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Abstract. We discuss realizations of L := −∂2
x + V (x) as closed operators on L2]a, b[, where

V is complex, locally integrable and may have an arbitrary behavior at (finite or infinite)

endpoints a and b. The main tool of our analysis are Green’s operators, that is, various right
inverses of L.
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1. Introduction

The paper is devoted to operators of the form

L = −∂2
x + V (x) (1.1)

on ]a, b[, where a < b, a can be −∞ and b can be ∞. The potential V can be complex, have
low regularity, and a rather arbitrary behavior at the boundary of the domain: we assume that
V ∈ L1

loc]a, b[. We study realizations of L as closed operators on L2]a, b[.
Operators of the form (1.1) are commonly called 1-dimensional Schrödinger operators. The

name Sturm-Liouville operators is also used, and is probably historically better justified.
Sturm-Liouville operators is a classic subject with a lot of literature. Most of the literature

is devoted to the real case, when L can be realized as self-adjoint operator. It is, however, quite
striking that the usual theory well-known from the real (self-adjoint) case works almost equally
well in the complex case. In particular, essentially the same theory for boundary conditions and
the same formulas for Green’s operators (right inverses of (1.1)) hold as in the real case. We will
describe these topics in detail in this paper.

A large part of the literature on Sturm-Liouville operators assumes that potentials are L1 near
finite endpoints. Under this condition one can impose the so called regular boundary conditions
(Dirichlet, Neumann or Robin). In this case, it is natural to use the so-called Weyl-Titchmarsh
function and the formalism of the so-called so called boundary triplets, see e.g. [2] and references
therein. We are interested in general boundary conditions, such as those considered in [4, 9, 10],
where the above approach does not directly apply. See the discussion at the end of Subsect. 4.2.

One of the motivations of the present work is the study of exactly solvable Schrödinger oper-
ators, such as those given by the Bessel equation [4, 9], or the Whittaker equation [10]. Analysis
of those operators indicates that non-real potentials are as good from the point of view of the
exact solvability as real ones. It is also natural to organize exactly solvable Schrödinger operators
in holomorphic families, whose elements are self-adjoint only in exceptional cases. Therefore, a
theory for Sturm-Liouville operators with complex potentials and general boundary conditions
provides a natural framework for the study of exactly solvable Hamiltonians.

As we mentioned above, we suppose that V ∈ L1
loc]a, b[. The theory is much easier if

V ∈ L2
loc]a, b[, because one could then assume that the operator acts on C2

c ]a, b[. Dealing with
potentials in L1

loc causes of a lot of trouble—this is however a rather natural assumption. We
think that handling a more general case forces us to better understand the problem. Actually,
one could consider even more singular potentials: it is easy to generalize our results to potentials
V being a Borel measures on ]a, b[.

In the first, preliminary section, we study the inhomogeneous problem given by the operator
(1.1) by basic ODE methods. We introduce some distinguished Green’s operators: The two-sided
Green’s operators are related to boundary conditions on both sides. The forward and backward
Green’s operators are related to the Cauchy problem at the endpoints of the interval. These
operators belong to the most often used objects in mathematics. Usually they appear under the
guise of Green’s functions, which are the integral kernels of Green’s operators.

The remaining sections are devoted to realizations of L as closed operators on the Hilbert
space L2]a, b[. The most obvious realizations are the minimal one Lmin and the maximal one
Lmax. We prove that these operators are closed and densely defined. Under the assumption
V ∈ L1

loc]a, b[ the proof is qute long and technical but, in our opinion, instructive. If we assumed
V ∈ L2

loc]a, b[, the proof would be easy.
At this point it is helpful to recall basic theory of Sturm-Liouville operators for real potentials.

One is usually interested in self-adjoint extensions of the Hermitian operator Lmin. They are are
situated “half-way” between Lmin and Lmax. More precisely, we have 3 possibilities:

(1) Lmin = Lmax: then Lmin is already self-adjoint.
(2) The codimension of D(Lmax) in D(Lmin) is 2: if L• is a self-adjoint extension of Lmin,

the inclusions D(Lmin) ⊂ D(L•) ⊂ D(Lmax) are of codimension 1.
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(3) The codimension of D(Lmax) in D(Lmin) is 4: if L• is a self-adjoint extension of Lmin,
the inclusions D(Lmin) ⊂ D(L•) ⊂ D(Lmax) are of codimension 2.

Note that in the literature it is common to use the theory of deficiency indices. The cases (1),
(2), resp. (3) correspond to Lmin having the deficiency indices (0, 0), (1, 1) and (2, 2). However,
the deficiency indices do not have a straightforward generalization to the complex case.

Let us go back to complex potentials. Note that the Hermitian conjugation of an operator A,
denoted A∗, is no longer very useful. Instead, one often uses the transposition A# := A∗, where
the bar denote the complex conjugation. In particular, the role of self-adjoint operators is taken
up by self-transposed operators, satisfying A# = A.

By choosing a subspace of D(Lmax) closed in the graph topology and restricting Lmax to this
subspace we can define a closed operator. Such operators will be called closed realizations of L.
We will show that in the complex case closed realizations of L possess a theory quite analogous
to that of the real case.

We are mostly interested in realizations of L whose domain containsD(Lmin). Such realizations
are defined by specifying boundary conditions. Similarly as in the real case, boundary conditions
are given by functionals on D(Lmax) that vanish on D(Lmin). For each of endpoints, a and b,
there is a space of functionals describing boundary conditions. We call the dimension of this
space the boundary index at a, resp. b, and denote it νa(L), resp. νb(L). They can take the
values 0 or 2 only. Therefore, we have the following classification of operators L:

(1) dimD(Lmax)/D(Lmin) = 0, or Lmin = Lmax

(2) dimD(Lmax)/D(Lmin) = 2,
(3) dimD(Lmax)/D(Lmin) = 4.

(1.2)

Let λ ∈ C. It is natural to consider the space of solutions of (L − λ)u = 0 that are square
integrable near a, resp. b. We denote these spaces by Ua(λ), resp. Ua(λ). In the real case we
have a relationship:

νa(L) = 2⇔ dimUa(λ) = 2 ∀λ ∈ C. (1.3)

In the complex case we can show ⇐ in (1.3). We conjecture that also ⇒ holds (Conjecture 5.9).
The most useful realizations of L are those possessing non-empty resolvent set. Not all L

possess such realizations. One can classify such L’s as follows. If L possesses a realization L•
with a non-empty resolvent set, then one of the following conditions holds:

(1) dimD(Lmax)/D(L•) = 0, or Lmax = L•
(2) dimD(Lmax)/D(L•) = 1,
(3) dimD(Lmax)/D(L•) = 2.

(1.4)

In the real case there is a strict correspondence between (1), (2) and (3) of (1.2) and (1), (2) and
(3) of (1.4). In the complex case this correspondence holds if Conjecture 5.9 is true. Without
Conjecture 5.9 we only have the relations

(1.2)(1) ⇔ (1.4)(1),
(1.2)(2) ⇒ (1.4)(2),
(1.2)(3) ⇒ (1.4)(2) or (3),

(1.5)

In cases (1) and (2) from Table (1.4) we describe all realizations with nonempty resolvent set
and their resolvents. We prove that if L• is such a realization, then we can find u ∈ Ua(λ) and
v ∈ Ub(λ) with the Wronskian equal to 1, so that the integral kernel of (L• − λ)−1 can then be
easily expressed in terms of u and v.

The case (3) is much richer. We describe all realizations of L that are separated (given by
independent boundary conditions at a and b). If in addition they are self-transposed, then
essentialy the same formula as in (1) and (2) gives (L• − λ)−1. There are however two other
separated realizations of L, which are denoted La and Lb, with boundary conditions only at a,
resp. b. They are not self-transposed, in fact, they satisfy L#

a = Lb. Their resolvents are given
by what we call forward and backward Green’s operators, which incidentally are cousins of the
retarded and advanced Green’s functions, well-known from the theory of the wave equation.
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In the last section we discuss potentials with a negative imaginary part. We show that under
some weak conditions they define dissipative Sturm-Liouville operators. We also describe Weyl’s
limit point–limit cricle method for such potentials. For real potentials, this method allows us to
determine the dimension of Ua(λ) for Im(λ) > 0: if a is limit point, then dimUa(λ) = 1; if a
is limit circle then dimUa(λ) = 2. The picture is more complicated if the potential is complex:
there are examples where the endpoint a is limit point and Ua(λ) is two-dimensional.

Sturm-Liouville operators is one of the most classic topics in mathematics. Already in the
first half of 19 century Sturm and Liouville considered second order differential operators on a
finite interval with various boundary consitions. The theory was extended to a half-line and a
line in a celebrated work by Weyl.

2nd order ODE’s and Sturm-Liouville operators are considered in many textbooks, including
Coddington-Levinson [5], Dunford-Schwartz [13, 14], Naimark [20], Pryce [21], de Alfaro-Regge
[7], Reed-Simon [22], Stone [24], Titchmarsh [26], Teschl [25]. However, in the literature complex
potentials are rarely studied in detail, and if so, then one does not pay attention to nontrivial
boundary conditions.

The present manuscript grew out of the Appendix of [4] devoted to Sturm-Liouville opera-
tors with the potential 1

x2 . [4] and its follow-up papers [9, 10] illustrated that Sturm-Liouville
operators with complex potentials and unusual boundary conditions appear naturally in various
situations.

We decided to make the exposition as complete and self-contained as possible, explaining
things that are perhaps obvious to experts, but often difficult to many readers. We use freely
the modern operator theory—this is not the case of a large part of literature, which often sticks
to old-fashioned terminology.

Acknowledgements. J.D. acknowledges gratefully the financial support of the National Science Center,

Poland, under the grant UMO-2014/15/B/ST1/00126.

2. Basic ODE theory

2.1. Notations. Recall that a < b, a can be −∞ and b can be ∞. The notation [a, b] stands for
the interval including the enpoints a and b, while ]a, b[ for the interval without endpoints. [a, b[
and ]a, b] have the obvious meaning.

In some cases one could use the notation involving either [a, b] or ]a, b[ without a change of
the meaning. For instance, Lp[a, b] = Lp]a, b[. For esthetic reasons, we try to use a uniform
notation—we always write Lp]a, b[.

In other cases, the choice of either [a, b] or ]a, b[ influences the meaning of a symbol. For
instance, C[a, b] ( C]a, b[. For example, f ∈ C[−∞, b] implies that lim

x→−∞
f(x) =: f(−∞) exists.

f ∈ Lploc]a, b[ iff for any a < a1 < b1 < b, we have f
∣∣∣
[a1,b1]

∈ Lp]a1, b1[.

f ∈ Lpc ]a, b[ iff f ∈ Lp]a, b[ and suppf is a compact subset of ]a, b[. The analogous meaning
has the subscript c in different situations.

2.2. Absolutely continuous functions. We will denote by AC]a, b[ the space of absolutely
continuous functions on ]a, b[, that is, distributions on ]a, b[ whose derivative is in L1

loc]a, b[.
We will denote f ′ or ∂f the derivative of a distribution f . We have AC]a, b[⊂ C]a, b[. If
f, g ∈ AC]a, b[, then fg ∈ AC]a, b[ and the Leibniz rule holds:

(fg)′ = f ′g + fg′. (2.1)

ACn]a, b[ will denote the space of distributions whose nth derivative is in AC]a, b[.

Lemma 2.1. Let fn ∈ AC]a, b[ be a sequence such that for any a < a1 < b1 < b, fn → f
uniformly on [a1, b1] and f ′n → g in L1[a1, b1]. Then f ∈ AC]a, b[ and g = f ′.
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We will denote by AC[a, b] the space of functions on [a, b] whose (distributional) derivative is
in L1]a, b[. Clearly, AC[a, b] ⊂ C[a, b]. If f ∈ AC[a, b], then∫ b

a

f ′(x)dx = f(b)− f(a). (2.2)

Note that a can be −∞ and b can be ∞.

Obviously, if f ∈ AC]a, b[ and a < a1 < b1 < b then f
∣∣∣
[a1,b1]

belongs to AC[a1, b1].

2.3. Choice of funtional-analytic setting. Throughout the section, we assume that V ∈
L1

loc]a, b[ and we consider the differential expression

L := −∂2 + V. (2.3)

Sometimes we restrict our operator to a smaller interval, say ]c, d[, where a ≤ c < d ≤ b. Then
(2.3) restricted to ]c, d[ is denoted Lc,d.

Eventually, we would like to study operators in L2]a, b[ associated to L, which in many respects
seems the most natural setting for Sturm-Liouville operators. There are however situations, where
it is preferable to use a different functional-analytic formalism for (2.3).

Suppose that we choose L1
loc]a, b[ as the target space for (2.3), which seems to be a rather

general function space. Note that if f ∈ L∞loc]a, b[, the product fV is well defined and belongs to
L1

loc]a, b[. Moreover, this is the best we can do if V is an arbitrary locally integrable function, i.e.
we cannot replace L∞loc by a larger space. Then, if we consider L∞loc as the initial space for (2.3)
and we require that the target space for (2.3) is L1

loc]a, b[, we are forced to work with functions
f ∈ L∞loc]a, b[ such that Lf ∈ L1

loc]a, b[. But then f ′′ ∈ L1
loc]a, b[, and hence f ∈ AC1]a, b[.

Therefore it is natural to consider (2.3) as an an operator L : AC1]a, b[→ L1
loc]a, b[, which we

will do throughout this paper. Restrictions of L to subspaces of AC1]a, b[ which are sent into
L2]a, b[ by L are the objects of main interest in our study.

We equip L1
loc]a, b[ with the topology of local uniform convergene, i.e. a sequence {fn} con-

verges to f if and only if lim
n→∞

‖fn − f‖L1(J) = 0 for any compact J ⊂]a, b[. Clearly this is a

complete space. It is convenient to think of L as an operator in L1
loc]a, b[ with domain AC1]a, b[.

Then L is densely defined and later on we will prove that it is is closed (see Corollary 2.16).

2.4. The Cauchy problem. For g ∈ L1
loc]a, b[ we consider the problem

Lf = g. (2.4)

Proposition 2.2. Let a < d < b. Then for any p0, p1 there exists a unique f ∈ AC1]a, b[
satisfying (2.4) and

f(d) = p0, f ′(d) = p1. (2.5)

Proof. Define the operators Qd and Td by their integral kernels

Qd(x, y) :=


(y − x)V (y), x < y < d,

(x− y)V (y), x > y > d,

0 otherwise;

Td(x, y) :=


(y − x), x < y < d,

(x− y), x > y > d,

0 otherwise.

The Cauchy problem can be rewritten as F (f) = f where F is a map on C]a, b[ given by

F (f)(x) := p0 + p1(x− d) +Qdf(x) + Tdg(x). (2.6)

If a ≤ a1 < d < b1 ≤ b and we view Qd as an operator on C[a1, b1] with the supremum norm,
then

‖Qd‖ ≤ max
{∫ d

a1

|V (y)(y − a1)|dy,
∫ b1

d

|V (y)(y − b1)|dy
}
. (2.7)
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If the interval [a1, b1] is finite, the operator Td is bounded from L1]a1, b1[ into C[a1, b1].
Thus, by choosing a sufficiently small interval [a1, b1] containing d, we can make F well defined

and contractive on C[a1, b1]. (F is contractive iff ‖Qd‖ < 1). By Banach’s Fixed Point Theorem
(or the convergence of an appropriate Neumann series) there exists f ∈ C[a1, b1] such that
f = F (f). Then note that we have

f ′(x) = F (f)′(x) = p1 +

∫ x

d

V (y)f(y)dy +

∫ x

d

g(y)dy

hence f ′ ∈ AC[a1, b1] and f ∈ AC1[a1, b1].
Thus for every d ∈]a, b[ we can find an open interval containing d on which there exists a

unique solution to the Cauchy problem. We can cover ]a, b[ with intervals ]aj , bj [ containing dj
with the analogous property. This allows us to extend the solution with initial conditions at any
d ∈]a, b[ to the whole ]a, b[. �

2.5. Regular and semiregular endpoints. Sturm-Liouville operators possess the simplest
theory when −∞ < a < b < ∞ and V ∈ L1]a, b[. Then we say that L is a regular operator.
Most of the classical Sturm-Liouville theory is devoted to such operators. More generally, the
following standard terminology will be convenient.

Definition 2.3. The end point a is called regular, or L is called regular at a, if a is finite and∫ d
a
|V (x)|dx <∞ if a < d < b. Similarly for b. Hence L is regular if both endpoints are regular.

Sturm-Liouville operators satisfying the following conditions are also relatively well behaved:

Definition 2.4. The end point a is called semiregular if a is finite and
∫ d
a

(x− a)|V (x)|dx <∞
if a < d < b. Similarly for b.

Proposition 2.5. Let g ∈ L1]a, d[

(1) Let a be a regular endpoint. Let p0, p1 be given. Then there exists a unique f ∈ AC1[a, b[
satisfying (2.4) and

f(a) = p0, f ′(a) = p1. (2.8)

(2) Let a be a semiregular endpoint. Then all solutions f of (2.4) have a limit at a.

Proof. (1) is proven as Prop. 2.2, choosing d = a.

To prove (2) we put d inside ]a, b[, demanding in addition that
∫ d
a
V (y)|y − a|dy < 1. This

guarantees that the operator Qd is contractive on C[a, d]. �
An example of a potential with a finite point which is not semiregular is V (x) = c

x2 on ]0,∞[.
For its theory see [4, 9].

2.6. Wronskian.

Definition 2.6. The Wronskian of two derivable functions u, v is W (u, v) = uv′ − u′v. We set

W (u, v;x) = Wx(u, v) = u(x)v′(x)− u′(x)v(x). (2.9)

Proposition 2.7. Let u, v ∈ AC1]a, b[. Then the Lagrange identity holds:

∂xW (u, v;x) = −(Lu)(x)v(x) + u(x)(Lv)(x). (2.10)

Consequently, if Lu = Lv = 0, then W (u, v) is a constant function.

Proof. Since u, u′, v, v′ ∈ AC]a, b[ , the Wronskian can be differentiated and a simple computation
yields (2.10). �

The set of solutions in AC1]a, b[ of the homogeneous equation Lf = 0 is a two dimensional
complex space KerL and the map W : KerL × KerL → C is bilinear and antisymmetric. Two
solutions u, v ∈ KerL are linearly independent if and only if W (u, v) 6= 0. If u2 = αu1 +βv1, v2 =
γu1 + δv1 then

W (u2, v2) = W (αu1, δv1) +W (βv1, γu1) = (αδ − βγ)W (u1, v1).
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hence if W (u1, v1) = 1 then W (u2, v2) = 1 if and only if αδ − βγ = 1, and in this case a simple
computation gives

u2(x)v2(y)− u2(y)v2(x) = u1(x)v1(y)− u1(y)v1(x), x, y ∈]a, b[. (2.11)

Thus the function

G↔(x, y) = u(x)v(y)− u(y)v(x) (2.12)

is independent of the choice of the solutions u, v of the homogeneous equation Lf = 0 if they
satisfy W (u, v) = 1. (2.12) can be interpreted as the integral kernel of an operator G↔ : L1

c ]a, b[→
AC1]a, b[, and will be called the canonical bisolution of L. It satisfies

LG↔ = 0, G↔L = 0, G↔(x, y) = −G↔(y, x). (2.13)

2.7. Green’s operators. The expression “Green’s function” is commonly used to denote the
integral kernel of a right inverse of a differential operator, usually of a second order. We will use
the expression “Green’s operator” for a right inverse of L.

Definition 2.8. An operator G• : L1
c ]a, b[→ AC1]a, b[ is called a Green’s operator of L if

LG•g = g, g ∈ L1
c ]a, b[. (2.14)

Note that we do not require that G•L = 1l. Note also that G↔ is not Green’s operator—it is
a bisolution. However, it is so closely related to various Green’s operators that we use the same
letter G to denote it.

There are many Green’s operators. If G• is a Green’s operator, u, v are two solutions of the
homogeneous equation, and φ, ψ ∈ L∞loc]a, b[ are arbitrary, then

G• + |u〉〈φ|+ |v〉〈ψ|

is also a Green’s operator. Recall that if E,F are vector spaces, g belongs to the dual of E, and
f ∈ F , then |f〉〈g| is the linear map E → F defined by e 7→ g(e)f .

Let us define some distinguished Green’s operators. Let u, v be two solutions of the homoge-
neous equation such that

W (v, u) = 1.

We easily check that the operators Gu,v, Ga and Gb defined below are Green’s operators in the
sense of Def. 2.8:

Definition 2.9. Green’s operator associated to u at a and v at b, denoted Gu,v, is defined by its
integral kernel

Gu,v(x, y) :=

{
u(x)v(y), x < y,

v(x)u(y), x > y.

Operators of the form Gu,v will be sometimes called two-sided Green’s operators.

Definition 2.10. Forward Green’s operator G→ has the integral kernel

G→(x, y) :=

{
0, x < y,

v(x)u(y)− u(x)v(y), x > y.
(2.15)

Definition 2.11. Backward Green’s operator G← has the integral kernel

G←(x, y) :=

{
u(x)v(y)− v(x)u(y), x < y,

0, x > y.

By the comment after (2.11), the operators G→ and G← are independent of the choice of
u, v. For a < b1 < b, G→ maps L1

c ]b1, b[ into functions that are zero on ]a, b1]. Similarly, for
a < a1 < b, G→ maps L1

c ]a, a1[ into functions that are zero on ]a1, b].
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Note also some formulas for differences of two kinds of Green’s operators:

Gu,v −G→ = |u〉〈v|, (2.16)

Gu,v −G← = |v〉〈u|, (2.17)

G→ −G← = |v〉〈u| − |u〉〈v| = G↔, (2.18)

Gu,v −Gu1,v1 = |u〉〈v| − |u1〉〈v1|, (2.19)

The following definition introduces another class of Green’s operators in the sense of Def. 2.8,
which are generalizations of forward and backward Green’s operators.

Definition 2.12. Green’s operator associated to d ∈]a, b[ is defined by the integral kernel

Gd(x, y) :=


u(x)v(y)− v(x)u(y), x < y < d,

v(x)u(y)− u(x)v(y), x > y > d,

0, otherwise.

As in the case of G→ and G←, these operators are independent of the choice of u, v. Note
that if a < a1 < d < b1 < b, then Gd maps L1

c ]a, a1[ on functions that are zero on [a1, b[, and
L1

c ]b1, b[ on functions that are zero on ]a, b1].
The proof of Prop. 2.2 suggests how to construct Gd without knowing v, u using the operators

Qd and Td defined there. We have, at least formally,

Gd = (1l−Qd)−1Td. (2.20)

If we choose a ≤ a1 < d < b1 ≤ b with a finite [a, b] and

max
{∫ d

a1

|V (x)(x− a1)|dx,
∫ b1

d

|V (x)(x− b1)|dx
}
< 1, (2.21)

then (2.20) is given by a convergent Neumann series in the sense of an operator from L1]a1, b1[
to C[a1, b1].

Remark 2.13. The 1-dimensional Schrödinger equation can be interpreted as the Klein Gordon
equation on a 1+0 dimensional spacetime (no spacial dimensions, only time). The operators G↔,
G→ and G← have important generalizations to globally hyperbolic spacetimes of any dimension—
they are then usually called the Pauli-Jordan, retarded, resp. advanced propagator, see e.g. [11].

2.8. Some estimates. The following elementary estimates will be useful later on.

Lemma 2.14. Let J be an open interval of length ν <∞ and f ∈ L1(J) with f ′′ ∈ L1(J). Then
f and f ′ are continuous functions on the closure of J and if a is an end point of J then

|f(a)|+ ν|f ′(a)| ≤ C
∫
J

(
ν|f ′′(x)|+ ν−1|f(x)|

)
dx, (2.22)

where C is a real number independent of f and J .

Proof. By a scaling argument we may assume ν = 1. It suffices to assume that f is a distribution
on R such that f ′′ = 0 outside J . Let θ : R → R be of class C∞ outside of 0 and such that
θ(x) = 0 if x ≤ 0, θ(x) = x if 0 < x < 1/2, θ(x) = 0 if x ≥ 1. Define η by θ′′ = δ − η where
δ is the Dirac measure at the origin. Clearly η is of class C∞ with support in [1/2, 1]. For any
distribution f we have

f = δ ∗ f = θ′′ ∗ f + η ∗ f = θ ∗ f ′′ + η ∗ f hence also f ′ = θ′ ∗ f ′′ + η′ ∗ f.
This clearly implies (2.22) for ν = 1 and a the right end point of J . �

Lemma 2.15. Assume that ` := supJ
∫
J
|V (x)|dx < ∞ where J runs over all the intervals

J ⊂]a, b[ of length ≤ 1. Then there are numbers C, ν0 > 0 such that

‖f‖L∞(J) + ν‖f ′‖L∞(J) ≤ Cν‖Lf‖L1(J) + Cν−1‖f‖L1(J) (2.23)

for all f ∈ L∞loc]a, b[, all ν ≤ ν0, and all intervals J ⊂]a, b[ of length ν.
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Proof. Note that for a continuous f we have f ′′ ∈ L1
loc if and only Lf ∈ L1

loc and then f ′ is
absolutely continuous. We take ν0 ≤ 1 and strictly less than half the length of ]a, b[. If ν ≤ ν0,
then (2.22) gives for x such that ]x, x+ ν[⊂]a, b[:

|f(x)|+ ν|f ′(x)| ≤ C

∫ x+ν

x

(
ν|Lf |+ ν|V f |+ ν−1|f(y)|

)
dy

≤ C‖ν|Lf |+ ν−1|f |‖L1(x,x+ν) + C`ν‖f‖L∞(x,x+ν)

≤ Cν‖Lf‖L1(J) + Cν−1‖f‖L1(J) + C`ν‖f‖L∞(J).

If x ∈]a, b[ and ]x, x + ν[ 6⊂ ]a, b[ then ]x − ν, x[⊂ ]a, b[ and we have an estimate as above with
]x, x+ ν[ replaced by ]x− ν, x[. Hence

‖f‖L∞(J) + ν‖f ′‖L∞(J) ≤ Cν‖Lf‖L1(J) + Cν−1‖f‖L1(J) + C`ν‖f‖L∞(J).

If ν0 is such that C`ν0 < 1 we get the required estimate. �

Recall (see page 6) that L1
loc]a, b[ is equipped with the topology of local uniform convergence

and that we think of L as an operator in L1
loc]a, b[ with domain AC1]a, b[. The next result says

that this operator is closed.

Corollary 2.16. Let {fn} be a sequence in AC1]a, b[ such that the sequences {fn} and {Lfn}
are Cauchy in L1

loc]a, b[. Then the limits f := lim
n→∞

fn and g := lim
n→∞

Lfn exist in L1
loc]a, b[ and

we have f ∈ AC1]a, b[ and Lf = g.

Proof. The estimate (2.23) implies that on every compact interval J we have uniform convergence
of fn to f (and also of f ′n to f ′). Therefore, V fn

∣∣
J
→ V f

∣∣
J

in L1(J) for any such J . Hence,

−f ′′n = Lfn − V fn converges in L1(J) to g − V f . Therefore, by Lemma 2.1, −f ′′ = g − V f . We
know that g − V f ∈ L1

loc]a, b[, hence f ∈ AC1]a, b[. �

3. Basic L2 theory

3.1. Bilinear scalar product. We consider the Hilbert space L2]a, b[ with the scalar product

(f |g) :=

∫ b

a

f(x)g(x)dx. (3.1)

In addition, it is also equipped with the bilinear form

〈f |g〉 :=

∫ b

a

f(x)g(x)dx. (3.2)

Thus we use round brackets for the sesquilinear scalar product and angular brackets for the
closely related bilinear form. Note that in some sense the latter plays a more important role in
our paper (and in similar exactly solvable problems) than the former. See e.g. [8, 10], where the
same notation is used.
L2]a, b[ has also a natural complex conjugation. Clearly, 〈f |g〉 = (f |g). If B is an operator,

then B denotes the complex conjugation of B

Bf := Bf. (3.3)

B∗ denotes the usual Hermitian adjoint of B, whereas B# = B∗ denotes the transpose of B, that
is, its adjoint w.r.t. the (3.2).

Clearly, if B is a bounded linear operator with

(
Bf
)
(x) :=

∫ b

a

B(x, y)f(y)dy,
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then (
B∗f

)
(x) =

∫ b

a

B(y, x)f(y)dy, (3.4)

(
B#f

)
(x) =

∫ b

a

B(y, x)f(y)dy, (3.5)

(
Bf
)
(x) =

∫ b

a

B(x, y)f(y)dy. (3.6)

An operator B is self-adjoint if B = B∗. We will say that it is self-transposed if B# = B. It is
useful to note that a holomorphic function of a self-transposed operator is self-transposed.

If G ⊂ L2]a, b[, we will write

G⊥ := {f ∈ L2]a, b[ | (f |g) = 0, g ∈ G}, (3.7)

Gperp := {f ∈ L2]a, b[ | 〈f |g〉 = 0, g ∈ G} = G⊥. (3.8)

3.2. The maximal and minimal operator. As before, we assume that V ∈ L1
loc]a, b[.

Definition 3.1. The maximal operator Lmax is defined by

D(Lmax) :=
{
f ∈ L2]a, b[∩AC1]a, b[ | Lf ∈ L2]a, b[

}
, (3.9)

Lmaxf := Lf, f ∈ D(Lmax). (3.10)

We equip D(Lmax) with the graph norm

‖f‖2L := ‖f‖2 + ‖Lf‖2.

Remark 3.2. Note that L2]a, b[⊂ L1
loc]a, b[. Therefore, as explained in Subsect. 2.3, f ∈ L∞loc]a, b[

and Lf ∈ L2]a, b[ implies f ∈ AC1]a, b[. Therefore, in (3.9) we can replace AC1]a, b[ with
L∞loc]a, b[ (or C]a, b[, or C1]a, b[ ).

Recall that AC1
c ]a, b[ are once absolutely differentiable functions of compact support.

Definition 3.3. We set

D(Lc) := AC1
c ]a, b[∩D(Lmax).

Let Lc be the restriction of Lmax to D(Lc). Finally, Lmin is defined as the closure of Lc.

The next theorem is the main result of this subsection:

Theorem 3.4. The operators Lmin, Lmax have the following properties.

(1) The operators Lmax and Lmin are closed, densely defined and Lmin ⊂ Lmax.

(2) L#
max = Lmin and L#

min = Lmax.
(3) Suppose that f1, f2 ∈ D(Lmax). Then there exist

W (f1, f2; a) := lim
d↘a

W (f1, f2; d), (3.11)

W (f1, f2; b) := lim
d↗b

W (f1, f2; d), (3.12)

and the so-called Green’s identity (the integrated form of the Lagrange identity) holds:

〈Lmaxf1|f2〉 − 〈f1|Lmaxf2〉 = W (f1, f2; b)−W (f1, f2; a). (3.13)

(4) We set Wd(f1, f2) = W (f1, f2; d) for any d ∈ [a, b] and f1, f2 ∈ D(Lmax). Then for any
d ∈ [a, b] the map Wd : D(Lmax)×D(Lmax)→ C is a continuous bilinear antisymmetric
form, in particular

|Wd(f1, f2)| ≤ Cd‖f1‖L‖f2‖L. (3.14)

(5) D(Lmin) coincides with{
f ∈ D(Lmax) | W (f, g; a) = 0 and W (f, g; b) = 0 for all g ∈ D(Lmax)

}
. (3.15)
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One of the things we will need to prove is the density of D(Lc) in L2]a, b[. This is easy if
V ∈ L2

loc]a, b[ (see Prop. 3.11), but with our assumptions on the potential the proof is not so
trivial, because the idea of approximating an f ∈ L2(I) with smooth functions does not work:
D(Lmax) may not contain any “nice” function, as the example described below shows.

Example 3.5. Let V (x) =
∑
σ cσ|x− σ|−1/2 where σ runs over the set of rational numbers and

cσ ∈ R satisfy cσ > 0 and
∑
σ cσ <∞. Then V ∈ L1

loc(R) but V is not square integrable on any
nonempty open set. Hence there is no C2 nonzero function in the domain of L in L2(R).

Before proving Thm 3.4, we first state an immediate consequence of Lemma 2.15:

Lemma 3.6. (1) Let J be a finite interval whose closure is contained in ]a, b[. Then∥∥f ∣∣
J

∥∥ ≤ CJ‖f‖L, (3.16)∥∥f ′∣∣
J

∥∥ ≤ CJ‖f‖L. (3.17)

(2) Let χ ∈ C∞]a, b[ with χ′ ∈ C∞c ]a, b[. Then

‖χf‖L ≤ Cχ‖f‖L. (3.18)

As in the previous section, we fix u, v ∈ AC1]a, b[ that span KerL and satisfy W (v, u) = 1.
Our proof of Thm 3.4 uses ideas from [24, Theorem 10.11] and [20, Sect. 17.4] and is based

on an abstract result described in Lemma A.1. The following lemma contains the key arguments
of the proof of (1) and (2) of Thm 3.4:

Lemma 3.7. If L is a regular operator (cf. Definition 2.3) then

(1) KerLmax = KerL.
(2) RanLmax = L2]a, b[.
(3) 〈Lcf |g〉 = 〈f |Lmaxg〉, f ∈ D(Lc), g ∈ D(Lmax).
(4) RanLc = L2

c ]a, b[∩ (KerL)perp.
(5) (RanLc)perp = KerL.
(6) D(Lc) is dense in L2]a, b[.

Proof. Clearly, KerL = Span(u, v) ⊂ AC1[a, b] ⊂ L2]a, b[. Therefore, KerL ⊂ D(Lmax). This
proves (1).

Recall that in (2.15) we defined the forward Green’s operator G→. Under the assumptions of
the present lemma, it maps L2]a, b[ into AC1[a, b]. Therefore, for any g ∈ L2]a, b[, α, β ∈ C,

f = αu+ βv +G→g

belongs to AC1[a, b] and verifies Lf = g. Therefore, f ∈ D(Lmax). Hence Lmax is surjective.
This proves (2).

To obtain (3) we integrate twice by parts. This is allowed by (2.1) and (2.2), since f, g ∈
AC1[a, b].

It is obvious that RanLc ⊂ L2
c ]a, b[. RanLc ⊂ (KerLmax)perp follows from (3).

Let us prove the converse inclusions. Let g ∈ L2
c ]a, b[∩ (KerL)perp. Set f := G→g. Clearly,

Lf = g. Using
∫ b
a
gu =

∫ b
a
gv = 0 we see that f has compact support. Hence f ∈ D(Lc). This

proves (4).
L2

c ]a, b[ is dense in L2]a, b[ and (KerL)perp has a finite codimension. Therefore, by Lemma
A.2, L2

c ]a, b[∩ (KerL)perp is dense in KerL. This implies (5).
By applying Lemma A.1 with T := Lmax and S := Lc, we obtain (6). �

Proof of Thm 3.4. It follows from Lemma 3.7 (6) that D(Lc) is dense in L2]a, b[. We have

L#
c ⊃ Lmax (3.19)

by integration by parts, as in the proof of (3), Lemma 3.7.
Suppose that h, k ∈ L2]a, b[ such that

〈Lcf |h〉 = 〈f |k〉, f ∈ D(Lc). (3.20)



1-DIMENSIONAL SCHRÖDINGER OPERATORS WITH COMPLEX POTENTIALS 13

In other words, h ∈ D(Lc) and L#
c h = k. Choose d ∈]a, b[. We set hd := Gdk, where Gd is

defined in Def. 2.12. Clearly, Lhd = k. For f ∈ D(Lc), set g := Lcf . We can assume that
suppf ⊂ [a1, b1] for a < a1 < b1 < b. Now

〈g|hd〉 = 〈Lcf |hd〉 = 〈f |Lhd〉 = 〈f |k〉 = 〈Lcf |h〉 = 〈g|h〉.

By Lemma 3.7 (4) applied to [a1.b1],

h = hd + αu+ βv (3.21)

on [a1, b1]. But since a1, b1 were arbitrary under the condition a < a1 < b1 < b, (3.21) holds on
]a, b[. Hence Lh = k. Therefore, h ∈ D(Lmax) and Lmaxh = k. This proves that

L#
c ⊂ Lmax. (3.22)

From (3.19) and (3.22) we see that L#
c = Lmax. In particular, Lmax is closed and Lc is closable.

We have

Lmin = L##
c = L#

max. (3.23)

This ends the proof of (1) and (2).
For f, g ∈ D(Lmax) and a < a1 < b1 < b we have∫ b1

a1

(Lf(x)g(x)− f(x)Lg(x))dx =

∫ b1

a1

(f(x)g′(x)− f ′(x)g(x))′dx (3.24)

= W (f, g; a1)−W (f, g; b1).

The lhs of (3.24) clearly converges as a1 ↘ a. Therefore, the limit (3.11) exists. Similarly, by
taking b1 ↗ b we show that the limit (3.12) exists. Taking both limits we obtain (3.13). This
proves (3).

If d ∈]a, b[, then (3.14) is an immediate consequence of (3.16) and (3.17). We can rewrite
(3.24) as

W (f, g; a) = −
∫ d

a

(
(Lf)(x)g(x)− f(x)Lg(x)

)
dx+W (f, g; d). (3.25)

Now both terms on the right of (3.25) can be estimated by C‖f‖L‖g‖L. This shows (3.14) for
d = a. The proof for d = b is analogous.

Let Lw be L restricted to (3.15). By (3.14), (3.15) is a closed subspace of D(Lmax). Hence,
Lw is closed. Obviously, Lc ⊂ Lw. By (3.13), Lw ⊂ L#

max. By (2), we know that L#
max = Lmin.

But Lmin is the closure of Lc. Hence Lw = Lmin. This proves (5). �

Remark 3.8. Here is an alternative, more direct proof of the closedness of Lmax. Let fn ∈
D(Lmax) be a Cauchy sequence wrt the graph norm. This means that fn and Lfn are Cauchy
sequences wrt L2]a, b[. Let f := lim

n→∞
fn, g := lim

n→∞
Lfn. Let J be an arbitrary sufficiently small

closed interval in ]a, b[. We have

‖fn − fm‖L1(J) ≤
√
|J |‖fn − fm‖L2(J), (3.26)

‖Lfn − Lfm‖L1(J) ≤
√
|J |‖Lfn − Lfm‖L2(J). (3.27)

Hence fn satisfies the conditions of Cor. 2.16. Hence f ∈ AC1]a, b[ and g = Lf . Hence
f ∈ D(Lmax) and it is the limit of fn in the sense of the graph norm. Therefore, D(Lmax) is
complete. Hence Lmax and Lmin are closed.

3.3. Smooth functions in the domain of Lmax. We point out a certain pathology of the
operators Lmax and Lmin if V is only locally integrable.

Lemma 3.9. (1) The imaginary part of V is locally square integrable if and only if D(Lc)
is stable under conjugation and in this case D(Lmin) and D(Lmax) are also stable under
conjugation.
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(2) If the imaginary part of V is not square integrable on any open set, then for f ∈ D(Lmax)
we have f ∈ D(Lmax) only if f = 0 ; in particular, D(Lmax) does not contain any nonzero
real function.

Proof. (1): Write Lf = −f ′′+V1f + iV2f if V = V1 + iV2 with V1, V2 real. Then if V2 ∈ L2
loc]a, b[

and f ∈ AC1
c ]a, b[ we have V2f ∈ L2]a, b[ so −f ′′+V f ∈ L2]a, b[ if and only if −f ′′+V1f ∈ L2]a, b[

hence −f ′′+V1f ∈ L2]a, b[ so we get −f ′′+V f ∈ L2]a, b[, thus D(Lc) is stable under conjugation.
The corresponding assertion concerning D(Lmin) follows by taking the completion, and that
concerning D(Lmax) follows by taking the transposition.

Reciprocally, assume that D(Lc) is stable under conjugation and let x0 ∈]a, b[. Then there is
f ∈ D(Lc) such that f(x0) 6= 0 and we may assume that its real part g = (f + f)/2 does not
vanish on a neighbourhood of x0. Then g ∈ D(Lc) hence −g′′+V1g+ iV2g ∈ L2]a, b[ and so must
be the imaginary part of this function hence V2 is square integrable on a neighbourhood of x0.

(2): Assume now that V2 is not square integrable on any open set. If f ∈ AC1 is real then
−f ′′ + V f ∈ L2 if and only if −f ′′ + V1f ∈ L2 and V2f ∈ L2 and if f 6= 0 then the second
condition implies f = 0. Finally, if f ∈ D(Lmax) and f ∈ D(Lmax) then the functions f + f and
f − f will be zero by (1). �

Remark 3.10. If L := −∂2 + V then L∗min = Lmax, where L∗min is the Hermitian adjoint of

Lmin, and clearly D(Lmax) = {f | f ∈ D(Lmax)}. Thus if the imaginary part of V is not square
integrable on any open set then D(Lmin) ∩ D(L∗min) = {0}. On the other hand, if the imaginary
part of V is locally square integrable, then D(Lmin) ⊂ D(L∗min).

If V ∈ L2
loc, many things simplify:

Proposition 3.11. If V ∈ L2
loc]a, b[ then C∞c ]a, b[ is a dense subspace of D(Lmin).

Proof. Clearly C∞c ]a, b[⊂ D(Lc). Let f ∈ Cc]a, b[. Then Lf ∈ L2]a, b[ if and only if f ′′ ∈ L2]a, b[.
Fix some θ ∈ C∞c (R) with

∫
θ = 1 and let θn(x) := nθ(nx) with n ≥ 1. Then for n large

fn := θn ∗ f ∈ C∞c ]a, b[ and has support in a fixed small neighbourhood of suppf . Moreover,
fn → f in C1

c ]a, b[, in particular fn → f uniformly with supports in a fixed compact, which
clearly implies V fn → V f in L2]a, b[. Moreover f ′′n → f ′′ in L2]a, b[. �

3.4. Closed operators contained in Lmax. If D(L•) is a subspace of D(Lmax) closed in the
‖ · ‖L norm, then the operator

L• := Lmax

∣∣∣
D(L•)

(3.28)

is closed and contained in Lmax. We can call such an operator L• a closed realization of L.
We will be mostly interested in operators L• that satisfy

D(Lmin) ⊂ D(L•) ⊂ D(Lmax) (3.29)

so that
Lmin ⊂ L• ⊂ Lmax. (3.30)

They are automatically densely defined.
One can easily check if a realization of L contains Lmin with help of the following criterion:

Proposition 3.12. Suppose that L• is a closed densely defined operator contained in Lmax. Then

L#
• is contained in Lmax if and only if Lmin ⊂ L•. In particular, if L#

• = L•, then Lmin ⊂ L•.
Proof. Since L• is densely defined, the operator L#

• is well defined and clearly Lmin ⊂ L• is

equivalent to L#
• ⊂ L#

min = Lmax. �

The most obvious examples of such operators are given by one-sided boundary conditions:

Definition 3.13. Set

D(La) := {f ∈ D(Lmax) | W (f, g; a) = 0 for all g ∈ D(Lmax)}, (3.31)

D(Lb) := {f ∈ D(Lmax) | W (f, g; b) = 0 for all g ∈ D(Lmax)}. (3.32)

Let La, resp. Lb be Lmax restricted to D(La), resp. D(Lb).



1-DIMENSIONAL SCHRÖDINGER OPERATORS WITH COMPLEX POTENTIALS 15

Proposition 3.14. La and Lb are closed and densely defined operators satisfying

L#
a = Lb, L#

b = La, (3.33)

Lmin ⊂ La ⊂ Lmax, Lmin ⊂ Lb ⊂ Lmax. (3.34)

4. Boundary conditions

4.1. Regular endpoints.

Proposition 4.1. If L is regular at a then any function f ∈ D(Lmax) extends to a function
of class C1 on the left closed interval [a, b[, hence f(a) and f ′(a) are well defined, and for
f, g ∈ D(Lmax) we have Wa(f, g) = f(a)g′(a)− f ′(a)g(a). Similarly if L is regular at b. Thus if
L is regular then D(Lmax) ⊂ C1[a, b] and Green’s identity (3.13) has the classical form

〈Lmaxf1|f2〉 − 〈f1|Lmaxf2〉 =
(
f1(b)f ′2(b)− f ′1(b)f2(b)

)
−
(
f1(a)f ′2(a)− f ′1(a)f2(a)

)
.

Thus if L is a regular operator then we have four continuous linear functionals on f ∈ D(Lmax)

f 7→ f(a), f 7→ f ′(a), (4.1)

f 7→ f(b), f 7→ f ′(b), (4.2)

which give a convenient description of the closed operators L• such that Lmin ⊂ L• ⊂ Lmax. In
particular, D(Lmin) is the intersection of the kernels of (4.1) and (4.2), D(La) is the intersection
of the kernels of (4.1) and D(Lb) is the intersection of the kernels of (4.2).

4.2. Boundary functionals. It is possible to extend the strategy described above to the case
of an arbitrary L by using an abstract version of the notion of boundary value of a function. We
shall do it in this section.

The abstract theory of boundary value functionals goes back to J. W. Calkin’s thesis [6] who
used it for the classification of the self-adjoint extensions of symmetric operators. The theory
was adapted to symmetric differential operators of any order by Naimark [20] and to operators
with complex coefficients of class C∞ by Dunford and Schwarz in [13, ch. XIII]. In this section
we shall use this technique in the case of second order operators with potentials which are only
locally integrable: this loss of regularity is a problem for some arguments in [13].

Recall that D(Lmax) is equipped with the Hilbert space structure associated to the norm

‖f‖L =
√
‖f‖2 + ‖Lf‖2. Following [13, §XXX.2], we introduce the following notions.

Definition 4.2. A boundary functional for L is any linear continuous form on D(Lmax) which
vanishes on D(Lmin). A boundary functional at a is a boundary functional φ such that φ(f) = 0
for all f ∈ D(Lmax) with f(x) = 0 near a; boundary functionals at b are defined similarly. B(L)
is the set of boundary functionals for L and Ba(L),Bb(L) the subsets of boundary functionals at
a and b.

B(L) is a closed linear subspace of the topological dual D(Lmax)′ of D(Lmax) and Ba(L),Bb(L)
are closed linear subspaces of B(L). By using a partition of unity on ]a, b[ it is easy to prove that

B(L) = Ba(L)⊕ Bb(L), (4.3)

a topological direct sum.

Definition 4.3. We define

the boundary index for L at a, νa(L) := dimBa(L),

the boundary index for L at b, νb(L) := dimBb(L),

and the total boundary index for L, ν(L) := dimB(L) = νa(L) + νb(L).

By definition, the subspace B(L) ⊂ D(Lmax)′ is the polar set of the closed subspace D(Lmin)
of D(Lmax). Hence it is canonically identified with the dual space of D(Lmax)/D(Lmin):

B(L) =
(
D(Lmax)/D(Lmin)

)′
. (4.4)
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Clearly one may also define Ba(L) as the set of continuous linear forms on D(Lmax) which vanish
on the closed subspace D(La), and similarly for Bb(L). Thus

Ba(L) =
(
D(Lmax)/D(La)

)′
. (4.5)

Definition 4.4. For each f ∈ D(Lmax) and x ∈ [a, b], we introduce the functional

~fx : D(Lmax)→ C defined by ~fx(g) = Wx(f, g). (4.6)

By Theorem 3.4 it is a well defined linear continuous form on D(Lmax).

Remember that if x ∈]a, b[, then we can write

~fx(g) = f(x)g′(x)− f ′(x)g(x) = Wx(f, g) ∀g ∈ C1]a, b[. (4.7)

If x = a, in general we cannot write (4.7) (unless a is regular). However we know that for all
x ∈ [a, b] (4.6) depends weakly continuously on x. Thus in general

w − lim
x→a

~fx = ~fa. (4.8)

It is easy to see that ~fa ∈ Ba, cf. (3.31) for example. We shall prove below that any boundary
value functional at the endpoint a is of this form.

Theorem 4.5. (i) f 7→ ~fa is a linear surjective map D(Lmax)→ Ba(L).

(ii) Wa(f, g) = 0 for all f, g ∈ D(Lmax) if and only if Ba(L) = {0}.
(iii) Wa(f, g) 6= 0 if and only if the functionals ~fa, ~ga are linearly independent.

(iv) If Wa(f, g) 6= 0 then {~fa, ~ga} is a basis in Ba(L); then ∀h ∈ D(Lmax) we have

~ha = cWa(g, h)~fa + cWa(h, f)~ga with c = −1/Wa(f, g). (4.9)

Proof. Let Wa be the set of linear forms of the form ~fa, this is a vector subspace of Ba(L) and
we shall prove later that Wa = Ba(L). For the moment, note that Wa separates the points of
Ya := D(Lmax)/D(La), i.e. we have Wa(f, g) = 0 for all f if and only if g ∈ D(La), cf. (3.15) and
(3.31). On the other hand, (4.5) implies that Ba(L) = {0} is equivalent to D(Lmax) = D(La)
which in turn is equivalent to Wa(f, g) = 0 for all f, g ∈ D(Lmax) by (3.31). This proves (ii).

For the rest of the proof we need Kodaira’s identity [21, pp. 151–152], namely: if f, g, h, k are
C1 functions on ]a, b[ then

W (f, g)W (h, k) +W (g, h)W (f, k) +W (h, f)W (g, k) = 0, (4.10)

with the usual definition W (f, g) = fg′ − f ′g. The relation obviously holds pointwise on ]a, b[.
If f, g, h, k ∈ D(Lmax), then the relation extends to [a, b], in particular

Wa(f, g)Wa(h, k) +Wa(g, h)Wa(f, k) +Wa(h, f)Wa(g, k) = 0, (4.11)

and similarly at b. This implies (4.9) if Wa(f, g) 6= 0 from which it follows that {~fa, ~ga} is a basis
in the vector space Wa, in particular Wa has dimension 2. But Wa ⊂ Y ′a separates the points of

Ya hence Wa = Y ′a = Ba(L) which proves the surjectivity of the map f 7→ ~f(a). This proves (i)

and (iv) completely and also one implication in (iii). It remains to prove that ~fa, ~ga are linearly
dependent if Wa(f, g) = 0.

We prove this but with different notations which allow us to use what we have already shown.

Let f such that ~fa 6= 0. Then ~f(a) is part of a basis in Wa = Ba(L), hence there is g such that

{~fa, ~ga} is a basis in Ba(L). Then Wa(f, g) 6= 0 and we have (4.9). Thus if Wa(h, f) = 0 then
~ha = cWa(g, h)~fa, so ~ha, ~fa are linearly dependent. �
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The space Ba is naturally a symplectic space. In fact, if Ba is nontrivial, then we can find k, h
with Wa(k, h) 6= 0. By the Kodaira identity,

Wa(f, g) =
−Wa(f, k)Wa(g, h) +Wa(f, h)Wa(g, k)

Wa(h, k)

=
−~fa(k)~ga(h)− ~fa(h)~ga(k)

Wa(h, k)
. (4.12)

Thus if we set for φ, ψ ∈ Ba with ~fa = φ, ~ga = ψ,

σa(φ, ψ) := Wa(f, g), (4.13)

then σa is a well defined symplectic form on Ba. Moreover, f 7→ ~fa maps the form Wa onto σa.
If σa(φ, ψ) = 1, then by the Kodaira identity

W (h, k) = φ(h)ψ(k)− ψ(h)φ(k). (4.14)

In the literature boundary functionals are usually described using the notion of boundary
triplet. Let us make a comment on this concept. Suppose, for definiteness, that νa = νb = 2.
Choose bases

φa, ψa, of Ba and φb, ψb of Bb (4.15)

such that σa(φa, ψa) = σb(φb, ψb) = 1. We have the maps

D(Lmax) 3 f 7→ φ(f) :=
(
φa(f), φb(f)

)
∈ C2; (4.16)

D(Lmax) 3 f 7→ ψ(f) :=
(
ψa(f), ψb(f)

)
∈ C2. (4.17)

Then we can rewrite Green’s formula (3.13) as

〈Lmaxf |g〉 − 〈f |Lmaxg〉 = 〈ψ(f)|φ(g)〉 − 〈φ(f)|ψ(g)〉. (4.18)

The triplet (C2, φ, ψ) is often called in the literature a boundary triplet, see e.g. [2] and references
therein. It can be used to characterize operators in between Lmin and Lmax.

Thus a boundary triplet is essentially a choice of a basis (4.15) in the space of boundary
functionals. Such a choice is often natural: in particular this is the case of regular boundary
conditions, see (4.1), (4.2). In our paper we consider rather general potentials for which there
may be no natural choice for (4.15). Therefore, we do not use the boundary triplet formalism.

4.3. Classification of endpoints and of realizations of L. The next fact is a consequence
of Theorem 4.5. One may think of the assertion “νa(L) can only take the values 0 or 2” as a
version of Weyl’s dichotomy, cf. §5.2.

Theorem 4.6. νa(L) can be 0 or 2: we have νa(L) = 0 ⇔ Wa = 0 and νa(L) = 2 ⇔ Wa 6= 0.
Similarly for νb(L), hence ν(L) ∈ {0, 2, 4}.

Remark 4.7. According to the terminology in [13], we might say that L has no boundary values
at a if νa(L) = 0 and that L has two boundary values at a if νa(L) = 2.

Example 4.8. If L is regular at the endpoint a then νa(L) = 2. It is clear that f 7→ f(a) and
f 7→ f ′(a) are linearly independent and Theorem 4.6 implies that they form a basis in Ba(L).

Example 4.9. If L is semiregular at a then we also have νa(L) = 2. However, in general we
have only one naturally distinguished boundary functional: f 7→ f(a).

As a consequence of Theorem 4.6 we get the following classification of Sturm-Liouville opera-
tors in terms of the boundary functionals.

(1) νa(L) = νb(L) = 0. This is equivalent to Lmin = La = Lb = Lmax.
(2) νa(L) = 0, νb(L) = 2, Then D(Lmin) is a subspace of codimension 2 in D(Lmax). This is

equivalent to La = Lmax, and to Lmin = Lb.
(3) νa(L) = 2, νb(L) = 0. Then D(Lmin) is a subspace of codimension 2 in D(Lmax). This is

equivalent to Lb = Lmax, and to Lmin = La.
(4) νa(L) = νb(L) = 2. Then D(Lmin) is a subspace of codimension 4 in D(Lmax).
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In case (2) the operators L• with Lmin ( L• ( Lmax are defined by nonzero boundary value
functionals φ at a: D(L•) = {f ∈ D(Lmax) | φ(f) = 0}. Similarly in case (3).

Consider now the case (4). The domain of nontrivial realizations L• could be then of codi-
mension 1, 2, or 3 in D(Lmax). We will see that realizations of codimension 2 are the most
important.

Each realization of L extending Lmin is defined by a subspace C• ⊂ Ba ⊕ Bb.

D(L•) := {f ∈ D(Lmax) | φ(f) = 0, φ ∈ C•} (4.19)

The space C• is called the space of boundary conditions for L•. The dimension of C• coincides
with the codimension of D(L•) in D(Lmax).

Definition 4.10. We say that the boundary conditions C• are separated if

C• = C• ∩ Ba ⊕ C• ∩ Bb. (4.20)

For instance, La and Lb are given by separated boundary conditions Ba, resp. Bb.

Definition 4.11. Let φ ∈ Ba and ψ ∈ Bb such that φ 6= 0 if Ba 6= {0} and similarly for ψ. Then
the realization of L with the boundary condition Cφ⊕ Cψ will be denoted Lφψ.

Clearly, Lφψ has separated boundary conditions, more explicitly Lφψ is the restriction of
Lmax to D(Lφψ) = {f ∈ D(Lmax) | φ(f) = ψ(f) = 0}. Lφψ depends only on the complex lines
determined by φ and ψ and if φ, ψ 6= 0 then the relations φ(f) = ψ(f) = 0 can be stated as:

there are complex numbers ca(f), cb(f) such that ~fa = ca(f)φ and ~fb = cb(f)ψ.

If for example Bb = {0} then we set Lφ = Lφ0 and there is no boundary condition at b, so

D(Lφ) = {f ∈ D(Lmax) | φ(f) = 0} = {f ∈ D(Lmax) | ∃c(f) such that ~fa = c(f)φ}.

4.4. Properties of boundary functionals. The next proposition is a version of [13, XIII.2.27]
in our context.

Proposition 4.12. If φ ∈ Ba(L) then there are continuous functions α, β : ]a, b[→ C such that

φ(f) = lim
x→a

(
α(x)f(x) + β(x)f ′(x)

)
∀f ∈ D(Lmax).

Reciprocally, if α, β are complex functions on ]a, b[ and limx→a
(
α(x)f(x) + β(x)f ′(x)

)
=: φ(f)

exists ∀f ∈ D(Lmax), then φ ∈ Ba(L).

Proof. The first assertion follows from Theorem 4.5-(i) and relations (4.8), (4.7) while the second
one is a consequence of Banach-Steinhaus theorem. �

Recall that for d ∈ [a, b] the symbol La,d denotes the operator −∂2 + V on the interval ]a, d[.

Lemma 4.13. Let d ∈]a, b[. Then

dimBa(L) = dimBa(La,d). (4.21)

Proof. Since d is a regular endpoint for Ld, the maximal operator La,dmax associated to La,d has
the property D(La,dmax) ⊂ C1]a, d]. Thus the restriction map R : f 7→ f

∣∣
]a,d[

is a surjective map

D(Lmax)→ D(La,dmax) such that RD(La) = D(La,da ). If φ is a boundary value functional at a for
La,d then clearly φ ◦R is a boundary value functional at a for La,d and the map φ 7→ φ ◦R is a
bijective map Ba(L)→ Ba(La,d). �

We note that the space B(L) and its subspaces Ba(L),Bb(L) depend on L only through the
domains D(Lmax) and D(Lmin). So in order to compute them one can sometimes change the
potential and consider an operator LU := −∂2 + U instead of L := −∂2 + V . This is especially
useful if U is real: for example, U could be the real part of V , if its imaginary part is bounded.
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Proposition 4.14. Let U : ]a, b[→ C measurable such that ‖(U − V )f‖ ≤ α‖Lf‖ + β‖f‖ for
some real numbers α, β with α < 1 and all f ∈ D(Lmax). Then D(Lmax) = D(LUmax) and
D(Lmin) = D(LUmin). Hence B(L) = B(LU ) and

νa(L) = νa(LU ), νb(L) = νb(L
U ). (4.22)

Proof. We have

(1− α)‖Lf‖ − β‖f‖ ≤ |‖LUf‖ ≤ (1 + α)‖Lf‖+ β‖f‖

so the norms ‖ · ‖L and ‖ · ‖LU are equivalent. Then we use (4.4). �

4.5. Infinite endpoints. Suppose now that our interval is right-infinite. We will show that
if the potential stays bounded in average at infinity, then all elements of the maximal domain
converge to zero at∞ together with their derivative, which obviously implies that their Wronskian
converges to zero.

Proposition 4.15. Suppose that b =∞ and

lim sup
c→∞

∫ c+1

c

|V (x)|dx <∞. (4.23)

Then

f ∈ D(Lmax) ⇒ lim
x→∞

f(x) = 0, lim
x→∞

f ′(x) = 0. (4.24)

Hence νb = 0.

Of course, an analogous statement is true for a = −∞ on left-infinite intervals.
Proof of Prop. 4.15. Let ν < ν0 and let Jn := [a+ nν, a+ (n+ 1)ν]. Then, using first (2.23)
and then the Schwarz inequality, we obtain

‖f‖L∞(Jn) + ν‖f ′‖L∞(Jn) ≤ C1‖Lf‖L1(Jn) + C2‖f‖L1(Jn)

≤ C1

√
ν‖Lf‖L2(Jn) + C2

√
ν‖f‖L2(Jn) →

n→∞
0.

This implies (4.24). �

5. Solutions square integrable near endpoints

5.1. Spaces Ua(λ) and Ub(λ). In the real case one can compute the boundary indices with help
of eigenfunctions of the operator L which are square integrable around a given endpoint. The
space of such eigenfunctions is interesting in its own right, and we devote this section to the
study of its properties.

Definition 5.1. If λ ∈ C then Ua(λ) is the set of f ∈ AC1]a, b[ such that (L− λ)f = 0 and f is
L2 on ]a, d[ for some, hence for all d such that a < d < b. Similarly we define Ub(λ).

Proposition 5.2. If a is a semiregular endpoint for L, then dimUa(λ) = 2 for all λ ∈ C.
Besides, if a is regular, we can choose u, v ∈ Ker(L− λ) such that

u(a) = 1, u′(a) = 0, (5.1)

v(a) = 0, v′(a) = 1. (5.2)

Similarly for b.

Proof. We apply Prop. 2.5. �
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5.2. Two-dimensional Ua(λ). The next proposition contains the main technical fact about the
dimensions of the Ua(λ).

Proposition 5.3. Assume that all the solutions of Lf = 0 are square integrable near a. If
f ∈ C1]a, b[ and |Lf | ≤ B|f | for some B > 0, then f is square integrable near a. In particular,
if U ∈ L∞]a, b[ then all the solutions of (L+ U)f = 0 are square integrable near a.

Proof. We may clearly assume that b is a regular endpoint and f ∈ C1]a, b]. Let Gb be the
right-sided Green’s operator of L (Definition 2.11). If Lf = g, then L(f −Gbg) = 0. Therefore

f(x) = αu(x) + βv(x) +

∫ b

x

(
u(x)v(y)− v(x)u(y)

)
g(y)dy, (5.3)

for some α, β. Set A :=
√
|α|2 + |β|2 and µ(x) :=

√
|u(x)|2 + |v(x)|2. Then

|f(x)| ≤ Aµ(x) + µ(x)

∫ b

x

µ(y)|g(y)|dy ≤ µ(x)
(
A+B

∫ b

x

µ(y)|f(y)|dy
)
,

and the Gronwall Lemma applied to |f |/µ imples

|f(x)| ≤ Aµ(x) exp
(
B

∫ b

x

µ2(y)dy
)
. (5.4)

Clearly the right hand side of (5.4) is square integrable. �

The above proposition has the following important consequence.

Proposition 5.4. If dimUa(λ) = 2 for some λ ∈ C then dimUa(λ) = 2 for all λ ∈ C. Besides,
if this is the case, then νa(L) = 2.

5.3. The kernel of Lmax. Let us describe the relationship between the dimension of the kernel
of Lmax − λ and the dimensions of spaces Ua(λ) and Ub(λ).

The first proposition is a corrolary of Prop. 5.4:

Proposition 5.5. The following statements are equivalent:

(1) dim Ker(Lmax − λ) = 2 for some λ ∈ C.
(2) dim Ker(Lmax − λ) = 2 for all λ ∈ C.
(3) dimUa(λa) = dimUb(λb) = 2 for some λa, λb ∈ C.
(4) dimUa(λ) = dimUb(λ) = 2 for all λ ∈ C.

Besides, if this is the case, then νa(L) = νb(L) = 2.

The next two propositions are essentially obvious:

Proposition 5.6. Let λ ∈ C. We have dim Ker(Lmax−λ) = 1 if and only if one of the following
statements is true:

(1) dimUa(λ) = dimUb(λ) = 1 and Ua(λ) = Ub(λ).
(2) dimUa(λ) = 2 and dimUb(λ) = 1.
(3) dimUa(λ) = 1 and dimUb(λ) = 2.

Proposition 5.7. Let λ ∈ C and Ua(λ) 6= {0}, Ub(λ) 6= {0}. Then dim Ker(Lmax − λ) = 0 if
and only if dimUa(λ) = dimUb(λ) = 1 and Ua(λ) 6= Ub(λ).

5.4. Conjecture. If V is real then there is a well known and simple relation between νa(L)
and the dimension of the spaces Ua(λ), cf. Proposition 5.13. This is quite a convenient way of
computing νa(L). In this subsection we explore what can be said on this question for arbitrary
complex potentials. The difficulty is related to the fact that in the complex case there is no simple
relation between the (geometric) limit point/circle method and the dimension of the spaces Ua(λ),
see Subsect. 7.5.

The following relationship is easy to see:

Proposition 5.8. For any λ ∈ C we have dimUa(λ) = 2⇒ νa(L) = 2.
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Proof. Indeed, we may choose two solutions u, v of the equation (L−λ)f = 0 such that W (u, v) =
1. Hence if all the solutions of (L − λ)f = 0 are square integrable near a, then Wa(u, v) = 1,
Thus Wa 6= 0, or νa(L) = 2. �

Now we state a conjecture which, if true, allows us to compute νa(L) by estimating the
behaviour near a of the solutions of Lu = λu for certain complex λ.

Conjecture 5.9. If νa(L) = 2 then dimUa(λ) = 2 for some complex λ.

If the conjecture is true, we have in fact much more:

Lemma 5.10. The conjecture 5.9 is equivalent to each of the following statements:

νa(L) = 0⇔ dimUa(λ) ≤ 1 ∀λ ∈ C, (5.5)

νa(L) = 2⇔ dimUa(λ) = 2 ∀λ ∈ C. (5.6)

Proof. By Proposition 5.4 one may replace in (5.5) and (5.6) ∀λ by ∃λ, in particular the state-
ments (5.5) and (5.6) are equivalent. Hence, by Prop. 5.8 the conjecture is equivalent to (5.6). �

The Conjecture 5.9 can be restated as a boundary value problem. Below, by “f is square

integrable near a” we mean
∫ d
a
|f |2 <∞ for some a < d < b.

Lemma 5.11. The Conjecture 5.9 is equivalent to the following property: if νa(L) = 2 and
φ, ψ ∈ Ba(L) are linearly independent, then ∀α, β ∈ C there is a unique f ∈ AC1]a, b[ such that
f is square integrable near a, Lf = 0, and φ(f) = α,ψ(f) = β.

Proof. Assume that the conjecture is true and νa(L) = 2. Then there are u, v ∈ Ua(0) such that
W (u, v) = 1. Then, due to Theorem 4.5, the boundary value functionals ~u(a), ~v(a) ∈ Ba(L) are
linearly independent. It is clear that it suffices to prove the property stated in the lemma for a
unique couple φ, ψ and we may take φ = ~ua and ψ = ~va. Then we have to find a solution f of
Lf = 0 such that W (u, f) = α and W (v, f) = β. Since W (u, cu+dv) = d and W (v, cu+dv) = −c
hence it suffices to take f = −βu+αv. This f is uniquely defined because u, v is a basis in Ua(0)
hence any element of this space can be written as f = cu+ dv with a unique couple of numbers
c, d. Reciprocally, if νa(L) = 2 and the property stated in the lemma is true, then the map
(α, β) 7→ f ∈ Ua(0) is bijective, hence dimUa(0) = 2. �

5.5. Von Neumann decomposition. Von Neumann’s theory for the classification of self-
adjoint extensions of a Hermitian operators is well known, cf. [24, 13]. In the present subsection
we will investigate how to adapt it to our situation.

For this recall that the differential operator associated to the complex conjugate V is denoted
L = −∂2 + V . The maximal and minimal operators associated to L are denoted Lmax and Lmin.
If J is the operator of complex conjugation, we clearly have Lmax = JLmaxJ and Lmin = JLminJ ,
in particular

D(Lmax) = {f | f ∈ D(Lmax)}, and Ker(L− z) = J Ker(L− z), ∀z ∈ C.

Thus D(Lmax) ∩ D(Lmax) could be {0}, cf. Lemma 3.9. Finally, L∗min = Lmax hence

(RanLmin)⊥ = KerLmax. (5.7)

Lemma 5.12. There is a canonical linear isomorphism

B(L) ' {f ∈ D(Lmax) | Lf ∈ D(Lmax) and LLf + f = 0}. (5.8)

Proof. The space D(Lmax) has a natural Hilbert space structure inherited from its graph which
is a closed subspace of L2]a, b[⊕L2]a, b[ , namely

(f |g)L = (f |g) + (Lf |Lg) = 〈f |g〉+ 〈Lf |Lg〉 = 〈f |g〉+ 〈Lf |Lg〉 (5.9)

with the notations (3.1) and (3.2). It follows that the bilinear form

〈·|·〉L : D(Lmax)×D(Lmax)→ C given by 〈f |g〉L := (f |g)L = 〈f |g〉+ 〈fu|Lg〉 (5.10)
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allows us to identify the topological dual of D(Lmax) with D(Lmax) as follows: if we denote 〈f |·〉L
the continuous linear form g 7→ 〈f |g〉L, then the map f 7→ 〈f |·〉L is a linear bijective map of
D(Lmax) onto the topological dual D(Lmax)′. Since 〈f |f〉L = ‖f‖2L, this map is also isometric.

This identification D(Lmax)′ = D(Lmax) forces us to set

B(L) = {f ∈ D(Lmax) | 〈f |g〉L = 0 ∀g ∈ D(Lmin)}. (5.11)

More explicitly the condition on f is 〈f |g〉 + 〈Lf |Lg〉 = 0 if g ∈ D(Lmin) and this is equivalent
to Lf ∈ D(Lmax) and LLf = −f . �

Formally LLf + f = 0 is a fourth order differential equation but, since V is only locally L1,
with very singular coefficients. We may, however, write it as a second order system of equations
as follows: if we set f1 = f and f2 = Lf1 then Lf2 + f1 = 0 hence(

L −1
1 L

)(
f1

f2

)
=

(
0
0

)
.

Thus by using the C2-valued function F =
(
f1
f2

)
∈ D(Lmax) ⊕ D(Lmax) and the matrix valued

potential W =
(
V −1

1 V

)
we see that LLf + f = 0 may be written

− F ′′ +WF = 0. (5.12)

The operator L = −∂2 +W =
(
L −1
1 L

)
acts in L2]a, b[⊕L2]a, b[ and (5.12) means F ∈ Ker L .

With the help of this formalism we now prove, in the case of real potentials, a stronger version
of Conjecture 5.9.

Proposition 5.13. If V is a real function, then:

(1) νa(L) = 0⇔ dimUa(λ) = 1 ∀λ ∈ C \ R;
(2) νa(L) = 2⇔ dimUa(λ) = 2 ∀λ ∈ C .

Proof. We give a complete proof. The von Neumann’s formalism is particularly efficient for real
potentials. Indeed, if V is real then L = L, Lmin is Hermitian, and Lmax = L∗min. Then

B(L) ' {u ∈ D(Lmax) | Lu ∈ D(Lmax) and L2
maxu+ u = 0}. (5.13)

But we have
Ker(L2

max + 1) = Ker(Lmax − i) + Ker(Lmax + i). (5.14)

Indeed, the inclusion ⊃ is obvious. To prove the inclusion ⊂ we use

(L2 + 1) = (L− i)(L+ i) = (L+ i)(L− i).

Thus if f ∈ Ker(L2
max + 1) and f± = (L ± i)f then f = (f+ − f−)/2i and (L ∓ i)f± = 0, or

f± ∈ Ker(Lmax ∓ i), hence (5.14) is proved. So under the identification (5.13) we have

B(L) ' Ker(Lmax − i) + Ker(Lmax + i). (5.15)

The last sum is obviously algebraically direct but also orthogonal for the scalar product (5.9)
hence, due to (5.11), we have an orthogonal direct sum decomposition

D(Lmax) = D(Lmin)⊕ B(L) = D(Lmin)⊕Ker(Lmax − i)⊕Ker(Lmax + i). (5.16)

The map f 7→ f is a real linear isomorphism of Ker(Lmax − i) onto Ker(Lmax + i) hence these
spaces have equal dimension ≤ 2 and so dimB(L) = 2 dim Ker(Lmax − i) ∈ {0, 2, 4}. Of course,
we have already proved this in a much simpler way, but (5.16) will be useful below.

From (4.21) it follows that we may assume that b is a regular endpoint. Then dimB(L) =
dimBa(L) + 2 due to (4.3). Then Theorem 4.6 gives Wa = 0 ⇔ dimB(L) = 2 and Wa 6=
0 ⇔ dimBa(L) = 4. Then the preceding discussion gives Wa = 0 ⇔ dim Ker(Lmax ∓ i) = 1 and
Wa = 2⇔ dim Ker(Lmax∓i) = 2. If Wa = 0 then one may deduce that dim Ker(Lmax−λ) = 1 for
any λ ∈ C \R by an easy analytic continuation argument (see any text on symmetric operators).
Proposition 5.3 (or 5.4) implies then that Wa 6= 0 if and only if for any λ ∈ C all the solutions
of Lf = λf are square integrable near a. �
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Corollary 5.14. If the imaginary part of V is bounded then Conjecture 5.9 is true, i.e

(1) νa(L) = 0⇔ ∀λ ∈ C at least one solution of Lf = λf is not square integrable near a;
(2) νa(L) = 2⇔ ∀λ ∈ C all the solutions of Lf = λf are square integrable near a.

Proof. We will prove that νa(L) = 2 ⇒ dimUa(λ) = 2 for any λ ∈ C. Let VR and VI be the
real and imaginary part of V and LR = −∂2 + VR. From Proposition 4.14 we get νa(LR) = 2.
Hence by Proposition 5.13 all the solutions of LRf = λf are square integrable near a. Finally,
Proposition 5.3 implies that the solutions of Lf = λf are square integrable near a. �

6. Spectrum and Green’s operators

6.1. General L2 Green’s operators. In this section we investigate Green’s operators that are
bounded on L2]a, b[. Clearly, such Green’s operators are inverses of closed realizations of L on
L2]a, b[. Their existence means that zero belongs to the resolvent set of this realization. By
replacing L with L− z we can this way study spectral properties of realizations of L.

Definition 6.1. We say that G• is an L2 Green’s operator of L if it is a bounded operator on
L2]a, b[ such that RanG• ⊂ D(Lmax) and

LmaxG• = 1l. (6.1)

Proposition 6.2. The following conditions are equivalent:
(1) L has an L2 Green’s operator,
(2) Lmax : D(Lmax)→ L2]a, b[ is surjective,
(3) Lmin : D(Lmin)→ L2]a, b[ is injective and has closed range.
If these conditions are satisfied then L2 Green’s operators are in bijective correspondence with
closed subspaces L of D(Lmax) such that D(Lmax) = L ⊕KerLmax (topological direct sum).

Proof. If G• is an L2 Green’s operator for L then Lmax is surjective due to (6.1). Reciprocally,
assume Lmax is surjective. Since KerLmax is a finite dimensional subspace of D(Lmax), there
is a closed subspace L of D(Lmax) such that D(Lmax) = L ⊕ KerLmax. Then L• = Lmax

∣∣
L

is a bijective map L → L2]a, b[ and G• := L−1
• is an L2 Green’s operator for L. This proves

(1) ⇔ (2). To prove the equivalence with (3), we use the closed range theorem (see Theorem
A.3) after identifying the dual (not the anti-dual) space of L2]a, b[ with itself with the help of
(3.2). Thus Lmax has closed range if and only if L#

max = Lmin has closed range and KerLmin

is the orthogonal of RanLmax, so Lmax is surjective if and only if Lmin is injective with closed
range. �

Observe that under the conditions of Proposition 6.2 we have (with the notation of (3.8))

RanLmin = (KerLmax)perp and KerLmax = (RanLmin)perp. (6.2)

Proposition 6.3. If G• is an L2 Green’s operator of L and K : L2]a, b[→ KerLmax is a linear
continuous map, then G• + K is also an L2 Green’s operator. If G1, G2 are two L2 Green’s
operators of L, then there are 3 possibilities:

(1) dim KerLmax = 0. Then G1 = G2, so there is at most one L2 Green operator.
(2) dim KerLmax = 1. Then if u ∈ L2]a, b[ is a nonzero solution of Lg = 0,

G1 −G2 = |u〉〈φ|, for some φ ∈ L2]a, b[.

(3) dim KerLmax = 2. Then if u, v are linearly independent solutions in L2]a, b[ of Lg = 0,

G1 −G2 = |u〉〈φ|+ |v〉〈ψ|, for some φ, ψ ∈ L2]a, b[.

Proof. We have Lmax(G1−G2) = 0 on L2]a, b[ and KerLmax = KerL∩L2]a, b[. But dim KerL =
2, therefore dim KerLmax can be 0, 1 or 2. �

Proposition 6.4. Let G• be an L2 Green’s operator. Then

(1) KerG• = {0}.
(2) G• is bounded from L2]a, b[ to D(Lmax).
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(3) P• := G•Lmax is a bounded projection on the space D(Lmax) such that

RanP• = RanG•, KerP• = KerLmax.

(4) RanG• is closed in D(Lmax).
(5) D(Lmax) = RanG• ⊕KerLmax where ⊕ means the topological direct sum.

Proof. (1) is obvious and

‖G•f‖2L = ‖LmaxG•f‖2 + ‖G•f‖2 ≤
(
1 + ‖G•‖2

)
‖f‖2 (6.3)

implies (2). Since Lmax : D(Lmax)→ L2]a, b[ is bounded, P• is bounded on D(Lmax). Then

P 2
• = G•(LmaxG•)Lmax = G•Lmax = P•

hence P• is a projection.
It is obvious that RanP• ⊂ RanG•. If g ∈ L2]a, b[ then

G•g = G•LmaxG•g = P•G•g.

Hence RanG• ⊂ RanP•. This shows that RanG• = RanP• = L (cf. Proposition 6.2).
It is obvious that KerLmax ⊂ KerP•. If 0 = P•f , then

0 = LmaxP•f = (LmaxG•)Lmaxf = Lmaxf.

Hence KerP• ⊂ KerLmax. This shows that KerP• = KerLmax.
Thus we have shown (3), which implies immediately (4) and (5). �

Proposition 6.5. Suppose that G• is a bounded everywhere defined operator on L2]a, b[ and
D ⊂ L2]a, b[ a dense subspace such that G•D ⊂ D(Lmax) and

LmaxG•g = g, g ∈ D. (6.4)

Then G• is an L2 Green’s operator of L.

Proof. Let f ∈ L2]a, b[ and (fn) ⊂ D such that fn →
n→∞

f . Then G•fn →
n→∞

G•f and

LmaxG•fn = fn →
n→∞

f . By the closedness of Lmax, G•f ∈ D(Lmax) and LmaxG•f = f . �

Let G• be a Green’s operator in the sense of Definition 2.8. Clearly, L2
c ]a, b[ is contained

in L1
c ]a, b[. Besides, L2

c ]a, b[ is dense in L2]a, b[. Therefore, if the restriction of G• to L2
c ]a, b[

is bounded, then it has a unique extension to a bounded operator on L2]a, b[. This extension,
which by Prop. 6.5 is an L2 Green’s operator, will be denoted by the same symbol G•.

Definition 6.6. Let G• be an L2 Green’s operator of L. Then we define L• to be the restriction
of Lmax to

D(L•) := RanG• (6.5)

Observe that D(L•) is the subspace denoted L in the proof of Proposition 6.2. Since this
subspace is closed in D(Lmax), we have:

Proposition 6.7. L• is a closed operator such that L•G• = 1l on L2]a, b[ and G•L• = 1l on
D(L•). Thus 0 belongs to the resolvent set of L• and L−1

• = G•. Besides,

D(Lmax) = D(L•)⊕KerLmax. (6.6)

Thus, for every L2 Green’s operator G•, its inverse is a closed operator L• contained in Lmax.
Obviously, if KerLmax 6= 0, its domain is not dense in D(Lmax). But it is often dense in L2]a, b[.
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6.2. L2 Green’s operators whose inverses contain Lmin. We are mostly interested in closed
operators that lie between Lmin and Lmax. Such operators are automatically densely defined.
The corresponding Green’s operators are characterized in the following proposition:

Proposition 6.8. Let G• be an L2 Green’s operator and L• its inverse. Then Lmin ⊂ L• if and

only if G#
• is an L2 Green’s operator.

Proof. Recall that Lmax = L#
min. Thus Lmin ⊂ L• if and only if

Lmin ⊂ L• ⊂ L#
min. (6.7)

Applying the transposition reverses the inclusion. Therefore,

L#
min ⊃ L

#
• ⊃ Lmin. (6.8)

But
G• = L−1

• , G#
• = (L−1

• )# = (L#
• )−1 (6.9)

Therefore, G#
• is the L2 Green’s operator associated with L#

• . This proves⇒. Clearly, the above
argument can be reversed. �

Proposition 6.9. If L has an L2 Green’s operator then it has self-transposed L2 Green’s opera-

tors. If G• is a self-transposed L2 Green’s operator of L and G• = L−1
• , then Lmin ⊂ L• = L#

• .

Proof. If L has an L2 Green’s operator then Lmin is injective (see Proposition 6.2) and this is
equivalent to D(Lmin) ∩KerLmax = 0. Since D(Lmin) is of finite codimension in D(Lmax), from
the last assertion of Proposition 6.2 it follows that there are L2 Green’s operators with D(Lmin) ⊂
L = D(L•). Then a self-transposed L2 Green’s operator exists, for example (G• + G#

• )/2. By

the Proposition 6.8, all self-transposed L2 Green’s operators are such that Lmin ⊂ L• = L#
• . �

The following proposition should be compared with Prop. 6.3.

Proposition 6.10. If Lmax has an L2 Green’s operator, then there are 3 possibilities:

(1) dim KerLmax = 0. Then the L2 Green’s operator is unique, self-transposed, and its
inverse is Lmax = Lmin.

(2) dim KerLmax = 1. Then all L2 Green’s operators whose inverses contain Lmin are self-
transposed. If G1, G2 are two such Green’s operators and u ∈ KerLmax is nonzero, then

G1 −G2 = α|u〉〈u|, for some α ∈ C.
(3) dim KerLmax = 2. Then if G1, G2 are two L2 Green’s operators whose inverses contain

Lmin and u1, u2 ∈ KerLmax are linearly independent, then

G1 −G2 =
∑
i,j

αij |ui〉〈uj | for some matrix [αij ].

Proof. If dim KerLmax = 0 and there is a Green operator then this operator is unique by (1) of
Proposition 6.3 and its range is equal to D(Lmax) by (5) of Proposition 6.4. Thus G• = L−1

max

and Lmax = Lmin by Proposition 6.2, for example. Then

G#
• =

(
L−1

max)# =
(
L#

max)−1 =
(
Lmin)−1 = G• (6.10)

which finishes the proof of assertion (1).
If dim KerLmax = 1 then Proposition 6.9 shows that L has a self-transposed L2 Green’s

operator G1. Then, by (2) of Proposition 6.3, if G2 is another L2 Green’s operator, we have

G1−G2 = |u〉〈φ| for some φ ∈ L2]a, b[ hence we also have G1−G#
2 = |φ〉〈u|. If the inverse of G2

contains Lmin then by Proposition 6.8 G#
2 is a Green’s operator of L, hence Lmax(G1−G#

2 ) = 0,
which clearly is equivalent to Lmaxφ = 0. Since dim KerLmax = 1 we get φ = αu for some λ ∈ C
and then G2 = G1 − α|u〉〈u| so that G2 is self-transposed.

Finally, let us assume dim KerLmax = 2 and let G1, G2 be Green’s operators whose inverses

contain Lmin. Then G#
1 , G

#
2 are also Green’s operators, due to Proposition 6.8. By (3) of

Proposition 6.3 we get G1 − G2 = |u1〉〈φ1| + |u2〉〈φ2| for some φ1, φ2 ∈ L2]a, b[ . This implies
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G#
1 −G

#
2 = |φ1〉〈u1|+|φ2〉〈u2| and since the range of the operator G#

1 −G
#
2 must also be included

in KerLmax we get φ1〈u1|v〉 + φ2〈u2|v〉 ∈ KerLmax for all v ∈ L2]a, b[. Since u1, u2 are linearly
independent, there are vectors v1, v2 such that 〈ui|vj〉 = δij hence φ1, φ2 ∈ KerLmax. �

In the next proposition we describe the integral kernel of an L2 Green’s operator G• whose
inverse contains Lmin. Recall that for any x ∈]a, b[ we denote by La,x, resp. Lx,b the restriction
of L to L2]a, x[, resp. L2]x, b[. We also can define La,xmax and Lx,bmax, etc. Note that x is a regular
point of both La,x and Lx,b (V is integrable on a neighbourhood of x).

Proposition 6.11. Let G• be an L2 Green’s operator for L such that G#
• is also an L2 Green’s

operator for L. Then G• is an integral operator whose integral kernel

]a, b[×]a, b[3 (x, y) 7→ G•(x, y) ∈ C

is a function separately continuous in x and y which has the following properties:
(1) for each a < x < b the function G•(x, ·) restricted to ]a, x[, resp. ]x, b[ belongs to D(La,xmax),
resp. D(Lx,bmax) and satisfies LG•(x, ·) = 0 outside x. Besides, G•(x, ·) and its derivative have
limits at x from the left and the right satisfying

G•(x, x− 0)−G•(x, x+ 0) = 0,

∂2G•(x, x− 0)− ∂2G•(x, x+ 0) = 1;

(2) for each a < y < b the function G•(·, y) restricted to ]a, y[, resp. ]y, b[ belongs to D(La,ymax),
resp. D(Ly,bmax) and satisfies LG•(·, y) = 0 outside y. Besides, G•(·, y) and its derivative have
limits at y from the left and the right satisfying

G•(y − 0, y)−G•(y + 0, y) = 0,

∂1G•(y − 0, y)− ∂1G•(y + 0, y) = 1;

Proof. We shall use ideas from the proof of Lemma 4 p. 1315 in [13]. G• is a continuous linear
map G• : L2]a, b[→ D(Lmax) and for each x ∈]a, b[ we have a continuous linear form εx : f 7→ f(x)
on D(Lmax), hence we get a continuous linear form εx ◦G• : L2]a, b[→ C. Thus for each x ∈]a, b[
there exists a unique φx ∈ L2]a, b[ such that

(G•f)(x) =

∫ b

a

φx(y)f(y)dy, ∀f ∈ L2]a, b[ .

We get a map φ : ]a, b[→ L2]a, b[ which is continuous, and even locally Lipschitz, because if
J ⊂ ]a, b[ is compact and x, y ∈ J then∣∣∣∣∣

∫ b

a

(φx(z)− φy(z))f(z)dz

∣∣∣∣∣ = |(G•f)(x)− (G•f)(y)| ≤ ‖(G•f)′‖L∞(J)|x− y|

≤ C1‖G•f‖D(Lmax)|x− y| ≤ C2‖f‖|x− y|,

hence ‖φx − φy‖ ≤ C2|x− y|. By taking f = L•g, g ∈ D(L•), we get

g(x) =

∫ b

a

φx(y)(L•g)(y)dy. (6.11)

Set φax := φx
∣∣
]a,x[

and φbx := φx
∣∣
]x,b[

. (6.11) can be rewritten as

g(x) =

∫ x

a

φax(y)(L•g)(y)dy +

∫ b

x

φbx(y)(L•g)(y)dy. (6.12)

Since G#
• is also an L2 Green’s operator, we have Lmin ⊂ L• ⊂ Lmax. Assuming that g ∈ D(Lmin)

and g(y) = 0 in a neighborhood of x, we can rewrite (6.12) as

0 =

∫ x

a

φax(y)(La,xming)(y)dy +

∫ b

x

φbx(y)(La,xming)(y)dy. (6.13)
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Such functions g are dense in D(La,xmin) ⊕ D(Lx,bmin). Therefore, φax belongs to D(La,xmax) and φbx
belongs to D(Lx,bmax). Since x is a regular end of both intervals ]a, x[ and ]x, b[ the function φx and
its derivative φ′x extend to continuous functions on ]a, x] and [x, b[. However, these extensions
are not necessarily continuous on ]a, b[, i.e. we must distinguish the left and right limits at x,
denoted φx(x± 0) and φ′x(x± 0).

We now take g ∈ D(Lmin) in (6.11). By taking into account (5) of Theorem 3.4 and what we
proved above we have W (φx, g; a) = 0 and W (φx, g; b) = 0. Denote φax and φbx the restrictions of
φx to the intervals ]a, x[ and ]x, b[. Then by using Green’s identity on ]a, x[ and ]x, b[ in (6.12)
we get

g(x) = −W (φax, g;x) +W (φbx, g;x).

We may compute the last two terms explicitly because x is a regular end of both intervals:

W (φax, g;x) = φx(x− 0)g′(x)− φ′x(x− 0)g(x),

W (φbx, g;x) = φx(x+ 0)g′(x)− φ′x(x+ 0)g(x).

Thus we get

g(x) = (φx(x+ 0)− φx(x− 0))g′(x) + (φ′x(x− 0)− φ′x(x+ 0))g(x).

The values g(x) and g′(x) may be specified in an arbitrary way under the condition g ∈ D(Lmin)
so we get φx(x + 0) − φx(x − 0) = 0 and φ′x(x − 0) − φ′x(x + 0) = 1. Thus φx must be a
continuous function which is continuously derivable outside x and its derivative has a jump
φ′x(x+ 0)− φ′x(x− 0) = −1 at x.

Thus G• is an integral operator with kernel G•(x, y) = φx(y). But G#
• is also an L2 Green’s

operator and clearly G#
• has kernel G#

• (x, y) = φy(x). Repeating the above arguments applied

to G#
• we obtain the remaining statements of the proposition. �

Let us describe one consequence of the above proposition, where we use the notation of Defi-
nition 5.1:

Proposition 6.12. If there exists a realization of L such that λ ∈ C is in its resolvent set, then
dimUa(λ) ≥ 1 and dimUb(λ) ≥ 1.

Proof. Suppose that L possesses a realization and λ ∈ C is contained in its resolvent set. This
means that L−λ possesses an L2 Green’s operator G•. By Proposition 6.9 it can be chosen to sat-

isfy G• = G#
• . Then Proposition 6.11 implies that for any x ∈]a, b[ the function G•(x, ·) ∈ L2]a, b[

satisfies LG•(x, ·) = 0 on ]a, x[ and ]x, b[. And we have G•(x, ·)
∣∣
]a,x[
6= 0 and G•(x, ·)

∣∣
]x,b[
6= 0

due to (6.11) for example. �

6.3. Forward and backward Green’s operators. Let us study the L2 theory of the forward
Green’s operator G→. Recall that if u, v span KerL with W (v, u) = 1, then G→ is given by

G→g(x) = v(x)

∫ x

a

u(y)g(y)dy − u(x)

∫ x

a

v(y)g(y)dy. (6.14)

Of course, similar results are valid for the backward operator G←.

Proposition 6.13. Assume dim KerLmax = 2. Then

(1) G→ is Hilbert-Schmidt. In particular, it is an L2 Green’s operator of L.
(2) Let La be the operator defined in Def. 3.13. La has an empty spectrum and (La − λ)−1

is compact for avery λ ∈ C. We have L−1
a = G→.

(3) Every f ∈ D(Lmax) has a unique decomposition as

f = αu+ βv + fa, fa ∈ G→L2]a, b[. (6.15)

(4) We can also define G← with analogous properties. We have

G#
→ = G←, L−1

b = G←. (6.16)



28 J. DEREZIŃSKI AND V. GEORGESCU

Proof. By hypothesis, u, v ∈ L2]a, b[. The Hilbert-Schmidt norm of G→ is clearly bounded by√
2‖u‖2‖v‖2. Then by Proposition 6.7 zero belongs to the resolvent set of La, L−1

a = Ga, and

D(Lmax) = D(La)⊕KerLmax, (6.17)

which can be restated as the decomposition (6.15). If λ ∈ C and V is replaced by V − λ then
the new G→ will be the resolvent at λ of La, which proves the second assertion in (2). Finally,
(6.16) is proved by a simple computation. �

There is also a one-sided version of Prop. 6.13:

Proposition 6.14. Assume that dimUa(0) = 2. Then G→ extends as a map from L2]a, b[ to
C1]a, b[ satisfying the bounds

|G→g(x)| ≤
(
|u(x)|‖v‖x + |v(x)|‖u‖x

)
‖g‖x, (6.18)

|∂xG→g(x)| ≤
(
|u′(x)|‖v‖x + |v′(x)|‖u‖x

)
‖g‖x, (6.19)

where ‖g‖x :=
( ∫ x

a
|g(y)|2dy

) 1
2

. If χ ∈ C∞c [a, b[, χ = 1 around a, then every f ∈ D(Lmax) has

a unique decomposition as

f = αχu+ βχv + fa, fa ∈ D(L>). (6.20)

Proof. Let a < d < b. Then we can restrict our problem to ]a, d[. Now dimUa(0) = dimUd(0) = 2.
Therefore, we can apply Prop. 6.13, using the fact that G→ restricted to L2]a, d[ is an L2 Green’s
operator of La,d. �

Note that in Prop. 6.14 we do not claim that G→ is the inverse of La, nor that it is bounded.

Proposition 6.15. G→ is bounded if and only if dim KerLmax = 2 (so that the assumptions of
Prop. 6.13 are valid).

Proof. Let G→ be bounded. Then so is G#
→ = G←. Let us recall the identity (2.18):

G→ −G← = |v〉〈u| − |u〉〈v|. (6.21)

But the boundedness of the rhs of (6.21) implies v, u ∈ L2]a, b[. �

6.4. Green’s operators with two-sided boundary conditions. In this subsection we study
Green’s operators having two-sided boundary conditions. Suppose that u, v ∈ Ker(L) are linearly
independent. Without a loss of generality we can suppose that W (v, u) = 1. Recall that the
two-sided Green’s operator Gu,v was defined in Def. 2.9:

Gu,vg(x) :=

∫ b

x

u(x)v(y)g(y)dy +

∫ x

a

v(x)u(y)g(y)dy.

Let us start with the following simple fact:

Proposition 6.16. Let Gu,v be bounded on L2]a, b[. Then u ∈ Ua(0) and v ∈ Ub(0).

Proof. Let a < d < b. If Gu,v is bounded, then so is 1l]a,d](x)Gu,v1l]d,b](x), where x denotes the
operator of multiplication by the variable in ]a, b[. But its integral kernel is

u(x)1l]a,d](x)v(y)1l]d,b](y)

where x and y denote the variables in ]a, b[. This is a rank one operator with the norm(∫ d

a

|u|2(x)dx
) 1

2
(∫ b

d

|v|2(x)dx
) 1

2

. �

Motivated partly by the above proposition, until the end of this subsection we assume that
u ∈ Ua(0) and v ∈ Ub(0).
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Recall from Def. 4.11 that if φ ∈ Ba and ψ ∈ Bb be are nonzero functionals, then we define
Lφ,ψ as the operator satisfying Lφ,ψ ⊂ Lmax and

D(Lφ,ψ) := {f ∈ D(Lmax) | φ(f) = ψ(f) = 0}.
Let us assume that the functionals φ, ψ have the form

φ = ~ua, ψ = ~vb. (6.22)

with the notation introduced in Def. 4.4. If (6.22) holds, we will often write Lu,v instead of Lφ,ψ.

Proposition 6.17. Let χ ∈ C∞]a, b[ such that χ = 1 close to a and χ = 0 close to b. Then,

D(Lu,v) = D(Lmin) + Span{χu, (1− χ)v
)
, (6.23)

L#
u,v = Lu,v, (6.24)

Gu,vL
2
c ]a, b[ ⊂ D(Lu,v), (6.25)

Gu,vL
2]a, b[ ⊂ AC1]a, b[. (6.26)

Moreover, Gu,v is bounded if and only if there exists c > 0 such that

‖Lu,vf‖ ≥ c‖f‖, f ∈ D(Lu,v). (6.27)

If this is the case, then Gu,v is an L2 Green’s operator related to Lu,v as in Def. 6.6 and Prop.
6.7. In particular, 0 belongs to the resolvent set of Lu,v, we have Gu,v = L−1

u,v, G#
u,v = Gu,v and

D(Lu,v) = Gu,vL
2]a, b[. (6.28)

Proof. (6.23) is immendiate. The relation (6.24) follows from Green’s identity (3.13). Then it is
easy to see that

Gu,vL
2
c ]a, b[⊂ D(Lc) + Span

{
χu, (1− χ)v

}
,

which implies (6.25).
Let g ∈ L2]a, b[. For a < x < b we compute:

∂xGu,vg(x) = u′(x)

∫ b

x

v(y)g(y)dy + v′(x)

∫ x

a

u(y)g(y)dy. (6.29)

Now, x 7→ u′(x), v′(x),
∫ b
x
v(y)g(y)dy,

∫ x
a
u(y)g(y)dy belong to AC]a, b[. Hence (6.29) belongs to

AC]a, b[. Therefore, (6.26) is true. Next, let

f = fc + αχu+ β(1− χ)v, fc ∈ D(Lc). (6.30)

We compute, integrating by parts,

Gu,vLu,vf(x) =

∫ b

a

((
− ∂2

y + V (y)
)
Gu,v(x, y)

)
f(y)dy (6.31)

+ lim
y→a

(
Gu,v(x, y)f ′(y)− ∂yGu,v(x, y)f(y)

)
(6.32)

− lim
y→b

(
Gu,v(x, y)f ′(y)− ∂yGu,v(x, y)f(y)

)
(6.33)

= f(x) + v(x)W (u, f ; a)− u(x)W (v, f ; b) = f(x). (6.34)

Moreover, functions of the form (6.30) are dense in D(Lu,v). Therefore, if Gu,v is bounded, then
(6.34) extends to

Gu,vLu,vf = f, f ∈ D(Lu,v). (6.35)

Hence ‖f‖ = ‖Gu,vLu,vf‖ ≤ ‖Gu,v‖‖Lu,vf‖ which gives (6.27).
Assume that Gu,v is bounded in the sense of L2]a, b[. By Prop. 6.5, Gu,v is an L2 Green’s

operator. By Prop. 6.4, it is also bounded from L2]a, b[ to D(Lmax). Therefore (6.25) extends
then to

Gu,vL
2]a, b[⊂ D(Lu,v), (6.36)

so that
Lu,vGu,vg = g, g ∈ L2]a, b[. (6.37)
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By (6.35) and (6.37), Gu,v is a (bounded) inverse of Lu,v so that (6.27) and (6.28) are true.
Now assume that (6.27) holds. By (6.25), we then have

g = Lu,vGu,vg, g ∈ L2
c ]a, b[. (6.38)

Hence,

‖g‖ = ‖Lu,vGu,vg‖ ≥ c‖Gu,vg‖ (6.39)

on L2
c ]a, b[, which is dense in L2]a, b[. Therefore, Gu,v is bounded. �

6.5. Classification of realizations possessing non-empty resolvent set. In applications
operators possessing non-empty resolvent set are by far the most useful. The following theorem
describes a classification of realizations of L with this property. We will denote by rs(A) the
resolvent set of an operator A.

Theorem 6.18. Suppose that L• is a realization of L with a non-empty resolvent set. Then
exactly one of the following statements is true.

(1) L• = Lmax.
Then also Lmin = L•, so that L possesses a unique realization. We have ν(L) = 0

If λ ∈ rs(L•), then dim Ker(Lmax − λ) = 0, dimUa(λ) = dimUb(λ) = 1 and Ua(λ) 6=
Ub(λ). If u ∈ Ua(λ) and v ∈ Ub(λ) with W (v, u) = 1, then

(L• − λ)−1 = Gu,v.

L• is self-transposed and has separated boundary conditions.
(2) The inclusion D(L•) ⊂ D(Lmax) is of codimension 1.

Then the inclusion D(Lmin) ⊂ D(L•) is of codimension 1 or 3 (1 if Conjecture 5.9 holds).
We have ν(L) = 2 or 4 (2 if Conjecture 5.9 holds).

If λ ∈ rs(L•), then dim Ker(Lmax − λ) = 1, dimUa(λ) = 2 and dimUb(λ) = 1,
or dimUa(λ) = 1 and dimUb(λ) = 2. We can find u ∈ Ua(λ) and v ∈ Ub(λ) with
W (v, u) = 1 such that

(L• − λ)−1 = Gu,v.

L• is self-transposed and has separated boundary conditions.
(3) The inclusion D(L•) ⊂ D(Lmax) is of codimension 2.

Then the inclusion D(Lmin) ⊂ D(L•) is of codimension 2. We have ν(L) = 4.
The spectrum of L• is discrete and its resolvents are Hilbert-Schmidt. For any λ ∈ C

we have dim Ker(Lmax − λ) = 2, dimUa(λ) = 2 and dimUb(λ) = 2.
If in addition L• is separated and self-transposed, and λ ∈ rs(L•), then we can find

u ∈ Ua(λ) and v ∈ Ub(λ) with W (v, u) = 1 such that

(L• − λ)−1 = Gu,v.

If, instead, L• is separated and not self-transposed, then it has empty spectrum and one
of the following possibilities hold:

(i) L• = La and (L• − λ)−1 is given by the forward Green’s operator.
(ii) L• = Lb and (L• − λ)−1 is given by the backward Green’s operator.

We have L#
a = Lb, and both (i) and (ii) are described in Prop. 6.14.

6.6. Existence of realizations with non-empty resolvent set. C\R is contained in the
resolvent set of all self-adjoint operators. The following proposition gives a generalization of this
fact.

Proposition 6.19. Let VR and VI be the real and imaginary part of V . Let ‖VI‖∞ =: β < ∞.
Then

{λ ∈ C | | Imλ| > β} (6.40)

is contained in the resolvent set of some realizations of L. All realizations of L possess only
disrete spectrum in (6.40).
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Proof. Let LR := −∂2
x + VR. By Theorem 3.4, LR,min is densely defined and L#

R,min = LR,max ⊃
LR,min. By the reality of VR, L∗R,min = L#

R,min. Therefore, L∗R,min ⊃ LR,min. This means

that LR,min is Hermitian (symmetric). Let us now apply the well-known theory of self-adjoint
extensions of Hermitian operators. Let d± := Ker

(
L∗R,min ∓ i) be the deficiency indices (see

the proof of Proposition 5.13). Using the fact that LR,min is real we conclude that d+ = d−.
Therefore, LR,min possesses at least one self-adjoint extension, which we denote LR,•. By the
self-adjointness of LR,• we have ‖(LR,•−λ)−1‖ ≤ | Imλ|−1 for all λ 6∈ R > 0. Set L• := LR,•+iVI.
Clearly,

Lmax ⊃ L• ⊃ Lmin. (6.41)

For | Imλ| > β, λ belongs to the resolvent set of L•, and its resolvent is given by

(L• − λ)−1 = (LR,• − λ)−1
(
1l + iVI(LR,• − λ)−1

)−1
. �

Note that the above proposition can be improved to cover some singularities of VI. In fact, if
there are numbers α, β with 0 ≤ α < 1 such that

‖VIf‖2 ≤ α2
(
‖LR,•f‖2 + β2‖f‖2

)
, ∀f ∈ D(LR,•),

then still

‖VI(LR,• − λ)−1‖ ≤ α < 1,

and the conclusion of Prop. 6.19 holds.

6.7. “Pathological” spectral properties. We construct now Sturm-Liouville operators whose
realizations have an empty resolvent set. Such operators seem to be rather pathological and not
very interesting for applications.

Proposition 6.20. There is V ∈ L∞loc]0,∞[ such that if L = −∂2 + V then any operator L• on
L2]0,∞[ with Lmin ⊂ L• ⊂ Lmax has empty resolvent set, hence σ(L•) = C.

Proof. Let In =]n2 − n, n2 + n[ with n ≥ 1 integer. Then In is an open interval of length
|In| = 2n and In+1 starts with the point n2 + n which is the end point of In. Thus ∪nIn is a
disjoint union equal to ]0,∞[ \{n2 +n | n ≥ 1}. Let P be the set prime numbers P = {2, 3, 5, . . . }
and for each prime p denote Jp = ∪k≥1Ipk . We get a family of open subsets Jp of ]0,∞[ which
are pairwise disjoint and each of them contains intervals of length as large as we wish. Now
let p 7→ cp be a bijective map from P to the set of complex rational numbers and let us define
a function V : ]0,∞[→ C by the following rules: if x ∈ Jp for some prime p then V (x) = cp
and V (x) = 0 if x /∈ ∪pJp. Then V is a locally bounded function whose range contains all the
complex rational numbers. We set L = −∂2 + V (x) and we prove that the spectrum of any L•
with Lmin ⊂ L• ⊂ Lmax is equal to C. Since the spectrum is closed, it suffices to show that any
complex rational number c belongs to the spectrum of any L•. If not, there is a number α > 0
such that ‖(L• − c)φ‖ ≥ α‖φ‖ for any φ ∈ D(L•). If r is a (large) positive number then there is
an open interval I of length ≥ r such that V (x) = c on I. Let φ ∈ C∞c (I) such that φ(x) = 1
for x at distance ≥ 1 from the boundary of I and with |φ′′| ≤ β with a constant β independent
of r (take r > 3 for example). Then φ ∈ D(Lmin) and (L− c)φ = −φ′′ + V φ− cφ = −φ′′ hence
‖φ′′‖ = ‖(L• − c)φ‖ ≥ α‖φ‖ so α‖φ‖ ≤ 2β which is impossible because the left hand side is of
order

√
r. One may choose V of class C∞ by a simple modification of this construction. �

7. Potentials with a negative imaginary part

7.1. Dissipative operators. Recall that an operator A is called dissipative if

Im(f |Af) ≤ 0, f ∈ D(A), (7.1)

that is, if its numerical range is contained in {λ ∈ C | Imλ ≤ 0}. It is called maximal dissipative if
in addition its spectrum is contained in {λ ∈ C | Imλ ≤ 0}. The following criterion is well-known.

Proposition 7.1. Assume A is closed, densely defined and dissipative. Then A is maximal
dissipative if and only if −A∗ is dissipative and then −A∗ is maximal dissipative.
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Proof. Note first that A is dissipative if and only if ‖(A − iλ)f‖ ≥ λ‖f‖ ∀f ∈ D(A) and ∀λ >
0. Indeed, if A is dissipative then ‖Af − iλf‖2 = ‖Af‖2 + λ2‖f‖2 − 2λ Im(f |Af) ≥ λ2‖f‖2
and reciprocally, if ‖(A − iλ)f‖ ≥ λ‖f‖ ∀λ > 0 then ‖Af‖2 − 2λ Im(f |Af) ≥ 0 by the same
computation hence by making λ→∞ we see that A is dissipative.

Note one more fact: if A is dissipative then by (7.1) the operator A− µ is dissipative for any
real µ hence we get ‖(A − µ − iλ)f‖ ≥ λ‖f‖ ∀f ∈ D(A) and ∀λ > 0 and ∀µ ∈ R. Thus if A is
dissipative then ‖(A− z)f‖ ≥ Im z‖f‖ ∀f ∈ D(A) and ∀z ∈ C with Im z > 0.

A dissipative A is maximal dissipative if and only if A−z is surjective for some z with Im z > 0.
Indeed, then z belongs to the resolvent set of A and ‖R‖ ≤ 1/ Im z if R = (A− z)−1. So if ζ ∈ C

A− ζ = A− z + z − ζ =
[
1 + (z − ζ)R

]
(A− z)

and ‖(z− ζ)R‖ ≤ |ζ − z|/ Im z. Thus if |ζ − z| < Im z the operator A− ζ will be a bijective map
D(A)→ L2, so ζ belongs to the resolvent set of A. It is now geometrically obvious that any ζ in
the open upper half plane belongs to the resolvent set of A, so A is maximal dissipative.

If A is closed and dissipative and if Im z > 0 then clearly A−z is injective with closed range. If
A is also densely defined then A∗ is a closed densely defined operator and from (A−z)∗ = A∗−z
and Theorem A.3 we get that A∗ − z is surjective. Thus if −A∗ is also dissipative then it will
be maximal dissipative and again Theorem A.3 implies the surjectivity of A− z so the maximal
dissipativity of A. �

Remark 7.2. The relation D(A) ∩ D(A∗) = {0} is not exceptional in our context. Indeed,
consider an operator L = −∂2 + V so that ImV ≤ 0 and Lmin = Lmax. By Remark 3.10
the operator L = −∂2 + V also has the property Lmin = Lmax. Then A = Lmin is a closed
densely defined dissipative operator and A∗ = −L∗min = −Lmax hence −A∗ is also dissipative
so A is maximal dissipative. If ImV is not square integrable on any non empty open set then
D(A) ∩ D(A∗) = {0} by Lemma 3.9 or Remark 3.10.

7.2. Dissipative Sturm-Liouville operators. Recall that the complex conjugate B of an

operator B, its hermitian adjoint B∗, and its transpose B#, are related by B∗ = B# (cf. §3.1).
Thus if L is the differential expression L = −∂2 + V then L is the differential expression L =
−∂2 + V and for its minimal and maximal realization Lmin and Lmax we have

D(Lmin) = {f | f ∈ D(Lmin)} and D(Lmax) = {f | f ∈ D(Lmax)}

hence Lmin = Lmin and Lmax = Lmax. Then L∗min = L#
min = Lmax = Lmax and L∗max = Lmin.

Proposition 7.3. The operator Lmin is dissipative if and only if ImV ≤ 0.

Proof. If f ∈ D(Lmax) then

(f |Lmaxf) =

∫ b

a

(
f
′
f ′ − (ff ′)′ + V ff

= lim
a1→a
b1→b

(
f(a1)f ′(a1)− f(b1)f ′(b1) +

∫ b1

a1

(
|f ′|2 + V |f |2

))
hence

Im(f |Lmaxf) = lim
a1→a
b1→b

(∫ b1

a1

Im(V )|f |2 + Im(f(a1)f ′(a1))− Im(f(b1)f ′(b1))

)
. (7.2)

Thus Im(f |Lminf) =
∫ b1
a1

Im(V )|f |2 for f ∈ D(Lc) which clearly implies the proposition. �

Since L∗min = Lmax the operator Lmin will not be maximal dissipative in general (unless
Lmin = Lmax). In the rest of this subsection and in the next one we study the dissipativity of
the realisations of L introduced in Definition 4.11.

Let us point out a certain difficulty which appears in this context. If Lmin ⊂ L• ⊂ Lmax then
L∗max ⊂ L∗• ⊂ L∗min hence Lmin ⊂ L∗• ⊂ Lmax. But we may have D(Lmax) ∩ D(Lmax) = {0}
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(Lemma 3.9) hence we could have D(L•)∩D(L∗•) = {0} which is annoying when trying to prove
the dissipativity of a restriction of Lmax. Indeed, although Wx(f, f) = 2i Im(f(x)f ′(x)), we
cannot use in (7.2) the existence of the limits (3.11) and (3.12) because in general f 6∈ D(Lmax).
Of course, if for example a is a regular end then f, f ′ extend to continuous functions on [a, b[ so
there is no problem in taking the limit as a1 → a in each term in the right hand side of (7.2)
and if b is also regular then we get the simple expression

Im(f |Lmaxf) =

∫ b

a

Im(V )|f |2 + Im(f(a)f ′(a))− Im(f(b)f ′(b)).

Then the dissipativity of some realization L• means

Im(f(a)f ′(a))− Im(f(b)f ′(b)) ≤
∫ b

a

Im(−V )|f |2 ∀f ∈ D(L•)

so we clearly have Im(V ) ≤ 0. If L• is defined by separated boundary conditions then this implies

Im(f(a)f ′(a)) ≤
∫ b

a

Im(−V )|f |2 ∀f ∈ D(L•) which is zero near b

from which we easily get Im(f(a)f ′(a)) ≤ 0 for all f ∈ D(L•) and similarly at b. Thus

L• dissipative ⇒ Im(V ) ≤ 0 and Im(f(a)f ′(a)) ≤ 0, Im(f(b)f ′(b)) ≥ 0 ∀f ∈ D(L•).

We will complete this argument in §7.3 and here we treat the general case under a certain
simplifying hypothesis. Note first the following sesquilinear version of Green’s identity (3.13).

Lemma 7.4. Suppose that f, f , g ∈ D(Lmax). Then Im(V )f ∈ L2]a, b[ and

(Lmaxf |g)− (f |Lmaxg) = −2i

∫ b

a

Im(V )fg +Wb(f, g)−Wa(f, g). (7.3)

Proof. The left hand side of (7.3) is

〈Lmaxf |g〉 − 〈f |Lmaxg〉 = 〈Lmaxf |g〉 − 〈Lmaxf |g〉 (7.4)

+ 〈Lmaxf |g〉 − 〈f |Lmaxg〉. (7.5)

Then we apply Lmax − Lmax = −2i Im(V ) to (7.4) and Green’s identity (3.13) to (7.5). �

We consider now the realizations of L introduced in Definition 4.11. Fix α ∈ Ba and β ∈ Bb and
let Lαβ be the restriction of Lmax to the domain D(Lαβ) = {f ∈ D(Lmax) | α(f) = β(f) = 0}.
Note that if for example α 6= 0 then the relation α(f) = 0 is equivalent to: there is a complex

number c(f) such that ~fa = c(f)α. We will assume that α 6= 0 if Ba 6= {0} and similarly for
β 6= 0 if Bb 6= {0}. If for example Bb = {0} then we set Lα = Lα0 (no boundary condition at b).

We will first compute the hermitian adjoint of Lαβ . This result is also a consequence of
Proposition 6.17, but a direct proof is easy and instructive. We need the following notion.

The conjugate of α ∈ B(L) is the boundary functional α ∈ B(L) given by

α(f) := α(f). (7.6)

Clearly α 7→ α is a bijective anti-linear map B(L) → B(L) which sends Ba(L) into Ba(L) and
Bb(L) into Bb(L). Then if g ∈ D(Lmax) is a representative of α ∈ Ba, so that

α(f) = Wa(g, f), f ∈ D(Lmax), (7.7)

then

α(f) = Wa(g, f), f ∈ D(Lmax). (7.8)

Recall that Ba and Bb are equipped with symplectic forms σa and σb, see (4.13).

Proposition 7.5. L∗αβ = Lαβ.
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Proof. We consider only the case α 6= 0 6= β. By interchanging L and L in L∗min = Lmax we get

L
∗
min = Lmax hence Lmin = L∗max. Then from Lmin ⊂ Lαβ ⊂ Lmax we get Lmin ⊂ L∗αβ ⊂ Lmax

hence we have f ∈ D(L∗αβ) if and only if f ∈ D(Lmax) and (f |Lg) = (Lf |g) ∀g ∈ D(Lαβ). This

may be written 〈f |Lg〉 = 〈Lf |g〉 ∀g ∈ D(Lαβ) and since f ∈ D(Lmax) ⇒ f ∈ D(Lmax) the
Green’s identity (3.13) gives

〈Lf |g〉 − 〈f |Lg〉 = Wb(f, g)−Wa(f, g) ∀g ∈ D(Lαβ).

Thus f ∈ D(L∗αβ) if and only if f ∈ D(Lmax) and Wb(f, g) = Wa(f, g) for all g ∈ D(Lαβ) and

this is clearly equivalent to Wa(f, g) = 0 and Wb(f, g) = 0 for all g ∈ D(Lαβ).

Hence f ∈ D(Lmax) and Wa(f, g) = 0 for all g ∈ D(Lmax) such that α(g) = 0. From Theorem
4.5 it follows that there is g ∈ D(Lmax) such that ~ga = α and this implies α(g) = 0. Then
Wa(g, f) = 0, which means α(f) = 0 or α(f) = 0. Similarly β(f) = 0. �

For the rest of the argument we need the equality of the domains D(Lmax) = D(Lmax) which,
by Lemma 3.9, is equivalent to ImV ∈ L2

loc]a, b[. Then we have B(L) = B(L) hence α 7→ α is
a conjugation in B(L) which leaves invariant the subspaces Ba(L) and Bb(L). In particular, the
number σa(α, α) is well defined for any α ∈ Ba(L).

Lemma 7.6. If ImV ∈ L2
loc]a, b[ and α ∈ Ba then the number σa(α, α) is purely imaginary and

1

2i
σa(α, α) ≥ 0 ⇐⇒ 1

2i
Wa(f, f) ≥ 0 ∀f ∈ D(Lmax) with α(f) = 0.

Proof. Let g ∈ D(Lmax) be a representative of α, so that (7.7) and (7.8) are true. Then

σa(α, α) = Wa(g, g) = lim
c↘a

(
g(c)g′(c)− g′(c)g(c)

)
,

which proves that σa(α, α) is purely imaginary. Now, by the Kodaira identity

Wa(g, g)Wa(f, f) = |Wa(g, f)|2 − |Wa(g, f)|2.

But α(f) = 0 means Wa(g, f) = 0. Therefore, σa(α, α)Wa(f, f) ≤ 0. �

Theorem 7.7. If ImV ∈ L2
loc]a, b[ we have

Lαβ is dissipative ⇐⇒ ImV ≤ 0,
1

2i
σa(α, α) ≤ 0, and

1

2i
σb(β, β) ≥ 0. (7.9)

And then Lαβ is maximal dissipative.

Proof. We consider only the case α 6= 0, β 6= 0. Lemma 7.4 gives

Im(f |Lmaxf) =

∫ b

a

Im(V )|f |2 +
1

2i
Wa(f, f)− 1

2i
Wb(f, f) ∀f ∈ D(Lmax) (7.10)

and this implies that Lαβ is dissipative if and only if

1

2i
Wa(f, f)− 1

2i
Wb(f, f) ≤

∫ b

a

Im(−V )|f |2 ∀f ∈ D(Lαβ). (7.11)

If Lαβ is dissipative, by taking f ∈ D(Lc) in (7.11) we get Im(−V ) ≥ 0. Then by choosing

f ∈ D(Lαβ) equal to zero near b we get 1
2iWa(f, f) ≤

∫ b
a

Im(−V )|f |2. If we fix such an f and
replace it in this estimate by fθ where θ ∈ C∞(R) with 0 ≤ θ ≤ 1 and θ(x) = 1 on a neighborhood

of a the we get 1
2iWa(f, f) ≤

∫ b
a

Im(−V )|fθ|2. Since the right hand side here can be made as
small as we wish by taking θ equal to zero for x > d > a with d close to a, we see that we must
have 1

2iWa(f, f) ≤ 0 and this clearly implies the same inequality for any f ∈ D(Lαβ). Then we

get 1
2iσa(α, α) ≤ 0 by Lemma 7.6. We similarly prove 1

2iσb(β, β) ≥ 0.
We proved the implication ⇒ in (7.9) and ⇐ is clear by (7.11). It remains to show the

maximal dissipativity assertion. Due to Propositions 7.1 and 7.5 it suffices to prove that the
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operator −L∗αβ = −Lαβ is dissipative. Observe first that the relation D(Lmax) = D(Lmax)

implies D(Lαβ) = D(Lαβ). Then (7.10) gives

Im(f | − Lmaxf) =

∫ b

a

Im(V )|f |2 − 1

2i
Wa(f, f) +

1

2i
Wb(f, f) ∀f ∈ D(Lmax) (7.12)

hence instead of (7.11) we get the condition

− 1

2i
Wa(f, f) +

1

2i
Wb(f, f) ≤

∫ b

a

Im(−V )|f |2 ∀f ∈ D(Lαβ).

As above we get 1
2iWa(f, f) ≥ 0 and 1

2iWb(f, f) ≤ 0 for any f ∈ D(Lαβ). Thus, if f ∈ D(Lmax)

and α(f) = 0 then 1
2iWa(f, f) ≥ 0 and by Lemma 7.6 this means 1

2iσa(α, α) ≥ 0 which is

equivalent to 1
2iσa(α, α) ≤ 0. Similarly we get 1

2iσb(β, β) ≥ 0 and the last two conditions are
satisfied by the assumptions in the right hand side of (7.9). Hence −L∗αβ is dissipative. �

7.3. Regular boundary conditions. Suppose that the operator L has a regular left endpoint
at a. As we noted several times, for regular boundary conditions Ba can be identified with C2.
Indeed,

α(f) = α0f
′(a)− α1f(a),

is a general form of a boundary functional, with α = (α0, α1) ∈ C2 and f ∈ D(Lmax).
The space Ba is equipped with the symplectic form σa, which coincides with the usual (two-

dimensional) vector product:

σa(α, β) = α0β1 − α1β0 = α× β.

Thus, if we write ~fa :=
(
f(a), f ′(a)

)
, an alternative notation for α(f) is

α(f) = α× ~fa.

Note that there is no guarantee that D(Lmin) and D(Lmax) are invariant wrt the complex
conjugation. However the space Ba ' C2 is equipped with the obvious complex conjugation:

α(f) = α0f
′(a)− α1f(a) = α× ~fa.

Lemma 7.8. (1) α× β = 0 if and only if the vectors α, β are collinear.

(2) α× α ∈ iR and α× α = 0 if and only if α is proportional to a real vector.

(3) (α× α)(β × β) = |α× β|2 − |α× β|2

Proof. (1): If α0β1 = α1β0 and β 6= 0 then βk = 0 ⇒ αk = 0 and if β0 6= 0 6= β1 then
α0/β0 = α1/β1. (2): If α× α = 0 we get α = c2α for some complex c with |c| = 1 which implies
(cα)∗ = cα. (3) follows by the Kodaira identity. �

Here is a version of Lemma 7.4 for the regular case.

Lemma 7.9. Let V ∈ L1]a, b[. Suppose that f, g ∈ D(Lmax).

(Lmaxf |g)− (f |Lmaxg) = −2i

∫ b

a

Im(V )fg +Wb(f, g)−Wa(f, g). (7.13)

Next we have a version of Thm 7.7 for the regular case. Fix nonzero vectors α, β and define
Lαβ by imposing the boundary conditions at a and b:

f(a)α1 − f ′(a)α0 = 0, f(b)β1 − f ′(b)β0 = 0.

In this context it is quite easy to prove that L∗αβ = Lαβ .

Theorem 7.10. Suppose that a, b are finite and V ∈ L1]a, b[. Then Lαβ is dissipative if and

only if ImV ≤ 0 and Im(α0α1) ≤ 0, Im(β0β1) ≥ 0. And in this case Lαβ is maximal dissipative.
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Proof. The proof is similar to that of Theorem 7.7, but much simpler. We use Lemma 7.9
instead of Lemma 7.4 and get the same relation (7.11) as necessary and sufficient condition for
dissipativity. Then we use

1

2i
σa(α, α) =

1

2i
(α0α1 − α1α0) = Im(α0α1)

and a similar relation for β. Finally, when checking the dissipativity of −L∗αβ , note that this

operator is associated to the differential expression ∂2−V , which explains a difference of sign. �

7.4. Weyl circle in the regular case. In this subsection we fix a regular operator L and
prove Theorem 7.11, which will be needed in the next subsection §7.5. We will use an argument
essentially due to H. Weyl in the real case, cf. [5, 20, 21] for example. Potentials with semi-
bounded imaginary part were first treated in [23], see [3] for more recent results.

Let us denote U = Im(λ− V ) and

(f |g)U =

∫ b

a

fgU. (7.14)

We set ‖f‖2U = (f |f)U and note that if U ≥ 0 then (·|·)U is a positive hermitian form and we
denote ‖ · ‖U is the corresponding seminorm. Now if f, g ∈ D(Lmax) and Lf = λf , Lg = λg for
some complex number λ then (7.3) can be rewritten as

2i(f |g)U = Wa(f, g)−Wb(f, g). (7.15)

Theorem 7.11. Assume that ImV ≤ 0 and Imλ > 0. Let u, v be solutions of the equation
Lf = λf with real boundary condition at a and satisfying W (v, u) = 1. If w is a solution of
Lf = λf with a real boundary condition at b, then there is a unique m ∈ C such that w = mu+v;
this number is on the circle ∫ b

a

|mu+ v|2 Im(λ− V ) = Imm, (7.16)

which has

center c =
i/2− (u|v)U
‖u‖2U

=
Wb(u, v)

2i‖u‖2U
and radius r =

1

2‖u‖2U
. (7.17)

Conversely, let m be a complex number on the circle (7.16), and define w by w = mu+ v. Then
w has a real boundary condition at b and W (w, u) = 1.

Proof. From Lemma 7.8 (2) and the reality of the boundary conditions at a we get

Wa(u, u) = 0, Wa(v, v) = 0. (7.18)

This implies

‖u‖2U =
i

2
Wb(u, u), ‖v‖2U =

i

2
Wb(v, v), (7.19)

due to (7.15). And if w is as in the first part of the theorem then the same argument gives

‖w‖2U =
1

2i
Wa(w,w). (7.20)

Since u, v are linearly independent solutions of Lf = λf , if w is another solution then we have
w = mu + nv for uniquely determined complex numbers m,n. Since W (v, u) = 1 we see that
n = 1.

Now fix w = mu+ v. Using (7.18) and Wa(u, v) = −1, we get

W (w,w)a = |m|2Wa(u, u) +mWa(u, v) +mWa(v, u) +Wa(v, v) = 2i Imm. (7.21)

From (7.20) and (7.21) we get

‖w‖2U = Imm. (7.22)

From this relation we get

Imm = ‖mu+ v‖2U = |m|2‖u‖2U + 2 Re
(
m(u|v)U

)
+ ‖v‖2U (7.23)
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and since Imm = 2 Re(m i/2) we may rewrite this as

|m|2‖u‖2U − 2 Re
(
m(i/2− (u|v)U )

)
+ ‖v‖2U = 0. (7.24)

Clearly, ‖w‖U > 0 hence Imm > 0 by (7.22) so (7.24) may be rewritten

|m|2 − 2 Re

(
m

i/2− (u|v)U
‖u‖2U

)
+
‖v‖2U
‖u‖2U

= 0. (7.25)

If c ∈ C and d ∈ R then |m|2 − 2 Re(mc) + d = |m− c|2 − (|c|2 − d). Hence there is m such that
|m|2− 2 Re(mc) + d = 0 if and only if d ≤ |c|2, and then |m|2− 2 Re(mc) + d = 0 is the equation

of a circle with center c and radius
√
|c|2 − d. Thus (7.25) is the equation of the circle with

center c =
i/2− (u|v)U
‖u‖2U

and square of radius r2 =
|i/2− (u|v)U |2 − ‖u‖2U‖v‖2U

‖u‖4U
.

From (7.15) we get 2i(u|v)U = Wa(u, v) − Wb(u, v) = −1 − Wb(u, v), hence i/2 − (u|v)U =
Wb(u, v)/2i. Then (7.19) implies

‖u‖2U‖v‖2U = −1

4
Wb(u, u)Wb(v, v),

hence

|i/2− (u|v)U |2 − ‖u‖2U‖v‖2U =
(
|Wb(u, v)|2 +Wb(u, u)Wb(v, v)

)
/4.

But by the Kodaira identity Wb(u, u)Wb(v, v) = 1− |Wb(u, v)|2, hence we get

|i/2− (u|v)U |2 − ‖u‖2U‖v‖2U = 1/4

so (7.25) is just the circle described by (7.17).
To prove the reciprocal part of the theorem, consider a point m on this circle and let w = mu+

v. Clearly Lw = λw and W (w, u) = 1 and the computation (7.21) gives us Wa(w,w) = 2i Imm.
We also have (7.23) because this just says that m is on the circle (7.17). Thus we have

‖w‖2U = Imm = Wa(w,w)/2i

and then (7.15) implies Wb(w,w) = 0. Therefore, by Lemma 7.15 w has a real boundary condition
at b. This proves the final assertion of the theorem. �

7.5. Limit point/circle. In this section we assume that V ∈ L1
loc]a, b[ and ImV ≤ 0. This

class of potentials has first been considered in [23]; see [3] for more general conditions. We also
assume that a is a regular endpoint for L. If not, the analysis should be done separately on
intervals [a, a1[ and ]b1, b[ and one gets similar results on each of these intervals. What follows is
an immediate consequence of Theorem 7.11.

Fix a number λ with Imλ > 0. Let u, v be solutions of Lf = λf on ]a, b[ with real boundary
conditions at a and such that W (v, u) = 1.

Definition 7.12. Then for any d ∈]a, b[ we define

the Weyl circle Cd :=
{
m ∈ C |

∫ d

a

|mu+ v|2 Im(λ− V ) = Imm
}
,

the open Weyl disk C ◦d :=
{
m ∈ C |

∫ d

a

|mu+ v|2 Im(λ− V ) < Imm
}
,

the closed Weyl disk C •d :=
{
m ∈ C |

∫ d

a

|mu+ v|2 Im(λ− V ) ≤ Imm
}

= C ◦d ∪ Cd.

Thus the Weyl circle is given by the condition (7.16) with b replaced by d. Since the left hand
side of (7.16) growth like |m|2 when m→∞, it follows that C ◦d is inside Cd . If d1 < d2 then∫ d2

a

|mu+ v|2 Im(λ− V ) ≤ Imm⇒
∫ d1

a

|mu+ v|2 Im(λ− V ) < Imm

hence C •d2 ⊂ C ◦d1 strictly if d1 < d2 < b.
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Definition 7.13. We set

C •b :=
⋂
d<b

C •d

Cb := the boundary of C •b .

It follows that either C •b = Cb is a point, or C •b is a disk and Cb is a circle of radius > 0.

Definition 7.14. We say that b is limit point if Cb is a point. We say that b is limit circle if
Cb is a circle of a positive radius.

Lemma 7.15. Let m ∈ C •b . Then∫ b

a

|w|2 Im(λ− V ) ≤ Im(m). (7.26)

If b is limit point then
∫ b
a
|u|2 Im(λ− V ) =∞.

Proof. For any d ∈]a, b[, we have C •b ⊂ C •d . Therefore,∫ d

a

|w|2 Im(λ− V ) ≤ Im(m). (7.27)

Then we take the limit d ↗ b. If b is limit point then the radius of the Weyl circle Cd tends to

zero as d→ b hence limd→b
∫ d
a
|u|2 Im(λ− V ) =∞ by the last relation in (7.17). �

The above lemma implies immediately the following theorem:

Theorem 7.16. If b is limit circle, then all solutions of (L− λ)f − 0 satisfy∫ b

a

|w|2 Im(λ− V ) is bounded. (7.28)

If b is limit point, then there exists only one (modulo a complex factor) solution of (L− λ)f = 0
satisfying (7.28).

Note that Im(λ− V ) ≥ Imλ > 0. Therefore, (7.28) implies the square integrability of w.
Thus, for the potentials with a negative imaginary part instead of Weyl’s dichotomy we have

three possibilities (we think of solutions modulo a complex factor):

(1) limit point case, only one solution satisfies (7.28), only one solution is square integrable;
(2) limit point case, only one solution satisfies (7.28), all solutions are square integrable;
(3) limit circle, all solutions satisfy (7.28), and hence all solutions are square integrable.

We emphasize that the limit point/circle terminology is interpreted here in the geometric sense
described above (based on Theorem 7.11). If V is real then one can say without ambiguity that L
is limit point at b if for any λ there is at most one solution of Lf = λf which is square integrable
near b: indeed, this is equivalent to the geometric meaning of the terminology. But this is not
the case if V is complex.

Thus the complex case differs from the real one in an important aspect: if V is real, then the
case (2) is absent and we have the usual Weyl’s dichotomy.

There exist examples of (2) in the literature. In the limit point case, it is possible that we
have only one nonzero solution satisfying (7.28), whereas all solutions are square integrable with
respect to the Lebesgue measure. Indeed, Sims [23, p. 257] has shown that this happens in simple
examples like V (x) = x6 − 3ix2/2 on ]1,∞[. See also the discussion in [3].

We also note that if V is real then for any non-real λ there is at least one nonzero solution
of Lf = λf which is square integrable near b. But it does not seem to be known whether
for arbitrary complex V there is λ such that Lf = λf has a nonzero solution which is square
integrable near b.
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Appendix A. Abstract lemmas

Lemma A.1. Let S, T be linear operators on a Hilbert space H such that:

(1) (Sf |g) = (f |Tg) for all f ∈ D(S) and g ∈ D(T ),
(2) T is surjective,
(3) (RanS)⊥ ⊂ KerT .

Then S is densely defined.

Proof. We must show:

(f |h) = 0, ∀f ∈ D(S)⇒ h = 0.

Since T is surjective, there is g ∈ D(T ) such that h = Tg and then we get 0 = (f |h) = (f |Tg) =
(Sf |g) by (1) for all f ∈ D(S). Thus g ∈ (RanS)⊥ and (3) gives Tg = 0 hence h = 0. �

Lemma A.2. Let H be a Hilbert space and K a closed subspace of finite codimension. If Z is a
dense subspace of H, then Z ∩ K is dense in K.

Proof. The lemma is obvious if the codimension is 1. Then we apply induction. �

We also recall the closed range theorem [27, Sect. VII.5] in the form used in §6.1.

Theorem A.3. Let H be a Banach space and H′ its topological dual. If T is a closed densely
defined operator in H and T ′ is its dual operator acting in H′ [27, Sect. VII.1], then the following
assertions are equivalent:
(1) RanT is closed in X, (2) RanT ′ is closed in X ′,
(3) RanT = (KerT ′)perp = {u ∈ H | 〈u|u′〉 = 0 ∀u′ ∈ KerT ′},
(4) RanT ′ = (KerT )perp = {u′ ∈ H′ | 〈u|u′〉 = 0 ∀u ∈ KerT}.
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[8] Dereziński, J.: Homogeneous rank one perturbations, Annales Henri Poincare 18 (2017) 3249-3268. 10
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