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Plan of the talk:

1. Bilinear integrals of Macdonald and Gegenbauer functions.

2. Generalized bilinear integrals of Macdonald and Gegenbauer
functions.

3. Applications to Green’s functions on the Euclidean space,
hyperbolic space and sphere with point-like interactions.



Consider a Sturm-Liouville operator

C := −ρ(r)−1
(
∂rp(r)∂r + q(r)

)
acting on functions on an interval ]a, b[. C is formally symmetric for
the bilinear scalar product with the density ρ:

〈f |g〉 :=

∫ b

a
f (r)g(r)ρ(r)dr.

Let us describe a method to compute the scalar product of two
eigenfunctions of C.



Let us first consider eigenfunctions fi corresponding to two distinct
eigenvalues Ei, i = 1, 2. Then the following is true:∫ b

a
f1(r)f2(r)ρ(r)dr =

W(b)−W(a)

E1 − E2

where W(r) := f1(r)p(r)f ′2(r)− f ′1(r)p(r)f2(r) is the Wronskian.

(Sometimes, it is called Green’s identity, or the integrated Lagrange
identity). The right hand side can be often easily evaluated if a, b
are singular points of the corresponding differential equation.



Then, using an appropriate limiting procedure we can often com-
pute the scalar product for f = f1 = f2:

〈f |f〉 =

∫ b

a
f (r)2ρ(r)dr.

The following two families of Sturm-Liouville operators are espe-
cially important for applications: the Bessel operator and the
Gegenbauer operator:

Bα := −1

r
∂rr∂r +

α2

r2
,

Gα := −(1− w2)−α∂w(1− w2)α+1∂w.



The modified Bessel equation is the eigenequation of Bα with eigen-
value −1. The (standard) Bessel equation is its eigenequation for
the eigenvalue 1. The separation of variables in the Laplacian on
the Euclidean space Rd leads to the Bessel operator on [0,∞[ with

density ρ = r and α = d−2
2 .

The Gegenbauer equation is the eigenequation of Gα with eigen-

value λ2 −
(
α + 1

2

)2
. The Gegenbauer operator on [−1, 1] with

density ρ(w) = (1 − w2)
d−2

2 arises when we separate variables in
the Laplacian on the sphere Sd. The Gegenbauer operator on [1,∞[

with density ρ(w) = (w2 − 1)
d−2

2 arises when we separate variables
in the Laplacian on the hyperbolic space Hd.



The scaled Macdonald functions Kα(br), is an exponentially de-
caying eigenfunction of the Bessel operator with eigenvalue −b2.

Applying the above method we obtain for a > 0, b > 0∫ ∞
0

Kα(ar)Kα(br)2rdr =
π
(
(a/b)α − (b/a)α

)
sin(πα)(a2 − b2)

,
|Re(α)| < 1,

α 6= 0;∫ ∞
0

K0(ar)K0(br)2rdr =
2 ln ab
a2 − b2

,∫ ∞
0

Kα(br)22rdr =
πα

b2 sin(πα)
,

|Re(α)| < 1,
α 6= 0;∫ ∞

0
K0(br)22rdr =

1

b2
.



The first identity follows directly by Green’s identity. The next three
identities are obtained by applying the de l’Hôpital rule to α = 0 and
a = b. Unfortunately, for |Re(α) ≥ 1 these integrals are divergent.

The Gegenbauer equation is the special case of the hypergeometric
equation with the symmetry w → −w and the singular points at
−1, 1,∞:(

(1− w2)∂2
w − 2(1 + α)w∂w + λ2 −

(
α +

1

2

)2
)
f (w) = 0.

It is arguably more convenient than the equivalent
associated Legendre equation.



We will use two kinds of Gegenbauer functions: one is characterized
by its asymptotics ∼ 1

Γ(α+1)
at 1:

Sα,±λ(w) :=

∞∑
j=0

(1
2 + α + λ

)
j

(1
2 + α− λ)

)
j

Γ(α + 1 + j)j!

(1− w
2

)j
.

The other has the asymptotics ∼ 1

w
1
2+α+λΓ(λ+1)

at ∞:

Zα,λ(w) : =
1

(w ± 1)
1
2+α+λ

∞∑
j=0

(1
2 + λ

)
j

(1
2 + λ + α

)
j

Γ(λ + 1)(1 + 2λ)jj!

( 2

1± w

)j
.



We note the identities

Sα,λ(w) = Sα,−λ(w), Zα,λ(w) =
Z−α,λ(w)

(w2 − 1)α
,

as well as the slightly more subtle Whipple identity:

Zα,λ(w) := (w2 − 1)−
1
4−

α
2−

λ
2Sλ,α

(
w

(w2 − 1)
1
2

)
,

Sα,λ(w) := (w2 − 1)−
1
4−

α
2−

λ
2Zλ,α

(
w

(w2 − 1)
1
2

)
, Re(w) > 0.



Here are the basic bilinear integrals of Gegenbauer functions. We
assume |Re(α)| < 1, α 6= 0 and Re(λ) > 0:∫ 1

−1
Sα,iβ1

(w)Sα,iβ2
(w)(1− w2)αd2w

=
22α+2

(β2
1 − β

2
2) sinπα

( cosh(πβ1)

Γ(1
2 + α− iβ2)Γ(1

2 + α + iβ2)
− (β1↔ β2)

)
∫ ∞

1
Zα,λ1

(w)Zα,λ2
(w)(w2 − 1)αd2w

=
2λ1+λ2+1

(λ2
1 − λ

2
2) sinπα

( 1

Γ(1
2 − α + λ1)Γ(1

2 + α + λ2)
− (λ1↔ λ2)

)
,



Applying the de l’Hôpital rule we extend these identities to α = 0
λ1 = λ2, and β1 = β2. However, for |Re(α) ≥ 1 these integrals are
divergent, which is annoying.

Fortunately one can introduce the generalized integral, with which
one can cover all α ∈ C. This concept can be traced back to
Hadamard and Riesz, see the book by Paycha for a modern exposi-
tion.



We say that a function f on ]0,∞[ is integrable in the generalized
sense if it is integrable on ]1,∞[ and if there exists a finite set Ω ⊂ C
and fk ∈ C, k ∈ Ω, such that f −

∑
k∈Ω

fkr
k is integrable on ]0, 1[.

We define the generalized integral as

gen

∫ ∞
0

f (r)dr

:=
∑

k∈Ω\{−1}

fk
k + 1

+

∫ 1

0

(
f (r)−

∑
k∈Ω

fkr
k
)

dr +

∫ ∞
1

f (r)dr.

For f ∈ L1[0,∞[ the generalized and standard integrals coincide:

gen

∫ ∞
0

f (r)dr =

∫ ∞
0

f (r)dr.



The generalized integral is called anomalous if for some n ∈ N
we have f−n 6= 0. Non-anomalous generalized integrals have much
better properties. They are often easy to compute: one just applies
analytic continuation. They are invariant wrt change of variables:

gen

∫ ∞
0

f (r)dr = gen

∫ ∞
0

f (g(u))g′(u)du.

Anomalous integrals are more interesting. They have
a scaling anomaly:

gen

∫ ∞
0

f (r)dr = gen

∫ ∞
0

f (αu)αdu + f−1 ln(α),

but gen

∫ ∞
0

f (r)dr = gen

∫ ∞
0

f (uα)αuα−1du.



Let a, b > 0. For α 6∈ Z the generalized integrals of Macdonald
functions are analytic continuations of the standard integrals:

gen

∫ ∞
0

Kα(ar)Kα(br)2rdr =
π

sin(πα)

((a
b

)α − (ba)α)
(a2 − b2)

,

gen

∫ ∞
0

Kα(br)22rdr =
πα

b2 sin(πα)
.

They have poles at α ∈ Z.



For α ∈ Z the generalized integrals are anomalous and more com-
plicated to compute. In particular, they do not coincide with the
finite parts of the expressions from the previous slides:

gen

∫ ∞
0

Kα(ar)Kα(br)2rdr = (−1)α2

((a
b

)α
ln
(a

2

)
−
(b
a

)α
ln
(b

2

))
(a2 − b2)

− (−1)α

ab

|α|−1∑
k=0

(a
b

)2k−|α|+1(
ψ(1 + k) + ψ(|α| − k)

)
;

gen

∫ ∞
0

Kα(br)22rdr =
(−1)α

b2

(
|α| ln

(b2
4

)
+ 1 + 2|α|

(
1− ψ(1 + |α|)

))
.



Similarly we can be compute generalized bilinear integrals of Sα,ıβ,
Zα,λ.

As β, λ→∞, Gegenbauer functions converge to Macdonald func-
tions in the following sense:

πe−πβ(sin θ)α+1
2

2αθα+1
2

Sα,±iβ(− cos θ)

= (θβ)−αKα(βθ)
(
1 + O(β−1)

)
;

√
πΓ(1

2 − α + λ)(sinh θ)α+1
2

2λ+1
2θα+1

2

Zα,λ(cosh θ)

= (λθ)−αKα(λθ)
(
1 + O(λ−1)

)
.



The generalized integrals of Gegenbauer functions converge to the
corresponding generalized integrals of Macdonald functions:

π2e−2πββ2α

22α
gen

∫ 1

−1
Sα,iβ(w)2(1− w2)αd2w

=
(

1 +O
(1
β

))
gen

∫ ∞
0

Kα(βr)22rdr;

πΓ
(1

2 + α + λ
)2

22λ+1λ2α
gen

∫ ∞
1

Zα,λ(w)2(w2 − 1)αd2w

=
(

1 +O
(1
λ

))
gen

∫ ∞
0

Kα(λr)22rdr.



The convergence of these generalized integrals is straightforward in
the non-anomalous case. In the anomalous case one has to choose
the variables carefully, which we did:

2rdr = dr2, 2 cosh θ − 1 ' r2, 1− 2 cos θ ' r2.

Note that the generalized integral is invariant wrt the change of
variables r → r2, but not wrt scaling.



Let us now describe an application of generalized integrals
to operator theory.

Consider the Laplacian ∆d on the Euclidean space Rd. LetGd(z;x, x′)
be the Euclidean Green’s function, that is the integral kernel of the
resolvent (−z −∆d)

−1.
It is well-known that for Re β > 0,

Gd(−β2;x, x′) =
1

(2π)
d
2

( β

|x− x′|

)d
2−1

Kd
2−1

(
β|x− x′|

)
.



The hyperbolic space is

Hd := {x ∈ R1,d | [x|x] = 1}
where [x|y] = x0y0 − x1y1 − · · · − xdyd is the Minkowskian pseu-
doscalar product. The hyperbolic distance between x, x′ ∈ Hd is
given by cosh(r) = [x|x′].

Let ∆h
d denote the Laplace-Beltrami operator on Hd. LetGh

d(z;x, x′)
be the hyperbolic Green’s function, that is, the integral kernel of(
− z −∆h

d −
(d−1)2

4

)−1
. Then

Gh
d

(
− β2;x, x′

)
=

√
πΓ(d−1

2 + β)
√

2(2π)
d
22β

Zd
2−1,β

(
[x|x′]

)
.



The unit sphere is

Sd := {x ∈ R1+d | (x|x) = 1},
where (x|y) = x0y0 + x1y1 + · · · + xdyd is the Euclidean scalar
product. The spherical distance between x, x′ ∈ Sd is given by
cos(r) = (x|x′). Let ∆s

d denote the Laplace-Beltrami operator on

Sd. Let Gs
d(z;x, x′) be the spherical Green’s function, that is, the

integral kernel of
(
− z −∆s

d +
(d−1)2

4

)−1
. Then

Gs
d(−β

2;x, x′) =
Γ(d2 −

1
2 + iβ)Γ(d2 −

1
2 − iβ)

2dπ
d
2

Sd
2−1,iβ

(
− (x|x′)

)
.



Suppose that G(−ρ) := (ρ+H)−1 is the resolvent of a self-adjoint
operator H. Then G(−ρ) satisfies

(H + ρ)G(−ρ) = 1l,

G(−ρ)∗ = G(−ρ),
d

dρ
G(−ρ) = −G(−ρ)2.



Let−∆
γ
d be a self-adjoint extension of−∆d restricted toC∞c (Rd\{0}).

Let

G
γ
d(−ρ) = (−∆

γ
d + ρ)−1.

By the conditions from the previous slide its integral kernelG
γ
d(−ρ, x, x′)

should satisfy

(−∆x + ρ)G
γ
d(−ρ, x, x′) = δ(x− x′), x 6= 0,

G
γ
d(−ρ, x, x′) = G

γ
d(−ρ, x′, x),

∂ρG
γ
d(−ρ, x, x′) = −

∫
G
γ
d(−ρ, x, y)G

γ
d(−ρ, y, x′)dy.



These conditions are solved by a Krein-type resolvent

G
γ
d(−ρ, x, x′) = Gd(−ρ, x, x′) +

Gd(−ρ, x, 0)Gd(−ρ, 0, x′)
γ + Σd(ρ)

,

where

∂ρΣd(ρ) =

∫
Rd
Gd(−ρ, 0, y)2dy,

and γ is an arbitrary constant. In dimensions d = 1, 2, 3 the above
integral is finite and we obtain

Σd(β
2) =


− 1

2β d = 1;

ln(β2)
4π d = 2;
β
4π d = 3.



They lead to well-known formulas for Green’s functions with a point
potential in dimensions d = 1, 2, 3:

G
γ
d(−β2;x, x′) =



e−β|x−x
′|

2β + e−β|x|e−β|x
′|

(2β)2
(
γ− 1

2β

), d = 1;

K0(β|x−y|)
2π +

K0(β|x|)K0(β|y|)
(2π)2(γ+ln β2

4π )
, d = 2;

e−β|x−y|
4π|x−y| + e−β|x|e−β|y|

(4π)2|x||y|(γ+ β
4π)
, d = 3.

We used the fact that for half-integer parameters the Macdonald
function reduces to elementary functions.



G
γ
d(−ρ;x, x′) are integral kernels of the resolvents of well-defined

self-adjoint operators −∆
γ
d for d = 1, 2, 3. In higher dimensions,

strictly speaking, these operators have no analogs. However, the
functions G

γ
d(−ρ;x, x′) can be generalized to higher dimensions us-

ing the generalized integral

∂ρΣd(ρ) =
(β2)

d
2−12π

d
2

(2π)dΓ(d2)
gen

∫ ∞
0

Kd
2−1

(
√
ρr)2rdr.



Thus we obtain

Σd(β
2) =


(−1)

d+1
2 βd−2

(4π)
d−1

2 2(1
2)d−1

2

d odd;

(−1)
d
2+1βd−2

(4π)
d
2
(
d
2−1
)

!

(
2− 2ψ

(d
2

)
+ ln β2

4

)
d even.

Similar analysis can be performed for the hyperbolic and spherical
Green’s functions in all dimensions.



Thus for each dimension d we obtain a family of Green’s functions

G
γ
d(−β2;x, x′) =

1

(2π)
d
2

( β

|x− x′|

)d
2−1

Kd
2−1

(
β|x− x′|

)
+

1

(2π)d

( β2

|x||x′|

)d
2−1Kd

2−1
(β|x|)Kd

2−1
(β|x′|)

γ + Σd(β
2)

.

describing point interaction of strength controlled by parameter γ.



One can argue that the meaning of G
γ
d(−β2;x, x′) is as follows.

Suppose that V is a potential, possibly strong but with a small
support. Consider the the Schrödinger operator ∆d + V . Let

GV (−β2) = (β2 −∆d + V )−1

be its resolvent with the integral kernel GV (−β2;x, x′). Then for a
distinguished choice of V and far from its support we can approxi-
mate GV (−β2;x, x′) by Gγ(−β2;x, x′).

This is related to the idea often expressed in the context of quan-
tum field theory and of the theory of critical phenomena, attributed
to Keneth Wilson: for large distances correlation functions have a
universal behavior independent of the details of the interaction, de-
scribed by few parameters.
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