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I will speak about mathematical theory of quadratic Hamiltonians

on a bosonic Fock space.

First I will consider finite dimensional one-particle space, which

have a relatively simple theory. They satisfy, however, quite a num-

ber of nontrivial identities. Then I will consider arbitrary dimen-

sion, where the theory becomes quite technical and complicated.

Finally, I will describe an example: scalar particle interacting with

a mass-like position dependent perturbation. This model illustrates

the need for infinite renormalization.



FINITE DIMENSIONS

We will first assume that the one-particle space is Cm. Operators

on Cm are identified with m×m matrices. If h = [hij] is a matrix,

then h, h∗ and h# will denote its complex conjugate, hermitian

conjugate and transpose.



It is convenient to consider the doubled Hilbert space Cm ⊕ Cm

equipped with the complex conjugation

J(z1, z2) = (z2, z1)

and the charge form

S =

[
1l 0

0 −1l

]
.

Operators that commute with J have the form

R =

[
p q

q p

]
,

and will be called J -real.



Consider a self-adjoint J -real operator on the doubled space:

A =

[
h g

g h

]
.

Note that h = h∗, g = g#.

We also introduce

B := HS =

[
h −g
g −h

]
.



By a quadratic classical Hamiltonian with associated to A, we

will mean

HA =
∑

hija
∗
iaj +

1

2

∑
gija

∗
ia
∗
j +

1

2

∑
gijaiaj,

where ai, a
∗
j are classical (commuting) variables such that a∗i is the

complex conjugate of ai and the following Poisson bracket relations

hold:

{ai, aj} = {a∗i , a∗j} = 0,

{ai, a∗j} = −iδij.



Our main interest are operators on the bosonic Fock space Γs(Cm).

âi, â
∗
j will denote the standard annihilation and creation operators

on Γs(Cm), where â∗i is the Hermitian conjugate of âi,

[âi, âj] = [â∗i , â
∗
j ] = 0,

[âi, â
∗
j ] = δij.



By a quantization of HA (or, abusing terminology, a quantization

of A) we will mean an operator on the Γs(Cm) of the form

Ĥc
A :=

1

2

∑
gijâ

∗
i â
∗
j +

1

2

∑
gijâiâj +

∑
hijâ

∗
i âj + c,

where c is an arbitrary real constant. In the sequel, we will often

drop A, and especially c, from Ĥc
A.



Two quantizations of HA are especially useful: the Weyl (or sym-

metric) quantization Ĥw
A and the normally ordered (or Wick) quan-

tization Ĥn
A:

Ĥw
A :=

1

2

∑
gijâ

∗
i â
∗
j +

1

2

∑
gijâiâj +

1

2

∑
hijâ

∗
i âj +

1

2

∑
hijâjâ

∗
i ,

Ĥn
A :=

1

2

∑
gijâ

∗
i â
∗
j +

1

2

∑
gijâiâj +

∑
hijâ

∗
i âj.

The two quantizations differ by a constant:

Ĥw
A = Ĥn

A +
1

2
Trh.



We say that a J -real operator

R =

[
p q

q p

]
.

is symplectic if R∗SR = S. Below there are the equivalent condi-

tions

p∗p− q#q = 1l, p∗q − q#p = 0,

pp∗ − qq∗ = 1l, pq# − qp# = 0.

We denote by Sp(R2m) the group of all symplectic transformations.



Note that

pp∗ ≥ 1l, p∗p ≥ 1l.

Hence p−1 and p∗−1 are well defined, and we can set

d1 := q#(p#)−1,

d2 := qp−1.

Note that d#1 = d1, d2 = d#2 . One has the following factorization:

R =

[
1l d2

0 1l

][
(p∗)−1 0

0 p

][
1l 0

d1 1l

]
.



U is a (Bogoliubov) implementer of a symplectic transformation

R if

Uâ∗iU
∗ = pijâ

∗
j + qijâj,

UâiU
∗ = qijâ

∗
j + pijâj.

Every symplectic transformation has an implementer, unique up to

a choice of a phase factor.



We have the following canonical choices: the natural implementer

Unat
R , and a pair of metaplectic implementers ±Umet

R :

Unat
R := | det pp∗|−

1
4e−

1
2 â
∗(d2)Γ

(
(p∗)−1

)
e
1
2 â(d1),

±Umet
R := ±(det p∗)−

1
2e−

1
2 â
∗(d2)Γ

(
(p∗)−1

)
e
1
2 â(d1).

Above, we used a compact notation for double annihilators/creators:

If d = [dij] is a symmetric matrix, then

â∗(d) =
∑
ij

dijâ
∗
i â
∗
j ,

â(d) =
∑
ij

dijâiâj,



The set of Bogoliubov implementers is a group called sometimes

the c-metaplectic group Mpc(R2m). We have an obvious homomor-

phism Mpc(R2m) 3 U 7→ R ∈ Sp(R2m).

The set of metaplectic Bogoliubov implementers is a subgroup

Mpc(R2m) called the metaplectic groupMp(R2m). For any quadratic

Hamiltonian A, we have eitĤ
w
A ∈Mp(R2m).



Various homomorphisms related to the metaplectic group can be

described by the following diagram

1 1 1

↓ ↓ ↓
1 → Z2 → U(1) → U(1) → 1

↓ ↓ ↓
1 → Mp(R2m) → Mpc(R2m) → U(1) → 1

↓ ↓ ↓
1 → Sp(R2m) → Sp(R2m) → 1

↓ ↓
1 1



Of special importance are positive symplectic transformations.

They satisfy

p = p∗, p > 0, q = q#.

For such transformations d1 = d2 will be simply denoted by

d := q(p#)−1.

For positive symplectic transformations the natural implementer

coincides with one of the metaplectic implementers:

Unat
R := det p−

1
2e−

1
2 â
∗(d)Γ

(
p−1
)
e
1
2 â(d).



Theorem about diagonalization of positive Hamiltonians.

Suppose that A > 0. Then,

1. B has real nonzero eigenvalues.

2. sgn(B) is symplectic.

3. R0 := SsgnB is symplectic and has positive eigenvalues.

4. Using the positive square root, define R := R
1
2
0 . Then R is

symplectic and diagonalizes A. That means, for some hdg,

R∗−1AR−1 =

[
hdg 0

0 h#

dg

]
.



Here is an alternative exppression for R0:

R0 = A
1
2
(
A

1
2SASA

1
2
)−1

2A
1
2 .

On the quantum level, if R diagonalizes A, then the correspond-

ing unitary Bogoliubov implementers U remove double annihila-

tors/creators from Ĥ :

UĤwU ∗ = 2hdg,ijâ
∗
i âj + Ew,

UĤnU ∗ = 2hdg,ijâ
∗
i âj + En,

where Ew, resp. En is the infimum of Ĥw, resp. of Ĥn.



We can compute the infimum of the Bogoliubov Hamiltonians

The simplest expression is valid for the Weyl quantization, which

we present in various equivalent forms:

Ew := inf Ĥw =
1

4
Tr
√
B2

=
1

4
Tr
√
A

1
2SASA

1
2

=
1

4
Tr

∫
B2

(B2 + τ 2)

dτ

2π

=
1

4
Tr

[
h2 − gg∗ −hg + gh#

g∗h− h#g∗ h#2 − g∗g

]1
2



En := inf Ĥn = Ew − 1

2
Trh

=
1

8

∫ 1

0

dσTr
Bσ√
B2
σ

GS.

where

G := A− A0 =

[
0 g

g 0

]
,

Bσ = B0 + σG =

[
h −σg
σg −h

]
.



Suppose now that

A0 =

[
h0 0

0 h0

]
(1)

is a “free” Hamiltonian. We set

B0 := A0S =

[
h0 0

0 −h0

]
, V = B2 −B2

0. (2)

We allow h0 to be different from h.



The infimum of the Weyl quantization of H can be rewritten as

Ew =

∞∑
j=0

Lj,

where

L0 =
1

2
Tr

∫
B2

0

(B2
0 + τ 2)

dτ

2π
=

1

2
Tr|B0| = Trh,

Lj =
1

2
Tr

∫
(−1)j+1

B2
0 + τ 2

(
V

1

B2
0 + τ 2

)j
τ 2

dτ

2π

=
1

2
Tr

∫
(−1)j

2j

(
V

1

B2
0 + τ 2

)jdτ
2π
, j = 1, 2, . . . .



The constant Lj arises in the diagramatic expasions as the evalu-

ation of the loop with 2j vertices. To see this, introduce the “prop-

agator”

G(t) :=
e−|B0|t

2|B0|
.

Clearly
1

B2
0 + τ 2

=

∫
G(s)eisτds.



Therefore,

Lj =

∫
dtj−1 · · ·

∫
dt1TrV G(tj − t1)V G(t1 − t2) · · ·V G(tj−1 − tj)

= lim
T→∞

1

2T

∫ T

−T
dtj

∫ T

−T
dtj−1 · · ·

∫ T

−T
dt1

×TrV G(tj − t1)V G(t1 − t2) · · ·V G(tj−1 − tj).



Suppose now that

h21 = gg, h1g = gh1. (3)

Then V contains only 1st order terms in g and the loop expan-

sion coincides with the expansion into powers of coupling constant.

Then the loop expansion for the infimum of the normally ordered

Hamiltonian amounts to omitting L0 and L1:

inf En = Ew − 1

2
Trh =

∞∑
n=2

Ln. (4)



L1, and especially L0, are often infinite. Sometimes, L2 is infinite

as well. Then we can renormalize even further:

Eren := Ew − L0 − L1 − L2 =

∞∑
n=3

Ln

= −1

4

∫
Tr

1

B2
0 + τ 2

V
1

B2 + τ 2

(
V

1

B2
0 + τ 2

)2
τ 2

dτ

2π
.

We can also introduce the renormalized Hamiltonian

Ĥren := Ĥw − L0 − L1 − L2, (5)

so that

Eren = inf Ĥren.



ARBITRARY DIMENSIONS

Spres(Y) will denote the restricted symplectic group, which con-

sists of R ∈ Sp(Y) such that q is Hilbert-Schmidt.

Shale Theorem. Let R ∈ Sp(Y). Then R is implementable iff

R ∈ Spres(Y). For such R, we can define its natural implementer

Unat
R := | det pp∗|−

1
4e−

1
2 â
∗(d2)Γ

(
(p∗)−1

)
e
1
2 â(d1).

We have a short exact sequence

1l→ U(1)→Mpc(Y)→ Spres(Y)→ 1l.



Spaf(Y) will denote the anomaly-free symplectic group, which

consists of R ∈ Spres(Y) such that 1l − p is trace class. For

R ∈ Spaf(Y) we can define a pair of metaplectic Bogoliubov im-

plementers

±Umet
R := ±(det p∗)−

1
2e−

1
2 â
∗(d2)Γ

(
(p∗)−1

)
e
1
2 â(d1).

They form a group, which we denote Spaf(Y). We have a short

exact sequence

1l→ Z2 →Mpaf(Y)→ Spaf(Y)→ 1l.



Theorem. Let B be a closed operator on W ⊕W . The following

statements are equivalent:

1. eiBt, t ∈ R, is a strongly continuous 1-parameter group of sym-

plectic transformations.

2. B = AS where A is J -real and A∗ ⊃ A (in other words, A is

Hermitian), and there exist c, b such that

‖(A + iτS)−1‖ ≤ c(|τ | − b)−1, |τ | > b.



Theorem Suppose that g ⊂ g# and g = g1 + g2 such that

‖g1‖ <∞ and ‖|h|−1
2g2|h|−

1
2‖ =: a < 1. Then the form A defines

a classical quadratic Hamiltonian. Besides, A is self-adjoint.

We say that A possesses a quantization if there exists a self-

adjoint operator Ĥ on on Γs(W) such that eitĤ implements eitB for

any t ∈ R. Ĥ is uniquely defined up to an additive constant.

If the group eitĤ implementing eitB is contained in Mpaf(Y), then

Ĥ will be called the Weyl quantization of A. For a given classical

A, its Weyl quantization, if it exists, is unique. We will denote it

by Ĥw
A .



We say that Ĥ is the normally ordered quantization of A if Ĥ

implements eitB and

d

dt
(Ω|eitĤΩ)

∣∣∣
t=0

= 0.

Again, a given classical Hamiltonian A possesses at most one nor-

mally ordered quantization. We will denote it by Ĥn
A.

If A possess a quantization, which is bounded from below, then

all of its quantizations are bounded from below. Then one can

introduce the zero-infimum quantization Ĥz fixed by the condition

inf Ĥz
A = 0.



Define

γ(g) := (h⊗ 1l + 1l⊗ h)−1g,

where we use the tensor interpretation of g and assume that g ∈
Dom(h⊗ 1l + 1l⊗ h)−1.



Theorem about existence of quantizations.

1. Suppose that g is bounded and g = g1 + g2, where ‖g1‖HS <∞
and ‖γ(g2)‖HS <∞. Then A possesses quantizations.

2. Suppose that ‖g‖HS < ∞. Then A possesses the normally

ordered quantization.

3. Suppose that ‖h‖1 < ∞ and ‖g‖HS < ∞. Then A possesses

both the Weyl and the normally ordered quantization. Besides,

Ĥw = Ĥn + Trh.



Theorem. Let h be positive and

‖h−
1
2gh

−1
2‖ =: a < 1. (6)

Then A

R0 = SA−
1
2(A

1
2SASA

1
2)

1
2A−

1
2S, (7)

is a bounded invertible positive operator.

R = R
1
2
0 (8)

diagonalizes A, that is, for some positive self-adjoint hdg

R−1A(R∗)−1 =

[
hdg 0

0 hdg

]
=: Adg. (9)



Theorem. (Napiórkowski, Nam, Solovej) In addition, suppose

that

‖h−
1
2gh

−1
2‖HS < ∞. (10)

Then R ∈ Spres(Y) and hence R is implementable.



Theorem. (Napiórkowski, Nam, Solovej) Assume that ‖h−1
2gh

−1
2‖ <

1 and Trg∗h−1g <∞. Then the form

dΓ(h) +
1

2
a∗(g) +

1

2
a(g) (11)

defined on DomdΓ(h) is closed and bounded from below. Hence

it defines a self-adjoint operator. This operator is the normally

ordered quantization of the classical Hamiltonian A.



Set

En
A :=

1

4

∫ 1

0

dσTrA
1
2
σ(A

1
2
σSAσSA

1
2
σ)−

1
2A

1
2
σG,

provided that the above integral is well defined.

Theorem.

1. Let Tr
√
gg <∞. Then En

A is well defined.

2. Suppose that Trgh−1g∗ <∞. Then En
A and Ĥn

A are well defined

and

En
A = inf Ĥn

A.



EXAMPLE:

SCALAR FIELD WITH

POSITION DEPENDENT MASS

Consider classical variables parametrized by ~x ∈ R3 satisfying

the Poisson bracket relations

{φ(~x), φ(~y)} = {π(~x), π(~y)} = 0,

{φ(~x), π(~y)} = δ(~x− ~y).



Consider the classical Hamiltonian of the free scalar field:

H0 =

∫ (1

2
π2(~x) +

1

2

(
~∂φ(~x)

)2
+

1

2
m2φ2(~x)

)
d~x,

If we assume that the mass squared depends on a position, we

obtain a perturbed Hamiltonian

H =

∫ (1

2
π2(~x) +

1

2

(
~∂φ(~x)

)2
+

1

2
(m2 + κ(~x))φ2(~x)

)
d~x,



Let us replace classical variables φ, π with quantum operators

φ̂, π̂ satisfying the commutation relations

[φ̂(~x), φ̂(~y)] = [π̂(~x), π̂(~y)] = 0,

[φ̂(~x), π̂(~y)] = iδ(~x− ~y).



It is well-known how to quantize H0. The one-particle space con-

sists of positive-frequency modes. The normally ordered Hamilto-

nian

Ĥn
0 =

∫
:
(1

2
π̂2(~x) +

1

2

(
~∂φ̂(~x)

)2
+

1

2
m2φ̂2(~x)

)
:d~x,

acts on the corresponding Fock space. The infimum of Ĥ0 is zero.

(The Weyl prescription Ĥw
0 is ill-defined).



In the case ofH , the normally-ordered prescription does not work.

One has to renormalize by subtracting the (infinite) contribution

of the loop with 2 vertices L2, which can be formally written as

Ĥren =

∫
:
(1

2
π̂2(~x) +

1

2

(
~∂φ̂(~x)

)2
+

1

2
(m2 + κ(~x))φ̂2(~x)

)
:d~x− L2,

Let us stress that Ĥren is a well-defined self-adjoint operator acting

on the same space as Ĥn
0



The infimum of Ĥren is the sum of loops
∞∑
j=3

Lj

with at least 3 vertices. It is called the vacuum energy and is closely

related to the so-called effective action.


