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1 Introduction

This paper is devoted to 1-dimensional Schrödinger operators with Coulomb and centrifugal po-
tentials. These operators are given by the differential expressions

Lβ,α := −∂2
x +

(
α− 1

4

) 1

x2
− β

x
. (1.1)

The parameters α and β are allowed to be complex valued. We shall study realizations of Lβ,α as
closed operators on L2(R+), and consider general boundary conditions.

The operator given in (1.1) is one of the most famous and useful exactly solvable models of
Quantum Mechanics. It describes the radial part of the Hydrogen Hamiltonian. In the mathematical
literature, this operator goes back to Whittaker, who studied its eigenvalue equation in [32]. For
this reason, we call (1.1) the Whittaker operator.

This paper is a continuation of a series of papers [2,6,7] devoted to an analysis of exactly
solvable 1-dimensional Schrödinger operators. We follow the same philosophy as in [6]. We start
from a formal differential expression depending on complex parameters. Then we look for closed
realizations of this operator on L2(R+). We do not restrict ourselves to self-adjoint realizations –
we look for realizations that are well-posed, that is, possess non-empty resolvent sets. This implies
that they satisfy an appropriate boundary condition at 0, depending on an additional complex
parameter. We organize those operators in holomorphic families.

Before describing the holomorphic families introduced in this paper, let us recall the main
constructions from the previous papers of this series. In [2,6] we considered the operator

Lα := −∂2
x +

(
α− 1

4

) 1

x2
. (1.2)

As is known, it is useful to set α = m2. In [2] the following holomorphic family of closed realizations
of (1.2) was introduced:

Hm, with − 1 < Re(m),

defined by Lm2 with boundary conditions ∼ x
1
2
+m.

It was proved that for Re(m) ≥ 1 the operator Hm is the only closed realization of Lm2 . In the region
−1 < Re(m) < 1 there exist realizations of Lm2 with mixed boundary conditions. As described in
[6], it is natural to organize them into two holomorphic families:

Hm,κ, with − 1 < Re(m) < 1, m 6= 0, κ ∈ C ∪ {∞},

defined by Lm2 with boundary conditions ∼ x
1
2
+m + κx

1
2
−m,

and

Hν
0 , with ν ∈ C ∪ {∞},

defined by L0 with boundary conditions ∼ x
1
2
(
ν + ln(x)

)
.

Note that related investigations about these operators have also been performed in [30,31].
In [7] and in the present paper we study closed realizations of the differential operator (1.1) on

L2(R+). Again, it is useful to set α = m2. In [7] we introduced the family

Hβ,m, with β ∈ C, −1 < Re(m),

defined by Lβ,m2 with boundary conditions ∼ x
1
2
+m
(

1− β

1 + 2m
x
)
.

It was noted in this reference that this family is holomorphic except for a singularity at (β,m) =(
0,−1

2

)
, which corresponds to the Neumann Laplacian.

For Re(m) ≥ 1 the operator Hβ,m is also the only closed realization of Lβ,m2 . In the region −1 <
Re(m) < 1 there exist other closed realizations of Lβ,m2 . The boundary conditions corresponding
to Hβ,m are distinguished—we will call them pure. The goal of the present paper is to describe the
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most general well-posed realizations of Lβ,m2 , with all possible boundary conditions, including the
mixed ones.

We shall show that it is natural to organize all well-posed realizations of Lβ,m2 for −1 < Re(m) <
1 in three holomorphic families: The generic family

Hβ,m,κ, with β ∈ C, −1 < Re(m) < 1, m 6∈
{
− 1

2 , 0,
1
2

}
, κ ∈ C ∪ {∞},

defined by Lβ,m2 with boundary conditions

∼ x
1
2
+m
(

1− β

1 + 2m
x
)

+ κx
1
2
−m
(

1− β

1− 2m
x
)
,

the family for m = 0

Hν
β,0, with β ∈ C, ν ∈ C ∪ {∞},

defined by Lβ,0 with boundary conditions ∼ x
1
2
(
ν + ln(x)

)
,

and the family for m = 1
2

Hν
β, 1

2
, with β ∈ C, ν ∈ C ∪ {∞}

defined by Lβ, 1
4

with boundary conditions ∼ 1− βx ln(x) + νx.

The above holomorphic families include all possible well-posed realizations of Lβ,m2 in the region
|Re(m)| < 1 with one exception: the special case (β,m, κ) =

(
0,−1

2 , 0
)

which corresponds to the
Neumann Laplacian H− 1

2
= H− 1

2
,0 = H 1

2
,∞, and which is already covered by the families Hm and

Hm,κ.
After having introduced these families and describing a few general results, we provide the

spectral analysis of these operators and give the formulas for their resolvents. We also describe
the eigenprojections onto eigenfunctions of these operators. They can be organized into a single
family of bounded 1-dimensional projections Pβ,m(λ) such that Lmax

β,mPβ,m(λ) = λPβ,m(λ). Here
Lmax
β,m denotes the maximal operator which is introduced in Section 2.3.

There exists a vast literature devoted to Schrödinger operators with Coulomb potentials, in-
cluding various boundary conditions. Let us mention, for instance, an interesting dispute in Journal
of Physics A [10,21,22] about self-adjoint extensions of the 1-dimensional Schrödinger operator on
the real line with a Coulomb potential (without the centrifugal term). Papers [11,20,23] discuss
generalized Nevanlinna functions naturally appearing in the context of such operators, especially
in the range of parameters |Re(m)| ≥ 1. See also [4,9,12,13,14,15,16,17,18,24,25,26,27,28] and
references therein. However, essentially all these references are devoted to real parameters β,m and
self-adjoint realizations of Whittaker operators. The philosophy of using holomorphic families of
closed operators, which we believe should be one of the standard approaches to the study of special
functions, seems to be confined to the series of paper [2,6,7], which we discussed above.

The main reason why we are able to analyze the operator (1.1) so precisely is the fact that it is
closely related to an exactly solvable equation, the so-called Whittaker equation(

− ∂2
z +

(
m2 − 1

4

) 1

z2
− β

z
+

1

4

)
f(z) = 0.

Its solutions are called Whittaker functions, which can be expressed in terms of Kummer’s confluent

functions. The theory of the Whittaker equation is the second subject of the paper. It is extensively
developed in a large appendix to this paper. It can be viewed as an extension of the theory of Bessel
and Whittaker equation presented in [6,7]. We discuss in detail various special cases: the degenerate,
the Laguerre and the doubly degenerate cases. Besides the well-known Whittaker functions Iβ,m and
Kβ,m, described for example in [7], we introduce a new kind of Whittaker functions, denoted Xβ,m.
It is needed to fully describe the doubly degenerate case.

The Whittaker equation and its close cousin, the confluent equation, are discussed in many
standard monographs, including [1,3,29]. Nevertheless, it seems that our treatment contains a
number of facts about the Whittaker equation, which could not be found in the literature. For
example, we have never seen a satisfactory detailed treatment of the doubly degenerate case. The
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function Xβ,m seems to be our invention. Without this function it would be difficult to analyze the
doubly degenerate case. Figures 1 and 2, which illustrate the intricate structure of the degenerate,
Laguerre and doubly degenerate cases, apparently appear for the first time in the literature. Another
result that seems to be new is a set of explicit formulas for integrals involving products of solutions
of the Whittaker equation. These formulas are related to the eigenprojections of the Whittaker
operator.

2 The Whittaker operator

In this section we define the main objects of our paper: the Whittaker operators Hβ,m,κ, Hν
β, 1

2
and

Hν
β,0 on the Hilbert space L2

(
]0,∞[

)
.

2.1 Notations

We shall use the notations R+ =]0,∞[, N = {0, 1, 2, . . . } and N× = {1, 2, . . . }. Likewise, we set
C× = C \ {0} and R× = R \ {0}. We will often consider functions on the Riemann sphere C ∪ {∞}
with the convention 1

0 =∞, 1
∞ = 0. Besides, α∞ =∞ for any α ∈ C \ {0} and ∞+ τ =∞.

The Hilbert space L2(R+) is endowed with the scalar product

(h1|h2) =

∫ ∞
0

h1(x)h2(x)dx.

We will also use the bilinear form defined by

〈h1|h2〉 =

∫ ∞
0

h1(x)h2(x)dx.

The Hermitian conjugate of an operator A is denoted by A∗. Its transpose is denoted by A#. If
A is bounded, then A∗ and A# are defined by the relations

(h1|Ah2) = (A∗h1|h2),

〈h1|Ah2〉 = 〈A#h1|h2〉.

The definition of A∗ has the well-known generalization to the unbounded case. The definition of
A# in the unbounded case is analogous.

The following holomorphic functions are understood as their principal branches, that is, their
domain is C\] −∞, 0] and on ]0,∞[ they coincide with their usual definitions from real analysis:
ln(z),

√
z, zλ. We set arg(z) := Im

(
ln(z)

)
. Sometimes it will be convenient to include in the domain

of our functions two copies of ]−∞, 0[, describing the limits from the upper and lower half-plane.
They correspond to the limiting cases arg(z) = ±π.

The Wronskian of two continuously differentiable functions f and g on R+ is denoted by W (f, g; ·)
and is defined for x ∈ R+ by

W (f, g;x) := f(x)g′(x)− f ′(x)g(x). (2.1)

2.2 Zero-energy eigenfunctions of the Whittaker operator

In order to study the realizations of the Whittaker operator Lβ,α one first needs to find out what
are the possible boundary conditions at zero. The general theory of 1-dimensional Schrödinger
operators says that there are two possibilities:

(i) there is a 1-parameter family of boundary conditions at zero,
(ii) there is no need to fix a boundary condition at zero.

One can show that (i)⇔(i’) and (ii)⇔(ii’), where
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(i’) for any λ ∈ C the space of solutions of (Lβ,α − λ)f = 0 which are square integrable around zero
is 2-dimensional,

(ii’) for any λ ∈ C the space of solutions of (Lβ,α − λ)f = 0 which are square integrable around zero
is at most 1-dimensional.

We refer to [5] and references therein for more details.
In the above criterion one can choose a convenient λ. In our case the simplest choice corresponds

to λ = 0. Therefore, we first discuss solutions of the zero eigenvalue Whittaker equation(
− ∂2

x +
(
m2 − 1

4

) 1

x2
− β

x

)
f = 0 (2.2)

for m and β in C. As analyzed in more details in Section B.7, solutions of (2.2) can be constructed
from solutions of the Bessel equation. More precisely, for β 6= 0, let us define the following function
for x ∈ R+ :

jβ,m(x) :=
Γ (1 + 2m)√

π
β−

1
4
−mx1/4J2m

(
2
√
βx
)
,

where Jm is defined in Section B.6. For β = 0 we set

j0,m(x) := xm+ 1
2 .

Then, the equation (2.2) is solved by the functions jβ,m, see [7, Sec. 2.8] and Section B.7. For
2m 6∈ Z, jβ,m and jβ,−m span the space of solutions of (2.2). They are square integrable around
zero if and only if |Re(m)| < 1.

We still need to consider the special cases m ∈
{
− 1

2 , 0,
1
2

}
. In fact, we shall not consider

separately m = −1
2 because Equation (2.2) with m = −1

2 coincides with the case m = 1
2 . As

companions to jβ,0 and jβ, 1
2

for β 6= 0 we introduce

yβ,0(x) := β−
1
4 x1/4

[√
πY0

(
2
√
βx
)
− (ln(β) + 2γ)√

π
J0

(
2
√
βx
)]
,

yβ, 1
2
(x) := β

1
4 x1/4

[
−
√
πY1

(
2
√
βx
)

+
(ln(β) + 2γ − 1)√

π
J1

(
2
√
βx
)]
,

where γ is Euler’s constant and Ym is defined in Section B.6. For β = 0 we set

y0,0(x) := x
1
2 ln(x) and y0, 1

2
(x) := 1.

Then jβ,0, yβ,0 and jβ, 1
2
, yβ, 1

2
span the space of solutions of (2.2) for m = 0 and for m = 1

2

respectively. Indeed, a short computation leads to

W (jβ,0, yβ,0;x) = 1 and W (jβ, 1
2
, yβ, 1

2
;x) = −1.

Since the solutions jβ,0, yβ,0 and jβ, 1
2
, yβ, 1

2
are also square integrable around zero, for any m ∈ C

with |Re(m)| < 1 the space of solutions of Lβ,αf = 0 is 2-dimensional.
Let us describe the asymptotics of these solutions near zero. The following results can be com-

puted based on the expressions provided in the appendix of [6]. For any m ∈ C with −2m 6∈ N× one
has

jβ,m(x) = x
1
2
+m
(

1− β

1 + 2m
x+O

(
x2)). (2.3)

In the exceptional cases one has

jβ,0(x) = x
1
2
(
1− βx

)
+O

(
x

5
2
)
,

jβ, 1
2
(x) = x

(
1− β

2
x
)

+O
(
x3),

together with

yβ,0(x) = x
1
2 ln(x)

(
1− βx

)
+ 2βx

3
2 +O

(
x

5
2 | ln(x)|

)
,

yβ, 1
2
(x) = 1− βx ln(x) +O

(
x2| ln(x)|

)
.
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2.3 Maximal and minimal operators

For any α and β ∈ C we consider the differential expression

Lβ,α := −∂2
x +

(
α− 1

4

) 1

x2
− β

x

acting on distributions on R+. The corresponding maximal and minimal operators in L2(R+) are
denoted by Lmax

β,α and Lmin
β,α , see [7, Sec. 3.2] for the details. The domain of Lmax

β,α is given by

D(Lmax
β,α ) =

{
f ∈ L2(R+) | Lβ,αf ∈ L2(R+)

}
,

while Lmin
β,α is the closure of the restriction of Lβ,α to C∞c

(
]0,∞[

)
, the set of smooth functions with

compact supports in R+. The operators Lmin
β,α and Lmax

β,α are closed and we have(
Lmin
β,α

)∗
= Lmax

β̄,ᾱ and
(
Lmin
β,α

)#
= Lmax

β,α .

We say that f ∈ D(Lmin
β,α ) around 0, (or, by an abuse of notation, f(x) ∈ D(Lmin

β,α ) around 0)

if there exists ζ ∈ C∞c
(
[0,∞[

)
with ζ = 1 around 0 such that fζ ∈ D(Lmin

β,α ). The following result
follows from the theory of one-dimensional Schrödinger operators.

Proposition 2.1. Let α, β,m ∈ C.

(i) If f ∈ D(Lmax
β,α ), then f and f ′ are continuous functions on R+ and converge to 0 at infinity.

(ii) If f ∈ D(Lmin
β,α ), then near 0 one has:

(a) f(x) = o
(
x

3
2 | ln(x)|

)
and f ′(x) = o

(
x

1
2 | ln(x)|

)
if α = 0,

(b) f(x) = o
(
x

3
2

)
and f ′(x) = o

(
x

1
2

)
if α 6= 0.

(iii.a) If |Re(m)| < 1 with m 6∈
{
− 1

2 , 0,
1
2

}
, then for any f ∈ D(Lmax

β,m2) there exists a unique pair a, b ∈ C
such that

f − ajβ,m − bjβ,−m ∈ D(Lmin
β,m2) around 0.

(iii.b) If f ∈ D(Lmax
β,0 ), then there exists a unique pair a, b ∈ C such that

f − ajβ,0 − byβ,0 ∈ D(Lmin
β,0 ) around 0.

(iii.c) If f ∈ D(Lmax
β, 1

4
), then there exists a unique pair a, b ∈ C such that

f − ajβ, 1
2
− byβ, 1

2
∈ D(Lmin

β, 1
4

) around 0.

(iv) If |Re(m)| < 1, then

D(Lmin
β,m2) =

{
f ∈ D(Lmax

β,m2) | W (f, g; 0) = 0 for all g ∈ D(Lmax
β,m2)

}
=
{
f ∈ D(Lmax

β,m2) | f(x) = o
(
x

1
2
+|Re(m)|) near 0

}
.

(v) If |Re(m)| > 1, then D(Lmin
β,m2) = D(Lmax

β,m2).

Proof. The statements (i)–(iii) and (v) are a reformulation of [7, Prop. 3.1] with the current no-
tations. Only (iv) requires elaboration. The first equality in (iv) follows from [5, Thm. 3.4], given
that W (f, g;∞) = 0 for all f, g ∈ D(Lmax

β,m2) by (i).

The inclusion D(Lmin
β,m2) ⊂

{
f ∈ D(Lmax

β,m2) | f(x) = o
(
x

1
2
+|Re(m)|) near 0

}
is a consequence of

(ii). To prove the converse inclusion, let f ∈ D(Lmax
β,m2). Assuming for instance that m /∈

{
− 1

2 , 0,
1
2

}
and applying (iii.a), one can write

fζ = ajβ,mζ + bjβ,−mζ + fmin,

for some ζ ∈ C∞c
(
[0,∞[

)
such that ζ = 1 around 0, a, b ∈ C and fmin ∈ D(Lmin

β,m2). From (2.3)

and (ii), we deduce that if f(x) = o
(
x

1
2
+|Re(m)|) near 0 then, necessarily, a = b = 0. Hence we

have proved that
{
f ∈ D(Lmax

β,m2) | f(x) = o
(
x

1
2
+|Re(m)|) near 0

}
⊂ D(Lmin

β,m2) in the case where

m /∈
{
− 1

2 , 0,
1
2

}
. The same argument applies if m = ±1

2 or m = 0, using (iii.b) or (iii.c) instead of
(iii.a). ut



On radial Schrödinger operators with a Coulomb potential: General boundary conditions 7

2.4 Families of Whittaker operators

We can now provide the definition of three families of Whittaker operators. The first family covers
the generic case. The Whittaker operator Hβ,m,κ is defined for any β ∈ C, for any m ∈ C with
|Re(m)| < 1 and m 6∈

{
− 1

2 , 0,
1
2

}
, and for any κ ∈ C ∪ {∞}:

D(Hβ,m,κ) =
{
f ∈ D(Lmax

β,m2) | for some c ∈ C,

f − c
(
jβ,m + κjβ,−m

)
∈ D(Lmin

β,m2) around 0
}
, κ 6=∞,

D(Hβ,m,∞) =
{
f ∈ D(Lmax

β,m2) | for some c ∈ C,

f − cjβ,−m ∈ D(Lmin
β,m2) around 0

}
.

The second family corresponds to m = 0:

D(Hν
β,0) =

{
f ∈ D(Lmax

β,0 ) | for some c ∈ C,

f − c
(
yβ,0 + ν jβ,0

)
∈ D(Lmin

β,0 ) around 0
}
, ν ∈ C,

D(H∞β,0) =
{
f ∈ D(Lmax

β,0 ) | for some c ∈ C,

f − cjβ,0 ∈ D(Lmin
β,0 ) around 0

}
.

Finally, in the special case m = 1
2 we have the third family:

D(Hν
β, 1

2
) =

{
f ∈ D(Lmax

β, 1
4

) | for some c ∈ C,

f − c
(
yβ, 1

2
+ ν jβ, 1

2

)
∈ D(Lmin

β, 1
4

) around 0
}
, ν ∈ C,

D(H∞β, 1
2
) =

{
f ∈ D(Lmax

β, 1
4

) | for some c ∈ C,

f − cjβ, 1
2
∈ D(Lmin

β, 1
4

) around 0
}
.

Remark 2.2. Observe that the above boundary conditions could be described with the help of simpler

functions. For example, in the above definitions we can replace

jβ,m(x) with x
1
2
+m
(

1− β

1 + 2m
x
)

if − 1 < Re(m) ≤ 0,

jβ,m(x) with x
1
2
+m if 0 < Re(m) < 1,

yβ,0(x) with x
1
2 ln(x)(1− βx) + 2βx

3
2 ,

yβ, 1
2
(x) with 1− βx ln(x).

Note that this can be seen directly, without passing through Bessel functions. We describe this approach

below, and refer to [5] for the general theory.

The idea is to look for elements of D(Lmax
β,m2) with a nontrivial behavior near 0. First we consider the

general case and observe that

Lβ,m2x
1
2
+m = −βx−

1
2
+m, (2.4)

Lβ,m2x
1
2
+m
(

1− β

1 + 2m
x
)

=
β2

1 + 2m
x

1
2
+m. (2.5)

Clearly, the function in the r.h.s. of (2.4) is in L2 near 0 for Re(m) > 0 but not for Re(m) ≤ 0. On

the other hand, the r.h.s. of (2.5) is in L2 near 0 for Re(m) > −1. Thus, for m 6= ±1
2 , we obtain two
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elements of the boundary space D(Lmax
β,m2)/D(Lmin

β,m2). For m 6= 0 these elements are linearly independent

since

lim
x↘0

W

((
x

1
2
+m
(

1− β

1 + 2m
x
)
, x

1
2
−m
(

1− β

1− 2m
x
)

;x

)
= lim
x↘0

W

((
x

1
2
+m, x

1
2
−m
(

1− β

1− 2m
x
)

;x

)
= −2m.

It remains to find a second element of D(Lmax
β,m2) when m = 0 or when m = 1

2 (as already mentioned

we disregard m = −1
2 ). Firstly, we try to find the simplest possible elements of D(Lmax

β,0 ) with a logarithmic

behavior near 0. We add more and more terms:

Lβ,0 ln(x)x
1
2 = −βx−

1
2 ln(x), (2.6)

Lβ,0 ln(x)x
1
2 (1− βx) = 2βx−

1
2 + β2x

1
2 ln(x), (2.7)

Lβ,0
(

ln(x)x
1
2 (1− βx) + 2βx

3
2
)

= β2x
1
2 (ln(x)− 2). (2.8)

For β 6= 0, the r.h.s. of (2.6) and of (2.7) are not in L2 near 0. However the r.h.s. of (2.8) is in L2

near 0. We have thus obtained two elements of D(Lmax
β,0 )/D(Lmin

β,0 ) which are linearly independent since

lim
x↘0

W
(
x

1
2 (1− βx),

(
ln(x)x

1
2 (1− βx) + 2βx

3
2
)
;x
)

= 1.

Finally, let us look for the simplest possible elements of D(Lmax
β, 1

4
) with a logarithmic behavior near 0:

Lβ, 1
4
1 = −βx−1, (2.9)

Lβ, 1
4

(
1− βx ln(x)

)
= β2 ln(x). (2.10)

For β 6= 0, the r.h.s. of (2.9) is not in L2 near 0, but the r.h.s. of (2.10) is in L2 near 0. We have thus

obtained two elements of D(Lmax
β, 1

4
)/D(Lmin

β, 1
4

) which are linearly independent since

lim
x↘0

W
(
x,
(
1− βx ln(x)

)
;x
)

= −1.

The three families Hβ,m,κ, Hν
β, 1

2
and Hν

β,0 cover all possible well-posed extensions of Lβ,m2 with

|Re(m)| < 1. As already mentioned, we do not introduce a special family for m = −1
2 , since it is

covered by the family corresponding to m = 1
2 . For convenience, we also extend the definition of

the first family to the exceptional cases by setting for β ∈ C and any κ ∈ C ∪ {∞}

Hβ,− 1
2
,κ := H∞β, 1

2
, Hβ,0,κ := H∞β,0, and Hβ, 1

2
,κ := H∞β, 1

2
.

An invariance property follows directly from the definition:

Proposition 2.3. For any β ∈ C, |Re(m)| < 1 and κ ∈ C ∪ {∞} the following relation holds

Hβ,m,κ = Hβ,−m,κ−1 .

It is also convenient to introduce another two-parameter family of operators, which cover only
special boundary conditions, which we call pure:

Hβ,m := Hβ,m,0 = Hβ,−m,∞. (2.11)

With this notation, for any β ∈ C, one has

Hβ,− 1
2

= H∞β, 1
2
, Hβ,0 = H∞β,0, and Hβ, 1

2
= H∞β, 1

2
.
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Remark 2.4. The family Hβ,m is essentially identical to the family denoted by the same symbol in-

troduced and studied in [7]. The only difference with that reference is that the operator corresponding to

(β,m) =
(
0,−1

2

)
was left undefined in [7]. This point corresponds to a singularity, neverthelss in the

current paper we have decided to set H0,− 1
2

:= H0, 1
2

.

Here is a comparison of the above families with the families Hm,κ, Hν
0 introduced in [6] when

β = 0. In the first column we put one of the newly introduced family, in the second column we put
the families from [6,7].

H0,m,κ = Hm,κ |Re(m)| < 1, m 6∈
{
− 1

2 ,
1
2

}
, κ ∈ C ∪ {∞},

Hν
0,0 = Hν

0 ν ∈ C ∪ {∞},
Hν

0, 1
2

= H− 1
2
,ν = H 1

2
, 1ν

ν ∈ C ∪ {∞}.

For completeness, let us also mention two special operators which are included in these families (for
clarity, the indices are emphasized). The Dirichlet Laplacian on R+ is given by

Hβ=0,m=− 1
2

= Hβ=0,m= 1
2

= H∞0, 1
2

= Hm= 1
2
,κ=0 = Hm=− 1

2
,κ=∞

while the Neumann Laplacian is given by

H0
β=0,m= 1

2
= Hm=− 1

2
,κ=0 = Hm= 1

2
,κ=∞.

Note that the former operator was also described in [6] by Hm= 1
2

while the latter operator was

described by Hm=− 1
2
.

We now gather some easy properties of the operators Hβ,m,κ.

Proposition 2.5. For m ∈ C with |Re(m)| < 1 one has(
Hβ,m,κ

)∗
= Hβ̄,m̄,κ̄

(
Hβ,m,κ

)#
= Hβ,m,κ κ ∈ C ∪ {∞},(

Hν
β,0

)∗
= H ν̄

β̄,0

(
Hν
β,0

)#
= Hν

β,0, ν ∈ C ∪ {∞},(
Hν
β, 1

2

)∗
= H ν̄

β̄, 1
2

(
Hν
β, 1

2

)#
= Hν

β, 1
2

ν ∈ C ∪ {∞}.

Proof. Let us prove the first statement, the other ones can be obtained similarly. Recall from
Proposition 2.1 (see also [2, Prop. A.2]) that for any f ∈ D(Lmax

β,m2) and g ∈ D(Lmax
β̄,m̄2), the functions

f, f ′, g, g′ are continuous on R+. In addition, the Wronskian of f̄ and g, as introduced in (2.1),
possesses a limit at zero, and we have the equality

(Lmax
β,m2f |g)− (f |Lmax

β̄,m̄2g) = −W (f̄ , g; 0).

In particular, if f ∈ D(Hβ,m,κ) one infers that

(Hβ,m,κf |g) = (f |Lmax
β̄,m̄2g)−W (f̄ , g; 0).

Thus, g ∈ D
(
(Hβ,m,κ)∗

)
if and only if W (f̄ , g; 0) = 0, and then (Hβ,m,κ)∗g = Lmax

β̄,m̄2g. By taking into

account the explicit description of D(Hβ,m,κ), straightforward computations show that W (f̄ , g; 0) =
0 if and only if g ∈ D(Hβ̄,m̄,κ̄). One then deduces that (Hβ,m,κ)∗ = Hβ̄,m̄,κ̄. The property for the
transpose of Hβ,m,κ can be proved similarly. ut

By combining Propositions 2.3 and 2.5 one easily deduces the following characterization of
self-adjoint operators contained in our families:

Corollary 2.6. The operator Hβ,m,κ is self-adjoint if and only if one of the following sets of conditions

is satisfied:

(i) β ∈ R, m ∈]− 1, 1[ and κ ∈ R ∪ {∞},
(ii) β ∈ R, m ∈ iR× and |κ| = 1.

The operators Hν
β,0 and Hν

β, 1
2

are self-adjoint if and only if β ∈ R and ν ∈ R ∪ {∞}.
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Let us finally mention some equalities about the action of the dilation group. For that purpose,
we recall that the unitary group {Uτ}τ∈R of dilations acts on f ∈ L2(R+) as

(
Uτf

)
(x) = eτ/2f(eτx).

The proof of the following lemma consists in an easy computation.

Proposition 2.7. For m ∈ C with |Re(m)| < 1 one has

UτHβ,m,κU−τ = e−2τHeτβ,m,e−2τmκ κ ∈ C ∪ {∞},

UτH
ν
β,0U−τ = e−2τHν+τ

eτβ,0 ν ∈ C ∪ {∞},

UτH
ν
β, 1

2
U−τ = e−2τH

eτ (ν−βτ)

eτβ, 1
2

ν ∈ C ∪ {∞}.

with the conventions α∞ =∞ for any α ∈ C \ {0} and ∞+ τ =∞.

3 Spectral theory

In this section we investigate the spectral properties of the Whittaker operators.

3.1 Point spectrum

The point spectrum is obtained by looking at general solutions of the equation

Lβ,m2f = −k2f

for k ∈ C with Re(k) ≥ 0, and by considering only the solutions which are in the domain of the
operators Hβ,m,κ, Hν

β, 1
2
, or Hν

β,0.

In the following statement, Γ stands for the usual gamma function, ψ is the digamma function
defined by ψ(z) = Γ ′(z)/Γ (z) and γ = −ψ(1). Since the special case β = 0 has already been
considered in [6], we assume that β 6= 0 in the following statement, and recall in Theorem 3.4 the
results obtained for β = 0. It is also useful to note that the condition β 6∈ [0,∞[ guarantees that
either +Im(

√
β) > 0 or −Im(

√
β) > 0, due to our definition of the square root.

Theorem 3.1. 1. Let β ∈ C×, |Re(m)| < 1 with m 6∈
{
− 1

2 , 0,
1
2

}
, and let κ ∈ C ∪ {∞}. Then the

operator Hβ,m,κ possesses an eigenvalue λ ∈ C in the following cases:

(i) λ = −k2, Re(k) > 0, β
2k +m− 1

2 /∈ N and

κ = (2k)−2m Γ (2m)

Γ (−2m)

Γ
(

1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2k

) , (3.1)

(ii) λ = µ2, 0 < µ < ±Im(β) and

κ = e±iπm(2µ)−2m Γ (2m)

Γ (−2m)

Γ
(

1
2 −m∓ i β2µ

)
Γ
(

1
2 +m∓ i β2µ

) ,
(iii) λ = 0, β 6∈ [0,∞[, and

κ =
Γ (2m)

Γ (−2m)(−β)2m
.

2. Let β ∈ C× and ν ∈ C ∪ {∞}. Then Hν
β, 1

2
possesses an eigenvalue λ in the following cases:

(i) λ = −k2, Re(k) > 0, β
2k /∈ N and

ν = −β
(

1

2
ψ
(

1− β

2k

)
+

1

2
ψ
(
− β

2k

)
+ 2γ − 1 + ln(2k)

)
,

(ii) λ = µ2, 0 < µ < ±Im(β), and

ν = −β
(

1

2
ψ
(

1∓ i
β

2µ

)
+

1

2
ψ
(
∓ i

β

2µ

)
+ 2γ − 1 + ln(2µ)∓ i

π

2

)
,
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(iii) λ = 0, ±Im(
√
β) > 0, and

ν = −β
(

ln(β) + 2γ − 1∓ iπ
)
.

3. Let β ∈ C× and ν ∈ C ∪ {∞}. Then Hν
β,0 possesses an eigenvalue λ in the following cases:

(i) λ = −k2, Re(k) > 0, β
2k −

1
2 /∈ N and

ν = ψ
(1

2
− β

2k

)
+ 2γ + ln(2k),

(ii) λ = µ2, 0 < µ < ±Im(β), and

ν = ψ
(1

2
∓ i

β

2µ

)
∓ i

π

2
+ 2γ + ln(2µ),

(iii) λ = 0, ±Im(
√
β) > 0, and

ν = ln(β) + 2γ + 2 ln(2)∓ iπ.

Proof. We start with the special case λ = −k2 = 0. The two solutions of the equation Lβ,m2f = 0
are provided by the functions

x 7→ h±β,m(x) := x1/4H±2m
(
2
√
βx
)
, (3.2)

with H±m the Hankel function for dimension 1, see [6, App. A.5]. We then infer from [6, App. A.5]
that for any z with −π < arg(z) ≤ π, one has as z → 0

H±m(z) =


±i
√

2√
π
z

1
2

(
ln(z) + γ ∓ iπ2

)
+O

(
|z|

5
2 ln(|z|)

)
if m = 0,

∓i 1√
π

(
z
2

)− 1
2 ± i 2√

π

(
ln
(
z
2

)
+ γ − 1

2 ∓ iπ2

)(
z
2

) 3
2 +O

(
|z|

7
2 ln(|z|)

)
if m = 1,

∓i
√
π

sin(πm)

(
z
2

) 1
2

(
1

Γ (1−m)

(
z
2

)−m − e∓iπm

Γ (1+m)

(
z
2

)m)
+O(|z|

5
2
−|Re(m)|) if m 6∈ Z.

For |Re(m)| < 1, this implies that the two functions h±β,m belong to L2(R+) near 0. On the other

hand, for large z and | arg(∓iz)| < π − ε, ε > 0, one has

H±m(z) = e±i(z− 1
2
πm− 1

4
π)(1 +O(|z|−1)

)
.

Since | arg(2
√
βx)| ≤ π/2, it follows that

h±β,m(x) = x1/4e±i(2
√
βx−πm− 1

4
π)(1 +O(|x|−

1
2 )
)
,

Hence if Im(
√
β) = 0, then h±β,m do not belong to L2 near infinity, while if ±Im(

√
β) > 0, then h±β,m

belongs to L2 near infinity, and h∓β,m does not. For ±Im(
√
β) > 0, we thus have that h±β,m ∈ L

2(R+)

and hence, since in addition Lβ,m2h±β,m = 0, we deduce that h±β,m ∈ D(Lmax
β,m2). It only remains to

check in which domain of the operators Hβ,m,κ, Hν
β, 1

2
, or Hν

β,0 does h±β,m belong to. By Proposition

2.1, it suffices to determine the asymptotic expansion near 0 of h±β,m up to remainder terms of order

o(x
1
2
+|Re(m)]). This can easily be obtained from the expansion provided above, and yields to the

statements 1.(iii), 2.(iii) and 3.(iii).
Let us now prove the statements 1.(ii), 2.(ii) and 3.(ii). We consider the equation Lβ,m2f = µ2f

for some µ > 0. Two linearly independent solutions are provided by the functions x 7→ H±β
2µ ,m

(2µx)

introduced in [7, Sec. 2.7], see also (A.29). From the asymptotic expansion near infinity given by

H±β
2µ ,m

(2µx) = e∓iπ
2 ( 1

2
+m)e

πβ
4µ (2µx)±i β

2µ e±iµx(1 +O(x−1)
)
, (3.3)

one infers that at most one of these functions is in L2 near infinity, depending on the sign of
Im(β). More precisely, for Im(β) > 0, the map x 7→ H+

β
2µ ,m

(2µx) belongs to L2 near infinity if

µ < Im(β) and does not belong to L2 near infinity otherwise. Under the same condition Im(β) > 0,
the map x 7→ H−β

2µ ,m
(2µx) never belongs to L2 near infinity. Conversely, for Im(β) < 0, the map
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x 7→ H−β
2µ ,m

(2µx) belongs to L2 near infinity if µ < −Im(β) and does not belong to L2 near infinity

otherwise. Under the same condition Im(β) < 0, the map x 7→ H+
β
2µ ,m

(2µx) never belongs to L2 near

infinity. Finally, for Im(β) = 0, none of these functions belongs to L2 near infinity.
For the asymptotic expansion near 0, the information on H±δ,m provided in [7, Eq. (2.31)] is

not sufficient. However, the appendix of the current paper contains all the necessary information
on these special functions. By taking into account the Taylor expansion of Iδ,m near 0 provided in
(A.3) and the equality Γ (α)Γ (1− α) = π

sin(πα) one infers that for |Re(m)| < 1 and m 6∈
{
− 1

2 , 0,
1
2

}
one has

Iδ,m(z) =
z

1
2
+m

Γ (1 + 2m)

(
1− δ

1 + 2m
z +O(z2)

)
(3.4)

and

H±δ,m(z) =∓ ie∓iπm
Γ (−2m)

Γ
(

1
2 −m∓ iδ

)z 1
2
+m
(

1− δ

1 + 2m
z
)

∓ i
Γ (2m)

Γ
(

1
2 +m∓ iδ

)z 1
2
−m
(

1− δ

1− 2m
z
)

+ o
(
z

3
2
)
.

For 2m ∈ Z one has to consider the expression for Kδ, 1
2

and Kδ,0 provided in (A.18) and (A.19)

respectively. Then, by considering the Taylor expansion near 0 of these functions one gets

Kδ, 1
2
(z) =

1

Γ (1− δ)
+

1

Γ (−δ)
z ln(z)

+
1

Γ (−δ)

(1

2
ψ(1− δ) +

1

2
ψ(−δ) + 2γ − 1

)
z + o

(
z

3
2
)
, (3.5)

Kδ,0(z) =− 1

Γ
(

1
2 − δ

)[z 1
2 ln(z) +

(
ψ
(1

2
− δ
)

+ 2γ
)
z

1
2 − δz

3
2 ln(z)

− δ
(
ψ
(1

2
− δ
)

+ 2γ − 2
)
z

3
2

]
+ o
(
z

3
2
)
. (3.6)

From Equation (A.29) one finally deduces the relations

H±
δ, 1

2

(z) =∓ i
1

Γ (1∓ iδ)
− 1

Γ (∓iδ)
z ln(z)

− 1

Γ (∓iδ)

(1

2
ψ(1∓ iδ) +

1

2
ψ(∓iδ) + 2γ − 1∓ i

π

2

)
z + o

(
z

3
2
)

H±δ,0(z) =± i
1

Γ
(

1
2 ∓ iδ

)[z 1
2 ln(z) +

(
ψ
(1

2
∓ iδ

)
∓ i

π

2
+ 2γ

)
z

1
2 − δz

3
2 ln(z)

]
+O

(
z

3
2
)
.

To show 1.(ii) we consider the function x 7→ H+
β
2µ ,m

(2µx) if Im(β) > 0 and x 7→ H−β
2µ ,m

(2µx)

if Im(β) < 0, and check for which κ these functions belong to D(Hβ,mκ). For |Re(m)| < 1 and
m 6∈

{
− 1

2 , 0,
1
2

}
one has

H±β
2µ ,m

(2µx) =∓ ie∓iπm Γ (−2m)

Γ
(

1
2 −m∓ i β2µ

) (2µx)
1
2
+m
(

1− β

1 + 2m
x
)

∓ i
Γ (2m)

Γ
(

1
2 +m∓ i β2µ

) (2µx)
1
2
−m
(

1− β

1− 2m
x
)

+ o
(
x

3
2
)

=∓ ic
(
jβ,m + κjβ,−m(x)

)
+ o
(
x

3
2
)

with c := e∓iπm Γ (−2m)

Γ ( 1
2
−m∓i β

2µ )
(2µ)

1
2
+m and

κ :=
1

c

Γ (2m)

Γ
(

1
2 +m∓ i β2µ

) (2µ)
1
2
−m = e±iπm(2µ)−2m Γ (2m)

Γ (−2m)

Γ
(

1
2 −m∓ i β2µ

)
Γ
(

1
2 +m∓ i β2µ

) .
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Note that the conditions ±Im(β) > 0, |Re(m)| < 1, and µ < ±Im(β) imply that ±i β2µ +m− 1
2 6∈ N.

The proof of 2.(ii) and 3.(ii) can be obtained similarly once the following expressions are taken
into account:

H±β
2µ ,

1
2

(2µx) =
2µ

β

1

Γ
(
∓ i β2µ

)(1− βx ln(x)
)

− 2µ

Γ
(
∓ i β2µ

)[1

2
ψ
(

1∓ i
β

2µ

)
+

1

2
ψ
(
∓ i

β

2µ

)
+ 2γ − 1 + ln(2µ)∓ i

π

2

]
x+ o

(
x

3
2
)
,

H±β
2µ ,0

(2µx) =± i
(2µ)

1
2

Γ
(

1
2 ∓ i β2µ

)(x 1
2 ln(x)

+
[
ψ
(1

2
∓ i

β

2µ

)
∓ i

π

2
+ 2γ + ln(2µ)

)
x

1
2 − βx

3
2 ln(x)

]
+O

(
x

3
2
)
.

We shall now turn to the generic case (statements 1.(i), 2.(i) and 3.(i)), namely the equation
Lβ,m2f = −k2f for some k ∈ C with Re(k) > 0. In the non-degenerate case, solutions of this
equation are provided by the functions

x 7→ K β
2k ,m

(2kx) and x 7→ I β
2k ,±m

(2kx). (3.7)

We refer again to the appendix for an introduction to these functions. The behavior for large z of
the function Kδ,m(z) has been provided in (A.7), from which one infers that the first function in
(3.7) is always in L2 near infinity. On the other hand, since for | arg(z)| < π

2 one has

Iδ,±m(z) =
1

Γ
(

1
2 ±m− δ

)z−δ e
z
2
(
1 +O(z−1)

)
it follows that the remaining two functions in (3.7) do not belong to L2 near infinity as long as
β
2k ∓m−

1
2 6∈ N. Still in the non-degenerate case and when the condition β

2k +m− 1
2 ∈ N holds, it

follows from relation (A.8) that the functions K β
2k ,m

(2k·) and I β
2k ,−m

(2k·) are linearly dependent,

but still I β
2k ,m

(2k·) does not belong to L2 near infinity. Similarly, when β
2k −m −

1
2 ∈ N it is the

function I β
2k ,−m

(2k·) which does not belong to L2 near infinity.

Let us now turn to the degenerate case, when m ∈
{
− 1

2 , 0,
1
2

}
. In this situation the two

functions Iδ,m and Iδ,−m are no longer independent, as a consequence of (A.4). In the non-doubly

degenerate case (see the appendix for more details), which means for
( β

2k ,m
)
6∈
(
Z,±1

2

)
or for( β

2k ,m
)
6∈
(
Z + 1

2 , 0
)
, the above arguments can be mimicked, and one gets that only the function

K β
2k ,m

(2k·) belongs to L2 near infinity. In the doubly degenerate case, the function Xδ,m, introduced

in (A.9), has to be used. This function is independent of the function Kδ,m, as shown in (A.24).
However, this function explodes exponentially near infinity, which means that X β

2k ,m
(2k·) does not

belong to L2 near infinity. Once again, only the function K β
2k ,m

(2k·) plays a role.

As a consequence of these observations, it will be sufficient to concentrate on the function
K β

2k ,m
(2k·) and to check for which κ or ν does this function belong to the domain of the operators

Hβ,m,κ, Hν
β, 1

2
, or Hν

β,0 respectively. For the behavior of this function near 0 one infers from (A.6)

and (3.4) that for m 6∈
{
− 1

2 , 0,
1
2

}
K β

2k ,m
(2kx) =− π

sin(2πm)

(
I β

2k ,m
(2kx)

Γ
(

1
2 −m−

β
2k

) − I β
2k ,−m

(2kx)

Γ
(

1
2 +m− β

2k

))

=(2k)
1
2
+m Γ (−2m)

Γ
(

1
2 −m−

β
2k

)x 1
2
+m
(

1− β

1 + 2m
x
)

+ (2k)
1
2
−m Γ (2m)

Γ
(

1
2 +m− β

2k

)x 1
2
−m
(

1− β

1− 2m
x
)

+ o(x
3
2 ).
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Similarly, it follows from (A.18) and (A.19) that

K β
2k ,

1
2

(2kx) =− 1

β

2k

Γ
(
− β

2k

)(1− βx ln(x)
)

+
2k

Γ
(
− β

2k

)[1

2
ψ
(

1− β

2k

)
+

1

2
ψ
(
− β

2k

)
+ 2γ − 1 + ln(2k)

]
x+ o

(
x

3
2
)
, (3.8)

K β
2k ,0

(2kx) =− (2kx)
1
2

Γ
(

1
2 −

β
2k

)[(1− βx) ln(x) +
(
ψ
(1

2
− β

2k

)
+ 2γ + ln(2k)

)
− β
(
ψ
(1

2
− β

2k

)
+ 2γ − 2 + ln(2k)

)
x
]

+ o
(
x

3
2
)
. (3.9)

The statements 1.(i), 2.(i), and 3.(i) follow then straightforwardly. ut

Remark 3.2. A special feature of positive eigenvalues described in Theorem 3.1 is that the corresponding

eigenfunctions have an inverse polynomial decay at infinity, and not an exponential decay at infinity, as it

is often expected. This property can be directly inferred from the asymptotic expansion provided in (3.3).

Remark 3.3. Self-adjoint operators that are included in the families Hβ,m,κ, Hν
β, 1

2
and Hν

β,0 do not

have eigenvalues in ]0,∞[. Indeed, in Theorem 3.1 a necessary condition for the existence of strictly

positive eigenvalues is that Im(β) 6= 0. This automatically prevents these operators to be self-adjoint, as

a consequence of Corollary 2.6.

For completeness let us recall the results already obtained in [6, Sec. 5] for β = 0.

Theorem 3.4. (i) If |Re(m)| < 1, m 6∈
{
− 1

2 , 0,
1
2

}
and κ ∈ C ∪ {∞}, the eigenvalues of the operator

H0,m,κ are of the form −k2 with Re(k) > 0, where

κ =
(
k

2

)−2m Γ (m)

Γ (−m)
,

(ii) If ν ∈ C ∪ {∞}, the eigenvalues of the operator Hν
0, 1

2
are of the form −k2 with Re(k) > 0, where

ν = −k,

(iii) If ν ∈ C ∪ {∞}, the eigenvalues of the operator Hν
0,0 are of the form −k2 with Re(k) > 0, where

ν = γ + ln
(
k

2

)
.

Remark 3.5. Note that Theorem 3.4 can be derived from Theorem 3.1. Indeed, for m 6∈
{
− 1

2 , 0,
1
2

}
we

infer from the Legendre duplication formula

Γ (z)Γ
(1

2
+ z
)

= 21−2z√πΓ (2z),

that

(2k)−2m Γ (2m)

Γ (−2m)

Γ
(

1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2k

) ∣∣∣
β=0

=
(
k

2

)−2m Γ (m)

Γ (−m)
.

For m = 1
2 , we first note that Γ

(
1
2

)
=
√
π and Γ

(
− 1

2

)
= −2

√
π. Then we use the relations ψ(1 + z) =

ψ(z) + 1
z and ψ(1) = −γ, and infer that

lim
β→0
−β
(1

2
ψ
(

1− β

2k

)
+

1

2
ψ
(
− β

2k

)
+ 2γ − 1 + ln(2k)

)
=
(
k

2

)Γ(− 1
2

)
Γ
(

1
2

) = −k.

Finally for m = 0, from the equality ψ
(

1
2

)
= −2 ln(2)− γ one gets

ψ
(1

2
− β

2k

)
+ 2γ + ln(2k)

∣∣∣
β=0

= γ + ln
(
k

2

)
.

As a consequence of the expressions provided in Theorem 3.1, the discreteness of the spectra of
all operators can be inferred in C \ [0,∞[.
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3.2 Green’s functions

Let us now turn our attention to the continuous spectrum. We shall first look for an expression
for Green’s function. We will use the well-known theory of 1-dimensional Schrödinger operators, as
presented for example in the appendix of [2] or in [5]. We begin by recalling a result on which we
shall rely.

Let AC(R+) denote the set of absolutely continuous functions from R+ to C, that is functions
whose distributional derivative belongs to L1

loc(R+). Let also AC1(R+) be the set of functions from
R+ to C whose distributional derivatives belong to AC(R+). If V ∈ L1

loc(R+), it is not difficult to
check that the operator −∂2

x + V can be interpreted as a linear map from AC1(R+) to L1
loc(R+).

The maximal operator associated to −∂2
x + V is then defined as

D(Lmax) :=
{
f ∈ L2(R+) ∩ AC1(R+) |

(
− ∂2

x + V
)
f ∈ L2(R+)

}
Lmaxf :=

(
− ∂2

x + V
)
f, f ∈ D(Lmax).

The minimal operator Lmin is the closure of Lmax restricted to compactly supported functions.
Note that Lmax = (Lmin)#.

As before, we say that a function f : R+ → C belongs to L2 around 0 (respectively around
∞) if there exists ζ ∈ C∞c

(
[0,∞[

)
with ζ = 1 around 0 such that fζ ∈ L2(R+) (respectively

f(1− ζ) ∈ L2(R+)).
The following statement contains several results proved in [5].

Proposition 3.6. Let V ∈ L1
loc(R+). Let k ∈ C and suppose that u(k, ·), v(k, ·) ∈ AC1(R+) solve(

− ∂2
x + V

)
u(k, ·) = −k2u(k, ·),(

− ∂2
x + V

)
v(k, ·) = −k2v(k, ·).

Assume that u(k, ·), v(k, ·) are linearly independent and that u(k, ·) ∈ L2 around 0, v(k, ·) ∈ L2 around

∞. Let W (k) := W
(
u(k, ·), v(k, ·);x

)
be the Wronskian of these two solutions. Set

R(−k2;x, y) :=
1

W (k)

{
u(k, x)v(k, y) for 0 < x < y,

u(k, y)v(k, x) for 0 < y < x,

and assume that R(−k2;x, y) is the integral kernel of a bounded operator R(−k2). Then there exists a

unique closed realization H of −∂2
x +V with the boundary condition at 0 given by u(k, ·) and at ∞ given

by v(k, ·) in the sense that

D(H) =
{
f ∈ D(Lmax), f − u(k, ·) ∈ D(Lmin) around 0

}
,

=
{
f ∈ D(Lmax), f − v(k, ·) ∈ D(Lmin) around ∞

}
,

Hf =
(
− ∂2

x + V
)
f, f ∈ D(H).

Moreover −k2 belongs to the resolvent set of H and R(−k2) = (H + k2)−1.

By using such a statement, it has been proved in [7] that, for k ∈ C such that Re(k) > 0 and
β
2k −

1
2 −m /∈ N, we have that −k2 /∈ σ(Hβ,m) and Rβ,m(−k2) := (k2 + Hβ,m)−1 has the integral

kernel

Rβ,m(−k2;x, y)

= 1
2kΓ

(
1
2 +m− β

2k

){I β
2k ,m

(2kx)K β
2k ,m

(2ky) for 0 < x < y,

I β
2k ,m

(2ky)K β
2k ,m

(2kx) for 0 < y < x.

Let us now describe the integral kernel of the resolvent of all operators under investigation.
We recall that our parameters are β ∈ C, κ ∈ C ∪ {∞}, ν ∈ C ∪ {∞}, and m ∈ C satisfying
−1 < Re(m) < 1.

Theorem 3.7. Let k ∈ C with Re(k) > 0. We have the following properties.
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(i) For κ 6=∞ and m 6∈
{
− 1

2 , 0,
1
2

}
set

γβ,m(k) :=
(2k)−m

Γ
(

1
2 +m− β

2k

)
Γ (1− 2m)

,

ωβ,m,κ(k) :=
γβ,m(k) + κγβ,−m(k)

κγβ,−m(k)

π

sin(2πm)
. (3.10)

If γβ,m(k) + κγβ,−m(k) 6= 0, then −k2 6∈ σ(Hβ,m,κ) and the integral kernel of Rβ,m,κ(−k2) :=
(Hβ,m,κ + k2)−1 is given by

Rβ,m,κ(−k2;x, y)

=
1

γβ,m(k) + κγβ,−m(k)

(
γβ,m(k)Rβ,m(−k2;x, y) + κγβ,−m(k)Rβ,−m(−k2;x, y)

)
= Rβ,m(−k2;x, y) +

Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)
2kωβ,m,κ(k)

K β
2k ,m

(2ky)K β
2k ,m

(2kx). (3.11)

If κ =∞ and β
2k +m− 1

2 6∈ N, then −k2 6∈ σ(Hβ,m,∞) and Rβ,m,∞(−k2) = Rβ,−m(−k2).

(ii) For ν 6=∞, m = 1
2 and β

2k 6∈ N× set

ωνβ, 1
2
(k) := −1

2
ψ
(

1− β

2k

)
− 1

2
ψ
(
− β

2k

)
− 2γ − ln(2k) + 1− ν

β
.

If ωνβ, 1
2
(k) 6= 0, then −k2 6∈ σ(Hν

β, 1
2
) and the integral kernel of Rνβ, 1

2
(−k2) := (Hν

β, 1
2

+k2)−1 is given

by

Rνβ, 1
2
(−k2;x, y)

= Rβ, 1
2
(−k2;x, y) +

Γ
(
− β

2k

)
Γ
(
1− β

2k

)
2kων

β, 1
2

(k)
K β

2k ,
1
2

(2kx)K β
2k ,

1
2

(2ky). (3.12)

If ν =∞ and β
2k 6∈ N×, then −k2 6∈ σ(H∞β, 1

2
) and R∞β, 1

2
(−k2) = Rβ, 1

2
(−k2).

(iii) For ν 6=∞, m = 0 and β
2k −

1
2 6∈ N set

ωνβ,0(k) := ψ
(1

2
− β

2k

)
+ 2γ + ln(2k)− ν.

If ωνβ,0(k) 6= 0, then −k2 6∈ σ(Hν
β,0) and the integral kernel of Rνβ,0(−k2) := (Hν

β,0 + k2)−1 is given

by

Rνβ,0(−k2;x, y)

= Rβ,0(−k2;x, y) +
Γ
(

1
2 −

β
2k

)2
2kωνβ,0(k)

K β
2k ,0

(2kx)K β
2k ,0

(2ky). (3.13)

If ν =∞ and β
2k −

1
2 6∈ N, then −k2 /∈ σ(H∞β,0) and R∞β,0(−k2) = Rβ,0(−k2).

For the proof of this theorem, we shall mainly rely on a similar statement which was proved in
[7, Sec. 3.4]. The context was less general, but some of the estimates turn out to be still useful.

Proof of Theorem 3.7.. The proof consists in checking that all conditions of Proposition 3.6 are
satisfied.

For (i) we need to show that the integral kernel Rβ,m,κ(−k2;x, y) defines a bounded operator
on L2(R+). This follows from (3.11), because all numerical factors are harmless and because by [7,
Thm. 3.5] Rβ,m(−k2;x, y) and Rβ,−m(−k2;x, y) are the kernels defining bounded operators.
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Moreover, we can write

Rβ,m,κ(−k2;x, y) =
1

2k
(
γβ,m(k) + κγβ,−m(k)

)
×


(

(2k)−m

Γ (1−2m)I β
2k ,m

(2kx) + κ (2k)m

Γ (1+2m)I β
2k ,−m

(2kx)
)
K β

2k ,m
(2ky) for 0 < x < y,(

(2k)−m

Γ (1−2m)I β
2k ,m

(2ky) + κ (2k)m

Γ (1+2m)I β
2k ,−m

(2ky)
)
K β

2k ,m
(2kx) for 0 < y < x.

(3.14)

Since K β
2k ,m

(2k·) belongs to L2(R+), this solution is L2 around ∞. For the other solution, one

verifies by (3.4) that

(2k)−m

Γ (1− 2m)
I β

2k ,m
(2kx) + κ

(2k)m

Γ (1 + 2m)
I β

2k ,−m
(2kx)

=
(2k)

1
2

Γ (1 + 2m)Γ (1− 2m)

[
x

1
2
+m
(

1− β

1 + 2m
x
)

+ κx
1
2
−m
(

1− β

1− 2m
x
)]

+O
(
x

5
2
−|Re(m)|).

Therefore, this function belongs to L2 around 0 and satisfies the same boundary condition at 0
as jβ,m, + κjβ,−m. By Proposition 3.6, this proves (i) when κ 6= ∞. Note that in the special case
κ =∞, it is enough to observe that Hβ,m,∞ = Hβ,−m,0 and to apply the previous result.

To prove (ii), consider first ν 6= ∞ and β
2k 6∈ N×. It has been proved in [7, Thm. 3.5] that

the first kernel of (3.12) defines a bounded operator. The second kernel corresponds to a constant
multiplied by a rank one operator defined by the function K β

2k ,m
(2k·) ∈ L2(R+) and therefore this

operator is also bounded. Next we write

Rνβ, 1
2
(−k2;x, y) =

Γ
(
− β

2k

)
Γ
(
1− β

2k

)
2kων

β, 1
2

(k)
(3.15)

×


(ων

β, 1
2

(k)

Γ (− β
2k )
I β

2k ,
1
2

(2kx) +K β
2k ,

1
2

(2kx)
)
K β

2k ,
1
2

(2ky) for 0 < x < y,(ων
β, 1

2
(k)

Γ (− β
2k )
I β

2k ,
1
2

(2ky) +K β
2k ,

1
2

(2ky)
)
K β

2k ,
1
2

(2kx) for 0 < y < x.

We deduce from (3.4) and (3.8) that

ωνβ, 1
2
(k)

Γ
(
− β

2k

)I β
2k ,

1
2

(2kx) +K β
2k ,

1
2

(2kx)

=
1

Γ
(
1− β

2k

)(1− βx ln(x) + νx
)

+ o
(
x

3
2
)
,

which belongs to L2 around 0 and corresponds to the boundary condition defining Hν
β, 1

2
.

The proof of (iii) is analogous. We use first (3.13) for the boundedness. Then we rewrite Green’s
function as

Rνβ,0(−k2;x, y) =
Γ
(

1
2 −

β
2k

)2
2kωνβ,0(k)

×


(

ωνβ,0(k)

Γ ( 1
2
− β

2k )
I β

2k ,0
(2kx) +K β

2k ,0
(2kx)

)
K β

2k ,0
(2ky) for 0 < x < y,(

ωνβ,0(k)

Γ ( 1
2
− β

2k )
I β

2k ,0
(2ky) +K β

2k ,0
(2ky)

)
K β

2k ,0
(2kx) for 0 < y < x.

(3.16)
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We check that

ωνβ,0(k)

Γ
(

1
2 −

β
2k

)I β
2k ,0

(2kx) +K β
2k ,0

(2kx)

=− (2k)
1
2

Γ
(

1
2 −

β
2k

)(x 1
2 (1− βx) ln(x) + 2βx

3
2 + νx

1
2 (1− βx)

)
+O

(
x

5
2 | ln(x)|

)
,

by (3.4) and (3.9), see also (A.19). ut

Strictly speaking, the formulas of Thm 3.7 are not valid in doubly degenerate points, when the
functions Kβ,m and Iβ,m are proportional to one another, and the operator Hβ,m has an eigenvalue.
To obtain well defined formulas one needs to use the function Xβ,m defined in (A.9), as described
in the following proposition:

Proposition 3.8. Let k ∈ C with Re(k) > 0. We have the following properties.

(ii’) For m = 1
2 , ν 6=∞ and β

2k ∈ N×, set

ξνβ, 1
2
(k) :=

1

2
ψ
(

1 +
β

2k

)
+

1

2
ψ
(
β

2k

)
+ 2γ + ln(2k)− 1 +

ν

β
.

Then −k2 6∈ σ(Hν
β, 1

2
) and the integral kernel of Rνβ, 1

2
(−k2) is given by

Rνβ, 1
2
(−k2;x, y)

=
1

2k


(

(−1)
β
2kX β

2k ,
1
2

(2kx) +
ξν
β, 1

2
(k)

Γ ( β
2k )Γ (1+ β

2k )
K β

2k ,
1
2

(2kx)
)
K β

2k ,
1
2

(2ky), for 0 < x < y,(
(−1)

β
2kX β

2k ,
1
2

(2ky) +
ξν
β, 1

2
(k)

Γ ( β
2k )Γ (1+ β

2k )
K β

2k ,
1
2

(2ky)
)
K β

2k ,
1
2

(2kx), for 0 < y < x.

(iii’) For m = 0, ν 6=∞, and β
2k −

1
2 ∈ N, set

ξνβ,0(k) := −ψ
(1

2
+

β

2k

)
− 2γ − ln(2k) + ν.

Then −k2 6∈ σ(Hν
β,0) and the integral kernel of Rνβ,0(−k2) is given by

Rνβ,0(−k2;x, y)

=
1

2k


(

(−1)
β
2k+ 1

2X β
2k ,0

(2kx) +
ξνβ,0(k)

Γ ( 1
2
+ β

2k )2
K β

2k ,0
(2kx)

)
K β

2k ,0
(2ky), for 0 < x < y,(

(−1)
β
2k+ 1

2X β
2k ,0

(2ky) +
ξνβ,0(k)

Γ ( 1
2
+ β

2k )2
K β

2k ,0
(2ky)

)
K β

2k ,0
(2kx), for 0 < y < x.

Proof. (ii′) is proved similarly as (ii) of Theorem 3.7, by using for m = 1
2 , ν 6=∞ and β

2k ∈ N× that

(−1)
β
2kX β

2k ,
1
2

(2kx) +
ξνβ, 1

2
(k)

Γ ( β2k )Γ (1 + β
2k )
K β

2k ,
1
2

(2kx)

=
(−1)

β
2k+1

Γ
(
1 + β

2k

)(1− βx lnx+ νx+ o(x)
)
.

This follows from (A.24), (A.20), and (3.5).
(iii′) is proved similarly as (iii) of Theorem 3.7. In particular, using (A.24), (A.21), and (3.6)

one verifies that

(−1)
β
2k+ 1

2X β
2k ,0

(2kx) +
ξνβ,0(k)

Γ (1
2 + β

2k )2
K β

2k ,0
(2kx)

= (−1)
β
2k−

1
2

(2k)
1
2

Γ
(

1
2 + β

2k

)x 1
2
(
(1− βx) ln(x) + 2βx+ ν(1− βx)

)
+ o
(
x

3
2
)
.

ut
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3.3 Holomorphic families of closed operators

In this section we show that the families of operators introduced before are holomorphic for suitable
values of the parameters. A general definition of a holomorphic family of closed operators can be found
in [19], see also [8]. Actually, we will not need its most general definition. For us it is enough to
recall this concept in the special case where the operators possess a nonempty resolvent set.

Let H be a complex Banach space. Let {H(z)}z∈Θ be a family of closed operators on H with
nonempty resolvent set, where Θ is an open subset of Cd. {H(z)}z∈Θ is called holomorphic on Θ

if for any z0 ∈ Θ, there exist λ ∈ C and a neighborhood Θ0 ⊂ Θ of z0 such that, for all z ∈ Θ0, λ
belongs to the resolvent set of H(z) and the map Θ0 3 z 7→ (H(z) − λ)−1 ∈ B(H) is holomorphic
on Θ0. Note that if Θ0 3 z 7→ (H(z) − λ)−1 ∈ B(H) is locally bounded on Θ0 and if there exists a
dense subset D ⊂ H such that, for all f, g ∈ D, the map Θ0 3 z 7→ (f |(H(z)− λ)−1g) is holomorphic
on Θ0, then Θ0 3 z 7→ (H(z) − λ)−1 ∈ B(H) is holomorphic on Θ0. Besides, by Hartog’s theorem,
z 7→ (f |(H(z)− λ)−1g) is holomorphic if and only if it is separately analytic in each variable.

This definition naturally generalizes to families of operators defined on (C ∪ {∞})d instead of
Cd, recalling that a map ϕ : C∪ {∞} → C is called holomorphic in a neighborhood of ∞ if the map
ψ : C → C, defined by ψ(z) = φ(1/z) if z 6= 0 and ψ(0) = φ(∞), is holomorphic in a neighborhood
of 0.

Recall that the family Hβ,m has been defined on C × {m ∈ C | Re(m) > −1} in [7], see also
(2.11). However, it is not holomorphic on the whole domain. The following has been proved in [7].

Theorem 3.9. The family of closed operators (β,m) 7→ Hβ,m is holomorphic on

C× {m ∈ C | Re(m) > −1}\
{(

0,−1
2

)}
.

However, it cannot be extended by continuity to include the point
(
0,−1

2

)
.

Let us sketch what happens at
(
0,−1

2

)
. Recall that in [2,6] a holomorphic family

{
m ∈ C |

Re(m) > −1
}
3 m 7→ Hm has been introduced, and satisfies Hm = H0,m for m 6= −1

2 . Note also
that for any β we have Hβ,− 1

2
= Hβ, 1

2
. It then turns out that

lim
β→0

Hβ,− 1
2

= H 1
2
6= H− 1

2
= lim
m→− 1

2

H0,m,

where these limits have to be understood as weak resolvent limits. Note that in the sequel and in
particular in (3.19), (3.20), and (3.21), the limits should be understood in such a sense.

Let us consider now the families of operators involving mixed boundary conditions. To this end,
it will be convenient to introduce the notation

Π := {m ∈ C | −1 < Re(m) < 1}.

Recall that (β,m, κ) 7→ {Hβ,m,κ} has been defined on C × Π × (C ∪ {∞}). However, it is not
holomorphic on this whole set:

Theorem 3.10. (i) The family of closed operators {Hβ,m,κ} is holomorphic on C × Π ×
(
C ∪ {∞}

)
except for (

0,−1
2

)
×
(
C ∪ {∞}

)
∪
(
0, 1

2

)
×
(
C ∪ {∞}

)
∪ C× (0,−1). (3.17)

(ii) The family of closed operators {Hν
β,0} is holomorphic on C×

(
C ∪ {∞}

)
.

(iii) The family of closed operators
{
Hν
β, 1

2

}
is holomorphic on C×

(
C ∪ {∞}

)
.

Proof. For shortness, let us set

ηβ,m,κ(k) := γβ,m(k) + κγβ,−m(k). (3.18)

This expression appears in the numerator of (3.10) and plays an important role in the expression
(3.14) for the resolvent of Hβ,m,κ.

(i) Let (β0,m0, κ0) belong to the domain C×Π×
(
C∪{∞}

)
. First assume that m0 /∈

{
− 1

2 , 0,
1
2

}
and that κ0 ∈ C. Let k ∈ C with Re(k) > 0 such that ηβ0,m0,κ0

(k) 6= 0, where ηβ,m,κ(k) is
defined in (3.18). By continuity of the map (β,m, κ) 7→ ηβ,m,κ(k), there exists a neighborhood U0



20 Jan Dereziński et al.

of (β0,m0, κ0) such that for all (β,m, κ) in this neighborhood, we have ηβ,m,κ(k) 6= 0. Hence, by
Theorem 3.7, we infer that −k2 /∈ σ(Hβ,m,κ), and the resolvent (Hβ,m,κ + k2)−1 ∈ B

(
L2(R+)

)
is

the operator whose kernel is given by (3.14). It then easily follows from the analyticity properties
of the maps (β,m, κ) 7→ I β

2k ,±m
(2kx) and (β,m, κ) 7→ K β

2k ,m
(2kx) (for fixed x > 0 and k) that, for

all f, g ∈ L2(R+), the map (β,m, κ) 7→ (f |(Hβ,m,κ + k2)−1g) is holomorphic on U0. Hence {Hβ,m,κ}
is holomorphic on U0.

If m0 /∈
{
− 1

2 , 0,
1
2

}
and κ0 = ∞, the statement directly follows from the equality Hβ,m,∞ =

Hβ,−m,0.
Suppose now that m0 = 0 and that κ0 ∈ C \ {−1}. We extend by continuity the definition of

ηβ,m,κ(k) in (3.18) for m = 0 by setting

ηβ,0,κ(k) :=
1 + κ

Γ
(

1
2 −

β
2k

) .
We also choose k ∈ C with Re(k) > 0 such that β0

2k −
1
2 6∈ N. This latter requirement implies that

ηβ0,m0,κ0
(k) 6= 0, and by continuity of the map (β,m, κ) 7→ ηβ,m,κ(k), there exists a neighborhood

U0 of (β0, 0, κ0) such that for all (β,m, κ) in this neighborhood, ηβ,m,κ(k) 6= 0. In particular, by
Theorem 3.7, one verifies that, for all f, g ∈ L2(R+), the map (β,m, κ) 7→ (f |(Hβ,m,κ + k2)−1g) is
well-defined and holomorphic on U0 provided that (3.14) is extended to U0∩{(β, 0, κ) | β ∈ C, κ ∈ C}
by

Rβ,0,κ(−k2;x, y) =
Γ
(

1
2 −

β
2k

)
2k

I β2k ,0(2kx)K β
2k ,0

(2ky) for 0 < x < y,

I β
2k ,0

(2ky)K β
2k ,0

(2kx) for 0 < y < x.

Note that this corresponds to the integral kernel of (Hβ,0,0+k2)−1 = (H∞β,0+k2)−1. This shows that
{Hβ,m,κ} is holomorphic on U0 (provided that U0 is chosen small enough so that (β, 0,−1) 6∈ U0).

If m0 = 0 and κ0 =∞, the argument is similar once it is observed that

(Hβ,0,∞ + k2)−1 = (H∞β,0 + k2)−1 = (Hβ,0,0 + k2)−1.

It remains to consider the cases m0 = ±1
2 and β0 6= 0. Assume for instance that m0 = −1

2 ,
β0 6= 0, and κ0 ∈ C. We extend by continuity the definition of ηβ,m,κ(k) in (3.18) for m = −1

2 by
setting

ηβ,− 1
2
,κ(k) :=

(2k)
1
2

Γ
(
− β

2k

) .
We also choose k ∈ C with Re(k) > 0 such that β0

2k /∈ N. Then we have ηβ0,− 1
2
,κ0

(k) 6= 0, and

by continuity of (β,m, κ) 7→ ηβ,m,κ(k) there exists a neighborhood U0 of (β0,−1
2 , κ0) such that

ηβ,m,κ(k) 6= 0 for all (β,m, κ) in U0. By Theorem 3.7, one then verifies that for all f, g ∈ L2(R+),
the map (β,m, κ) 7→ (f |(Hβ,m,κ + k2)−1g) is well-defined and holomorphic on U0 provided that
(3.14) is extended to U0 ∩

{(
β,−1

2 , κ
)
| β ∈ C, κ ∈ C

}
by

Rβ,− 1
2
,κ(−k2;x, y) =

1

2kηβ,− 1
2
,κ(k)

(2k)
1
2 I β

2k ,−
1
2

(2kx)K β
2k ,−

1
2

(2ky) for 0 < x < y,

(2k)
1
2 I β

2k ,−
1
2

(2ky)K β
2k ,−

1
2

(2kx) for 0 < y < x,

=
Γ
(
1− β

2k

)
2k

I β2k , 12 (2kx)K β
2k ,

1
2

(2ky) for 0 < x < y,

I β
2k ,

1
2

(2ky)K β
2k ,

1
2

(2kx) for 0 < y < x.

Note that this corresponds to the integral kernel of
(
Hβ, 1

2
,0 + k2

)−1
=
(
H∞β, 1

2
+ k2

)−1
. This shows

that {Hβ,m,κ} is holomorphic on U0. The argument easily adapts to the case m0 = 1
2 and β0 6= 0.

As before, if m0 = ±1
2 , β0 6= 0, and κ0 =∞, the statement follows from the equalities(

Hβ,± 1
2
,∞ + k2)−1

=
(
H∞β, 1

2
+ k2)−1

=
(
Hβ,± 1

2
,0 + k2)−1

.
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The second part of the statement (i) follows directly from [7, Thm. 3.5]. To prove (ii) and (iii),
the argument is analogous and simpler: it suffices to use the formulas (3.15) to prove (ii) and (3.16)
to prove (iii). ut

The following statement shows that the domains of holomorphy obtained in Theorem 3.10 are
maximal for m ∈ Π. In particular, we will prove that (3.17) are sets of non-removable singularities
of the family (β,m, κ) 7→ {Hβ,m,κ}.

Proposition 3.11. (i) For any fixed κ ∈ C×, the family of closed operators (β,m) 7→ Hβ,m,κ defined

on C × Π \ {(0,−1
2 ), (0, 1

2 )} cannot be extended by continuity at (0,−1
2 ) and (0, 1

2 ). If κ = 0, the

family (β,m) 7→ Hβ,m,0 defined on C ×Π \ {(0,−1
2 )} cannot be extended by continuity at (0,−1

2 ),

and for κ = ∞ the family (β,m) 7→ Hβ,m,∞ defined on C × Π \ {(0, 1
2 )} cannot be extended by

continuity at (0, 1
2 ).

(ii) For any fixed β ∈ C, the family (m,κ) 7→ Hβ,m,κ defined on Π ×
(
C ∪ {∞}

)
\ {(0,−1)} cannot be

extended by continuity at (0,−1).

Proof. (i) Let us first consider β = 0. Recall that in [6] the family of closed operators Π×(C∪{∞}) 3
(m,κ) 7→ Hm,κ has been introduced, and that this family is holomorphic on Π × (C ∪ {∞}) \ {0} ×
(C ∪ {∞}). Here is its relationship to the families from the present article:

Hm,κ :=


H0,m,κ if m /∈ {−1

2 ,
1
2}

Hκ−1

0, 1
2

if m = 1
2

Hκ
0, 1

2
if m = −1

2

Let us now focus on m = −1
2 and on m = 1

2 . We have for any κ ∈ C ∪ {∞}

Hβ,− 1
2
,κ = Hβ, 1

2
,κ = Hβ, 1

2
= H∞β, 1

2
.

Therefore, for κ 6= 0,

lim
β→0

Hβ, 1
2
,κ = H∞0, 1

2
6= Hκ−1

0, 1
2

= lim
m→ 1

2

H0,m,κ. (3.19)

Similarly, for κ 6=∞,
lim
β→0

Hβ,− 1
2
,κ = H∞0, 1

2
6= Hκ

0, 1
2

= lim
m→− 1

2

H0,m,κ. (3.20)

This proves (i) when κ 6∈ {0,∞}. The proof in these special cases is similar.
(ii) Let us first consider a fixed parameter β ∈ C and m = 0. By definition we have

Hβ,0,κ = Hβ,0 = H∞β,0,

independently of κ ∈ C ∪ {∞}. We now consider a fixed parameter β ∈ C and κ = −1. Choosing
k ∈ C with Re(k) > 0 such that β

2k −
1
2 6∈ N, it follows from (3.14) that for any m 6= 0 in a complex

neighborhood of 0, the integral kernel of the resolvent of Hβ,m,−1 is given by

Rβ,m,−1(−k2;x, y) =
1

2kηβ,m,−1(k)

×


(

(2k)−m

Γ (1−2m)I β
2k ,m

(2kx)− (2k)m

Γ (1+2m)I β
2k ,−m

(2kx)
)
K β

2k ,m
(2ky) for 0 < x < y,(

(2k)−m

Γ (1−2m)I β
2k ,m

(2ky)− (2k)m

Γ (1+2m)I β
2k ,−m

(2ky)
)
K β

2k ,m
(2kx) for 0 < y < x,

where ηβ,m,−1(k) is defined in (3.18). One then infers that

gβ,k,x(m) :=
1

ηβ,m,−1(k)

( (2k)−m

Γ (1− 2m)
I β

2k ,m
(2kx)− (2k)m

Γ (1 + 2m)
I β

2k ,−m
(2kx)

)

=

(2k)
1
2

Γ (1−2m)Γ (1+2m)

(
x

1
2
+m − x

1
2
−m)

(2k)−m

Γ ( 1
2
+m− β

2k )Γ (1−2m)
− (2k)m

Γ ( 1
2
−m− β

2k )Γ (1+2m)

+O(x
3
2
−|Re(m)|), x→ 0.
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By using this expression, one can verify that the map m 7→ gβ,k,x(m), defined in a punctured
complex neighborhood of 0, can be analytically extended at 0 with

gβ,k,x(0) = −
(2k)

1
2 Γ
(

1
2 −

β
2k

)
ln(2k) + ψ

(
1
2 −

β
2k

)
+ 2γ

x
1
2 ln(x) + o(x

1
2 ), x→ 0.

Thus, the family of operators {H̃β,m,−1} defined by

H̃β,m,−1 =

{
Hβ,m,−1 if m 6= 0
H0
β,0 if m = 0,

is holomorphic for m ∈ Π. It thus follows that

lim
κ→−1

Hβ,0,κ = H∞β,0 6= H0
β,0 = lim

m→0
Hβ,m,−1, (3.21)

which concludes the proof. ut

3.4 Blowing up the singularities at m = 0 and at m = ±1
2

As presented above, the boundary conditions for m = 0 and m = ±1
2 are described by separate

holomorphic families of operators Hν
β,0 and Hν

β, 1
2
. One can however view these exceptional families as

limiting cases of the generic family Hβ,m,κ. What is more, after an appropriate change of parameters
near the points m = 0 and m = ±1

2 one can holomorphically pass from the generic family to the
exceptional families. Such a procedure is referred to as blowing up a singularity.

More precisely, let us define two new families of operators:

H
(0),ν
β,m :=

{
Hβ,m,κ, m 6= 0, κ = κ(0)(m, ν) := − 1

(1+2mν) ,

Hν
β,0, m = 0;

(3.22)

H
( 1
2
),ν

β,m :=

Hβ,m,κ, m 6= 1
2 , κ = κ( 1

2
)(β,m, ν) := 1(

− β
(2m−1)

+ν
) ,

Hν
β, 1

2
, m = 1

2 .
(3.23)

Thus H
(0),ν
β,m includes both Hν

β,0 and Hβ,m,κ, and H
( 1
2
),ν

β,m includes both Hν
β, 1

2
and Hβ,m,κ.

Theorem 3.12. (i) The family {H(0),ν
β,m } is holomorphic on C×Π ×

(
C ∪ {∞}

)
except for(

0,−1
2

)
×
(
C ∪ {∞}

)
∪
(
0, 1

2

)
×
(
C ∪ {∞}

)
.

(ii) The family {H( 1
2
),ν

β,m } is holomorphic on C×Π ×
(
C ∪ {∞}

)
except for(

0,−1
2

)
×
(
C ∪ {∞}

)
∪ {(β, 0,−1− β) | β ∈ C}.

Proof. For any fixed m ∈ Π, Theorem 3.10 shows that (β, ν) 7→ H
(0),ν
β,m is holomorphic on C× (C ∪

{∞}) if m 6= ±1
2 and on (C\{0})×(C∪{∞}) if m = ±1

2 . Likewise, (β, ν) 7→ H
( 1
2
),ν

β,m is holomorphic in

C×(C∪{∞}) if m 6∈
{
− 1

2 , 0
}

, on C×(C∪{∞})\{β, 1−β |β ∈ C} if m = 0, and on (C\{0})×(C∪{∞})
if m = −1

2 . It remains to study holomorphy in m for fixed (β, ν).
Recall that in Theorem 3.7 we introduced the functions ωβ,m,κ(k), ωνβ,0(k), and ωνβ, 1

2
(k). Let us

now define two more functions

ω
(0),ν
β,m (k) :=

{
ωβ,m,κ(k), m 6= 0, κ = κ(0)(m, ν),

ωνβ,0(k), m = 0;

ω
( 1
2
),ν

β,m (k) :=

{
ωβ,m,κ(k), m 6= 1

2 , κ = κ( 1
2
)(β,m, ν),

ωνβ, 1
2
(k), m = 1

2 .
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Clearly, by Theorem 3.7 one has

R
(0),ν
β,m (−k2;x, y)

= Rβ,m(−k2;x, y) +
Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)
2kω

(0),ν
β,m (k)

K β
2k ,m

(2ky)K β
2k ,m

(2kx)

and

R
( 1
2
),ν

β,m (−k2;x, y)

= Rβ,m(−k2;x, y) +
Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)
2kω

( 1
2
),ν

β,m (k)
K β

2k ,m
(2ky)K β

2k ,m
(2kx).

Let us show that, for fixed (β, ν) such that β
2k −

1
2 6∈ N, the map

m 7→
Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)
2kω

( 1
2
),ν

β,m (k)
(3.24)

is holomorphic for m near 0. It is clearly holomorphic in a punctured neighborhood of 0. Hence it
suffices to show that it is continuous at m = 0. Recall from (3.10) that

ωβ,m,κ(k) =
(

1 +
(2k)−2mΓ

(
1
2 −m−

β
2k

)
Γ (1 + 2m)

κΓ
(

1
2 +m− β

2k

)
Γ (1− 2m)

)
π

sin(2πm)
. (3.25)

Then, by inserting κ = κ(0)(m, ν) for m 6= 0 into (3.25) we obtain

ω
(0),ν
β,m (k) = π

Γ
(

1
2 +m− β

2k

)
Γ (1− 2m)− (2k)−2mΓ

(
1
2 −m−

β
2k

)
Γ (1 + 2m)

Γ
(

1
2 +m− β

2k

)
Γ (1− 2m) sin(2πm)

− ν
(2k)−2mΓ

(
1
2 −m−

β
2k

)
Γ (1 + 2m)2πm

Γ
(

1
2 +m− β

2k

)
Γ (1− 2m) sin(2πm)

→
m→0

ψ
(1

2
− β

2k

)
+ 2γ + ln(2k)− ν

= ω
(0),ν
β,0 (k).

Thus (3.24) is holomorphic for m near 0.
Similarly, let us show that, for fixed (β, ν) such that β

2k 6∈ N, the map

m 7→
Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)
2kω

( 1
2
),ν

β,m (k)
(3.26)

is holomorphic for m near 1
2 . By inserting κ = κ( 1

2
)(β,m, ν) for m 6= 1

2 into (3.25) we obtain

ω
( 1
2
),ν

β,m (k) = π
Γ
(

1
2 +m− β

2k

)
Γ (2− 2m) + β(2k)−2mΓ

(
1
2 −m−

β
2k

)
Γ (1 + 2m)

Γ
(

1
2 +m− β

2k

)
Γ (2− 2m) sin(2πm)

− ν
(2k)−2mΓ

(
1
2 −m−

β
2k

)
Γ (1 + 2m)π(2m− 1)

Γ
(

1
2 +m− β

2k

)
Γ (2− 2m) sin(2πm)

→
m→ 1

2

−1

2
ψ
(

1− β

2k

)
− 1

2
ψ
(
− β

2k

)
− 2γ − ln(2k) + 1− ν

β

= ω
( 1
2
),ν

β, 1
2

(k),

which proves that (3.26) is holomorphic for m near 1
2 .

The remaining restrictions on the domain of holomorphy are inferred directly from Theorem
3.10. ut
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3.5 Eigenprojections

Let us now describe a family of projections {Pβ,m(λ)} which is closely related to the Whittaker
operator. We will define it by specifying its integral kernel.

We first introduce a holomorphic function for m 6∈ {−1
2 , 0,

1
2} by

(β,m, k) 7→ ζβ,m(k) :=
π
(

2m+ β
2kψ

(
1
2 +m− β

2k

)
− β

2kψ
(

1
2 −m−

β
2k

))
sin(2πm)

.

One easily observes that ζβ,m(k) = ζβ,−m(k). We can extend this function continuously to m ∈
{−1

2 , 0,
1
2} by

ζβ,0(k) = 1 +
β

2k
ψ′
(1

2
− β

2k

)
,

ζβ,− 1
2
(k) = ζβ, 1

2
(k) := −

(
1 +

β

4k
ψ′
(

1− β

2k

)
+

β

4k
ψ′
(
− β

2k

))
.

We now consider λ ∈ C\[0,∞[, and as usual we write λ = −k2 with Re(k) > 0. We then define
the integral kernel Pβ,m(λ;x, y):

Pβ,m(−k2;x, y) :=
kΓ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)
ζβ,m(k)

K β
2k ,m

(2kx)K β
2k ,m

(2ky). (3.27)

The definition (3.27) naturally extends to λ ∈]0,∞[, where we distinguish between points coming
from the upper and lower half-plane by writing λ±i0 = −(∓iµ)2 with µ > 0. Thus, let us set k = ∓iµ
and

ζβ,m(∓iµ) :=
π
(

2m± i β2µψ
(

1
2 +m∓ i β2µ

)
∓ i β2µψ

(
1
2 −m∓ i β2µ

))
sin(2πm)

which can be naturally extended to m ∈ {−1
2 , 0,

1
2} by

ζβ,0(∓iµ) = 1± i
β

2µ
ψ′
(1

2
∓ i

β

2µ

)
,

ζβ,− 1
2
(∓iµ) = ζβ, 1

2
(∓iµ) := −

(
1± i

β

4µ
ψ′
(
∓ i

β

2µ

)
± i

β

4k
ψ′
(

1∓ i
β

2µ

))
.

For k = ∓iµ we can then rewrite (3.27) as

Pβ,m(µ2 ± i0;x, y) :=
e±iπmµΓ

(
1
2 +m∓ i β2µ

)
Γ
(

1
2 −m∓ i β2µ

)
ζβ,m(∓iµ)

H±β
2µ ,m

(2µx)H±β
2µ ,m

(2µy).

Finally, to handle λ = 0 we shall use the function sin(2πm)
m(4m2−1)

extended to {−1
2 , 0,

1
2} by

sin(2πm)

m(4m2 − 1)

∣∣∣
m=0

= −2π and
sin(2πm)

m(4m2 − 1)

∣∣∣
m=± 1

2

= −π.

We set, for ±Im(
√
β) > 0,

Pβ,m(0;x, y) := 3e±iπ2mβ
sin(2πm)

m(4m2 − 1)
(βx)

1
4H±2m(2

√
βx)(βy)

1
4H±2m(2

√
βy).

The integral kernel Pβ,m(−k2;x, y) defines an operator-valued map (β,m, k) 7→ Pβ,m(−k2) de-
scribed in the following proposition.
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Proposition 3.13. On the set

C×Π × {k ∈ C | Re(k) > 0}
∪ {(β,m,∓iµ) | β ∈ C, m ∈ Π, 0 < µ < ±Im(β)}

∪ {(β,m, 0) | β ∈ C, m ∈ Π, 0 < ±Im(
√
β)},

(3.28)

the function (β,m, k) 7→ Pβ,m(−k2) has values in bounded projections. Moreover, it is continuous on

C×Π × {k ∈ C | Re(k) > 0}
∪ {(β,m,∓iµ) | β ∈ C, m ∈ Π, 0 < µ < ±Im(β)},

(3.29)

and holomorphic on C×Π × {Re(k) > 0}. It satisfies

Pβ,m(−k2) = Pβ,−m(−k2), (3.30)

Pβ,m(−k2)# = Pβ,m(−k2), (3.31)

Pβ,m(−k2)∗ = Pβ̄,m̄(−k2), (3.32)

for all (β,m, k) in the set (3.28).

Proof. The fact that Pβ,m(−k2) are rank-one projections follows directly from their expressions
together with Corollaries A.3 and A.5 and Proposition B.5. Continuity on the domain (3.29) and
holomorphy on C ×Π × {Re(k) > 0}, as well as the relations (3.30)–(3.32), follow again from the
expressions involved in the definitions of Pβ,m(−k2). ut

We recall from Proposition 2.5 that the operators Hβ,m,κ, Hν
β,0 and Hν

β, 1
2

are self-transposed.

Moreover, it follows from Theorem 3.1 and its proof that all eigenvalues of these operators are
simple. If λ is a simple eigenvalue of a self-transposed operator H associated to an eigenvector u
such that 〈u|u〉 = 1, we define the self-transposed eigenprojection associated to λ as

P = 〈u|·〉u.

In the case where λ is in addition an isolated point of the spectrum, it is then easy to see that the
self-transposed eigenprojection P coincides with the usual Riesz projection corresponding to λ.

Theorem 3.14. Let β ∈ C, m ∈ Π \
{
− 1

2 , 0,
1
2

}
, κ ∈ C ∪ {∞} and ν ∈ C ∪ {∞}. Let λ ∈ C be an

eigenvalue of Hβ,m,κ, Hν
β,0 or Hν

β, 1
2

respectively. Then the self-transposed eigenprojection is Pβ,m(λ) for

the corresponding value of m.

Proof. We prove the theorem in the case where λ = −k2 with Re(k) > 0 and m /∈
{
− 1

2 , 0,
1
2

}
. The

other cases are similar.

From the proof of Theorem 3.1, we know that if λ is an eigenvalue of Hβ,m,κ, then a correspond-
ing eigenstate is given by x 7→ K β

2k ,m
(2kx). Corollary A.3 shows that

〈
K β

2k ,m
(2k·) | K β

2k ,m
(2k·)

〉
=

π

sin(2πm)

2m+ β
2kψ

(
1
2 +m− β

2k

)
− β

2kψ
(

1
2 −m−

β
2k

)
kΓ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

) .

This proves that Pβ,m(−k2) is the self-transposed eigenprojection corresponding to λ, as claimed.
ut

The point k = 0 is rather special for the family Pβ,m(−k2), as shown in next proposition.

Proposition 3.15. Let m ∈ Π and β ∈ C such that ±Im(
√
β) > 0. Then the map k 7→ Pβ,m(−k2) is

not continuous at k = 0.
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Proof. We consider the case where m /∈ {−1
2 , 0,

1
2}. The other cases are similar.

First, we claim that for all continuous and compactly supported function f ,

lim
k→0

〈
f |Pβ,m(−k2)f

〉
=
〈
f |Pβ,m(0)f

〉
,

where k ∈ C is chosen such that Re(k) > 0 and ±
(

arg(β)−arg(k)
)
∈]ε, π−ε[ with ε > 0. To shorten

the expressions below, we set in this proof

gβ,m,k(x) := ∓i
Γ
(

1
2 +m− β

2k

)
√
π

(
β

2k

) 1
2
−m
K β

2k ,m
(2kx),

and
gβ,m,0(x) := (βx)

1
4H±2m(2

√
βx).

We show that gβ,m,k is uniformly bounded, for k satisfying the conditions above, by a locally
integrable function. From the definition (A.3) of Iβ,m and proceeding as in the proof of Proposition
B.2, we obtain that, for k ∈ C such that Re(k) > 0, |k| < 1, and ±

(
arg(β)− arg(k)

)
∈]ε, π− ε[ with

ε > 0,

∣∣∣( β
2k

) 1
2
+m
I β

2k ,m
(2kx)

∣∣∣ =
∣∣∣(βx)

1
2
+me−kx

∞∑
j=0

(
1
2 +m− β

2k

)
j

Γ (1 + 2m+ j)

(2kx)j

j!

∣∣∣
≤ |βx|

1
2
+m

∞∑
j=0

cjxj

|Γ (1 + 2m+ j)|
,

for some constant c > 0 depending on β and m but independent of k and x. Using that

gβ,m,k(x) =
∓i
√
π

sin(2πm)

(
β

2k

) 1
2
−m(

−
Γ
(

1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)I β
2k ,m

(2kx) + I β
2k ,−m

(2kx)
)
,

together with Lemma B.3, one then deduces that∣∣gβ,m,k(x)
∣∣ ≤ c1ec2x,

for some positive constants c1, c2 independent of k and x.
The previous bound together with the dominated convergence theorem and Proposition B.2

show that

lim
k→0

〈
gβ,m,k|f

〉
=
〈
gβ,m,0|f

〉
,

for all continuous and compactly supported function f , and for k satisfying the conditions exhibited
above. We then have that〈

f |Pβ,m(−k2)f
〉

=
k sin(2πm)Γ

(
1
2 +m− β

2k

)
Γ
(

1
2 −m−

β
2k

)
π
[
2m+ β

2kψ
(

1
2 +m− β

2k

)
− β

2kψ
(

1
2 −m−

β
2k

)]〈K β
2k ,m

(2k·)|f
〉2

= − k sin(2πm)

2m+ β
2kψ

(
1
2 +m− β

2k

)
− β

2kψ
(

1
2 −m−

β
2k

) Γ(1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2k

)( β
2k

)2m−1〈
gβ,m,k|f

〉2
=

2k2 sin(2πm)

β
[ β

2k

(
2k
β

)3m
6 (−1 + 4m2) + o(1)

] Γ(1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2k

)( β
2k

)2m〈
gβ,m,k|f

〉2
→
k→0

3β sin(2πm)

m(4m2 − 1)
e±iπ2m〈gβ,m,0|f〉2

=
〈
f |Pβ,m(0)f

〉
,

where we used Lemma B.7 in the third equality.
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Now, we claim that Pβ,m(−k2) is not continuous at k = 0 for the strong operator topology.
Indeed, using that Pβ,m(−k2) is a self-transposed projection, we infer that, for f continuous and
compactly supported,〈(

Pβ,m(−k2)− Pβ,m(0)
)
f |
(
Pβ,m(−k2)− Pβ,m(0)

)
f
〉

=
〈
Pβ,m(−k2)f |f

〉
+
〈
Pβ,m(0)f |f

〉
− 2
〈
Pβ,m(0)f |Pβ,m(−k2)f

〉
.

A similar computation as above gives〈
Pβ,m(0)f |Pβ,m(−k2)f

〉
=

3β sin(2πm)

me∓iπ2m
(
4m2 − 1

) 2k2 sin(2πm)

β
[ β

2k

(
2k
β

)3m
6 (−1 + 4m2) + o(1)

] Γ(1
2 −m−

β
2k

)
Γ
(

1
2 +m− β

2k

)( β
2k

)2m

× 〈f |gβ,m,k〉〈gβ,m,k|gβ,m,0〉〈gβ,m,0|f〉
→
k→0

0,

since lim
k→0
〈gβ,m,k|gβ,m,0〉 = 0 by Remark B.6, while the other terms converge. Therefore,

〈(
Pβ,m(−k2)− Pβ,m(0)

)
f |
(
Pβ,m(−k2)− Pβ,m(0)

)
f
〉
→
k→0

2
〈
Pβ,m(0)f |f

〉
6= 0,

for suitably chosen compactly supported functions f . This proves that Pβ,m(−k2) is not continuous
at k = 0. ut

A The Whittaker equation

A.1 General theory

In this section we collect basic information about the Whittaker equation. This should be considered as a supple-
ment to [7, Sec. 2].

The Whittaker equation is represented by the equation(
Lβ,m2 +

1

4

)
f :=

(
− ∂2

z +
(
m2 −

1

4

) 1

z2
−
β

z
+

1

4

)
f = 0. (A.1)

We observe that the equation does not change when we replace m with −m. It has also another symmetry:(
Lβ,m2 +

1

4

)
f(z) = 0 ⇒

(
L−β,m2 +

1

4

)
f(−z) = 0. (A.2)

Solutions of (A.1) are provided by the functions z 7→ Iβ,±m(z) which are defined by

Iβ,m(z) = z
1
2

+me∓
z
2

1F1

(
1
2

+m∓ β; 1 + 2m;±z
)

Γ (1 + 2m)

= z
1
2

+me∓
z
2

∞∑
k=0

(
1
2

+m∓ β
)
k

Γ (1 + 2m+ k)

(±z)k

k!
, (A.3)

where (a)k := a(a + 1) · · · (a + k − 1) and (a)0 = 1 are the usual Pochhammer’s symbols and 1F1 is Kummer’s
confluent hypergeometric function. For Re(m) > − 1

2
and Re

(
m ∓ β + 1

2

)
> 0 the function Iβ,m has also an

integral representation given by

Iβ,m(z) =
z

1
2

+m

Γ
(

1
2

+m+ β
)
Γ
(

1
2

+m− β
) ∫ 1

0
e±z(s−

1
2

)sm∓β−
1
2 (1− s)m±β−

1
2 ds.

Based on (A.3) one easily gets

W
(
Iβ,m, Iβ,−m;x

)
= −

sin(2πm)

π
(A.4)

as well as the following identity

Iβ,m(z) = e∓iπ( 1
2

+m)I−β,m
(
e±iπz

)
. (A.5)
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Another solution of (A.1) is provided by the function z 7→ Kβ,m(z). For m 6∈ 1
2
Z it can be defined by the

following relation:

Kβ,m =
π

sin(2πm)

(
−

Iβ,m
Γ
(

1
2
−m− β

) +
Iβ,−m

Γ
(

1
2

+m− β
)). (A.6)

For the remaining m we can extend the definition of Kβ,m by continuity, see Subsect. A.3. Note that Kβ,−m =
Kβ,m, and that the function Kβ,m can also be expressed in terms of the function 2F0, namely:

Kβ,m(z) = zβe−
z
2 2F0

(
1
2

+m− β, 1
2
−m− β;−;−z−1

)
.

An alternative definition of Kβ,m can be provided by an integral representation valid for Re
(
− β ∓m + 1

2

)
> 0

and Re(z) > 0:

Kβ,m(z) =
z

1
2
∓me−

z
2

Γ
(

1
2
− β ∓m

) ∫ ∞
0

e−zss−
1
2
−β∓m(1 + s)−

1
2

+β∓mds.

Note that the function Kβ,m decays exponentially for large Re(z), more precisely, if ε > 0 and |arg(z)| < 3
2
π − ε,

then one has
Kβ,m(z) = zβ e−

z
2
(
1 +O(z−1)

)
. (A.7)

By using the relation (A.6) one also obtains that

W
(
Iβ,m,Kβ,m;x

)
= −

1

Γ
(

1
2

+m− β
) . (A.8)

We would like to treat Iβ,m, Iβ,−m and Kβ,m as the principal solutions of the Whittaker equation (A.1).
There are however cases for which this is not sufficient. Therefore, we introduce below a fourth solution, which
we denote by Xβ,m. To the best of our knowledge, this function has never appeared elsewhere in the literature.

The function Kβ,m is distinguished by the fact that it decays exponentially, while the solutions Iβ,±m(z)
explode exponentially, see [7, Eq. (2.14) & (2.22)]. This is also the case for the analytic continuations of K−β,m
by the angles ±π, which by the symmetry (A.2) are also solutions of (A.1). It will be convenient to introduce a
name for a solution constructed from these two analytic continuations. There is some arbitrariness for this choice,
but we have decided on:

Xβ,m(z) := 1
2

(
e−iπ( 1

2
+m)K−β,m

(
eiπz

)
+ eiπ( 1

2
+m)K−β,m

(
e−iπz

))
. (A.9)

As a consequence of this definition and of (A.5) one gets the relations

Xβ,m(z) = −
π

sin(2πm)

( Iβ,m(z)

Γ
(

1
2
−m+ β

) − cos(2πm)Iβ,−m(z)

Γ
(

1
2

+m+ β
) )

, (A.10)

and

e∓iπ( 1
2

+m)K−β,m
(
e±iπz

)
= Xβ,m(z)∓

iπIβ,−m(z)

Γ
(

1
2

+m+ β
) .

In addition, by using the equalities

cos
(
π(m− β)

)
= cos

(
2πm− π(m+ β)

)
= cos(2πm) cos

(
π(m+ β)

)
+ sin(2πm) sin

(
π(m+ β)

)
, (A.11)

one infers from (A.6) and (A.10) that

cos(2πm)Kβ,m
Γ
(

1
2

+m+ β
) − Xβ,m

Γ
(

1
2

+m− β
)

=
1

sin(2πm)

(
cos
(
π(m− β)

)
− cos(2πm) cos

(
π(m+ β)

))
Iβ,m

= sin
(
π(m+ β)

)
Iβ,m,

which finally leads to the relation

Iβ,m =
1

sin(π(m+ β))

(
cos(2πm)

Γ
(

1
2

+m+ β
)Kβ,m − 1

Γ
(

1
2

+m− β
)Xβ,m). (A.12)

By taking formulas (A.6), (A.10), and (A.11) into account, one infers that the Wronskian is provided by

W (Kβ,m,Xβ,m;x) = − sin
(
π(m+ β)

)
.

Hence for m+β ∈ Z the solutions Kβ,m and Xβ,m are proportional to one another. In fact, for such β,m, we have

Xβ,m(z) =
Γ
(

1
2
−m− β

)
Γ
(

1
2
−m+ β

)Kβ,m(z).

Note that this corresponds to the lines m + β = n ∈ Z. However in our applications, we need Xβ,m on the lines

m+ β − 1
2

= n ∈ Z, where Kβ,m and Xβ,m are linearly independent.
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A.2 The Laguerre cases

Let us now consider two special cases, namely when − 1
2
−m + β := n ∈ N and when − 1

2
−m − β := n ∈ N. In

the former case, observe that the Wronskian of Iβ,m and Kβ,m vanishes, see (A.8). It means that in such a case
these two functions are proportional to one another. In order to deal with this situation we define, for p ∈ C and
n ∈ N, the Laguerre polynomials by the formulas

L
(p)
n (z) =

z−pez

n!

dn

dzn

(
e−zzp+n

)
=

n∑
k=0

(p+ k + 1)n−k(−z)k

(n− k)!k!

=
(p+ 1)n

n!
1F1(−n; p+ 1; z)

=
(−1)n

n!
zn2F0(−n,−p− n;−;−z−1).

Then, by setting 2m = p, we get

I 1+p
2

+n, p
2

=
n!z

1+p
2 e−

z
2

Γ (1 + p+ n)
L

(p)
n .

Note that this solution can also be expressed in terms of the Kβ,m function, namely

K 1+p
2

+n, p
2

= (−1)nn! z
1+p
2 e−

z
2 L

(p)
n . (A.13)

We shall call this situation the decaying Laguerre case. In this case the relation (A.12) reduces to

I 1+p
2

+n, p
2

=
(−1)n

Γ (1 + p+ n)
K 1+p

2
+n, p

2
, (A.14)

and more generally for ` ∈ Z one has

I 1+p
2

+`, p
2

=
(−1)`

Γ (1 + p+ `)
K 1+p

2
+`, p

2
+

(−1)`+1

cos(πp)Γ (−`)
X 1+p

2
+`, p

2
.

In the special case − 1
2
−m− β := n ∈ N a similar analysis with p = 2m leads to

I− 1+p
2
−n, p

2
(z) =

n!z
1+p
2 e

z
2

Γ (1 + p+ n)
L

(p)
n (−z)

and to

X− 1+p
2
−n, p

2
(z) = e∓i 1+p

2
πK 1+p

2
+n, p

2

(
e±iπz

)
= (−1)nn!z

1+p
2 e

z
2 L

(p)
n (−z). (A.15)

We shall call this situation the exploding Laguerre case. In this case the relation (A.12) reduces to

I− 1+p
2
−n, p

2
=

(−1)n

Γ (1 + p+ n)
X− 1+p

2
−n, p

2
, (A.16)

and more generally for ` ∈ Z one has

I− 1+p
2
−`, p

2
=

(−1)`+1 cos(πp)

Γ (−`)
K− 1+p

2
−`, p

2
+

(−1)`

Γ (1 + p+ `)
X− 1+p

2
−`, p

2
.

A.3 The degenerate case

In this section we consider the special case m ∈ 1
2
Z, which will be called the degenerate case, see Figure 1. In this

situation the Wronskian of Iβ,m and Iβ,−m vanishes, see (A.4). More precisely, for any p ∈ N one has the identity

Iβ,− p
2

=
(
− β −

p− 1

2

)
p
Iβ, p

2
,

or equivalently,
1

Γ
( 1+p

2
− β

)Iβ,− p
2

=
1

Γ
( 1−p

2
− β

)Iβ, p
2
.



30 Jan Dereziński et al.

Based on this equality and by a limiting procedure, one can provide an expression for the functions Kβ, p
2

(see

[7, Thm. 2.2]), namely

Kβ, p
2

(z) =
(−1)p+1 ln(z)Iβ, p

2
(z)

Γ
( 1−p

2
− β

)
+

(−1)p+1e−
z
2 z

1+p
2

Γ
( 1−p

2
− β

) ∞∑
k=0

( 1+p
2
− β

)
k
zk

(p+ k)!k!

×
(
ψ
( 1+p

2
− β + k

)
− ψ(p+ 1 + k)− ψ(1 + k)

)
+

(−1)p+1e−
z
2 z

1+p
2

Γ
( 1−p

2
− β

) p∑
j=1

( 1+p
2
− β

)
−j(−1)j−1(j − 1)!z−j

(p− j)!
,

(A.17)

where ψ is the digamma function defined by ψ(z) =
Γ ′(z)
Γ (z)

. Note that the equality (or definition) (a)j =
Γ (a+j)
Γ (a)

has also been used for arbitrary j ∈ Z. For our applications the most important functions correspond to m = 1
2

and m = 0:

Kβ, 1
2

(z) =
ln(z)Iβ, 1

2
(z)

Γ
(
− β

) +
e−

z
2

Γ (1− β)
(A.18)

+
e−

z
2

Γ
(
− β

) ∞∑
k=0

(
1− β

)
k
z1+k

(1 + k)!k!

(
ψ
(
1− β + k

)
− ψ(2 + k)− ψ(1 + k)

)
,

Kβ,0(z) =−
ln(z)Iβ,0(z)

Γ
(

1
2
− β

) (A.19)

−
e−

z
2

Γ
(

1
2
− β

) ∞∑
k=0

(
1
2
− β

)
k
z

1
2

+k

(k!)2

(
ψ
(

1
2
− β + k

)
− 2ψ(1 + k)

)
.

Let us still provide the expression for the function Xβ, p
2

. Starting from its definition in (A.9) and by using

the expansion (A.17) as well as the identity provided in (A.5) one gets

Xβ, p
2

(z) =
(−1)p+1 ln(z)Iβ, p

2
(z)

Γ
( 1−p

2
+ β

)
+

(−1)p+1e
z
2 z

1+p
2

Γ
( 1−p

2
+ β

) ∞∑
k=0

( 1+p
2

+ β
)
k

(−1)kzk

(p+ k)!k!

×
(
ψ
( 1+p

2
+ β + k

)
− ψ(p+ 1 + k)− ψ(1 + k)

)
−

(−1)p+1e
z
2 z

p+1
2

Γ
( 1−p

2
+ β

) p∑
j=1

( 1+p
2

+ β
)
−j(j − 1)!z−j

(p− j)!
.

In particular, the expansions for m = 1
2

and m = 0 will be useful:

Xβ, 1
2

(z) =−
1

Γ (1 + β)
+

1

Γ (β)
z ln(z) (A.20)

+
1

Γ (β)

(1

2
ψ(1 + β) +

1

2
ψ(β) + 2γ − 1

)
z + o(z)

Xβ,0(z) =−
z

1
2

Γ
(

1
2

+ β
) [(1− βz) ln(z) +

(
ψ
(

1
2

+ β
)

+ 2γ
)

(A.21)

− β
(
ψ
(1

2
+ β

)
+ 2γ − 2

)
z
]

+ o
(
z

3
2
)
.

Note also that the following identity holds:

Xβ,− p
2

= (−1)pXβ, p
2
,

as a consequence of (A.9).
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β

m−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

4

3

2

1

1 2 3 4

Fig. 1: The vertical lines correspond to the degenerate cases, the lines with slope 1 to the decaying
Laguerre case, the lines with slope −1 with the exploding Laguerre case.

A.4 The doubly degenerate case

We shall now consider the region {
(m,β) | β ∈ 1

2
Z, m ∈ 1

2
Z, β +m+ 1

2
∈ Z
}
. (A.22)

In other words, we consider m ∈ Z, β ∈ Z + 1
2

, or m ∈ Z + 1
2

, β ∈ Z. This situation will be called the doubly

degenerate case. We will again set m = p
2

with p ∈ Z. Note that for (m,β) in (A.22) we have the identity

Iβ,m =
(−1)β+m+ 3

2
+p

Γ
(

1
2

+m+ β
) Kβ,m +

(−1)β+m+ 1
2

Γ
(

1
2

+m− β
)Xβ,m, (A.23)

which is a special case of (A.12). In this case we also have

W (Kβ,m,Xβ,m;x) = (−1)m+β+ 1
2 . (A.24)

Hence Kβ,m and Xβ,m always span the space of solutions in the doubly degenerate case.
In order to analyze the doubly degenerate case more precisely, let us divide (A.22) into 4 distinct regions (see

Figure 2).

Region I−. β +m ∈ −
(
N + 1

2

)
, −β +m ∈ −

(
N + 1

2

)
.

We have
Iβ,m = 0,

which follows for example from (A.23). By setting n1 := β − m − 1
2
∈ N and n2 = −β − m − 1

2
∈ N, then

Kβ,m = K 1+p
2

+n1,
p
2

is the decaying Laguerre solution, see (A.13), and Xβ,m = X− 1+p
2
−n2,

p
2

is the exploding

Laguerre solution, see (A.15).

Region I+. β +m ∈ N + 1
2
, −β +m ∈ N + 1

2
.
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First note that (m,β) ∈ I− if and only if (−m,β) ∈ I+. By setting n1 := β+m− 1
2
∈ N and n2 := −β+m− 1

2
∈ N,

one has β = n1−n2
2

, m = n1+n2+1
2

, and the equality (A.23) can be rewritten as

Iβ,m =
(−1)n2+1

n1!
Kβ,m +

(−1)n1+1

n2!
Xβ,m.

Note then that Kβ,m = K 1−p
2

+n1,
p
2

= K 1−p
2

+n1,
−p
2

corresponds to the decaying Laguerre solution, while Xβ,m =

X− 1−p
2
−n2,

p
2

= (−1)pX− 1−p
2
−n2,− p2

= (−1)pX− 1−p
2
−n2,

−p
2

corresponds to the exploding Laguerre solution. In

this region, the space of solutions can also be spanned by the pair Kβ,m and Iβ,m, or by the pair Iβ,m and Xβ,m.

Region II−. β +m ∈ −
(
N + 1

2

)
, −β +m ∈ N + 1

2
.

By setting n := −β −m− 1
2
∈ N, then the equality (A.16) reduces to

I− p+1
2
−n, p

2
=

(−1)n

(p+ n)!
X− p+1

2
−n, p

2
.

Thus Iβ,m is proportional to Xβ,m and corresponds to the exploding Laguerre case. The second solution is Kβ,m.
It decays exponentially and has a logarithmic singularity at zero, therefore we call this function the decaying
logarithmic solution.

Region II+. β +m ∈ N + 1
2
, −β +m ∈ −

(
N + 1

2

)
.

By setting n := β −m− 1
2
∈ N, then the equality (A.14) reduces to

I p+1
2

+n, p
2

=
(−1)n

(p+ n)!
K p+1

2
+n, p

2
.

Thus Iβ,m is proportional to Kβ,m and corresponds to the decaying Laguerre case. The second solution is Xβ,m.
It explodes exponentially and has a logarithmic singularity at zero, therefore we call this function the exploding
logarithmic solution.

The results of this section are summarized in Figure 2.
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β

m

I− I+

II+

II−

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

4

3

2

1

1 2 3 4

Fig. 2: Solutions for the doubly degenerate case: Region I−: the decaying Laguerre and the exploding
Laguerre solutions. Region I+: any of the three solutions. Region II+: the decaying Laguerre and the
exploding logarithmic solutions. Region II−: the exploding Laguerre and the decaying logarithmic
solutions.

A.5 Recurrence relations

Solutions of the Whittaker equation satisfy interesting recurrence relations. These relations can be checked by
using the series provided in (A.3). The computations are straightforward, but rather lengthy. These relations read

(√
z∂z +

− 1
2
−m
√
z
−
√
z

2

)
Iβ,m(z) =

(
−

1

2
−m− β

)
Iβ+ 1

2
,m+ 1

2
(z),

(√
z∂z +

− 1
2

+m
√
z

+

√
z

2

)
Iβ,m(z) = Iβ− 1

2
,m− 1

2
(z),

(√
z∂z +

− 1
2

+m
√
z
−
√
z

2

)
Iβ,m(z) = Iβ+ 1

2
,m− 1

2
(z),

(√
z∂z +

− 1
2
−m
√
z

+

√
z

2

)
Iβ,m(z) =

(1

2
+m− β

)
Iβ− 1

2
,m+ 1

2
(z),(

z∂z + β −
z

2

)
Iβ,m(z) =

(1

2
+m+ β

)
Iβ+1,m(z),(

z∂z − β +
z

2

)
Iβ,m(z) =

(1

2
+m− β

)
Iβ−1,m(z).
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By using the relation between the functions Kβ,m and the functions Iβ,m provided in (A.6), one infers from the
above relations the following ones:

(√
z∂z +

− 1
2
−m
√
z
−
√
z

2

)
Kβ,m(z) = −Kβ+ 1

2
,m+ 1

2
(z),

(√
z∂z +

− 1
2

+m
√
z

+

√
z

2

)
Kβ,m(z) =

(
−

1

2
+m+ β

)
Kβ− 1

2
,m− 1

2
(z),

(√
z∂z +

− 1
2

+m
√
z
−
√
z

2

)
Kβ,m(z) = −Kβ+ 1

2
,m− 1

2
(z),

(√
z∂z +

− 1
2
−m
√
z

+

√
z

2

)
Kβ,m(z) =

(
−

1

2
−m+ β

)
Kβ− 1

2
,m+ 1

2
(z),(

z∂z + β −
z

2

)
Kβ,m(z) = −Kβ+1,m(z),(

z∂z − β +
z

2

)
Kβ,m(z) =

(1

2
+m− β

)(1

2
−m− β

)
Kβ−1,m(z).

A.6 Integral identities

Let us start with a general fact about 1-dimensional Schrödinger operators, see for example [5, Eq. (3.24)].

Lemma A.1. For i ∈ {1, 2}, suppose that vi ∈ D(Lmax
β,α ) satisfies Lβ,αvi = λivi for some λi ∈ C. Then, for all

a, b ∈]0,∞[,

(λ1 − λ2)

∫ b

a
v1(x)v2(x)dx = W (v1, v2; b)−W (v1, v2; a), (A.25)

where W is the Wronskian introduced in (2.1).

As a consequence of this lemma one has:

Proposition A.2. Let k, p ∈ C with Re(k) > 0 and Re(p) > 0.

(i) If −1 < Re(m) < 1, m 6∈
{
− 1

2
, 0, 1

2

}
, then

(k2 − p2)

∫ ∞
0
K β

2k
,m

(2kx)K β
2p
,m

(2px)dx

=
π

sin(2πm)

√
4kp

(
kmp−m

Γ
(

1
2

+m− β
2p

)
Γ
(

1
2
−m− β

2k

) − pmk−m

Γ
(

1
2

+m− β
2k

)
Γ
(

1
2
−m− β

2p

)).
(ii) If m = 0, then

(k2 − p2)

∫ ∞
0
K β

2k
,0

(2kx)K β
2p
,0

(2px)dx

=
√

4kp
ψ
(

1
2
− β

2k

)
− ψ

(
1
2
− β

2p

)
+ ln(k)− ln(p)

Γ
(

1
2
− β

2p

)
Γ
(

1
2
− β

2k

) .

(iii) If m = ± 1
2

, then

(k2 − p2)

∫ ∞
0
K β

2k
, 1
2

(2kx)K β
2p
, 1
2

(2px)dx

= β

1
2
ψ
(
1− β

2k

)
+ 1

2
ψ
(
− β

2k

)
− 1

2
ψ
(
1− β

2p

)
− 1

2
ψ
(
− β

2p

)
+ ln(k)− ln(p)

Γ
(
1− β

2p

)
Γ
(
1− β

2k

) .

Proof. The proof consists in an application of Lemma A.1. Consider k, p ∈ C with Re(k) > 0, Re(p) > 0 and set
λ1 = −k2 and λ2 = −p2. As shown in the proof of Theorem 3.1 the functions vi defined by

v1(x) = K β
2k
,m

(2kx) and v2(x) = K β
2p
,m

(2px)

belong toD(Lmax
β,m2 ) and are eigenfunctions of Lβ,m2 associated with the eigenvalues λi. Let us then set W (v1, v2; 0) :=

lim
x↘0

W (v1, v2;x) and observe that lim
x→+∞

W (v1, v2;x) = 0, as a consequence of Proposition 2.1. This yields directly

(k2 − p2)

∫ ∞
0

v1(x)v2(x)dx = W (v1, v2; 0). (A.26)



On radial Schrödinger operators with a Coulomb potential: General boundary conditions 35

Let us now set
u1,±(x) = I β

2k
,±m(2kx) and u2,±(x) = I β

2p
,±m(2px).

Then, the identity (A.6) leads to

v1(x) =
π

sin(2πm)

(
−

u1,+(x)

Γ
(

1
2
−m− β

2k

) +
u1,−(x)

Γ
(

1
2

+m− β
2k

)),
v2(x) =

π

sin(2πm)

(
−

u2,+(x)

Γ
(

1
2
−m− β

2p

) +
u2,−(x)

Γ
(

1
2

+m− β
2p

)),
and with the expansion provided in A.3 one directly infers that

W (u1,+, u2,+; 0) = W (u1,−, u2,−; 0) = 0,

W (u1,+, u2,−; 0) = −
4mk

1
2

+mp
1
2
−m

Γ (1 + 2m)Γ (1− 2m)
= −

2 sin(2πm)

π
k

1
2

+mp
1
2
−m,

W (u1,−, u2,+; 0) =
4mk

1
2
−mp

1
2

+m

Γ (1 + 2m)Γ (1− 2m)
=

2 sin(2πm)

π
k

1
2
−mp

1
2

+m.

As a consequence of these equalities one gets

W (v1, v2; 0)

=
π

sin(2πm)

(
2k

1
2

+mp
1
2
−m

Γ
(

1
2
−m− β

2k

)
Γ
(

1
2

+m− β
2p

) − 2k
1
2
−mp

1
2

+m

Γ
(

1
2

+m− β
2k

)
Γ
(

1
2
−m− β

2p

)).
This proves (i). The equalities (ii) and (iii) can be proved similarly by using (A.18) and (A.19). ut

By using the L’Hospital’s rule one directly obtains:

Corollary A.3. Let Re(k) > 0.

(i) For −1 < Re(m) < 1, m 6∈
{
− 1

2
, 0, 1

2

}
one has

∫ ∞
0
K β

2k
,m

(2kx)2dx =
π

sin(2πm)

2m+ β
2k
ψ
(

1
2

+m− β
2k

)
− β

2k
ψ
(

1
2
−m− β

2k

)
kΓ
(

1
2

+m− β
2k

)
Γ
(

1
2
−m− β

2k

) .

(ii) For m = 0, ∫ ∞
0
K β

2k
,0

(2kx)2dx =
1 + β

2k
ψ′
(

1
2
− β

2k

)
kΓ
(

1
2
− β

2k

)2 .

(iii) For m = 1
2

, ∫ ∞
0
K β

2k
, 1
2

(2kx)2dx = −
1 + β

4k
ψ′
(
− β

2k

)
+ β

4k
ψ′
(
1− β

2k

)
kΓ
(
− β

2k

)
Γ
(
1− β

2k

) .

A.7 The trigonometric type Whittaker equation

Along with the standard Whittaker equation (A.1), sometimes called hyperbolic type, it is natural to consider the
trigonometric type Whittaker equation(

Lβ,m2 −
1

4

)
f =

(
− ∂2

z +
(
m2 −

1

4

) 1

z2
−
β

z
−

1

4

)
f = 0. (A.27)

In [7, Sec. 2.6 & 2.7] we introduced the functions

Jβ,m(z) = e∓iπ
2

( 1
2

+m)I∓iβ,m

(
e±iπ

2 z
)

(A.28)

and

H±β,m(z) =e∓iπ
2 ( 1

2
+m)K±iβ,m(e∓iπ

2 z)

=
±iπ

sin(2πm)

( e∓iπmJβ,m(z)

Γ
(

1
2
−m∓ iβ

) − Jβ,−m(z)

Γ
(

1
2

+m∓ iβ
)), (A.29)

which solve (A.27). Note that the function H±β,m has been used in the proof of Theorem 3.1 when dealing with

positive eigenvalues of the Whittaker operators.
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A.8 Integral identities in the trigonometric case

Here are the analogues of Proposition A.2 and Corollary A.3 in the trigonometric case. The approach can be
mimicked from Section A.6 because of the identity

Lβ,m2H±β
2µ
,m

(2µx) = µ2H±β
2µ
,m

(2µx)

valid for any µ > 0.

Proposition A.4. Let µ, η > 0 with µ < ±Im
(
β) and η < ±Im

(
β).

(i) If −1 < Re(m) < 1, m 6∈
{
− 1

2
, 0, 1

2

}
, then

(µ2 − η2)

∫ ∞
0
H±β

2µ
,m

(2µx)H±β
2η
,m

(2ηx)dx

=
πe∓iπm

sin(2πm)

√
4µη

(
µmη−m

Γ
(

1
2

+m∓ i β
2η

)
Γ
(

1
2
−m∓ i β

2µ

) − ηmµ−m

Γ
(

1
2

+m∓ i β
2µ

)
Γ
(

1
2
−m∓ i β

2η

)).
(ii) If m = 0, then

(µ2 − η2)

∫ ∞
0
H±β

2µ
,0

(2µx)H±β
2η
,0

(2ηx)dx

=
√

4µη
ψ
(

1
2
∓ i β

2µ

)
− ψ

(
1
2
∓ i β

2η

)
+ ln(µ)− ln(η)

Γ
(

1
2
∓ i β

2µ

)
Γ
(

1
2
∓ i β

2η

) .

(iii) If m = 1
2

, then

(µ2 − η2)

∫ ∞
0
H±β

2µ
, 1
2

(2µx)H±β
2η
, 1
2

(2ηx)dx

= β

1
2
ψ
(
1∓ i β

2µ

)
+ 1

2
ψ
(
∓ i β

2µ

)
− 1

2
ψ
(
1∓ i β

2η

)
− 1

2
ψ
(
∓ i β

2η

)
+ ln(µ)− ln(η)

Γ
(
1∓ i β

2η

)
Γ
(
1∓ i β

2µ

) .

Corollary A.5. Let 0 < µ < ±Im(β).

(i) For −1 < Re(m) < 1, m 6∈
{
− 1

2
, 0, 1

2

}
one has

∫ ∞
0
H±β

2µ
,m

(2µx)2dx =
πe∓iπm

sin(2πm)

(
2m± i β

2µ
ψ
(

1
2

+m∓ i β
2µ

)
∓ i β

2k
ψ
(

1
2
−m∓ i β

2µ

)
µΓ
(

1
2

+m∓ i β
2µ

)
Γ
(

1
2
−m∓ i β

2µ

) )
.

(ii) For m = 0, ∫ ∞
0
H±β

2µ
,0

(2µx)2dx =
1± i β

2µ
ψ′
(

1
2
∓ i β

2µ

)
µΓ
(

1
2
∓ i β

2µ

)2 .

(iii) For m = 1
2

, ∫ ∞
0
H±β

2µ
, 1
2

(2µx)2dx =
±i− β

4µ
ψ′
(
∓ i β

2µ

)
− β

4µ
ψ′
(
1∓ i β

2µ

)
µΓ
(
∓ i β

2µ

)
Γ
(
1∓ i β

2µ

) .

B The Bessel equation

B.1 The modified Bessel equation

The modified (or hyperbolic type) Bessel equation for dimension 1(
− ∂2

z +
(
m2 −

1

4

) 1

z2
+ 1

)
f = 0, (B.1)

is up to a trivial rescaling, a special case of the Whittaker equation with β = 0. Its theory was discussed at length
in [6, App. A]. Nevertheless, we briefly discuss some of its elements here, explaining the parallel elements to the
theory of the Whittaker equation, as well as the differences.
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Let the modified Bessel function for dimension 1 be

Im(z) =

∞∑
n=0

√
π
(
z
2

)2n+m+ 1
2

n!Γ (m+ n+ 1)

=

√
π

Γ (m+ 1)

( z
2

)m+ 1
2

0F1

(
m+ 1;

( z
2

)2)
.

(B.2)

The equation (B.1) is invariant with respect to m → −m. At the level of the function (B.2) this property is
reflected by

Im(z) = e∓iπ( 1
2

+m)Im(e±iπz).

For the Wronskian we have

W (Im, I−m; z) = − sin(πm).

The function Km can be introduced for m 6∈ Z by

Km(z) =
1

sin(πm)

(
− Im(z) + I−m(z)

)
.

For m ∈ Z the definition is extended by continuity. Note that the relation Km(z) = K−m(z) holds, and that

W (Km, Im; z) = 1.

To make our presentation of the hyperbolic Bessel equation as much parallel to that of the Whittaker equation
as possible, we introduce the function

Xm(z) :=
1

2

(
e−iπ( 1

2
+m)Km

(
eiπz

)
+ eiπ( 1

2
+m)Km

(
e−iπz

))
.

Then the following relations hold:

Xm = −
1

sin(πm)

(
Im − cos(2mπ)I−m

)
,

Im =
1

2 sin(mπ)

(
cos(2mπ)Km −Xm

)
. (B.3)

The precise relations between the Whittaker functions for β = 0 and Bessel-type functions are of the form

I0,m(z) =
2

Γ
(

1
2

+m
)Im( z

2

)
, (B.4)

K0,m(z) = Km
( z

2

)
,

X0,m(z) = Xm
( z

2

)
.

B.2 Recurrence relations

For the functions Im and Km, the following recurrence relations hold:

(
∂z +

(
m−

1

2

)1

z

)
Im(z) = Im−1(z),(

∂z +
(
−m−

1

2

)1

z

)
Im(z) = Im+1(z),(

∂z +
(
m−

1

2

)1

z

)
Km(z) = −Km−1(z),(

∂z +
(
−m−

1

2

)1

z

)
Km(z) = −Km+1(z).
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B.3 Integral identities

It is proved for example in [6, Sec. A.8] that for |Re(m)| < 1, m 6= 0 and for Re(a+ b) > 0 one has

∫ ∞
0
Km(ax)Km(bx)dx =

(a2m − b2m)a
1
2
−mb

1
2
−m

sin(πm)(a2 − b2)
. (B.5)

Observe that the r.h.s. of (B.5) can be extended by continuity to a = b and m = 0 since

lim
m→0

(a2m − b2m)a
1
2
−mb

1
2
−m

sin(πm)(a2 − b2)
=

2

π

(
ln(a)− ln(b)

)
a

1
2 b

1
2

a2 − b2
,

lim
b→a

(a2m − b2m)a
1
2
−mb

1
2
−m

sin(πm)(a2 − b2)
=

m

sin(πm)a
,

lim
m→0

lim
b→a

(a2m − b2m)a
1
2
−mb

1
2
−m

sin(πm)(a2 − b2)
=

1

πa
.

We shall need another integral identity:

Proposition B.1. For |Re(m)| < 1 and Re(a+ b) > 0 one has∫ ∞
0

x2Km(ax)Km(bx)dx (B.6)

=
4a

1
2
−mb

1
2
−m{(m− 1)(a2m+2 − b2m+2) + (m+ 1)a2b2(b2m−2 − a2m−2)

}
sin(πm)(b2 − a2)3

. (B.7)

In addition, the following limiting cases hold:

∫ ∞
0

x2K0(ax)K0(bx)dx = −
8a

1
2 b

1
2

π(b2 − a2)2
+

8a
1
2 b

1
2 (a2 + b2)

π(b2 − a2)3

(
ln(b)− ln(a)

)
,∫ ∞

0
x2Km(ax)2dx =

2m(1−m2)

3a3 sin(πm)
,∫ ∞

0
x2K0(ax)K0(ax)dx =

2

3πa3
.

Proof. Assume first that −1 < Re(m) < 0. By using twice the recurrence relations of Section B.2 one gets

∫ ∞
0

x2Km(ax)Km(bx)dx = −
(
∂b+

m+ 1
2

b

)∫ ∞
0

xKm(ax)Km+1(bx)dx,

and ∫ ∞
0

xKm(ax)Km+1(bx)dx = −
(
∂a+

m+ 1
2

a

)∫ ∞
0
Km+1(ax)Km+1(bx)dx.

Then, we infer that ∫ ∞
0

x2Km(ax)Km(bx)dx

=
(
∂a+

m+ 1
2

a

)(
∂b+

m+ 1
2

b

)∫ ∞
0
Km+1(ax)Km+1(bx)dx

=
(
∂a+

m+ 1
2

a

)(
∂b+

m+ 1
2

b

)( (a2m+2 − b2m+2)a−
1
2
−mb−

1
2
−m

sin(πm)(b2 − a2)

)
= a−

1
2
−mb−

1
2
−m∂a∂b

(
a2m+2 − b2m+2

sin(πm)(b2 − a2)

)

where we have used (B.5) with m + 1 instead of m, and the fact that ∂a(a−
1
2
−m) = −m+ 1

2
a

a−
1
2
−m. Clearly,

a similar relation holds for a replaced by b. By computing the derivatives, one gets the expressions provided in
the statement. This proves (B.6) for −1 < Re(m) < 0. We then extend the equality to |Re(m)| < 1 by analytic
continuation. Finally, the limiting cases are obtained by taking the limit m→ 0 in the first case, the limit b→ a
in the second case, and from this result the limit m → 0. Note that the same result is obtained if we take the
limits in the reverse order. ut
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B.4 The degenerate case

For m ∈ Z the following relation holds:
I−m(z) = Im(z).

Assuming that m ∈ N, we also have

Im(z) =
( z

2

)m+ 1
2
∞∑
k=0

√
π

k!(m+ k)!

( z
2

)2k
,

and

Km(z) = (−1)m+1 2

π
ln
( z

2

)
Im(z)

+
(−1)m
√
π

( z
2

)m+ 1
2
∞∑
k=0

ψ(k + 1) + ψ(m+ k + 1)

k!(m+ k)!

( z
2

)2k

+
(−1)m
√
π

( z
2

)m+ 1
2
m∑
j=1

(−1)j
(j − 1)!

(m− j)!

( z
2

)−2j
.

B.5 The half-integer case

The half-integer case of the hyperbolic Bessel equation is a special case of the doubly degenerate case of the
Whittaker equation. However, it is worthwhile to discuss it separately. In particular, for n ∈ N the function
I− 1

2
−n is not proportional to the function I0,− 1

2
−n, which is identically 0 by (B.4).

By analogy of the presentation of Section A.4 we can divide the half-integer case into two regions, namely
Region I− with m ∈ − 1

2
− N, and Region I+ with m ∈ 1

2
+ N. The following schematic diagram of various

special cases for the Bessel equation is an analog of Fig. 2.

m−4 −3 −2 −1 0 1 2 3 41 2 3 4

Fig. 3: The two regions in the half-integer case

Note that unlike for the Whittaker equation, in both regions I− and I+ the functions Im, I−m and Km are
well defined and distinct, and any two of them form a basis of solutions of (B.1). In this case all solutions are
elementary functions: For n ∈ N and m = ±( 1

2
+ n) one has

K±( 1
2

+n)(z) = (−1)nn!(2z)−ne−zL
(−1−2n)
n (2z),

X±( 1
2

+n)(z) = ±(−1)nn!(2z)−nezL
(−1−2n)
n (−2z),

I 1
2

+n(z) = −
1

2
n!(2z)−n

(
e−zL

(−1−2n)
n (2z)− ezL

(−1−2n)
n (−2z)

)
, (B.8)

I− 1
2
−n(z) =

1

2
n!(2z)−n

(
e−zL

(−1−2n)
n (2z) + ezL

(−1−2n)
n (−2z)

)
. (B.9)

Note also that (B.8) and (B.9) are special cases of (B.3), namely

I 1
2

+n(z) =
(−1)n+1

2

(
K 1

2
+n(z)−X 1

2
+n(z)

)
,

I− 1
2
−n(z) =

(−1)n

2

(
K 1

2
+n(z) + X 1

2
+n(z)

)
.

B.6 The standard Bessel equation

The standard (or trigonometric-type) Bessel equation for dimension 1(
− ∂2

z +
(
m2 −

1

4

) 1

z2
− 1

)
f = 0, (B.10)
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is up to a trivial rescaling, a special case of the trigonometric-type Whittaker equation with β = 0. One can
introduce the following functions which solve this equation (see [6, App. A] for more information) :

Jm(z) = e±iπ
2

(m+ 1
2

)Im(e∓iπ
2 z) =

∞∑
n=0

(−1)n
√
π
(
z
2

)2n+m+ 1
2

n!Γ (m+ n+ 1)
,

H±m(z) = e∓iπ
2

(m+ 1
2

)Km(e∓iπ
2 z) = ±i

e∓iπmJm(z)− J−m(z)

sin(πm)
,

and

Ym(z) :=
cos(πm)Jm(z)− J−m(z)

sin(πm)
.

B.7 The zero eigenvalue Whittaker equation

The zero eigenvalue Whittaker equation is provided by the equation

Lβ,m2f :=

(
− ∂2

z +
(
m2 −

1

4

) 1

z2
−
β

z

)
f = 0. (B.11)

It is easy to see that if v solves the trigonometric Bessel equation of dimension 1 (B.1) with parameter 2m, then

the function f defined by f(x) := (βx)
1
4 v(2

√
βx) solves the equation (B.11).

One can also obtain solutions of (B.11) by rescaling solutions of the hyperbolic-type or trigonometric-type
Whittaker equation:

Proposition B.2. For any fixed x ∈ R+, m ∈ Π and β ∈ C×, one has

lim
k→0

( 1

2k

) 1
2

+m
I β

2k
,m

(2kx) = β−m−
1
2

(βx)
1
4

√
π
J2m(2

√
βx), (B.12)

lim
k→0

( 1

2k

) 1
2

+m
J β

2k
,m

(2kx) = β−m−
1
2

(βx)
1
4

√
π
J2m(2

√
βx). (B.13)

For any fixed x ∈ R+, any m ∈ Π and β ∈ C×, one has

lim
k→0
∓i
Γ
(

1
2

+m− β
2k

)
√
π

( β
2k

) 1
2
−m
K β

2k
,m

(2kx) = (βx)
1
4H±2m(2

√
βx), (B.14)

lim
µ→0

Γ
(

1
2

+m∓ i β
2µ

)
√
π

( β
2µ

) 1
2
−m
H±β

2µ
,m

(2µx) = (βx)
1
4H±2m(2

√
βx). (B.15)

where the first limit is taken such that ±
(

arg(β) − arg(k)
)
∈]ε, π − ε[ with ε > 0, and the second limit is taken

with µ > 0 and is valid if Re(β) > 0.

Proof. Using the definition of Pochhammer’s symbol recalled in Section A.1, one infers that

lim
k→0

(1

2
+m∓

β

2k

)
j
(±2k)j = (−β)j .

In addition, for all k ∈ C with |k| < 1, one has∣∣∣(1

2
+m∓

β

2k

)
j
(±2k)j

∣∣∣ ≤ cjj!
for some constant c independent of k and j. Hence, by an application of the version of the Lebesgue dominated
convergence theorem for series, one gets

lim
k→0

∞∑
j=0

(
1
2

+m∓ β
2k

)
j
(±2kx)j

Γ (1 + 2m+ j)j!
=
∞∑
j=0

(−βx)j

Γ (1 + 2m+ j)j!
,

which leads directly to the equality (B.12). The equality (B.13) can then be deduced from (B.12) by using the
relation (A.28) between the functions Iβ,m and Jβ,m.
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For (B.14), by using successively (A.6), (B.16), (B.12), and [6, App. A.5] one gets

∓ i
Γ
(

1
2

+m− β
2k

)
√
π

( β
2k

) 1
2
−m
K β

2k
,m

(2kx)

=
∓i
√
π

sin(2πm)

( β
2k

) 1
2
−m(

−
Γ
(

1
2

+m− β
2k

)
Γ
(

1
2
−m− β

2k

)I β
2k
,m

(2kx) + I β
2k
,−m(2kx)

)
=
∓i
√
π

sin(2πm)

(
− e∓iπ2m

( β
2k

) 1
2

+m
I β

2k
,m

(2kx) +
( β

2k

) 1
2
−m
I β

2k
,−m(2kx)

)
+ o(1)

=
∓i

sin(2πm)

(
− e∓iπ2m(βx)

1
4J2m(2

√
βx) + (βx)

1
4J−2m(2

√
βx)
)

+ o(1)

= (βx)
1
4H±2m(2

√
βx) + o(1),

where we have used that ± arg
( β

2k

)
∈]0, π] and that

∣∣ arg
(
− β

2k

)∣∣ < π− ε for ε > 0. The equality (B.15) can then

be deduced from (B.14) by using the relation (A.29) between the functions Kβ,m and H±β,m. ut

The following lemma plays a key role in the above proof.

Lemma B.3. Let a, b ∈ C. For |z| → ∞ with | arg(z)| < π − ε and ε > 0 one has

lim
z→∞

Γ (a+ z)

Γ (b+ z)
zb−a = 1. (B.16)

Proof. Recall first the logarithmic version of Stirling formula [1, Eq. 6.1.41] :

ln
(
Γ (z)

)
= z ln(z)− z +

1

2
ln(2π)−

1

2
ln(z) +O

(1

z

)
.

This readily implies that

ln
(
Γ (a+ z)

)
− ln

(
Γ (b+ z)

)
+ (b− a) ln(z) →

z→∞
0.

After exponentiation it leads to the statement. ut

B.8 Integrals for zero eigenvalue solutions of the Whittaker equation

Based on the results of the previous sections and on Lemma A.1, one easily gets:

Proposition B.4. Let k ∈ C with Re(k) > 0 and let β ∈ C with ±Im(
√
β) > 0. If m ∈ C with |Re(m)| < 1, one

has ∫ ∞
0

(βx)
1
4H±2m(2

√
βx)K β

2k
,m

(2kx)dx

= ∓i
(2πkβ)

1
2

sin(2πm)

( ( β
2k

)−m
Γ
(

1
2
−m− β

2k

) − e∓i2πm

( β
2k

)m
Γ
(

1
2

+m− β
2k

)). (B.17)

Observe that the r.h.s. of (B.17) can be extended by continuity to m ∈
{

0, 1
2

}
with

(B.17)
∣∣
m=0

=∓ i
1
√
π

(2kβ)
1
2

Γ
(

1
2
− β

2k

)(ψ(1

2
−

β

2k

)
− ln

( β
2k

)
± iπ

)
,

(B.17)
∣∣
m= 1

2
=± i

1
√
π

2k

Γ
(
− β

2k

)(1

2
ψ
(
−

β

2k

)
+

1

2
ψ
(

1−
β

2k

)
− ln

( β
2k

)
± iπ

)
.

In the next proposition, we consider the integral of
(
(βx)

1
4H±2m(2

√
βx)
)2

which cannot be computed by the
same means.

Proposition B.5. Let β ∈ C with ±Im(
√
β) > 0. For all −1 < Re(m) < 1, one has

∫ ∞
0

(
(βx)

1
4H±2m(2

√
βx)
)2

dx =
m
(
4m2 − 1

)
e∓iπ2m

3β sin(2πm)
. (B.18)
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Proof. Let us consider for |Re(m)| < 2 the integral
∫∞
0 y2K2m(y)2dy. After a change of variable and by taking

into account the relation between the MacDonald function for dimension 1 and the usual MacDonald function
one infers from [33] that

∫ ∞
0

y2K2m(y)2dy =
2

3π
Γ (2− 2m)Γ (2 + 2m)

=
4m

3π
(1− 2m)(1 + 2m)Γ (1− 2m)Γ (2m)

=
4m

3 sin(2πm)

(
1− 4m2

)
. (B.19)

Note that this result can also be obtained by an analytic continuation of the result obtained in B.6. By a contour
integration with a vanishing contribution at infinity, one gets that for ±Im(

√
β) > 0,

∫ ∞
0

(
(βx)

1
4H±2m(2

√
βx)
)2

dx

=
1

2

∫ ∞
0

2
√
βxe∓iπ(2m+ 1

2
)K2m

(
e∓iπ

2 2
√
βx
)2

dx

= −
e∓iπ2m

4β

∫ ∞
0

y2K2m(y)2dy.

This leads to the statement of the proposition. ut

Remark B.6. Curiously, a naive computation suggests incorrectly that∫ ∞
0

(
(βx)

1
4H±2m(2

√
βx)
)2

dx = 0.

Indeed, for m 6∈
{
− 1

2
, 0, 1

2

}
and k ∈ C with Re(k) > 0, and such that ±

(
arg(β)− arg(k)

)
∈]ε, π − ε[ with ε > 0,

one has

∫ ∞
0

(βx)
1
4H±2m(2

√
βx)

[
∓ i

Γ
(

1
2

+m− β
2k

)
√
π

( β
2k

) 1
2
−m
K β

2k
,m

(2kx)

]
dx (B.20)

= ∓i
Γ
(

1
2

+m− β
2k

)
√
π

( β
2k

) 1
2
−m

∫ ∞
0

(βx)
1
4H±2m(2

√
βx)K β

2k
,m

(2kx)dx

= −
β

sin(2πm)

(
Γ
(

1
2

+m− β
2k

)
Γ
(

1
2
−m− β

2k

)( β
2k

)−2m
− e∓iπ2m

)
.

By taking a limit as k → 0, one obtains from Lemma B.3 that

lim
k→0

(
Γ
(

1
2

+m− β
2k

)
Γ
(

1
2
−m− β

2k

)( β
2k

)−2m
− e∓iπ2m

)
= 0. (B.21)

Although by (B.14) the term in the square braket of (B.20) converges pointwise to (βx)
1
4H±2m(2

√
βx), a limit

limk→0 and the integral in (B.20) can certainly not be exchanged, since otherwise it would lead to a contradiction.

To conclude, we give a lemma which was used in the proof of Proposition 3.15.

Lemma B.7. For |z| → ∞ with | arg(z)| < π − ε and ε > 0 one has

ψ(b+ z)− ψ(c+ z) =
b− c
z

+
(b− c)(1− b− c)

2z2

+
(b− c)[1− 3(b+ c) + 2(b2 + bc+ c2)]

6z3
+O

( 1

z4

)
.

Proof. The asymptotic expansion of the ψ function is provided in [1, Eq. 6.3.18] and reads as |z| → ∞ with
| arg(z)| < π − ε and ε > 0:

ψ(z) = ln(z)−
1

2z
−

1

12z2
+O

( 1

z4

)
.
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Hence

ψ(b+ z)− ψ(c+ z)

= ln(b+ z)−
1

2(b+ z)
−

1

12(b+ z)2
− ln(c+ z) +

1

2(c+ z)
+

1

12(c+ z)2
+O

( 1

z4

)
= ln

(
1 +

b

z

)
−

1

2z(1 + b
z

)
−

1

12z2(1 + b
z

)2

− ln
(

1 +
c

z

)
+

1

2z(1 + c
z

)
+

1

12z2(1 + c
z

)2
+O

( 1

z4

)
=
b− c
z

+
c2 − b2 + b− c

2z2
+
b− c− 3b2 + 3c2 + 2b3 − 2c3

6z3
+O

( 1

z4

)
which leads directly to the statement. ut

Acknowledgements S. R. was supported by the grantTopological invariants through scattering theory and
noncommutative geometry from Nagoya University, and by JSPS Grant-in-Aid for scientific research (C) no
18K03328.

References

1. M. Abramowitz, I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical
tables, National Bureau of Standards Applied Mathematics Series 55, Washington, D.C. 1964.
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7. J. Dereziński, S. Richard, On radial Schroedinger operators with a Coulomb potential, Ann. Henri Poincaré
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