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Some time ago together with Vladimir we decided to write a

review about 1-dimensional Schrödinger operators

L = −∂2
x + V (x)

on L2]a, b[.

We wanted to answer rather basic and classical questions:

How to describe closed realizations L• of the formal operator L?

How to compute their resolvents (L•−λ)−1 or Green’s operators?



We wanted to be as general as possible:

• a can be −∞, b can be +∞.

• V can be complex.

• V can be very singular

• V can have an arbitrary behavior close to the endpoints.



Our main motivation were exactly solvable Hamiltonians such as

−∂2
x +

(
α− 1

4

) 1

x2
− β

x
,

on L2(R+) or L2(R). In exactly solvable Hamiltonians complex

potentials appear naturally. Moreover, their potentials are often

singular, especially at the endpoints, but also in the midle of the

domain. Recently, I studied such problems together with Serge

Richard and Jeremy Faupin. We thought it would be nice to have

a paper describing the general framework.



Of course, 1-dimensional Schrödinger operators have a huge lit-

erature. Many of my and Vladimir’s discoveries turned out to be

rediscoveries. This does not mean they were easy or not interest-

ing.



Most textbooks assume that V is real. It is also convenient to

suppose that V ∈ L2
loc. Denote the closure of L restricted to

C∞c
(
]a, b[

)
by Lmin. Then Lmin is a Hermitian operator (com-

monly called symmetric). This means Lmin ⊂ Lmax := L∗min.

One is mostly interested in self-adjoint extensions L• of L. They

satisfy

Lmin ⊂ L• ⊂ Lmax.

and L∗• = L•.



There exists a well-known abstract theory going back to

von Neumann about self-adjoint extensions. One defines the

deficiency spaces and indices

N± := N (Lmax ∓ i), d± := dimN±.

Lmin possesses self-adjoint extensions iff d+ = d−. Self-adjoint

extensions of Lmin are parametrized by maximal subspaces of

D(Lmax)/D(Lmin) ' N+ ⊕ N− on which the anti-Hermitian

form

(Lmaxf |g)− (f |Lmaxg)

is zero.



For Schrödinger operators N+ = N−, hence d+ = d− and self-

adjoint extensions exist. In one dimension we have 3 possibilities:

d+ = d− = 0, 1, 2. More precisely, we can naturally split the

boundary space

D(Lmax)/D(Lmin) ' Ga ⊕ Gb

where Ga describes the boundary condition at a and Gb describes

the boundary conditions at b.



Let us describe the classic theory of regular boundary coditions.

For simplicity we assume that Gb = {0}. Suppose that V ∈ L1 in

a neighborhood of a. Then one can show that for f ∈ D(Lmax)

the values f (a) and f ′(a) are well-defined continuous functionals

on Ga. Self-adjoint extensions are Lµ with µ ∈ R ∪ {∞} and

D(Lµ) := {f ∈ D(Lmax) | f ′(a) = µf (a)}.

This was essentially known to Sturm and Liouville.



Now assume that V is complex. We define Lmax as the operator

−∂2
x+V (x) (appropriately understood—more about this later) on

D(Lmax) := {f ∈ L2]a, b[| (−∂2
x + V (x))f ∈ L2]a, b[}.

Then we define Lmin to be the closure of Lmax restricted to func-

tions compactly supported in ]a, b[. We are looking for closed

operators L• such that

Lmin ⊂ L• ⊂ Lmax.

The most interesting are those that have a nonempty resolvent

set. Such operators are sometimes called well-posed (see e.g.

Edmunds-Evans).



What is a natural condition for V ? If we want that V is a densely

defined closable operator, then we need to assume that V ∈ L2
loc.

This is however much too restrictive.

Let AC denote the space of absolutely continuous functions.

More precisely, f ∈ AC]a, b[ iff f ′ ∈ L1
loc]a, b[. Similarly, f ∈

AC1]a, b[ iff f ′′ ∈ L1
loc]a, b[.



A natural class of potentials (considered often in the literature)

is V ∈ L1
loc. If f ∈ AC1, then both −∂2

xf and V f are well

defined as elements of L1
loc. We can define

D(Lmax) := {f ∈ AC1 ∩ L2 | (−∂2
x + V (x))f ∈ L2}.

We can rewrite

(−∂2
x + V (x)− λ)f = g (∗)

as a first order equation with L1
loc coefficients:

∂x

[
f1

f2

]
=

[
0 1

V − λ 0

][
f1

f2

]
+

[
0

g

]
.



One can do much better. As noticed by Savchuk-Shkalikov, one

can assume that V = G′ where G ∈ L2
loc. Indeed, formally

−∂2
x + G′(x) = −∂x(∂x −G)−G(∂x −G)−G2.

We can again rewrite (∗) as as a first order equation with L1
loc

coefficients:

∂x

[
f1

f2

]
=

[
G 1

G2−λ −G

][
f1

f2

]
+

[
0

g

]
.



Clearly, if V is complex, then Lmin is not Hermitian, so the

theory of self-adjoint extensions does not apply. But there is a

different theory.

L2]a, b[ is equipped with a natural conjugation and a bilinear

product

〈f |g〉 =

∫ b

a
f (x)g(x)dx = (f |g).

If A is bounded, we say that A# is the transpose of A (J-

conjugate of A) if

〈f |Ag〉 = 〈A#f |g〉.



Let A have dense domain D(A). We say that f ∈ D(A#) if

there exists h such that

〈f |Ag〉 = 〈h|g〉, g ∈ D(A),

and then A#f := h. We say that A is symmetric (J-symmetric)

if A ⊂ A# and self-transposed if A = A# (J-self-adjoint).

Note that σ(A) = σ(A#). Besides(
(z − A)−1

)#
= (z − A#)−1, (eitA)# = eitA#

.

(Not true for Hermitian conjugation!).



Let Lmin ⊂ L
#
min =: Lmax.

Theorem. There always exist a self-transposed L• such that

Lmin ⊂ L• ⊂ Lmax.

Proof.

[[f |g]] := 〈Lmaxf |g〉 − 〈f |Lmaxg〉

defines a continuous symplectic form on the boundary space

G := D(Lmax)/D(Lmin).

Lagrangian subspaces correspond to self-transposed extensions.

Lagrangian subspaces alway exist.



Theorem. Suppose that L• satisfies

Lmin ⊂ L• ⊂ Lmax.

If L• is well-posed or self-transposed, then

dimD(L•)/D(Lmin) = dimD(Lmax)/D(L•).



Consider again −∂2
x + V (x) and the corresponding Lmin, Lmax.

We have Lmin ⊂ L
#
min = Lmax. The boundary space

G := D(Lmax)/D(Lmin)

naturally splits in two subspaces G = Ga⊕Gb. In order to describe

Ga and Gb, for λ ∈ C we define

Ua(λ) := {f | (L− λ)f = 0, f square integrable around a}.

Similarly we define Ub(λ).



Theorem. dimGa = 0 or 2.

1) The following are equivalent:

a) dimGa = 2.

b) dimUa(λ) = 2 for all λ ∈ C.

c) dimUa(λ) = 2 for some λ ∈ C.

2) The following are equivalent:

a) dimGa = 0.

b) dimUa(λ) ≤ 1 for all λ ∈ C.

c) dimUa(λ) ≤ 1 for some λ ∈ C.



If V is real then the above theorem is well-known and easy.

dimGa = 2 goes under the name of the limit circle case and

dimGa = 0 goes under the name of the limit point case. (These

names are no longer justified if V is complex).

If V is real, we know much more in the limit point case: The

following are equivalent:

a) dimGa = 0.

b) dimUa(λ) = 1 for λ ∈ C\R and dimUa(λ) ≤ 1 for λ ∈ R.



The usual proof for the real case does not generalize to the

complex case. The main idea for the proof in the complex case is

to reduce the problem to a system of 4 1st order ODE’s and to

use the following result due to Atkinson:



Theorem. Suppose that A,B are functions [a, b[→ B(Cn) be-

longing to L1
loc([a, b[, B(Cn)) satisfying A(x) = A∗(x) ≥ 0,

B(x) = B∗(x). Let J be an invertible matrix satisfying J∗ = −J
and such that J−1A(x) is real. If for some λ ∈ C all solutions of

J∂xφ(x) = λA(x)φ(x) + B(x)φ(x) (a)

satisfy ∫ b

a

(
φ(x)|A(x)φ(x)

)
dx <∞ (b)

then for all λ ∈ C all solutions of (a) satisfy (b).



Consider the Bessel operator given by the formal expression

Lα = −∂2
x +

(
− 1

4
+ α
) 1

x2
.

We will see that it is often natural to write α = m2

Theorem 0.0.1. .

1. For 1 ≤ Rem, Lmin
m2 = Lmax

m2 .

2. For −1 < Rem < 1, Lmin
m2 ( Lmax

m2 , and the codimension

of their domains is 2.

3. (Lmin
α )∗ = Lmax

α . Hence, for α ∈ R, Lmin
α is Hermitian.

4. Lmin
α and Lmax

α are homogeneous of degree −2.



Notice that

Lx
1
2±m = 0.

Let ξ be a compactly supported cutoff equal 1 around 0.

Let −1 < Rem. Note that x
1
2+mξ belongs to DomLmax

m2 .

This suggests to define the operator Hm to be the restriction of

Lmax
m2 to

DomLmin
m2 + Cx

1
2+mξ.



Theorem 0.0.2. .

1. For 1 ≤ Rem, Lmin
m2 = Hm = Lmax

m2 .

2. For −1 < Rem < 1, Lmin
m2 ( Hm ( Lmax

m2 and the codi-

mension of the domains is 1.

3.H∗m = Hm. Hence, for m ∈]− 1,∞[, Hm is self-adjoint.

4.Hm is homogeneous of degree −2.

5. σ(Hm) = [0,∞[.

6. {Rem > −1} 3 m 7→ Hm is a holomorphic family of

closed operators.



Theorem 0.0.3. .

1. For α ≥ 1, Lmin
α = H√α is essentially self-adjoint on

C∞c ]0,∞[.

2. For α < 1, Lmin
α is not essentially self-adjoint on C∞c ]0,∞[.

3. For 0 ≤ α < 1, the operator H√α is the Friedrichs exten-

sion and H−
√
α is the Krein extension of Lmin

α .

4.H1
2

is the Dirichlet Laplacian and H−1
2

is the Neumann

Laplacian on halfline.

5. For α < 0, Lmin
α has no homogeneous selfadjoint exten-

sions.



Self-adjoint extensions of the Hermitian operator

Lα = −∂2
x +

(
− 1

4
+ α
) 1

x2
.

K—Krein, F—Friedrichs, dashed line—single bound state, dotted

line—infinite sequence of bound states.



Consider now the Whittaker operator given by the formal expres-

sion

Lβ,α := −∂2
x +

(
α− 1

4

) 1

x2
− β

x
,

where the parameters β, α are complex numbers. It is natural to

write α = m2.



For any m ∈ C with Re(m) > −1 we introduce the closed

operator Hβ,m that equals Lβ,m2 on functions that behave as

x
1
2+m(1− β

1 + 2m
x
)

near zero. We obtain a family

C× {m ∈ C | Re(m) > −1} 3 (β,m) 7→ Hβ,m ,

which is holomorphic except for a singularity at (0,−1
2).



The singularity at (β,m) = (0,−1
2) is quite curious: it is invisible

when we consider just the variable m. In fact,

m 7→ Hm = H0,m

is holomorphic around m = −1
2, and H−1

2
has the Neumann

boundary condition. It is also holomorphic around m = 1
2, and

H1
2

has the Dirichlet boundary condition. Thus one has

H
0,−1

2
6= H

0,12
.



If we introduce the Coulomb potential, then

whenever β 6= 0, H
β,−1

2
= H

β,12
.

The function

(β,m) 7→ Hβ,m (∗)

is holomorphic around (0, 1
2), in particular,

lim
β→0

(1l + H
β,12

)−1 = (1l + H
0,12

)−1.

But lim
β→0

(1l +H
β,−1

2
)−1 = (1l +H

0,12
)−1 6= (1l +H

0,−1
2
)−1. Thus

(∗) is not even continuous near (0,−1
2).


