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JAN DEREZIŃSKI1 , MICHAŁ WROCHNA2

1Department of Mathematical Methods in Physics,
Faculty of Physics, University of Warsaw
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ABSTRACT. We systematically derive general properties of continuous and
holomorphic functions with values in closed operators, allowing in particular for
operators with empty resolvent set. We provide criteria for a given operator-
valued function to be continuous or holomorphic. This includes sufficient
conditions for the sum and product of operator-valued holomorphic functions
to be holomorphic.

Using graphs of operators, operator-valued functions are identified with
functions with values in subspaces of a Banach space. A special role is thus
played by projections onto closed subspaces of a Banach space, which depend
holomorphically on a parameter.

1. INTRODUCTION

Definition of continuous and holomorphic operator-valued functions. It is
obvious how to define the concept of a (norm) continuous or holomorphic function
with values in bounded operators. In fact, let H1, H2 be Banach spaces. The set
of bounded operators from H1 to H2, denoted by B(H1,H2), has a natural metric
given by the norm, which can be used to define the continuity. For the holomorphy,
we could use the following definition:

Definition 1.1. A function C ⊃ Θ 3 z 7→ Tz ∈ B(H1,H2) is holomorphic if
lim
h→0

Tz+h−Tz

h exists for all z ∈ Θ.

There exist other equivalent definitions. For instance, we can demand that z 7→
〈y|Tzx〉 is holomorphic for all bounded anti-linear functionals y on H2 and all
x ∈ H1.

It is easy to see that holomorphic functions with values in bounded operators
have good properties that generalize the corresponding properties of C-valued
functions. For instance, the product of holomorphic functions is holomorphic; we
have the uniqueness of the holomorphic continuation; if z 7→ Tz is holomorphic,
then so is z 7→ T ∗z̄ (the “Schwarz reflection principle”).

In practice, however, especially in mathematical physics and partial differential
equations, one often encounters functions with values in unbounded closed
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operators, for which the continuity and the holomorphy are more tricky. In
our paper we collect and prove various general facts concerning continuous and,
especially, holomorphic functions with values in closed operators. In particular, in
the context of Hilbert spaces we give a certain necessary and sufficient criterion
for the holomorphy, which appears to be new and useful, and was the original
motivation for writing this article. Besides, we provide sufficient conditions for the
continuity and holomorphy of the product and sum of operator-valued functions.

Our main motivation is the case of Hilbert spaces. However, the main tool
that we use are non-orthogonal projections, where the natural framework is that
of Banach spaces, which we use for the larger part of our paper. In particular, we
give a systematic discussion of elementary properties of projections on a Banach
space. Some of them we have not seen in the literature.

The continuity and holomorphy of functions with values in closed operators
is closely related to the continuity and holomorphy of functions with values in
closed subspaces. The family of closed subspaces of a Banach space H will be
called its Grassmannian and denoted Grass(H). It possesses a natural metric
topology given by the gap function. There exist several useful characterizations of
functions continuous in the gap topology. For instance, the range of a continuous
function with values in bounded left-invertible operators is continuous in the gap
topology. (Note that left-invertible operators have automatically closed ranges).
Such a function will be called a continuous injective resolution of a given function
with values in the Grassmanian.

It is more tricky to define the holomorphy of a Grassmannian-valued function,
than to define its continuity. The simplest definition we know says that it is
holomorphic iff it locally possesses a holomorphic injective resolution.

Let C(H1,H2) denote the set of closed operators from H1 to H2. It is natural
to ask what is the natural concept of continuity and holomorphy for functions with
values in C(H1,H2).

By identifying a closed operator with its graph we transport the gap topology
from Grass(H1 ⊕ H2) to C(H1,H2). This yields a natural definition of
the continuity of functions with values in closed operators. There are other
possibilities, but the gap topology seems to be the most natural generalization of
the norm topology from B(H1,H2) to C(H1,H2).

Again, the concept of the holomorphy for closed operators seems to be more
complicated than that of the continuity. The original definition is quite old and
there are subclasses of operator-valued holomorphic functions which have been
studied extensively [16]. However, even the seemingly simpliest questions, such
as the unique continuation or the validity of the Schwarz reflection principle, are
quite tricky to prove.

To formulate a definition of holomorphic function with values in closed
operators, it seems natural again to go first to the Grassmannian. Recall that if
a function with values in the Grassmannian has a continuous injective resolution,
then it is continuous. We will say that such a function is holomorphic if it possesses
a holomorphic injective resolution. Arguably, this definition seems less satisfactory
than that of the (gap) continuity — but we do not know of any better one.

We can transport the above definition from the Grassmannian of H1 ⊕ H2 to
C(H1,H2), obtaining a definition of the holomorphy for functions with values in
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closed operators. This definition, strictly speaking due to T. Kato [16], goes back
essentially to F. Rellich [21] and can be reformulated as follows:

Definition 1.2. A function Θ 3 z 7→ Tz ∈ C(H1,H2) is holomorphic around
z0 ∈ Θ if there exists a neighbourhood Θ0 ⊂ Θ of z0, a Banach space K and a
holomorphic function Θ0 3 z 7→ Wz ∈ B(K,H1), such that Wz maps bijectively
K onto Dom(Tz) for all z ∈ Θ0 and

Θ0 3 z 7→ TzWz ∈ B(K,H2)

is holomorphic.

At first glance Def. 1.2 may seem somehow artificial, especially when compared
with Def. 1.1, which looks as natural as possible. In particular, it involves
a relatively arbitrary function z 7→ Wz , which will be called a resolution of
holomorphy of z 7→ Tz . The arbitrariness of a resolution of holomorphy is rarely
a practical problem, because there exists a convenient criterion which works when
H1 = H2 and Tz has a non-empty resolvent set (which is usually the case in
applications). It is then enough to check the holomorphy of the resolvent of Tz .
This criterion is however useless for z ∈ Θ corresponding to Tz with an empty
resolvent set, or simply when H1 6= H2. In this case, at least in the context of
Hilbert spaces, our criterion given in Prop. 4.8 could be particularly useful.

Note that the word resolution is used in two somewhat different contexts – that
of the Grassmannian and that of closed operators. Moreover, in the case of the
continuity the corresponding object gives a criterion, whereas in the case of the
holomorphy it provides a definition. This could be confusing, therefore below we
give a summary of the main 4 properties considered in our paper:

(1) If a function with values in the Grassmannian possesses a continuous
injective resolution, then it is continuous in the gap topology. If values
of the function are complemented, then we can replace the implication by
the equivalence.

(2) A function with values in the Grassmannian possesses a holomorphic
injective resolution iff it is holomorphic. (This is a definition).

(3) If a function with values in closed operators possesses a resolution of
continuity, then it is continuous in the gap topology. If values of the
function have complemented graphs, then we can replace the implication
by the equivalence.

(4) A function with values in closed operators possesses a resolution of
holomorphy iff it is holomorphic. (In the literature this is usually adopted
as a definition).

Examples. As an illustration, let us give a number of examples of holomorphic
functions with values in closed operators.

(1) Let z 7→ Tz ∈ C(H1,H2) be a function. Assume that Dom(Tz) does not
depend on z and Tzx is holomorphic for each x ∈ Dom(Tz). Then such
function z 7→ Tz is holomorphic and it is called a holomorphic family of
type A. Type A families inherit many good properties from Banach space-
valued holomorphic functions and provide the least pathological class of
examples.

(2) Let A ∈ C(H) have a nonempty resolvent set. Then z 7→ (A − z1l)−1 ∈
B(H) is holomorphic away from the spectrum of A. However, z 7→
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(A − z1l)−1 ∈ C(H) is holomorphic away from the point spectrum of A,
see Example 5.5. This shows that a nonextendible holomorphic function
with values in bounded operators can have an extension when we allow
unbounded values.

(3) Consider the so-called Stark Hamiltonian on L2(R)

Hz := −∂2
x + zx.

(Here x denotes the variable in R and z is a complex parameter). For z ∈ R
one can define Hz as a self-adjoint operator with spHz = R. Hz is also
naturally defined for z ∈ C\R, and then has an empty spectrum [13]. Thus
in particular all non-real numbers belong to the resolvent set of Hz . One
can show that z 7→ Hz is holomorphic only outside of the real line. On the
real line it is even not continuous.

(4) Consider the Hilbert space L2([0,∞[). For m > 1 the Hermitian operator

Hm := −∂2
x +

(
m2 − 1

4

) 1

x2
(1.1)

is essentially self-adjoint on C∞c (]0,∞[). We can continue holomorphi-
cally (1.1) onto the halfplane {Rem > −1}. For all such m the spectrum
of Hm is [0,∞[. In [4] it was asked whether m 7→ Hm can be extended
to the left of the line Rem = −1. If this is the case, then on this line
the spectrum will cover the whole C and the point m = −1 will be a
singularity. We still do not know what is the answer to this question. We
hope that the method developed in this paper will help to solve the above
problem.

Main results and structure of the paper. We start by introducing in Sec. 2 the
basic definitions and facts on (not necessarily orthogonal) projections in a linear
algebra context.

Sec. 3 contains the essential part of the paper. We first recall the definition of the
gap topology on the Grassmanian and demonstrate how it can be characterized in
terms of continuity of projections. It turns out that a significant role is played by the
assumption that the subspaces are complementable. We then discuss holomorphic
functions with values in the Grassmanian and explain how this notion is related to
Rellich’s definition of operator-valued holomorphic functions. Most importantly,
we deduce a result on the validity of the Schwarz reflection principle in Thm 3.42
and we recover Bruk’s result on the uniqueness of analytic continuation in Thm.
3.38.

In Sec. 4 we consider the case of operators on Hilbert spaces. We derive explicit
formulae for projections on the graphs of closed operators and deduce a criterion
for the holomorphy of operator-valued functions, which is also valid for operators
with empty resolvent set (Prop. 4.8).

In Sec. 5 we give various sufficient conditions for the continuity and
holomorphy of the product and sum of operator-valued functions. More precisely,
we assume that z 7→ Az, Bz are holomorphic and AzBz is closed. The simpliest
cases when z 7→ AzBz is holomorphic are discussed in Prop. 5.2 (Az boundedly
invertible orBz bounded) and Prop. 5.9 (AzBz densely defined andB∗z̄A

∗
z̄ closed).

More sufficient conditions are given in Thm. 5.10 (rs(AzBz) ∩ rs(BzAz) 6= ∅)
and Thm. 5.12 (Dom(Az) + RanBz = H). A result on sums is contained in Thm.
5.16.
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Bibliographical notes. The standard textbook reference for continuous and
holomorphic operator-valued function is the book of T. Kato [16]. Most of the
results are however restricted to either holomorphic families of type A or to
operators with non-empty resolvent set. The first proof of the uniqueness of a
holomorphic continuation outside of these two classes is due to V.M. Bruk [3].
The strategy adopted in our paper is to a large extent a generalization of [3].

Holomorphic families of subspaces were introduced by M. Shubin [22]; the
definition was then reworked by I.C. Gohberg and J. Leiterer, see [11] and
references therein. We use the definition from [11, Ch.6.6]. It is worth mentioning
that the original motivation for considering families of subspaces depending
holomorphically on a parameter comes from problems in bounded operator theory,
such as the existence of a holomorphic right inverse of a given function with values
in right-invertible bounded operators, see for instance [14, 18] for recent reviews.

The gap topology was investigated by many authors, eg. [2, 8, 10, 11], however
some of the results that we obtain using non-orthogonal projections appear to be
new. A special role in our analysis of functions with values in the Grassmannian
of a Banach space is played by subspaces that possess a complementary subspace,
a review on this subject can be found in [15].

Limitations and issues. The holomorphy of functions with values in closed
operators is a nice and natural concept. We are, however, aware of some limitations
of its practical value. Consider for instance the Laplacian ∆ on L2(Rd). As
discussed in Example (2), the resolvent z 7→ (z1l + ∆)−1 extends to an entire
holomorphic function. On the other hand, for many practical applications to
spectral and scattering theory of Schrödinger operators another fact is much more
important. Consider, for example, odd d and f ∈ Cc(Rd). Then

z 7→ f(x)(z1l + ∆)−1f(x)

extends to a multivalued holomorphic function, and to make it single valued, one
needs to define it on the Riemann surface of the square root (the double covering
of C\{0}). The extension of this function to the second sheet of this Riemann
surface (the so called non-physical sheet of the complex plane) plays an important
role in the theory of resonances (cf. eg. [23]). It is however different from what
one obtains from the extension of z 7→ (z1l + ∆)−1 in the sense of holomorphic
functions with values in closed operators.

Further issues are due to the fact that typical assumptions considered, eg., in
perturbation theory, do not allow for a good control of the holomorphy. For
instance, we discuss situations where seemingly natural assumptions on Tz and
Sz do not ensure that the product TzSz defines a holomorphic function.

Applications and outlook. The main advantage of the holomorphy in the sense
of Definition 1.2 is that it uses only the basic structure of the underlying Banach
space (unlike in the procedure discussed before on the example of the resolvent of
the Laplacian).

Despite various problems that can appear in the general case, we conclude
from our analysis that there are classes of holomorphic functions which enjoy
particularly good properties. This is for instance the case for functions whose
values are Fredholm operators. We prove in particular that the product of two
such functions functions is again holomorphic. In view of this result it is worth
mentioning that the Fredholm analytic theorem (see e.g. [23, Thm. D.4]),
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formulated usually for bounded operators, extends directly to the unbounded case.
It seems thus interesting to investigate further consequences of these facts.

On a separate note, we expect that in analogy to the analysis performed in
[4] for the operator −∂2

x + zx−2, specific operator-valued holomorphic functions
should play a significant role in the description of self-adjoint extensions of exactly
solvable Schrödinger operators, listed explicitly in [7] in the one-dimensional case.

A problem not discussed here is the holomorphy of the closure of a given
function with values in (non-closed) unbounded operators. Such problems often
appear in the context of products of holomorphic functions with values in closed
operators, and one can give many examples when the product has non-closed
values, but the closure yields a holomorphic function. A better understanding of
this issue could lead to useful improvements of the results of the present paper.

Acknowledgments. The research of J.D. was supported in part by the National
Science Center (NCN) grant No. 2011/01/B/ST1/04929.

2. LINEAR SPACE THEORY

Throughout this section K,H are linear spaces.

2.1. Operators.

Definition 2.1. By a linear operator T fromK toH (or simply an operator onK, if
K = H) we will mean a linear function T : DomT → H, where DomT is a linear
subspace of K. In the usual way we define its kernel KerT , which is a subspace of
DomT and its range RanT , which is a subspace of H. If DomT = K, then we
will say that T is everywhere defined.

Definition 2.2. We will write L(K,H) for the space of linear everywhere defined
operators from K toH. We set L(H) := L(H,H).

Definition 2.3. If X is a subspace ofH, let JX denote the embedding of X intoH.

Definition 2.4. We will write T̃ for the operator T understood as an operator on K
to RanT .

Clearly, T = JRanT T̃ .
If an operator T from K toH is injective we can define the operator T−1 onH

to K with DomT−1 = RanT and RanT−1 = DomT . Clearly,

T−1T = 1lDomT , TT
−1 = 1lRanT .

Often, instead of T−1 we will prefer to use T̃−1 : RanT → K, whose advantage
is that it is everywhere defined.

Definition 2.5. If T ,S are two operators, their product TS is defined in the usual
way on the domain

Dom(TS) = S−1Dom(T ) = {v ∈ Dom(S) : Sv ∈ Dom(T )}.

(The notation ‘S−1Dom(T )’ is understood as in the last equality above, so that S
is not required to be injective). The operator T + S is defined in the obvious way
with Dom(T + S) = DomT ∩DomS.

6



2.2. Projections.

Definition 2.6. Let X ,Y be two subspaces of H with X ∩ Y = {0}. (We do not
require that X + Y = H.) We will write PX ,Y ∈ L(X + Y) for the idempotent
with range X and kernel Y . We will say that it is the projection onto X along Y .

Definition 2.7. If X ∩ Y = {0} and X + Y = H, we will say that X is
complementary to Y , and write X ⊕ Y = H. In such a case PX ,Y ∈ L(H).

Clearly 1l− PX ,Y = PY,X .
The following proposition describes a useful formula for the projection

corresponding to a pair of subspaces:

Proposition 2.8. Let J ∈ L(K,H) be injective. Let I ∈ L(H,K) be surjective.
Then IJ is bijective iff

Ran J ⊕KerI = H,
and then we have the following formula for the projection onto Ran J along KerI:

PRan J,KerI = J(IJ)−1I (2.1)

Proof. ⇒: J(IJ)−1 is injective. Hence KerJ(IJ)−1I = KerI .
(IJ)−1I is surjective. Hence Ran J(IJ)−1I = Ran J . Clearly,

(J(IJ)−1I)2 = J(IJ)−1I.

⇐: Suppose that IJ is not injective. Clearly, JKerIJ ⊂ KerI ∩ Ran J . But J
is injective. Hence, KerI ∩ Ran J 6= {0}.

Suppose that IJ is not surjective. Clearly, Ran IJ = I(Ran J + KerI). Since
I is surjective, Ran J + KerI 6= H. �

Here is a special case of the above construction.

Proposition 2.9. Let X ,X ′,Y be subspaces of H, with X complementary to Y .
Then P̃X ,YJX ′ is bijective iff X ′ and Y are complementary, and then we have the
following formula for the projection onto X ′ along Y:

PX ′,Y = JX ′(P̃X ,YJX ′)−1P̃X ,Y . (2.2)

3. BANACH SPACE THEORY

Throughout this section K,H,H1,H2 are Banach spaces. We will use the
notation X cl for the closure of a subset X . Similarly, for a closable operator
T , we use the notation T cl for its closure.
B(K,H) will denote the space of bounded everywhere defined operators from

K to H. C(K,H) will denote the space of closed operators from K to H. We will
write B(H) = B(H,H) and C(H) = C(H,H).

3.1. Closed range theorem. Below we recall one of the most useful theorems of
operator theory:

Theorem 3.1 (Closed range theorem). Let T be an injective operator from K to
H. Then the following are equivalent:

(1) RanT is closed and T ∈ C(K,H);
(2) RanT is closed and T̃−1 is bounded;

7



(3) RanT is closed and

inf
x 6=0

‖Tx‖
‖x‖

> 0. (3.1)

Besides, the number defined in (3.1) is ‖T̃−1‖−1.

Definition 3.2. Operators satisfying the conditions of Thm 3.1 will be called left
invertible. The family of such operators will be denoted by Clinv(K,H). We will
write Blinv(K,H) = B(K,H) ∩ Clinv(K,H).

An operator T satisfying the conditions of Thm 3.1 and such that RanT = H is
called invertible. The family of such operators will be denoted by Cinv(K,H). We
will write Binv(K,H) = B(K,H) ∩ Cinv(K,H).

Clearly, T is left invertible iff T̃ is invertible. The next proposition shows that
left invertibility is stable under bounded perturbations.

Proposition 3.3. Let T ∈ Clinv(K,H), S ∈ B(K,H) and ‖S‖ < ‖T̃−1‖−1. Then
T + S ∈ Clinv(K,H), and∣∣∣‖ ˜(T + S)

−1
‖−1 − ‖T̃−1‖−1

∣∣∣ ≤ ‖S‖. (3.2)

Consequently, Blinv(K,H) 3 T 7→ ‖T̃−1‖ is a continuous function and
Blinv(K,H) is an open subset of B(K,H).

Proof. We have the lower bound

‖(T + S)x‖ ≥ ‖Tx‖ − ‖Sx‖ ≥ (‖T̃−1‖−1 − ‖S‖)‖x‖.
But ‖T̃−1‖−1 − ‖S‖ > 0, therefore, T + S is left invertible and

‖ ˜(T + S)
−1
‖−1 ≥ ‖T̃−1‖−1 − ‖S‖.

Then we switch the roles of T and T + S, and obtain

‖T̃−1‖−1 ≥ ‖ ˜(T + S)
−1
‖−1 − ‖S‖,

which proves (3.2). �

Definition 3.4. The resolvent set of an operator T on H, denoted rsT , is defined
to be the set of all λ ∈ C such that T − λ1l ∈ Cinv(H). The spectrum of T is by
definition the set spT := C \ rsT .

Note that according to this definition (used for instance in [5, 9, 12]), rsT 6= ∅
implies that T is a closed operator (note that this differs from the terminology used
in [16]).

3.2. Bounded projections. Let X ,Y be subspaces of H with X ∩ Y = {0}. The
operator PX ,Y is bounded iff X , Y and X + Y are closed.

Definition 3.5. Let Pr(H) denote the set of bounded projections on H. Let
Grass(H) denote the set of closed subspaces ofH (the Grassmannian ofH).

The first part of Prop 2.8 can be adapted to the Banach space setting as follows:

Proposition 3.6. Let J ∈ Blinv(K,H). Let I ∈ B(H,K) be surjective. Clearly,
Ran J,KerI are closed. Then IJ is invertible iff

Ran J ⊕KerI = H.
8



Proof. Given Prop. 2.8, it suffices to note that IJ is a bijective bounded operator
on a Banach space, hence it is invertible. �

Here is an adaptation of the first part of Prop. 2.2 to the Banach space setting:

Proposition 3.7. Let X ,X ′,Y be closed subspaces of H, with X complementary
to Y . Then P̃X ,YJX ′ is invertible iff X ′ and Y are complementary.

3.3. Gap topology.

Definition 3.8. If X ∈ Grass(H), we will introduce the following notation for the
ball in X :

BX := {x ∈ X : ‖x‖ ≤ 1}.
As usual, the distance of a non-empty set K ⊂ H and x ∈ H is defined as

dist (x,K) := inf{‖x− y‖ : y ∈ K}.

Definition 3.9. For X ,Y ∈ Grass(H) we define

δ(X ,Y) := sup
x∈BX

dist (x,Y).

The gap between X and Y is defined as

δ̂(X ,Y) := max
(
δ(X ,Y), δ(Y,X )

)
. (3.3)

The gap topology is the weakest topology on Grass(H) for which the function δ is
continuous on Grass(H)×Grass(H).

Note that the gap defined in (3.3) is not a metric. There exists a metric that can
be used to define the gap topology, but we will not need it. We refer the reader to
[16] for more discussion about the gap topology.

Proposition 3.10. If X ,Y and X ′,Y ′ are two pairs of complementary subspaces
in Grass(H), then

max
(
δ̂(X ,X ′), δ̂(Y,Y ′)

)
≤ ‖PX ,Y − PX ′,Y ′‖.

Proof. For x ∈ BX , we have

dist (x,X ′) ≤ ‖x− PX ′,Y ′x‖
= ‖(PX ,Y − PX ′,Y ′)x‖ ≤ ‖PX ,Y − PX ′,Y ′‖.

This shows
δ(X ,X ′) ≤ ‖PX ,Y − PX ′,Y ′‖.

The same argument gives

δ(X ′,X ) ≤ ‖PX ,Y − PX ′,Y ′‖.

Finally, we use
PX ,Y − PX ′,Y ′ = PY ′,X ′ − PY,X . �

Corollary 3.11. If X ,Y and X ′,Y are complementary, then

δ̂(X ,X ′) ≤ ‖PX ,Y − PX ′,Y‖.

Lemma 3.12.

‖PY,XPX ′,Y ′‖ ≤ ‖PY,X ‖‖PX ′,Y ′‖δ(X ′,X ).
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Proof.

‖PY,XPX ′,Y ′‖ = sup
v∈BH

‖PY,XPX ′,Y ′v‖

≤ ‖PX ′,Y ′‖ sup
x′∈BX′

‖PY,Xx′‖

= ‖PX ′,Y ′‖ sup
x′∈BX′

inf
x∈X
‖PY,X (x′ − x)‖

≤ ‖PY,X ‖‖PX ′,Y ′‖ sup
x′∈BX′

inf
x∈X
‖x′ − x‖. �

The following proposition is essentially taken from [11].

Proposition 3.13. Let X ,Y ∈ Grass(H) be complementary, X ′,Y ′ ∈ Grass(H)
and

‖PY,X ‖δ(X ′,X ) + ‖PX ,Y‖δ(Y ′,Y) < 1, (3.4)
‖PY,X ‖δ(Y,Y ′) + ‖PX ,Y‖δ(X ,X ′) < 1. (3.5)

Then X ′,Y ′ are complementary and

‖PX ,Y − PX ′,Y ′‖ ≤
‖PX ,Y‖‖PY,X ‖

(
δ(X ′,X ) + δ(Y ′,Y)

)
1− ‖PX ,Y‖δ(X ′,X )− ‖PY,X ‖δ(Y ′,Y)

. (3.6)

Proof. Step 1. Let us show that X ′ ∩ Y ′ = {0}. Suppose it is not true. Then there
exists v ∈ X ′ ∩ Y ′, ‖v‖ = 1.

1 = ‖v‖ ≤ ‖PX ,Yv‖+ ‖PY,X v‖
≤ ‖PX ,Y‖δ(Y ′,Y) + ‖PY,X ‖δ(X ′,X ),

which is a contradiction.
Step 2. By Step 1, PX ′,Y ′ is well defined as a map on X ′ + Y ′. We will show

that it is bounded, or equivalently that X ′ + Y ′ is closed. We will also obtain the
estimate (3.6).

For simplicity, in the following estimates we assume that H = X ′ + Y ′. If
X ′ + Y ′ is strictly smaller thanH, then we should replace PX ,Y by PX ,YJX ′+Y ′ .

Clearly,

PX ,Y − PX ′,Y ′ = PX ,Y(PY ′,X ′ + PX ′,Y ′)− (PX ,Y + PY,X )PX ′,Y ′

= PX ,YPY ′,X ′ − PY,XPX ′,Y ′ .

Hence,

‖PX ,Y − PX ′,Y ′‖ ≤ ‖PX ,YPY ′,X ′‖+ ‖PY,XPX ′,Y ′‖
≤ ‖PX ,Y‖‖PY ′,X ′‖δ(Y ′,Y) + ‖PY,X ‖‖PX ′,Y ′‖δ(X ′,X )

≤ ‖PX ,Y‖
(
‖PY,X ‖+ ‖PX ′Y ′ − PX ,Y‖

)
δ(Y ′,Y)

+‖PY,X ‖
(
‖PX ,Y‖+ ‖PX ′Y ′ − PX ,Y‖

)
δ(X ′,X ).

Thus (
1− ‖PX ,Y‖δ(X ′,X )− ‖PY,X ‖δ(Y ′,Y)

)
‖PX ,Y − PX ′,Y‖

≤ ‖PX ,Y‖‖PY,X ‖
(
δ(X ′,X ) + δ(Y ′,Y)

)
.
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Step 3. We show that X ′ + Y ′ = H. Suppose that this is not the case. We can
then find v ∈ H such that ‖v‖ = 1, dist (v,X ′ + Y ′) = 1. Now

1 = dist (v,X ′ + Y ′) ≤ dist (PX ,Yv,X ′ + Y ′) + dist (PY,X v,X ′ + Y ′)
≤ dist (PX ,Yv,X ′) + dist (PY,X v,Y ′)
≤ ‖PX ,Y‖δ(X ,X ′) + ‖PY,X ‖δ(Y,Y ′),

which is a contradiction. �

Corollary 3.14. Let X ,Y ∈ Grass(H) be complementary and

‖PY,X ‖δ(X ′,X ) < 1, ‖PX ,Y‖δ(X ,X ′) < 1. (3.7)

Then X ′,Y are complementary and

‖PX ,Y − PX ′,Y‖ ≤
‖PX ,Y‖‖PY,X ‖δ(X ′,X )

1− ‖PX ,Y‖δ(X ′,X )
. (3.8)

Note in passing that the proof of Prop. 3.13 shows also a somewhat more general
statement (which we however will not use in the sequel):

Proposition 3.15. If in Prop. 3.13 we drop the condition (3.5), then X ′ ∩ Y ′ =
{0}, X ′ + Y ′ is closed and the estimate (3.6) is still true if we replace PX ,Y with
PX ,YJX ′+Y ′ .

Proposition 3.16. Let T ∈ Blinv(K,H), S ∈ B(K,H). Then

δ(RanT,RanS) ≤ ‖(T − S)T̃−1‖. (3.9)

Hence, if also S ∈ Blinv(K,H),

δ̂(RanT,RanS) ≤ max
(
‖(T − S)T̃−1‖, ‖(T − S)S̃−1‖

)
.

Proof. Let x ∈ BRanT . Clearly, x = T T̃−1x. Hence

dist (x,RanS) ≤ ‖x− ST̃−1x‖
= ‖(T − S)T̃−1x‖ ≤ ‖(T − S)T̃−1‖,

which proves (3.9). �

Definition 3.17. A closed subspace of H possessing a complementary subspace
will be called complemented. Let Grasscom(H) stand for the family of
complemented closed subspaces.

For any Y ∈ Grass(H) let GrassY(H) denote the family of closed subspaces
complementary to Y .

The following fact follows immediately from Prop. 3.13:

Proposition 3.18. GrassY(H) and Grasscom(H) are open subsets of Grass(H).

Proposition 3.19. If T ∈ Binv(H), then

Grass(H) 3 X 7→ TX ∈ Grass(H)

is bicontinuous. It preserves the complementarity relation, and hence it maps
Grasscom(H) into itself.
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3.4. Continuous families of subspaces. In this section Θ will be a locally
compact space (eg. an open subset of C.) Consider a function

Θ 3 z 7→ Xz ∈ Grass(H). (3.10)

Proposition 3.20. Let Y ∈ Grass(H). If (3.10) has values in GrassY(H), then it
is continuous iff

Θ 3 z 7→ PXz ,Y ∈ Pr(H)

is continuous.

Proof. We use Corrolaries 3.11 and 3.14. �

Definition 3.21. We say that

Θ 3 z 7→ Tz ∈ Blinv(K,H) (3.11)

is an injective resolution of (3.10) if, for any z ∈ Θ, Tz is a bijection onto Xz .

Proposition 3.22. Let z0 ∈ Θ.
(1) If there exists an open Θ0 such that z0 ∈ Θ0 ⊂ Θ and an injective

resolution of (3.10) on Θ0 continuous at z0, then (3.10) is continuous at
z0.

(2) If (3.10) has values in Grasscom(H), then we can put “if and only if” in 1.

Proof. (1): Suppose that (3.11) is an injective resolution of (3.10) which is
continuous at z0. We can find an open Θ1 such that z0 ∈ Θcl

1 ⊂ Θ0 and for
z ∈ Θ1 we have ‖Tz − Tz0‖ < c‖T̃−1

z0
‖−1 with c < 1. Then ‖Tz‖ and ‖T̃−1

z ‖
are uniformly bounded for such z. Therefore, by Prop. 3.16, for such z we have
δ̂(Xz,Xz0) ≤ C‖Tz − Tz0‖. Thus the continuity of (3.11) implies the continuity
of (3.10).

(2): Suppose that (3.10) is continuous at z0 and Xz0 is complemented. Let
Y ∈ Grass(H) be complementary to Xz0 . There exists an open Θ0 such that
z0 ∈ Θ0 ⊂ Θ and Y is complementary to Xz , z ∈ Θ0. Then, by Prop. 3.7, we see
that

Θ0 3 z 7→ PXz ,YJXz0
∈ Blinv(Xz0 ,H)

is an injective resolution of (3.10) restricted to Θ0. �

To sum up, functions with values in the Grassmannian that possess continuous
injective resolutions are continuous. If all values of a functions are complemented,
then the existence of a continuous injective resolution can be adopted as an
alternative definition of the continuity.

3.5. Closed operators.

Definition 3.23. For an operator T on H1 to H2 with domain DomT its graph is
the subspace ofH1 ⊕H2 given by

Gr(T ) := {(x, Tx) ∈ H1 ⊕H2 : x ∈ DomT}.

This induces a map

C(H1,H2) 3 T 7→ Gr(T ) ∈ Grass(H1 ⊕H2). (3.12)

From now on, we endow C(H1,H2) with the gap topology transported from
Grass(H1 ⊕H2) by (3.12).
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Proposition 3.24. B(H1,H2) is open in C(H1,H2). On B(H1,H2) the gap
topology coincides with the usual norm topology.

Operators whose graphs are complemented seem to have better properties.

Definition 3.25. We denote by Ccom(H1,H2) the set of closed operators with
complemented graphs.

Clearly, Ccom(H1,H2) is an open subset of C(H1,H2).

Proposition 3.26. Let S ∈ B(H1,H2). Then the map

C(H1,H2) 3 T 7→ T + S ∈ C(H1,H2) (3.13)

is bicontinuous and preserves Ccom(H1,H2)

Proof. (3.13) on the level of graphs acts by[
1l 0
S 1l

]
,

which is clearly in Binv(H1⊕H2). Thus the proposition follows by Prop. 3.19. �

Proposition 3.27. (1) Graphs of invertible operators are complemented.
(2) Graphs of operators whose resolvent set is nonempty are complemented.

Proof. By Prop. 3.26 applied to −λ1l, it is enough to show (1). We will show that
if T ∈ Cinv(H1,H2), thenH1 ⊕ {0} is complementary to Gr(T ).

Indeed,
H1 ⊕ {0} ∩Gr(T ) = {0, 0}

is obviously true for any operator T .
Any (v, w) ∈ H1 ⊕H2 can be written as(

v − T−1w, 0
)

+
(
T−1w,w). �

3.6. Continuous families of closed operators. Consider a function

Θ 3 z 7→ Tz ∈ C(H1,H2). (3.14)

Proposition 3.28. Let z0 ∈ Θ. Suppose that there exists an open Θ0 such that
z0 ∈ Θ0 ⊂ Θ, a Banach space K and a function

Θ0 3 z 7→Wz ∈ B(K,H1) (3.15)

s.t. Wz maps bijectively K onto Dom(Tz) for all z ∈ Θ0,

Θ0 3 z 7→ TzWz ∈ B(K,H2), (3.16)

and both (3.15) and (3.16) are continuous at z0. Then (3.14) is continuous at z0.

Proof. Notice that

Θ0 3 z 7→
(
Wz, TzWz) ∈ Blinv(K,H1 ⊕H2) (3.17)

is an injective resolution of

Θ0 3 z 7→ Gr(Tz) ∈ Grass(H1 ⊕H2). (3.18)

(Actually, every injective resolution of (3.18) is of the form (3.17).) The injective
resolution (3.17) is continuous at z0, hence (3.14) is continuous at z0 by Prop. 3.22
(1). �

A function z 7→ Wz with the properties described in Prop. 3.28 will be called a
resolution of continuity of z 7→ Tz at z0.
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Proposition 3.29. Suppose that z0 ∈ Θ, there exists an open Θ0 such that z0 ∈
Θ0 ⊂ Θ, and Tz ∈ Cinv(H1,H2), z ∈ Θ0. Then

z 7→ Tz ∈ C(H1,H2)

is continuous at z0 iff
z 7→ T−1

z ∈ B(H2,H1)

is continuous at z0.

Proof. ⇒: Let z 7→ Wz be a resolution of continuity of z 7→ Tz at z0. Then z 7→
Vz := TzWz is invertible bounded and continuous at z0. Hence, so is z 7→ V −1

z .
Therefore, z 7→ T−1

z = WzV
−1
z is bounded and continuous at z0.

⇐: Obviously, z 7→ T−1
z is a resolution of continuity of z 7→ Tz at z0. �

The following proposition is an immediate consequence of Prop. 3.29.

Proposition 3.30. Let λ ∈ C and consider a function

z 7→ Tz ∈ C(H). (3.19)

Suppose there exists an open Θ0 such that z0 ∈ Θ0 ⊂ Θ, and λ ∈ rs(Tz), z ∈ Θ0.
Then (3.19) is continuous at z0 iff

z 7→ (λ1l− Tz)−1 ∈ B(H)

is continuous at z0.

3.7. Holomorphic families of closed subspaces. Let Θ be an open subset of C
and suppose we are given a function

Θ 3 z 7→ Xz ∈ Grass(H). (3.20)

Definition 3.31. We will say that the family (3.20) is complex differentiable at z0

if there exists an open Θ0 with z0 ∈ Θ0 ⊂ Θ and an injective resolution

Θ0 3 z 7→ Tz ∈ Blinv(K,H) (3.21)

of (3.20) complex differentiable at z0. If (3.20) is complex differentiable on the
whole Θ, we say it is holomorphic.

Clearly, the complex differentiability implies the continuity.

Proposition 3.32. Suppose that (3.20) is complex differentiable at z0 ∈ Θ. Let
Θ0 be open with z0 ∈ Θ0 ⊂ Θ, and let Y be a subspace complementary to Xz ,
z ∈ Θ0. Then the family Θ0 3 z 7→ PXz ,Y is complex differentiable at z0.

Proof. By making, if needed, Θ0 smaller, we can assume that we have an injective
resolution Θ0 3 z 7→ Tz complex differentiable at z0. For such z, by Prop. 3.6,
P̃Xz0 ,YTz is invertible. Therefore, by Prop. 2.8,

PXz ,Y = Tz(P̃Xz0 ,YTz)
−1P̃Xz0 ,Y . (3.22)

(3.22) is clearly complex differentiable at z0. �

Proposition 3.33. Let z0 ∈ Θ. Suppose that Xz0 ∈ Grasscom(H). The following
are equivalent:

(1) (3.20) is complex differentiable at z0.
(2) There exists an open Θ0 with z0 ∈ Θ0 ⊂ Θ and a closed subspace Y

complementary to Xz , z ∈ Θ0, such that the family Θ0 3 z 7→ PXz ,Y is
complex differentiable at z0.
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Proof. (1)⇒(2): Consider the injective resolution (3.21). Let Y be a subspace
complementary to Xz0 = RanTz0 . We know that Θ 3 z 7→ Xz is continuous by
Prop. 3.22. Hence, by taking Θ0 smaller, we can assume that Y is complementary
to Xz , z ∈ Θ0. By Prop. 3.32, PXz ,Y is complex differentiable at z0.

(2)⇒(1):
Θ0 3 z 7→ PXz ,YJXz0

∈ Blinv(Xz0 ,H)

is an injective resolution of (3.20) complex differentiable at z0. �

Proposition 3.34 (Uniqueness of analytic continuation for subspaces). Let Θ ⊂ C
be connected and open. Let

Θ 3 z 7→ Xz,Yz ∈ Grasscom(H)

be holomorphic. Consider a sequence {z1, z2, . . . } ⊂ Θ converging to a point
z0 ∈ Θ s.t. zn 6= z0 for each n. Suppose Xzn = Yzn , n = 1, 2, . . . . Then Xz = Yz
for all z ∈ Θ.

Proof. For holomorphic functions with values in bounded operators the unique
continuation property is straightforward. Therefore, it suffices to apply Prop. 3.33.

�

Proposition 3.35. Let (3.20) and Θ 3 z 7→ Tz ∈ B(H,H1) be holomorphic.
Suppose that for all z ∈ Θ, Tz is injective on Xz and TzXz is closed. Then

Θ 3 z 7→ TzXz ∈ Grass(H1) (3.23)

is holomorphic.

Proof. Let Θ0 3 z 7→ Sz ∈ Blinv(K,H) be a holomorphic injective resolution of
(3.20). Then Θ0 3 z 7→ TzSz ∈ Blinv(K,H1) is a holomorphic injective resolution
of (3.23). �

3.8. Holomorphic families of closed operators. Consider a function

Θ 3 z 7→ Tz ∈ C(H1,H2). (3.24)

Definition 3.36. Let z0 ∈ Θ. We say that (3.24) is complex differentiable at z0 if

Θ 3 z 7→ Gr(Tz) ∈ Grass(H1 ⊕H2) (3.25)

is complex differentiable at z0.

The following proposition gives an equivalent condition, which in most of
the literature is adopted as the basic definition of the complex differentiablity of
functions with values in closed operators.

Proposition 3.37. (3.24) is complex differentiable at z0 ∈ Θ iff there exists an
open Θ0 such that z0 ∈ Θ0 ⊂ Θ, a Banach space K and a function

Θ0 3 z 7→Wz ∈ B(K,H1) (3.26)

s.t. Wz maps bijectively K onto Dom(Tz) for all z ∈ Θ0,

Θ0 3 z 7→ TzWz ∈ B(K,H2), (3.27)

and both (3.26) and (3.27) are are complex differentiable at z0.
15



Proof. We use the fact, noted in the proof of Prop. 3.28, that (3.17) is an injective
resolution of (3.18), and that every injective resolution is of this form. �

A function z 7→ Wz with the properties described in Prop. 3.37 will be called a
resolution of complex differentiability of z 7→ Tz at z0.

The following theorem follows immediately from Thm 3.34:

Theorem 3.38 (Uniqueness of analytic continuation for closed operators [3]). Let
Θ ⊂ C be connected and open. Let

Θ 3 z 7→ Tz, Sz ∈ Ccom(H1,H2)

be holomorphic. Consider a sequence {z1, z2, . . . } ⊂ Θ converging to a point
z0 ∈ Θ s.t. zn 6= z0 for each n. Suppose Tzn = Szn , n = 1, 2, . . . . Then Tz = Sz
for all z ∈ Θ.

We also have the holomorphic obvious analogs of Props 3.29 and 3.30, with the
word “continuous” replaced by “complex differentiable”.

3.9. Holomorphic families in the dual space.

Definition 3.39. LetH∗ denote the dual space ofH. We adopt the convention that
H∗ is the space of anti-linear continuous functionals, cf. [16]. (Sometimes H∗ is
then called the antidual space). IfX ∈ Grass(H), we denote byX⊥ ∈ Grass(H∗)
its annihilator. If T ∈ C(K,H) is densely defined, then T ∗ ∈ C(H∗,K∗) denotes
its adjoint.

Let X ,Y ∈ Grass(H) be two complementary subspaces. Then X⊥, Y⊥ are
also complementary and

P ∗X ,Y = PY⊥,X⊥ .

In the proof of the next theorem we will use the equivalence of various
definitions of the holomorphy of functions with values in bounded operators
mentioned at the beginning of the introduction [16].

Proposition 3.40 (Schwarz reflection principle for subspaces). A function

z 7→ Xz ∈ Grasscom(H)

is complex differentiable at z0 iff

z 7→ X⊥z̄ ∈ Grasscom(H∗) (3.28)

is complex differentiable at z̄0.

Proof. Locally, we can choose Y ∈ Grass(H) complementary to Xz . If (3.40)
is holomorphic then z 7→ PXz ,Y is holomorphic by Prop. 3.32. But Y⊥ is
complementary to X⊥z and

PX⊥
z ,Y⊥ = 1l− P ∗Xz ,Y . (3.29)

So z 7→ PX⊥
z̄ ,Y⊥ is complex differentiable at z̄0. This means that (3.28) is complex

differentiable.
Conversely, if (3.28) is complex differentiable at z̄0 then z 7→ PX⊥

z̄ ,Y⊥ is
complex differentiable. By (3.29) this implies z 7→ P ∗Xz̄ ,Y is complex differentiable
at z̄0. Therefore, z 7→ 〈u|P ∗Xz̄ ,Yv〉 is complex differentiable for all u ∈ H∗∗, v ∈
H∗. In particular, by the embedding H ⊂ H∗∗, z 7→ 〈u|P ∗Xz̄ ,Yv〉 = 〈v|PXz̄ ,Yu〉 is
holomorphic for all u ∈ H, v ∈ H∗. This proves PXz ,Y is complex differentiable
at z0, thus (3.40) is complex differentiable as claimed. �
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Remark 3.41. A direct analogue of Prop. 3.40 holds for continuity, as can be easily
shown using the identity δ(X ,Y) = δ(Y⊥,X⊥) for closed subspaces X ,Y ⊂ H,
cf. [16].

We have an analogous property for functions with values in closed operators.

Theorem 3.42 (Schwarz reflection principle for closed operators). Let

z 7→ Tz ∈ Ccom(H1,H2) (3.30)

have values in densely defined operators. Then it is complex differentiable at z0 iff

z 7→ T ∗z̄ ∈ Ccom(H∗2,H∗1)

is complex differentiable at z̄0.

Proof. It is well known that Gr(Tz)
⊥ = UGr(T ∗z ), where U is the invertible

operator given by U(x, y) = (−y, x) for (x, y) ∈ H∗1⊕H∗2. Thus, the equivalence
of the holomorphy of z 7→ Gr(T ∗z̄ ) and z 7→ Gr(Tz) follows from Prop. 3.40 and
Prop. 3.35 applied to the constant bounded invertible operator U or U−1. �

We will make use of the following well-known result:

Theorem 3.43 ([16, Thm. 5.13]). Let T ∈ C(H1,H2) be densely defined. Then
RanT is closed iff RanT ∗ is closed inH∗1. In such case,

(RanT )⊥ = KerT ∗, (KerT )⊥ = RanT ∗. (3.31)

Proposition 3.44. Let Θ 3 z 7→ Sz ∈ Ccom(H1,H2) be holomorphic. Assume
that Dom(Sz) is dense and RanSz = H2. Then

Θ 3 z 7→ KerSz ∈ Grass(H1) (3.32)

is holomorphic.

Proof. Since z 7→ Sz is holomorphic, so is z 7→ S∗z̄ . Let z 7→ Wz be a resolution
of holomorphy of z 7→ S∗z̄ . By (3.31), KerS∗z̄ = (RanSz̄)

⊥ = {0}. It follows that
z 7→ S∗z̄Wz is a holomorphic injective resolution of

z 7→ RanS∗z̄ ∈ Grass(H∗1). (3.33)

Hence (3.33) is holomorphic. But (KerSz)
⊥ = RanS∗z̄ . Hence z 7→ KerSz is

holomorphic by the Schwarz reflection principle for subspaces (Prop. 3.40). �

4. HILBERT SPACE THEORY

Throughout this section H,H1,H2 are Hilbert spaces. Note that H∗ can be
identified with H itself, the annihilator can be identified with the orthogonal
complement and the adjoint with the Hermitian adjoint.

4.1. Projectors.

Definition 4.1. We will use the term projector as the synonym for orthogonal
projection. We will write PX for the projector onto X .

Thus, PX = PX ,X⊥ .
Let X ,Y be subspaces ofH. Then X ⊕Y⊥ = H is equivalent to X⊥⊕Y = H,

which is equivalent to ‖PX − PY‖ < 1.
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The gap topology on the Grassmannian of a Hilbert space simplifies consider-
ably. In particular, the gap function is a metric and has a convenient expression in
terms of the projectors:

δ̂(X1,X2) := ‖PX1 − PX2‖, X1,X2 ∈ Grass(H).

Thus a function
Θ 3 z 7→ Xz ∈ Grass(H) (4.1)

is continuous iff z 7→ PXz is continuous. Unfortunately, the analogous statement
is not true for the holomorphy, and we have to use the criteria discussed in the
section on Banach spaces. This is however simplified by the fact that in a Hilbert
space each closed subspace is complemented, so that Grass(H) = Grasscom(H)
and C(H1,H2) = Ccom(H1,H2).

4.2. Characteristic matrix.

Definition 4.2. The characteristic matrix of a closed operator T ∈ C(H1,H2) is
defined as the projector onto Gr(T ) and denoted MT .

Assume that T is densely defined. We set

〈T 〉 := (1l + T ∗T )
1
2 .

It is easy to see that

JT :=

[
〈T 〉−1

T 〈T 〉−1

]
: H1 → H1 ⊕H2

is a partial isometry onto Gr(T ). Therefore, by (2.1) MT = JTJ
∗
T . To obtain a

more explicit formula for the characteristic matrix, note the identities

T (1l + T ∗T )−1 =
(
(1l + TT ∗)−1T

)cl
,

TT ∗(1l + TT ∗)−1 =
(
T (1l + T ∗T )−1T ∗

)cl
=

(
(1l + TT ∗)−1TT ∗

)cl
.

Note that the above formulas involve products of unbounded operators. We use the
standard definition of the product of unbounded operators recalled in Def. 2.5.

In the following formula for the characteristic matrix we are less pedantic and
we omit the superscript denoting the closure:

MT :=

[
〈T 〉−2 〈T 〉−2T ∗

T 〈T 〉−2 T 〈T 〉−2T ∗

]
, (4.2)

Consider a function

Θ 3 z 7→ Tz ∈ C(H1,H1). (4.3)

Proposition 4.3. Let z0 ∈ Θ. The function (4.3) is continuous in the gap topology
at z0 iff the functions

Θ 3 z 7→ 〈Tz〉−2 ∈ B(H1,H1), (4.4)

Θ 3 z 7→ Tz〈Tz〉−2 ∈ B(H1,H2), (4.5)

Θ 3 z 7→ 〈T ∗z 〉−2 ∈ B(H2,H2) (4.6)

are continuous at z0.
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Proof. Clearly, (3.14) is continuous in the gap topology iff Θ 3 z 7→MTz is. Now
(4.4), (4.5) resp. (4.6) are

(
MTz

)
11

,
(
MTz

)
12

=
(
MTz

)∗
21

, resp. 1l−
(
MTz

)
22

. �

The gap topology is not the only topology on C(H1,H2) that on B(H1,H2)
coincides with the usual norm topology. Here is one of the examples considered in
the literature:

Definition 4.4. We say that (3.14) is continuous at z0 in the Riesz topology 1 if

Θ 3 z 7→ Tz〈Tz〉−1 ∈ B(H1,H2)

is continuous at z0.

It is easy to see that the Riesz topology is strictly stronger than the gap topology
[17]. Indeed, the fact that it is stronger is obvious. Its non-equivalence with the
gap topology on self-adjoint operators follows from the following easy fact [20]:

Theorem 4.5. Suppose that the values of (3.14) are self-adjoint.
(1) The following are equivalent:

(i) lim
z→z0

Tz = Tz0 in the gap topology;

(ii) lim
z→z0

f(Tz) = f(Tz0) for all bounded continuous f : R → C such

that lim
t→−∞

f(t) and lim
t→+∞

f(t) exist and are equal.

(2) The following are equivalent:
(i) lim

z→z0

Tz = Tz0 in the Riesz topology;

(ii) lim
z→z0

f(Tz) = f(Tz0) for all bounded continuous f : R → C such

that lim
t→−∞

f(t) and lim
t→+∞

f(t) exist.

4.3. Relative characteristic matrix. Let T and S be densely defined closed
operators.

Theorem 4.6. We have

Gr(T )⊕Gr(S)⊥ = H1 ⊕H2

iff J∗SJT is invertible. Then the projection onto Gr(T ) along Gr(S)⊥ is given by

JT (J∗SJT )−1J∗S (4.7)

Proof. We have JT ∈ Binv(H1,H1 ⊕ H2). J∗S ∈ B(H1 ⊕ H2,H1) is surjective.
Besides, Ran JT = Gr(T ) and KerJ∗S = Gr(S)⊥. Therefore, it suffices to apply
first Prop. 3.6, and then Prop. 2.8. �

Definition 4.7. (4.7) will be called the relative characteristic matrix of T, S and
will be denoted MT,S .

Clearly, MT = MT,T .
We can formally write

J∗SJT = 〈S〉−1(1l + S∗T )〈T 〉−1. (4.8)

To make (4.8) rigorous we interpret (1l + S∗T ) as a bounded operator from
〈T 〉−1H1 to 〈S〉H1. Now the inverse of (4.8) is a bounded operator, which can
be formally written as

(J∗SJT )−1 = 〈T 〉(1l + S∗T )−1〈S〉.
1Note that this name is not used in older references.
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Thus we can write

MT,S =

[
〈T 〉−1

T 〈T 〉−1

]
〈T 〉(1l + S∗T )−1〈S〉

[
〈S〉−1 〈S〉−1S∗

]

=

[
(1l + S∗T )−1 (1l + S∗T )−1S∗

T (1l + S∗T )−1 T (1l + S∗T )−1S∗

]
(4.9)

=

[
(1l + S∗T )−1 S∗(1l + TS∗)−1

T (1l + S∗T )−1 TS∗(1l + TS∗)−1

]
. (4.10)

Note that even though the entries of (4.9) and (4.10) are expressed in terms of
unbounded operators, all of them can be interpreted as bounded everywhere defined
operators (eg. by taking the closure of the corresponding expression).

4.4. Holomorphic families of closed operators. In order to check the holomor-
phy of a function

Θ 3 z 7→ Tz ∈ C(H1,H2) (4.11)

using the criterion given in Prop. 3.37 one needs to find a relatively arbitrary
function z 7→ Wz . In the case of a Hilbert space we have a criterion for the
complex differentiability involving relative characteristic matrices. We believe that
this criterion should be often more convenient, since it involves a function with
values in bounded operators uniquely defined for any z0 ∈ Θ.

Proposition 4.8. Let z0 ∈ Θ and assume (4.11) has values in densely defined
operators. Then (4.11) is complex differentiable at z0 if there exists an open Θ0

such that z0 ∈ Θ0 ⊂ Θ, and for z ∈ Θ0,

〈Tz0〉−1(1l + T ∗z0
Tz)〈Tz〉−1

is invertible, so that we can define[
(1l + T ∗z0

Tz)
−1 T ∗z0

(1l + TzT
∗
z0

)−1

Tz(1l + T ∗z0
Tz)
−1 TzT

∗
z0

(1l + TzT
∗
z0

)−1

]
∈ B(H1 ⊕H2), (4.12)

and (4.12) is complex differentiable at z0.

5. PRODUCTS AND SUMS OF OPERATOR–VALUED HOLOMORPHIC FUNCTIONS

In this section we focus on the question what conditions ensure that the product
and the sum of two holomorphic families of closed operators is holomorphic. Note
that analogous statements hold for families continuous in the gap topology.

Throughout the sectionH1,H2,H are Banach spaces.

5.1. Products of closed operators I. If both A,B are closed operators, then the
product AB (see Def. 2.5) does not need to be closed. We recall below standard
criteria for this to be true. For a more detailed discussion and other sufficient
conditions we refer the reader to [1] and references therein.

Proposition 5.1. Let
(1) A ∈ C(H,H2) and B ∈ B(H1,H), or
(2) A ∈ Cinv(H,H2) and B ∈ C(H1,H).

Then AB is closed.
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The simpliest conditions which imply holomorphy of the product are listed in
the proposition below. Unconveniently, they are not quite compatible with the
sufficient conditions for the closedness of the product, which has to be assumed
separately.

Proposition 5.2. Let

(1) Θ 3 z 7→ Az ∈ B(H,H2), Bz ∈ C(H1,H) be holomorphic, or
(2) Θ 3 z 7→ Az ∈ C(H,H2), Bz ∈ Cinv(H1,H) be holomorphic.

If in addition AzBz ∈ C(H1,H2) for all z ∈ Θ then Θ 3 z 7→ AzBz is
holomorphic.

Proof. (1) Let z 7→ Vz be a resolution of holomorphy of z 7→ Bz . Then it is also a
resolution of holomorphy of z 7→ AzBz .

(2) Let z 7→ Uz be a resolution of holomorphy of z 7→ Az . By the holomorphic
version of Prop. 3.29, z 7→ B−1

z ∈ B(H,H1) is holomorphic. It is obviously
injective. Hence B−1

z Uz is a resolution of holomorphy of z 7→ AzBz . �

5.2. Examples and counterexamples.

Definition 5.3. The point spectrum of T is defined as

spp(T ) := {z ∈ C : Ker(A− z1l) 6= {0}}.

Example 5.4. Let T ∈ B(H). Then z 7→ (z1l−T )−1 is holomorphic on C\spp(T ).
Indeed, z 7→Wz := z1l−T is injective, holomorphic, RanWz = Dom(z1l−T )−1

and (z1l− T )−1Wz = 1l.

Example 5.5. The above example can be generalized. Let T ∈ C(H) have a
nonempty resolvent set. Then z 7→ (z1l − T )−1 is holomorphic on C\spp(T ).
Indeed, let z0 ∈ rs(T ). Then z 7→ Wz := (z1l − T )(z01l − T )−1 is injective,
holomorphic, RanWz = Dom(z1l− T )−1 and (z1l− T )−1Wz = (z01l− T )−1.

Example 5.6. Consider Az := T with T ∈ C(H) unbounded and Bz := z1l ∈
B(H). Then the product AzBz is closed for all z ∈ C, but the function z 7→ AzBz

is not complex differentiable at z = 0 due to the fact that that it yields a bounded
operator at z = 0, but fails to do so in any small neighbourhood (cf. Example 2.1
in [16, Ch. VII.2]).

Therefore, it is not true that if Az and Bz are holomorphic and AzBz is closed
for all z, then z 7→ AzBz is holomorphic.

The more surprising fact is that even the additional requirement that AzBz is
bounded does not guarantee the holomorphy, as shows the example below.

Example 5.7. Assume that T ∈ C(H) has empty spectrum. Note that this implies
that sp(T−1) = {0} and spp(T−1) = ∅. By Example 5.4, Az := T (Tz − 1l)−1 =

(z1l−T−1)−1 is holomorphic. Obviously, so isBz := z1l. Moreover, z 7→ AzBz =
1l + (Tz − 1l)−1 has values in bounded operators. However, it is not differentiable
at zero, because

∂zAzBzv
∣∣∣
z=0

= Tv, v ∈ DomT,

and T is unbounded.
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5.3. Products of closed operators II. In this subsection, exceptionally,H1,H2,H
are Hilbert spaces.

We quote below a useful criterion specific to that case. The proof is not difficult
and can be found for instance in [6, Prop 2.35].

Proposition 5.8. Let A ∈ B(H,H2), B ∈ C(H1,H). If Dom(B∗A∗) is dense,
then AB is closable, B∗A∗ is closed and (AB)∗ = B∗A∗.

Together with Prop. 5.2, this yields the following result.

Proposition 5.9. Let Θ 3 z 7→ Az ∈ C(H,H2), Θ 3 z 7→ Bz ∈ B(H1,H) be
holomorphic. If Az , AzBz are densely defined and B∗zA

∗
z is closed for all z ∈ Θ,

then Θ 3 z 7→ AzBz ∈ C(H1,H2) is holomorphic.

Proof. Since Az is closed and densely defined, A∗∗z = Az . By Prop. 5.1, AzBz is
closed. Thus, we can apply Prop. 5.8 to A := B∗z and B := A∗z for all z ∈ Θ and
conclude

AzBz = A∗∗z B
∗∗
z = (B∗zA

∗
z)
∗ (5.1)

By the Schwarz reflection principle and Prop. 5.2, z 7→ B∗z̄A
∗
z̄ is holomorphic.

Therefore, z 7→ AzBz is holomorphic by (5.1) and the Schwarz reflection
principle. �

5.4. Non-empty resolvent set case. Here is another sufficient condition for the
holomorphy of the product of operator–valued holomorphic functions, based on a
different strategy.

In the statement of our theorem below, the closedness of the products AzBz and
BzAz is implicitly assumed in the non-empty resolvent set condition.

Theorem 5.10. Let Θ 3 z 7→ Az ∈ C(H2,H1) and Θ 3 z 7→ Bz ∈ C(H1,H2) be
holomorphic. Assume that there exists λ ∈ C s.t. λ2 ∈ rs(AzBz) ∩ rs(BzAz) for
all z ∈ Θ. Then both Θ 3 z 7→ AzBz, BzAz are holomorphic.

The proof is based on the helpful trick of replacing the study of the product
AzBz by the investigation of the operator Tz onH1 ⊕H2 defined by

Tz :=

[
0 Az

Bz 0

]
, Dom(Tz) := Dom(Bz)⊕Dom(Az). (5.2)

Its square is directly related to AzBz , namely

T 2
z =

[
AzBz 0

0 BzAz

]
, Dom(T 2

z ) = Dom(AzBz)⊕Dom(BzAz). (5.3)

A similar idea is used in [12], where results on the relation between sp(AB) and
sp(BA) are derived. The following lemma will be of use for us.

Lemma 5.11 ([12], Lem 2.1). Let A ∈ C(H2,H1), B ∈ C(H1,H2) and let T ∈
C(H1,H2) be defined as in (5.2) (with the subscript denoting dependence on z
ommited). Then

rsT = {λ ∈ C : λ2 ∈ rs(AB) ∩ rs(BA)}.

Proof. ‘⊂’: Suppose λ ∈ rsT \{0}. Then one can check that the algebraic inverse
of BA− λ21l equals

λ−1PH2,H1(T − λ1l)−1JH2 ,

hence BA− λ21l ∈ Cinv(H2). Analogously we obtain AB − λ21l ∈ Cinv(H1).
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Suppose now 0 ∈ rsT . This implies that A, B are invertible and consequently
AB, BA are invertible.

‘⊃’: Suppose λ2 ∈ rs(AB) ∩ rs(BA). Obviously, λ2 ∈ rs(T 2).
Suppose that v ∈ Ker(T + λ1l). Then Tv = −λv ∈ DomT . Hence v ∈

Dom(T 2) and
(T 2 − λ21l)v = (T − λ1l)(T + λ1l)v = 0,

which implies v = 0. Hence T + λ1l is injective.
Suppose that w ∈ H1 ⊕ H2. Then there exists v ∈ DomT 2 such that (T 2 −

λ2)v = w. But
w = (T + λ1l)(T − λ1l)v.

Hence w ∈ Ran (T + λ1l).
Thus we have shown that T+λ1l is invertible, or−λ ∈ rsT . The same argument

shows λ ∈ rsT . �

Proof of Thm. 5.10. Let z 7→ Pz , resp. z 7→ Qz be resolutions of holomorphy of
z 7→ Az , resp. z 7→ Bz . Then

z 7→Wz :=

[
0 Qz

Pz 0

]
is a resolution of holomorphy of z 7→ Tz defined as in (5.2). By Lemma 5.11,
λ,−λ ∈ rsTz . Define Vz := (Tz − λ1l)−1Wz . Clearly, Vz is holomorphic and has
values in bounded operators, and so does

T 2
z Vz = (1l + λ(Tz − λ1l)−1)TzWz.

Moreover, Vz is injective for all z ∈ Θ0 and

RanVz = (Tz − λ1l)−1RanWz = (Tz − λ1l)−1Dom(Tz)

= (Tz − λ1l)−1(Tz + λ1l)−1(H1 ⊕H2) = Dom(T 2
z ).

Hence z 7→ T 2
z is holomorphic. Therefore, z 7→ (λ21l − T 2

z )−1 is holomorphic.
This implies the holomorphy of z 7→ (λ21l−AzBz)

−1, z 7→ (λ21l−BzAz)
−1. �

5.5. Case Dom(Az) + RanBz = H. In this section we use a different strategy.
The idea is to represent a subspace closely related to Gr(AzBz) as the kernel of
a bounded operator which depends in a holomorphic way on z. This allows us to
treat the holomorphy of the product AzBz under the assumption that Dom(Az) +
RanBz = H.

Theorem 5.12. Let Θ 3 z 7→ Az ∈ C(H,H2) and Θ 3 z 7→ Bz ∈ C(H1,H) be
holomorphic. Suppose that AzBz is closed and

Dom(Az) + RanBz = H (5.4)

for all z ∈ Θ. Then Θ 3 z 7→ AzBz is holomorphic.

Proof. Let Uz , Vz be resolutions of holomorphy of respectively Az , Bz , so in
particular RanUz = Dom(Az), RanBzVz = RanBz . Let Sz be defined by

Sz

[
x
y

]
= BzVzx− Uzy.

Clearly, Sz is bounded-holomorphic and RanSz = Dom(Az) + RanBz = H by
assumption. Therefore, z 7→ KerSz is holomorphic by Prop. 3.44.

23



A straightforward computation shows that

Gr(AzBz) =

{[
Vzx
AzUzy

]
: BzVzx = Uzy

}
=

[
Vz 0
0 AzUz

]
KerSz

=: Tz KerSz.

The function z 7→ Tz has values in injective bounded operators and is holomorphic,
therefore z 7→ TzKerSz is holomorphic by Prop. 3.35. �

An analogous theorem for continuity is proved in [19, Thm. 2.3], using however
methods which do not apply to the holomorphic case.

Remark 5.13. An example when the assumptions of Thm. 5.12 are satisfied is
provided by the case when Az and Bz are densely defined Fredholm operators. It
is well-known that the product is then closed (it is in fact a Fredholm operator),
whereas the propriety Dom(Az) + RanBz = H follows from codim(RanBz) <
∞ and the density of Dom(Az).

5.6. Sums of closed operators. Using, for instance, the arguments from Prop.
3.26), it is easy to show

Proposition 5.14. If z 7→ Tz ∈ C(H1,H2) and z 7→ Sz ∈ B(H1,H2) are
holomorphic then z 7→ Tz + Sz ∈ C(H1,H2) is holomorphic.

To prove a more general statement, we reduce the problem of the holomorphy
of the sum to the holomorphy of the product of suitably chosen closed operators.
To this end we will need the following easy lemma.

Lemma 5.15. A function z 7→ Tz ∈ C(H1,H2) is holomorphic iff the function

z 7→ Az :=

[
1l 0
Tz 1l

]
, Dom(Az) = Dom(Tz)⊕H1

is holomorphic. Moreover, RanAz = Dom(Tz)⊕H1.

Proof. The function z 7→ Az is holomorphic iff

z 7→ Az − 1l =

[
0 0
Tz 0

]
(5.5)

is holomorphic. The claim follows by remarking that the graph of (5.5) is equal to
the graph of Tz up to a part which is irrelevant for the holomorphy. �

Theorem 5.16. Let Θ 3 z 7→ Tz, Sz ∈ C(H1,H2) be holomorphic. Suppose that

Dom(Sz) + Dom(Tz) = H1. (5.6)

and Tz + Sz is closed for all z ∈ Θ. Then Θ 3 z 7→ Tz + Sz is holomorphic.

Proof. Let Az , Bz , resp. Cz be defined as in Lem. 5.15 from Tz , Sz , resp. Tz +
Sz . The holomorphy of Tz + Sz is equivalent to holomorphy of Cz . An easy
computation shows that Cz = AzBz . By (5.6) we have

Dom(Az) + RanBz = (Dom(Tz)⊕H1) + (Dom(Sz)⊕H1) = H1 ⊕H1.

Moreover, Az, Bz are holomorphic by Lem. 5.15, therefore AzBz is holomorphic
by Thm. 5.12. �
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Remark 5.17. If Tz is unbounded then the auxiliary operator Az introduced in
Lem. 5.15 satisfies sp(Az) = C (cf. [12, Ex. 2.7]). The proof of Thm. 5.16 is
an example of a situation where even if one is interested in the end in operators
with non-empty resolvent set, it is still useful to work with operators with empty
resolvent set.
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