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Holomorphic Family of Dirac–Coulomb
Hamiltonians in Arbitrary Dimension

Jan Dereziński and B�lażej Ruba

Abstract. We study massless one-dimensional Dirac–Coulomb Hamiltoni-

ans, that is, operators on the half-line of the form Dω,λ :=

[−λ+ω
x

−∂x

∂x −λ−ω
x

]
.

We describe their closed realizations in the sense of the Hilbert space
L2(R+,C2), allowing for complex values of the parameters λ, ω. In phys-
ical situations, λ is proportional to the electric charge and ω is related to
the angular momentum. We focus on realizations of Dω,λ homogeneous of
degree −1. They can be organized in a single holomorphic family of closed
operators parametrized by a certain two-dimensional complex manifold.
We describe the spectrum and the numerical range of these realizations.
We give an explicit formula for the integral kernel of their resolvent in
terms of Whittaker functions. We also describe their stationary scattering
theory, providing formulas for a natural pair of diagonalizing operators
and for the scattering operator. We describe the point spectrum of their
nonhomogeneous realizations. It is well-known that Dω,λ arise after sep-
aration of variables of the Dirac–Coulomb operator in dimension 3. We
give a simple argument why this is still true in any dimension. Further-
more, we explain the relationship of spherically symmetric Dirac oper-
ators with the Dirac operator on the sphere and its eigenproblem. Our
work is mainly motivated by a large literature devoted to distinguished
self-adjoint realizations of Dirac–Coulomb Hamiltonians. We show that
these realizations arise naturally if the holomorphy is taken as the guid-
ing principle. Furthermore, they are infrared attractive fixed points of
the scaling action. Beside applications in relativistic quantum mechan-
ics, Dirac–Coulomb Hamiltonians are argued to provide a natural setting
for the study of Whittaker (or, equivalently, confluent hypergeometric)
functions.
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Holomorphic Family of Dirac–Coulomb

1. Introduction

The main topic of this paper is the one-dimensional massless Dirac Hamilton-
ian with a two-parameter perturbation proportional to the Coulomb potential

Dω,λ =
[−λ+ω

x −∂x

∂x −λ−ω
x

]
. (1.1)

We allow the parameters ω, λ to be complex. We will describe realizations of
(1.1) as closed operators on L2(R+, C2). We will call (1.1) the one-dimensional
Dirac–Coulomb Hamiltonian or operator (omitting usually the adjective one-
dimensional, or shortening it to 1d).

The formal operator Dω,λ is homogeneous of degree −1. Among its var-
ious closed realizations we will be especially interested in homogeneous ones,
i.e., those whose domain is invariant with respect to scaling transformations.

Our main motivation to study Dω,λ comes from the 3d Dirac–Coulomb
Hamiltonian

3∑
j=1

αjpj + βm − λ

r
(1.2)

acting on four component spinor functions on R
3. Here m ∈ R is the mass

parameter, λ ∈ R is related to the charge of nucleus and pj := −i∂xj . As is
well known, after separation of variables in (1.2) with m = 0 one obtains (1.1).
Possible values of ω are ±1,±2, . . . . They are related to the angular momen-
tum. Similar separation is possible also in other dimensions, albeit leading to
different values of ω. We remark that the mass term is bounded and hence
does not change the domain. Therefore, the analysis of the m = 0 case yields
the description of closed realizations of the massive Dirac–Coulomb operator.

The second source of interest in Dω,λ is the expectation that models with
scaling symmetry describe the behavior of much more complicated systems in
certain limiting cases.

There exists another important motivation for the study of Dirac–Coul-
omb Hamiltonians. Objects related to (1.1), such as its eigenfunctions and
Green’s kernels can be expressed in terms of Whittaker functions (or, equiv-
alently, confluent functions). Whittaker functions are eigenfunctions of the
Whittaker operator

Lβ,α := −∂2
x +

(
α − 1

4

) 1
x2

− β

x
. (1.3)

The Dirac–Coulomb Hamiltonian may be viewed as a good way to organize
our knowledge about Whittaker functions, one of the most important families
of special functions in mathematics. Curiously, it seem more suitable for this
goal than the Whittaker operator itself. Indeed, the homogeneity of the Dirac–
Coulomb operator leads to several identities which have no counterparts in the
case of the Whittaker operator (e.g., the scattering theory described in Sect. 6
with [13] and [10]).

Let us briefly describe the content of our paper. The most obvious closed
realizations of Dω,λ are the minimal and maximal realizations, denoted Dmin

ω,λ
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and Dmax
ω,λ . Both are homogeneous of degree −1. They depend holomorphically

on parameters ω, λ, except for |Re
√

ω2 − λ2| = 1
2 , where a kind of a “phase

transition” occurs. One of the signs of this phase transition is the following:
For |Re

√
ω2 − λ2| ≥ 1

2 , we have Dmin
ω,λ = Dmax

ω,λ , so that in this parameter range
there is only one closed realization of Dω,λ. However, for |Re

√
ω2 − λ2| < 1

2 ,
the domain of Dmin

ω,λ has codimension 2 as a subspace of the domain of Dmax
ω,λ .

This means that for fixed (ω, λ) in this region there exists a one-parameter
family of closed realizations of Dω,λ strictly between the minimal and maximal
realization.

In operator theory (and other domains of mathematics) it is useful to
organize objects in holomorphic families [14,29]. Therefore, we ask whether
Dmin

ω,λ = Dmax
ω,λ can be analytically continued beyond the region |Re

√
ω2 − λ2| >

1
2 . The answer is positive, but the domain of this continuation is a complex
manifold which is not simply an open subset of the “(ω, λ)-plane” C

2. To define
this manifold we start with the following subset of C

3:{
(ω, λ, μ) | μ2 = ω2 − λ2, μ > −1

2

}
. (1.4)

Then we “blow up” the singularity (ω, λ, μ) = (0, 0, 0). The resulting complex
two-dimensional manifold is denoted M− 1

2
. There exists a natural projection

M− 1
2

→ C
2. The preimage of (ω, λ) ∈ C

2 has one element if |Re
√

ω2 − λ2| ≥
1
2 , two elements if |Re

√
ω2 − λ2| < 1

2 , and (ω, λ) �= (0, 0) and infinitely many
elements if ω = λ = 0. This last preimage, called the zero fiber, is isomorphic
to the Riemann sphere CP

1, for which we use homogeneous coordinates [a:b].
Away from the zero fiber, points of M− 1

2
may be labeled by triples (ω, λ, μ).

The main result of our paper is the construction of a holomorphic family
of closed operators M− 1

2
� p �→ Dp consisting of homogeneous Dirac–Coulomb

Hamiltonians. If p ∈ M− 1
2

lies over (ω, λ), then we have inclusions

Dom(Dmin
ω,λ ) ⊂ Dom(Dp) ⊂ Dom(Dmax

ω,λ ). (1.5)

If |Re
√

ω2 − λ2| ≥ 1
2 , both inclusions in (1.5) are equalities. On the other hand,

for |Re
√

ω2 − λ2| < 1
2 both inclusions are proper and elements of the domain

of Dom(Dp) are distinguished by the following behavior near zero:

∼ xμ

ω + λ

[ −μ
ω + λ

]
, ∼ xμ

ω − λ

[
ω − λ
−μ

]
. (1.6)

Note that the two functions in (1.6), when both well defined, are proportional
to one another.

We describe various properties of Dp: we find its point spectrum, essential
spectrum, numerical range, discuss conditions for (maximal) dissipativity. We
construct explicitly the resolvent. Some spectral properties, including their
point spectra, of nonhomogeneous realizations of Dω,λ are also discussed.

Whenever Dp is self-adjoint, its spectrum is absolutely continuous, simple
and coincides with R. In non-self-adjoint cases, the essential spectrum is still
R, but on certain exceptional subsets of the parameter space there is also
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point spectrum {Im(k) > 0} or {Im(k) < 0}. Away from exceptional sets Dp

possesses non-square-integrable eigenfunctions, which can be called distorted
waves. They can be normalized in two ways: as incoming and outgoing distorted
waves. They define the integral kernels of a pair of operators U± that, at least
formally, diagonalize Dp. More precisely, on a dense domain U± intertwine Dp

with the operator of the multiplication by the independent variable k ∈ R. Up
to a trivial factor, U± can be interpreted as the wave (Møller) operators. The
operators U+ and U− are related to one another by the identity SU− := U+,
which defines the scattering operator S. Thus, we are able to describe rather
completely the stationary scattering theory of homogeneous Dirac–Coulomb
Hamiltonians.

For self-adjoint Dp, the operators U± are unitary. If λ is real, they are
still bounded and invertible, even if Dp are not self-adjoint. We show that U±

can be written (up to a trivial factor) as Ξ±(sgn(k), A), where A is the dilation
generator and sgn(k) is the sign of the spectral parameter. We express Ξ± in
terms of the hypergeometric function. We prove that they behave as s|Im(λ)|

for s → ∞. In particular, this shows that U± are bounded only for real λ.
The Coulomb potential is long-range. Therefore, we cannot use the stan-

dard formalism of scattering theory. In our paper we restrict ourselves to the
stationary formalism, where the long-range character of the perturbation is
taken into account by using appropriately modified plane waves.

Operators Dp with p in the zero fiber can be fully analyzed by elemen-
tary means. All operators strictly between Dmin

0,0 and Dmax
0,0 are homogeneous

and are specified by boundary conditions at zero of the form f(0) ∈ C

[
a
b

]

for [a:b] ∈ CP
1. Operator corresponding to boundary condition [a:b] will be

denoted D[a:b]. Other cases in which operators Dp are particularly simple are
discussed in “Appendix A”.

The operator Dmin
ω,λ is Hermitian (symmetric with respect to the scalar

product (·|·)) if and only if ω, λ ∈ R. Below we state our main results about
self-adjoint realizations of Dω,λ in the form of two propositions. They are
immediate consequences of the results of Sects. 4, 5. We present also the phase
diagram of operators Dω,λ on Fig. 1 and the parameter space of homogeneous
self-adjoint Dirac–Coulomb Hamiltonians on Fig. 2.

Let H1(R+) be the first Sobolev space on R+ and H1
0 (R+) be the closure

of C∞
c in H1(R+).

Proposition 1. Let ω, λ ∈ R. The Hermitian operator Dmin
ω,λ has the following

properties.

1. If 1
4 ≤ ω2 − λ2, it is self-adjoint and Dmin

ω,λ = Dω,λ,
√

ω2−λ2

2. If ω2 −λ2 < 1
4 , it has deficiency indices (1, 1). Hence, there exists a circle

of self-adjoint extensions.

Proposition 2. 1a. If 1
4 < ω2 − λ2, we have Dom(Dmin

ω,λ ) = H1
0 (R+, C2).

1b. If 1
4 = ω2 − λ2, we have H1

0 (R+, C2) � Dom(Dmin
ω,λ ).
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Figure 1. Phase diagram of operators Dω,λ for (ω, λ) ∈ R
2.

It is partitioned into five subsets corresponding to five possible
behaviors, see Propositions 1 and 2 and Fig. 3. We label re-
gions as follows. Color green and letter A refer to ω2 −λ2 ≥ 1

4
(we do not give a separate name to the boundary of this re-
gion, although it is also somewhat special). Color blue and
letter B refer to the subset 0 < ω2 − λ2 < 1

4 . Black lines
and letter C refer to the lines ω = ±λ, except for the special
point (ω, λ) = (0, 0), which is marked with a fat red dot and
letter D. Yellow color and letter E are used for the region
ω2 − λ2 < 0. In addition we present lines corresponding to
the lowest angular momentum values for dimensions d = 0,
d = 1, d = 2 and d = 3. Here we disregard the possible sign
of ω, which is irrelevant due to symmetry ω �→ −ω

2a. If 0 < ω2 − λ2 < 1
4 , exactly two self-adjoint extensions of Dmin

ω,λ are ho-
mogeneous, namely Dω,λ,

√
ω2−λ2 and Dω,λ,−√

ω2−λ2 . The former is dis-
tinguished among all self-adjoint extensions by∫ ∞

0

( |f(x)|2
x

+ |f(x)||f ′(x)|
)

dx < ∞ for f ∈ Dom(Dω,λ,
√

ω2−λ2), (1.7)
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Figure 2. Parameter space of homogeneous self-adjoint
Dirac–Coulomb Hamiltonians projected onto axes ω, λ, μ. Re-
gions colored yellow, blue and red are described by inequalities
μ > 1

2 , 0 < μ < 1
2 and − 1

2 < μ < 0, respectively. The fat dot
at the origin represents a circle contained in the zero fiber Z,
so the whole parameter space is topologically a cylinder

i.e., elements of its domain have finite expectation values of kinetic and
potential energy.

2b. If |λ| = |ω| �= 0, exactly one self-adjoint extension of Dmin
ω,λ is homoge-

neous, namely Dω,λ,0. It has the property H1
0 (R+, C2) � Dom(Dω,λ,0) �

H1(R+, C2).
2c. If λ = ω = 0, all self-adjoint extensions of Dmin

ω,λ are homogeneous. They
have the form D[a:b] with [a : b] ∈ RP

1.
2d. If |λ| > |ω|, none of self-adjoint extensions of Dmin

ω,λ is homogeneous.

Now let ω, λ be real and suppose that ω2 − λ2 < 1
4 . Let τ �→ Uτ denote

the scaling transformation. The parameter space of self-adjoint extensions is a
circle. It admits an action of the scaling group given by

D �→ UτDU−1
τ . (1.8)

The fixed points of this action are the homogeneous self-adjoint extensions.
Main properties of this action are illustrated by Fig. 3.

As we present in “Appendix B”, d-dimensional Dirac–Coulomb Hamil-
tonians can be reduced to the radial operator (1.1). Combined with the anal-
ysis presented above, one obtains rather complete information about self-
adjointness and homogeneity properties of these operators. Here we point out
only a few facts concerning these extensions on the lowest angular momentum
sector.

• dimension 1 There exist no homogeneous self-adjoint realizations for any
λ �= 0.

• dimension 2 The operator defined on smooth spinor-valued functions
with compact support not containing zero is not essentially self-adjoint
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J. Dereziński, B. Ruba Ann. Henri Poincaré

Figure 3. Visualization of the action of the scaling group
on self-adjoint extensions of Dmin

ω,λ in four regions covering the
set of ω, λ satisfying ω2 − λ2 < 1

4 . Fat dots are the fixed
points, while arrowheads indicate the direction of the flow as
τ increases, see (1.8). In the first region there are two fixed
points, attractive and repulsive, corresponding to a positive
and negative μ, respectively. As ω2 −λ2 decreases to zero, the
two fixed points merge to one degenerate fixed point, except
for the point ω = λ = 0 at which the scaling action becomes
trivial. As ω2 − λ2 decreases below zero, the scaling action
becomes periodic with period π√

λ2−ω2

for any λ �= 0. For |λ| < 1 there exist homogeneous self-adjoint exten-
sions of Dmin

ω,λ . These homogeneous extensions can be organized into two
continuous families. The (more physical) family is defined on [−1, 1]. At
the endpoints λ = ±1 it meets the other family, which is defined on
[−1, 0[∪]0, 1].

• dimension d ≥ 3: The operator defined as above is essentially self-adjoint
if λ2 ≤ d(d−2)

4 . If d(d−2)
4 < λ2 it is not essentially self-adjoint. How-

ever, for λ2 ≤ (d−1)2

4 there exists homogeneous self-adjoint extensions
of Dmin

ω,λ . They can be organized into two families depending continu-

ously on λ. The more physical family is defined on [− (d−1)2

4 , (d−1)2

4 ].
The second family meets the first at the endpoints and is defined on
[− (d−1)2

4 ,−d(d−2)
4 [∪ ]d(d−2)

4 , (d−1)2

4 ].
In all cases in which there exist no homogeneous self-adjoint extensions, the
defect indices are nevertheless equal and hence there exist nonhomogeneous
self-adjoint extensions.

Analysis of self-adjoint realizations of the three-dimensional Dirac–Coul-
omb Hamiltonian has a long and rich history in the mathematical literature.
There even exists a recent review paper devoted to this subject [21]. Let us
explain the main points of this history, referring the reader to [21] for more
details.

A direct application of the Kato-Rellich theorem yields the essential self-
adjointness of the (massive, 3d) Dirac–Coulomb Hamiltonian only for |λ| < 1

2 .
This proof is due to Kato [28,29]. The essential self-adjointness up to the
boundary of the “regular region” |λ| <

√
3

2 was proven independently by
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Gustaffson-Rejtö [26,34] and Schmincke [36]. They needed to use slightly more
refined arguments going beyond to the basic Kato-Rellich theorem. The “dis-
tinguished self-adjoint extension” in the region

√
3

2 < |λ| < 1 was described
in several equivalent ways, mostly involving the characterization of the do-
main, by Schmincke, Wüst, Klaus, Nenciu and others [5,6,22,31,33,37,42,43].
The characterization of distinguished self-adjoint extensions based on holo-
morphic families of operators was first proposed by Kato in [30]. Esteban
and Loss [18] characterized the distinguished self-adjoint realization at the
boundary of the “transitory region”, that is for |λ| = 1, by using the so-called
Hardy-Dirac inequalities. Self-adjoint realizations in the “supercritical region”
|λ| > 1 were first studied by Hogreve in [27], and then (with some corrections)
in [22]. The authors of [22] analyze also the second distinguished branch of
self-adjoint extensions in the critical region, which they call “mirror distin-
guished”. [5,6] include in their analysis a term proportional to 1

r2 βαixi, which
they call “anomalous magnetic”.

Our treatment of Dirac–Coulomb Hamiltonians is quite different from
the above references. We use exact solvability to describe rather completely
their resolvent, domain and (stationary) scattering theory. We do not add
the mass term, which helps with exact solvability and makes possible to use
the homogeneity as a good criterion for distinguished realizations. Another
concept which we use is that of a holomorphic family of operators, which we
view as an important criterion for distinguishing a realization. The mass term
is bounded, so it does not affect the basic picture of distinguished realizations.
Our analysis includes realizations which are not necessarily self-adjoint, but
turn out to be self-transposed with respect to a natural complex bilinear form.
Our description of various closed realizations of Dirac–Coulomb Hamiltonians
is quite straightforward and involves only elementary functions. We use neither
the von Neumann nor the Krein–Vishik theory of self-adjoint extensions, which
lead to a rather complicated description of the domains of closed description
involving Whittaker functions, see [22,23].

Our analysis of Dirac–Coulomb Hamiltonians can be viewed as a con-
tinuation of a series of papers about holomorphic families of certain one-
dimensional Hamiltonians: Bessel operators [3,12] and Whittaker operators
[10,13].

Let us mention some more papers, where Dirac–Coulomb operators play
an important role.

First, there exist a number of papers [7,16,24,39] devoted to the time
dependent approach to scattering theory for self-adjoint Dirac Hamiltonians
on R

3 with long range potentials.
There also exists a large and interesting literature devoted to eigenvalues

inside a spectral gap of a self-adjoint operator, with massive Dirac–Coulomb
Hamiltonians as prime examples [18,19,23,35]. Massless Dirac–Coulomb
Hamiltonians do not have a gap, and eigenvalues are possible only in non-
self-adjoint nonhomogeneous cases. Nevertheless, we believe that methods of
our paper are relevant for the eigenvalue problem in the massive self-adjoint
case.
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For a study of one-dimensional Dirac operators with locally integrable
complex potentials, see [2].

Finally, let us mention another interesting related topic, where the ques-
tion of distinguished self-adjoint realizations arises: 2-body Dirac–Coulomb
Hamiltonians. Their mathematical study was undertaken in [8]. Even though
the physical significance of these Hamiltonians is not very clear, they are widely
used in quantum chemistry.

Let us briefly describe the organization of our paper. Its main part,
that is Sects. 2–8 describes realizations of 1d Dirac–Coulomb Hamiltonians
on L2(R+, C2) focusing on the homogeneous ones. Besides, our paper contains
four appendices, which can be read independently.

“Appendix A” first discusses some general concepts related to 1d Dirac
operators. Then two special classes of 1d Dirac–Coulomb Hamiltonians are
analyzed in detail.

Essentially all papers that we mentioned in our bibliographical sketch
treat the three-dimensional case. It was pointed out in [25] that a general
d-dimensional spherically symmetric Dirac Hamiltonian can be reduced to a
one-dimensional one. We describe this reduction in detail in “Appendix B”.
We also analyze its various group-theoretical and differential-geometric as-
pects, including the relation to Dirac operators on spheres and the famous
Lichnerowicz formula. Spectra of the latter are computed in two independent
ways and a construction of eigenvectors is presented.

The short “Appendix C” is devoted to the Mellin transformation.
Finally, in “Appendix D” we collect properties of various special func-

tions, mostly, Whittaker functions, which are used in our paper. We mostly
follow the conventions of [10,13].

1.1. Remarks About Notation

Symbol (·|·) is used for standard scalar products on L2 spaces, linear in the
second argument, while 〈·|·〉 is used for the analogous bilinear forms in which
complex conjugation is omitted:

〈f |g〉 =
∫

f(x)Tg(x)dx. (1.9)

Transpose (denoted by the superscript T) of a densely defined operator is
defined in terms of 〈·|·〉 in the same way as the adjoint (denoted by ∗) is
defined in terms of the scalar product. We use superscript perp for orthogonal
complement with respect to 〈·|·〉 and ⊥ for orthogonal complement with respect
to (·|·). Overline always denotes complex conjugation; for example, we have
X⊥ = Xperp for a subspace X.

We will write R+ =]0,∞[, C± = {z ∈ C | ± Im(z) > 0}, N = {0, 1, . . . }.
Omission of zero will be denoted by ×, e.g., R

× = R\{0}. Indicator function
of a subset S ⊂ R will be denoted by 1S . We label elements of the Riemann
sphere CP

1 using homogeneous coordinates, i.e., [a : b] ∈ CP
1 is the complex

line spanned by (a, b) ∈ C
2\{0}.
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Operators of multiplication of a function in L2(R+, Cn) and L2(R, Cn) by
its argument will be denoted by X and K, respectively. Dilation group action
on L2(R+, Cn) is defined by Uτf(x) = e

τ
2 f(eτx). We denote its self-adjoint

generator by A, so that Uτ = eiτA. Operator O is said to be homogeneous of
degree ν if UτOU−1

τ = eντO. Inversion operator J is defined by (Jf)(x) =
1
xf

(
1
x

)
. It is unitary and satisfies J2 = 1, JAJ−1 = −A.

Complex power functions z �→ za are holomorphic and defined on C\] −
∞, 0]. Domains of holomorphy of special functions used in the text are specified
in “Appendix D”.

In our paper we will often use the concept of a holomorphic map with
values in closed operators, which we now briefly recall [14,29]. We will give two
equivalent definitions of this concept: the first is “more elegant”, the second
“more practical”. To formulate the first definition note that the Grassman-
nian (the set of closed subspaces) Grass(X) of a Hilbert space X carries the
structure of a complex Banach manifold [17].

Consider Hilbert spaces X2,X3 be Hilbert spaces and a complex manifold
M. We say that a function M � p �→ Tp of closed operators X2 → X3 is
holomorphic if and only if p �→ graph(Tp) ∈ Grass(X2 × X3) is a holomorphic
map.

Equivalently, M � p �→ Tp is holomorphic if for every p0 ∈ M there
exists a neighborhood M0 of p0 in M, a Hilbert space X1 and a holomorphic
family M0 � p �→ Sp of bounded injective operators Sp : X1 → X2 such
that Ran(Sp) = Dom(Tp) and TpSp form a holomorphic family of bounded
operators.

2. Blown-Up Quadric

Formal Dirac–Coulomb Hamiltonians depend on parameters (ω, λ) ∈ C
2. In or-

der to specify their realizations as closed homogeneous operators, it is necessary
to choose a square root of ω2−λ2. For this reason homogeneous Dirac–Coulomb
Hamiltonians are parametrized by points of a certain complex manifold. This
section is devoted to its definition and basic properties.

Let us first introduce a certain null quadric in C
3:

Mpre :=
{
(ω, λ, μ) ∈ C

3 |ω2 = λ2 + μ2
}

. (2.1)

By the holomorphic implicit function theorem, Mpre is a complex two-dimens-
ional submanifold of C

3 away from the singular point (0, 0, 0) (also denoted 0
for brevity).

We consider also the so-called blowup of Mpre at the singular point,
defined by

M =
{

(ω, λ, μ, [a : b]) ∈ C
3 × CP

1 |
[
ω + λ μ

μ ω − λ

] [
a
b

]
=

[
0
0

]}
. (2.2)

Fibers of the projection map M → CP
1 are described by triples (ω, λ, μ) ∈ C

3

subject to two linearly independent linear equations, whose coefficients are
holomorphic functions on local coordinate patches of CP

1. Therefore, M is a
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holomorphic line bundle over CP
1, embedded in the trivial bundle C

3 × CP
1.

In particular it is a two-dimensional complex manifold.

Equation
[
ω + λ μ

μ ω − λ

] [
a
b

]
=

[
0
0

]
has a solution different than (a, b) =

(0, 0) if and only if the quadratic equation defining Mpre is satisfied. Thus,
there is a projection map M → Mpre. Its restriction to the preimage of
Mpre\{0} is an isomorphism and will be treated as an identification. The
preimage of zero, called the zero fiber and denoted Z, is an isomorphic copy
of CP

1.
We will often use the short notation p = (ω, λ, μ, [a : b]) for elements of

M. If p /∈ Z, then [a : b] is uniquely determined by (ω, λ, μ) and we abbreviate
p = (ω, λ, μ). In turn for p in the zero fiber we write p = [a : b].

We will now describe useful coordinate systems on M. The coordinates

z =
a

b
, ω + λ (2.3)

are valid on {b �= 0} – the open subset of M which is the complement of

{b = 0} = {(ω,−ω, 0, [1 : 0])}ω∈C. (2.4)

More precisely, the following map is an isomorphism of complex manifolds:

C
2 � (ω + λ, z) �→

(
(ω + λ)(1 + z2)

2
,
(ω + λ)(1 − z2)

2
,−(ω + λ)z, [z : 1]

)

∈ {b �= 0}. (2.5)

We note that

z = − μ

ω + λ
= −ω − λ

μ
(2.6)

whenever the denominators are nonzero.
Analogously, on {a �= 0}, the complement of

{a = 0} = {(ω, ω, 0, [0 : 1])}ω∈C, (2.7)

we use the coordinates z−1 and ω − λ.
Sets {a �= 0}, {b �= 0} cover the whole M. On their intersection we have

ω − λ = (ω + λ)z2. (2.8)

We note that the locus {λ = 0} is the union of three Riemann surfaces:

{λ = 0} = Z ∪ {a = b} ∪ {a = −b}. (2.9)

It is singular at the intersection points:

{[1 : 1]} = Z ∩ {a = b}, {[1 : −1]} = Z ∩ {a = −b}. (2.10)

On the other hand, the level sets {λ = λ0} with λ0 �= 0 are nonsingular.
Similarly, we have

{μ = 0} = Z ∪ {a = 0} ∪ {b = 0}. (2.11)
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Remark 3. Consider the tautological line bundle N → CP
1, i.e., the space of

pairs
(
(a′, b′), [a : b]

) ∈ C
2 × CP

1 such that (a′, b′) ∈ [a : b]. Setting z := a′
b′ , we

obtain two charts (b′, z) and (a′, z−1), which cover N . The clutching formula
for N is a′ = b′z, which can be compared with the clutching formula (2.8) for
M. Thus, we see that as a holomorphic vector bundle M is isomorphic to the
tensor square of N .

Later we will encounter the meromorphic functions on M
N±

p =
z ± i

Γ(1 + μ∓iλ)
. (2.12)

We define the exceptional sets as their zero loci:

E± :={N±
p = 0} =

∞⋃
n=0

E±
n ,

E±
0 :={p ∈ M| a = ∓ib} = {p ∈ M| z = ∓i},

E±
n :={p ∈ M|μ∓iλ = −n}, n = 1, 2, . . . . (2.13)

Away from Z, the condition p ∈ E±
0 is equivalent to μ∓iλ = 0. Thus, for p /∈ Z

we have p ∈ E± if and only if μ∓iλ ∈ −N. Moreover,

E± ∩ Z = E±
0 ∩ Z = {[∓i : 1]}. (2.14)

In particular Z ∩ E+ ∩ E− = ∅. Clearly, the sets E±
n , n = 0, 1, 2, . . . , are

connected components of E±. Each E±
n is isomorphic to C. Indeed, E±

0 is a
fiber of M → CP

1 and E±
n with n ≥ 1 is globally parametrized by ω.

Lemma 4. E+ ∩E− is a countably infinite discrete subset of M on which 2μ+
1 ∈ −N. In particular μ ≤ − 1

2 .

Proof. Suppose that p ∈ M is such that μ + iλ = −n, μ − iλ = −m with
n,m ∈ N. Then

(ω, λ, μ) =
(

±nm,
m − n

2i
,−m + n

2

)
, (n,m) ∈ N

2\{(0, 0)}, (2.15)

from which the discreteness and countability of E+ ∩ E− is clear. If both n,m
are zero, then μ = λ = 0 and hence also ω = 0. In this case we have p ∈
Z ∩ E+ ∩ E− = ∅—contradiction. Thus, at least one of n,m is nonzero, and
we have 2μ + 1 = 1 − n − m ∈ −N. Conversely, if (n,m) ∈ N

2 is different than
(0, 0), then (2.15) defines one or two (if nm �= 0) points of E+ ∩E−, so this set
is infinite. �

We define the principal scattering amplitude as the ratio

Sp =
N−

p

N+
p

=
z − i
z + i

Γ(1 + μ − iλ)
Γ(1 + μ + iλ)

=
(ω − λ + iμ)Γ(1 + μ − iλ)
(ω − λ − iμ)Γ(1 + μ + iλ)

. (2.16)

It satisfies Sp = S−1
p ; hence, it has a unit modulus for p = p. Furthermore,

E−\E+ = {Sp = 0}, E+\E− = {Sp = ∞},

E− ∩ E+ = {Sp indeterminate}. (2.17)

Vol. 25 (2024) 359
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We introduce an involution on M by

τ(ω, λ, μ, [a : b]) = (ω, λ,−μ, [−a : b]). (2.18)

3. Eigenfunctions and Green’s Kernels

3.1. Zero Energy

The 1d Dirac–Coulomb Hamiltonian with parameters ω, λ ∈ C is given by the
expression

Dω,λ =
[−λ+ω

x −∂x

∂x −λ−ω
x

]
. (3.1)

When we consider (3.1) as acting on distributions on R+, we will call it the
formal operator. In what follows we will define various realizations of this
operator, with domain and range contained in L2(R+, C2), preferably closed.
They will have additional indices.

First consider its eigenequation for eigenvalue zero

Dω,λξ = 0. (3.2)

The space of distributions on R+ solving (3.2) will be denoted Ker(Dω,λ). The
following lemma shows that Ker(Dω,λ) consists of smooth solutions.

Lemma 5. Let f be a distributional solution on R+ of the equation f ′(x) =
M(x)f(x) for some M ∈ C∞(R+,End(Cn)). Then f is a smooth function.

Proof. Fix x0 ∈ R+ and ε ∈ ]
0, x0

2

[
. We choose χ2 ∈ C∞

c (R+) equal to 1 on
[x0 − 2ε, x0 + 2ε] and χ1 ∈ C∞

c (R+) supported in [x0 − 2ε, x0 + 2ε] and equal
to 1 on [x0 − ε, x0 + ε]. Clearly χ2χ1 = χ1 and χ2χ

′
1 = χ′

1. Put fj = χjf for
j = 1, 2. Since f2 is compactly supported, it belongs to Hs(R+, Cn) for some
s ∈ R. We have f1 = χ1f2, so also f1 ∈ Hs(R+, Cn). Now evaluate

f ′
1 = χ′

1f + χ1f
′ = χ2χ

′
1f + χ2χ1Mf = (χ′

1 + χ1M)f2. (3.3)

Since χ′
1+χ1M ∈ C∞

c (R+), this implies that f1 ∈ Hs+1(R+, Cn). Next we may
repeat this argument with ε

2 playing the role of new ε, χ1 as the new χ2 and
arbitrarily chosen new χ1. Then the new f1 is in Hs+2(R+, Cn). Proceeding like
this inductively we conclude that for every s ∈ R there exists χ ∈ C∞

c (R+)
equal to 1 on a neighborhood of x0 such that χ f belongs to Hs(R+, Cn).
Taking s > 1

2 + k we conclude from Sobolev embeddings that f is of class Ck

on a neighborhood of x0, perhaps after modifying it on a set of measure zero.
Since this is true for every k ∈ N and every x0 ∈ R+, f is smooth. �

For p ∈ M, we introduce two types of solutions of (3.2):

η↑
p(x) :=

xμ

ω + λ

[ −μ
ω + λ

]
= xμ

[
z
1

]
, (3.4a)

η↓
p(x) :=

xμ

ω − λ

[
ω − λ
−μ

]
= xμ

[
1

z−1

]
. (3.4b)
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They are nowhere vanishing meromorphic functions of p for every x:

M � p �→ η↑
p(x) has a pole on {b = 0},

M � p �→ η↓
p(x) has a pole on {a = 0}.

On {a �= 0} ∩ {b �= 0} we have η↓
p = z−1η↑

p.
There exist also exceptional solutions, defined only for μ = 0:

ϑ↑
ω(x) := − ln(x)

[
0
2ω

]
+

[
1
0

]
, ω − λ = 0; (3.5a)

ϑ↓
ω(x) := − ln(x)

[
2ω
0

]
+

[
0
1

]
, ω + λ = 0. (3.5b)

The nullspace of Dω,λ, that is, Ker(Dω,λ) has the following bases:

μ �= 0 :
(
η↑

ω,λ,μ, η↑
ω,λ,−μ

)
and

(
η↓

ω,λ,μ, η↓
ω,λ,−μ

)
,

ω = λ �= 0 :
(
η↑

ω,ω,0, ϑ↑
ω

)
,

ω = −λ �= 0 :
(
η↓

ω,−ω,0, ϑ↓
ω

)
,

(ω, λ) = (0, 0) :
(
ϑ↑

0, ϑ↓
0

)
=

([
1
0

]
,

[
0
1

])
.

The canonical bisolution of Dω,λ (A.5) at k = 0 takes the form

G↔
ω,λ(0;x, y) =

1
2

⎡
⎣ω−λ

μ

((
x
y

)μ

−
(

y
x

)μ) (
x
y

)μ

+
(

y
x

)μ

−
(

x
y

)μ

−
(

y
x

)μ

−ω+λ
μ

((
x
y

)μ

−
(

y
x

)μ)
⎤
⎦ . (3.6)

3.2. Nonzero Energy

Now consider the eigenequation for the eigenvalue k ∈ C
×:

(Dω,λ − k)f = 0. (3.7)

Acting on (3.7) with Dω,−λ + k we obtain[
−∂2

x + ω2−λ2

x2 − 2λk
x − k2 ω−λ

x2

ω+λ
x2 −∂2

x + ω2−λ2

x2 − 2λk
x − k2

]
f(x) = 0. (3.8)

At first we focus on the case μ2 = ω2 − λ2 �= 0, in which
[

0 ω − λ
ω + λ 0

]
is a

diagonalizable matrix. Decomposing f(x) in its eigenbasis

f(x) = f+(x)
[
ω − λ

μ

]
+ f−(x)

[
ω − λ
−μ

]
(3.9)

we find that functions f±(x) satisfy the Whittaker equations(
−∂2

x +

(
μ ± 1

2

)2 − 1
4

x2
− 2λk

x
− k2

)
f±(x) = 0. (3.10)

This second-order differential equation is satisfied by the Whittaker functions
(D.15) and (D.18):

f±(x) = c±,1I−iλ,μ± 1
2
(2ikx) + c±,2K−iλ,μ± 1

2
(2ikx). (3.11)
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For generic values of parameters, the four functions appearing in (3.11)
are linearly independent and thus (3.11) is the general solution of (3.8). In-
spection of its expansion for x → 0 reveals that (again, for generic parameters)
it is annihilated by Dω,λ − k if and only if

iω c−,1 = c+,1, ω c−,2 = (λ + iμ)c+,2. (3.12)

Remark 6. Equation (3.7) simplifies for μ = 0, but instead of treating it sep-
arately we will construct solutions valid on the whole M by analytic contin-
uation. For similar reasons we disregard non-generic cases mentioned above
Equation (3.12).

Let us introduce a family of solutions of the eigenequation (3.7) defined
for k ∈ C\[0, i∞[:

ξ−
p (k, x) =

Γ(1 + μ + iλ)
2μ(ω − λ + iμ)

(
iωI−iλ,μ+ 1

2
(2ikx)

[
ω − λ

μ

]

+ I−iλ,μ− 1
2
(2ikx)

[
ω − λ
−μ

])
, (3.13a)

ζ−
p (k, x) =

ω K−iλ,μ+ 1
2
(2ikx)

μ(ω − λ − iμ)

[
ω − λ

μ

]

+
(λ + iμ)K−iλ,μ− 1

2
(2ikx)

μ(ω − λ − iμ)

[
ω − λ
−μ

]
. (3.13b)

As an alternative to the presented derivation, one may check directly that they
satisfy (3.7) using recursion relations from “Appendix D.4”.

The second family, defined for k ∈ C\[0,−i∞[, is obtained by reflection:

ξ+
p (k, x) = ξ−

p (k, x), ζ+
p (k, x) = ζ−

p (k, x). (3.14)

Explicit expressions in terms of Whittaker functions take the form

ξ+
p (k, x) =

Γ(1 + μ − iλ)
2μ(ω − λ − iμ)

×
(

−iωIiλ,μ+ 1
2
(−2ikx)

[
ω − λ

μ

]
+ Iiλ,μ− 1

2
(−2ikx)

[
ω − λ
−μ

])
,

(3.15a)

ζ+
p (k, x) =

ω Kiλ,μ+ 1
2
(−2ikx)

μ(ω − λ + iμ)

[
ω − λ

μ

]

+
(λ − iμ)Kiλ,μ− 1

2
(−2ikx)

μ(ω − λ + iμ)

[
ω − λ
−μ

]
. (3.15b)

Lemma 7. Let us fix k, x. ξ+
p (k, x) and ξ−

p (k, x) are meromorphic functions of
p ∈ M, nonsingular away from E+ and E−, respectively. ζ+

p (k, x) and ζ−
p (k, x)

are holomorphic functions on the whole M. Furthermore, ζ±
p (·) satisfy ζ±

p =
ζ±
τ(p), where τ was defined in (2.18), and are nonzero functions for every p ∈

M.
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Proof. It is sufficient to prove the claim for the family with superscript mi-
nus. Meromorphic dependence on p is clear. Definitions of ξ−

p and ζ−
p can be

manipulated to the form

ξ−
p (k, x) = i I−iλ,μ+ 1

2
(2ikx)

1
N−

p

[−1
z

]

+
I−iλ,μ− 1

2
(2ikx) − iλ I−iλ,μ+ 1

2
(2ikx)

μ

1
N−

p

[
z
1

]
, (3.16a)

ζ−
p (k, x) = K−iλ,μ+ 1

2
(2ikx)

[
i
1

]

− (ω + λ)(z + i)
2

K−iλ,μ− 1
2
(2ikx) − K−iλ,μ+ 1

2
(2ikx)

μ

[
z
1

]
(3.16b)

= K−iλ,μ− 1
2
(2ikx)

[
i
1

]

−
(ω + λ)(−z + i)

(K−iλ,μ− 1
2
(2ikx) − K−iλ,μ+ 1

2
(2ikx)

)
2μ

[−z
1

]
.

(3.16c)

Functions μ �→ I−iλ,μ− 1
2
(2ikx)−iλ I−iλ,μ+ 1

2
(2ikx)

μ and

μ �→ K−iλ,μ− 1
2
(2ikx)−K−iλ,μ+ 1

2
(2ikx)

μ have removable singularities at μ = 0, as
seen from identities (D.17), (D.19a). Therefore, ζ−

p (k, x) is regular for z �= ∞.
If in addition p /∈ E−, then also (N−

p )−1 and hence ξ−
p is nonsingular.

Next write (ω + λ)(z + i)
[
z
1

]
= (ω − λ)(1 + iz−1)

[
1

z−1

]
in (3.16a). Then

it is clear that ζ−
p (k, x) is nonsingular for z = ∞.

Moreover, z
N−

p
= Γ(1 + μ + iλ)(1 − iz−1)−1 is nonsingular for z = ∞ if

p �∈ E−
0 . Hence, ξ−

p (k, x) is nonsingular for z = ∞ if p /∈ E−.
The statement about the symmetry μ → −μ follows from the comparison

of (3.16a) and (3.16c). The last claim follows from (3.19) below. �

Remark 8. Proof of Lemma 7 shows that functions ξ±
p (k,x)

Γ(1+μ∓iλ) are singular on

subsets of M smaller than E±, namely on E±
0 . Moreover, (ω−λ∓iμ)ξ±

p (k,x)

Γ(1+μ∓iλ) is
holomorphic everywhere on M; however, it vanishes on Z ∪ {a = 0}.

Near the origin, ξ±
p has the leading term proportional to (kx)μ, except

for 2μ + 1 ∈ −N:

ξ±
p (k, x) ∼ 1

N±
p

(∓2ikx)μ

Γ(2μ + 1)

[
z
1

]
+ O((kx)μ+1) (3.17)

If k ∈ C±, it grows exponentially at infinity:

ξ±
p (k, x) ∼ 1

2
e∓ikx(∓2ikx)∓iλ

[
1
∓i

]
+ O(e∓ikx(kx)∓iλ−1). (3.18)
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Under the same assumption, ζ±
p is exponentially decaying:

ζ±
p (k, x) ∼ e±ikx(∓2ikx)±iλ

[∓i
1

]
+ O(e±ikx(kx)±iλ−1). (3.19)

Behavior of this function near the origin is much more complicated, see (D.24).
Here we note only that for Re(μ) > 0 one has

ζ±
p (k, x) ∼ N±

p

2
Γ(2μ + 1)(∓2ikx)−μ

[−1
z−1

]
+ o((kx)−μ). (3.20)

For k ∈ C\iR both families of solutions are defined. The following lemma
provides relations between them. It is convenient to introduce εk = sgn(Re(k)),
which distinguishes connected components of C\iR.

Lemma 9. For every k ∈ C\iR we have

ξ+
p (k, x) = e−iεkπμSp ξ−

p (k, x), (3.21a)

ξ+
p (k, x) =

e−εkπλ

2i
(
ζ−
p (k, x) − e−iεkπμSpζ

+
p (k, x)

)
, (3.21b)

ξ−
p (k, x) =

e−εkπλ

2i
(
eiεkπμS−1

p ζ−
p (k, x) − ζ+

p (k, x)
)
, (3.21c)

ζ±
p (k, x) = ∓2ieεkπλξ∓

p (k, x) + e±iεkπμ(Sp)∓1ζ∓
p (k, x). (3.21d)

Proof. Equation (3.21a) follows immediately from (D.16a). To derive (3.21b),
we express ξ±

p and ζ±
p in terms of trigonometric Whittaker functions and use

the connection formula (D.33). Then (3.21c) is obtained by reflection or by
combining with (3.21a). Equation (3.21d) is obtained from (3.21b) and (3.21c)
by inverting and multiplying 2 × 2 matrices. �

Lemma 10. ξ±
p and ξ±

τ(p), two eigenvectors of the monodromy, can be used to
express ζ±

p :

ζ±
p (k, x) = − 2πω

Γ(1 + μ∓iλ)Γ(1 − μ∓iλ)

ξ±
p (k, x) − ξ±

τ(p)(k, x)

sin(2πμ)
. (3.22)

The analytic continuation of ζ±
p along a loop winding around the origin coun-

terclockwise gives

ζ±
p (e2πik, x) = e−2πiμζ±

p (k, x) − 4πiω

Γ(1 + μ∓iλ)Γ(1 − μ∓iλ)
ξ±

p (k, x). (3.23)

Proof. Relation (3.22) may be derived from (D.18). Then (3.23) follows imme-
diately. �

Lemma 11. The following relations hold:

det
[
ξ±
p (k, x) ζ±

p (k, x)
]

= 1, (3.24a)

det
[
ζ+
p (k, x) ζ−

p (k, x)
]

= −2ieεkπλ. (3.24b)

In particular, ξ±
p (k, ·), ζ±

p (k, ·) form a basis of solutions of (3.7) for p /∈ E±

and k /∈ [0,∓i∞[, while ζ+
p (k, ·) and ζ−

p (k, ·) form a basis whenever k /∈ iR.
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Proof. Equation (3.7) may be rewritten in the form f ′(x) = M(x)f(x), where
M(x) is a traceless matrix. Therefore, for any two solutions f, g the deter-
minant det

[
f(x) g(x)

]
is independent of x. To calculate it for f = ξ±

p (k, ·),
g = ζ±

p (k, ·), we use their asymptotic forms for x → 0. By holomorphy, it is
sufficient to carry out the computation for Re(μ) > 0. Then we may use (3.17)
and (3.20). To obtain (3.24b), we combine (3.21b) with (3.24a). �

We remark that restrictions on k in Lemma 11 may be omitted if the
functions ξ±

p and ζ±
p are analytically continued in suitable way.

Lemma 12. The following relation holds for p ∈ E±:

ζ±
p (k, x) = ∓2ie∓iπ(μ∓iλ)(Sp)∓1ξ±

p (k, x). (3.25)

In particular (Sp)∓1ξ±
p (k, x) is nonsingular on E±.

Proof. It is sufficient to consider the lower sign. If p ∈ E−, then either 1 +
μ + iλ ∈ −N or z = i (and hence μ + iλ = 0). In the former case we use
(D.21) for both terms in (3.13b). In the latter case (D.21) may be used only
for the second term, but the first term in both (3.13a) and (3.13b) vanishes.
This establishes (3.25). �

The following function will be called the two-sided Green’s kernel. It is
defined if k ∈ C± and p /∈ E±:

G�

p (k;x, y) = −1R+(y − x)ξ±

p (k, x)ζ±
p (k, y)T

−1R+(x − y)ζ±
p (k, x)ξ±

p (k, y)T. (3.26)

It is a holomorphic function of p ∈ M\E± satisfying

G��
p (k; x, y) = G��

p (k; y, x)T and G��
p (k, x, y) = G��

p (k; x, y). (3.27)

Later on, with some restrictions on parameters, it will be interpreted as the
resolvent of certain closed realizations of Dp.

4. Minimal and Maximal Operators

We consider the operator

Dω,λ =
[−λ+ω

x −∂x

∂x −λ−ω
x

]
. (4.1)

on distributions on R+ =]0,∞[ valued in C
2. We will construct out of it several

densely defined operators on L2(R+, C2).
Firstly, we let Dpre

ω,λ be the restriction of Dω,λ to C∞
c = C∞

c (R+, C2),
called the preminimal realization of Dω,λ. We have Dpre

ω,λ
⊂ Dpre∗

ω,λ , so Dpre∗
ω,λ is

densely defined. Thus, Dpre
ω,λ is closable. Its closure will be denoted by Dmin

ω,λ .
Next, Dmax

ω,λ is defined as the restriction of Dω,λ to Dom(Dmax
ω,λ ) = {f ∈

L2(R+, C2) |Dω,λf ∈ L2(R+, C2)}. It is easy to check that Dmin
ω,λ ⊂ Dmax

ω,λ =
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Dpre∗
ω,λ

. Furthermore, Dpre
ω,λ = Dpre

ω,λ
and analogously for Dmin

ω,λ and Dmax
ω,λ . As

a consequence,

Dmin T
ω,λ = Dmax

ω,λ , Dmax T
ω,λ = Dmin

ω,λ . (4.2)

Operators Dpre
ω,λ,Dmin

ω,λ and Dmax
ω,λ are all homogeneous of order −1.

We choose μ ∈ C satisfying μ2 = ω2 − λ2. Note that in general μ is not
uniquely determined by ω, λ. For the moment it does not matter which one
we take.

Theorem 13. 1. If |Re(μ)| ≥ 1
2 , then

Dom(Dmax
ω,λ ) = Dom(Dmin

ω,λ ). (4.3)

2. If |Re(μ)| < 1
2 , then

dimDom(Dmax
ω,λ )/Dom(Dmin

ω,λ ) = 2. (4.4)

Besides, if χ ∈ C∞
c ([0,∞[) equals 1 near 0, then

Dom(Dmax
ω,λ ) = Dom(Dmin

ω,λ ) + {fχ | f ∈ Ker(Dω,λ)}. (4.5)

We will prove the above theorem in the next section. Now we would like
to discuss its consequences. If |Re(μ)| < 1

2 , we are especially interested in
operators D•

ω,λ satisfying

Dmin
ω,λ � D•

ω,λ � Dmax
ω,λ . (4.6)

By the above theorem, they are in 1−1 correspondence with rays in Ker(Dω,λ).
More precisely, let f ∈ Ker(Dω,λ), f �= 0. Define Df

ω,λ as the restriction
of Dmax

ω,λ to

Dom(Df
ω,λ) := Dom(Dmin

ω,λ ) + Cfχ. (4.7)

Then Df
ω,λ is independent of the choice of χ and satisfies

Dmin
ω,λ � Df

ω,λ � Dmax
ω,λ . (4.8)

Every D•
ω,λ satisfying (4.6) is of the form Df

ω,λ for some f and we have Df
ω,λ =

Dg
ω,λ if and only if f and g are proportional to each other.

We will now investigate the domain of the minimal operator. Note that
if we know the domain of Dmin

ω,λ , then the domain of Dmax
ω,λ is also known from

Theorem 13. From now on we do not use this result until its proof is presented.
The following two facts are well-known:

Lemma 14. Hardy’s inequality: If f ∈ H1
0 (R+), then∫ ∞

0

|f(x)|2
x2

dx ≤ 4
∫ ∞

0

|f ′(x)|2dx. (4.9)

Lemma 15. If R,S are closed operators such that R has bounded inverse, then
RS is closed.

The above two lemmas are used in the following characterization of the
minimal domain:
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Proposition 16. H1
0 (R+, C2) ⊂ Dom(Dmin

ω,λ ), with an equality if |Re(μ)| �= 1
2 .

Proof. The inclusion follows from Hardy’s inequality. To prove the second part
of the statement, we use Lemma 15. Consider R = A − Mω,λ, S = σ2

x , where

Mω,λ =
[

i
2 −iλ − iω

iλ − iω i
2

]
. R is a bounded perturbation of A, so Dom(R) =

Dom(A) and R is closed, while S is self-adjoint on the domain Dom(S) ={
f ∈ L2(R+, C2) | 1

xf(x) ∈ L2(R+, C2)
}
. One checks that RS = Dω,λ|Dom(RS).

Next we show that Dom(RS) = H1
0 (R+, C2).

If f ∈ Dom(RS), then x �→ f(x)
x belongs to Dom(A). Since x∂x

f(x)
x =

f ′(x) − f(x)
x , this entails that f ′ ∈ L2. Thus, f ∈ H1(R+, C2) ∩ Dom(S) =

H1
0 (R+, C2). Conversely, if f ∈ H1

0 (R+, C2), then f ∈ Dom(S) by Hardy’s
inequality, while the last computation implies that Sf ∈ Dom(A). Thus, f ∈
Dom(RS).

We have shown that Dom(RS) = H1
0 (R+, C2), which is dense in Dom

(Dmin
ω,λ ) with the graph topology. Thus, Dmin

ω,λ is the closure of RS. We have to
check that R has bounded inverse.

If μ �= 0, then Mω,λ is a diagonalizable matrix with eigenvalues c± = i
2 ±

iμ, which have nonzero imaginary part if |Re(μ)| �= 1
2 . Therefore, the operator

A − Mω,λ is similar to A −
[
c+ 0
0 c−

]
, which clearly is boundedly invertible. If

μ = 0, then Nω,λ = Mω,λ − i
2 is a nilpotent matrix, N2

ω,λ = 0. Therefore,
(A − Mω,λ)−1 = (A − i

2 )−1 + (A − i
2 )−1Nω,λ(A − i

2 )−1. �

Corollary 17. Dmin
ω,λ and Dmax

ω,λ are holomorphic families of closed operators for
|Re(μ)| �= 1

2 .

Proof. Away from the set |Re(μ)| = 1
2 , the operators Dmin

ω,λ have a constant
domain. By Hardy’s inequality, Dω,λf is a holomorphic family of elements of
L2(R+, C2) for any f ∈ H1

0 (R+, C2). Hence, Dmin
ω,λ form a holomorphic family

of bounded operators H1
0 (R+, C2) → L2(R+, C2). The claim for Dmax

ω,λ follows
by taking adjoints (see, e.g., Theorem 3.42 in [14]). �

We denote by σp(B) the point spectrum of an operator B, that is

σp(B) := {k ∈ C | dim(Ker(B − k) ≥ 1}. (4.10)

If dim(Ker(B − k)) = 1, we say that k is a nondegenerate eigenvalue.
In the following proposition we give a complete description of the point

spectrum of the maximal and minimal operator. With no loss of generality,
we assume that Re(μ) > − 1

2 . Note that the definition of E± is not symmetric
with respect to μ �→ −μ!

Proposition 18. One of the following mutually exclusive statements is true:
1. Re(μ) ≥ 1

2 and (ω, λ, μ) ∈ E±. Then

σp(Dmax
ω,λ ) = σp(Dmin

ω,λ ) = C±.
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2. Re(μ) ≥ 1
2 and (ω, λ, μ) �∈ E+ ∪ E−. Then

σp(Dmax
ω,λ ) = σp(Dmin

ω,λ ) = ∅.

3. Re(μ) < 1
2 and |Im(λ)| ≤ 1

2 . Then

σp(Dmax
ω,λ ) = C\R, σp(Dmin

ω,λ ) = ∅.

4. Re(μ) < 1
2 and |Im(λ)| > 1

2 . Then

σp(Dmax
ω,λ ) = C

×, σp(Dmin
ω,λ ) = ∅.

Besides, all eigenvalues of Dmax
ω,λ and Dmin

ω,λ are nondegenerate.

Proof. The four possibilities listed above are clearly mutually exclusive and
cover all cases. Indeed, case p ∈ E+ ∩ E− is ruled out by Lemma 4.

By Lemma 5, every f ∈ Ker(Dmax
ω,λ −k) is a smooth function satisfying the

differential equation (Dω,λ − k)f = 0, in which derivatives may be understood
in the classical sense. Space of solutions of this equation is two-dimensional.

By discussion in Sect. 3, there exist no nonzero solutions in L2(R+, C2)
for k = 0. In the remainder of the proof we restrict attention to k �= 0.

First suppose that Re(μ) ≥ 1
2 . If p /∈ E+ ∪ E−, then ξ+

p (as well as ξ−
p )

is the unique up to scalars solution square integrable in a neighborhood of
zero, since other solutions have leading term proportional to x−μ. It is not in
L2(R+, C2). Now let p ∈ E±. If ±Im(k) ≤ 0, we can argue in the same way
using function ξ∓

p . In the case k ∈ C± solution ζ±
p is square integrable, whereas

solutions not proportional to it grow exponentially at infinity. If Re(μ) > 1
2 ,

then we have also ζ±
p ∈ H1

0 (R+, C2) ⊂ Dom(Dmin
ω,λ ).

If Re(μ) = 1
2 , then ζ±

p /∈ H1
0 (R+, C2). We will now show that nevertheless

ζ±
p ∈ Dom(Dmin

ω,λ ). We define ζ±
p,ε(k, x) = min{xε, 1}ζ±

p (k, x) for ε > 0. Then
ζ±
p,ε ∈ H1

0 (R+, C2) ⊂ Dom(Dmin
ω,λ ). We will show that ζ±

p,ε converges to ζ±
p in the

graph topology of Dom(Dmax
ω,λ ) as ε → 0. Indeed, convergence in L2(R+, C2) is

clear. Furthermore,

Dmin
ω,λ ζ±

p,ε(k, x) = kζ±
p,ε(k, x) + ε1[0,1](x)xε−1

[
0 −1
1 0

]
ζ±
p (k, x), (4.11)

where 1[0,1] is the characteristic function of [0, 1]. The first term converges to
kζ±

p = Dmax
ω,λ ζ±

p . We show that the second term converges to zero by estimating
∫ ∞

0

∣∣∣∣ε1[0,1](x)xε−1

[
0 −1
1 0

]
ζ±
p (k, x)

∣∣∣∣
2

dx = ε2
∫ 1

0

|ζ±
p (k, x)|2

x
x2ε−1dx

≤ ε2 sup
y∈[0,1]

|ζ±
p (k, y)|2

y
·
∫ 1

0

x2ε−1dx =
ε

2
sup

y∈[0,1]

|ζ±
p (k, y)|2

y
. (4.12)

Now suppose that |Re(μ)| < 1
2 . Then all solutions are square integrable

in a neighborhood of the origin, but they do not belong to H1
0 (R+, C2) =

Dom(Dmin
ω,λ ). If k ∈ C±, then ζ±

p is square integrable and solutions not propor-
tional to it grow at infinity.
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It only remains to consider the case of nonzero k ∈ R. There exist
solutions with leading terms for x → ∞ proportional to e−ikx(kx)−iλ and
eikx(kx)iλ. If |Im(λ)| > 1

2 , then one of these two is square integrable. �

We note that Proposition 18 partially describes also ranges of Dmin
ω,λ and

Dmax
ω,λ , since

Ran(Dmin
ω,λ − k)perp = Ker(Dmax

ω,λ − k), (4.13)

Ran(Dmax
ω,λ − k)perp = Ker(Dmin

ω,λ − k), (4.14)

Corollary 19. Operators Dmin
ω,λ and Dmax

ω,λ have empty resolvent sets if |Re(μ)| <
1
2 .

5. Homogeneous Realizations and the Resolvent

5.1. Definition and Basic Properties

We consider the following open subset of M:

M− 1
2

:=
{

p ∈ M | Re(μ) > −1
2

}
. (5.1)

As before, choose χ ∈ C∞
c (R+) equal to 1 near 0. If p = (ω, λ, μ, [a : b]) ∈

M− 1
2
, we define Dp to be the restriction of Dmax

ω,λ to

Dom(Dp) := Dom(Dmin
ω,λ ) + Cxμ

[
a
b

]
χ. (5.2)

This definition is correct because xμ

[
a
b

]
χ is an element of Dom(Dmax

ω,λ ) for

Re(μ) > − 1
2 . If Re(μ) ≥ 1

2 , then it belongs to Dom(Dmin
ω,λ ), so we have Dp =

Dmin
ω,λ .

Theorem 20. Let p ∈ M− 1
2
. Then the operator Dp does not depend on the

choice of χ, is closed, self-transposed and

σ(Dp) =

{
R for p /∈ E+ ∪ E−,

C± ∪ R for p ∈ E±,

σp(Dp) =

{
∅ for p /∈ E+ ∪ E−,

C± for p ∈ E±.
(5.3)

If ±Im(k) > 0 and p �∈ E±, then the integral kernel G�

p (k;x, y) introduced in

(3.26) defines a bounded operator G�

p (k) and

G�

p (k) = (Dp − k)−1. (5.4)

For k ∈ C±, the map M− 1
2
\E± � p �→ (Dp − k)−1 is a holomorphic family of

bounded operators.
Therefore, M− 1

2
� p �→ Dp is a holomorphic family of closed operators.
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Proof. It is sufficient to consider the case Im(k) < 0. Let p /∈ E−. We prove
the boundedness separately for the integral operators with kernels G�


p (k) re-
stricted to four regions forming a partition of R+ ×R+ (up to an inconsequen-
tial overlap on a set of measure zero). Throughout the proof we use notation
x< = min{x, y}, x> = max{x, y}. Symbols cp, c

′
p will be used for positive

constants which are locally bounded functions of p.

First we consider the region x, y ≤ |k|−1. Inspecting the asymptotics
of Whittaker functions for small argument we conclude that |G�


p (k;x, y)| ≤
cp(|k|x<)Re(μ)(|k|x>)−|Re(μ)|. Using this inequality and elementary integrals,
we estimate

∫
[0,|k|−1]2

|G��
p (k; x, y)|2dxdy ≤ c2p

|k|2
1

1 + 2Re(μ)

1

1 + Re(μ) − |Re(μ)| . (5.5)

Therefore, the Hilbert–Schmidt norm of the corresponding operator is bounded
by c′

p

|k| .

Next, in the region y ≤ |k|−1 ≤ x we have |G�

p (k)| ≤ cp(|k|y)Re(μ)

(|k|x)Im(λ)e−|Im(k)|x. Thus,∫
[|k|−1,∞[×[0,|k|−1]

|G�

p (k;x, y)|2dxdy

≤ c2
p

|k|2
∫

[1,∞[×[0,1]

e−2 |Im(k)|
|k| tt2 Im(λ)t′2Re(μ)dtdt′, (5.6)

which is a convergent integral depending continuously on λ, μ. Again, the cor-
responding operator is Hilbert–Schmidt with locally bounded norm. By the
symmetry property (3.27) the same is true for the region x ≤ |k|−1 ≤ y.

Finally for x, y ≥ |k|−1 we have |G�

p (k;x, y)| ≤ cpe−|Im(k)|(x>−x<) x

Im(λ)
>

x
Im(λ)
<

.

Hence,
∫ ∞

|k|−1
|G��

p (k; x, y)|dy

≤ cp

(∫ x

|k|−1
e|Im(k)|(y−x) y−Im(λ)

x−Im(λ)
dy +

∫ ∞

x

e−|Im(k)|(y−x) yIm(λ)

xIm(λ)
dy

)
. (5.7)

If Im(λ) ≤ 0, then y∓Im(λ)

x∓Im(λ) ≤ 1 under these integrals, so elementary calculation
gives ∫ ∞

|k|−1
|G�


p (k;x, y)|dy ≤ 2cp

|Im(k)| . (5.8)

Next we consider the case Im(λ) > 0. Integration by parts in the first term of
(5.7) gives ∫ x

|k|−1
e|Im(k)|(y−x) y−Im(λ)

x−Im(λ)
dy ≤ 1

|Im(k)|
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+
Im(λ)
|Im(k)|

∫ x

|k|−1
e|Im(k)|(y−x) xIm(λ)

yIm(λ)+1
dy. (5.9)

The integrand of this integral is maximized at one of the two endpoints, so
∫ x

|k|−1
e|Im(k)|(y−x) xIm(λ)

yIm(λ)+1
dy ≤ max

{
e

|Im(k)|
|k| (1−|k|x) (|k|x)Im(λ)+1

x
,
1

x

}∫ x

|k|−1
dy

≤ max
{
e1−|Im(k)|x(|k|x)Im(λ)+1, 1

}
. (5.10)

Optimizing with respect to x we conclude that

∫ x

|k|−1
e|Im(k)|(y−x) xIm(λ)

yIm(λ)+1
dy ≤ max

{
e

(
Im(λ) + 1

|Im(k)|
)Im(λ)+1

, 1

}
. (5.11)

In the second integral in (5.7), we integrate by parts n ≥ Im(λ) times:
∫ ∞

x

e−|Im(k)|(y−x) yIm(λ)

xIm(λ)
dy =

n−1∑
j=0

cjx
−j

|Im(k)|j+1

+
cn

|Im(k)|n
∫ ∞

y

e−|Im(k)|(y−x) y
Im(λ)−n

xIm(λ)
dy,

(5.12)

where cj := Im(λ)(Im(λ)−1) · · · (Im(λ)− j +1). Next we estimate yIm(λ)−n ≤
xIm(λ)−n and x−j ≤ |k|j under the remaining integral. Then simple calculation
gives ∫ ∞

x

e−|Im(k)|(y−x) yIm(λ)

xIm(λ)
dy ≤

n∑
j=0

Im(λ)j |k|j
|Im(k)|j+1

. (5.13)

The same estimates are true for
∫ ∞

|k|−1 |G�

p (k;x, y)|dx. The claim follows by

Schur’s criterion. This proves the boundedness of G�

p (k).

Equation (3.27) implies that (whenever G�

p (k) is defined) we have 〈f |G�


p

(k)g〉 = 〈G�

p (k)f |g〉 for f, g ∈ C∞

c (R+, C2). By continuity, the same is true for
all f, g ∈ L2(R+, C2). Thus, G�


p (k) is self-transposed.
Next we check that 〈f |Dpg〉 = 〈Dpf |g〉 for f, g ∈ Dom(Dp). To this end,

we evaluate

〈f |Dpg〉 − 〈Dpf |g〉 = i
∫ ∞

0

d
dx

(
f(x)Tσ2g(x)

)
dx. (5.14)

If either f or g is in C∞
c (R+, C2), the right-hand side is zero. By continuity

with respect to the graph norm, the same is true for all f, g ∈ Dom(Dmin
ω,λ ).

Since σ2 is a skew-symmetric matrix, the right-hand side vanishes also for f, g

proportional to χxμ

[
a
b

]
. Thus, Dp is self-transposed.

Let f ∈ L2(R+, C2). We pick a sequence fi ∈ C∞
c (R+, C2) such that

fi → f . Then G�

p (k)fi → G�


p (k)f and

DpG
�

p (k)fi = fi + kG�


p (k)fi → f + kG�

p (k)f. (5.15)
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Since Dp is closed, this implies that f ∈ Dom(Dp) and DpG
�

p (k)f = f +

kG�

p (k)f . Therefore, we have Ran(G�


p (k)) ⊂ Dom(Dp) and (Dp − k)G�

p (k) =

1.
For any f ∈ L2(R+, C2) and g ∈ Dom(Dp) we have

〈f |G�

p (k)(Dp − k)g〉 = 〈G�


p (k)f |(Dp − k)g〉
= 〈(Dp − k)G�


p (k)f |g〉 = 〈f |g〉. (5.16)

Since f was arbitrary, G�

p (k)(Dp − k)g = g. Thus, k /∈ σ(Dp) and G�


p (k) =
(Dp − k)−1.

To show that (Dp − k)−1 is unbounded for k ∈ R
×, we fix ε > 0 and

consider the function

fε(x) = e−εxξp(k, x).

Then fε ∈ Dom(Dp) and |(Dp − k)fε(x)| = ε|fε(x)|, so ‖(Dp−k)fε‖
‖fε‖ = ε. Hence,

k ∈ σ(Dp). Since σ(Dp) is closed, R ⊂ σ(Dp).
Finally, let p ∈ E±, k ∈ C±. Then ζ±

p (k, ·) belongs to Ker(Dp − k). �

Corollary 21. We have D∗
p = Dp. In particular Dp is self-adjoint if p = p.

We are now ready to prove Theorem 13.

Proof of Theorem 13. We choose some k in the resolvent set of Dp.
If |Re(μ)| ≥ 1

2 , then Dmin
ω,λ = Dp, so it suffices to show that Dp = Dmax

ω,λ .
Indeed, Dp − k is surjective, so the ranges of Dp − k and Dmax

ω,λ − k coincide.
By Proposition 18 also kernels are equal.

Next we consider the case |Re(μ)| < 1
2 .

We easily check that χxμ

[
a
b

]
/∈ H1

0 (R+, C2), which by Proposition 16 for

|Re(μ)| < 1
2 coincides with Dom(Dmin

ω,λ ). Hence, Dom(Dmin
ω,λ ) is a codimension

one subspace of Dom(Dp).
Next, Dp − k and Dmax

ω,λ − k have the same range–the whole Hilbert
space. Besides, dim Ker(Dmax

ω,λ − k) = 1 by Proposition 18. Hence, Dom(Dp) is
a codimension one subspace of Dom(Dmax

ω,λ ). �

Proposition 22. Family Dp has the following symmetries

σ1Dω,λ,μ,[a:b]σ1 = −Dω,−λ,μ,[b:a], (5.17a)

σ2Dω,λ,μ,[a:b]σ2 = D−ω,λ,μ,[−b:a], (5.17b)

σ3Dω,λ,μ,[a:b]σ3 = −D−ω,−λ,[−a:b], (5.17c)

where σj are the Pauli matrices.

Proof. Matrix multiplication gives

σ1Dω,λσ1 = −Dω,−λ, σ2Dω,λσ2 = D−ω,λ,

σ3Dω,λσ3 = −D−ω,−λ. (5.18)

Using (5.2) one checks that the domains of operators on the left and right-hand
side of (5.17) agree. �
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5.2. Essential Spectrum

Proposition 23. Let p, p′ ∈ M− 1
2

and k �∈ σ(Dp) ∪ σ(Dp′). Then G�

p (k) −

G�

p′(k) is a Hilbert–Schmidt operator.

Proof. The proof of Theorem 20 shows that it suffices to show that the integral
operator with kernel G�


p (k) − G�

p′(k) restricted to the region x, y ≥ |k|−1 is

Hilbert–Schmidt. Furthermore, we may assume that Im(k) < 0. Using formulas
(3.18) and (3.19), we obtain the following asymptotic expansion for x, y → ∞:

− ξ−
p (k, x) ⊗ ζ−

p (k, y) ∼ 1
2i

[
1
i

]
⊗

[
1
−i

]
·
(

x

y

)iλ

eik(x−y). (5.19)

It follows that we have

|G�

p (k;x, y) − G�


p′(k;x, y)|

≤ c e−|Im(k)|(x>−x<)

∣∣∣∣∣
(

x<

x>

)iλ

−
(

x<

x>

)iλ′ ∣∣∣∣∣ , (5.20)

with some constant c independent of x, y. Therefore,

I :=
∫

[|k|−1,∞]2
|G�


p (k;x, y) − G�

p′(k;x, y)|2dxdy

≤ 2c2

∫ ∞

|k|−1

∫ ∞

y

e−2 Im(z)(x−y)

∣∣∣∣∣
(

x

y

)−iλ

−
(

x

y

)−iλ′ ∣∣∣∣∣
2

dxdy. (5.21)

Next we change variables to y, t with x = ty. This gives

I ≤
∫ ∞

1

∫ ∞

|k|−1
ye−2|Im(k)|(t−1)y|t−iλ − t−iλ′ |2dydt

=
∫ ∞

1

|k| + 2|Im(k)|(t − 1)
4|Im(k)|2|k|(t − 1)2

e−2 |Im(k)|
|k| (t−1)|t−iλ − t−iλ′ |2dt, (5.22)

where we have computed an elementary integral over y. The remaining inte-
grand is bounded for t → 1 and decays exponentially for t → ∞. Therefore,
the integral converges. �

Resolvents of operators Dp for distinct p ∈ M− 1
2

are close to each other
in the sense specified by Proposition 23. Therefore, it is useful to know that
for some p their integral kernels are particularly simple. These are provided in
the “Appendix A.3”.

By the essential spectrum (resp. essential spectrum of index zero) of a
closed operator R, we mean the set σess(R) (resp. σess,0(R)) of all k ∈ C such
that R−k is not a Fredholm operator (resp. Fredholm operator of index zero).
Clearly σess(R) ⊂ σess,0(R).

Lemma 24. Let R,S be closed operators such that there exists k0 in the inter-
section of resolvent sets of R and S such that (R − k0)−1 − (S − k0)−1 is a
compact operator. Then σess(R) = σess(S) and σess,0(R) = σess,0(S).
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Proof. By assumption, (S − k0)−1 and (R − k0)−1 have the same essential
spectra. The spectral mapping theorem proven in [4] gives

σess(S) = {k ∈ C | ∃q ∈ σess((S − k0)−1) (k − k0)q = 1}
= {k ∈ C | ∃q ∈ σess((R − k0)−1) (k − k0)q = 1} = σess(R). (5.23)

The same argument works also for σess,0. �

Corollary 25. For any p ∈ M− 1
2

we have σess(Dp) = σess,0(Dp) = R.

Proof. There exists p such that σ(Dp) = R. By Lemma 24, it is sufficient to
prove our statement for such p. Clearly, σess(Dp) ⊂ σess,0(Dp) ⊂ σ(Dp) = R.
If k ∈ R, then Dp − k is injective and its range is dense, hence not closed, for
otherwise (Dp − k)−1 would be bounded. �

Corollary 26. Let ω, λ be such that |Re
√

ω2 − λ2| < 1
2 . Then σess(Dmin

ω,λ ) =
σess(Dmax

ω,λ ) = R. If k ∈ C\R, then Dmin
ω,λ − k and Dmax

ω,λ − k are Fredholm
operators with indices −1 and +1, respectively. If D is an operator satisfying
Dmin

ω,λ � D � Dmax
ω,λ , then σess(D) = σess,0(D) = R.

Proof. Follows from Theorem 13 and Corollary 25. �

5.3. Limiting Absorption Principle

Let s ∈ R. The Hilbert space L2
s(R+, C2) is defined as the completion of

C∞
c (R+, C2) with respect to the norm induced by the scalar product (f |g)s =∫ ∞
0

(1 + x2)sf(x)g(x)dx. For any t ∈ R we have a unitary operator 〈X〉t :
L2

s(R+, C2) → L2
s−t(R+, C2) given by (〈X〉tf)(x) = (1 + x2)

t
2 f(x), alterna-

tively regarded as an (unbounded for t > 0) positive operator on L2(R+, C2).

Proposition 27. Let p ∈ M− 1
2
\E±, k ∈ R

×. The limit G�

p (k±i0) :=lim

ε↓0
G�


p (k±
iε) exists as a compact operator L2

s(R+, C2) → L2
−s(R+, C2) for any s >

|Im(λ)| + 1
2 and depends continuously on p, k.

If Re(μ) > 0, then R
× may be replaced by R in the above statement and

G�

p (±i0) has the kernel

G�

p (0;x, y) =

1
2
1R+(y − x)

(
x

y

)μ [
z −1
1 −z−1

]

+
1
2
1R+(x − y)

(y

x

)μ
[

z 1
−1 −z−1

]
. (5.24)

If Re(μ) ≤ 0, then ‖G�

p (k)‖B(L2

s,L2
−s) = O(|k|2Re(μ)) for k → 0.

Therefore, in both cases we have ‖G�

p (· ± i0)‖B(L2

s,L2
−s) ∈ L1

loc(R).

Proof. It is sufficient to cover the case of k approaching the real axis from be-
low. Asymptotics of G�
(k;x, y) are such that (1+x2)− s

2 (1+y2)− s
2 G�


p (k;x, y)
is an L2(R2

+,End(C2)) function. Dominated convergence theorem implies that
it depends continuously (in the L2 sense) on p, k, including the boundary set
Im(k) = 0. Therefore, 〈X〉−sG�


p (k)〈X〉−s is a continuous family of Hilbert–
Schmidt (and hence compact) operators on L2(R+, C2), so G�


p (k) defines an
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operator L2
s(R+, C2) → L2

−s(R+, C2) which may be written as a composition
of two unitaries and a compact operator.

The second part follows from the asymptotics of ξ±
p and ζ±

p functions for
small arguments and the dominated convergence theorem. �

5.4. Generalized Eigenvectors

Point spectrum of Dp, when present, possesses quite counter-intuitive proper-
ties. Note that in this subsection an important role is played by the bilinear
product 〈·|·〉.
Proposition 28. Let n,m ∈ N. If f ∈ Ker((Dp − k)n), g ∈ Ker((Dp − k′)m),
then 〈f |g〉 = 0.

Proof. Assume at first that k′ �= k. We induct on m. If m = 1, then

0 = 〈(Dp − k)nf |g〉 =
n∑

j=0

(
n

j

)
(k′ − k)n−j〈f |(Dp − k′)jg〉

= (k′ − k)n〈f |g〉. (5.25)

Cancelling (k′ − k)n we obtain the induction base. Assume that the claim is
true for m and let g ∈ Ker((Dp − k′)m+1). By a similar calculation

0 =
n∑

j=0

(
n

j

)
(k′ − k)n−j〈f |(Dp − k′)jg〉 = (k − k′)n〈f |g〉, (5.26)

where the last equality follows from (Dp − k′)jg ∈ Ker((Dp − k′)m) for j ≥ 1
and the induction hypothesis. This completes the proof for k �= k′.

So far we used only the self-transposedness of Dp. Next we will also use
its homogeneity.

Let k′ = k. Then for any τ ∈ R
× we have Uτg ∈ Ker((Dp − k′′)m) for

some k′′ �= k. Hence, 〈f |Uτg〉 = 0. Now take τ → 0. �

Proposition 29. If p ∈ E± and k ∈ C±, then for every n ∈ N we have
dim(Ker((Dp − k)n)) = n.

Proof. We proceed by induction on n. Case n = 0 is trivial and n = 1 is
already established. By the inductive hypothesis, there exists f ∈ Ker((Dp −
k)n)\Ker((Dp − k)n−1), unique up to elements of Ker((Dp − k)n−1) and mul-
tiplication by nonzero scalars. Then f ∈ Ker(Dp − k)perp by Proposition 28.
On the other hand, Ker(Dp − k)perp = (Ran(Dp − k)perp)perp = Ran(Dp − k).
Here the last equality holds because Dp −k has closed range, see Corollary 25.
Thus, there exists g ∈ Dom(Dp − k), unique up to elements of Ker(Dp − k),
such that (Dp−k)g = f . Clearly, g ∈ Ker((Dp−k)n+1)\Ker((Dp−k)n) and we
have a vector space decomposition Ker((Dp − k)n+1) = Cg ⊕ Ker((Dp − k)n)
. �

Question 1. Let p ∈ E±, k ∈ C±. We denote the L2 closure of
∞⋃

n=0
Ker((Dp −

k)n) by Np(k). By Lemma 28 we have Np(k) ⊂ Np(k)perp. In “Appendix A.3”
we have verified that in the case ω = 0 subspace Np(k) does not depend on
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the choice of k ∈ C± and Np(k) = Np(k)perp (equivalently, Np(k) ⊕ Np(k) =
L2(R+, C2)). We leave open the question whether these assertions remain true
for ω �= 0.

6. Diagonalization

Let k ∈ R
×. Recall that εk = sgn(Re(k)). On the real line, it is convenient

to rewrite the formulas for ξ± and ζ± (3.13, 3.15) in terms of trigonometric
Whittaker functions (D.28, D.31):

ξ±
p (k, x) =

i∓εkμ

2N±
p μ

(
εkωJεkλ,μ+ 1

2
(2|k|x)

[−z
1

]

+Jεkλ,μ− 1
2
(2|k|x)

[
z
1

])
, (6.1a)

ζ±
p (k, x) =

i±εkμ

2

(
±iεk(z ± i)H±εk

εkλ,μ+ 1
2
(2|k|x)

[−1
z−1

]

+ (z∓i)H±εk

εkλ,μ− 1
2
(2|k|x)

[
1

z−1

])
. (6.1b)

For μ near 0 it is convenient instead of (6.1a) to use a version of (3.16a):

ξ±
p (k, x) =

i∓εkμ

2N±
p

(
εkJεkλ,μ+ 1

2
(2|k|x)

[
1

−z

]

+
Jεkλ,μ− 1

2
(2|k|x) + εkλJεkλ,μ+ 1

2
(2|k|x)

μ

[
z
1

])
. (6.2)

The leading terms of ξ±
p and ζ±

p for large kx are

ξ±
p (k, x) ∼ e− εkπλ

2

2

(
e∓ikx(2|k|x)∓iλ

[
1
∓i

]
+ (Spe−iεkπμ)±1e±ikx(2|k|x)±iλ

[
1
±i

])
,

(6.3a)

ζ±
p (k, x) ∼ ∓i e

εkπλ
2 e±ikx(2|k|x)±iλ

[
1
±i

]
. (6.3b)

Because of the long-range nature of the perturbation and of the presence
of spin degrees of freedom, it is not obvious what should be chosen as the def-
inition of the outgoing and incoming waves. Let us call iζ+(k, x) the outgoing
wave and −iζ−(k, x) the incoming wave. Then the ratio of the outgoing wave
and the incoming wave in ξ+(k, x) is e−iεkμSp and can be called the (full)
scattering amplitude at energy k.

Proposition 30. Let p ∈ M− 1
2
\(E+ ∪ E−), k ∈ R

×, s > |Im(λ)| + 1
2 . Then the

spectral density

Πp(k) := (2πi)−1
(
G�


p (k + i0) − G�

p (k − i0)

)
(6.4)
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is well defined as a compact operator L2
s(R+, C2) → L2

−s(R+, C2) and has the
integral kernel

Πp(k;x, y) =
eεkπλ

π
ξ+
p (k, x)ξ−

p (k, y)T =
eεkπλ

π
ξ−
p (k, x)ξ+

p (k, y)T. (6.5)

As k → 0, it admits the expansion

Πp(k) = eεkπλ|k|2μΠ0
p + O(|k|2μ+1), (6.6)

where the remainder is estimated in the B(L2
s, L

2
−s) norm and Π0

p has the
integral kernel

Π0
p(x, y) =

(4xy)μ

π Γ(2μ + 1)2N+
p N−

p

[
z2 z
z 1

]
. (6.7)

Proof. The first statement follows from Proposition 27. By (3.27), it is suffi-
cient to prove (6.5) for x < y. Plugging (3.21a) into (3.26), we find

G�

p (k + i0;x, y) − G�


p (k − i0;x, y)

= ξ−
p (k, x)

(
ζ−
p (k, y) − e−iεkπμSpζ

+
p (k, y)

)T
. (6.8)

Plugging in (3.21b) we obtain (6.5).
The last part of the statement follows from asymptotics of ξ functions

for small arguments and the dominated convergence theorem. �
We refer to “Appendix C” for definitions used in the lemma below. Note

also the identity ξ±
p (k, x) = ξ±

p (εk, |k|x), which allows us to restrict our atten-
tion to ξ±

p (εk, x). The following fact follows immediately from Lemma 73 and
(6.2).

Lemma 31. ξ±
p (εk, x), p /∈ E±, is a tempered distribution in x ∈ R+, in the

sense explained in “Appendix C”. Its Mellin transform is

Ξ±
p (εk, s) :=

∫ ∞

0

e−0xx− 1
2 −isξ±

p (εk, x)dx

= i∓εkμ− 3
2 −μ+is2μ−1Γ

(
1
2

+ μ − is
)

1
N±

p μ

×
(

2εkω
(1

2
+ μ − is

)
2F1 (1 + μ + iεkλ, 3

2

+μ − is; 2μ + 2; 2 + i0)
[−z

1

]

+ i 2F1 (μ + iεkλ, 1
2 + μ − is; 2μ; 2 + i0)

[
z
1

])
, (6.9)

is analytic in s and bounded by c±
p (1 + s2)

1
2 |Im(λ)| locally uniformly in p.

We define U±,pre
p , p ∈ M\E±, as the integral operator C∞

c (R+, C2) →
C∞(R) with the kernel

U±
p (k, x) =

e
1
2 εkπλ

√
π

ξ±
p (k, x)T. (6.10)
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By construction, the kernel of the spectral density operator factors as

Πp(k;x, y) = U+
p (k, x)TU−

p (k, y) = U−
p (k, x)TU+

p (k, y). (6.11)

We note also the relations

U+
p (k, x) = e−iεkπμSp U−

p (k, x), U±
p (k, x) = U∓

p (k, x) (6.12)

and the intertwining property

(U±,pre
p Dpf)(k) = k(U±,pre

p f)(k), f ∈ C∞
c (R+, C2). (6.13)

Recall from Sect. 1.1 that J is the inversion and A is the generator of
dilations, and K is the multiplication operator on L2(R) by the variable k ∈ R.

Below we will consider level sets {λ = λ0} ⊂ M 1
2
. Recall from the discus-

sion around equation (2.9) that it is a submanifold for λ0 �= 0, but for λ0 = 0
it is the union of three submanifolds singular along the intersection. We will
say that a function on the locus {λ = 0} is holomorphic if its restriction to
each of the three components is holomorphic.

Proposition 32. U±,pre
p are densely defined closable operators L2(R+, C2) →

L2(R) with the closures given by

U±
p f(k) =

e
1
2 εkπλ

√
π

Ξ±T
p (εk, A)Jf(|k|), k ∈ R. (6.14)

Hence, U±
p (1+A2)− 1

2 |Im(λ)| is bounded. In particular U±
p are bounded if λ ∈ R.

If λ0 ∈ R, they form a holomorphic family of operators on the level set {λ =
λ0}\E±.

Furthermore, U±∗
p = U∓T

p .

Proof. The first part follows from Lemma 31 and discussion in “Appendix C”.
Now fix λ0 ∈ R and consider p in a component S of the level set {λ = λ0}\E±.
If f ∈ C∞

c (R), g ∈ C∞
c (R+, C2), then (f |U±

p g) is a holomorphic function of
p ∈ S. Since C∞

c spaces are dense in L2 and U±
p are bounded locally uniformly

in p, U±
p is a holomorphic operator-valued function. The last claim follows

from the formula (6.12). �

In a sense, operators U±
p diagonalize Dp for p ∈ M− 1

2
\E±. If p = p, then

Dp are self-adjoint and U±
p are unitary. If we assume only that λ is real, then

U±
p are still bounded with bounded inverses, so they are almost as good as in

the self-adjoint case. This will be made precise below.

Proposition 33. If p = p, then for any bounded interval [a, b] ⊂ R and f, g ∈
C∞

c (R+, C2)

(g|1[a,b](Dp)f) =
∫ b

a

∫ ∞

0

∫ ∞

0

g(x)∗Πp(k;x, y)f(y)dydxdk. (6.15)

Besides, U±
p is a unitary operator and

Dp = U±∗
p KU±

p . (6.16)
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Proof. Since the point spectrum of Dp is trivial for p = p, Stone’s formula
gives

(g|1[a,b](Dp)f) = lim
ε↓0

1
2πi

∫
[a,b]×R

2
+

g(x)∗(G�

p (k + iε;x, y)

−G�

p (k − iε;x, y))f(y)dydxdk. (6.17)

It follows from the asymptotics of functions ξ±
p and ζp that on [a, b]×supp(f)×

supp(g) we have |G�

p (k ± iε;x, y)| ≤ c|k|Re(μ)−|Re(μ)| with c independent of

k. This function is integrable, because Re(μ) − |Re(μ)| > −1. Therefore, by
the dominated convergence theorem, the limit ε ↓ 0 may be taken under the
integral. This proves (6.15).

Let us prove the unitarity of U±
p . Let f ∈ C∞

c (R+, C2) and let [a, b] be a
bounded interval. Then∫ b

a

|U±
p f(k)|2dk =

∫ ∞

0

∫ b

a

∫ ∞

0

f(x)∗Πp(k;x, y)f(y)dydkdx

=
∫ ∞

0

f(x)∗(1[a,b](Dp)f)(x)dx = (f |1[a,b](Dp)f), (6.18)

where in the first step we used the definition of U±
p , conjugation formula (6.12)

and the factorization (6.11). The order of integrals is immaterial, because the
integrand is compactly supported and its only possible singularity (at k = 0,
if 0 ∈ [a, b]) is integrable. In the second step we used Proposition 33. Taking
the limit b → ∞, a → −∞ we find∫ ∞

−∞
|U±

p f(k)|2dk = (f |f). (6.19)

Hence, U±
p is an isometry. Equation (6.18) implies that

1[a,b](Dp) = U±∗
p 1[a,b](K)U±

p . (6.20)

It remains to show that U±
p U±∗

p = 1. The proof of this fact follows closely
the proof of (3.37) of Theorem 3.16 in [13]. �

Proposition 34. If p ∈ M− 1
2
\(E+ ∪ E−) is such that λ ∈ R, then (U±

p )−1 =
U∓T and

Dp = U±−1
p KU±

p . (6.21a)

In particular Dp is similar to a self-adjoint operator.

Proof. We fix λ0 ∈ R. Then U±
p U∓T

p − 1 and U±T
p U∓

p − 1 form holomorphic
families of bounded operators on (one-dimensional) {λ = λ0}\(E+∪E−). They
vanish on the set of real points, which has an accumulation point in each
component of the domain. Thus, they vanish everywhere.

Now take k ∈ C\R. Arguing as in the previous paragraph, we obtain

U±−1
p (K − k)−1U±

p = (Dp − k)−1, (6.22)

from which (6.21a) follows immediately. �
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Question 2. If λ ∈ R, then Dp is similar to a self-adjoint operator. Hence, it
enjoys a very good functional calculus–for any bounded Borel function f the
operator f(Dp) is well defined and bounded.

If λ /∈ R this is probably no longer true, because the diagonalizing opera-
tors U±

p are unbounded. However, they are unbounded in a controlled manner:
they are continuous on the domain of some power of the dilation operator.
One may hope that this is sufficient to allow for a rich functional calculus for
Dirac–Coulomb Hamiltonians. We pose an open problem: for a given Im(λ),
characterize functions that allow for a functional calculus for Dp. In particular,
one could ask when iDp generates a C0 semigroup of bounded operators.

7. Numerical Range and Dissipative Properties

In this section we give a complete analysis of the numerical range of various
realizations of 1d Dirac–Coulomb Hamiltonians studied in this paper.

Proposition 35. One of the following mutually exclusive statements is true:
1. ω and λ are real. Then Num(Dpre

ω,λ) = R.
2. |Im(ω)| < |Im(λ)|. Then Num(Dpre

ω,λ) = C−sgn(Im(λ)).
3. |Im(ω)| = |Im(λ)| �= 0. Then Num(Dpre

ω,λ) = C−sgn(Im(λ)) ∪ {0}.
4. |Im(ω)| > |Im(λ)|. Then Num(Dpre

ω,λ) = C.

The same is true with Dpre
ω,λ replaced by Dmin

ω,λ throughout.

Proof. Integrating by parts we find that for f =
[
f1

f2

]
∈ C∞

c (R+, C2) we have

Im(f |Dω,λf) = −Im(λ + ω)
∫ ∞

0

|f1(x)|2
x

dx

− Im(λ − ω)
∫ ∞

0

|f2(x)|2
x

dx. (7.1)

In the four cases listed in the proposition we have: both terms are zero in
Case 1., both terms are nonzero (except for f = 0) and have the same sign as
−Im(λ) in Case 2., one term is zero and the other has the same sign as −Im(λ)
in Case 3. and the two terms have opposite signs in the last case. Therefore,
inclusions of numerical ranges in the specified sets are clear, except for the
third case. Then in order for Im(f |Dω,λf) to vanish, one of the two fj has to
be zero. It is easy to check that this implies (f |Dω,λf) = 0 (but not f = 0).

We have to show that the obtained inclusions are saturated. The homo-
geneity of Dpre

ω,λ implies that Num(Dpre
ω,λ) is a convex cone. Thus, to establish

the result in Case 1. it is sufficient to show that both signs of (f |Dω,λf) are
possible. We choose a nonzero ϕ ∈ C∞

c (R+, C2) with ‖ϕ‖H1
0

= 1 and put

f±,t(x) =
[

ϕ(x − t)
±ϕ′(x − t)

]
for t ≥ 0. Then ‖f±,t‖L2 = 1 and

(f±,t|Dω,λf±,t) = ±2

∫ ∞

0

|ϕ′(x)|2dx
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−
∫ ∞

0

1

x + t

(
(λ + ω)|ϕ(x)|2 + (λ − ω)|ϕ′(x)|2) dx. (7.2)

The first term is nonzero, has sign ± and does not depend on t, while the other
converges to zero for t → ∞. Therefore, ±(f±,t|Dω,λf±,t) ≥ c± > 0 for large
enough t.

Next we suppose that |Im(ω)| ≤ |Im(λ)| �= 0. It is sufficient to show
that C− is included in the numerical range for Im(λ) < 0. Arguing as be-
low (7.2), we deduce that there exist constants t0 > 0 and c± > 0 such
that ±Re (f±,t|Dω,λf±,t) ≥ c± for t ≥ t0. Let δ = Im (f±,t0 |Dω,λf±,t0).
Then δ > 0. The function t �→ Im (f±,t|Dω,λf±,t) is continuous and con-
verges to zero for t → ∞, so for every ε ∈]0, δ] there exists t ≥ t0 such
that Im (f±,t|Dω,λf±,t) = ε. By convexity of numerical ranges this implies
[−c− + iε, c+ + iε] ⊂ Num(Dω,λ). Homogeneity implies that for every s > 0 we
have

[− c−s
ε + is, c+s

ε + is
] ⊂ Num(Dω,λ). Every k with Im(k) = s is in this

interval for small enough ε.
Similar argument shows that in Case 4. there exist c± > 0 and δ > 0

such that for every ε ∈]0, δ] there exist g±,ε ∈ C∞
c (R+, C2) with ‖g±,ε‖L2 = 1,

±Re(g±,ε|Dω,λg±,ε) ≥ c± and |Im(g±,ε|Dω,λg±,ε)| ≤ ε. On the other hand for
nonzero f ∈ C∞

c (R+, C2) with f1 = 0 or f2 = 0, we have that (f |Dω,λf) is
proportional to ω − λ or −ω − λ, respectively, with a positive proportionality
constant. Using homogeneity we can even construct functions f with the pro-
portionality constant equal to 1 and ‖f‖ = 1. Next we observe that if ε is taken
to be sufficiently small, the convex hull of (g+,ε|Dω,λg+,ε), (g−,ε|Dω,λg−,ε),
ω − λ and −ω − λ contains zero in its interior. Therefore, the smallest convex
cone containing it is the whole C.

To prove the last statement, first note that Num(Dmin
ω,λ ) is contained in

the closure of Num(Dpre
ω,λ). Therefore, in Cases 1. and 4. there is nothing to

prove. We consider Case 2. We have to show that if g ∈ Dom(Dmin
ω,λ ) is such

that Im(g|Dω,λg) = 0, then g = 0. We choose ε > 0 and f ∈ C∞
c (R+, C2) such

that ‖f − g‖Dom(Dmin
ω,λ) < ε. Then

Im(f |Dω,λf) = Im
(
(g|Dmin

ω,λ (f − g))

+ (f − g|Dmin
ω,λ g) + (f − g|Dmin

ω,λ (f − g))
)
, (7.3)

so |Im(f |Dω,λf)| ≤ 2ε‖g‖Dom(Dmin
ω,λ) + ε2. On the other hand for any t > 0, we

have

|Im(f |Dω,λf)| ≥ |Im(λ + ω)|
t

∫ t

0

|f1(x)|2dx +
|Im(λ − ω)|

t

∫ t

0

|f2(x)|2dxs

≥ |Im(λ + ω)|
t

(∫ t

0

|g1(x)|2dx − 2ε‖g‖2

)

+
|Im(λ − ω)|

t

(∫ t

0

|g2(x)|2dx − 2ε‖g‖2

)
. (7.4)
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J. Dereziński, B. Ruba Ann. Henri Poincaré

Comparing the two derived inequalities and taking ε → 0 we find that∫ t

0

|g1(x)|2dx =
∫ t

0

|g2(x)|2dx = 0. (7.5)

Since t was arbitrary, g = 0. Case 3. may be handled analogously. �
It is convenient to describe the numerical ranges of operators Dp in terms

of [a : b]. It can be related to parameters ω, λ, μ by recalling that [a : b] = [−μ :
ω + λ] if ω + λ �= 0 and [a : b] = [ω − λ : −μ] if ω − λ �= 0. No such expression
exists on the zero fiber. We will also choose a representative (a, b) ∈ [a : b].
We note that the condition Im(ba) = 0 is equivalent to the existence of a
real representative (a, b), which is also equivalent to the statement that [a : b]
belongs to the real projective line RP

1. If [a : b] /∈ RP
1, then sgn(Im(ba)) =

sgn
(
Im

(
a
b

))
.

Proposition 36. The numerical range of Dp may be characterized as follows.
1. If ω, λ ∈ R and [a : b] /∈ RP

1, then Num(Dp) = R ∪ C−Im(ba).

2. If Re(μ) = 0 and Im(ba)Im(λ) < 0, then Num(Dp) = C.

3. If Re(μ) < 0 and [a : b] /∈ RP
1, then Num(Dp) = C.

4. In every other case Num(Dp) = Num(Dmin
ω,λ ).

Proof. If p = p, then Dp is self-adjoint, so Num(Dp) ⊂ R = Num(Dmin
ω,λ ) ⊂

Num(Dp). If |Im(ω)| > |Im(λ)|, then C = Num(Dmin
ω,λ ) ⊂ Num(Dp).

Let η(x) = xμ

[
a
b

]
and consider f =

[
f1

f2

]
∈ C∞

c (R+, C2) + span{χη}.

Then

Im(f |Dpf) = Im
∫ ∞

0

[
d
dx

(
f2(x)f1(x)

)

− (λ + ω)|f1(x)|2 + (λ − ω)|f2(x)|2
x

]
dx. (7.6)

By construction, there exist x0 > 0 and c ∈ C such that for x < x0 we
have f(x) = c η(x), and hence, f2(x)f1(x) = Im(ba)x2Re(μ). If Re(μ) > 0 or
Im(ba) = 0 (which is equivalent to [a : b] ∈ RP

1 ⊂ CP
1), then f2(x)f1(x) van-

ishes for x sufficiently large and for x → 0. Therefore,
∫ ∞
0

d
dx

(
f2(x)f1(x)

)
dx =

0 and the proof goes as for Proposition 35.
We consider the case Re(μ) = 0 and Im(ba) �= 0. Then

Im(f |Dpf) = −|c|2Im(ba)

− Im
∫ ∞

0

(λ + ω)|f1(x)|2 + (λ − ω)|f2(x)|2
x

dx. (7.7)

If ω, λ ∈ R, then Im(f |Dpf) = −|c|2Im(ba) and we have R = Num(Dmin
ω,λ ) ⊂

Num(Dp), so Num(Dp) = {k ∈ C | Im(ba)Im(k) ≤ 0}. In the case |Im(ω)| ≤
|Im(λ)| �= 0 there are two possibilities. If Im(ba)Im(λ) > 0, then all terms
in (7.7) have the same sign and one has Num(Dp) = Num(Dmin

ω,λ ). Otherwise
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Num(Dp) = C. Indeed, consider f = χη
‖χη‖ with shrinking support of χ ≥ 0.

A simple calculation shows that for these functions the integrand in (7.7)
vanishes, while the first term grows without bound.

Next, we suppose that Re(μ) < 0, Im(ba) �= 0. Put f = ϕη with ϕ ∈
C∞([0,∞[, R) vanishing exponentially at infinity. Then f ∈ Dom(Dp) and

(Dpf)(x) = ϕ′(x)
[
0 −1
1 0

]
η(x). Thus,

(f |Dpf) = 2i Im(ba)
∫ ∞

0

ϕ(x)ϕ′(x)x2Re(μ)dx. (7.8)

If ϕ �= 0 vanishes at zero, the integral is positive, as can be seen by integrating
by parts:∫ ∞

0

ϕ(x)ϕ′(x)x2Re(μ)dx =
1
2

∫ ∞

0

d
dx

(ϕ(x)2)x2Re(μ)dx

= −Re(μ)
∫ ∞

0

ϕ(x)2x2Re(μ)−1dx > 0. (7.9)

On the other hand, for ϕ(x) = e− x
2 the integral is negative:∫ ∞

0

ϕ(x)ϕ′(x)x2Re(μ)dx = −Γ(2Re(μ) + 1)
2

< 0. (7.10)

By Proposition 35 and the fact that Num(Dp) is a convex cone, we have
Num(Dp) = C. �

We adopt the convention saying that operators with the numerical range
contained in the closed upper half-plane are called dissipative. Dissipative op-
erators which are not properly contained in another dissipative operator are
said to be maximally dissipative. This condition is equivalent to the inclusion
of the spectrum in the closed upper half plane. Maximally dissipative opera-
tors may also be characterized as operators D such that iD is the generator of
a semigroup of contractions.

Corollary 37. ±Dp is a dissipative operator if and only if one of the following
(mutually exclusive) statements holds:

• ω, λ ∈ R and ∓Im(ba) ≥ 0.
• ±Im(λ) < 0, |Im(ω)| ≤ |Im(λ)| and Re(μ) > 0.
• ±Im(λ) < 0, |Im(ω)| ≤ |Im(λ)|, Re(μ) = 0 and ±Im(ba) ≤ 0.
• ±Im(λ) < 0, |Im(ω)| ≤ |Im(λ)|, Re(μ) < 0 and Im(ba) = 0.

Furthermore, if these conditions are satisfied then ±Dp is maximally dissipa-
tive.

Corollary 38. Let ω, λ be such that ±Dmin
ω,λ is dissipative, i.e., |Im(ω)|≤|Im(λ)|,

±Im(λ) ≤ 0. There exists p ∈ M− 1
2

such that Dmin
ω,λ ⊂ Dp and ±Dp is maxi-

mally dissipative. In particular ±Dmin
ω,λ admits a maximally dissipative exten-

sion which is homogeneous and contained in ±Dmax
ω,λ .
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Proof. We present the proof for the upper sign. The other part of the statement
then follows by taking complex conjugates. If ω, λ ∈ R, it is possible to choose p
with ∓Im(ba) ≥ 0. Now let Im(λ) < 0, |Im(ω)| ≤ |Im(λ)|. If ω2 −λ2 /∈]−∞, 0],
we can choose μ with Re(μ) > 0.

Next suppose that ω2 −λ2 ≤ 0. If the inequality is strict, then there exist
two possible choices of μ differing by a sign, so the condition Im(ba) ≤ 0 is
satisfied for at least one choice. If ω2 − λ2 = 0, then either ω + λ or ω − λ
vanishes. We may assume that it is not true that both vanish, because this is
covered by the case ω, λ ∈ R. Then [a : b] = [0 : 1] or [a : b] = [1 : 0]. �

8. Mixed Boundary Conditions

In this section we discuss operators Df
ω,λ introduced around equation (4.8).

Hence, ω, λ are restricted to the region |Re
√

ω2 − λ2| < 1
2 .

Proposition 39. Df
ω,λ is closed, self-transposed and σess(D

f
ω,λ) = σess,0(D

f
ω,λ)

= R.

Proof. The self-transposedness follows from [11, Proposition 3.21]. The state-
ment about the essential spectrum follows from Corollary 26. �

Operators Df
ω,λ can be organized in a holomorphic family as follows. Let

Mmix =
{

(ω, λ, [a : b]) ∈ C
2 × CP

1 |Re
√

ω2 − λ2| <
1
2

}
. (8.1)

We define Dmix
ω,λ,[a:b] to be D

fω,λ,[a:b]

ω,λ , where fω,λ,[a:b] is a (unique up to a multi-
plicative constant) solution of Dω,λfω,λ,[a:b] = 0 whose value at x = 1 belongs
to the ray [a : b] in C

2.

Proposition 40. Dmix
ω,λ,[a:b] form a holomorphic family of operators on Mmix.

One has Dmix
ω,λ,[a:b] = Dmix

ω,λ,[a:b]
, so Dmix

ω,λ,[a:b] is self-adjoint if and only if ω, λ ∈
R, [a : b] ∈ RP

1.

Proof. Only the holomorphy of Dmix
ω,λ,[a:b] requires some justification. Define

Tω,λ,[a:b] : H1
0 (R+, C2) ⊕ C � (g, t) �→ g + tχfω,λ,[a:b], (8.2)

where χ ∈ C∞
c ([R+,∞[) is equal to 1 near 0. It is easy to check that Tω,λ,[a:b]

form a holomorphic family of bounded injective operators with Ran(Tω,λ,[a:b])
= Dom(Dmix

ω,λ,[a:b]) such that Dmix
ω,λ,[a:b]Tω,λ,[a:b] form a holomorphic family of

bounded operators. �
Next we describe the point spectra of nonhomogeneous operators Df

ω,λ.
For this purpose it is not very convenient to use the parametrization by points
of Mmix.

Below we treat the logarithm, denoted Ln, as a set-valued function, more
precisely,

Ln(z) := {u | z = eu}. (8.3)
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Proposition 41. Consider the point spectrum of Df
ω,λ for various ω, λ, f . All

eigenvalues are non-degenerate and zero is never an eigenvalue. For k �= 0, we
split the discussion into several cases. We say that a pair (k,±) is admissible
if either k ∈ R

×, |Im(λ)| > 1
2 and ± = sgn(Im(λ)) or k ∈ C\R and ± =

sgn(Im(k)).

1. Case μ �= 0. We select select a square root μ =
√

ω2 − λ2, or equivalently,
we fix p ∈ M− 1

2
lying over ω, λ. All nonhomogeneous realizations of Dω,λ

correspond to

f(x) =
[
ω − λ
−μ

]
xμ + κ

[
ω − λ

μ

]
x−μ (8.4)

with κ ∈ C
×. Let

cp,± =
ω

λ∓iμ
Γ(2μ + 1)

Γ(−2μ + 1)
Γ(1 − μ∓iλ)
Γ(1 + μ∓iλ)

(8.5)

Away from μ = 0, cp,± is a holomorphic function of ω, λ, μ valued in
C∪{∞}. k is an eigenvalue if and only if κ(∓2ik)2μ = cp,± and (k,±) is
admissible. Df

ω,λ has no eigenvalues in C± if cp,± ∈ {0,∞}. Away from
these loci, eigenvalues in C± vary continuously with parameters, possibly
(dis)appearing on the real axis. They form a discrete subset of a half-line
if μ ∈ iR, of a circle if μ ∈ R and of a logarithmic spiral otherwise. If
μ �∈ iR, the set of eigenvalues is finite. More precisely, it is given by the
union of the following two sets:{

k = ± i
2
ew | w ∈ 1

2μ
Ln(cp,±), −π

2
< Im(w) <

π

2

}
, |Im(λ)| ≤ 1

2
, (8.6)

{
k = ± i

2
ew | w ∈ 1

2μ
Ln(cp,±), −π

2
≤ Im(w) ≤ π

2

}
, |Im(λ)| >

1
2
. (8.7)

2. Case μ = 0, (ω, λ) �= (0, 0). All nonhomogeneous realizations of Dω,λ are
parametrized by ν ∈ C and

f(x) =
[
1
0

]
− 2λ(ln(e2γx) + ν)

[
0
1

]
for ω = λ �= 0, (8.8)

f(x) =
[
0
1

]
+ 2λ(ln(e2γx) + ν)

[
1
0

]
for ω = −λ �= 0. (8.9)

In both cases k is an eigenvalue if and only if ln(∓2ik)+ψ(1∓iλ)∓ i
2λ = ν

and (k,±) is admissible. There is at most one eigenvalue in C+ and at
most one eigenvalue in C−. The eigenvalue in C± exists if and only if
±iλ �∈ N and Re

(
exp

(
ν − ψ(1∓iλ)∓ i

2λ

))
> 0.

3. Case ω = λ = 0, f(x) =
[
1
κ

]
. k is an eigenvalue if and only if k �∈ R and

κ = i sgn(Im(k)).

Proof. An eigenvector of Dω,λ square integrable away from the origin is neces-
sarily of the form ζ±

p (k, ·) with an admissible (k,±). It belongs to the domain
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of Df
ω,λ if its asymptotic form for x → 0, obtained from (D.24), is proportional

to f . This yields conditions described in 1.-3.
Function cp,± is meromorphic. In the region |Re(μ)| < 1

2 functions
ω

Γ(1+μ∓iλ) and λ∓iμ
Γ(1−μ∓iλ) do not simultaneously vanish anywhere, while Γ(2μ+1)

Γ(−2μ+1)

is holomorphic and nowhere vanishing. Hence, cp,± is not of the indeterminate
form 0

0 anywhere. �

Let us note that eigenfunctions corresponding to real eigenvalues (which
exist only for |Im(λ)| > 1

2 ) decay at infinity only as fast as x−|Im(λ)|, not
exponentially.

Consider a homogeneous operator Dp with p ∈ E± and its deformations
Df

ω,λ, with f parametrized by κ so that Df
ω,λ = Dp for κ = 0. Then for κ = 0

the point spectrum of Df
ω,λ is C±, but for every κ �= 0 it is disjoint from C±.
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A One-Dimensional Dirac Operators

A.1 General Formalism

By a 1d Dirac operator on the halfline we will mean a differential operator of
the form

D =
[
a(x) −∂x

∂x b(x)

]
, (A.1)

where a, b are smooth functions on R+ =]0,∞[. In this subsection we treat it
as a formal operator acting, say, on the space of distributions on R+ valued in
C

2. We first describe a few integral kernels closely related to D.
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Let k ∈ C and

ξ(k, x) =
[
ξ↑(k, x)
ξ↓(k, x)

]
, ζ(k, x) =

[
ζ↑(k, x)
ζ↓(k, x)

]
(A.2)

be a pair of linearly independent solutions of the Dirac equation:

(D − k)ξ(k, ·) = (D − k)ζ(k, ·) = 0. (A.3)

Let

d(k, x) := det [ξ(k, x), ζ(k, x)] = det
[
ξ↑(k, x) ζ↑(k, x)
ξ↓(k, x) ζ↓(k, x).

]
(A.4)

Then d(k, x) does not depend on x, so that one can write d(k) instead. We
define

G↔(k;x, y) := d(k)−1ξ(k, x)ζ(k, y)T − d(k)−1ζ(k, x)ξ(k, y)T

= d(k)−1

[
ξ↑(k, x)ζ↑(k, y) ξ↑(k, x)ζ↓(k, y)
ξ↓(k, x)ζ↑(k, y) ξ↓(k, x)ζ↓(k, y)

]

− d(k)−1

[
ζ↑(k, x)ξ↑(k, y) ζ↑(k, x)ξ↓(k, y)
ζ↓(k, x)ξ↑(k, y) ζ↓(k, x)ξ↓(k, y)

]
. (A.5)

Note that G↔(k, x, y) is uniquely defined by

(D − k)G↔(k;x, y) = 0, G↔(k;x, x) =
[

0 1
−1 0

]
. (A.6)

We will call it the canonical bisolution.
We also have the forward and backward Green’s operators given by the kernels

G→(k;x, y) = G↔(k;x, y)1R+(x − y), (A.7a)

G←(k;x, y) = −G↔(k;x, y)1R+(y − x). (A.7b)

They are uniquely defined by

(D − k)G→(k;x, y) = δ(x − y)
[
1 0
0 1

]
, x < y ⇒ G→(x, y) = 0; (A.8a)

(D − k)G←(k;x, y) = δ(x − y)
[
1 0
0 1

]
, x > y ⇒ G←(x, y) = 0. (A.8b)

Note that G↔, G←, G→ do not depend on the choice of ξ, ζ.
Using the eigensolutions ξ, ζ, we can introduce yet another important integral
kernel:

G�
(k;x, y) := −d(k)−1

[
ξ↑(k, x)ζ↑(k, y) ξ↑(k, x)ζ↓(k, y)
ξ↓(k, x)ζ↑(k, y) ξ↓(k, x)ζ↓(k, y)

]
1R+(y − x)

− d(k)−1

[
ζ↑(k, x)ξ↑(k, y) ζ↑(k, x)ξ↓(k, y)
ζ↓(k, x)ξ↑(k, y) ζ↓(k, x)ξ↓(k, y)

]
1R+(x − y). (A.9)

It is also Green’s kernel, because it satisfies

(D − k)G�
(k;x, y) = δ(x − y)
[
1 0
0 1

]
. (A.10)
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G�
(k;x, y) depends on the choice of the pair of one-dimensional subspaces
Cξ(k, ·), Cζ(k, ·) of Ker(D − k). The resolvents of various closed realizations
of D are often of this form.
Two classes of 1d Dirac operators have special properties. The case a(x) = b(x)
can be fully diagonalized:[

a(x) −∂x

∂x a(x)

]
=

1√
2

[
1 i
i 1

] [−i∂x + a(x) 0
0 i∂x + a(x)

]
1√
2

[
1 −i
−i 1

]
. (A.11)

We will analyze 1d Dirac–Coulomb operators of this form in Sect. 8.
The case a(x) = −b(x) can be brought to an antidiagonal form, used in super-
symmetry:[

a(x) −∂x

∂x −a(x)

]
=

1√
2

[
1 −1
1 1

] [
0 −∂x − a(x)

∂x − a(x) 0

]
1√
2

[
1 1

−1 1

]
. (A.12)

We will analyze 1d Dirac–Coulomb operators of this form in Sect. 8.

A.2 Homogeneous First-Order Scalar Operators

Let α ∈ C. In this subsection we discuss the differential operator

Aα = xα∂xx−α = ∂x − α

x
(A.13)

acting on scalar functions. It will be a building block of some special 1d Dirac–
Coulomb operators considered in subsections 8 and 8.
Let us briefly recall basic results about realizations of Aα as a closed operator in
L2(R+) following [3]. Proofs of all statements stated in this subsection without
justification can be found therein. (In [3] a different convention was used:
Aα = −i∂x + iα

x . Thus, Anew
α = iAold

α .)
We let Amin

α be the closure (in the sense of operators on L2(R+)) of the re-
striction of Aα to C∞

c (R+) and Amax
α the restriction of Aα to Dom(Amax

α ) =
{f ∈ L2(R+) |Aαf ∈ L2(R)}. Operators Amin

α and −Amax
−α are adjoint to each

other.

Proposition 42. We have Amin
α = Amax

α if and only if |Re(α)| ≥ 1
2 . If |Re(α)| <

1
2 , then Dom(Amax

α ) = Dom(Amin
α ) + Cχxα, where χ ∈ C∞

c (R+) and χ = 1
near 0. If Re(α) �= 1

2 , then Dom(Amin
α ) = H1

0 (R+).

Closed realizations of Aα are of two types, described in the following pair of
propositions.

Proposition 43. Let Re(α) > − 1
2 ,

1. σ(−iAmax
α ) = R ∪ C+ and one has

(Amax
α − ik)−1f(x) = −

∫ ∞

x

eik(x−y)

(
x

y

)α

f(y)dy, Im(k) < 0. (A.14)

2. If k ∈ C+ and n ≥ 1, then Ker ((Amax
α − ik)n) is the space of functions

of the form xαeikxq(x) with q polynomial of degree at most n − 1. In

particular
∞⋃

n=0
Ker ((Amax

α − ik)n) is dense in L2(R+).

3. If k ∈ C+, then Amax
α − ik is a Fredholm operator of index 1.
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Proposition 44. Let Re(α) < 1
2 .

1. σ(−iAmin
α ) = R ∪ C− and one has

(Amin
α − ik)−1f(x) =

∫ x

0

eik(x−y)

(
x

y

)α

f(y)dy, Im(k) > 0. (A.15)

2. Amin
α has no eigenvectors.

3. If k ∈ C−, then Amin
α − ik is a Fredholm operator of index −1.

Proof of Propositions 43 and 44. Statements 1. are proven in [3].
2. requires justification only for the first part in the first proposition. We
factorize

xαeikxq(x) = xi Im(α)ei Re(k)x
(
xRe(α)e−Im(k)xq(x)

)
. (A.16)

Functions in the parenthesis form a dense set, because for any real numbers
c > 0, β > −1 functions e− cx

2 x
β
2 L

(β)
n (cx), with L

(β)
n Laguerre polynomials,

form an orthogonal basis (see, e.g., [38]). Clearly density is unaffected by the
prefactor, which amounts to the action of a certain unitary operator on L2.
Let us show 3. We consider first the case |Re(α)| < 1

2 . Then we have explicit
inverses modulo rank one operators.
If Im(k) > 0, then Amin

α − ik is invertible and its inverse is a right inverse for
Amax

α − ik. Thus, Amax
α − ik is surjective. We already know that its kernel is

one-dimensional.
If Im(k) < 0, then (Amax

α − ik)−1 : L2(R+) → Dom(Amax
α ) is continuous. The

range of Amin
α − ik is the preimage of Dom(Amin

α ), which is a closed subspace
of Dom(Amax

α ) of codimension one. Hence, Ran(Amin
α − ik) is a closed subspace

of L2(R+) of codimension one.
To extended the result beyond the strip |Re(α)| < 1

2 , note that (Amin
α −

ik)−1 − (Amin
β − ik)−1 (resp. (Amax

α − ik)−1 − (Amax
β − ik)−1) has a square-

integrable integral kernel for Re(α), Re(β)< 1
2 and k∈C+ (resp. Re(α), Re(β)

> − 1
2 and k ∈ C−). Therefore, it is a Hilbert–Schmidt operator, in particular

compact. By Corollary 25, the essential spectrum of Amin
α and Amax

α does not
depend on α. From the case |Re(α)| < 1

2 we know that it is R. The statement
about the value of the index is clear. �

Proposition 45. Amax
α is the generator of a C0-semigroup if and only if Re(α) ≥

0. If this condition is satisfied, it generates the semigroup of contractions

(etAmax
α f)(x) = xα(x + t)−αf(x + t), t ≥ 0, (A.17)

−Amin
α is the generator of a C0-semigroup if and only if Re(α) ≤ 0. If this

condition is satisfied, it generated a semigroup of contractions

(e−tAmin
α f)(x) = xα(x − t)−αf(x − t), t ≥ 0. (A.18)

Here we put f(x − t) = 0 if x − t < 0.
If |Re(α)| < 1

2 , the operators −Amax
α and Amin

α are not generators of C0-
semigroups.
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Proof. We present a proof of the statements concerning Amax
α . The others can

be proven analogously. It is elementary to check that for Re(α) ≥ 0 the right-
hand side of (A.17) defines a C0-semigroup of contractions with the generator
Aα

max. If Re(α) < 0, we consider the same expression for f ∈ C∞
c (]1,∞[).

Then for t ≤ 1 it is the unique solution of the Cauchy problem d
dtft = Amax

α ft,
f0 = f . However, there exists no constant c such that ‖ft‖ ≤ c‖f‖ for every
t ∈ [0, 1] and f . Thus, Amax

α is not a generator. If |Re(α)| < 1
2 , then σ(−Amax

α )
is the right closed complex half-plane, so −Amax

α is not a generator. �

A.3 Dirac–Coulomb Hamiltonians with ω = 0
Dirac–Coulomb Hamiltonians with ω = 0 can be reduced to operators Aα

studied in Sect. 8. Therefore, they can be analyzed using elementary functions
only.

Let us set W := 1√
2

[
1 i
i 1

]
. Using (A.11) we obtain for all λ

Dmin
0,λ = W

[−iAmin
iλ 0

0 iAmin
−iλ

]
W−1, Dmax

0,λ = W

[−iAmax
iλ 0

0 iAmax
−iλ

]
W−1.

(A.19)

Consider now the homogeneous holomorphic family. Note first that ω = 0
implies μ = ±iλ. We set D±

λ := D0,λ,±iλ,[∓i:1]. Note that (0, λ,±iλ, [∓i : 1]) ∈
E±. We have:

D+
λ = W

[−iAmax
iλ 0

0 iAmin
−iλ

]
W−1, Re(iλ) > −1

2
, (A.20a)

D−
λ = W

[−iAmin
iλ 0

0 iAmax
−iλ

]
W−1, Re(−iλ) > −1

2
, (A.20b)

Below σ2 is the Pauli matrix
[
0 −i
i 0

]
. Matrices 1±σ2

2 are its spectral projections.

Proposition 46. We have σ(D+
λ ) = R ∪ C+ and

(D+
λ − k)−1 = (−iAmax

iλ − k)−1 1 + σ2

2

−(−iAmin
−iλ + k)−1 1 − σ2

2
, Im(k) < 0, (A.21)

whereas σ(D−
λ ) = R ∪ C− and

(D−
λ − k)−1 = (−iAmin

iλ − k)−1 1 + σ2

2

−(−iAmax
−iλ + k)−1 1 − σ2

2
, Im(k) > 0. (A.22)

Proof. Follows from identities (A.20b) and Proposition 43, 44. �

Proposition 47. D±
λ − k with k ∈ C± are Fredholm of index 0.

Proof. Indeed, by Propositions 43 and 44 they are direct sums of two Fredholm
operators with indices 1 and −1. �
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Proposition 48. Let k ∈ C±. Then
∞⋃

n=0
Ker((D±

λ − k)n) is a dense subspace of

L2(R+)
[∓i

1

]
.

Proposition 49. iD+
λ is the generator of a C0-semigroup if and only if Im(λ) ≤

0. Then it generates the semigroup of contractions

eitD
+
λ = etAmax

iλ
1 + σ2

2
+ e−tAmin

−iλ
1 − σ2

2
, t ≥ 0. (A.23)

−iD−
λ is the generator of a C0-semigroup if and only if Im(λ) ≥ 0. Then it

generates the semigroup of contractions

e−itD−
λ = e−tAmin

iλ
1 + σ2

2
+ etAmax

−iλ
1 − σ2

2
, t ≥ 0. (A.24)

Operators −iD+
λ and iD−

λ are not generators of C0-semigroups.

A.4 Hankel Transformation

The following proposition is proven, e.g., in [3].

Proposition 50. Let Re(m) ≥ −1. We define

(Fpre
m f)(x) =

∫ ∞

0

Jm(xy)
√

xyf(y)dy, f ∈ C∞
c (R+), (A.25)

where Jm is the Bessel function. Then Fpre
m extends to a bounded operator

Fm on L2(R+), known as the Hankel transformation. Fm is a self-transposed
involution, unitary if m is real.

Recall from Sect. 1.1 that the operator X is defined by

(Xf)(x) = xf(x), Dom(X) = {f ∈ L2(R+) |xf(x) ∈ L2(R+)}.

Proposition 51. If Re(α) > − 1
2 , one has

Fα+ 1
2
Amax

α Fα− 1
2

= −X, Fα− 1
2
Amin

−α Fα+ 1
2

= X. (A.26)

Proof. Using the identity

x−m d
dx

xmJm(x) = Jm−1(x), (A.27)

one checks that

(Fpre

α+ 1
2
Aαf)(x) = −x(Fpre

α− 1
2
f)(x) (A.28)

for f ∈ C∞
c (R+). If |Re(α)| < 1

2 , (A.28) may be checked to hold also for f(x) =
χ(x)xα. Taking closures we obtain Fα+ 1

2
Amax

α ⊂ −XFα− 1
2
, so Fα+ 1

2
Amax

α Fα− 1
2⊂ −X. Since Fα+ 1

2
Amax

α Fα− 1
2

is a closed operator and C∞
c (R+) is a dense sub-

space of Dom(X) with respect to the graph topology, the opposite inclusion
will be established by demonstrating that C∞

c (R+) ⊂ Dom(Fα+ 1
2
Amax

α Fα− 1
2
).
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Let f ∈ C∞
c (R+). It is clear that Fα− 1

2
f is a smooth function. Using the

identity
(
x d

dx − y d
dy

)√
xyJm(xy) = 0, we find

d
dx

(Fα− 1
2
f)(x) =

1
x

∫ ∞

0

√
xyJm(xy)

d
dy

f(y)
y

dy. (A.29)

Since d
dy

f(y)
y is in L2(R+), we get that d

dx (Fα− 1
2
f)(x) is square-integrable over

[1,∞[. Next we use the series expansion of Jm to find that for small x

(Fα− 1
2
f)(x) =

∫ ∞
0

yαf(y)dy

2α− 1
2 Γ(α + 1

2 )
xα + O(xα+1). (A.30)

Hence, Fα− 1
2
f ∈ Dom(Amax

α ), so f ∈ Dom(Amax
α Fα− 1

2
) = Dom(Fα+ 1

2
Amax

α

Fα− 1
2
). We proved the first equality in (A.26). The other one may be obtained

by taking the transpose. �

Following [12] (see also [3]), we consider the formal differential operator

Lm2 = −∂2
x +

m2 − 1
4

x2
. (A.31)

We let Lmin
m2 be the closure of its restriction to C∞

c (R+) and Lmax
m2 be the

restriction to Dom(Lmax
m2 ) = {f ∈ L2(R+) |Lm2f ∈ L2(R+)}. If Re(m) > −1,

operator Hm is defined as the restriction of Lm2 to Dom(Lmin
m2 ) + Cχxm+ 1

2 ,
where χ is a smooth function equal to one in a neighborhood of zero. We remark
that H 1

2
and H− 1

2
are the Dirichlet Laplacian and the Neumann Laplacian,

respectively. Furthermore, Hm can be diagonalized as follows:

Hm = FmX2Fm. (A.32)

A.5 Dirac–Coulomb Hamiltonians with λ = 0

Dirac–Coulomb Hamiltonians with λ = 0 can be analyzed without Whittaker
functions, just with Bessel functions.

Let us set U := 1√
2

[
1 −1
1 1

]
. Using (A.12) we obtain for all ω

Dmin
ω,0 = U

[
0 −Amin

ω

Amin
−ω 0

]
U−1, Dmax

ω,0 = U

[
0 −Amax

ω

Amax
−ω 0

]
U−1. (A.33)

Using Proposition 42 we rewrite the operators D′±
ω := Dω,0,±ω,[∓1:1] as

D′+
ω = U

[
0 −Amax

ω

Amin
−ω 0

]
U−1, Re(ω) > −1

2
; (A.34a)

D′−
ω = U

[
0 −Amin

ω

Amax
−ω 0

]
U−1, −Re(ω) > −1

2
. (A.34b)

Proposition 52. Introduce

W ′±
ω :=

1
2

[F±ω± 1
2
+F±ω∓ 1

2
F±ω± 1

2
−F±ω∓ 1

2F±ω± 1
2
−F±ω∓ 1

2
F±ω± 1

2
+F±ω∓ 1

2

]
, ±Re(ω) > −1

2
. (A.35)
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Then W ′±
ω are involutions and we have the following diagonalizations

D′±
ω = W ′±

ω

[∓X 0
0 ±X

]
W ′±

ω . (A.36)

Proof. We insert (A.26) into (A.34):

D′+
ω = U

[Fω+ 1
2

0
0 Fω− 1

2

] [
0 X
X 0

] [Fω+ 1
2

0
0 Fω− 1

2

]
U−1, (A.37a)

D′−
ω = U

[F−ω− 1
2

0
0 F−ω+ 1

2

] [
0 −X

−X 0

] [F−ω− 1
2

0
0 F−ω+ 1

2

]
U−1. (A.37b)

Then we use [
0 ±X

±X 0

]
= U−1

[∓X 0
0 ±X

]
U. (A.38)

�

Corollary 53. We have

(D′+
ω )2 = U

[
Hω+ 1

2
0

0 Hω− 1
2

]
U−1, (A.39a)

(D′−
ω )2 = U

[
H−ω− 1

2
0

0 H−ω+ 1
2

]
U−1. (A.39b)

Remark 54. At least formally, operators D′±
ω , Xσ2 (declared to be odd) and

(D′±
ω )2, X2, A (declared to be even) furnish a representation of the Lie super-

algebra osp(1|2). We leave a detailed description of this representation for a
future study.

B Dirac Hamiltonian in d Dimensions

Separation of variables of a spherically symmetric Dirac Hamiltonian in dimen-
sion 3 is described in many texts and belongs to the standard curriculum of
relativistic quantum mechanics [15, p. 267]. Of course, it is even more straight-
forward to solve a rotationally symmetric Dirac Hamiltonian in dimension 2.
However, to our knowledge, the first treatment in any dimension is due to Gu,
Ma and Dong [25].
In this appendix we show that a spherically symmetric Dirac Hamiltonian in
an arbitrary dimension can be reduced to 1 dimension. Unlike in [25], we arrive
at the radial Dirac equation by relatively simple algebraic computations which
do not involve a detailed analysis of representations of the Lie algebra so(d).
The main role in this separation is played by a certain operator κ that com-
mutes with the Dirac operator. This operator in dimension 3 goes back to
Dirac himself. It seems that for the first time it has been generalized to other
dimensions in [25]. We analyze this operator in detail.
Recall that operators belonging to the center of the enveloping algebra of so(d)
are called Casimir operators of so(d). One of them, built in a standard way as a
bilinear form in the generators, will be called the square of angular momentum
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or simply the quadratic Casimir (even though it is not the only Casimir bilinear
in generators: these form a vector space generically of dimension 1, and of
dimension 2 if d = 4). κ does not coincide with the quadratic Casimir. One
can ask whether κ is also a Casimir operator. We will analyze this question
in detail. It turns out that the answer is positive in even, and negative in odd
dimensions.

B.1 Laplacian in d Dimensions

Spherical coordinates can be interpreted as a map

R
d\{0} � x �→ (r, x̂) ∈ R+ × S

d−1, (B.1a)

x̂ =
x

|x| , r = |x|. (B.1b)

It induces a unitary map

L2(Rd) → L2(R+, rd−1) ⊗ L2(Sd−1). (B.2)

We also have the obvious map

L2(R+, rd−1) � f �→ r
d−1
2 f ∈ L2(R+). (B.3)

The product of (B.3) and (B.2) will be denoted

U : L2(Rd) → L2(R+) ⊗ L2(Sd−1). (B.4)

The momentum is defined as

pi := −i∂i.

We also introduce the radial momentum

R :=
x

2|x|p + p
x

2|x| =
x

|x|p − i
d − 1
2|x| . (B.5)

Here is the radial momentum and its square in spherical coordinates:

R = −i∂r − i
d − 1
2r

, (B.6a)

R2 = −∂2
r − d − 1

r
∂r +

(
1
4

−
(d − 2

2

)2
)

1
r2

. (B.6b)

After applying U we obtain

URU−1 = −i∂r.

In the standard way we introduce the angular momentum and its square:

Lij := xipj − xjpi, (B.7a)

L2 :=
∑
i<j

L2
ij . (B.7b)

They furnish the standard representation of the Lie algebra so(d) on S
d−1:

[Lij , xk] = −iδjkxi + iδikxj , (B.8a)

[Lij , pk] = −iδjkpi + iδikpj , (B.8b)[
Lij , Lkl

]
= −iδjkLil − iδilLjk + iδikLjl + iδjlLik. (B.8c)
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The angular momentum squared L2 is the quadratic Casimir operator of so(d).
The representation (B.7a) is decomposed into subspaces of spherical harmonics
of the order �. The representation of so(d) of this type will be called spherical
of degree �. On this representation we have

L2 =�(� + d − 2) =
(
� +

d − 2
2

)2

−
(d − 2

2

)2

. (B.9)

The Laplacian on R
d in the spherical coordinates is

−Δ = −∂2
r − (d − 1)

r
∂r +

L2
d

r2
, (B.10a)

= R2 +
(

− 1
4

+
(
� +

d − 2
2

)2) 1
r2

. (B.10b)

Sandwiching it with U we obtain

U(−Δ)U−1 = −∂2
r +

(
− 1

4
+

(
� +

d − 2
2

)2) 1
r2

. (B.11)

Remark 55. Discussion above is valid even for d = 1, with S
0 := {±1}. This

case is peculiar in that the only allowed values of � are 0 and 1, corresponding
to even and odd functions. d = 2 is also special: � takes arbitrary integer
values, while for d ≥ 3 one has � ≥ 0.

B.2 Dirac Operator in d Dimensions

Let αi, i = 1, . . . , d and β be the Clifford matrices acting irreducibly in a
finite-dimensional space K. They satisfy the Clifford relations

[αi, αj ]+ = 2δij , [αi, β]+ = 0, β2 = 1. (B.12)

We recall that dim(K) = 2� d+1
2 � and that for even d one has β = ±i

d
2
∏d

i=1 αi.
The two sign choices give non-isomorphic representations of the Clifford al-
gebra. By averaging arguments, K admits a positive definite Hermitian form
such that β and αi are unitary and hence Hermitian. This form is unique up
to positive scalars; we fix one once and for all.
Using the Einstein summation convention unless there is a summation sign,
we introduce the following operators on L2(Rd) ⊗ K:

D := αipi, (B.13a)

T := −i
∑
i<j

αiαjLij +
d − 1

2
, (B.13b)

S :=
αixi

|x| , (B.13c)

κ := βT = Tβ. (B.13d)

Proposition 56. We have

SD = R +
i

|x|T, DS = R − i
|x|T, (B.14a)

SR = RS, ST = −TS, (B.14b)

Sβ = −βS βD = −Dβ, (B.14c)
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DT = −TD, Dκ = κD. (B.14d)

Proof. Let us prove the first identity of (B.14d). We have

[αiαjLij , αkpk]+
= [αiαj , αk]Lijpk + αkαiαj [Lij , pk]+. (B.15)

Using

αjαkαi = αkαiαj + 2δjkαi − 2δijαk, (B.16a)

αiαjαk = αkαiαj + 2δjkαi − 2δikαj , (B.16b)

we obtain

3αkαiαj [Lij , pk]+
= αkαiαj [Lij , pk]+ + αjαkαi[Lki, pj ]+ + αiαjαk[Ljk, pi]+
= αkαiαj

(
[Lij , pk]+ + [Lki, pj ]+ + [Ljk, pi]+

)
+ 2αi[Lji, pj ]+ − 2αi[Lij , pj ]+ − 2αi[Lij , pi]+

= 6αi[Lji, pj ]+ = −6iαjpj(d − 1) − 12αiLijpj . (B.17)

Moreover,

[αiαj , αk]Lijpk = 2(αiδjk − δikαj)Lijpk

= 4αiLijpj . (B.18)

Now the sum of i
6 (B.17) and i

2 (B.18) is (d − 1)αipi. �

B.3 Decomposition into Incoming and Outgoing Dirac Waves

Let

Π± :=
1
2
(1 ± S)

be the spectral projections of S onto ±1. Define

H± := Π±(L2(Rd) ⊗ K), so that L2(Rd) ⊗ K = H+ ⊕ H−. (B.19)

For an operator B on L2(Rd) ⊗ K let us write

B±± = Π±BΠ±, B±∓ = Π±BΠ∓. (B.20)

Clearly,

S =

[
1 0
0 −1

]
, R =

[
R++ 0

0 R−−

]
, (B.21a)

β =

[
0 β+−

β−+ 0

]
, T =

[
0 T+−

T−+ 0

]
, (B.21b)

D =

[
R++

i
|x|T+−

− i
|x|T−+ −R−−

]
, κ =

[
β+−T−+ 0

0 β−+T+−

]
=

[
T+−β−+ 0

0 T−+β+−

]
.

(B.21c)
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D commutes with the self-adjoint operator κ. We can therefore reduce our-
selves to the eigenspace of κ with eigenvalue ω ∈ R, denoted Hω (see Sect. 8
for a description of these eigenspaces). We can write

D =

[
R++

iω
|x|β+−

− iω
|x|β−+ −R−−

]
. (B.22)

Using spherical coordinates, we can identify L2(Rd) ⊗ K with L2(R+, rd−1) ⊗
L2(Sd−1) ⊗ K. Applying (B.3) and treating β±∓ as identifications, we can
rewrite the above equation as

D =
[−i∂r

iω
r

− iω
r i∂r

]
. (B.23)

The d-dimensional Dirac Hamiltonian can be reduced to 1 dimension (with
2 × 2 matrix structure) if it is perturbed by four kinds of radial terms: the
electric potential V (r), the mass m(r) (called also the Lorentz scalar), the
radial vector potential A(r) and the anomalous (Pauli) coupling to the electric
field E(r). The reduction (B.23) leads to

DV,m,A,E := D + V (r) + m(r)β +
A(r)αixi

r
+

iE(r)βαixi

r

=
[−i∂r + V (r) + A(r) iω

r + m(r) − iE(r)
− iω

r + m(r) + iE(r) i∂r + V (r) − A(r)

]
. (B.24)

We prefer another form, related by a similarity transformation:

1√
2

[
1 −i
i −1

]
DV,m,A,E

1√
2

[
1 −i
i −1

]
=

[−ω
r + E(r) + V (r) −∂r − iA(r) − m(r)

∂r + iA(r) − m(r) ω
r − E(r) + V (r)

]
.

(B.25)

For m = A = E = 0 and V = −λ
r , this is the one-dimensional Dirac operator

studied in our paper.
We remark that the radial electromagnetic potential A(r) is necessarily pure
gauge. Indeed, it enters the Dirac operator only in the combination ∂r +iA(r),
which may be written as e−iφ(r)∂reiφ(r) for a function φ(r) such that φ′(r) =
A(r). Coupling E(r) arises if the Dirac Lagrangian is extended by the Pauli
term, proportional to ψ i

2γμγνFμνψ with a purely electric and radial field
strength tensor F .

B.4 Composite Angular Momentum

Introduce the spin operators

σij := − i
2
[αi, αj ]. (B.26)

1
2σij yield a representation of so(d) on the spin space K:[1

2
σij , αk

]
= −iδjkαi + iδikαj , (B.27a)

[1
2
σij ,

1
2
σkl

]
= −iδjk

1
2
σil − iδil

1
2
σjk + iδik

1
2
σjl + iδjl

1
2
σik. (B.27b)

Vol. 25 (2024) 397
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Irreducible representations of so(d) contained in K will be called spinor repre-
sentations. Their quadratic Casimir is given by

σ2

4
=

1
4

∑
i<j

σ2
ij =

d(d − 1)
8

. (B.28)

If d is even, then there are two inequivalent spinor representations. They cor-
respond to the eigenspaces of β with eigenvalues ±1.
If d is odd, then K is also a direct sum of two spinor representations; however,
they are equivalent to one another. The decomposition of K into irreducible
components exists but is clearly non-unique. One possible choice corresponds
to the eigenvalues ±1 of β.
We also have the composite representation of so(d) given by

Jij := Lij +
1
2
σij . (B.29)

Clearly,

[Jij , Jkl] = −iδjkJil − iδilJjk + iδikJjl + iδjlJik, (B.30a)

[J, x · α] = [J, p · α] = [J, p2] = [J, x2] = 0. (B.30b)

The quadratic Casimir of this representation, also called the square of the total
angular momentum, is

J2 =
∑
i<j

J2
ij = L2 + Lσ +

σ2

4
, (B.31a)

where Lσ :=
∑
i<j

Lijσij . (B.31b)

Proposition 57. We have the following relation:

κ2 = J2 +
(d − 1)(d − 2)

8
. (B.32)

Proof. Directly from the definition we have

κ2 =
(d − 1)2

4
+ (d − 1)Lσ +

∑
i<j
k<l

LijLklσijσkl. (B.33)

To simplify the last term, we write

σijσkl =
1
2
[σij , σkl] +

1
2
[σij , σkl]+. (B.34)

A simple expression for the first term is given by (B.27b). The second one is
1
2
[σij , σkl]+ = −α[iαjαkαl] + 2δ

[i
[kδ

j]
l] (B.35)

in which [· · · ] denotes skew-symmetrization of the enclosed indices. In order to
prove this formula, first note that both sides are skew-symmetric with respect
to the transposition of i and j or k and l, so we may assume that i �= j and
k �= l. We have three cases. If sets A = {i, j} and B = {k, l} are disjoint,
then all α matrices involved anticommute and hence both sides are equal to
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−αiαjαkαl. If A ∩ B has one element, one checks that both sides vanish.
Finally, if A = B then both sides are equal to ±1, the sign depending on the
order of indices.
Now plug (B.34) and (B.34) into (B.33). The term with α[iαjαkαl] drops out
after summing over indices because L[ijLkl] = 0. In the term with (B.27b) we
can replace LijLkl by 1

2 [Lij , Lkl], by skew-symmetry with respect to ij ↔ kl.
After simplifications with (B.28) and (B.31a) we obtain the claim. �

Recall that on Hω the operator κ acts as multiplication by ω. We will now
characterize Hω more closely.

Proposition 58. Let ω be such that Hω �= {0}. Then there exist � and subspaces
W�,W�−1 ⊂ L2(Rd) spherical of degree � resp. � − 1 such that

Hω ⊂ (W�⊕W�−1) ⊗ K, (B.36a)

|ω| = � +
d − 3

2
, (B.36b)

J2
∣∣
Hω

= �2 + �(d − 3) +
d2 − 9d + 16

8
. (B.36c)

Proof. Exceptional cases d = 1, 2 are easy to analyze separately: one has κ = 0
in the former case and κ = ±L12 + 1

2β (with the sign depending on the choice
of Clifford matrices) in the latter. From now on we assume that d ≥ 3. We
note that (B.32) and J2 ≥ 0 imply that ω �= 0.
κ commutes with β, hence also with Lσ. Therefore, we can decompose Hω

with respect to the eigenvalues of Lσ. From (B.13b) we obtain

Lσ =ωβ − d − 1
2

, (B.37)

which has on Hω two distinct eigenvalues

± ω − d − 1
2

. (B.38)

Both sings are realized because D anticommutes with β and preserves Hω.
Clearly L2 = J2 − Lσ − σ2

4 has on Hω two distinct eigenvalues corresponding
to (B.38). As seen from (B.9), the representation of orbital angular momentum
is uniquely determined by L2. Therefore, for some �+, �− ∈ N, �+ > �−,

Hω ⊂ (W�+⊕W�−) ⊗ K. (B.39)

Comparing the identities

J2 = �±(�± + d − 2)∓|ω| − d − 1
2

+
d(d − 1)

8
, (B.40)

J2 = ω2 − (d − 1)(d − 2)
8

, (B.41)

we obtain the equation

|ω|(|ω| ± 1) =
(
�± +

d − 1
2

)(
�± +

d − 3
2

)
. (B.42)
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whose solutions take the form �+ + d−3
2 ∈ {|ω|,−|ω| − 1}, �− + d−3

2 ∈ {|ω| −
1,−|ω|}. In both cases the second solution has to be discarded because �± +
d−3
2 ≥ 0. Hence, (B.36b) holds and �− = �+ − 1. Then (B.36c) is obtain by

feeding (B.36b) into (B.32).

We remark that the sign of ω cannot be obtained from the above calculation.
Indeed, the spectrum of κ on L2(Rd) ⊗ K is always invariant with respect to
ω �→ −ω. If d is odd, then

∏d
j=1 αj commutes with L and αi, but anticommutes

with β and hence with κ. If d is even, then κ anticommutes with the parity
operator

f(x1, . . . , xd) �→ βα1f(−x1, . . . , xd), f ∈ L2(Rd,K). (B.43)

However, this operation does not preserve the type of angular momentum
representation. Indeed, it anticommutes with β and hence exchanges the two
spinor representations.

B.5 Analysis in Various Dimensions

Let us review the lowest dimensions.
d = 1. There is no angular momentum and one has ω = 0.
d = 2. Unitary irreducible representations of so(2) are enumerated by spin
values m ∈ R. The corresponding quadratic Casimir is equal to m2. There are
two types K± 1

2
of spinor representations, corresponding to m = ± 1

2 . Spherical
representations correspond to � ∈ Z.
One convenient choice of Clifford representation is given by Pauli matrices:
α1 = σ1, α2 = σ2, β = ±σ3. Then κ = ±J and hence

Hω = (W�⊗K− 1
2
) ⊕ (W�−1⊗K 1

2
). (B.44)

with ω = ±(� − 1
2 ) ∈ Z + 1

2 . Sign in the relation between ω and total angular
momentum depends on the choice of sign in β, but after fixing Clifford matrices
it is one-to-one.
d = 3. Unitary irreducible representations of so(3) are parametrized by spin
j ∈ 1

2N or the quadratic Casimir j(j + 1). All spinor representations have
the spin 1

2 . The representation on Hω has spin � − 1
2 . We have ω = ±� ∈

{±1,±2, . . . }, i.e., two distinct values of ω correspond to the same total spin.
d = 4. We have so(4) � so(3) ⊕ so(3). More explicitly,

J±
1 :=

1
2
(±J12 + J34), J±

2 :=
1
2
(±J13 + J42), J±

3 :=
1
2
(±J14 + J23)

(B.45)

span two algebras isomorphic to so(3) and commuting with one another. Let
(J±)2 be the corresponding quadratic Casimirs. We have

J2 = 2(J+)2 + 2(J−)2. (B.46)

Thus, irreducible representations of so(4) are parametrized by pairs of spins
(j+, j−) ∈ ( 1

2N)2 with the quadratic Casimir 2j+(j+ + 1) + 2j−(j− + 1). We
have also the obvious analogs of (B.45) and (B.46) for Lij and 1

2σij .
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Representations of so(4) on spherical harmonics satisfy

L12L34 + L13L42 + L14L23 = 0. (B.47)

Therefore, (L+)2 = (L−)2. Hence, a spherical representation of degree � cor-
responds to the pair of spins ( �

2 , �
2 ) with the quadratic Casimir �(� + 2) =

2 �
2

(
�
2 +1

)
+2 �

2

(
�
2 +1

)
. Spinor representations of so(4) are of types (1

2 , 0) and

(0, 1
2 ), distinguished by the eigenvalue of α1α2α3α4. They satisfy

α1α2α3α4 σ±
i = ∓σ±

i , (σ±)2 = ∓3
2
α1α2α3α4. (B.48)

Furthermore, we have β = ±α1α2α3α4, with the sign in this relation distin-
guishing Clifford representation. Using these relations we derive

κ = ∓2(J+)2 ± 2(J−)2. (B.49)

From spherical representations and spinor representation it is possible to build
total angular momentum representations of two types: ( �

2 , �−1
2 ) and ( �−1

2 , �
2 ).

They have the same quadratic Casimir

J2 = �(� + 1) − 1
2

(B.50)

but can be distinguished by ω:

ω = ∓
(

� +
1
2

)
and ω = ±

(
� +

1
2

)
. (B.51)

The inclusion (B.36a) may now be stated more precisely:

Hω
∼=

(
�

2
,
� − 1

2

)
⊂
(� − 1

2
,
� − 1

2

)
⊗
(1

2
, 0

)
⊕

( �

2
,
�

2

)
⊗
(
0,

1
2

)
, for ± ω < 0

(B.52a)

Hω
∼=

(
� − 1

2
,
�

2

)
⊂
(� − 1

2
,
� − 1

2

)
⊗
(
0,

1
2

)
⊕

( �

2
,
�

2

)
⊗
(1

2
, 0

)
, for ± ω > 0.

(B.52b)

As in dimension 2, the relation between the total angular momentum represen-
tation and ω, taking valued in {±3

2 ,± 5
2 , . . . }, is one-to-one after fixing Clifford

matrices.
For general dimensions we label irreducible representations as in [20, Section
19].
d = 2n+1, n ≥ 2. Irreducible representations are in 1−1 correspondence with
labels (a1, . . . , an) ∈ N

n. Spherical harmonics of degree � have type (�, 0, . . . ),
while spinor representations have type (0, . . . , 1). Their tensor product decom-
poses as

(�, . . . , 0) ⊗ (0, . . . , 1) = (�, . . . , 1) ⊕ (� − 1, . . . , 1), � ≥ 1. (B.53)

Thus, the only possible types of Hω are (� − 1, . . . , 1). This representation
occurs as a subrepresentation only in two tensor products:

(�, . . . , 0)⊗(0, . . . , 1), (� − 1, . . . , 0)⊗(0, . . . , 1). (B.54)
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We have |ω| = �+n−1; thus, ω takes values {±n,±(n+1), . . . }, with opposite
ω corresponding to the same total angular momentum. In particular it is not
possible to express κ as a polynomial in Jij .
d = 2n, n ≥ 3. Types of irreducible representations are parametrized by

(a1, . . . , an) ∈ N
n. �th degree spherical harmonics are of type (�, 0, . . . ). Spinor

representations are of two types: (0, . . . , 1, 0). and (0, . . . , 0, 1). We have tensor
products decompositions (� ≥ 1):

(�, . . . , 0) ⊗ (0, . . . , 1, 0) = (�, . . . , 1, 0) ⊕ (� − 1, . . . , 0, 1), (B.55a)

(�, . . . , 0) ⊗ (0, . . . , 0, 1) = (�, . . . , 0, 1) ⊕ (� − 1, . . . , 1, 0). (B.55b)

It follows that Hω must be of the type (� − 1, . . . , 0, 1) or (� − 1, . . . , 1, 0).
These two representations have the same quadratic Casimir; however, they
are exchanged by the parity operator (B.43). Hence, they can be distinguished
by the sign of the following Casimir element, defined as the nth wedge power
of the 2-form J :

n∧
j=1

J :=
1
2n

εi1...i2nJi1i2 · · · Ji2n−1i2n
. (B.56)

Here ε is the Levi–Civita symbol.
We will show that (B.56) is actually proportional to κ. Using the fact that
skew-symmetrization of the product of two or more Lij vanishes and Clifford
relations, we derive

n∧
j=1

J =
n(2n − 2)!

22n−2
((−i)nα1 · · · α2n)

(
Lσ +

2n − 1
2

)
. (B.57)

A Clifford representation is determined up to isomorphism by specifying the
sign in the relation β = ±(−i)nα1 · · · α2n. Then we have

n∧
j=1

J = ±n(2n − 2)!
22n−2

κ. (B.58)

As in lower even dimensions, for fixed Clifford matrices angular momentum
types are in one-to-one correspondence with the values ω ∈ {± (

n − 1
2

)
,

± (
n + 1

2

)
, . . . }.

B.6 Dirac Operators on Manifolds

The operator κ, which is central to the separation of variables of the radi-
ally symmetric Dirac equation, is closely related to the Dirac equation on the
sphere. We would like to give a short discussion of this topic.
Before we discuss the case of a sphere, in this subsection we give a short intro-
duction to Dirac operators on Riemannian manifolds. We take Clifford module
bundles as central objects. A popular alternative is based on the concept of a
spin structure. Spinor bundles are then constructed by the associated bundle
construction, see [32, p. 7–44, 77–135] for an exposition. A comparison between
the two approaches is presented in [41].
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Given a Euclidean vector space E with the scalar product of u, v ∈ E denoted
u · v, we let Cl(E) be the corresponding Clifford algebra, that is the quotient
of the tensor algebra of E by the ideal generated by elements of the form
u ⊗ u − u · u. Then R and E are naturally embedded in Cl(E) (in concrete
matrix realizations of Cl(E) the latter embedding is realized by contraction of
vectors with α matrices such as (B.12)). In this subsection we identify elements
of E with their images in Cl(E).
The automorphism α of Cl(E) characterized by the equation α(u) = −u for
u ∈ E is called the main automorphism or the parity. Elements of Cl(E)
fixed (negated) by α are said to be even (odd). The transposition is the anti-
automorphism of Cl(E) characterized by (u1 . . . un)T = un . . . u1 for u1, . . . , un ∈
E.
The spin group Spin(E) is the group of even invertible elements g ∈ Cl(E)
such that

gug−1 ∈ E for every u ∈ E, gTg = 1. (B.59)

If g ∈ Spin(E), then the endomorphism u �→ gug−1 of E belongs to the special
orthogonal group SO(E). Thus, we have a homomorphism Spin(E) → SO(E).
This homomorphism is surjective with kernel {±1}. Since this is a central
subgroup of Cl(E), the adjoint action of Spin(E) on Cl(E) descends to an
action of SO(E) on Cl(E). The Lie algebra spin(E) of Spin(E) is the subspace
of Cl(E) spanned by elements of the form [u1, u2] with u1, u2 ∈ E. We have
an isomorphism spin(E) ∼= so(E), which takes [u1, u2] to the endomorphism

u3 �→ [[u1, u2], u3] = 4u1(u2 · u3) − 4u2(u1 · u3). (B.60)

Therefore, A ∈ so(E) is mapped to

1
8

∑
ij

[ei, ej ](ei · Aej), (B.61)

where ei form an orthonormal basis of E.
Every Cl(E)-module V is a direct sum of irreducible modules. Let V be an
irreducible complex representation. The even subalgebra of Cl(E) (and in par-
ticular the spin group Spin(E)) is represented faithfully on V. There exists
a positive-definite Hermitian form (·|·) on M , called a spinor scalar product,
such that (ψ1|cψ2) = (cTψ1|ψ2) for c ∈ Cl(E) and ψ1, ψ2 ∈ V. It is unique up
to positive scalars. Furthermore, there exists an antilinear operator Θ on V,
called a spinor conjugation, such that

ΘcΘ−1 =

{
c if n �≡ 3 mod 4,

α(c) if n ≡ 3 mod 4,

Θ2 =

{
1 if n ∈ {0, 1, 2, 7} mod 8,

−1 if n ∈ {3, 4, 5, 6} mod 8.
(B.62)

Θ is unique up to a phase factor.
Now let M be a Riemannian manifold with tangent bundle TM and the Levi–
Civita connection ∇. For every x ∈ M consider the Clifford algebra Cl(TxM).
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Together these Clifford algebras form a bundle Cl(TM) of Clifford algebras
over M . If M is oriented, we can locally choose positively oriented orthonormal
framings {ei}d

i=1 and put

volM = e1 · · · ed. (B.63)

The right-hand side does not depend on the choice of framing; hence, it defines
a global section of Cl(TM).
The Levi–Civita connection extends uniquely to a connection on Cl(TM) sat-
isfying the Leibniz rule:

∇(c1c2) = (∇c1)c2 + c1∇c2 (B.64)

for sections c1, c2 of Cl(TM). This connection commutes with the main auto-
morphism and the transposition. If defined, volM is covariantly constant.
A vector bundle Σ whose fiber Σx is a representation of Cl(TxM) (with the
module structure smoothly varying with x) is called a Clifford module bundle.
A connection ∇ on Σ will be called Clifford covariant if it satisfies

∇(cψ) = (∇c)ψ + c∇ψ. (B.65)

If in addition for every x ∈ M and every null-homotopic loop γ based at x
the holonomy endomorphism holΣ,γ ∈ GL(Σx) is an element of Spin(TxM),
we call ∇ a locally spin connection. If this is true for all loops, we say that ∇ is
a spin connection. A Clifford module bundle equipped with a spin connection
will be called a spinor bundle.

Lemma 59. If ∇ is a spin connection, then the holonomy endomorphism holΣ,γ

∈ Spin(TxM) lifts the holonomy holTM,γ ∈ SO(TxM) of the Levi–Civita con-
nection.

Proof. By the Clifford covariance (B.65), for any c ∈ Cl(TxM) we have

holCl(TM),γ(c)holΣ,γψ = holΣ,γ(cψ) = holΣ,γchol−1
Σ,γholΣ,γψ. (B.66)

Thus,

holCl(TM),γ(c) = holΣ,γchol−1
Σ,γ . (B.67)

As c we can choose u ∈ TxM ⊂ Cl(TxM) and rewrite (B.67) as

holTM,γu = holΣ,γu hol−1
Σ,γ .

�

From now on we assume that M is orientable. As a consequence, the holonomies
of the Levi–Civita connection are always contained in SO(TxM). (On non-
orientable manifolds they may be contained in O(TxM))
The following lemma allows us to conveniently check whether a given connec-
tion is spin [41].

Lemma 60. Let Σ be a bundle of irreducible Clifford modules with a Clifford
covariant connection ∇. Then ∇ is a spin connection if and only if there exist
a spinor scalar product (·|·) and a spinor conjugation Θ on Σ such that

∇Θψ = Θ∇ψ, d(ψ1|ψ2) = (∇ψ1|ψ2) + (ψ1|∇ψ2). (B.68)
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Proof. ⇒. We focus on one connected component M0 of M and choose a point
x therein. Then we choose a spinor scalar product (·|·) and a spinor conjugation
Θ in Σx. By assumption, they are invariant under holΣ,γ for every loop based
at x. Now parallel transport (·|·) and Θ to all other fibers over M0. Invariance
under holonomies implies that the result is independent of the choice of paths,
smooth and covariantly constant, hence satisfies (B.68).
⇐. Let γ be a loop based at x and let c ∈ Cl(TxM). Let g ∈ Spin(TxM) be a
lift of holTM,γ ∈ SO(TxM). Arguing as in the proof of Lemma 59, we see that
holΣ,γchol−1

Σ,γ = gcg−1. By irreducibility of Σx, this implies that holΣ,γ = zg

for some z ∈ C. Since both holΣ,γ and g preserve the scalar product, |z| = 1.
Since both commute with Θ, z ∈ R. Thus, holΣ,γ coincides with g or −g and
hence belongs to Spin(TxM). �
Lemma 61. Every spinor bundle is a direct sum of spinor bundles whose fibers
are irreducible Clifford modules.

Proof. Analogous to the proof of ⇒ in Lemma 60. �
Recall that for a vector bundle Σ with a connection ∇, the expression

Ω(U,V) := ∇U∇V − ∇V∇U − ∇[U,V]Lie . (B.69)

defines an End(Σ)-valued 2-form, called the curvature of ∇. Here [·, ·]Lie is
the Lie bracket of vector fields U,V. If Σ = TM and ∇ is the Levi–Civita
connection, then Ω is denoted by R and called the Riemann tensor. One checks
that R(U,V)|x is an element of so(TxM).

Lemma 62. If ∇ is a spin connection, then its curvature takes the form

Ω(U,V) =
1
8

∑
i,j

(ei · R(U,V)ej)[ei, ej ]. (B.70)

A partial converse holds: every Clifford covariant connection with curvature
given by the formula above is a locally spin connection.

Proof. The curvature may be extracted from holonomies along infinitesimal
parallelograms. Therefore, by Lemma 59, the curvature of ∇ at x is an element
of spin(TxM), coinciding with R(U,V) taken in the representation (B.61).
Now we prove the converse. If γ is any path from y to x and holΣ,γ ∈
Hom(Σx,Σy) is the corresponding parallel transport, then by the Clifford co-
variance

holΣ,γΩ(U,V)hol−1
Σ,γ =

1
8

∑
i,j

(ei · R(U,V)ej)[holTM,γ(ei),holTM,γ(ej)]

∈ spin(TxM). (B.71)

Let γs be a family of loops [0, 1] → M based at x. For t ∈ [0, 1] let γt
s := γs|[0,t].

Then

hol−1
Σ,γs

d
ds

holΣ,γs
=

∫ 1

0

hol−1
Σ,γt

s
Ω
(

∂γs(t)
∂s

,
∂γs(t)

∂t

)
holΣ,γt

s
dt. (B.72)

It follows that for a null-homotopic loop γ based at x we have that holΣ,γ ∈
Spin(TxM). �
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J. Dereziński, B. Ruba Ann. Henri Poincaré

Next we define the Dirac operator on sections of a spinor bundle Σ. Let us
choose a locally defined orthonormal framing {ei} of TM . Now put

Dψ = −i
∑

i

ei · ∇ei
ψ. (B.73)

Here the multiplication by ei is the Clifford multiplication (ei being regarded
as a section of Cl(TM)). It is not difficult to check that Dψ does not depend
on the choice of framing, so local expressions on the right-hand side of (B.73)
can be glued to obtain a globally defined differential operator.
If Σ is a spinor bundle over an oriented Riemannian manifold M , there exist
two distinguished second-order differential operators acting on sections of Σ:
the square of the Dirac operator D2 and the Bochner Laplacian. To describe
the latter, let (·|·) be a spinor scalar product. It yields a scalar product on
T ∗M⊗Σ. Now the Bochner Laplacian, at least formally, is (minus) the operator
associated to the quadratic form

− (ψ,Δψ) :=
∫

M

(∇ψ(x)|∇ψ(x)
)
dx. (B.74)

Equivalently, the Bochner Laplacian can be defined without invoking the scalar
product by

Δ :=
∑

i

(∇ei
∇ei

− ∇∇ei
ei

)
, (B.75)

Note that the Bochner Laplacian uses the covariant Hessian

Hess(U,V) = ∇U∇V − ∇∇UV, (B.76)

which is bilinear over C∞(M) and satisfies

Hess(U,V) − Hess(V,U) = Ω(U,V). (B.77)

(B.77) follows from the torsion-freeness of the Levi–Civita connection, that is

∇UV − ∇VU − [U,V]Lie = 0. (B.78)

In the following proposition we recall the celebrated Lichnerowicz formula:

Proposition 63. The square of the Dirac operator and the Bochner Laplacian
are related by

D2 = −Δ +
1
4
Sc, (B.79)

where Sc is the scalar curvature.

Proof. Let Hesss be the symmetric part of the Hessian. We choose an orthonor-
mal framing {ei}. Then

(iD)2 =
∑
i,j

ei∇ei
ej∇ej

=
∑
i,j

(
eiej∇ei

∇ej
+ ei(∇ei

ej)∇ej

)

=
∑
i,j

eiej

(
Hess(ei, ej) + ∇∇ei

ej

)
+

∑
i,j

ei(∇ei
ej)∇ej
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=
∑
i,j

eiej

(
Hesss(ei, ej) +

1
2
Ω(ei, ej)

)

+
∑
i,j

(
eiej∇∇ei

ej
+ ei(∇ei

ej)∇ej

)

= Δ +
1
32

∑
i,j,n,m

[ei, ej ][en, em] (en · R(ei, ej)em) . (B.80)

Below we will show that the last two terms in the third line cancel. The last
term in the fourth line may be shown to be equal to − 1

4Sc = − 1
4

∑
ij ei ·

R(ei, ej)ej using Clifford relations and symmetries of the Riemann tensor.
Connection coefficients are defined by the formula

∇ei
ej =

∑
k

cijkek. (B.81)

∇ei
(ej ·ek) = 0 and metric compatibility of the connection give cijk +cikj = 0.

We have ∑
j

(
ej∇∇ei

ej
+ (∇ei

ej)∇ej

)
=

∑
j,k

cijk

(
ej∇ek

+ ek∇ej

)
. (B.82)

Now switch the roles of j, k in the second term to see that (B.82) vanishes.
�

Now suppose that N is an orientable submanifold of M of codimension 1. We
will now describe spinor bundles on in the spirit of [40]. Then there exists a
smooth field of unit normal vectors ν. We have the following relation between
the Levi-Civita connection on M and on N :

∇N
UV = ∇M

UV − (∇M
UV · ν)ν = ∇M

UV + (V · ∇M
U ν)ν, (B.83)

where U,V are tangent to N . That is, ∇N
UV is the projection of ∇M

UV onto
TN .
(B.83) can be rewritten as follows:

∇N
UV = ∇M

UV +
1
2
ν
(
(∇M

U ν)V + V(∇M
U ν)

)
= ∇M

UV +
1
2
[ν∇M

U ν,V].

where now V, ν and ∇M
U ν are treated as sections of the Clifford bundle

Cl(TM). This is immediately generalized to general Clifford fields

∇N
U = ∇M

U +
1
2
[ν∇M

U ν, ·] (B.84)

Now assume that ΣM is a Clifford module bundle over M with a Clifford
covariant connection ∇M . The restriction of ΣM to N , denoted ΣN , is a bundle
of Clifford modules. (B.84) motivates defining the following connection on ΣN :

∇N
U = ∇M

U +
1
2
ν∇M

U ν. (B.85)

By construction, ∇N is Clifford covariant.

Lemma 64. If ΣM is a spinor bundle, so is ΣN .
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Proof. By Lemma 61 we may assume that ΣM is a bundle of irreducible Clif-
ford modules. If d := dim(M) is even, then ΣN splits into eigenbundles of
volN , which are bundles of irreducible Clifford modules. If d is odd, ΣN is
irreducible.
Now choose a spinor scalar product (·|·) and a spinor conjugation ΘM on ΣM .
Let ΘN = ΘM if d ∈ {1, 2} mod 4 and ΘN = νΘM if d ∈ {0, 3} mod 4, in
both cases restricted to ΣN . The restriction of (·|·) to ΣN and ΘN are a spinor
scalar product and a spinor conjugation satisfying (B.68). If d is even, this is
still true if we further restrict to eigenbundles of volN . The result follows from
Lemma 60. �

Assume now that we have a covariantly constant section β of End(Σ) satisfying
β2 = 1 and anticommuting with TM ⊂ Cl(TM). Let us consider the operator
Γ = −iβν acting on sections of ΣN . It satisfies Γ2 = 1 and commutes with
all sections of Cl(TN). Hence, its eigenbundles ΣN

± for eigenvalues ±1 are also
Clifford module bundles over N . Using (B.85) one checks that Γ commutes
also with the covariant differentiation, so ΣN

± inherit the spin connection.
Operator volM commutes with covariant differentiation and anticommutes
with Γ; hence, it takes sections of ΣN

± to sections of ΣN
∓ . If d is odd, volM

commutes with Clifford fields and hence defines an isomorphism of spinor
bundles ΣN

+
∼= ΣN

− . If d is even, ΣN
+ and ΣN

− are non-isomorphic as Clifford
module bundles. In this case, we can take β := ±i

d
2 volM and Γ coincides up

to phase with the Cl(TN) section volN .
If Σ is irreducible for Cl(TM) and β, by dimensional consideration, ΣN

± are
bundles of irreducible Clifford modules.

B.7 Dirac Operators on Spheres

Now let us consider the sphere S
d−1 of radius 1 (thus we put |x| = 1 below). We

will apply the formalism of the previous section with M := R
d and N := S

d−1.
For brevity, we will write S for S

d−1. We will use the notation of Sects. 8 and 8,
such as S, R, T and κ.
The normal vector ν is identified with S. The Levi–Civita connection on S is

∇S

UV = ∂UV + (U · V)x (B.86)

for vector fields U,V tangent to the sphere. Here ∂U =
d∑

i=1

Ui∂i. Consider the

vector space K from previous subsections. S × K is a Clifford module bundle
with connection

∇S

U = ∂U +
1
2
SU. (B.87)

Proposition 65. The connection (B.87) is a spin connection with curvature

Ω(U,V) =
1
4
[U,V]. (B.88)

If d = 2, the holonomy of ∇ along S
1 is equal to −1.
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Proof. All but the last statement follow from Lemma 64. (B.88) may also be
obtained from a simple direct computation. Now let d = 2. We parametrize S

1

as x = (cos(α), sin(α)). Then (B.87) takes the form

∇ ∂
∂α

ψ =
∂ψ

∂α
+

1
2
volR2ψ. (B.89)

It follows that solutions of the parallel transport equation ∇ ∂
∂α

ψ = 0 satisfy
ψ(2π) = −ψ(0). �

Eigenbundles K± ⊂ S×K of Γ = −iβS to eigenvalues ±1 are irreducible spinor
bundles, isomorphic if d is odd and non-isomorphic otherwise.
Choose a local orthonormal framing {ei}d−1

i=1 of TS. Denote the Dirac operator
on S by DS and on R

d by D. Using (B.87) we manipulate its definition to the
form

DS = −i
∑

i

ei∇ei
ψ = −i

∑
i

ei∂ei
ψ − i

2

∑
i

eiSeiψ

= D + iS∂νψ + i
d − 1

2
Sψ = D − SR. (B.90)

Next let {ei}d
i=1 be the canonical basis of R

d. Multiplying the above by S from
the left we find

SDS = SD − R = −i
∑
i,j

xieiej∂j − SR

= − i
2

∑
i,j

([ei, ej ] + [ei, ej ]+xi∂j) − R = iT. (B.91)

Hence, we have

DS = iST. (B.92)

Let us note that this is exactly the off-diagonal term of D with respect to
decomposition into eigenspaces of S. Next observe that

κ = ΓDS = DSΓ. (B.93)

It follows that on sections of K±, operator κ acts as ±DS.
We also remark that if ψ is a K-valued polynomial homogeneous of degree �
annihillated by D, then (S∓i)ψ is an eigenvector of DS to eigenvalue ±(� +
d−1
2 ). Indeed,

DSψ = −SRψ = i
(

� +
d − 1

2

)
Sψ, (B.94)

which implies

DS(S∓i)ψ = (−S∓i)DSψ

= i
(

� +
d − 1

2

)
(−S∓i)Sψ = ±

(
� +

d − 1
2

)
(S∓i)ψ. (B.95)

By the relation between DS and κ, this calculation reproduces the spectrum
of κ found in Proposition 58.
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We claim that a complete set of eigenfunctions of DS is obtained by the con-
struction above, similarly as spherical harmonics are obtained by restricting
scalar-valued homogeneous harmonic polynomials, e.g., [1, p. 73–81]. This may
be seen from the Stone-Weierstrass theorem and the following lemma. Besides
this application, the lemma elucidates the decomposition of spaces of spinor-
valued polynomials into irreducible representations of Spin(Rd) and relates
eigenvectors of DS (and hence also of κ) to harmonic polynomials.
Consistently with our notation, in the following lemma x denotes the element
of the Clifford algebra x =

∑
i xiei, whereas xi are real numbers. xj is the j-th

power of x.

Lemma 66. Let K� be the space of K-valued polynomials homogeneous of degree
� and let K0

� be the kernel of D acting in K�. Then

K� = K0
� ⊕ x · K�−1. (B.96)

In particular we have a vector space decomposition

K� =
�⊕

j=0

xjK0
�−j . (B.97)

Moreover, dim(K0
� )=

(
d+�−2

�

)
dim(K), and (clearly) dim(K�)=

(
d+�−1

�

)
dim(K).

Let H� be the space of scalar-valued harmonic polynomials homogeneous of
degree �. Then

D : H� ⊗ K → K0
�−1 (B.98)

is a surjection with kernel K0
� . In particular there is an exact sequence

· · · → H�+1 ⊗ K D−→ H� ⊗ K D−→ H�−1 ⊗ K → . . . (B.99)

Proof. Let {ei}d
i=1 be an orthonormal basis of R

d. A general element of K� has
the form

ψ =
d∑

i1,...,i�=1

xi1 · · · xi�
ψi1...i�

(B.100)

with coefficients ψi1...i�
fully symmetric. Acting with D we find that Dψ = 0

if and only if

ψ1i2...i�
=

∑
j �=1

e1ejψji2...i�
. (B.101)

It is easy to see that this system of equation may be uniquely solved once
ψi1...i�

is fixed for all indices i1, . . . , i� different than 1. The formula for dim(K0
� )

follows.
Using the above result it is easy to check that

dim(K�) = dim(K0
� ) + dim(x · K�−1). (B.102)

Hence, (B.96) will follow once we establish that K0
� ∩ x · K�−1 = {0}.
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We proceed by induction. There is nothing to prove for � = 0. Suppose that
(B.96) holds for � ≤ �′. Then also (B.97) holds for � ≤ �′. Let us put � = �′ + 1
and let ψ ∈ K0

� ∩ x · K�−1. By the induction hypothesis we have

ψ =
�∑

j=1

xjψj (B.103)

with ψj ∈ K�−j . Now let us observe that

[iD,x2] = 2x, hence [iD,x2k] = 2kx2k−1, (B.104a)

[iD,x]+ = 2
∑

i

xi∂i + d, hence[iD,x2k+1]+ = x2k(2
∑

i

xi∂i + d + 2k).

(B.104b)

Thus, since ψ is annihilated by D and
∑

i xi∂iψj = (� − j)ψj , we obtain

0 = iDψ =
∑

j even

jxj−1ψj +
∑

j odd

(� + d − 1)xj−1ψj . (B.105)

By induction hypothesis, xj−1ψj and xj′−1ψj′ belong to subspaces of K�−1

with trivial intersection if j �= j′. Therefore, each term in the above sum has
to vanish separately. Since operators xj−1 are injective, all ψj vanish. Thus,
ψ = 0.
For the last part, note that H� ⊗ K is the space of harmonic K-valued poly-
nomials homogeneous of degree �. It is annihilated by D2, so D maps it
into K0

�−1. Statement about the kernel is obvious. Then dim(H� ⊗ K) =
dim(K0

� ) + dim(K0
�−1) follows from the well-known formula

dim(H�) =
(

d + � − 1
�

)
−

(
d + � − 3

� − 2

)
. (B.106)

This implies the surjectivity. �

As for any oriented Riemannian manifold, two natural second-order operators
act on sections of spinor bundles: the square of the Dirac operator D2

S
and the

Bochner Laplacian ΔS. In the case of spheres we have an additional natural
second-order operator: the square of the total angular momentum J2. It turns
out that for d ≥ 3 the operator J2 is distinct from both D2

S
and −ΔS. More

precisely, we have

D2
S

= −ΔS +
(d − 1)(d − 2)

4
, (B.107)

D2
S

= J2 +
(d − 1)(d − 2)

8
. (B.108)

(B.107) is the Lichnerowicz formula for the spheres (indeed, the scalar curva-
ture of S is (d − 1)(d − 2)). Moreover, D2

S
= κ2. Hence, (B.108) is essentially

the formula (B.32). Thus, as we were surprised to find out, (B.32) is distinct
from the Lichnerowicz formula.
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C Mellin Transformation

For a Schwartz function b on R we define its Fourier transform by

(Fb)(k) =
∫ ∞

−∞
b(t)e−iktdt. (C.1)

It is extended to the space of Schwartz distributions in the usual way. Restric-
tion of 1√

2π
F to L2(R) is a unitary operator.

An isomorphism ι : C∞
c (R) → C∞

c (R+) is defined by (ιf)(x) = x− 1
2

f(ln(x)). Dualizing, we extend it to an isomorphism between spaces of distri-
butions on R and on R+. Restriction of ι to L2(R) is a unitary operator onto
L2(R+). By Schwartz class functions and tempered distributions on R+ we shall
mean smooth functions (respectively distributions) on R+ which correspond
through ι to Schwartz class functions (respectively tempered distributions) on
R.
Mellin transform is defined as the composition M = Fι−1. It is an isomorphism
between spaces of tempered distributions on R+ and on R. If f ∈ C∞

c (R+),
then

(Mf)(k) =
∫ ∞

0

f(x)x− 1
2 −ikdx. (C.2)

Recall that A, J and K are defined in Sect. 1.1. We note the following identities:

MJf(k) = Mf(−k), (C.3a)
A = M−1KM. (C.3b)

The following lemma will be used in Proposition 73. The Mellin transformation
plays here a secondary role.

Lemma 67. Suppose that fε is a family of tempered distributions on R+ with
parameter ε ∈]0, 1] satisfying the following conditions:

• Mfε ∈ L1
loc(R),

• there exists g ∈ L1
loc(R) such that Mfε → g pointwise for ε → 0,

• there exist c,N ≥ 0 independent of ε such that |Mfε(k)| ≤ c(1+k2)N for
almost every k.

Then there exists a tempered distribution f0 on R+ such that fε → f0 for ε → 0
in the sense of tempered distributions. Moreover, Mf0 = g.

Lemma 68. Let b be a tempered distribution whose Mellin transform is a Borel
function. Put

(Bpref)(x) =
∫ ∞

0

b(xk)f(k)dk, f ∈ C∞
c (R+). (C.4)

Then Bpref is in L2(R+) and Bpre is a closable operator on L2(R+) with
closure

B = Mb(A)J. (C.5)
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D Whittaker Functions

In this appendix we review some properties of special functions used in this
paper. In particular, we discuss Whittaker functions, which play the central
role in our paper. We follow the conventions of [13] and [10].

D.1 Confluent Equation

Before discussing the Whittaker equation and its solutions, let us say a few
words about the closely related confluent equation and the hypergeometric
equation.
The confluent equation has the form(

z∂2
z + (c − z)∂z − a

)
v(z) = 0. (D.1)

Let us list three of its standard solutions:

1F1(a; c; z) characterized by ∼ 1 near 0; (D.2a)

z1−c
1F1(a + 1 − c; 2 − c; z) characterized by ∼ z1−c near 0; (D.2b)

z−a
2F0(a, a + 1 − c;−;−z−1) characterized by ∼ z−a near + ∞.

(D.2c)

We note that the function 1F1(a; c; z) = 1
Γ(c) 1F1(a; c; z) is holomorphic in

all variables. The other two solutions are defined for z /∈] − ∞, 0]; thus,
2F0(a, b;−; z) is defined on C\[0,∞[.
We will also need the hypergeometric equation(

z(1 − z)∂2
z + (c − (a + b + 1)z)∂z − ab

)
v(z) = 0. (D.3)

Among its 6 standard solutions, members of the famous Kummer’s table, let
us list three:

2F1(a, b; c; z) characterized by ∼ 1 near 0;
(D.4a)

z1−c
2F1(a + 1 − c, b − c + 1; 2 − c; z) characterized by ∼ z1−c near 0;

(D.4b)

2F1(a, b; a + b + 1 − c; 1 − z) characterized by ∼ 1 near 1.
(D.4c)

2F1(a, b; c; z) may be defined by a power series convergent for z in the unit disc.
It admits analytic continuation along any path in C\{1}. To make it a single-
valued function, it is customary to restrict its domain to z ∈ C\[1,∞[. Then
2F1(a, b; c; z) = 1

Γ(c) 2F1(a, b; c; z) is holomorphic in all variables. It satisfies

2F1(a, b; 0; z) = abz2F1(a + 1, b + 1; 2; z), (D.5)

We have the following identities valid for z �∈] − ∞, 0]:

sin(πc)
π

z−a
2F0(a, a + 1 − c;−;−z−1)

= 1F1(a; c; z)
Γ(a + 1 − c)

− z1−c
1F1a + 1 − c; 2 − c; z)

Γ(a)
, (D.6)
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sin(πc)
π

2F1(a, b; a + b + 1 − c; 1 − z)

= 2F1(a, b; c; z)
Γ(a − c + 1)Γ(b − c + 1)

− z1−c
2F1(a − c + 1, b − c + 1; 2 − c; z)

Γ(a)Γ(b)
.

(D.7)

(D.6) can be taken as an alternative definition of 2F0.

Lemma 69. Let ε > 0, Re(z) < 1
2 . Then

2F1(a, b + λ, c + λ; z) = (1 − z)−a + O(λ−1),
| arg(λ)| ≤ π − ε, |λ| → ∞. (D.8)

Proof. Assumption about arg(λ) guarantees that for |λ| sufficiently large c +
λ /∈ −N, so the left-hand side of (D.8) is finite. We apply the Pfaff transfor-
mation:

2F1(a, b + λ, c + λ; z) = (1 − z)−a
2F1

(
a, c − b; c + λ;

z

z − 1

)
. (D.9)

The claim follows from the standard series defining 2F1, because
∣∣∣ z
z−1

∣∣∣ < 1.

�

Lemma 70. The following asymptotic expansion holds for Re(z) < 1
2 , z /∈] −

∞, 0], s → ±∞:

2F1(a, b − is; c; 1 − z) ∼ sgn(s) ·
(

(1 − z)−a(is)−a

Γ(c − a)

+
zc−a−b+is(1 − z)b−c+is(−is)a−c

Γ(a)

)
(D.10)

locally uniformly in a, b, c, z.

Proof. Using (D.7) we get

sin (π(a + b − c + 1 − is))
π

2F1(a, b − is, c; 1 − z)

= 2F1(a, b − is; a + b − c + 1 − is; z)
Γ(c − b + is)Γ(c − a)

− zc−a−b+is 2F1(c − b + is, c − a; c − a − b + 1 + is; z)
Γ(a)Γ(b − is)

. (D.11)

Then (D.8) gives for large |s|:
sin (π(a + b − c + 1 − is))

π
2F1(a, b − is; c; z)

∼ (1 − z)−a

Γ(c − b + is)Γ(c − a)Γ(a + b − c + 1 − is)

− zc−a−b+is(1 − z)b−c−is

Γ(a)Γ(b − is)Γ(c − a − b + 1 + is)
. (D.12)
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Using sin (π(a + b − c + 1 − is)) ∼ 1
2ie

π|s|+iπ sgn(s)(a+b−c+1) and Stirling’s for-
mula

Γ(z0 + z) ∼
√

2π

z
e−zzz+z0 , | arg(z)| ≤ π − ε, |z| → ∞ (D.13)

yields, after algebraic manipulations, formula (D.10). �

D.2 Hyperbolic-Type Whittaker Equation

The standard form of the Whittaker equation is(
− ∂2

z +
(
m2 − 1

4

) 1
z2

− β

z
+

1
4

)
g = 0. (D.14)

In this section we briefly describe solutions of the Whittaker equation, following
mostly [10,13].
We will sometimes call (D.14) the hyperbolic-type Whittaker equation, to dis-
tinguish it from the trigonometric-type Whittaker equation, which differs by
the sign in front of 1

4 .
There are two kinds of standard solutions to the Whittaker equation.
The function Iβ,m is defined by

Iβ,m(z) = z
1
2+me∓ z

2 1F1

(1
2

+ m∓β; 1 + 2m;±z
)
. (D.15)

The standard domain of Iβ,m is C\] − ∞, 0]. We have

I−β,m(−z) = e−iπ( 1
2+m)sgn(Im(z))Iβ,m(z) for z ∈ C\R, (D.16a)

Iβ,m(z) = Iβ,m(z). (D.16b)

The case 2m ∈ Z is called degenerate, and then

Iβ,−m(z) =
(

− β − m +
1
2

)
2m

Iβ,m(z). (D.17)

The function Kβ,m is defined by

Kβ,m(z) := zβe− z
2 2F0

(1
2

+ m − β,
1
2

− m − β;−;−z−1
)

=
π

sin(2πm)

(
− Iβ,m(z)

Γ( 1
2 − m − β)

+
Iβ,−m(z)

Γ( 1
2 + m − β)

)
. (D.18)

It satisfies

Kβ,−m(z) = Kβ,m(z), (D.19a)

Kβ,m(z) = Kβ,m(z). (D.19b)

The Wronskian of Iβ,m(·) and Kβ,m(·) takes the form

W(Iβ,m,Kβ,m) = − 1

Γ
(

1
2 + m − β

) . (D.20)

If 1
2 + m − β ∈ −N, then the Wronskian vanishes and we have

Kβ,m(z) =eiπ( 1
2+m−β)Γ

(
1
2

+ m + β

)
Iβ,m(z). (D.21)
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In this case functions in (D.21) essentially coincide with Laguerre polynomials

I±( 1
2+m+n),m(z) =

n!z
1
2+me∓ z

2

Γ(1 + 2m + n)
L(2m)

n (±z). (D.22)

Asymptotics of Iβ,m for small arguments are of the form

Iβ,m(z) =
z

1
2+m

Γ(1 + 2m)

(
1 − β

1 + 2m
z + O(z2)

)
,

if m �= −1
2
,−1,−3

2
, . . . , z → 0, (D.23)

The function Kβ,m satisfies, for z → 0,

Kβ,m(z) = z
1
2

(
Γ(−2m)

Γ( 1
2

−m−β)zm + Γ(2m)
Γ( 1

2
+m−β) z−m

(
1 − β

1−2m z
))

+O(|z| 3
2
+Re(m)) + O(|z| 5

2
−Re(m)) for Re(m) ∈ [0, 1[, m �= 0, 1

2

Kβ,0(z) = − z
1
2

Γ( 1
2

−β)

(
ln(z) + ψ( 1

2 − β) + 2λ
)
+ O(|z| 3

2 ln(z)), for m = 0, β /∈ 1
2 + N

Kβ,0(z) = (β − 1
2 )!(−1)β− 1

2 z
1
2 + O(|z| 3

2 ), for m = 0, β ∈ 1
2 + N

Kβ, 1
2
(z) = 1

Γ(−β)

( − 1
β + z ln(z) + z(ψ(1 − β) + 2λ − 1 + 1

2β )
)

+O(z2 ln(z)), for m = 1
2 , β /∈ N

K0, 1
2
(z) = 1 − z

2 + O(z2), for m = 1
2 , β = 0

Kβ, 1
2
(z) = β!(−1)β−1z + O(z2), for m = 1

2 , β ∈ N
×

Kβ,m(z) = Γ(2m)
Γ( 1

2
+m−β) z

1
2

−m + O(|z| 3
2

−Re(m)), for Re(m) ≥ 1.

(D.24)

Here γ denotes Euler’s constant and ψ is the digamma function.
Asymptotics for |z| → ∞ are given by (ε > 0):

Kβ,m(z) = zβe− z
2
(
1 + O(z−1)

)
, |arg(z)| ≤ 3

2
π − ε, (D.25a)

Iβ,m(z) =
z−βe

z
2

Γ( 1
2 + m − β)

(
1 + O(z−1)

)
, |arg(z)| ≤ π

2
− ε. (D.25b)

The analytic continuations of K, and more precisely the functions z �→ K−β,m(e±iπz),
are also solutions of the Whittaker Equation (D.14). One can define K−β,m(e±iπz)
as the unique holomorphic function of z ∈ C\] − ∞, 0] which coincides with
K−β,m(−z) on C∓. Then

K−β,m(e±iπz) =
π

sin(2πm)

(
− e±iπ( 1

2+m)Iβ,m(z)
Γ( 1

2 − m + β)
+

e±iπ( 1
2 −m)Iβ,−m(z)

Γ( 1
2 + m + β)

)
.

(D.26)
(Kβ,m(z),K−β,m(e±iπz)

)
are linearly independent pairs of functions. In par-

ticular, Iβ,m(z) can be expressed in terms of these functions:

Iβ,m(z) = e±iπβ
(e∓iπ(m− 1

2 )Kβ,m(z)
Γ( 1

2 + m + β)
+

K−β,m(e±iπz)
Γ( 1

2 + m − β)

)
.
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D.3 Trigonometric-Type Whittaker Functions

It is convenient, in parallel to (D.14), to consider the trigonometric-type Whit-
taker equation (

− ∂2
z +

(
m2 − 1

4

) 1
z2

− β

z
− 1

4

)
g(z) = 0. (D.27)

It can be easily reduced to the hyperbolic-type Whittaker equation.
The function Jβ,m is defined by the formula

Jβ,m(z) = e∓ iπ
2 (m+ 1

2 )I∓iβ,m(e± iπ
2 z). (D.28)

It may also be described without invoking analytic continuations beyond the
principal branch:

Jβ,m(z) =

{
e

iπ
2 ( 1

2+m)Iiβ,m(−iz), −π
2 < arg(z) < π,

e− iπ
2 ( 1

2+m)I−iβ,m(iz), −π < arg(z) < π
2 .

(D.29)

The two expressions agree for |arg(z)| < π
2 , by (D.16a). Combined with (D.16b)

this implies

Jβ,m(z) = Jβ,m(z). (D.30)

We also have a pair of functions H±
β,m defined by

H±
β,m(z) = e∓i π

2 ( 1
2+m)K±iβ,m(∓iz) (D.31)

initially for Re(z) > 0 and extended analytically to z ∈ C\]−∞, 0]. By (D.19b),
they satisfy

H±
β,m

(z) = H∓
β,m(z). (D.32)

The following connection formula holds:

Jβ,m(z) = e−πβ

(
H+

β,m(z)

Γ
(

1
2 + m + iβ

) +
H−

β,m(z)

Γ
(

1
2 + m − iβ

)
)

. (D.33)

For the behavior around ∞, we have for x > 0, x → ∞
H±

β,m(x) ∼ e∓i π
2 ( 1

2+m)e
πβ
2 x±iβ e±i x

2
(
1 + O(x−1)

)
. (D.34)

D.4 Recurrence Relations

Whittaker functions satisfy several recurrence relations. There are 6 basic ones,
which we quote after Appendix A5 of [10].
(√

z∂z +
− 1

2 − m√
z

−
√

z

2

)
Iβ,m(z) =

(
− 1

2
− m − β

)
Iβ+ 1

2 ,m+ 1
2
(z), (D.35a)

(√
z∂z +

− 1
2 + m√

z
+

√
z

2

)
Iβ,m(z) = Iβ− 1

2 ,m− 1
2
(z), (D.35b)

(√
z∂z +

− 1
2 + m√

z
−

√
z

2

)
Iβ,m(z) = Iβ+ 1

2 ,m− 1
2
(z), (D.35c)

(√
z∂z +

− 1
2 − m√

z
+

√
z

2

)
Iβ,m(z) =

(1
2

+ m − β
)
Iβ− 1

2 ,m+ 1
2
(z), (D.35d)
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(
z∂z + β − z

2

)
Iβ,m(z) =

(1
2

+ m + β
)
Iβ+1,m(z), (D.35e)

(
z∂z − β +

z

2

)
Iβ,m(z) =

(1
2

+ m − β
)
Iβ−1,m(z); (D.35f)

(√
z∂z +

− 1
2 − m√

z
−

√
z

2

)
Kβ,m(z) = −Kβ+ 1

2 ,m+ 1
2
(z), (D.36a)

(√
z∂z +

− 1
2 + m√

z
+

√
z

2

)
Kβ,m(z) =

(
− 1

2
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)
Kβ− 1

2 ,m− 1
2
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(D.36b)
(√
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− 1

2 + m√
z

−
√

z

2

)
Kβ,m(z) = −Kβ+ 1
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2
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(√
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− 1
2 − m√

z
+

√
z

2

)
Kβ,m(z) =

(
− 1

2
− m + β

)
Kβ− 1

2 ,m+ 1
2
(z),

(D.36d)(
z∂z + β − z

2

)
Kβ,m(z) = −Kβ+1,m(z), (D.36e)

(
z∂z − β +

z

2

)
Kβ,m(z) =

(1
2

+ m − β
)(1

2
− m − β

)
Kβ−1,m(z).

(D.36f)

They have an interesting algebraic interpretation—they correspond to the
roots of the Lie algebra of generalized symmetries of the heat equation in 2
dimensions, see [9] (where they are presented using confluent functions, which
as we know are equivalent to Whittaker functions).
These recurrence relations involve first-order differentiation, so it is tempting
to expect that they are closely related to the Dirac–Coulomb Hamiltonian.
It turns out, however, that the relationship is not direct. By easy algebraic
manipulations involving (D.35a)–(D.35d) and (D.36a)–(D.36d), we derive an
additional pair of recurrence relations described in the following proposition.
In some sense, (D.35) and (D.36) are “lower order” than (D.37) and (D.38).
In fact, in (D.35) and (D.36) the parameters μ, β appear only in zeroth-order
terms, whereas in (D.37) and (D.38) the differential operator is multiplied by
μ.

Proposition 71.(
2μ∂x +

2μ2

x
− β

)
Iβ,μ+ 1

2
(x) = Iβ,μ− 1

2
(x), (D.37a)

(
2μ∂x − 2μ2

x
+ β

)
Iβ,μ− 1

2
(x) = (μ2 − β2)Iβ,μ+ 1

2
(x); (D.37b)

(
2μ∂x +

2μ2

x
− β

)
Kβ,μ+ 1

2
(x) = −(μ + β)Kβ,μ− 1

2
(x), (D.38a)

(
2μ∂x − 2μ2

x
+ β

)
Kβ,μ− 1

2
(x) = (−μ + β)Kβ,μ+ 1

2
(x). (D.38b)
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Proof. We first rewrite (D.35a)–(D.35d) and (D.36a)–(D.36d) as follows:(√
z∂z − μ√

z
−

√
z

2

)
Iβ,μ− 1

2
(z) =

(
− μ − β

)
Iβ+ 1

2 ,μ(z), (D.39a)
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2
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Then we compute
1√
z

( − (D.39a) + (−μ + β)(D.39b) − (μ + β)(D.39c) + (D.39d)
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, (D.41)
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(D.44)

�
Equations (D.37) and (D.38) are closely related to the Dirac–Coulomb Hamil-
tonian. To see this relation let us introduce ω satisfying ω2 = μ2 − β2. Then
(D.37) and (D.38) can be rewritten in the following form:

0 = 2μ∂x

(Iβ,μ− 1
2
(x) + iωIβ,μ+ 1

2
(x)

)

+
(

− 2μ2

x
+ β − iω

)(Iβ,μ− 1
2
(x) − iωIβ,μ+ 1

2
(x)

)
, (D.45)
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2
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)
; (D.46)

0 = 2μ∂x
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(μ + β)Kβ,μ− 1

2
(x) − iωKβ,μ+ 1

2
(x)

)
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− 2μ2

x
+ β − iω
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(x) + iωKβ,μ+ 1
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, (D.47)
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2
(x) − iωKβ,μ+ 1

2
(x)

)
. (D.48)

The eigenvalue equations for ξ±
p and ζ±

p follow directly from these identities.

D.5 Integral Transforms

Let us compute a useful integral transform of the confluent function:

Lemma 72. Assuming Re(b) > 0 and |Re(w)| < Re(z), one has∫ ∞

0

xb−1e−zx
1F1(a; c;wx)dx = z−bΓ(b)2F1(a, b; c; z−1w). (D.49)

Furthermore, if Re(b) > 0, Re(b + 1 − c) > 0, Re(z) > 0, w, z−1w /∈] − ∞, 0],
then ∫ ∞

0

xb−1e−zx
2F0

(
a, a + 1 − c;−;−(wx)−1

)
(wx)−adx

= z−bΓ(b)Γ(1 + b − c)2F1(a, b; a + b + 1 − c; 1 − z−1w). (D.50)

Proof. We expand the confluent function in a power series and integrate term
by term:

∫ ∞

0

∞∑
n=0

(a)n

Γ(c + n)
e−zxxb+n−1wndx =

∞∑
n=0

Γ(b + n)(a)n

Γ(c + n)

wn

zn+b

= z−bΓ(b)

∞∑
n=0

(a)n(b)n

Γ(c + n)

(w

z

)n

. (D.51)

This proves the first identity under additional assumption |w| < Re(z). The
integrand can be majorized by an integrable function for |Re(w)| < Re(z).
Therefore, we can extend the identity by analytic continuation to this domain,
yielding (D.49).
Equations (D.49), (D.6) and (D.7) and analytic continuation imply (D.50).

�
The following identity, valid for v > 0, Re(ε) > 0, Re(m + 1 − is) > 0, follows
from (D.49):∫ ∞

0

e−εxx− 1
2 −isJβ,m(vx)dx

= vm+ 1
2

(
ε ± i

v

2

)−m−1+is
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1
2
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v
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)
. (D.52)
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Proposition 73. Let v > 0, Re(m) > −1. Then x �→ e−0xJβ,m(vx) := lim
ε↓0

e−εx

Jβ,m(vx) is a tempered distribution on R+ with the Mellin transform∫ ∞

0

e−0xx− 1
2 −isJβ,m(vx)dx

= v− 1
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1
2

± iβ,m + 1 − is; 2m + 1; 2 ± i0
)

, (D.53)

which is bounded by cβ,m

(
e− π

2 (|s|+s)|s|Im(β) + e− π
2 (|s|−s)|s|−Im(β)

)
, with cβ,m

a locally bounded function of β,m.
Similarly, for any μ (including μ = 0), x �→ e−0x 1

μ

(Jβ,μ− 1
2
(vx)

+βJβ,μ+ 1
2
(vx)

)
is a tempered distribution on R+, whose Mellin transform can

be computed from (D.53) and is bounded by cβ,μ

(
e− π

2 (|s|+s)|s|Im(β)

+e− π
2 (|s|−s)|s|−Im(β)

)
, with cβ,μ a locally bounded function of β, μ.

Proof. We use the criterion from Lemma 67. Let fε(x) = e−εxJβ,m(vx). Then
t �→ e

t
2 fε(et) is smooth and vanishes exponentially for t → −∞ and superex-

ponentially for t → ∞. In particular fε is a tempered distribution on R+. Its
Mellin transform is given by the absolutely convergent integral (D.52). It is a
smooth function with smooth pointwise limit ε → 0. Required bounds follow
from (D.10). This completes the proof of the first part.
Next, we compute∫ ∞

0

e−εxx− 1
2 −is 1
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(
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)
dx
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× 1
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− iβ
(

1
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)

v
v
2 − iε 2F1

(
1 + μ + iβ,

3
2

+ μ − is; 2μ + 2;
v

v
2 − iε

))
.

(D.54)

Expression in the last line is nonsingular for μ → 0 on the account of (D.5).
Bounds on the growth at infinity are derived as in the first case. �
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(2019)
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