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Some time ago together with Vladimir we decided to write a

review about 1-dimensional Schrodinger operators
L=-0>+V(z)
on L?]a,b].

We wanted to answer rather basic and classical questions:
How to describe closed realizations Le of the formal operator L?

How to compute their resolvents (Le —\) ™! or Green's operators?



We wanted to be as general as possible:
® o can be —o0, b can be +00.

e I/ can be complex.

e |/ can be very singular

e I/ can have an arbitrary behavior close to the endpoints.



Our main motivation were exactly solvable Hamiltonians such as
—0% + (Oz—%)i— é,

on L?*(Ry) or L?*(R). In exactly solvable Hamiltonians complex

potentials appear naturally. Moreover, their potentials are often

singular, especially at the endpoints, but also in the midle of the

domain. Recently, | studied such problems together with Serge

Richard and Jeremy Faupin. We thought it would be nice to have

a paper describing the general framework.



Of course, 1-dimensional Schrodinger operators have a huge lit-
erature. Many of my and Vladimir's discoveries turned out to be

rediscoveries. This does not mean they were easy or not interest-

Ing.



Most textbooks assume that V' is real. It is also convenient to
suppose that V' € L%OC. Denote the closure of L restricted to
C* (]a, b[) by L. Then Ly, is a Hermitian operator (com-

ES
min-
One is mostly interested in self-adjoint extensions Le of L. They

monly called symmetric). This means L, C Liax = L

satisfy
Lmin C L. C Lmax.

and L} = L,.



There exists a well-known abstract theory going back to
von Neumann about self-adjoint extensions. One defines the

deficiency spaces and indices
Nt =N (Lpax Fi), da:=dim Nt

Lin, possesses self-adjoint extensions iff d4+ = d_. Self-adjoint
extensions of Ly, are parametrized by maximal subspaces of
D(Lmax)/D(Lpin) ~ Ny @ N—_ on which the anti-Hermitian
form

(Lmaxf‘g) — (f‘Lmaxg)

IS Zero.



For Schrodinger operators Ny = N, hence di = d_ and self-
adjoint extensions exist. In one dimension we have 3 possibilities:
dy = d— = 0,1,2. More precisely, we can naturally split the

boundary space
D(Lmax)/D(Liin) = Ga © Gy

where G, describes the boundary condition at a and G, describes

the boundary conditions at b.



Let us describe the classic theory of regular boundary coditions.
For simplicity we assume that G, = {0}. Suppose that V' € Ll in
a neighborhood of a. Then one can show that for f € D(Lyax)
the values f(a) and f/(a) are well-defined continuous functionals

on Gg. Self-adjoint extensions are L, with i € RU {00} and
D(Ly) = {f € D(Lmax) | f'(a) = pf(a)}.

This was essentially known to Sturm and Liouville.



Now assume that V' is complex. We define Ly, as the operator

—024V (z) (appropriately understood—more about this later) on
D(Luna) = {f € La,bf] (=07 + V(2))f € L7a, b[}.

Then we define L,,;,, to be the closure of L.« restricted to func-
tions compactly supported in |a,b]. We are looking for closed

operators Lo such that
Lmin C L. C Lmax.

The most interesting are those that have a nonempty resolvent
set. Such operators are sometimes called well-posed (see e.g.

Edmunds-Evans).



What is a natural condition for V'? |f we want that V' is a densely

2

defined closable operator, then we need to assume that V' & Lloc'

This is however much too restrictive.

Let AC' denote the space of absolutely continuous functions.
More precisely, f € AC|a,b| iff f' € Llloc]a, b|. Similarly, f €
ACYa, o[ iff " € L} Ja,b.

loc



A natural class of potentials (considered often in the literature)
s V € Llloc' If f € AC', then both —92f and V f are well

defined as elements of L1 . We can define

loc®

D(Limax) = {f € AC'NL? | (=82 + V(x))f € L*}.
We can rewrite
(0, +V(x)=Nf=g (%)

as a first order equation with LllOC coefficients:

0 1 0
9. il _ iy,

/2 V=A0] | g




One can do much better. As noticed by Savchuk-Shkalikov, one
can assume that V' = G’ where G € L12OC. Indeed, formally

—02+ G'(z) = —04(0, — G) — G(8; — G) — G°.

1

We can again rewrite (x) as as a first order equation with L;

coefficients:

G 1 0
9. | _ 2 J1 N
/o G=A =G| | ] g




Clearly, if V' is complex, then L, is not Hermitian, so the

theory of self-adjoint extensions does not apply. But there is a

different theory.

L%)a, b is equipped with a natural conjugation and a bilinear

product

(flg) = / F(@)g(@)dz = (Flg).

If A is bounded, we say that A7 is the transpose of A (J-
conjugate of A) if

(flAg) = (A7 flg).



Let A have dense domain D(A). We say that f € D(A™) if

there exists h such that

(flAg) = (hlg), g€ D(A),

and then A7 f := h. We say that A is symmetric (J-symmetric)
if A C A7 and self-transposed if A = A7 (J-self-adjoint).
Note that o(A) = o(A™). Besides

(=) = Ay, @y = o

(Not true for Hermitian conjugation!).



Let L C L7 = Lo

min
Theorem. There always exist a self-transposed Le such that

Lpin C Le C Limax-

Proof.
Lflg] = (Lmaxflg) — (f|Lmaxg)

defines a continuous symplectic form on the boundary space
g = D(Lmax)/D(Lmin)-

Lagrangian subspaces correspond to self-transposed extensions.

Lagrangian subspaces alway exist.



Theorem. Suppose that Le satisfies
Linin C Le C Liax.
If Lo is well-posed or self-transposed, then

dim D(Le)/D(Lyyiy) = dim D(Lunax) /D(Le).



Consider again —92 + V() and the corresponding Lyyin, Limax.
We have L, C Lﬁm = Lmax. T'he boundary space

g = D<Lmax)/D(Lmin)

naturally splits in two subspaces G = G, ® Gy, In order to describe
Gq and Gy, for A € C we define

UsN) ={f | (L =N f =0, f square integrable around a}.
Similarly we define Uy ().



Theorem. dim G, = 0 or 2.

1) The following are equivalent:
a)dimG, = 2.
b) dim Uy (A\) = 2 for all A € C.
c) dim U, (M) = 2 for some A € C.

2) The following are equivalent:
a)dim G, = 0.
b) dimU,(A) <1 for all A € C.
c) dimUy(A) < 1 for some A € C.



If V is real then the above theorem is well-known and easy.
dim G, = 2 goes under the name of the limit circle case and
dim G, = 0 goes under the name of the limit point case. (These
names are no longer justified if V' is complex).

If V is real, we know much more in the limit point case: The

following are equivalent:
b) dimUy(A\) =1 for A € C\R and dimU,(A) <1 for A € R.



The usual proof for the real case does not generalize to the
complex case. The main idea for the proof in the complex case is
to reduce the problem to a system of 4 1st order ODE's and to

use the following result due to Atkinson:



Theorem. Suppose that A, B are functions [a,b] — B(C") be-
longing to Llloc([a, b, B(C")) satisfying A(x) = A®(x) > 0,

B(x) = B*(x). Let J be an invertible matrix satisfying J* = —.J
and such that J~1A(x) is real. If for some A € C all solutions of

JOrp(z) = AA(x)p(z) + B(x)o(z)  (a)
satisfy

b
[ Gwiawoa)a <o o

then for all A € C all solutions of (a) satisfy (b).



Consider the Bessel operator given by the formal expression

1 1

We will see that it is often natural to write o = m?

:_3%4_

Theorem 0.0.1. .
1. For 1 < Rem, me e,
m
2. For —1 < Rem < 1, me C Lm , and the codimension

of their domains s 2.
3. (Lmny* — LZ*. Hence, for a € R, LM s Hermitian.

4. ngm and Ly are homogeneous of degree —?2.



Notice that
La2tm —
Let £ be a compactly supported cutoff equal 1 around 0.
Let —1 < Rem. Note that :E%“me belongs to DomL?z%X.
This suggests to define the operator H,,, to be the restriction of

LTH;L%X to

- |
DomZL 5" + Cxzt™me.



Theorem 0.0.2. .

1. For 1 < Rem, L™ = Hy, = L%,

2. For —1 < Rem < 1, anlgn C Hp & L5 and the codi-
mension of the domains 1s 1.

3. H' = Hpmy. Hence, for m €] —1,00|, Hy, is self-adjoint.

4. Hyy, 1s homogeneous of degree —2.

5.0(Hp) =10, 00].

6.{Rem > —1} 3 m — H,, is a holomorphic family of

closed operators.



Theorem 0.0.3. .

1.

. H1 1s the Dirichlet Laplacian and H
2

For a0 > 1, LI = H\/a s essentially self-adjoint on
C°10, ool.

 Fora < 1, L™ is not essentially self-adjoint on C2°)0, ool

. For 0 < a < 1, the operator H\/& 1s the Friedrichs exten-

sion and H_ /5 is the Krein extension of L.

15 the Neumann

DO +—

Laplacian on halfline.

. For a < 0, Lgm has no homogeneous selfadjoint exten-

S10MS.



Self-adjoint extensions of the Hermitian operator

1 1
La:—%+(—1+ab§

K—KTrein, F—Friedrichs, dashed line—single bound state, dotted

line—infinite sequence of bound states.
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Consider now the Whittaker operator given by the formal expres-

sion N1 p
Lgai=—03+(a—7)—5-5

bro o 4) 22  x

where the parameters 3, o are complex numbers. It is natural to

write o = m2.



For any m € C with Re(m) > —1 we introduce the closed

operator Hg ,, that equals Lﬁ .2 on functions that behave as

x%er(l— b x)
1+2m

near zero. We obtain a family

Cx{meC| Re(m)> -1} > (8,m)— Hg,,,,

which is holomorphic except for a singularity at (0, —%)



The singularity at (5, m) = (0, —%) is quite curious: it is invisible

when we consider just the variable m. In fact,

Is holomorphic around m = —%, and H 1 has the Neumann
2

boundary condition. It is also holomorphic around m = % and
H1 has the Dirichlet boundary condition. Thus one has
2
H, 1 =+ HO,%'

)



If we introduce the Coulomb potential, then

=H

whenever 5 £ 0, H g1
%)

67_

Do +—

The function

(B,m) = Hgm (%)

is holomorphic around (O,%), in particular,

lim (14 H 1+ H
51;]{1@( " /32) ( " %)
But lim (1+Hy )T =(+Hy )" £ U+ Hy )7t Thus
B—0 2 0,5 2

(*) is not even continuous near (0, —%)



