = −1 + 𝑎+ 𝑏; (8.23a)

𝑎 = 1 + 𝛼+ 𝜃

2 , 𝑏 = 1 − 𝛼+ 𝜃

2 , 𝑐 = 1 + 𝛼. (8.23b)
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Here are the traditional forms of the 1ℱ1 and 2ℱ0 operators:

ℱ(𝑎; 𝑐;𝑤, 𝜕𝑤) := 𝑤𝜕2
𝑤 + (𝑐− 𝑤)𝜕𝑤 − 𝑎, (8.24)

ℱ(𝑎, 𝑏; −;𝑤, 𝜕𝑤) := 𝑤2𝜕2
𝑤 + (−1 + (1 + 𝑎+ 𝑏)𝑤)𝜕𝑤 + 𝑎𝑏. (8.25)

8.6 Transmutation relations and discrete symmetries

The heat operator satisfies the following generalized symmetries:

𝐵sch,−3ℒ2 = ℒ2𝐵
sch,−1, 𝐵 ∈ sch(2), (8.26a)

𝛼sch,−3ℒ2 = ℒ2𝛼
sch,−1, 𝛼 ∈ Sch(2). (8.26b)

Applying (8.26a) to the roots of sch(2) we obtain the following transmutation
relations of the confluent operator:

𝜕𝑤 ℱ𝜃,𝛼

= ℱ𝜃+1,𝛼+1 𝜕𝑤,

(𝑤𝜕𝑤 + 𝛼− 𝑤) ℱ𝜃,𝛼

= ℱ𝜃−1,𝛼−1 (𝑤𝜕𝑤 + 𝛼− 𝑤),
(𝑤𝜕𝑤 + 𝛼) ℱ𝜃,𝛼

= ℱ𝜃+1,𝛼−1 (𝑤𝜕𝑤 + 𝛼),
(𝜕𝑤 − 1) ℱ𝜃,𝛼,

= ℱ𝜃−1,𝛼+1 (𝜕𝑤 − 1);(︀
𝑤𝜕𝑤 + 1

2 (𝜃 + 𝛼+ 1)
)︀

𝑤ℱ𝜃,𝛼

= 𝑤ℱ𝜃+2,𝛼

(︀
𝑤𝜕𝑤 + 1

2 (𝜃 + 𝛼+ 1)
)︀
,(︀

𝑤𝜕𝑤 + 1
2 (−𝜃 + 𝛼+ 1) − 𝑤) 𝑤ℱ𝜃,𝛼

= 𝑤ℱ𝜃−2,𝛼

(︀
𝑤𝜕𝑤 + 1

2 (−𝜃 + 𝛼+ 1) − 𝑤
)︀
.

Applying (8.26b) to the Weyl symmetries of sch(2) yields discrete symmetries
of the confluent operator, described below.

The following operators equal ℱ𝜃,𝛼(𝑤, 𝜕𝑤) for the appropriate 𝑤:

𝑤 = 𝑣 : ℱ𝜃,𝛼(𝑣, 𝜕𝑣),
𝑣−𝛼 ℱ𝜃,−𝛼(𝑣, 𝜕𝑣) 𝑣𝛼,

𝑤 = −𝑣 : −e−𝑣 ℱ−𝜃,𝛼(𝑣, 𝜕𝑣) e𝑣,

−e−𝑣𝑣−𝛼 ℱ−𝜃,−𝛼(𝑣, 𝜕𝑣) e𝑣𝑣𝛼.

The third symmetry is sometimes called the 1st Kummer transformation.
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8.7 Factorizations of of the heat operator

Special role is played by three distinguished subalgebras in sch(2): two isomorphic
to heis(2) and one isomorphic to so(3).

First note the commutation relations

[𝐵2,−1, 𝐵3,1] = [𝐵2,1 , 𝐵3,−1] = 𝐵3,2. (8.27)

Therefore, the following subalgebras in sch(5) are isomorphic to heis(2):

heis−(2) spanned by 𝐵2,−1, 𝐵3,1, 𝐵3,2, (8.28a)
heis+(2) spanned by 𝐵2,1, 𝐵3,−1, 𝐵3,2. (8.28b)

Note that the flip of (1,−1), denoted 𝜏1, belongs to Sch(5) and satisfies

𝜏1𝐵2,−1𝜏1 = 𝐵2,1, 𝜏1𝐵3,1𝜏1 = 𝐵3,−1, 𝜏1𝐵3,2𝜏1 = 𝐵3,2. (8.29)

Hence,
𝜏1heis−(2)𝜏1 = heis+(2). (8.30)

Let us define

𝒞− = 2𝐵2,−1𝐵3,1 +𝑀 +𝑁1 −𝐵3,2 (8.31a)
= 2𝐵3,1𝐵2,−1 +𝑀 +𝑁1 +𝐵3,2, (8.31b)

𝒞+ = 2𝐵2,1𝐵3,−1 +𝑀 −𝑁1 −𝐵3,2 (8.31c)
= 2𝐵3,−1𝐵2,1 +𝑀 −𝑁1 +𝐵3,2. (8.31d)

𝒞+ and 𝒞− can be viewed as the Casimir operators for heis+(2), resp. for
heis−(2). Indeed, 𝒞+, resp. 𝒞− commute with all operators in heis+(2), resp.
heis−(2). We also have

𝜏1𝒞−𝜏1 = 𝒞+. (8.32)

On the level of R2 ⊕ R, the two operators 𝒞+ and 𝒞− coincide. Indeed, a
direct calculation yields

𝒞sch,𝜂
+ = 𝒞sch,𝜂

− = 2𝑡(𝜕𝑦−1𝜕𝑦1 + 𝜕𝑡) − 𝜂 − 1. (8.33)

Second, note the commutation relations

[𝐵−3,2, 𝐵3,−2] = 𝑁2 −𝑁3 = −𝑀. (8.34)

Therefore, the following of sch(2) is isomorphic to so(3):

so23(3) spanned by 𝐵−3,2, 𝐵3,−2,𝑀. (8.35)
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The Casimir operator for so23(3) is

𝒞23 = 4𝐵3,−2𝐵−3,2 − (𝑀 − 1)2 + 1 (8.36a)
= 4𝐵−3,2𝐵3,−2 − (𝑀 + 1)2 + 1. (8.36b)

By (4.21) we have

(2𝑧−2𝑧2 + 2𝑧−3𝑧3)Δ◇
6 = −1 + 𝒞◇,−1

23 + (𝑁◇,−1
1 )2. (8.37)

Inserting (8.36) into (8.37) we obtain

(2𝑧−2𝑧2 + 2𝑧−3𝑧3)Δ◇
6

=4𝐵2,−3𝐵−2,3 − (𝑁1 +𝑀 + 1)(−𝑁1 +𝑀 + 1) (8.38a)
=4𝐵−2,3𝐵2,−3 − (𝑁1 +𝑀 − 1)(−𝑁1 +𝑀 − 1), (8.38b)

where the 𝐵, 𝑁1 and 𝑀 operators should be equipped with the superscript ◇,−1.
Let us sum up the factorizations in the variables 𝑦−1𝑦1, 𝑡 obtained with the

help of the three subalgebras:

𝑡ℒ2 = 2𝐵2,−1𝐵3,1 +𝑀 +𝑁1 − 1 (8.39a)
= 2𝐵3,1𝐵2,−1 +𝑀 +𝑁1 + 1 (8.39b)
= 2𝐵2,1𝐵3,−1 +𝑀 −𝑁1 − 1 (8.39c)
= 2𝐵3,−1𝐵2,1 +𝑀 −𝑁1 + 1, (8.39d)

2𝑦−1𝑦1ℒ2 = −4𝐵2,−3𝐵−2,3 − (𝑁1 +𝑀 + 1)(𝑁1 −𝑀 − 1) (8.39e)
= −4𝐵−2,3𝐵2,−3 − (𝑁1 +𝑀 − 1)(𝑁1 −𝑀 + 1), (8.39f)

where the 𝐵, 𝑁1 and 𝑀 operators should be equipped with the superscript
sch,−1.

Indeed, to obtain (8.39a)–(8.39d) we insert (8.31) into (8.33). To obtain
(8.39e)–(8.39f) we rewrite (8.38), multiplying it by −1.

In the variables 𝑤, 𝑢, 𝑠, we need to make the replacements

𝑦−1𝑦1 → 𝑤𝑠2, (8.40a)
𝑡 → 𝑠2. (8.40b)

8.8 Factorizations of the confluent operator

Factorizations of ℒ2 described in Subsect. 8.7 yield the following factorizations
of the confluent operator:
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ℱ𝜃,𝛼 =
(︁
𝜕𝑤 − 1

)︁(︁
𝑤𝜕𝑤 + 𝛼

)︁
− 1

2(𝜃 − 𝛼+ 1)

=
(︁
𝑤𝜕𝑤 + 1 + 𝛼

)︁(︁
𝜕𝑤 − 1

)︁
− 1

2(𝜃 − 𝛼− 1)

= 𝜕𝑤

(︁
𝑤𝜕𝑤 + 𝛼− 𝑤

)︁
− 1

2(𝜃 + 𝛼− 1)

=
(︁
𝑤𝜕𝑤 + 1 + 𝛼− 𝑤

)︁
𝜕𝑤 − 1

2(𝜃 + 𝛼+ 1),

𝑤ℱ𝜃,𝛼 =
(︁
𝑤𝜕𝑤 + 1

2(−𝜃 + 𝛼− 1) − 𝑤
)︁(︁
𝑤𝜕𝑤 + 1

2(𝜃 + 𝛼+ 1)
)︁

−1
4(−𝜃 + 𝛼− 1)(𝜃 + 𝛼+ 1)

=
(︁
𝑤𝜕𝑤 + 1

2(𝜃 + 𝛼− 1)
)︁(︁
𝑤𝜕𝑤 + 1

2(−𝜃 + 𝛼+ 1) − 𝑤
)︁

−1
4(−𝜃 + 𝛼+ 1)(𝜃 + 𝛼− 1).

8.9 The 1𝐹1 function

The 1ℱ1 equation (8.24) has a regular singular point at 0. Its indices at 0 are
equal to 0, 1 − 𝑐. For 𝑐 ̸= 0,−1,−2, . . . , the unique solution of the confluent
equation analytic at 0 and equal to 1 at 0 is called the 1𝐹1 function or Kummer’s
confluent function. It is equal to

𝐹 (𝑎; 𝑐;𝑤) :=
∞∑︁

𝑛=0

(𝑎)𝑛

(𝑐)𝑛

𝑤𝑛

𝑛! .

It is defined for 𝑐 ≠ 0,−1,−2, . . . . Sometimes it is more convenient to consider
the functions

F(𝑎; 𝑐;𝑤) := 𝐹 (𝑎; 𝑐;𝑤)
Γ(𝑐) =

∞∑︁
𝑛=0

(𝑎)𝑛

Γ(𝑐+ 𝑛)
𝑤𝑛

𝑛! ,

FI(𝑎; 𝑐;𝑤) := Γ(𝑎)Γ(𝑐− 𝑎)
Γ(𝑐) 𝐹 (𝑎; 𝑐;𝑤).

In the Lie-algebraic parameters:

𝐹𝜃,𝛼(𝑤) := 𝐹
(︁1 + 𝛼+ 𝜃

2 ; 1 + 𝛼;𝑤
)︁
,

F𝜃,𝛼(𝑤) := F
(︁1 + 𝛼+ 𝜃

2 ; 1 + 𝛼;𝑤
)︁

=
𝐹𝜃,𝛼(𝑤)
Γ(𝛼+ 1) ,

FI
𝜃,𝛼(𝑤) := FI

(︁1 + 𝛼+ 𝜃

2 ; 1 + 𝛼;𝑤
)︁

=
Γ( 1+𝛼+𝜃

2 )Γ( 1+𝛼−𝜃
2 )𝐹𝜃,𝛼(𝑤)

Γ(𝛼+ 1) .
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8.10 The 2𝐹0 function

Recall from (8.22) that in parallel with the 1ℱ1 operator it is useful to consider
the 2ℱ0 operator. The 2ℱ0 operator does not have a regular singular point
at zero, hence to construct its solutions having a simple behavior at zero we
cannot use the Frobenius method. One of such solutions is the 2𝐹0 function. For
𝑤 ∈ C∖[0,+∞[ it can be defined by

𝐹 (𝑎, 𝑏; −;𝑤) := lim
𝑐→∞

𝐹 (𝑎, 𝑏; 𝑐; 𝑐𝑤),

where | arg 𝑐 − 𝜋| < 𝜋 − 𝜖, 𝜖 > 0. It extends to an analytic function on the
universal cover of C∖{0} with a branch point of an infinite order at 0. It has the
following asymptotic expansion:

𝐹 (𝑎, 𝑏; −;𝑤) ∼
∞∑︁

𝑛=0

(𝑎)𝑛(𝑏)𝑛

𝑛! 𝑤𝑛, | arg𝑤 − 𝜋| < 𝜋 − 𝜖.

Sometimes instead of 2𝐹0 it is useful to consider the function

𝐹 I(𝑎, 𝑏; −;𝑤) := Γ(𝑎)𝐹 (𝑎, 𝑏; −;𝑤).

When we use the Lie-algebraic parameters, we denote the 2𝐹0 function by
𝐹 and 𝐹 I. The tilde is needed to avoid the confusion with the 1𝐹1 functions:

𝐹𝜃,𝛼(𝑤) := 𝐹
(︁1 + 𝛼+ 𝜃

2 ,
1 − 𝛼+ 𝜃

2 ; −;𝑤
)︁
,

𝐹 I
𝜃,𝛼(𝑤) := 𝐹 I

(︁1 + 𝛼+ 𝜃

2 ,
1 − 𝛼+ 𝜃

2 ; −;𝑤
)︁

= Γ
(︁1 − 𝛼+ 𝜃

2

)︁
𝐹𝜃,𝛼(𝑤).

8.11 Standard solutions

The 1𝐹1 equation has two singular points. 0 is a regular singular point and with
each of its two indices we can associate the corresponding solution. ∞ is not
a regular singular point. However we can define two solutions with a simple
behavior around ∞. Therefore, we obtain 4 standard solutions.

The solutions that have a simple behavior at zero are expressed in terms
of the function 𝐹𝜃,𝛼. Using 4 discrete symmetries yields 4 distinct expressions.
Taking into account Kummer’s identity we obtain 2 pairs of standard solutions.

The solutions with a simple behavior at ±∞ are expressed in terms of 𝐹𝜃,𝛼.
Again, 4 discrete symmetries yield 4 distinct expressions. Taking into account
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the trivial identity 𝐹𝜃,𝛼 = 𝐹𝜃,−𝛼 we obtain 2 pairs of standard solutions.

∼ 1 at 0 : 𝐹𝜃,𝛼(𝑤)
=e𝑤𝐹−𝜃,𝛼(−𝑤);

∼ 𝑤−𝛼 at 0 : 𝑤−𝛼𝐹𝜃,−𝛼(𝑤)
=𝑤−𝛼e𝑤𝐹−𝜃,−𝛼(−𝑤);

∼ 𝑤−𝑎 at +∞ : 𝑤
−1−𝜃−𝛼

2 𝐹𝜃,𝛼(−𝑤−1)

=𝑤
−1−𝜃−𝛼

2 𝐹𝜃,−𝛼(−𝑤−1);

∼ (−𝑤)𝑏−1e𝑤 at −∞ : e𝑤(−𝑤)
−1+𝜃−𝛼

2 𝐹−𝜃,𝛼(𝑤−1)

=e𝑤(−𝑤)
−1+𝜃−𝛼

2 𝐹−𝜃,−𝛼(𝑤−1).

The solution ∼ 𝑤−𝑎 at +∞ is often called Tricomi’s confluent function.

8.12 Recurrence relations

Recurrence relations for the confluent function correspond to roots of the Lie
algebra sch(2):

𝜕𝑤F𝜃,𝛼(𝑤) = 1 + 𝜃 + 𝛼

2 F𝜃+1,𝛼+1(𝑤),

(𝑤𝜕𝑤 + 𝛼− 𝑤) F𝜃,𝛼(𝑤) = F𝜃−1,𝛼−1(𝑤),

(𝑤𝜕𝑤 + 𝛼) F𝜃,𝛼(𝑤) = F𝜃+1,𝛼−1(𝑤),

(𝜕𝑤 − 1) F𝜃,𝛼(𝑤) = −1 + 𝜃 − 𝛼

2 F𝜃−1,𝛼+1(𝑤),(︂
𝑤𝜕𝑤 + 1 + 𝜃 + 𝛼

2

)︂
F𝜃,𝛼(𝑤) = 1 + 𝜃 + 𝛼

2 F𝜃+2,𝛼(𝑤),(︂
𝑤𝜕𝑤 + 1 − 𝜃 + 𝛼

2 − 𝑤

)︂
F𝜃,𝛼(𝑤) = 1 − 𝜃 + 𝛼

2 F𝜃−2,𝛼(𝑤).

8.13 Wave packets for the heat equation in 2 dimensions

Consider the space R2 ⊕ R and the heat equation given by the operator ℒ2 =
2𝜕𝑦−1𝜕𝑦1 + 2𝜕𝑡. Recall that

𝑀 sch,−1 = 𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 + 2𝑡𝜕𝑡 + 1,
𝑁 sch

1 = −𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 .
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Set

𝐺𝑎
𝜃,𝛼(𝑦−1, 𝑦1, 𝑡)

:=
∫︁
𝛾𝑎

𝜏−𝛼−1𝑡
−1−𝜃+𝛼

2 (𝜏−1𝑦−1 − 1)
−1+𝜃−𝛼

2 exp
(︁ (𝑦−1 − 𝜏)𝑦1

𝑡

)︁
d𝜏, (8.41a)

𝐺𝑏
𝜃,𝛼(𝑦−1, 𝑦1, 𝑡)

:=
∫︁
𝛾𝑏

𝜏−𝛼−1𝑡
−1−𝜃−𝛼

2 (𝜏𝑦1 − 1)
−1+𝜃+𝛼

2 exp
(︁𝑦−1(𝑦1 − 𝜏−1)

𝑡

)︁
d𝜏. (8.41b)

(The superscripts 𝑎 and 𝑏 denote two kinds of wave packets, and not parameters
𝑎, 𝑏).

Proposition 8.1. If the contours 𝛾𝑎 and 𝛾𝑏 are appropriately chosen, then

ℒ2𝐺
𝑎
𝜃,𝛼 = 0, ℒ2𝐺

𝑏
𝜃,𝛼 = 0, (8.42)

𝑀 sch,−1𝐺𝑎
𝜃,𝛼 = −𝜃𝐺𝑎

𝜃,𝛼, 𝑀 sch,−1𝐺𝑏
𝜃,𝛼 = −𝜃𝐺𝑏

𝜃,𝛼, (8.43)
𝑁1𝐺

𝑎
𝜃,𝛼 = 𝛼𝐺𝑎

𝜃,𝛼, 𝑁1𝐺
𝑏
𝜃,𝛼 = 𝛼𝐺𝑏

𝜃,𝛼. (8.44)

Proof. By the analysis of Subsect. 7.6, the following functions

𝑔𝑎
𝜈 (𝑦−1, 𝑦1, 𝑡) := 𝑡−1−𝜈𝑦𝜈

−1 exp
(︁𝑦−1𝑦1

𝑡

)︁
, (8.45a)

𝑔𝑏
𝜈(𝑦−1, 𝑦1, 𝑡) := 𝑡−1−𝜈𝑦𝜈

1 exp
(︁𝑦−1𝑦1

𝑡

)︁
(8.45b)

solve the heat equation. They still solve the heat equation after translating and
rotating. Therefore,

𝐺𝑎
𝜃,𝛼(𝑦−1, 𝑦1, 𝑡) =

∫︁
𝛾𝑎

𝑔𝑎
−1+𝜃−𝛼

2
(𝜏−1(𝑦−1 − 1), 𝜏𝑦1, 𝑡)𝜏−𝛼−1d𝜏, (8.46a)

𝐺𝑏
𝜃,𝛼(𝑦−1, 𝑦1, 𝑡) =

∫︁
𝛾𝑏

𝑔𝑏
−1+𝜃+𝛼

2
(𝜏−1𝑦−1, 𝜏(𝑦1 − 1), 𝑡)𝜏−𝛼−1d𝜏 (8.46b)

also solve the heat equation. This proves (8.42).
If the contours satisfy the requirements of Prop. 3.2, then (8.46) imply (8.44).

We can rewrite (8.46) in a somewhat different way:

(8.46𝑎) =
∫︁
𝛾𝑎

𝑔𝑎
−1+𝜃−𝛼

2
(𝜏−1(𝑦−1 − 1), 𝜏−1𝑦1, 𝜏

−2𝑡)(𝜏−1)𝜃d(𝜏−1), (8.47a)

(8.46𝑏) =
∫︁
𝛾𝑏

𝑔𝑏
−1+𝜃+𝛼

2
(𝜏𝑦−1, 𝜏(𝑦1 − 1), 𝜏2𝑡)𝜏𝜃d𝜏. (8.47b)
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If the contours satisfy the requirements of Prop. 7.1, then (8.47) imply (8.43). 2

Now we express the above wave packets in the coordinates 𝑤, 𝑠, 𝑢1:

(8.47𝑎) =
∫︁
𝑠−1−𝜃+𝛼

(︁ 𝑤𝑠
𝜏𝑢1

− 1
)︁−1+𝜃−𝛼

2 exp
(︁
𝑤 − 𝜏𝑢1

𝑠

)︁
𝜏−𝛼−1d𝜏, (8.48a)

(8.47𝑏) =
∫︁
𝑠−1−𝜃−𝛼(𝜏𝑢1𝑠− 1)

−1+𝜃+𝛼
2 exp

(︁
𝑤
(︀
1 − 1

𝜏𝑢1𝑠

)︀)︁
𝜏−𝛼−1d𝜏. (8.48b)

In (8.48a) we make the substitution 𝜎 := 𝑤 − 𝜏𝑢1
𝑠 , or 𝜏 = 𝑠

𝑢1
(𝑤 − 𝜎). In

(8.48b) we make the substitution 𝜎 := 1
1− 1

𝜏𝑢1𝑠

, or 𝜏 = 𝜎
𝑢1𝑠(𝜎−1) . We obtain

𝐺𝑎
𝜃,𝛼(𝑤, 𝑠, 𝑢1) = 𝑠−1−𝜃𝑢1

𝛼𝐹 𝑎
𝜃,𝛼(𝑤), (8.49a)

𝐺𝑏
𝜃,𝛼(𝑤, 𝑠, 𝑢1) = 𝑠−1−𝜃𝑢1

𝛼𝐹 𝑏
𝜃,𝛼(𝑤), (8.49b)

where

𝐹 𝑎
𝜃,𝛼(𝑤) :=

∫︁
𝛾𝑎

𝜎
−𝛼+𝜃−1

2 (𝑤 − 𝜎)
−𝛼−𝜃−1

2 e𝜎d𝜎, (8.50a)

𝐹 𝑏
𝜃,𝛼(𝑤) :=

∫︁
𝛾𝑏

exp
(︁𝑤
𝜎

)︁
𝜎−𝛼−1(𝜎 − 1)

𝛼+𝜌−1
2 d𝜎. (8.50b)

The above analysis shows that (for appropriate contours) the functions (8.50a)
and (8.50b) satisfy the confluent equation.

8.14 Integral representations

Let us prove directly that integral (8.50a) and (8.50b) solve the confluent equation.

Theorem 8.2. a) Let [0, 1] ∋ 𝜏
𝛾↦→ 𝑡(𝜏) satisfy 𝑡𝑎−𝑐+1e𝑡(𝑡−𝑤)−𝑎−1

⃒⃒⃒𝑡(1)

𝑡(0)
= 0.

Then
ℱ(𝑎; 𝑐;𝑤, 𝜕𝑤)

∫︁
𝛾

𝑡𝑎−𝑐e𝑡(𝑡− 𝑤)−𝑎d𝑡 = 0. (8.51)

b) Let [0, 1] ∋ 𝜏
𝛾↦→ 𝑡(𝜏) satisfy e 𝑤

𝑡 𝑡−𝑐(1 − 𝑡)𝑐−𝑎
⃒⃒⃒𝑡(1)

𝑡(0)
= 0. Then

ℱ(𝑎; 𝑐;𝑤, 𝜕𝑤)
∫︁
𝛾

e
𝑤
𝑡 𝑡−𝑐(1 − 𝑡)𝑐−𝑎−1d𝑡 = 0. (8.52)



Group-theoretical origin of symmetries of hypergeometric class equations and functions 109

Proof. We check that for any contour 𝛾

lhs of (8.51) = −𝑎
∫︁
𝛾

d𝑡 𝜕𝑡𝑡
𝑎−𝑐+1e𝑡(𝑡− 𝑤)−𝑎−1,

lhs of (8.52) = −
∫︁
𝛾

d𝑡 𝜕𝑡e
𝑤
𝑡 𝑡−𝑐(1 − 𝑡)𝑐−𝑎.

2

8.15 Integral representations of standard solutions

Using the integral representations of type a) and attaching contours to −∞, 0
and 𝑤 we can obtain all standard solutions.

Similarly, using the integral representations of type b) and attaching contours
to 0 − 0, 1 and ∞ we can obtain all standard solutions.

Here is the list of contours:

a) b)
∼ 1 at 0: ]−∞, (0, 𝑤)+,−∞[, [1,+∞[;
∼ 𝑤−𝛼 at 0: [0, 𝑤], (0− 0)+;
∼ 𝑤−𝑎 at +∞: ]−∞, 0], ]−∞, 0];
∼ (−𝑤)𝑏−1e𝑤 at −∞: [𝑤,−∞[, [0, 1].

(0, 𝑤)+ means that we bypass 0 and 𝑤 counterclockwise. (0 − 0)+ means
that the contour departs from 0 on the negative side, encircles it and then comes
back again from the negative side.

Here are the explicit formulas for a)-type integral representations:

all 𝜃, 𝛼: (8.53a)
1

2𝜋i

∫︁
]−∞,(0,𝑤)+−∞[

𝑡
−1+𝜃−𝛼

2 e𝑡(𝑡− 𝑤)
−1−𝜃−𝛼

2 d𝑡

= F𝜃,𝛼(𝑤),
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Re(1 − 𝛼) > |Re𝜃| : (8.53b)
𝑤∫︁

0

𝑡
−1+𝜃−𝛼

2 e𝑡(𝑤 − 𝑡)
−1−𝜃−𝛼

2 d𝑡

= 𝑤−𝛼FI
𝜃,−𝛼(𝑤), 𝑤 ̸∈] − ∞, 0];

0∫︁
𝑤

(−𝑡)
−1+𝜃−𝛼

2 e𝑡(𝑡− 𝑤)
−1−𝜃−𝛼

2 d𝑡

= (−𝑤)−𝛼FI
𝜃,−𝛼(𝑤), 𝑤 ̸∈ [0,∞[;

Re(1 + 𝜃 − 𝛼) > 0 : (8.53c)
0∫︁

−∞

(−𝑡)
−1+𝜃−𝛼

2 e𝑡(𝑤 − 𝑡)
−1−𝜃−𝛼

2 d𝑡

= 𝑤
−1−𝜃−𝛼

2 𝐹 I
𝜃,𝛼(−𝑤−1), 𝑤 ̸∈] − ∞, 0];

𝑥𝑠Re(1 − 𝜃 − 𝛼) > 0 : (8.53d)
𝑤∫︁

−∞

(−𝑡)
−1+𝜃−𝛼

2 e𝑡(𝑤 − 𝑡)
−1−𝜃−𝛼

2 d𝑡

= e𝑤(−𝑤)
−1+𝜃−𝛼

2 𝐹 I
−𝜃,𝛼(𝑤−1), 𝑤 ̸∈ [0,∞[.

We also present explicit formulas for b)-type integral representations:

Re(1 + 𝛼) > |Re𝜃| : (8.54a)∫︁
[1,+∞[

e
𝑤
𝑡 𝑡−1−𝛼(𝑡− 1)

−1−𝜃+𝛼
2 d𝑡

= FI
𝜃,𝛼(𝑤);

all 𝜃, 𝛼: (8.54b)
1

2𝜋i

∫︁
(0−0)+

e
𝑤
𝑡 𝑡−1−𝛼(1 − 𝑡)

−1−𝜃+𝛼
2 d𝑡

= 𝑤−𝛼F𝜃,−𝛼(𝑤), Re𝑤 > 0;
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Re(1 + 𝜃 + 𝛼) > 0 : (8.54c)
0∫︁

−∞

e
𝑤
𝑡 (−𝑡)−1−𝛼(1 − 𝑡)

−1−𝜃+𝛼
2 d𝑡

= 𝑤
−1−𝜃−𝛼

2 𝐹 I
𝜃,−𝛼(−𝑤−1), Re𝑤 > 0;

Re(1 − 𝜃 + 𝛼) > 0 : (8.54d)
1∫︁

0

e
𝑤
𝑡 𝑡−1−𝛼(1 − 𝑡)

−1−𝜃+𝛼
2 d𝑡

= e𝑤(−𝑤)
−1+𝜃−𝛼

2 𝐹 I
−𝜃,−𝛼(𝑤−1), Re𝑤 < 0.

8.16 Connection formulas

The two solutions with a simple behavior at infinity can be expressed as linear
combination of the solutions with a simple behavior at zero:

𝑤
−1−𝜃−𝛼

2 𝐹𝜃,±𝛼(−𝑤−1) =
𝜋F𝜃,𝛼(𝑤)

sin 𝜋(−𝛼)Γ
(︀ 1+𝜃−𝛼

2
)︀ (8.55a)

+
𝜋𝑤−𝛼F𝜃,−𝛼(𝑤)
sin 𝜋𝛼Γ

(︀ 1+𝜃+𝛼
2

)︀ , 𝑤 ̸∈] − ∞, 0];

e𝑤(−𝑤)
−1+𝜃−𝛼

2 𝐹−𝜃,±𝛼(𝑤−1) =
𝜋F𝜃,𝛼(𝑤)

sin 𝜋(−𝛼)Γ
(︀ 1−𝜃−𝛼

2
)︀ (8.55b)

+
𝜋(−𝑤)−𝛼F𝜃,−𝛼(𝑤)
sin 𝜋𝛼Γ

(︀1−𝜃+𝛼
2

)︀ , 𝑤 ̸∈ [0,+∞[.

Note that (8.55a) uses a different domain from (8.55b). This is natural,
however it is inconvenient when we want to rewrite (8.55) in the matrix form,
because on the right hand side of (8.55a) and (8.55b) the second standard
solutions differ by a phase factor.

Let us introduce the matrix

𝐴𝜃,𝛼 := 𝜋

sin(𝜋𝛼)

⎡⎢⎢⎣
−1

Γ( 1+𝜃−𝛼
2 )

e− i𝜋
2 𝛼

Γ( 1+𝜃+𝛼
2 )

−1
Γ( 1−𝜃−𝛼

2 )
e

i𝜋
2 𝛼

Γ( 1−𝜃+𝛼
2 )

⎤⎥⎥⎦ ,
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satisfying

𝐴−1
𝜃,𝛼 = ie i𝜋

2 𝜃

2

⎡⎢⎣ e
i𝜋𝛼

2

Γ( 1−𝜃+𝛼
2 )

−e− i𝜋𝛼
2

Γ( 1+𝜃+𝛼
2 )

1
Γ( 1−𝜃−𝛼

2 )
−1

Γ( 1+𝜃−𝛼
2 )

⎤⎥⎦ , (8.56)

det𝐴𝜃,𝛼 = − i𝜋e− i𝜋
2 𝜃

2 sin(𝜋𝛼) . (8.57)

Then we have for Im𝑤 > 0⎡⎣ 𝑤
−1−𝜃−𝛼

2 𝐹𝜃,±𝛼(−𝑤−1)

e𝑤(−𝑤)
−1+𝜃−𝛼

2 𝐹−𝜃,±𝛼(𝑤−1)

⎤⎦ = 𝐴𝜃,𝛼

⎡⎣ F𝜃,𝛼(𝑤)

(−i𝑤)−𝛼F𝜃,−𝛼(𝑤)

⎤⎦ . (8.58)

Let us show how to derive connection formulas from integral representations
of type a). We have(︃ ∫︁

]−∞,0−i0]

+
∫︁

[0−i0,𝑤]

−
∫︁

]−∞,0+i0]

−
∫︁

[0+i0,𝑤]

)︃
𝑡

−1+𝜃−𝛼
2 e𝑡(𝑡− 𝑤)

−1−𝜃−𝛼
2 d𝑡

=
∫︁

]−∞,(0,𝑤)+,−∞[

𝑡
−1+𝜃−𝛼

2 e𝑡(𝑡− 𝑤)
−1−𝜃−𝛼

2 d𝑡, 𝑤 ̸∈ [−∞, 0[; (8.59a)

(︃ ∫︁
]−∞,𝑤−i0]

+
∫︁

[𝑤−i0,0]

−
∫︁

]−∞,𝑤+i0]

−
∫︁

[𝑤+i0,0]

)︃
𝑡

−1+𝜃−𝛼
2 e𝑡(𝑡− 𝑤)

−1−𝜃−𝛼
2 d𝑡

=
∫︁

]−∞,(0,𝑤)+,−∞[

𝑡
−1+𝜃−𝛼

2 e𝑡(𝑡− 𝑤)
−1−𝜃−𝛼

2 d𝑡, 𝑤 ̸∈]0,+∞]. (8.59b)

We obtain

− sin(𝜋𝛼)𝑤
−1−𝜃−𝛼

2 𝐹 I
𝜃,𝛼(−𝑤−1) + cos 𝜋(𝜃 + 𝛼)

2 𝑤−𝛼FI
𝜃,−𝛼(𝑤)

=𝜋F𝜃,𝛼(𝑤), 𝑤 ̸∈ [−∞, 0[; (8.60a)

− sin(𝜋𝛼)e𝑤(−𝑤)
−1+𝜃−𝛼

2 𝐹 I
−𝜃,𝛼(𝑤−1) + cos 𝜋(𝜃 − 𝛼)

2 (−𝑤)−𝛼FI
𝜃,−𝛼(𝑤)

=𝜋F𝜃,𝛼(𝑤), 𝑤 ̸∈]0,+∞]. (8.60b)

This implies (8.55).
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9 Heat equation in 1 dimension and the
Hermite equation

The goal of this section is to derive the Hermite equation together with its
symmetries from the heat equation in 1 dimension, which in turn comes from
the Laplace equation in 5 and 3 dimensions.

The first part of this section describes main steps of the derivation of
the Hermite equation. They are parallel to those of the derivation of the 1ℱ1
equation:
(1) We start from the Schrödinger Lie algebra sch(1) and group Sch(1) con-

sidered as a subalgebra of so(5), resp. a subgroup of O(5), acting in 5
dimensions. The main initial operator is the Laplacian Δ5.

(2) We descend onto 3 dimensions. The 5-dimensional Laplacian Δ5 becomes
the 3-dimensional Laplacian Δ3.

(3) We descend on 1 + 1 dimensions. The Laplacian Δ3 becomes the heat
operator ℒ1. The representations 𝐵sch,𝜂 and 𝛼sch,𝜂 with 𝜂 = − 1

2 and
𝜂 = − 5

2 are generalized symmetries of ℒ1.
(4) We choose coordinates 𝑤, 𝑠, so that the Cartan operator is expressed in

terms of 𝑠. We compute ℒ1, 𝐵sch,𝜂 and 𝛼sch,𝜂 in the new coordinates.
(5) We make an ansatz that diagonalizes the Cartan operator, whose eigenvalue

becomes a parameter, denoted by 𝜆. ℒ1, 𝐵sch,𝜂 and 𝛼sch,𝜂 involve now only
the single variable 𝑤. 2𝑠2ℒ1 turns out to be the Hermite operator. The
generalized symmetries of ℒ1 yield transmutation relations and discrete
symmetries of the Hermite operator.

(As in the previous section, in our presentation we omit the step 2).
In the remaining part of this section we develop the theory of the Hermite

equation and its solutions. Its organization is parallel to that of all other sections
on individual equations, and especially of Sect. 6 on the Gegenbauer equation.
In particular, the Gegenbauer equation can be derived by a quadratic relation
from the 2ℱ1 equation in essentially the same way as the Hermite equation can
be derived from the 1ℱ1 equation.

9.1 sch(1) in 5 dimensions

We again consider R5 with the coordinates

𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3 (9.1)
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and the scalar product given by

⟨𝑧|𝑧⟩ = 𝑧2
0 + 2𝑧−2𝑧2 + 2𝑧−3𝑧3. (9.2)

We keep the notation from so(5)—remember that sch(1) is a subalgebra of so(5).
Lie algebra sch(1). The Cartan algebra

𝑀 = 𝑧−2𝜕𝑧−2 − 𝑧2𝜕𝑧2 − 𝑧−3𝜕𝑧−3 + 𝑧3𝜕𝑧3 , (9.3a)
𝐵3,2 = 𝑧−3𝜕𝑧2 − 𝑧−2𝜕𝑧3 . (9.3b)

Root operators

𝐵3,0 = 𝑧−3𝜕𝑧0 − 𝑧0𝜕𝑧3 , (9.4a)
𝐵2,0 = 𝑧−2𝜕𝑧0 − 𝑧0𝜕𝑧2 , (9.4b)

𝐵3,−2 = 𝑧−3𝜕𝑧−2 − 𝑧2𝜕𝑧3 , (9.4c)
𝐵−3,2 = 𝑧3𝜕𝑧2 − 𝑧−2𝜕𝑧−3 . (9.4d)

Weyl symmetries

𝜄𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) = 𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3), (9.5a)
𝜅𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) = 𝐾(𝑧0,−𝑧−3,−𝑧3, 𝑧−2, 𝑧2), (9.5b)
𝜅2𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) = 𝐾(𝑧0,−𝑧−2,−𝑧2,−𝑧−3,−𝑧3), (9.5c)
𝜅3𝐾(𝑧0, 𝑧−2, 𝑧2, 𝑧−3, 𝑧3) = 𝐾(𝑧0, 𝑧−3, 𝑧3,−𝑧−2,−𝑧2). (9.5d)

Laplacian
Δ5 = 𝜕2

𝑧0 + 2𝜕𝑧−2𝜕𝑧2 + 2𝜕𝑧−3𝜕𝑧3 . (9.6)

9.2 sch(1) in 3 dimensions

We descend on the level of R3, with the variables 𝑦0, 𝑦−2, 𝑦2 and the scalar
product given by

⟨𝑦|𝑦⟩ = 𝑦2
0 + 2𝑦−2𝑦2.

Lie algebra sch(1). Cartan algebra

𝑀fl,𝜂 = 𝑦0𝜕𝑦0 + 2𝑦−2𝜕𝑦−2 − 𝜂,

𝐵fl
3,2 = 𝜕𝑦2 .

Root operators

𝐵fl
3,0 = 𝜕𝑦0 ,

𝐵fl
2,0 = 𝑦−2𝜕𝑦0 − 𝑦0𝜕𝑦2 ,

𝐵fl
3,−2 = 𝜕𝑦−2 ,

𝐵fl,𝜂
−3,2 = 𝑦−2

(︀
𝑦0𝜕𝑦0 + 𝑦−2𝜕𝑦−2 − 𝜂

)︀
− 1

2𝑦
2
0𝜕𝑦2 .



Group-theoretical origin of symmetries of hypergeometric class equations and functions 115

Weyl symmetries

𝜄fl,𝜂𝑓(𝑦0, 𝑦−2, 𝑦2) = 𝑓(𝑦0, 𝑦−2, 𝑦2),

𝜅fl,𝜂𝑓(𝑦0, 𝑦−2, 𝑦2) = 𝑦𝜂
−2𝑓

(︁ 𝑦0
𝑦−2

,− 1
𝑦−2

,
𝑦2

0 + 2𝑦−2𝑦2
2𝑦−2

)︁
,(︀

𝜅fl,𝜂
)︀2
𝑓(𝑦0, 𝑦−2, 𝑦2) = (−1)𝜂𝑓(−𝑦0, 𝑦−2, 𝑦2),(︀

𝜅fl,𝜂
)︀3
𝑓(𝑦0, 𝑦−2, 𝑦2) = (−𝑦−2)𝜂𝑓

(︁
− 𝑦0
𝑦−2

,− 1
𝑦−2

,
𝑦2

0 + 2𝑦−2𝑦2
2𝑦−2

)︁
.

Laplacian
Δfl

5 = 𝜕2
𝑦0 + 2𝜕𝑦−2𝜕𝑦2 .

9.3 sch(1) in 1 + 1 dimensions

We descend onto the level of R⊕R, as described in Subsect. 7.4. We rename 𝑦−2
to 𝑡.
Lie algebra sch(1). Cartan algebra:

𝑀 sch,𝜂 = 𝑦0𝜕𝑦0 + 2𝑡𝜕𝑡 − 𝜂, (9.7a)
𝐵3,2 = 1. (9.7b)

Root operators

𝐵sch
3,0 = 𝜕𝑦0 , (9.8a)

𝐵sch
2,0 = 𝑡𝜕𝑦0 − 𝑦0, (9.8b)

𝐵sch
3,−2 = 𝜕𝑡, (9.8c)

𝐵sch,𝜂
−3,2 = 𝑡(𝑦0𝜕𝑦0 + 𝑡𝜕𝑡 − 𝜂) − 1

2𝑦
2
0 . (9.8d)

Weyl symmetry

𝜄sch,𝜂ℎ(𝑦0, 𝑡) = ℎ(𝑦0, 𝑡), (9.9a)

𝜅sch,𝜂ℎ(𝑦0, 𝑡) = 𝑡𝜂 exp( 𝑦2
0

2𝑡 )ℎ( 𝑦0
𝑡 ,−

1
𝑡 ), (9.9b)(︀

𝜅sch,𝜂
)︀2
ℎ(𝑦0, 𝑡) = (−1)𝜂ℎ(−𝑦0, 𝑡), (9.9c)(︀

𝜅sch,𝜂
)︀3
ℎ(𝑦0, 𝑡) = (−𝑡)𝜂 exp( 𝑦2

0
2𝑡 )ℎ(− 𝑦0

𝑡 ,−
1
𝑡 ). (9.9d)

Heat operator
Δsch

5 = ℒ1 = 𝜕2
𝑦0 + 2𝜕𝑡. (9.10)
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9.4 sch(1) in the coordinates 𝑤, 𝑠

Let us define new coordinates

𝑤 = 𝑦0√
2 𝑡

, 𝑠 =
√
𝑡 , (9.11)

with the reverse transformation

𝑦0 =
√

2 𝑠𝑤 , 𝑡 = 𝑠2 . (9.12)

Lie algebra sch(1). Cartan algebra

𝑀 sch,𝜂 = 𝑠 𝜕𝑠 − 𝜂,

𝐵3 2 = 1.

Root operators

𝐵sch
3,0 = 1√

2 𝑠
𝜕𝑤,

𝐵sch
2,0 = 𝑠√

2
( 𝜕𝑤 − 2𝑤) ,

𝐵sch
3,−2 = 1

2 𝑠2 (−𝑤 𝜕𝑤 + 𝑠𝜕𝑠) ,

𝐵sch,𝜂
−3,2 = 𝑠2

2
(︀
𝑤 𝜕𝑤 + 𝑠𝜕𝑠 − 2𝜂 − 2𝑤2)︀ .

Weyl symmetries

𝜄sch,𝜂ℎ(𝑤, 𝑠) = ℎ(𝑤, 𝑠),

𝜅sch,𝜂ℎ(𝑤, 𝑠) = 𝑠2𝜂e𝑤2
ℎ(i𝑤,− i

𝑠 ),
(𝜅sch,𝜂)2ℎ(𝑤, 𝑠) = (−1)𝜂ℎ(−𝑤, 𝑠),

(𝜅sch,𝜂)3ℎ(𝑤, 𝑠) = (−𝑠2)𝜂e𝑤2
ℎ(−i𝑤,− i

𝑠 ).

Heat operator
ℒ1 = 1

2𝑠2
(︀
𝜕2

𝑤 − 2𝑤 𝜕𝑤 + 2𝑠 𝜕𝑠

)︀
. (9.13)

9.5 Hermite operator

Let us set 𝜂 = − 1
2 and use the ansatz

ℎ(𝑤, 𝑠) = 𝑠−𝜆− 1
2𝑆(𝑤). (9.14)
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Clearly,

𝑀 sch,− 1
2 ℎ = −𝜆ℎ, (9.15)

𝑠𝜆+ 1
2 2𝑠2ℒ1ℎ = 𝒮𝜆(𝑤, 𝜕𝑤)𝑆(𝑤), (9.16)

where we have introduced the Hermite operator

𝑆𝜆(𝑤, 𝜕𝑤) := 𝜕2
𝑤 − 2𝑤𝜕𝑤 − 2𝜆− 1. (9.17)

We will also use an alternative notation

𝑆(𝑎;𝑤, 𝜕𝑤) := 𝜕2
𝑤 − 2𝑤𝜕𝑤 − 2𝑎, (9.18)

so that
𝜆 = 𝑎− 1

2 , 𝑎 = 𝜆+ 1
2 . (9.19)

9.6 Quadratic transformation

Let us go back to 2+1 dimensions and the heat operator

ℒ2 = 2𝜕𝑦−1𝜕𝑦1 + 2𝜕𝑡. (9.20)

Let us use the reduction described in Subsect. 3.14, and then applied in Subsect.
6.4:

𝑦0 :=
√︀

2𝑦−1𝑦1, 𝑢 :=
√︂

𝑦1
𝑦−1

. (9.21)

In the new variables,

𝑁1 = 𝑢𝜕𝑢, (9.22)

ℒ2 =
(︁
𝜕𝑦0 + 1

2𝑦0

)︁2
− 1
𝑦2

0

(︁
𝑢𝜕𝑢 − 1

2

)︁(︁
𝑢𝜕𝑢 + 1

2

)︁
+ 2𝜕𝑡. (9.23)

Therefore,

(𝑢𝑦0)
1
2 ℒ2(𝑢𝑦0)− 1

2 = − 1
𝑦2

0
𝑁1

(︁
𝑁1 − 1

)︁
+ ℒ1, (9.24a)

(𝑢−1𝑦0)
1
2 ℒ2(𝑢−1𝑦0)− 1

2 = − 1
𝑦2

0
𝑁1

(︁
𝑁1 + 1

)︁
+ ℒ1. (9.24b)

Compare the coordinates (8.12) for 2+1 dimensions and the coordinates (9.11)
for 1+1 dimensions. The coordinate 𝑠 are the same. This is not the case of 𝑤, so
let us rename 𝑤 from (9.11) as 𝑣. We then have 𝑤 = 𝑣2. We also have

𝑢𝑦0 =
√

2𝑠𝑢1, 𝑢−1𝑦0 =
√

2𝑤𝑢−1
1 𝑠.
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Hence on functions that do not depend on 𝑢 we obtain

𝑠
1
2 𝑢

1
2
1 ℒ2𝑠

− 1
2 𝑢

− 1
2

1 = ℒ1, (9.25a)

𝑠
1
2 𝑢

− 1
2

1 𝑣ℒ2𝑠
− 1

2 𝑢
1
2
1 𝑣

−1 = ℒ1. (9.25b)

Thus by a quadratic transformation we can transform the Hermite equation
into a special case of the confluent equation:

𝒮𝜆(𝑣, 𝜕𝑣) = 4ℱ𝜆,− 1
2
(𝑤, 𝜕𝑤), (9.26a)

𝑣−1𝒮𝜆(𝑣, 𝜕𝑣)𝑣 = 4ℱ𝜆, 1
2
(𝑤, 𝜕𝑤), (9.26b)

where
𝑤 = 𝑣2, 𝑣 =

√
𝑤.

9.7 Transmutation relations and discrete symmetries

The heat operator satisfies the generalized symmetries

𝐵sch,− 5
2 ℒ1 = ℒ1𝐵

sch,− 1
2 , 𝐵 ∈ sch(1); (9.27a)

𝛼sch,− 5
2 ℒ1 = ℒ1𝛼

sch,− 1
2 , 𝛼 ∈ Sch(1). (9.27b)

Equation (9.27a) applied to the roots of sch(1) implies the transmutation
relations of the Hermite operator:

𝜕𝑤 𝒮𝜆 = 𝒮𝜆+1 𝜕𝑤,

(𝜕𝑤 − 2𝑤) 𝒮𝜆 = 𝒮𝜆−1 (𝜕𝑤 − 2𝑤),
(𝑤𝜕𝑤 + 𝜆+ 1

2 ) 𝑤2𝒮𝜆 = 𝑤2𝒮𝜆+2 (𝑤𝜕𝑤 + 𝜆+ 1
2 ),

(𝑤𝜕𝑤 − 𝜆+ 1
2 − 2𝑤2) 𝑤2𝒮𝜆 = 𝑤2𝒮𝜆−2 (𝑤𝜕𝑤 − 𝜆+ 1

2 − 2𝑤2).

Relation (9.27a) applied to the Weyl symmetries of sch(1) implies the discrete
symmetries of the Hermite operator, described below.

The following operators equal 𝒮𝜆(𝑤, 𝜕𝑤) for an appropriate 𝑤:

𝑤 = ±𝑣 : 𝒮𝜆(𝑣, 𝜕𝑣), (9.28a)
𝑤 = ±i𝑣 : − exp(−𝑣2)𝒮−𝜆(𝑣, 𝜕𝑣) exp(𝑣2). (9.28b)

9.8 Factorizations of the heat operator

Special role is played by two distinguished subalgebras of sch(2).
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First note the commutation relations

[𝐵2,0, 𝐵3,0] = 𝐵3,2. (9.29)

Therefore, we have the following distinguished subalgebra in sch(1) isomorphic
to heis(2):

heis0(2) spanned by 𝐵2,0, 𝐵3,0, 𝐵3,2. (9.30)

Let us define

𝒞0 = 2𝐵2,0𝐵3,0 + 2𝑀 −𝐵3,2 (9.31a)
= 2𝐵3,0𝐵2,0 + 2𝑀 +𝐵3,2. (9.31b)

We have the commutation relations

[𝒞0, 𝐵2,0] = −2𝐵2,0(𝐵3,2 − 1),
[𝒞0, 𝐵3,0] = 2𝐵3,0(𝐵3,2 − 1),
[𝒞0, 𝐵3,2] = 0.

But 𝐵sch,𝜂
3,2 = 1. Therefore, on the level of R ⊕ R the operator 𝒞sch,𝜂

0 can be
treated as a kind of a Casimir operator of heis0(2): it commutes with all elements
of heis0(2). Note the identity

2𝑡ℒ1 = 𝒞
sch,− 1

2
0 . (9.32)

Second, consider 𝐵−3,2, 𝐵3,−2, 𝑀 . They are contained both in sch(6) and
in sch(5). Therefore, the subalgebra so23(3), described in Sect. 8.7 in the context
of sch(6), is also contained in sch(5). Recall that its Casimir operator is

𝒞23 = 4𝐵3,−2𝐵−3,2 − (𝑀 + 1)2 + 1 (9.33a)
= 4𝐵−3,2𝐵3,−2 − (𝑀 − 1)2 + 1. (9.33b)

By (4.21) we have

(2𝑧−2𝑧2 + 2𝑧−3𝑧3)Δ◇
5 = 𝒞

◇,− 1
2

23 − 3
4 . (9.34)

Inserting (9.33) into (9.34) we obtain

(2𝑧−2𝑧2 + 2𝑧−3𝑧3)Δ◇
5

=4𝐵2,−3𝐵−2,3 −
(︁
𝑀 + 3

2

)︁(︁
𝑀 + 1

2

)︁
, (9.35a)

=4𝐵−2,3𝐵2,−3 −
(︁
𝑀 − 3

2

)︁(︁
𝑀 − 1

2

)︁
, (9.35b)
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where the 𝐵, 𝑁1 and 𝑀 operators should be decorated with the superscript
◇,− 1

2 .
Let us sum up the factorizations in the variables 𝑦0, 𝑡 obtained with the help

of the two subalgebras:

2𝑡ℒ1 = 2𝐵2,0𝐵3,0 − (−2𝑀 + 1) (9.36a)
= 2𝐵3,0𝐵2,0 − (−2𝑀 − 1), (9.36b)

−𝑦2
0ℒ1 = 4𝐵2,−3𝐵−2,3 −

(︁
𝑀 + 3

2

)︁(︁
𝑀 + 1

2

)︁
(9.36c)

= 4𝐵−2,3𝐵2,−3 −
(︁
𝑀 − 3

2

)︁(︁
𝑀 − 1

2

)︁
, (9.36d)

where the 𝐵, 𝑁1 and 𝑀 operators should be equipped with the superscript
sch,− 1

2 .
In the coordinates 𝑤, 𝑠 we need to make the replacements

𝑡 → 𝑠2, (9.37a)
𝑦2

0 → 2𝑤2𝑠2. (9.37b)

9.9 Factorizations of the Hermite operator

The factorizations of ℒ1 described in Subsect. 9.8 yield the following factorizations
of the Hermite operator:

𝒮𝜆 =
(︀
𝜕𝑤 − 2𝑤

)︀
𝜕𝑤 − 2𝜆− 1

= 𝜕𝑤

(︀
𝜕𝑤 − 2𝑤

)︀
− 2𝜆+ 1,

𝑤2𝒮𝜆 =
(︁
𝑤𝜕𝑤 + 𝜆− 3

2

)︁(︁
𝑤𝜕𝑤 − 𝜆+ 1

2 − 2𝑤2
)︁

+
(︁
𝜆− 3

2

)︁(︁
𝜆− 1

2

)︁
=

(︁
𝑤𝜕𝑤 − 𝜆− 3

2 − 2𝑤2
)︁(︁
𝑤𝜕𝑤 + 𝜆+ 1

2

)︁
+
(︁
𝜆+ 3

2

)︁(︁
𝜆+ 1

2

)︁
.

9.10 Standard solutions

The Hermite equation has only one singular point, ∞. One can define two kinds
of solutions with a simple asymptotics at ∞. They can be derived from the
expressions of Subsect. 8.11, using (9.26) and (9.28b)
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∼ 𝑤−𝑎 for 𝑤 → +∞: 𝑆𝜆(𝑤) := 𝑤−𝜆− 1
2𝐹𝜆, 1

2
(−𝑤−2)

=𝑤−𝑎𝐹
(︁𝑎

2 ,
𝑎+ 1

2 ; −; −𝑤−2
)︁
,

∼(−i𝑤)𝑎−1e𝑤2
for 𝑤 → +i∞: e𝑤2

𝑆−𝜆(−i𝑤) = (−i𝑤)𝜆− 1
2 e𝑤2

𝐹−𝜆, 1
2
(𝑤−2)

= (−i𝑤)𝑎−1e𝑤2
𝐹
(︁1 − 𝑎

2 ,
2 − 𝑎

2 ; −; −𝑤−2
)︁
.

9.11 Recurrence relations

Each of the following recurrence relations corresponds to a root of sch(1):

𝜕𝑤𝑆𝜆(𝑤) = −
(︁1

2 + 𝜆
)︁
𝑆𝜆+1(𝑤),

(𝜕𝑤 − 2𝑤)𝑆𝜆(𝑤) = −2𝑆𝜆−1(𝑤),(︁
𝑤𝜕𝑤 + 1

2 + 𝜆
)︁
𝑆𝜆(𝑤) = 1

2

(︁1
2 + 𝜆

)︁(︁3
2 + 𝜆

)︁
𝑆𝜆+2(𝑤),(︁

𝑤𝜕𝑤 + 1
2 − 𝜆− 2𝑤2

)︁
𝑆𝜆(𝑤) = −2𝑆𝜆−2(𝑤).

The first pair corresponds correspond to the celebrated annihilation and
creation operators in the theory of quantum harmonic oscillator. The second pair
are the double annihilation and creation operators.

9.12 Wave packets for the heat equation in 1 dimensions

Consider the space R ⊕ R and the heat equation given by the operator ℒ1 =
𝜕2

𝑦 + 2𝜕𝑡. Recall that

𝑀 sch,− 1
2 = 𝑦𝜕𝑦 + 2𝑡𝜕𝑡 + 1

2 . (9.38)

Set

𝐺𝑎
𝜆(𝑦, 𝑡) :=

∫︁
𝛾𝑎

𝑡−
1
2 exp

(︁ (𝑦 − 𝜏−1)2

2𝑡

)︁
𝜏− 3

2 +𝜆d𝜏, (9.39a)

𝐺𝑏
𝜆(𝑦, 𝑡) :=

∫︁
𝛾𝑏

e−
√

2𝑦𝜏−𝑡𝜏2
𝜏− 1

2 +𝜆d𝜏. (9.39b)
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Proposition 9.1. We have

ℒ1𝐺
𝑎
𝜆 = 0, ℒ1𝐺

𝑏
𝜆 = 0; (9.40a)

𝑀 sch,− 1
2𝐺𝑎

𝜆 = −𝜆𝐺𝑎
𝜆, 𝑀 sch,− 1

2𝐺𝑏
𝜆 = −𝜆𝐺𝑏

𝜆. (9.40b)

Proof. Set

𝑔𝑎(𝑦, 𝑡) := 𝑡−
1
2 exp (𝑦 − 1)2

2𝑡 , (9.41a)

𝑔𝑏(𝑦, 𝑡) := e−
√

2𝑦−𝑡. (9.41b)

We have

𝐺𝑎
𝜆 =

∫︁
𝛾𝑎

𝜏−1+ 1
2 +𝜆𝑔𝑎(𝜏𝑦, 𝜏2𝑡)d𝜏, (9.42a)

𝐺𝑏
𝜆 =

∫︁
𝛾𝑏

𝜏−1+ 1
2 +𝜆𝑔𝑏(𝜏𝑦, 𝜏2𝑡)d𝜏. (9.42b)

Clearly, 𝑔𝑎 and 𝑔𝑏 solve the heat equation. By (9.42b), 𝐺𝑎
𝜆, resp. 𝐺𝑏

𝜆 are wave
packets made out of rotated 𝑔𝑎, resp. 𝑔𝑏. Therefore, they also solve the heat
equation.
If the contours satisfy the requirements of Prop. 7.1, then (9.42b) implies (9.40b).
2

Let us express these wave packets in the coordinates 𝑤, 𝑠:

𝐺𝑎
𝜆(𝑤, 𝑠) =

∫︁
𝑠−1 exp

(︁(︁
𝑤 − 1√

2𝜏𝑠

)︁2)︁
𝜏−2+ 1

2 +𝜆d𝜏, (9.43a)

𝐺𝑏
𝜆(𝑤, 𝑠) =

∫︁
e−2𝑠𝑤𝜏−𝑠2𝜏2

𝜏−1+ 1
2 +𝜆d𝜏. (9.43b)

In (9.43a) we set 𝜎 := 𝑤− 1√
2𝜏𝑠

, so that 𝜏 = 1
(𝑤−𝜎)

√
2𝑠

. In (9.43b) we set 𝜎 := 𝑠𝜏 ,
so that 𝜏 = 𝜎

𝑠 . We obtain

𝐺𝑎
𝜆(𝑤, 𝑠) = (

√
2)

1
2 −𝜆𝑠− 1

2 −𝜆𝐹 𝑎
𝜆 (𝑤), (9.44a)

𝐺𝑏
𝜆(𝑤, 𝑠) = 𝑠− 1

2 −𝜆𝐹 𝑏
𝜆(𝑤), (9.44b)

where

𝐹 𝑎
𝜆 (𝑤) :=

∫︁
𝛾𝑎

e𝜎2
(𝑤 − 𝜎)− 1

2 −𝜆d𝜎, (9.45a)

𝐹 𝑏
𝜆(𝑤) :=

∫︁
𝛾𝑏

e−2𝜎𝑤−𝜎2
𝜎−1+ 1

2 +𝜆d𝜎. (9.45b)
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The above analysis shows that for appropriate contours (9.45a) and (9.45b) are
solutions of the Hermite equation.

9.13 Integral representations

Below we directly describe the two kinds of integral representations of solutions,
without passing through additional variables.

Theorem 9.2. a) Let [0, 1] ∋ 𝜏
𝛾↦→ 𝑡(𝜏) satisfy e𝑡2(𝑡−𝑤)−𝑎−1

⃒⃒⃒𝑡(1)

𝑡(0)
= 0. Then

𝒮(𝑎;𝑤, 𝜕𝑤)
∫︁
𝛾

e𝑡2
(𝑡− 𝑤)−𝑎d𝑡 = 0. (9.46)

b) Let [0, 1] ∋ 𝜏 ↦→ 𝑡(𝜏) satisfy e−𝑡2−2𝑤𝑡𝑡𝑎
⃒⃒⃒𝑡(1)

𝑡(0)
= 0. Then

𝒮(𝑎;𝑤, 𝜕𝑤)
∫︁
𝛾

e−𝑡2−2𝑤𝑡𝑡𝑎−1d𝑡 = 0. (9.47)

Proof. We check that for any contour 𝛾

lhs of (9.46) = −𝑎
∫︁
𝛾

d𝑡 𝜕𝑡e𝑡2
(𝑡− 𝑤)−𝑎−1,

lhs of (9.47) = −2
∫︁
𝛾

d𝑡 𝜕𝑡e−𝑡2−2𝑤𝑡𝑡𝑎.

We can also deduce the second representation from the first by the discrete
symmetry (9.28b). 2

9.14 Integral representations of standard solutions

In type a) representations the integrand has a singular point at 0 and goes to
zero as 𝑡 → ±∞. We can thus use contours with such endpoints. We will see
that they give all standard solutions.

In type b) representations the integrand has a singular point at 𝑤 and goes
to zero as 𝑡 → ±i∞. Using contours with such endpoints, we will also obtain all
standard solutions.
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a) b)
∼ 𝑤−𝑎 for 𝑤 → +∞: [0,∞[, ]− i∞, 𝑤−,−i∞[;
∼ (−i𝑤)𝑎−1e𝑤

2 for 𝑤 → +i∞: ]−∞, 0+,−∞[, [𝑤, i∞[.

It is convenient to introduce alternatively normalized solutions:

𝑆I
𝜆(𝑤) := 2−𝜆− 1

2 Γ
(︁
𝜆+ 1

2

)︁
𝑆𝜆(𝑤).

Here are integral representations of type a):

all 𝜆: (9.48)

−i
∫︁

]−i∞,𝑤−,i∞[

e𝑡2
(𝑤 − 𝑡)−𝜆− 1

2 d𝑡 =
√
𝜋𝑆𝜆(𝑤), 𝑤 ̸∈] − ∞, 0];

Re𝜆 < 1
2 : (9.49)

−i
∫︁

[𝑤,i∞[

e𝑡2
(−i(𝑡− 𝑤))−𝜆− 1

2 d𝑡 = e𝑤2
𝑆I

−𝜆(−i𝑤), 𝑤 ̸∈ [0,∞[.

And here are integral representations of type b):

−1
2 < Re𝜆 : (9.50)

∞∫︁
0

e−𝑡2−2𝑡𝑤𝑡𝜆− 1
2 d𝑡 = 𝑆I

𝜆(𝑤), 𝑤 ̸∈] − ∞, 0];

all 𝜆: (9.51)∫︁
]−∞,0+,∞[

e−𝑡2−2𝑡𝑤(i𝑡)𝜆− 1
2 d𝑡 =

√
𝜋e𝑤2

𝑆−𝜆(−i𝑤), 𝑤 ̸∈ [0,∞[.

10 The Helmholtz equation in 2 dimensions
and the 0ℱ1 equation

The goal of this section is to derive the 0ℱ1 equation together with its symmetries
from the Helmoltz equation in 2 dimensions. The symmetries of these equations,
together with its derivation, are the simplest and the best known. In particular,
we do not need to consider generalized symmetries.

Here are the main steps from the derivation:
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(1) We start from the Helmholtz operator Δ2 − 1. The Lie algebra aso(2) and
group ASO(2) acting in 2 dimensions, are the obvious symmetries of this
operator.

(2) We choose coordinates 𝑤, 𝑢, so that the Cartan element is expressed in terms
of 𝑢. We compute Δ2 − 1 and the representations of aso(2) and ASO(2) in
the new coordinates.

(3) We make an ansatz diagonalizing the Cartan element, whose eigenvalue
𝛼 becomes a parameter. The only variable left is 𝑤. The Helmholtz oper-
ator Δ2 − 1 becomes the 0ℱ1 operator. The symmetries of Δ2 − 1 yield
transmutation relations and discrete symmetries of the 0ℱ1 operator.

The remaining part of this section is to a large extent parallel to their analogs
in Sects 5, 6, 8 and 9. Essentially all subsections have their counterparts there.
The only exception is Subsect. 10.4 on the equivalence of the 0ℱ1 equation
with a subclass of the 1ℱ1 equation, and its many-dimensional unravelling. This
equivalence is obtained by a quadratic transformation, which is quite different
from the quadratic transformations for the Gegenbauer and Hermite equation
considered in Subsects 6.4, resp. 9.6.

10.1 aso(2)

We consider R2 with split coordinates 𝑥−, 𝑥+ and the scalar product

⟨𝑥|𝑥⟩ = 2𝑥−𝑥+. (10.1)

Lie algebra aso(C2). Cartan operator

𝑁 = −𝑥−𝜕𝑥− + 𝑥+𝜕𝑥+ . (10.2)

Root operators

𝐵− = 𝜕𝑥− , (10.3a)
𝐵+ = 𝜕𝑥+ . (10.3b)

Weyl symmetry
𝜏𝑓(𝑥−, 𝑥+) = 𝑓(𝑥+, 𝑥−). (10.4)

Helmholtz operator
Δ2 − 1 = 2𝜕𝑥−𝜕𝑥+ − 1. (10.5)
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10.2 Variables 𝑤, 𝑢

We introduce the coordinates

𝑤 = 𝑥−𝑥+
2 , 𝑢 = 𝑥+. (10.6)

Lie algebra aso(2). Cartan operator

𝑁 = 𝑢𝜕𝑢.

Root operators

𝐵+ = 𝑢

2 𝜕𝑤,

𝐵− = 1
𝑢

(𝑤𝜕𝑤 + 𝑢𝜕𝑢).

Weyl symmetry
𝜏𝑓(𝑤, 𝑢) = 𝑓

(︁
𝑤,

𝑤

𝑢

)︁
.

Helmholtz operator

Δ2 − 1 = 𝑤𝜕2
𝑤 + (1 + 𝑢𝜕𝑢)𝜕𝑤 − 1. (10.7)

10.3 The 0ℱ1 operator

Let us make the ansatz
𝑓(𝑤, 𝑢) = 𝑢𝛼𝐹 (𝑤). (10.8)

Clearly,

𝑁𝑓 = 𝛼𝑓, (10.9)
𝑢−𝛼(Δ2 − 1)𝑓 = ℱ𝛼(𝑤, 𝜕𝑤)𝐹, (10.10)

where we have introduced the 0ℱ1 operator

ℱ𝛼(𝑤, 𝜕𝑤) := 𝑤𝜕2
𝑤 + (1 + 𝛼)𝜕𝑤 − 1. (10.11)

Instead of the Lie-algebraic parameter 𝛼 one could also use the classical parame-
ter 𝑐

𝛼 := 𝑐− 1, 𝑐 = 𝛼+ 1, (10.12)

so that the 0ℱ1 operator becomes

ℱ(𝑐;𝑤, 𝜕𝑤) := 𝑤𝜕2
𝑤 + 𝑐𝜕𝑤 − 1. (10.13)
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10.4 Equivalence with a subclass of the confluent equation

The 0ℱ1 equation is equivalent to a subclass of the 1ℱ1 equation by a quadratic
transformation. This quadratic transformation is however quite different from
transformations described in Subsect. 3.14, and then applied to derive the
Gegenbauer quation and the Hermite equation. In this subsection we derive this
equivalence starting from the heat equation in 2 dimensions.

First let us recall some elements of our derivation of the 1ℱ1 operator. As
described in Sect. 8, it was obtained from the heat operator (8.11) together with
Cartan operators (8.8a), (8.8c):

𝑡

2ℒ2 = 𝑡

2
(︀
2𝜕𝑡 + 2𝜕𝑦−1𝜕𝑦1

)︀
, (10.14a)

𝑀 = 𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 + 2𝑡𝜕𝑡 + 1, (10.14b)
𝑁1 = −𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 . (10.14c)

(We set 𝜂 = −1 and dropped the superscript sch,−1). Recall that substituting
the coordinates (8.12)

𝑤 = 𝑦−1𝑦1
𝑡

, 𝑢1 = 𝑦1√
𝑡
, 𝑠 =

√
𝑡 (10.15)

we obtain
𝑡

2ℒ2 = 𝑤𝜕2
𝑤 + (𝑢𝜕𝑢 + 1 − 𝑤)𝜕𝑤 + 1

2(−𝑢𝜕𝑢 + 𝑠𝜕𝑠), (10.16a)

𝑀 = 𝑠𝜕𝑠 + 1, (10.16b)
𝑁1 = 𝑢1𝜕𝑢1 . (10.16c)

After we set 𝑀 = −𝜃, 𝑁1 = 𝛼, (10.16a) becomes ℱ𝜃,𝛼(𝑤, 𝜕𝑤).
Consider now

2𝑡2

𝑦−1𝑦1
e−

𝑦−1𝑦1
2𝑡 ℒ2e

𝑦−1𝑦1
2𝑡

= 2𝑡
𝑦−1𝑦1

(︀
𝑦−1𝜕𝑦−1 + 𝑦1𝜕𝑦1 + 2𝑡𝜕𝑡 + 1

)︀
+ 4𝑡2

𝑦−1𝑦1
𝜕𝑦−1𝜕𝑦1 − 1

= 2𝑡
𝑦−1𝑦1

𝑀 + 2𝜕𝑥−𝜕𝑥+ − 1, (10.17)

e−
𝑦−1𝑦1

2𝑡 𝑁1e
𝑦−1𝑦1

2𝑡 = 𝑁1 = −2𝑥−𝜕𝑥− + 2𝑥+𝜕𝑥+ ,

where we introduced new variables

𝑥− =
𝑦2

−1

2
√

2𝑡
, 𝑥+ = 𝑦2

1
2
√

2𝑡
. (10.18)
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Therefore, on the subspace 𝑀 = 0 we have

2𝑡2

𝑦−1𝑦1
e−

𝑦−1𝑦1
2𝑡 ℒ2e

𝑦−1𝑦1
2𝑡 =Δ2 − 1,

e−
𝑦−1𝑦1

2𝑡 𝑁1e
𝑦−1𝑦1

2𝑡 = 2𝑁, (10.19)

where Δ2 − 1 is the Helmholtz operator (10.5) and 𝑁 the Cartan operator (10.2).
Remember, that in Subsect. 10.2 we express these operators in the coordinates
(10.6). To avoid a clash of symbols, we rename 𝑤 from (10.6) into 𝑣:

𝑣 = 𝑦−𝑦+
2 , 𝑢 = 𝑦+. (10.20)

Recall that in the 𝑣, 𝑢 coordinates we have

Δ2 − 1 = 𝑣𝜕2
𝑣 + (1 + 𝑢𝜕𝑢)𝜕𝑣 − 1, (10.21a)

𝑁 = 𝑢𝜕𝑢, (10.21b)

so that (10.21a) on 𝑁 = 𝛼 becomes ℱ𝛼(𝑣, 𝜕𝑣).
Now we can compare the coordinates 𝑤, 𝑢1 and 𝑣, 𝑢

𝑣 =
𝑦2

−1𝑦
2
1

16𝑡2 =
(︁𝑤

4

)︁2
, 𝑢 = 𝑦2

1
2
√

2𝑡
= 𝑢2

1
2
√

2
. (10.22)

This leads to the so-called Kummer’s 2nd transformation, which reduces the 0ℱ1
equation to a special class of the confluent equation by a quadratic transformation:

ℱ𝛼(𝑣, 𝜕𝑣) = 4
𝑤

e−𝑤/2ℱ0,2𝛼(𝑤, 𝜕𝑤)e𝑤/2, (10.23)

or, in classical parameters

ℱ(𝑐; 𝑣, 𝜕𝑣) = 4
𝑤

e−𝑤/2ℱ
(︁
𝑐− 1

2 ; 2𝑐− 1;𝑤, 𝜕𝑤

)︁
e𝑤/2, (10.24)

where 𝑤 = ±4
√
𝑣, 𝑣 =

(︀
𝑤
4
)︀2.

10.5 Transmutation relations and symmetries

The following symmetries of the Helmholtz operator are obvious:

𝐵(Δ2 − 1) = (Δ2 − 1)𝐵; 𝐵 ∈ aso(2); (10.25a)
𝛼(Δ2 − 1) = (Δ2 − 1)𝛼; 𝛼 ∈ ASO(2). (10.25b)
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Applying (10.25a) to the roots of aso(2) we obtain the trasmutation relations

𝜕𝑤 ℱ𝛼 = ℱ𝛼+1 𝜕𝑤,

(𝑤𝜕𝑤 + 𝛼) ℱ𝛼 = ℱ𝛼−1 (𝑤𝜕𝑤 + 𝛼).

Applying (10.25b) to the Weyl symmetry of aso(2) we obtain the symmetry

𝑤−𝛼 ℱ−𝛼 𝑤𝛼 = ℱ𝛼.

10.6 Factorizations

The factorizations

Δ2 − 1 = 2𝐵−𝐵+ − 1 (10.26a)
= 2𝐵+𝐵− − 1, (10.26b)

are completely obvious. They yield the factorizations of the 0ℱ1 operator:

ℱ𝛼 =
(︀
𝑤𝜕𝑤 + 𝛼+ 1

)︀
𝜕𝑤 − 1

= 𝜕𝑤

(︀
𝑤𝜕𝑤 + 𝛼

)︀
− 1.

10.7 The 0𝐹1 function

The 0ℱ1 equation has a regular singular point at 0. Its indices at 0 are equal to
0, 𝛼 = 1 − 𝑐.

If 𝑐 ̸= 0,−1,−2, . . . , then the only solution of the 0𝐹1 equation ∼ 1 at 0 is
called the 0𝐹1 function. It is

𝐹 (𝑐;𝑤) :=
∞∑︁

𝑗=0

1
(𝑐)𝑗

𝑤𝑗

𝑗! . (10.27)

It is defined for 𝑐 ̸= 0,−1,−2, . . . . Sometimes it is more convenient to consider
the function

F(𝑐;𝑤) := 𝐹 (𝑐;𝑤)
Γ(𝑐) =

∞∑︁
𝑗=0

1
Γ(𝑐+ 𝑗)

𝑤𝑗

𝑗! (10.28)

defined for all 𝑐.
Using (10.24), we can express the 0𝐹1 function in terms of the confluent

function

𝐹 (𝑐;𝑤) = e−2
√

𝑤𝐹
(︁2𝑐− 1

2 ; 2𝑐− 1; 4
√
𝑤
)︁

(10.29a)

= e2
√

𝑤𝐹
(︁2𝑐− 1

2 ; 2𝑐− 1; −4
√
𝑤
)︁
. (10.29b)
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We will usually prefer to use the Lie-algebraic parameters:

𝐹𝛼(𝑤) := 𝐹 (𝛼+ 1;𝑤), (10.30a)
F𝛼(𝑤) := F(𝛼+ 1;𝑤). (10.30b)

10.8 Standard solutions

We have two standard solutions corresponding to two indices of the regular
singular point 𝑤 = 0. Besides, using Tricomi’s function described in Subsect.
8.11, we have an additional solution with a special behavior at ∞:

∼ 1 at 0: 𝐹𝛼(𝑤) = e−2
√

𝑤𝐹0,2𝛼

(︀
4
√
𝑤
)︀

= e2
√

𝑤𝐹0,2𝛼

(︀
− 4

√
𝑤
)︀
;

∼ 𝑤−𝛼 at 0: 𝑤−𝛼𝐹−𝛼(𝑤) = 𝑤−𝛼e−2
√

𝑤𝐹0,−2𝛼

(︀
4
√
𝑤
)︀

= 𝑤−𝛼e2
√

𝑤𝐹0,−2𝛼

(︀
− 4

√
𝑤
)︀
;

∼ e−2
√

𝑤𝑤− 𝛼
2 − 1

4 , 𝑤 → +∞: 𝐹𝛼(𝑤) := e−2
√

𝑤𝑤− 𝛼
2 − 1

4𝐹0,2𝛼

(︁
− 1

4
√
𝑤

)︁
= e−2

√
𝑤𝑤− 𝛼

2 − 1
4𝐹0,−2𝛼

(︁
− 1

4
√
𝑤

)︁
.

Note that the third standard solution is a new function closely related to
the MacDonald function. It satisfies the identity

𝐹𝛼(𝑤) = 𝑤−𝛼𝐹−𝛼(𝑤). (10.31)

Its asymptotics
𝐹𝛼(𝑤) ∼ exp(−2𝑤

1
2 )𝑤− 𝛼

2 − 1
4 (10.32)

is valid in the sector | arg𝑤| < 𝜋/2 − 𝜖 for |𝑤| → ∞.

10.9 Recurrence relations

The following recurrence relations follow from the transmutation relations

𝜕𝑤F𝛼(𝑤) = F𝛼+1(𝑤),

(𝑤𝜕𝑤 + 𝛼) F𝛼(𝑤) = F𝛼−1(𝑤).
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10.10 Wave packets

Obviously, for any 𝜏 the function exp
(︁

𝑥−√
2𝜏

+ 𝜏𝑥+√
2

)︁
solves the Helmholtz equation.

Therefore, for appropriate contours 𝛾,

𝑓(𝑥−, 𝑥+) := 1
2𝜋i

∫︁
𝛾

exp
(︁ 𝑥−√

2𝜏
+ 𝜏𝑥+√

2

)︁
𝜏−𝛼−1d𝜏 (10.33)

solves

(Δ2 − 1)𝑓 = 0, (10.34)
𝑁𝑓 = 𝛼𝑓. (10.35)

Substituting the coordinates 𝑤, 𝑢 we obtain

𝑓(𝑤, 𝑢) =
∫︁
𝛾

exp
(︁ 𝑤

𝜏𝑢
√

2
+ 𝜏𝑢√

2

)︁
𝜏−𝛼−1d𝜏

= 𝑢𝛼2− 𝛼
2

∫︁
𝛾

exp
(︁𝑤
𝑠

+ 𝑠
)︁
𝑠−𝛼−1d𝑠, (10.36)

where we made the substitution 𝑠 = 𝜏𝑢√
2 . Therefore,

𝐹 (𝑤) =
∫︁
𝛾

exp
(︁𝑤
𝑠

+ 𝑠
)︁
𝑠−𝛼−1d𝑠. (10.37)

solves the 0𝐹1 equation.

10.11 Integral representations

There are three kinds of integral representations of solutions to the 0𝐹1 equation.
The first is suggested by the previous subsection. Representations of the first kind
will be called Bessel-Schläfli type representations. The next two are inherited from
the confluent equation by 2nd Kummer’s identity. We will call them Poisson-type
representations.

Theorem 10.1. i) Bessel-Schläfli type representations. Suppose that
[0, 1] ∋ 𝑡 ↦→ 𝛾(𝑡) satisfies

e𝑡e
𝑤
𝑡 𝑡−𝑐

⃒⃒⃒𝛾(1)

𝛾(0)
= 0.
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Then
ℱ(𝑐;𝑤, 𝜕𝑤)

∫︁
𝛾

e𝑡e
𝑤
𝑡 𝑡−𝑐d𝑡 = 0. (10.38)

ii) Poisson type a) representations. Let the contour 𝛾 satisfy

(𝑡2 − 𝑤)−𝑐+3/2e2𝑡
⃒⃒⃒𝛾(1)

𝛾(0)
= 0.

Then
ℱ(𝑐;𝑤, 𝜕𝑤)

∫︁
𝛾

(𝑡2 − 𝑤)−𝑐+1/2e2𝑡d𝑡 = 0. (10.39)

iii) Poisson type b) representations. Let the contour 𝛾 satisfy

(𝑡2 − 1)𝑐−1/2e2𝑡
√

𝑤
⃒⃒⃒𝛾(1)

𝛾(0)
= 0.

Then
ℱ(𝑐;𝑤, 𝜕𝑤)

∫︁
𝛾

(𝑡2 − 1)𝑐−3/2e2𝑡
√

𝑤d𝑡 = 0. (10.40)

Proof. We check that for any contour 𝛾

lhs of (10.38) = −
∫︁
𝛾

d𝑡𝜕𝑡e𝑡e
𝑤
𝑡 𝑡−𝑐.

This proves i).
To prove both Poisson type representations we use the quadratic relation (10.24).
Using the type a) representation for solutions of 1ℱ1 (8.51), for appropriate
contours 𝛾 and 𝛾′, we see that

e−2
√

𝑤

∫︁
𝛾

e𝑠𝑠−𝑐+ 1
2 (𝑠− 4

√
𝑤)−𝑐+ 1

2 d𝑠

= 2−2𝑐+2
∫︁
𝛾′

e2𝑡(𝑡2 − 𝑤)−𝑐+ 1
2 d𝑡

is annihilated by ℱ(𝑐), where we set 𝑡 = 𝑠
2 −

√
𝑤. This proves ii).

Similarly, by the type b) representation for solutions of 1ℱ1 (8.52),

e−2
√

𝑤

∫︁
𝛾

e
4

√
𝑤

𝑠 𝑠−2𝑐+1(1 − 𝑠)𝑐− 3
2 d𝑠

= −2−2𝑐+2
∫︁
𝛾′

e2𝑡
√

𝑤(1 − 𝑡2)𝑐− 3
2 d𝑡

is annihilated by ℱ(𝑐), where we set 𝑡 = 2
𝑠 − 1. This proves iii). 2
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10.12 Integral representations of standard solutions

In Bessel-Schläfli type representations the integrand goes to zero as 𝑡 → −∞
and 𝑡 → 0 − 0 (the latter for Re𝑤 > 0). Therefore, contours ending at these
points yield solutions. We will see that in this way we can obtain all 3 standard
solutions.

We can also obtain all solutions using Poisson type representations (which are
actually special cases of representations for solutions of the confluent equation).

Bessel-Schläfli Poisson type a) Poisson type b)

∼ 1 at 0: ]−∞, 0+,∞[ [−1, 1]

∼ 𝑤−𝛼 at 0: (0− 0)+ [−
√
𝑤,

√
𝑤]

∼ e−2
√

𝑤𝑤−𝛼
2
− 1

4 for 𝑤 → +∞: ]−∞, 0] ]−∞,−1] ]−∞,−
√
𝑤]

Here are Bessel-Schläfli type representations. They are valid for all values of
𝛼 and Re𝑤 > 0:

1
2𝜋i

∫︁
]−∞,0+,−∞[

e𝑡e
𝑤
𝑡 𝑡−𝛼−1d𝑡 = F𝛼(𝑤), (10.41)

1
2𝜋i

∫︁
[(0−0)+]

e𝑡e
𝑤
𝑡 𝑡−𝛼−1d𝑡 = 𝑤−𝛼F−𝛼(𝑤), (10.42)

0∫︁
−∞

e𝑡e
𝑤
𝑡 (−𝑡)−𝛼−1d𝑡 = 𝜋

1
2𝐹𝛼(𝑤). (10.43)

Next we give Poisson type representations, valid for 𝑤 ̸∈] − ∞, 0]:

Re𝛼 > −1
2 : (10.44)

1∫︁
−1

(1 − 𝑡2)𝛼− 1
2 e2𝑡

√
𝑤d𝑡 = Γ(𝛼+ 1

2)
√
𝜋F𝛼(𝑤),

1
2 > Re𝛼 : (10.45)

√
𝑤∫︁

−
√

𝑤

(𝑤 − 𝑡2)−𝛼− 1
2 e2𝑡d𝑡 = Γ

(︁
−𝛼+ 1

2

)︁√
𝜋𝑤−𝛼F−𝛼(𝑤);
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Re𝛼 > −1
2 : (10.46)

−1∫︁
−∞

(𝑡2 − 1)𝛼− 1
2 e2𝑡

√
𝑤d𝑡 = 1

2Γ
(︁
𝛼+ 1

2

)︁
𝐹𝛼(𝑤),

Re𝛼 < 1
2 : (10.47)

−
√

𝑤∫︁
−∞

(𝑡2 − 𝑤)−𝛼− 1
2 e2𝑡d𝑡 = 1

2Γ
(︁

− 𝛼+ 1
2

)︁
𝐹𝛼(𝑤).

10.13 Connection formulas

From integral representations we easily obtain connection formulas. As the basis
we can use the solutions with a simple behavior at zero:

𝐹𝛼(𝑤) =
√
𝜋

sin 𝜋(−𝛼)F𝛼(𝑤) +
√
𝜋

sin 𝜋𝛼𝑤
−𝛼F−𝛼(𝑤).

Alternatively, we can use the basis conisting of the 𝐹 function and its clockwise
or anti-clockwise analytic continuation around 0:

F𝛼(𝑤) = 1
2
√
𝜋

(︁
e±i𝜋(𝛼+ 1

2 )𝐹𝛼(𝑤) + e∓i𝜋(𝛼+ 1
2 )𝐹𝛼(e∓i2𝜋𝑤)

)︁
,

𝑤−𝛼F−𝛼(𝑤) = 1
2
√
𝜋

(︁
e∓i𝜋(𝛼− 1

2 )𝐹𝛼(𝑤) − e∓i𝜋(𝛼− 1
2 )𝐹𝛼(e∓i2𝜋𝑤)

)︁
.
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