ON 1-DIMENSIONAL SCHRÖDINGER OPERATORS WITH COMPLEX POTENTIALS

JAN DEREZIŃSKI

Department of Mathematical Methods in Physics

in collaboration with VLADIMIR GEORGESCU Université Cergy-Pontoise Some time ago together with Vladimir we decided to write a review about 1-dimensional Schrödinger operators

$$L = -\partial_x^2 + V(x)$$

on $L^2]a, b[.$

We wanted to answer rather basic and classical questions: How to describe closed realizations L_{\bullet} of the formal operator L? How to compute their resolvents $(L_{\bullet} - \lambda)^{-1}$ or Green's operators? We wanted to be as general as possible:

- ullet a can be $-\infty$, b can be $+\infty$.
- \bullet V can be complex.
- \bullet V can be very singular
- $\bullet~V$ can have an arbitrary behavior close to the endpoints.

Our main motivation were exactly solvable Hamiltonians such as

$$-\partial_x^2 + \left(\alpha - \frac{1}{4}\right)\frac{1}{x^2} - \frac{\beta}{x},$$

on $L^2(\mathbb{R}_+)$ or $L^2(\mathbb{R})$. In exactly solvable Hamiltonians complex potentials appear naturally. Moreover, their potentials are often singular, especially at the endpoints, but also in the midle of the domain. Recently, I studied such problems together with Serge Richard and Jeremy Faupin. We thought it would be nice to have a paper describing the general framework. Of course, 1-dimensional Schrödinger operators have a huge literature. Many of my and Vladimir's discoveries turned out to be rediscoveries. This does not mean they were easy or not interesting. Most textbooks assume that V is real. It is also convenient to suppose that $V \in L^2_{loc}$. Denote the closure of L restricted to $C_c^{\infty}(]a, b[)$ by L_{min} . Then L_{min} is a Hermitian operator (commonly called symmetric). This means $L_{min} \subset L_{max} := L^*_{min}$. One is mostly interested in self-adjoint extensions L_{\bullet} of L. They satisfy

$$L_{\min} \subset L_{\bullet} \subset L_{\max}.$$

and $L^*_{\bullet} = L_{\bullet}$.

There exists a well-known abstract theory going back to von Neumann about self-adjoint extensions. One defines the deficiency spaces and indices

$$\mathcal{N}_{\pm} := \mathcal{N}(L_{\max} \mp i), \quad d_{\pm} := \dim \mathcal{N}_{\pm}.$$

 L_{\min} possesses self-adjoint extensions iff $d_+ = d_-$. Self-adjoint extensions of L_{\min} are parametrized by maximal subspaces of $\mathcal{D}(L_{\max})/\mathcal{D}(L_{\min}) \simeq \mathcal{N}_+ \oplus \mathcal{N}_-$ on which the anti-Hermitian form

$$(L_{\max}f|g) - (f|L_{\max}g)$$

is zero.

For Schrödinger operators $\overline{\mathcal{N}_{+}} = \mathcal{N}_{-}$, hence $d_{+} = d_{-}$ and selfadjoint extensions exist. In one dimension we have 3 possibilities: $d_{+} = d_{-} = 0, 1, 2$. More precisely, we can naturally split the boundary space

$$\mathcal{D}(L_{\max})/\mathcal{D}(L_{\min}) \simeq \mathcal{G}_a \oplus \mathcal{G}_b$$

where \mathcal{G}_a describes the boundary condition at a and \mathcal{G}_b describes the boundary conditions at b.

Let us describe the classic theory of regular boundary coditions. For simplicity we assume that $\mathcal{G}_b = \{0\}$. Suppose that $V \in L^1$ in a neighborhood of a. Then one can show that for $f \in \mathcal{D}(L_{\max})$ the values f(a) and f'(a) are well-defined continuous functionals on \mathcal{G}_a . Self-adjoint extensions are L_μ with $\mu \in \mathbb{R} \cup \{\infty\}$ and

$$\mathcal{D}(L_{\mu}) := \{ f \in \mathcal{D}(L_{\max}) \mid f'(a) = \mu f(a) \}.$$

This was essentially known to Sturm and Liouville.

Now assume that V is complex. We define L_{\max} as the operator $-\partial_x^2 + V(x)$ (appropriately understood—more about this later) on $\mathcal{D}(L_{\max}) := \{f \in L^2 | a, b[| (-\partial_x^2 + V(x))f \in L^2 | a, b[\}.$

Then we define L_{\min} to be the closure of L_{\max} restricted to functions compactly supported in]a, b[. We are looking for closed operators L_{\bullet} such that

$$L_{\min} \subset L_{\bullet} \subset L_{\max}.$$

The most interesting are those that have a nonempty resolvent set. Such operators are sometimes called well-posed (see e.g. Edmunds-Evans). What is a natural condition for V? If we want that V is a densely defined closable operator, then we need to assume that $V \in L^2_{loc}$. This is however much too restrictive.

Let AC denote the space of absolutely continuous functions. More precisely, $f \in AC]a, b[$ iff $f' \in L^1_{loc}]a, b[$. Similarly, $f \in AC^1]a, b[$ iff $f'' \in L^1_{loc}]a, b[$. A natural class of potentials (considered often in the literature) is $V \in L^1_{\text{loc}}$. If $f \in AC^1$, then both $-\partial_x^2 f$ and Vf are well defined as elements of L^1_{loc} . We can define

$$\mathcal{D}(L_{\max}) := \{ f \in AC^1 \cap L^2 \mid (-\partial_x^2 + V(x))f \in L^2 \}.$$

We can rewrite

$$(-\partial_x^2 + V(x) - \lambda)f = g \qquad (*)$$

as a first order equation with L_{loc}^1 coefficients:

$$\partial_x \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ V - \lambda & 0 \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} + \begin{bmatrix} 0 \\ g \end{bmatrix}$$

One can do much better. As noticed by Savchuk-Shkalikov, one can assume that V = G' where $G \in L^2_{loc}$. Indeed, formally $-\partial_x^2 + G'(x) = -\partial_x(\partial_x - G) - G(\partial_x - G) - G^2$.

We can again rewrite (*) as as a first order equation with L_{loc}^1 coefficients:

$$\partial_x \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} = \begin{bmatrix} G & 1 \\ G^2 - \lambda & -G \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \end{bmatrix} + \begin{bmatrix} 0 \\ g \end{bmatrix}$$

Clearly, if V is complex, then L_{\min} is not Hermitian, so the theory of self-adjoint extensions does not apply. But there is a different theory.

 $L^2]a, b[$ is equipped with a natural conjugation and a bilinear product

$$\langle f|g \rangle = \int_{a}^{b} f(x)g(x)dx = (\overline{f}|g).$$

If A is bounded, we say that $A^{\#}$ is the transpose of A (Jconjugate of A) if

$$\langle f|Ag\rangle = \langle A^{\#}f|g\rangle.$$

Let A have dense domain $\mathcal{D}(A)$. We say that $f \in \mathcal{D}(A^{\#})$ if there exists h such that

$$\langle f|Ag\rangle = \langle h|g\rangle, \quad g \in \mathcal{D}(A),$$

and then $A^{\#}f := h$. We say that A is symmetric (J-symmetric) if $A \subset A^{\#}$ and self-transposed if $A = A^{\#}$ (J-self-adjoint). Note that $\sigma(A) = \sigma(A^{\#})$. Besides $\left((z-A)^{-1}\right)^{\#} = (z-A^{\#})^{-1}, \quad (e^{itA})^{\#} = e^{itA^{\#}}.$

(Not true for Hermitian conjugation!).

Let $L_{\min} \subset L_{\min}^{\#} =: L_{\max}$. Theorem. There always exist a self-transposed L_{\bullet} such that $L_{\min} \subset L_{\bullet} \subset L_{\max}$.

Proof.

$$\llbracket f|g\rrbracket := \langle L_{\max}f|g\rangle - \langle f|L_{\max}g\rangle$$

defines a continuous symplectic form on the boundary space

$$\mathcal{G} := \mathcal{D}(L_{\max})/\mathcal{D}(L_{\min}).$$

Lagrangian subspaces correspond to self-transposed extensions. Lagrangian subspaces alway exist. **Theorem.** Suppose that L_{\bullet} satisfies

 $L_{\min} \subset L_{\bullet} \subset L_{\max}.$

If L_{\bullet} is well-posed or self-transposed, then

 $\dim \mathcal{D}(L_{\bullet})/\mathcal{D}(L_{\min}) = \dim \mathcal{D}(L_{\max})/\mathcal{D}(L_{\bullet}).$

Consider again $-\partial_x^2 + V(x)$ and the corresponding L_{\min} , L_{\max} . We have $L_{\min} \subset L_{\min}^{\#} = L_{\max}$. The boundary space

$$\mathcal{G} := \mathcal{D}(L_{\max})/\mathcal{D}(L_{\min})$$

naturally splits in two subspaces $\mathcal{G} = \mathcal{G}_a \oplus \mathcal{G}_b$. In order to describe \mathcal{G}_a and \mathcal{G}_b , for $\lambda \in \mathbb{C}$ we define

 $\mathcal{U}_a(\lambda) := \{ f \mid (L - \lambda)f = 0, f \text{ square integrable around } a \}.$ Similarly we define $\mathcal{U}_b(\lambda)$. Theorem. dim $\mathcal{G}_a = 0$ or 2.

1) The following are equivalent:

2) The following are equivalent:

a) dim
$$\mathcal{G}_a = 0$$
.
b) dim $\mathcal{U}_a(\lambda) \leq 1$ for all $\lambda \in \mathbb{C}$.
c) dim $\mathcal{U}_a(\lambda) \leq 1$ for some $\lambda \in \mathbb{C}$

If V is real then the above theorem is well-known and easy. $\dim \mathcal{G}_a = 2$ goes under the name of the limit circle case and $\dim \mathcal{G}_a = 0$ goes under the name of the limit point case. (These names are no longer justified if V is complex).

If V is real, we know much more in the limit point case: The following are equivalent:

a) dim $\mathcal{G}_a = 0$.

b) dim $\mathcal{U}_a(\lambda) = 1$ for $\lambda \in \mathbb{C} \setminus \mathbb{R}$ and dim $\mathcal{U}_a(\lambda) \leq 1$ for $\lambda \in \mathbb{R}$.

The usual proof for the real case does not generalize to the complex case. The main idea for the proof in the complex case is to reduce the problem to a system of 4 1st order ODE's and to use the following result due to Atkinson:

Theorem. Suppose that A, B are functions $[a, b[\rightarrow B(\mathbb{C}^n) \text{ be-longing to } L^1_{\text{loc}}([a, b[, B(\mathbb{C}^n)) \text{ satisfying } A(x) = A^*(x) \geq 0, B(x) = B^*(x)$. Let J be an invertible matrix satisfying $J^* = -J$ and such that $J^{-1}A(x)$ is real. If for some $\lambda \in \mathbb{C}$ all solutions of

$$J\partial_x\phi(x) = \lambda A(x)\phi(x) + B(x)\phi(x)$$
 (a)

satisfy

$$\int_{a}^{b} \left(\phi(x)|A(x)\phi(x)\right) \mathrm{d}x < \infty \qquad (\mathbf{b})$$

then for all $\lambda \in \mathbb{C}$ all solutions of (a) satisfy (b).

Consider the Bessel operator given by the formal expression

$$L_{\alpha} = -\partial_x^2 + \left(-\frac{1}{4} + \alpha\right)\frac{1}{x^2}.$$

We will see that it is often natural to write $\alpha=m^2$

Theorem 0.0.1. .

1. For $1 \leq \operatorname{Re} m$, $L_{m^2}^{\min} = L_{m^2}^{\max}$. 2. For $-1 < \operatorname{Re} m < 1$, $L_{m^2}^{\min} \subsetneq L_{m^2}^{\max}$, and the codimension of their domains is 2.

3. $(L_{\alpha}^{\min})^* = L_{\overline{\alpha}}^{\max}$. Hence, for $\alpha \in \mathbb{R}$, L_{α}^{\min} is Hermitian. 4. L_{α}^{\min} and L_{α}^{\max} are homogeneous of degree -2. Notice that

$$Lx^{\frac{1}{2}\pm m} = 0.$$

Let ξ be a compactly supported cutoff equal 1 around 0. Let $-1 < \operatorname{Re} m$. Note that $x^{\frac{1}{2}+m}\xi$ belongs to $\operatorname{Dom} L_{m^2}^{\max}$. This suggests to define the operator H_m to be the restriction of $L_{m^2}^{\max}$ to

$$\mathrm{Dom}L_{m^2}^{\mathrm{min}} + \mathbb{C}x^{\frac{1}{2}+m}\xi$$

Theorem 0.0.2. .

For 1 ≤ Re m, L^{min}_{m²} = H_m = L^{max}_{m²}.
For -1 < Re m < 1, L^{min}_{m²} ⊊ H_m ⊊ L^{max}_{m²} and the codimension of the domains is 1.
H^{*}_m = H_m. Hence, for m ∈] - 1,∞[, H_m is self-adjoint.
H_m is homogeneous of degree -2.
σ(H_m) = [0,∞[.

6. {Re m > -1} $\ni m \mapsto H_m$ is a holomorphic family of closed operators.

Theorem 0.0.3. .

- 1. For $\alpha \geq 1$, $L_{\alpha}^{\min} = H_{\sqrt{\alpha}}$ is essentially self-adjoint on $C_{c}^{\infty}[0,\infty[.$
- 2. For $\alpha < 1$, L_{α}^{\min} is not essentially self-adjoint on $C_{c}^{\infty}]0, \infty[$.
- 3. For $0 \le \alpha < 1$, the operator $H_{\sqrt{\alpha}}$ is the Friedrichs extension and $H_{-\sqrt{\alpha}}$ is the Krein extension of L_{α}^{\min} .
- 4. $H_{\frac{1}{2}}$ is the Dirichlet Laplacian and $H_{-\frac{1}{2}}$ is the Neumann Laplacian on halfline.
- 5. For $\alpha < 0$, L_{α}^{\min} has no homogeneous selfadjoint extensions.

Self-adjoint extensions of the Hermitian operator

$$L_{\alpha} = -\partial_x^2 + \left(-\frac{1}{4} + \alpha\right)\frac{1}{x^2}$$

K—Krein, F—Friedrichs, dashed line—single bound state, dotted line—infinite sequence of bound states.

Consider now the Whittaker operator given by the formal expression

$$L_{\beta,\alpha} := -\partial_x^2 + \left(\alpha - \frac{1}{4}\right)\frac{1}{x^2} - \frac{\beta}{x},$$

where the parameters β, α are complex numbers. It is natural to write $\alpha = m^2$.

For any $m \in \mathbb{C}$ with $\operatorname{Re}(m) > -1$ we introduce the closed operator $H_{\beta,m}$ that equals L_{β,m^2} on functions that behave as

$$x^{\frac{1}{2}+m}\left(1-\frac{\beta}{1+2m}x\right)$$

near zero. We obtain a family

$$\mathbb{C} \times \{ m \in \mathbb{C} \mid \operatorname{Re}(m) > -1 \} \ni (\beta, m) \mapsto H_{\beta, m},$$

which is holomorphic except for a singularity at $(0, -\frac{1}{2})$.

The singularity at $(\beta, m) = (0, -\frac{1}{2})$ is quite curious: it is invisible when we consider just the variable m. In fact,

$$m \mapsto H_m = H_{0,m}$$

is holomorphic around $m = -\frac{1}{2}$, and $H_{-\frac{1}{2}}$ has the Neumann boundary condition. It is also holomorphic around $m = \frac{1}{2}$, and $H_{\frac{1}{2}}$ has the Dirichlet boundary condition. Thus one has

$$H_{0,-\frac{1}{2}} \neq H_{0,\frac{1}{2}}.$$

If we introduce the Coulomb potential, then

whenever
$$\beta \neq 0$$
, $H_{\beta,-\frac{1}{2}} = H_{\beta,\frac{1}{2}}$.

The function

$$(\beta, m) \mapsto H_{\beta, m} \qquad (*)$$

is holomorphic around $(0, \frac{1}{2})$, in particular,

$$\lim_{\beta \to 0} (\mathbbm{1} + H_{\beta, \frac{1}{2}})^{-1} = (\mathbbm{1} + H_{0, \frac{1}{2}})^{-1}.$$

But $\lim_{\beta \to 0} (\mathbbm{1} + H_{\beta, -\frac{1}{2}})^{-1} = (\mathbbm{1} + H_{0, \frac{1}{2}})^{-1} \neq (\mathbbm{1} + H_{0, -\frac{1}{2}})^{-1}$. Thus (*) is not even continuous near $(0, -\frac{1}{2})$.