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Abstract

The paper is devoted to a systematic and unified discussion of various
classes of hypergeometric type equations: the hypergeometric equation,
the confluent equation, the F1 equation (equivalent to the Bessel equa-
tion), the Gegenbauer equation and the Hermite equation. In particular,
recurrence relations of their solutions, their integral representations and
discrete symmetries are dicussed.
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1 Introduction

Following [NU], we adopt the following terminology. Equations of the
form (

σ(z)∂2
z + τ(z)∂z + η

)
f(z) = 0, (1.1)

where σ is a polynomial of degree ≤ 2,
τ is a polynomial of degree ≤ 1,
η is a number,

will be called hypergeometric type equations, and their solutions —hypergeometric
type functions. Differential operators of the form σ(z)∂2

z + τ(z)∂z + η will
be called hypergeometric type operators.

The theory of hypergeometric type functions is one of the oldest and
most useful chapters of mathematics. In usual presentations it appears
complicated and messy. The main purpose of this paper is an attempt to
present its basics in a way that shows clearly its internal structure and
beauty.

1.1 Classification

Let us start with a short review of basic classes of hypergeometric type
equations. We will always assume that σ(z) 6= 0. Every class, except for
(9), will be simplified by dividing by a constant and an affine change of
the complex variable z.

(1) The 2F1 or hypergeometric equation(
z(1− z)∂2

z + (c− (a+ b+ 1)z)∂z − ab
)
f(z) = 0.

(2) The 2F0 equation(
z2∂2

z + (−1 + (1 + a+ b)z)∂z + ab
)
f(z) = 0.
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(3) The 1F1 or confluent equation

(z∂2
z + (c− z)∂z − a)f(z) = 0.

(4) The 0F1 equation

(z∂2
z + c∂z − 1)f(z) = 0.

(5) The Gegenbauer equation(
(1− z2)∂2

z − (a+ b+ 1)z∂z − ab
)
f(z) = 0.

(6) The Hermite equation

(∂2
z − 2z∂z − 2a)f(z) = 0.

(7) 2nd order Euler equation(
z2∂2

z + bz∂z + a
)
f(z) = 0.

(8) 1st order Euler equation for the derivative

(z∂2
z + c∂z)f(z) = 0.

(9) 2nd order equation with constant coefficients

(∂2
z + c∂z + a)f(z) = 0.

One can divide these classes into 3 families:

1. (1), (2), (3), (4);

2. (5), (6);

3. (7), (8), (9).

Each equation in the first family has a solution equal to the hypergeo-
metric function pFq with appropriate p, q. This function gives a name to
the corresponding class of equations.

The second family consists of reflection invariant equations.
The third family consists of equations solvable in elementary functions.

Therefore, it will not be considered in what follows.
The 2F0 and 1F1 equation are equivalent by a simple substitution,

therefore they can be discussed together.
Up to an affine transformation, (5) is a subclass of (1). However, it

has additional properties, therefore it is useful to discuss it separately.
The main part of our paper consists of 5 sections corresponding to the

classes (1), (2)-(3), (4), (5) and (6). The discussion will be divided into
two levels:

1. Properties of the operator that defines the equation.

2. Properties of functions solving the equation.
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1.2 Properties of hypergeometric type operators

We will discuss the following types of properties of hypergeometric type
operators:

(i) equivalence between various classes,

(ii) integral representations of solutions,

(iii) discrete symmetries,

(iv) factorizations,

(v) commutation relations.

Let us give some examples of these properties. All these examples will
be related to the 1F1 equation.

We have

(−w)a+1 (w2∂2
w + (−1 + (1 + a+ b)w)∂w + ab

)
w−a (1.2)

= z∂2
z + (c− z)∂z − a, w = −z−1. (1.3)

Therefore the 1F1 operator, appearing in (1.3), is equivalent to the 2F0

operator, which is inside the brackets of (1.2). This is an example of (i).
As an example of (ii) we quote the following fact: The integral∫

γ

ta−cet(t− z)−adt (1.4)

is a solution of the 1F1 equation provided that the values of the fuction

t 7→ ta−c+1et(t− z)−a−1 (1.5)

at the endpoints of the curve γ are equal to one another.
Note that the integrand of (1.4) is an elementary function. The con-

dition on the curve γ can often be satisfied in a number of non-equivalent
ways, giving rise to distinct natural solutions.

An example of (iii) is the following identity:

w∂2
w + (c− w)∂w − a

= −e−z
(
z∂2
z + (c− z)∂z − c+ a

)
ez, w = −z. (1.6)

Thus the 1F1 operator is transformed into a 1F1 operator with different
parameters.

Here is a pair of examples of (iv):

z(z∂2
z + (c− z)∂z − a)

=
(
z∂z + a− 1

)(
z∂z + c− a− z

)
+ (a− 1)(a− c) (1.7)

=
(
z∂z + c− a− 1− z

)(
z∂z + a

)
+ a(a+ 1− c). (1.8)

An example of (v) is

(z∂z + a) z
(
z∂2
z + (c− z)∂z − a

)
= z

(
z∂2
z + (c− z)∂z − a− 1

)
(z∂z + a) . (1.9)

On both sides of the identity we see the 1F1 operators whose parameters
are contiguous.
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The commutation properties can be derived from the factorizations.
Let us show, for example, how (1.7) and (1.8) imply (1.9). First we rewrite
(1.7) as

z(z∂2
z + (c− z)∂z − a− 1)

=
(
z∂z + a

)(
z∂z + c− a− 1− z

)
+ a(a+ 1− c). (1.10)

Then we multiply (1.8) from the left and (1.10) from the right by (z∂z + a),
obtaining identical right hand sides. This yields (1.9).

1.3 Hypergeometric type functions

After the analysis of hypergeometric type operators, we discuss hyperge-
ometric type functions, that is, functions annihilated by hypergeometric
type operators. In particular, we will distinguish the so-called standard
solutions which have a simple behavior around a singular point of the
equation. In particular, if z0 is a regular singular point, the Frobenius
method gives us two solutions behaving as (z − z0)λi , where λ1, λ2 are
the indices of z0. One can often find solutions with a simple behavior also
around irregular singular points.

For reflection invariant classes (5) and (6) one can also define another
pair of natural solutions: the even solution S+, which we normalize by
S+(0) = 1, and the odd solution S−, which we normalize by (S−)′(0) = 2.

Discrete symmetries can be used to derive properties of hypergeometric
type functions. For instance, (1.6) implies that if f(z) solves the confluent
equation for parameters c− a, c, then so does ezf(−z) for the parameters
a, c. In particular, both functions F (a; c; z) and ezF (c − a; c;−z) solve
the confluent equation for the parameters a, c. Both are analytic around
z = 0 and equal 1 at z = 0. By the uniqueness of the solution to the
Frobenius method they should coincide. Hence we obtain the identity

F (a; c; z) = ezF (c− a; c;−z). (1.11)

Commutation relations are also useful. For example, it follows imme-
diately from (1.9) that (z∂z + a)F (a; c; z) is a solution of the confluent
equation for the parameters a+ 1, c. At zero it is analytic and its value is
a. Hence we obtain the recurrence relation

(z∂z + a)F (a; c; z) = aF (a+ 1; c; z). (1.12)

For each class of equations we describe a whole family of recurrence
relations. Every such a recurrence relation involves an operator of the
following form: a 1st order differential operator with no dependence on
the parameters + a multiplication operator depending linearly on the
parameters. We will call them basic recurrence relations.

Sometimes there also exist more complicated recurrence relations. We
do not give their complete list, we only mention some of their examples.
We call them additional recurrence relations.

Each of the standard solutions has simple integral representations of
the form analogous to (1.4). Each of these integral representations are
associated to a pair of (possibly infinite and possibly coinciding) points
where the integrand has a singularity. We will use two basic kinds of
contours for standard solutions:
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(a) The contour starts at one singularity and ends at the other singular-
ity; we assume that at both singularities the analog of (1.5) is zero
(hence, trivially, has equal values).

(b) The contour starts at the first singularity, goes around the second
singularity and returns to the first singularity; we assume that the
analog of (1.5) is zero at the first singularity.

If available, we will always treat the type (a) contour as the basic one.
For instance, under appropriate conditions on the parameters, the 1F1

function has the following two integral representations:

type (a):

∫
[1,+∞[

e
z
t t−c(t− 1)c−a−1dt =

Γ(a)Γ(c− a)

Γ(c)
F (a; c; z),

type (b):
1

2πi

∫
[1,0+,1]

e
z
t (−t)−c(−t+ 1)c−a−1dt =

Γ(c− a)

Γ(1− a)Γ(c)
F (a; c; z).

(0+ means that we bypass 0 in the counterclockwise direction; in this case
it is equivalent to bypassing ∞ in the clockwise direction).

There are various natural ways to normalize hypergeometric type func-
tions. The most obvious normalization for a solution analytic at a given
regular singular point is to demand that its value there is 1. (For the

2F0 equation, the point 0 is not regular singular, however there is a natu-
ral generalization of this normalization condition). For equations (1)–(4),
this function will be denoted by the letter F , consistently with the con-
ventional usage. (Note the use of the italic font). In the case of reflection
symmetric equations (5) and (6), we will use the letter S.

However, it is often preferable to use different normalizations, which
involve appropriate values of the Gamma funtion or its products. Such
normalizations arise naturally when we consider integral representations.
They will be denoted by F for equations (1) – (4) (a similar notation
can be found in [NIST]), and S for (5) and (6). (Note the use of the
boldface roman font). Sometimes there will be several varieties of these
normalizations denoted by an appropriate superscript, related to various
integral representations. The functions with these normalizations have
often better properties than the F and S functions. This is especially
visible in recurrence relations, where the coefficient on the right (such as
a in (1.12)) depends on the normalization.

For example, for the 1F1 function we introduce the following normal-
izations:

F(a; c; z) :=
1

Γ(c)
F (a; c; z),

FI(a; c; z) :=
Γ(a)Γ(c− a)

Γ(c)
F (a; c; z),

the latter suggested by the type (a) integral representation given above.

1.4 Degenerate case

For some values of parameters hypergeometric type functions have special
properties. This happens in particular when the difference of the indices

8



at a given regular singular point is an integer. Then the two standard
solutions related to this point are proportional to one another. We call
them degenerate solutions. (The best known example of such a situation
are the Bessel functions of integer parameters). In this case we have
a simple generating function and an additional integral representation,
which involves integrating over a closed loop.

1.5 Canonical forms

Obviously, hypergeometric type operators coincide with differential oper-
ators of the form

σ(z)∂2
z + (σ′(z) + κ(z))∂z +

1

2
κ′ + λ (1.13)

= ∂zσ(z)∂z +
1

2
(∂zκ(z) + κ(z)∂z) + λ, where

σ is a polynomial of degree ≤ 2,
κ is a polynomial of degree ≤ 1,
λ is a number.

One can argue that it is natural to use σ, κ, λ to parametrize the hy-
pergeometric type operators (more natural than σ, τ, η). (1.13) will be
denoted C(σ, κ, λ; z, ∂z), or, for brevity, C(σ, κ, λ). Let ρ(z) be a solution
of the equation

(σ(z)∂z − κ(z))ρ(z) = 0. (1.14)

(Note that equation (1.14) is solvable in elementary functions). We have
the identity

C(σ, κ, λ) = ρ−1(z)∂zσ(z)ρ(z)∂z +
1

2
κ′ + λ, (1.15)

We will call ρ the natural weight. To justify this name note that if λ is real,
σ, κ are real and ρ is positive and nonsingular on ]a, b[⊂ R, then C(σ, κ, λ)
is Hermitian on the weighted space L2(]a, b[, ρ), when as the domain we
take C∞c (]a, b[).

It is sometimes useful to replace the operator C(σ, κ, λ) with

ρ(z)
1
2 C(σ, κ, λ)ρ(z)−

1
2 = ∂zσ(z)∂z −

κ(z)2

4σ(z)
+ λ. (1.16)

We will call (1.16) the balanced form of C(σ, κ, λ).
Sometimes one replaces (1.1) by the 1-dimensional Schrödinger equa-

tion (
∂2
z − V (z)

)
f = 0, (1.17)

where

V (z) : =
1

2

(
σ(z)−1σ′(z)

)′
+

1

4

(
σ(z)−1σ′(z)

)2
+

κ(z)2

4σ(z)2
− λ

σ(z)
.

(1.17) is equivalent to (1.1), because

σ(z)−
1
2 ρ(z)

1
2 C(σ, κ, λ)ρ(z)−

1
2 σ(z)−

1
2 = ∂2

z − V (z), (1.18)
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It will be called the Schrödinger-type form of the equation C(σ, κ, λ)f = 0.
Some of the symmetries of hypergeometric type equations are obvious

in the balanced and Schrödinger-type forms. This is partly due to the fact
that they do not change when we switch the sign in front of κ. This is a
serious advantage of these forms.

In the literature various forms of hypergeometric type equations are
used. Instead of the Gegenbauer equation one usually finds its balanced
form, called the associated Legendre equation. The modified Bessel equa-
tion and the Bessel equation, equivalent to the rarely used 0F1 equation, is
the balanced form of a special case of the 1F1 equation. Instead of the 1F1

equation one often finds its Schrödinger-type form, the Whittaker equa-
tion. This usage, due mostly to historical traditions, makes the subject
more complicated than necessary.

We will always use (1.1) as the basic form. Its main advantage is that
in almost all cases the equation in the form (1.1) has at least one solution
analytic around a given finite singular point. Even in the case of the

2F0 equation, whose all solutions have a branch point at 0, there exists a
distinguished solution particularly well behaved at zero.

1.6 Hypergeometric type polynomials

Hypergeometric type polynomials, that is, polynomial solutions of hyperge-
ometric type equations deserve a separate analysis. They have traditional
names involving various 19th century mathematicians. Note in particu-
lar that the (rarely used) polynomial cases of the 2F0 function are called
Bessel polynomials, however they do not have a direct relation to the
better-known Bessel functions.

There exists a well-known elegant approach to their theory that allows
us to derive most of their basic properties in a unified way, see e.g. [NU, R].
Let us sketch this approach.

Fix σ, κ, ρ, as in Subsect. 1.5. For any n = 0, 1, 2, . . . we define

Pn(σ, ρ; z) :=
1

n!
ρ−1(z)∂nz ρ(z)σn(z). (1.19)

We will call (1.19) a Rodriguez-type formula, since it is a generalization of
the Rodriguez formula for Legendre polynomials.

One can show that Pn solves the equation(
σ(z)∂2

z + (σ′(z) + κ(z))∂z − n(n+ 1)
σ′′

2
− nκ′

)
Pn(σ, ρ; z) = 0. (1.20)

Pn is a polynomial, typically of degree n, more precisely its degree is given
as follows:

1. If σ′′ = κ′ = 0, then degPn = 0.

2. If σ′′ 6= 0 and − 2κ′

σ′′ − 1 = m is a positive integer, then

degPn =

{
n, n = 0, 1, . . . ,m;
n−m− 1, n = m+ 1,m+ 2, . . . .

3. Otherwise, degPn = n.

10



We have a generating function

ρ(z + tσ(z))

ρ(z)
=

∞∑
n=0

tnPn(σ, ρσ−n; z),

an integral representation

Pn(σ, ρ; z) =
1

2πi
ρ−1(z)

∫
[z+]

σn(z + t)ρ(z + t)t−n−1dt (1.21)

and recurrence relations(
σ(z)∂z + (κ(z)− nσ′(z)

)
Pn(σ, ρσ−n; z) = Pn+1(σ, ρσ−n−1; z),

∂zPn+1(σ, ρσ−n−1; z) =
(
− nσ

′′

2
+ κ′

)
Pn(σ, ρσ−n; z).

In almost all sections we devote a separate subsection to the corre-
sponding class of polynomials. Beside the properties that follow imme-
diately from the unified theory presented above we describe additional
properties valid in a given class.

The 0F1 equation does not have polynomial solutions, hence the corre-
sponding section is the only one without a subsection about polynomials.

Another special situation arises in the case of the Gegenbauer equation.
The standard Gegenbauer polynomials found in the literature do not have
the normalization given by the Rodriguez-type formula. The Rodriguez-
type formula yields the Jacobi polynomials, which for α = β coincide with
the Gegenbaquer polynomials up to a nontrivial coefficient. Thus for the
Gegenbauer equation it is natural to consider two classes of polynomials
differing by normalization. This is related to an interesting symmetry
called the Whipple transformation, which is responsible for two kinds of
integral representations.

1.7 Parametrization

Each class (1)–(6) depends on a number of complex parameters, denoted
by Latin letters belonging to the set {a, b, c}. They will be called the
classical parameters. They are convenient when we discuss power series
expansions of standard solutions.

Unfortunately, the classical parameters are not convenient to describe
discrete symmetries. Therefore, for each class (1)–(6) we introduce an
alternative set of parameters, which we will call the Lie-algebraic param-
eters. They will be denoted by Greek letters such as α, β, µ, θ, λ, and
will be given by certain linear (possibly, inhomogeneous) combinations
of the classical parameters. Discrete symmetries of hypergeometric type
equations will simply involve signed permutations of the Lie algebraic pa-
rameters – in the classical parameters they look much more complicated.
Recurrence relations also become simpler in the Lie-algebraic parameters.

For polynomials of hypergeometric type a third kind of parametriza-
tion is traditionally used. They are characterized by their degree n, which

11



coincides with −a, where a is one of the classical parameters. The Lie-
algebraic parameters appearing inside the 1st order part of the equation
are used as the remaining parameters.

Let us stress that all these parametrizations are natural and useful.
Therefore, we sometimes face the dilemma which parametrization to use
for a given set of identities. We usually try to choose the one that gives
the simplest formulas.

We sum up the information about various parametrizations in the
following table:

Equation
classical

parameters
Lie-algebraic
parameters

Polynomial
parameters

for polynomials

2F1 a, b, c
α = c− 1

β = a+ b− c
γ = b− a

Jacobi
α = c− 1

β = a+ b− c
n = −a

2F0 a, b
θ = −1 + a+ b
α = a− b Bessel

θ = −1 + a+ b
n = −a

1F1 a, c
θ = −c+ 2a
α = c− 1

Laguerre
α = c− 1
n = −a

0F1 c α = c− 1 −−−−− −−−−−

Gegenbauer a, b
α = a+b−1

2

λ = b−a
2

α = β Jacobi
or Gegenbauer

α = a+b−1
2

n = −a

Hermite a λ = a− 1
2

Hermite n = −a

1.8 Group-theoretical background

Identities for hypergeometric type operators and functions have a high
degree of symmetry. Therefore, it is natural to expect that a certain
group-theoretical structure is responsible for these identities.

There exists a large literature about the relations between special func-
tions and the group theory [V, Wa, M1, VK]. Nevertheless, as far as we
know, the arguments found in the literature give a rather incomplete ex-
planation of the properties that we describe. In a seperate publication
[DM] we would like to present a group-theoretical approach to hyperge-
ometric type functions with, we believe, a more satisfactory justification
of their high symmetry. Below we would like to briefly sketch the main
ideas of [DM].

Each hypergeometric type equation can be obtained by separating the
variables of a certain 2nd order PDE of the complex variable with constant
coefficients. One can introduce the Lie algebra of generalized symmetries
of this PDE. In this Lie algebra we fix a certain maximal commutative
algebra, which we will call the “Cartan algebra”. Operators whose adjoint
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action is diagonal in the “Cartan algebra” will be called “root operators”.
Automorphisms of the Lie algebra leaving invariant the “Cartan algebra”
will be called “Weyl symmetries”.

(Note that in some cases the Lie algebra of symmetries is simple, and
then the names Cartan algebra, root operators amd Weyl symmetries cor-
respond to the standard names. In other cases the Lie algebra is non-
semisimple, and then the names are less standard – this is the reason for
the quotation marks that we use).

Now the parameters of hypergeometric type equation can be inter-
preted as the eigenvalues of elements of the “Cartan algebra”. In partic-
ular, the Lie agebraic parameters correspond to a certain natural choice
of the “Cartan algebra”. Each recurrence relation is related to a “root
operator”. Finally, each symmetry of a hypergeometric type operator
corresponds to a Weyl symmetry of the Lie algebra.

We can distinguish 3 kinds of PDE’s with constant coefficients:

1. The Helmholtz equation on Cn given by ∆n + 1, whose Lie algebra
of symmetries is Cn o so(n,C);

2. The Laplace equation on Cn given by ∆n, whose Lie algebra of gen-
eralized symmetries is so(n+ 2,C)

3. The heat equation on Cn ⊕ C given by ∆n + ∂s, whose Lie alge-
bra of generalized symmetries is sch(n,C) (the so-called (complex)
Schrödinger Lie algebra.

Separating the variables in these equations usually leads to differential
equations with many variables. Only in a few cases it leads to ordinary
differential equations, which turn out to be of hypergeometric type. Here
is a table of these cases:

PDE
Lie

algebra
dimension of

Cartan algebra
discrete

symmetries
equation

∆2 + 1 C2 o so(2,C) 1 Z2 0F1;

∆4 so(6,C) 3 cube 2F1;

∆3 so(5,C) 2 square Gegenbauer;

∆2 + ∂s sch(2,C) 2 Z2 × Z2 1F1 or 2F0;

∆1 + ∂s sch(1,C) 1 Z4 Hermite.

1.9 Comparison with the literature

There exist many works that discuss hypergeometric type functions, e.g.
[NIST, Ho, MOS, AAR, R, WW, Ol, Tr]. Some of them are meant to
be encyclopedic collections of formulas, other try to show mathematical
structure that underlies their properties.

In our opinion, this work differs substantially from the existing litera-
ture. In our presentation we try to follow the intrinsic logic of the subject,
without too much regard for the traditions. If possible, we apply the same
pattern to each class of hypergeometric type equations. This sometimes
forces us to introduce unconventional notation.
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We believe that the intricacy of usual presentations of hypergeomet-
ric type functions can be partly explained by historical reasons. In the
literature various classes of these functions are often described with help
of different conventions. Sometimes we will give short remarks devoted
to the conventions found in the literature. These remarks will always be
clearly separated from the main text.

Of course, our presentation does not contain all useful identities and
properties of hypergeometric functions. Some of them are on purpose left
out, e.g. the so-called addition formulas. We restrict ourselves to what we
view as the most basic theory. On the other hand, we try to be complete
for each type of properties that we consider.

Our work is strongly inspired by the book by Nikiforov and Uvarov
[NU], who tried to develop a unified approach to hypergeometric type
functions. They stressed in particular the role of integral representations
and of recurrence relations.

Another important influence are the works of Miller [M1, M2] who
stressed the Lie-algebraic structure behind the recurrence relations.

The method of factorization can be traced back at least to [IH].

Acknowledgement. I acknowledge the help of Laurent Bruneau, Micha l
Godliński, and especially Micha l Wrochna and Przemys law Majewski who
proofread parts of previous versions of this work.

The research of the author was supported in part by the National
Science Center (NCN) grant No. 2011/01/B/ST1/04929.

2 Preliminaries

In this section we fix basic terminology, notation and collect a number of
well known useful facts, mostly from complex analysis. It is supposed to
serve as a reference and can be skipped at the first reading.

2.1 Differential equations

The main object of our paper are ordinary homogeneous 2nd order linear
differential equations in the complex domain, that is equations of the form(

a(z)∂2
z + b(z)∂z + c(z)

)
φ(z) = 0. (2.22)

It will be convenient to treat (2.22) as the problem of finding the kernel
of the operator

A(z, ∂z) := a(z)∂2
z + b(z)∂z + c(z). (2.23)

We will then say that the equation (2.22) is given by the operator (2.23).
When we do not consider the change of the variable, we will often write
A for A(z, ∂z).

2.2 The principal branch of the logarithm and the
power function

The function

{z ∈ C : −π < Imz < π} 3 z 7→ ez ∈ C\]−∞, 0]
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is bijective. Its inverse will be called the principal branch of the logarithm
and will be denoted simply log z.

If µ ∈ C then the principal branch of the power function is defined as

C\]−∞, 0] 3 z 7→ zµ := eµ log z.

Consequently, if α ∈ C\{0}, then the functions log(α(z − z0)) and
(α(z − z0))µ have the domain C\(z0 + α−1]−∞, 0]).

Of course, if needed we will use the analytic continuation to extend
the definition of the logarithm and the power function beyond C\]−∞, 0]
onto the appropriate covering of C\{0}.

2.3 Contours

We will write
f(z)

∣∣∣z1
z0

:= f(z1)− f(z0).

In particular, if ]0, 1[3 t 7→ γ(t) ∈ C is a curve, then

f(z)
∣∣∣γ(1)

γ(0)
=

∫
γ

f ′(z)dz. (2.24)

In order to avoid making pictures, we will use special notation for
contours of integration.

Broken lines will be denoted as in the following example:

[w0, u, w1] := [w0, u] ∪ [u,w1].

u

w1w0

This contour may be inappropriate if the function has a nonintegrable
singularity at u. Then we might want to bypass u with a small arc coun-
terclockwise or clockwise. In such a case we can use the curves

[w0, u
+, w1]. (2.25)

0w w1

u

[w0, u
−, w1]. (2.26)
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0w w1

u

We may want to bypass a group of points, say u1, u2. Such contours
are denoted by

[w0, (u0, u1)+, w1],

0w w1

u0 u1

[w0, (u0, u1)−, w1].

0w w1

u0 u1

A small counterclockwise/clockwise loop around u is denoted

[u+], [u−]

u u

A counterclockwise/clockwise loop around a group of points, say, u1, u2

is denoted
[(u1, u2)+], [(u1, u2)−].

u0 u1 u0 u1

A half-line starting at u and inclined at the angle φ is denoted

[u, eiφ∞[:= {u+ eiφt : t > 0} : (2.27)

w
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We will also need slightly more complicated contours:

[(u+ eiφ · 0)+, w]

w

u

Here, the contour departs from u at the angle φ, then it bypasses u with
a small arc counterclockwise and then it goes in the direction of w.

The following countour has the shape of a kidney:

[(u+ eiφ · 0)+]

w

This contour departs from u at the angle φ, then it goes around u and
returns to u again at the angle φ.

Instead of u+ ei0 · 0 we will write u+ 0. Likewise, instead of u+ eiπ · 0
we will write u− 0.

2.4 Reflection invariant differential equations

Consider a 2nd order differential operator

∂2
z + b(z)∂z + c(z). (2.28)

Assume that (2.28) is invariant w.r.t. the reflection z 7→ −z. This means
that for some functions π, ρ we have

b(z) = zπ(z2), c(z) = ρ(z2).

Then it is natural to make a quadratic change of coordinates:

∂2
z + b(z)∂z + c(z)

= 4u

(
∂2
u +

( 1

2u
+
π(u)

2

)
∂u +

ρ(u)

4u

)
, (2.29)

z−1(∂2
z + b(z)∂z + c(z))z

= 4u

(
∂2
u +

( 3

2u
+
π(u)

2

)
∂u + +

π(u) + ρ(u)

4u

)
, (2.30)

where
u = z2, z =

√
u.

Thus if g+(u), resp. g−(u) satisfy(
∂2
u +

( 1

2u
+
π(u)

2

)
∂u +

ρ(u)

4u

)
g+(u) = 0,(

∂2
u +

( 3

2u
+
π(u)

2

)
∂u +

π(u) + ρ(u)

4u

)
g−(u) = 0,
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then g+(z2) is an even solution, resp. zg−(z2) is an odd solution of the
equation given by (2.28).

Note that if π, ρ are holomorphic, then 0 is a regular singular point of
(2.29) with indices 0, 1

2
and of (2.30) with indices 0,− 1

2
.

2.5 Regular singular points

In this subsection we recall well known facts about regular singular points
of differential equations

We will write
f(z) ∼ (z − z0)λ at z0

if f(z)(z− z0)−λ is analytic at z0 and lim
z→z0

f(z)(z− z0)−λ = 1. In partic-

ular, we write
f(z) ∼ 1 at z0

if f is analytic in a neighborhood of z0 and f(z0) = 1.
An equation given by the operator

∂2
z + b(z)∂z + c(z) (2.31)

with meromorphic coefficients a(z), c(z) has a regular singular point at z0

if
b0 := lim

z→z0
b(z)(z − z0), c0 := lim

z→z0
c(z)(z − z0)2

exist. The indices λ1, λ2 of z0 are the solutions of the indicial equation

λ(λ− 1) + b0λ+ c0 = 0.

Theorem 2.1 (The Frobenius method) If λ1 − λ2 6= −1,−2, · · · ,
then there exists a unique solution f(z) of the equation given by (2.31)
such that f(z) ∼ (z − z0)λ1 at z0.

The case λ1 − λ2 ∈ Z is called the degenerate case. In this case the
Frobenius method gives one solution corresponding to the point z0.

Likewise, (2.31) has a regular singular point at ∞ if

b̃0 := lim
z→∞

b(z)z, c̃0 := lim
z→∞

c(z)z2

exist. The indices λ̃1, λ̃2 of ∞ are the solutions of the indicial equation

λ̃(λ̃+ 1)− b̃0λ̃+ c̃0 = 0.

Theorem 2.2 (The Frobenius method at infinity) If −λ̃1 + λ̃2 6=
−1,−2, · · · , then there exists a unique solution f̃1(z) of (2.31) such that

f̃1(z) ∼ z−λ̃1 at ∞.

Note the identity

(z − z0)−θ
(
∂2
z + b(z)∂z + c(z)

)
(z − z0)θ (2.32)

= ∂2
z +

(
2θ(z − z0)−1 + b(z)

)
∂z + (θ2 − θ)(z − z0)−2 + θb(z)(z − z0)−1 + c(z).

If z0 is a regular singular point, then the corresponding indices of (2.32)
equal those of (2.31) +θ. Likewise, if ∞ is a regular sigular point, then
the corresponding indices are shifted by −θ. The indices corresponding
to other points are left unchanged.
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2.6 The Gamma function

In this section we collect basic identities related to Euler’s Gamma func-
tion that we will use.

Relationship to factorial Γ(n+ 1) = n!, n = 0, 1, 2, . . . , (2.33)

Recurrence relation Γ(z + 1) = zΓ(z), (2.34)

Reflection formula Γ(z)Γ(1− z) =
π

sinπz
, (2.35)

II Euler′s integral. Γ(z) :=

∫ ∞
0

e−ttz−1dt, Rez > 0, (2.36)

2
m
2
−1Γ

(m
2

)
=

∫ ∞
0

e−
s2

2 sm−1ds, Rem > 0

Hankel′s formula.
1

Γ(−z + 1)
=

1

2πi

∫
[−∞,0+,−∞[

ettz−1dt, (2.37)

Legendre′s formula 22z−1Γ(z)Γ (z + 1/2) =
√
πΓ(2z). (2.38)

I Euler’s integral and its consequences.

Γ(u)Γ(v)

Γ(u+ v)
=

∫ 1

0

tu−1(1− t)v−1dt Reu > 0, Rev > 0, (2.39)

Γ(1− u− v)Γ(v)

Γ(1− u)
=

∫ ∞
1

tu−1(t− 1)v−1dt Rev > 0, Re(1− u− v) > 0,

Γ(v)

Γ(1− u)Γ(u+ v)
=

1

2πi

∫
]1,0+,1]

tu−1(1− t)v−1dt, Rev > 0.

Γ(−u− v + 1)

Γ(−u+ 1)Γ(−v + 1)
=

1

2πi

∫
]−∞,0+,−∞[

tu−1(1− t)v−1dt

=
1

2πi

∫
]∞,1−,∞[

tu−1(1− t)v−1dt, Re(−u− v + 1) > 0.
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Γ(u)
√
π

Γ(u+ 1
2
)

=

∫ 1

−1

(1− s2)u−1ds, Reu > 0, (2.40)

Γ(u)Γ( 1
2
− u)

2
√
π

=

∫ ∞
1

(s2 − 1)u−1ds,
1

2
> Reu > 0, (2.41)

√
π

Γ(u+ 1
2
)Γ(1− u)

=

∫
]1,−1+,1−[

(1− s)u−1(1− s)u−1ds, , (2.42)

Γ( 1
2
− u)

2
√
πΓ(1− u)

=

∫
]−∞,−1+,−∞[

(1 + s)u−1(1− s)u−1ds,

=

∫
]∞,1−,∞[

(1 + s)u−1(1− s)u−1ds,
1

2
> Reu.

2.7 The Pochhammer symbol

If a ∈ C and n ∈ Z, then the so-called Pochhammer symbol is defined as
follows:

(a)0 = 1,

(a)n := a(a+ 1) . . . (a+ n− 1), n = 1, 2, . . .

(a)−n := 1
(a−n)...(a−1)

, n = 1, 2, . . . .

Note the identities

(a)n =
Γ(a+ n)

Γ(a)
= (−1)n

Γ(1− a)

Γ(1− a− n)
= (−1)n(1− n− a)n,

(a)−n =
1

(a− n)n
, (2.43)

(1− z)−a =

∞∑
n=0

(a)n
n!

zn, |z| < 1, (2.44)

(1/2)nn! =
(2n)!

22n
, (3/2)nn! =

(2n+ 1)!

22n
. (2.45)

3 The 2F1 or the hypergeometric equa-
tion

3.1 Introduction

Let a, b, c ∈ C. Traditionally, the hypergeometric equation is given by the
operator

F(a, b; c; z, ∂z) := z(1− z)∂2
z +

(
c− (a+ b+ 1)z

)
∂z − ab. (3.46)
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The classical parameters a, b, c will be often replaced by another set
of parameters α, β, µ ∈ C, called Lie-algebraic. They are related to one
another by

α := c− 1, β := a+ b− c, µ := b− a;

a = 1+α+β−µ
2

, b = 1+α+β+µ
2

, c = 1 + α.

In the Lie-algebraic parameters the hypergeometric operator (3.46) be-
comes

Fα,β,µ(z, ∂z) (3.47)

= z(1− z)∂2
z +

(
(1 + α)(1− z)− (1 + β)z

)
∂z +

1

4
µ2 − 1

4
(α+ β + 1)2.

The Lie-algebraic parameters have an interesting interpretation in terms
of the natural basis of the Cartan algebra of the Lie algebra so(6) [DM].

The singular points of the hypergeometric operator are located at
0, 1,∞. All of them are regular singular. The indices of these points
are

z = 0 z = 1 z =∞

1− c = −α c− a− b = −β a = 1+α+β−µ
2

0 0 b = 1+α+β+µ
2

Thus the Lie-algebraic parameters are the differences of the indices.
The hypergeometric operator remains the same if we interchange a

and b (replace µ with −µ).

3.2 Integral representations

Theorem 3.1 Let [0, 1] 3 t 7→ γ(t) satisfy

tb−c+1(1− t)c−a(t− z)−b−1
∣∣∣γ(1)

γ(0)
= 0.

Then

F(a, b; c; z, ∂z)

∫
γ

tb−c(1− t)c−a−1(t− z)−bdt = 0. (3.48)

Proof. We check that for any contour γ (3.48) equals

−b
∫
γ

(
∂tt

b−c+1(1− t)c−a(t− z)−b−1
)

dt.

2

Analogous (and nonequivalent) integral representations can be ob-
tained by interchanging a and b in Theorem 3.1.
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3.3 Symmetries

To every permutation of the set of singularities {0, 1,∞} we can associate
exactly one homography z 7→ w(z). Using the method described at the
end of Subsect. 2.5, with every such a homography we can associate 4
substitutions that preserve the form of the hypergeometric equation. Al-
together there are 6×4 = 24 substitutions. They form a group isomorphic
to the group of proper symmetries of the cube. If we take into account
the fact that replacing µ with −µ is also an obvious symmetry of the hy-
pergeometric equation, then we obtain a group of 2 × 24 = 48 elements,
isomorphic to the group of all (proper and improper) symmetries of a
cube, which is the Weyl group of so(6).

Below we describe the table of symmetries of the hypergeometric oper-
ator except for those obtained by switching the sign of the last parameter.
We fix the sign of the last parameter by demanding that the number of
minus signs is even.

Note that the table looks much simpler in the Lie-algebraic parameters
than in the classical parameters.
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All the operators below equal Fα,β,µ(w, ∂w) for the corresponding w:

w = z :

Fα,β,µ(z, ∂z),

(−z)−α(z − 1)−β F−α,−β,µ(z, ∂z) (−z)α(z − 1)β

(z − 1)−β Fα,−β,−µ(z, ∂z) (z − 1)β ,

(−z)−α F−α,β,−µ(z, ∂z) (−z)α;
w = 1− z :

Fβ,α,µ(z, ∂z),

(z − 1)−α(−z)−β F−β,−α,µ(z, ∂z) (z − 1)α(−z)β ,
(z − 1)−α Fβ,−α,−µ(z, ∂z) (z − 1)α,

(−z)−β F−β,α,−µ(z, ∂z) (−z)β ;
w = 1

z
:

(−z)
1
2

(α+β+µ+1) (−z)Fµ,β,α(z, ∂z) (−z)
1
2

(−α−β−µ−1),

(−z)
1
2

(α+β−µ+1)(z − 1)−β (−z)F−µ,−β,α(z, ∂z) (−z)
1
2

(−α−β+µ−1)(z − 1)β ,

(−z)
1
2

(α+β+µ+1)(z − 1)−β (−z)Fµ,−β,−α(z, ∂z) (−z)
1
2

(−α−β−µ−1)(z − 1)β ,

(−z)
1
2

(α+β−µ+1) (−z)F−µ,β,−α(z, ∂z) (−z)
1
2

(−α−β+µ−1);
w = 1− 1

z
:

(−z)
1
2

(α+β+µ+1) (−z)Fµ,α,β(z, ∂z) (−z)
1
2

(−α−β−µ−1),

(−z)
1
2

(α+β−µ+1)(z − 1)−α (−z)F−µ,−α,β(z, ∂z) (−z)
1
2

(−α−β+µ−1)(z − 1)α,

(−z)
1
2

(α+β+µ+1)(z − 1)−α (−z)Fµ,−α,−β(z, ∂z) (−z)
1
2

(−α−β−µ−1)(z − 1)α,

(−z)
1
2

(α+β−µ+1) (−z)F−µ,α,−β(z, ∂z) (−z)
1
2

(−α−β+µ−1);
w = 1

1−z :

(z − 1)
1
2

(α+β+µ+1) (z − 1)Fβ,µ,α(z, ∂z) (z − 1)
1
2

(−α−β−µ−1),

(−z)−β(z − 1)
1
2

(α+β−µ+1) (z − 1)F−β,−µ,α(z, ∂z) (−z)β(z − 1)
1
2

(−α−β+µ−1),

(z − 1)
1
2

(α+β−µ+1) (z − 1)Fβ,−µ,−α(z, ∂z) (z − 1)
1
2

(−α−β+µ−1),

(−z)−β(z − 1)
1
2

(α+β+µ+1) (z − 1)F−β,µ,−α(z, ∂z) (−z)β(z − 1)
1
2

(−α−β−µ−1);
w = z

z−1
:

(z − 1)
1
2

(α+β+µ+1) (z − 1)Fα,µ,β(z, ∂z) (z − 1)
1
2

(−α−β−µ−1),

(−z)−α(z − 1)
1
2

(α+β−µ+1) (z − 1)F−α,−µ,β(z, ∂z) (−z)α(z − 1)
1
2

(−α−β+µ−1),

(z − 1)
1
2

(α+β−µ+1) (z − 1)Fα,−µ,−β(z, ∂z) (z − 1)
1
2

(−α−β+µ−1),

(−z)−α(z − 1)
1
2

(α+β+µ+1) (z − 1)F−α,µ,−β(z, ∂z) (−z)α(z − 1)
1
2

(−α−β−µ−1).
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3.4 Factorization and commutation relations

The hypergeometric operator can be factorized in several ways:

Fα,β,µ =
(
z(1− z)∂z +

(
(1 + α)(1− z)− (1 + β)z

))
∂z

−1

4
(α+ β + µ+ 1)(α+ β − µ+ 1),

= ∂z
(
z(1− z)∂z +

(
α(1− z)− βz

))
−1

4
(α+ β + µ− 1)(α+ β − µ− 1),

=
(

(1− z)∂z − β − 1
)(
z∂z + α

)
−1

4
(α+ β + µ+ 1)(α+ β − µ+ 1),

=
(
z∂z + α+ 1

)(
(1− z)∂z − β

)
−1

4
(α+ β + µ+ 1)(α+ β − µ+ 1);

zFα,β,µ =
(
z∂z +

1

2
(α+ β + µ− 1)

)(
z(1− z)∂z +

1

2
(1− z)(α+ β − µ+ 1)− β

)
−1

4
(α+ β + µ− 1)(α− β − µ+ 1),

=
(
z(1− z)∂z +

1

2
(1− z)(α+ β − µ+ 1)− β − 1

)(
z∂z +

1

2
(α+ β + µ+ 1)

)
−1

4
(α+ β + µ+ 1)(α− β − µ− 1),

=
(
z∂z +

1

2
(α+ β − µ− 1)

)(
z(1− z)∂z +

1

2
(1− z)(α+ β + µ+ 1)− β

)
−1

4
(α+ β − µ− 1)(α− β + µ+ 1),

=
(
z(1− z)∂z +

1

2
(1− z)(α+ β + µ+ 1)− β − 1

)(
z∂z +

1

2
(α+ β − µ+ 1)

)
−1

4
(α+ β − µ+ 1)(α− β + µ− 1);
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(z − 1)Fα,β,µ =
(

(z − 1)∂z +
1

2
(α+ β + µ− 1)

)(
z(1− z)∂z +

1

2
z(−α− β + µ− 1) + α

)
−1

4
(α+ β + µ− 1)(α− β + µ− 1),

=
(
z(1− z)∂z +

1

2
z(−α− β + µ− 1) + α+ 1

)(
(z − 1)∂z +

1

2
(α+ β + µ+ 1)

)
−1

4
(α+ β + µ+ 1)(α− β + µ+ 1),

=
(

(z − 1)∂z +
1

2
(α+ β − µ− 1)

)(
z(1− z)∂z +

1

2
z(−α− β − µ− 1) + α

)
−1

4
(α+ β − µ− 1)(α− β − µ− 1),

=
(
z(1− z)∂z +

1

2
z(−α− β − µ− 1) + α+ 1

)(
(z − 1)∂z +

1

2
(α+ β − µ+ 1)

)
−1

4
(α+ β − µ+ 1)(α− β − µ+ 1).

One way of showing the above factorizations is as follows: We start with
deriving the first one, and then we apply the symmetries of Subsect. 3.3.

The factorizations can be used to derive the following commutation
relations:

∂z Fα,β,µ
= Fα+1,β+1,µ ∂z,

(z(1− z)∂z + (1− z)α− zβ) Fα,β,µ
= Fα−1,β−1,µ (z(1− z)∂z + (1− z)α− zβ),

((1− z)∂z − β) Fα,β,µ
= Fα+1,β−1,µ ((1− z)∂z − β),

(z∂z + α) Fα,β,µ
= Fα−1,β+1,µ (z∂z + α);

(z∂z + 1
2
(α+ β + µ+ 1)) zFα,β,µ

= zFα,β+1,µ+1 (z∂z + 1
2
(α+ β + µ+ 1)),

(z(1−z)∂z+ 1
2
(1−z)(α+β−µ+1)−β) zFα,β,µ

= zFα,β−1,µ−1 (z(1−z)∂z+ 1
2
(1−z)(α+β−µ+1)−β),

(z∂z+
1
2
(α+β−µ+1)) zFα,β,µ

= zFα,β+1,µ−1 (z∂z+
1
2
(α+β−µ+1),

(z(z−1)∂z− 1
2
(1−z)(α+β+µ+1)+β) zFα,β,µ

= zFα,β−1,µ+1 (z(z−1)∂z− 1
2
(1−z)(α+β+µ+1)+β);
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((z − 1)∂z + 1
2
(α+ β + µ+ 1)) (1− z)Fα,β,µ

= (1− z)Fα+1,β,µ+1 ((z − 1)∂z + 1
2
(α+ β + µ+ 1),

(z(1−z)∂z− 1
2
z(α+β−µ+1)+α) (1− z)Fα,β,µ

= (1− z)Fα−1,β,µ−1 (z(1−z)∂z− 1
2
z(α+β−µ+1)+α),

((z − 1)∂z + 1
2
(α+ β − µ+ 1)) (1− z)Fα,β,µ

= (1− z)Fα+1,β,µ−1 ((z − 1)∂z + 1
2
(α+ β − µ+ 1)),

(z(z−1)∂z+
1
2
z(α+β+µ+1)− α) (1− z)Fα,β,µ

= (1− z)Fα−1,β,µ+1 (z(z−1)∂z+
1
2
z(α+β+µ+1)−α).

Each of these commutation relations corresponds to a root of the Lie
algebra so(6).

3.5 Canonical forms

The natural weight of the hypergeometric operator is zα(1− z)β , so that

Fα,β,µ = z−α(1− z)−β∂zzα+1(1− z)β+1∂z +
µ2

4
− (α+ β + 1)2

4
.

The balanced form of the hypergeometric operator is

z
α
2 (1− z)

β
2 Fα,β,µz−

α
2 (1− z)−

β
2

= ∂zz(1− z)∂z −
α2

4z
− β2

4(1− z) +
µ2 − 1

4
.

Note that the symmetries α → −α, β → −β and µ→ −µ are obvious in
the balanced form.

Remark 3.2 In the literature, the balanced form of the hypergeometric
equation is sometimes called the generalized associated Legendre equation.
Its standard form according to [NIST] is

(1− w2)∂2
w − 2w∂w + ν(ν + 1)− µ2

1

2(1− w)
− µ2

1

2(1 + w)
. (3.49)

Thus z = w+1
2

, moreover, µ1, µ2 and ν correspond to β, α and µ
2
− 1

2
.

3.6 The hypergeometric function

0 is a regular singular point of the hypergeometric equation. Its indices
are 0 and 1−c. The Frobenius method implies that, for c 6= 0,−1,−2, . . . ,
the unique solution of the hypergeometric equation equal to 1 at 0 is given
by the series

F (a, b; c; z) =

∞∑
j=0

(a)j(b)j
(c)j

zj

j!
,
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convergent for |z| < 1. The function extends to the whole complex plane
cut at [1,∞[ and is called the hypegeometric function. Sometimes it is
more convenient to consider the function

F(a, b; c; z) :=
F (a, b, c, z)

Γ(c)
=

∞∑
j=0

(a)j(b)j
Γ(c+ j)

zj

j!

defined for all a, b, c ∈ C. Another useful function proportional to 2F1 is

FI(a, b; c; z) :=
Γ(a)Γ(c− a)

Γ(c)
F (a, b; c; z) =

∞∑
j=0

Γ(a+ j)Γ(c− a)(b)j
Γ(c+ j)

zj

j!
.

It has the integral representation∫ ∞
1

tb−c(t− 1)c−a−1(t− z)−bdt (3.50)

= FI(a, b; c; z), Re(c− a) > 0, Rea > 0, z 6∈ [1,∞[.

Indeed, by Theorem 3.1 the left hand side of (3.50) is annihilated by

the hypergeometric operator (3.46). Besides, by (??) it equals Γ(a)Γ(c−a)
Γ(c)

at 0. So does the right hand side. Therefore, Equation (3.50) follows by
the uniqueness of the solution by the Frobenius method.

Another, closely related integral representation valid if Re(c− a) > 0
is

sinπa

π
FI(a, b; c; z) =

1

2πi

∫
[1,(z,0)+,1]

(−t)b−c(1− t)c−a−1(z− t)−bdt. (3.51)

It is proven essentially in the same way as (3.50), except that instead of
(??) we use (??).

It is also useful to introduce

F◦(a, b; c; z) :=
Γ(a)Γ(b)

Γ(c)
F (a, b; c; z). (3.52)

We have the identities

F (a, b; c; z)

= (1− z)c−a−bF (c− a, c− b; c; z)

= (1− z)−aF
(
a, c− b; c; z

z − 1

)
= (1− z)−bF

(
c− a, b; c; z

z − 1

)
. (3.53)

In fact, by the 3rd, 9th and 11th symmetry of Subsect. 3.3 all these
functions are annihilated by the hypergeometric operator. All of them
are ∼ 1 at 1. Hence, by the uniqueness of the Frobenius method they
coincide, at least for c 6= 0,−1, . . . . By continuity, the identities hold for
all c ∈ C.
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Let us introduce new notation for various varieties of the hypergeomet-
ric function involving the Lie-algebraic parameters instead of the classical
parameters.

Fα,β,µ(z) = F
(1 + α+ β − µ

2
,

1 + α+ β + µ

2
; 1 + α; z

)
,

Fα,β,µ(z) = F
(1 + α+ β − µ

2
,

1 + α+ β + µ

2
; 1 + α; z

)
=

1

Γ(α+ 1)
Fα,β,µ(z),

FI
α,β,µ(z) = FI

(1 + α+ β − µ
2

,
1 + α+ β + µ

2
; 1 + α; z

)
=

Γ
(

1+α+β−µ
2

)
Γ
(

1+α−β+µ
2

)
Γ(α+ 1)

Fα,β,µ(z),

F◦α,β,µ(z) = F◦
(1 + α+ β − µ

2
,

1 + α+ β + µ

2
; 1 + α; z

)
=

Γ
(

1+α+β−µ
2

)
Γ
(

1+α+β+µ
2

)
Γ(α+ 1)

Fα,β,µ(z).

3.7 Standard solutions – Kummer’s table

To each of the singular points 0, 1,∞ we can associate two solutions cor-
responding to its indices. Thus we obtain 3 × 2 = 6 solutions, which we
will call standard solutions. Using the identites (3.53), each solution can
be written in 4 distinct ways (not counting the trivial change of the sign
in front of the last parameter). Thus we obtain a list of 6 × 4 = 24 ex-
pressions for solutions of the hypergeometric equation, called sometimes
Kummer’s table.

We describe the standard solutions to the hypergeometric equation in
this section. We will use consistently the Lie-algebraic parameters, which
give much simpler expressions.

It follows from Thm 3.1 that for appropriate contours γ integrals of
the form ∫

γ

t
−1−α+β+µ

2 (t− 1)
−1+α−β+µ

2 (t− z)
−1−α−β−µ

2 dt (3.54)

are solutions of the hypergeometric equation. The integrand has four
singularities: {0, 1,∞, z}. It is natural to chose γ as the interval joining
a pair of singularities. This choice leads to 6 standard solutions with the
I-type normalization.
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3.7.1 Solution ∼ 1 at 0

If α 6= −1,−2, . . . , then the following function is the unique solution ∼ 1
at 0:

Fα,β,µ(z)

= (1− z)−βFα,−β,−µ(z)

= (1− z)
−1−α−β+µ

2 Fα,−µ,−β(
z

z − 1
)

= (1− z)
−1−α−β−µ

2 Fα,µ,β(
z

z − 1
).

An integral representation for Re(1 + α) > |Re(β − µ)|:∫ ∞
1

t
−1−α+β+µ

2 (t− 1)
−1+α−β+µ

2 (t− z)
−1−α−β−µ

2 dt = FI
α,β,µ(z),

z 6∈ [1,∞[.

Note that all the identities of this subsubsection are the transcriptions
of identities of Subsect. 3.6 to the Lie-algebraic parameters.

3.7.2 Solution ∼ z−α at 0

If α 6= 1, 2, . . . , then the following function is the unique solution behaving
as z−α at 0:

z−αF−α,β,−µ(z)

= z−α(1− z)−βF−α,−β,µ(z)

= z−α(1− z)
−1+α−β+µ

2 F−α,−µ,β(
z

z − 1
)

= z−α(1− z)
−1+α−β−µ

2 F−α,µ,−β(
z

z − 1
).

Integral representations for Re(1− α) > |Re(β − µ)|:∫ z

0

t
−1−α+β+µ

2 (1− t)
−1+α−β+µ

2 (z − t)
−1−α−β−µ

2 dt = z−αFI
−α,β,−µ(z),

z 6∈]−∞, 0]∪[1,∞[;∫ 0

z

(−t)
−1−α+β+µ

2 (1− t)
−1+α−β+µ

2 (t− z)
−1−α−β−µ

2 dt = (−z)−αFI
−α,β,−µ(z),

z 6∈ [0,∞[.

To check these identities we note first that the integrals are solutions of
the hypergeometric equation. By substituting t = zs we easily check that
they have the correct behavior at zero.

Of course, it is elementary to pass from the first identity, which is
adapted to the region on the right of the singularity z = 0 to the second,
adapted to the region on the left of the singularity. For convenience we
give both identities.
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3.7.3 Solution ∼ 1 at 1

If β 6= −1,−2, . . . , then the following function is the unique solution ∼ 1
at 1:

Fβ,α,µ(1− z)
= z−αFβ,−α,−µ(1− z)

= z
−1−α−β+µ

2 Fβ,−µ,−α(1− z−1)

= z
−1−α−β−µ

2 Fβ,µ,α(1− z−1)

Integral representation for Re(1 + β) > |Re(α− µ)|:∫ 0

−∞
(−t)

−1−α+β+µ
2 (1− t)

−1+α−β+µ
2 (z − t)

−1−α−β−µ
2 dt = FI

β,α,µ(1− z),

z 6∈]−∞, 0].

3.7.4 Solution ∼ (1− z)−β at 1

If β 6= 1, 2, . . . , then the following function is the unique solution of the
hypergeometric equation ∼ (1− z)−β at 1:

(1− z)−βF−β,α,−µ(1− z)
= z−α(1− z)−βF−β,−α,µ(1− z)

= z
−1−α+β−µ

2 (1− z)−βF−β,µ,−α(1− z−1)

= z
−1−α+β+µ

2 (1− z)−βF−β,−µ,α(1− z−1).

Integral representations for Re(1− β) > |Re(α+ µ)|:∫ 1

z

t
−1−α+β+µ

2 (1− t)
−1+α−β+µ

2 (t− z)
−1−α−β−µ

2 dt = (1− z)−βFI
−β,α,−µ(1− z),

z 6∈]−∞, 0] ∪ [1,∞[;∫ z

1

t
−1−α+β+µ

2 (t− 1)
−1+α−β+µ

2 (z − t)
−1−α−β−µ

2 dt = (z − 1)−βFI
−β,α,−µ(1− z),

z 6∈]−∞, 1].

3.7.5 Solution ∼ z−a at ∞
If µ 6= 1, 2 . . . , then the following function is the unique solution of the

hypergeometric equation ∼ (−z)−a = (−z)
−1−α−β+µ

2 at ∞:

(−z)
−1−α−β+µ

2 F−µ,β,−α(z−1)

= (−z)
−1−α+β+µ

2 (1− z)−βF−µ,−β,α(z−1)

= (1− z)
−1−α−β+µ

2 F−µ,α,−β((1− z)−1)

= (−z)−α(1− z)
−1+α−β+µ

2 F−µ,−α,β((1− z)−1).

30



Integral representations for Re(1− µ) > |Re(α+ β)|:∫ ∞
z

t
−1−α+β+µ

2 (t− 1)
−1+α−β+µ

2 (t− z)
−1−α−β−µ

2 dt = z
−1−α−β+µ

2 FI
−µ,β,−α(z−1),

z 6∈]−∞, 1];∫ z

−∞
(−t)

−1−α+β+µ
2 (1− t)

−1+α−β+µ
2 (z − t)

−1−α−β−µ
2 dt = (−z)

−1−α−β+µ
2 FI

−µ,β,−α(z−1),

z 6∈]0,∞].

3.7.6 Solution ∼ z−b at ∞
If µ 6= −1,−2, . . . , then the following function is the unique solution of

the hypergeometric equation ∼ (−z)−b = (−z)
−1−α−β−µ

2 at ∞:

(−z)
−1−α−β−µ

2 Fµ,β,α(z−1)

= (−z)
−1−α+β−µ

2 (1− z)−βFµ,−β,−α(z−1)

= (1− z)
−1−α−β−µ

2 Fµ,α,β((1− z)−1)

= (−z)−α(1− z)
−1+α−β−µ

2 Fµ,−α,−β((1− z)−1)

Integral representations for Re(1 + µ) > |Re(α− β)|:∫ 1

0

t
−1−α+β+µ

2 (1− t)
−1+α−β+µ

2 (t− z)
−1−α−β−µ

2 dt = (−z)
−1−α−β−µ

2 FI
µ,β,α(z−1),

z 6∈ [0,∞[;∫ 1

0

t
−1−α+β+µ

2 (1− t)
−1+α−β+µ

2 (z − t)
−1−α−β−µ

2 dt = z
−1−α−β−µ

2 FI
µ,β,α(z−1),

z 6∈ [−∞, 1[.

3.8 Connection formulas

We use the solutions ∼ 1 and ∼ z−α at 0 as the basis. We show how the
other solutions decompose in this basis.

For the first pair of relations we assume that z 6∈]−∞, 0]∪[1,∞[:

Fβ,α,µ(1− z) =
π

sinπ(−α)Γ
(

1−α+β−µ
2

)
Γ
(

1−α+β+µ
2

)Fα,β,µ(z)

+
π

sinπαΓ
(

1+α+β−µ
2

)
Γ
(

1+α+β+µ
2

)z−αF−α,β,−µ(z),

(1− z)−βF−β,α,−µ(1− z) =
π

sinπ(−α)Γ
(

1−α−β+µ
2

)
Γ
(

1−α−β−µ
2

)Fα,β,µ(z)

+
π

sinπαΓ
(

1+α−β+µ
2

)
Γ
(

1+α−β−µ
2

)z−αF−α,β,−µ(z).

31



For the second pair we assume that z 6∈ [0,∞[

(−z)
−1−α−β+µ

2 F−µ,β,−α(z−1) =
π

sinπ(−α)Γ
(

1−α−β−µ
2

)
Γ
(

1−α+β−µ
2

)Fα,β,µ(z)

+
π

sinπαΓ
(

1+α+β−µ
2

)
Γ
(

1+α−β−µ
2

) (−z)−αF−α,β,−µ(z),

(−z)
−1−α−β−µ

2 Fµ,β,α(z−1) =
π

sinπ(−α)Γ
(

1−α−β+µ
2

)
Γ
(

1−α+β+µ
2

)Fα,β,µ(z)

+
π

sinπαΓ
(

1+α+β+µ
2

)
Γ
(

1+α−β+µ
2

) (−z)−αF−α,β,−µ(z).

The connection formulas are easily derived from the integral representa-
tions by looking at the behavior around 0.

One can simplify the connection formulas using F◦:

1

sinπαΓ( 1−α+β−µ
2

)Γ( 1−α+β+µ
2

)

 −1 1

− cos π
2

(α+β−µ) cos π
2

(α+β+µ)

cos π
2

(α−β+µ) cos π
2

(α−β−µ)
1

[ F◦α,β,µ(z)

z−αF◦−α,β,−µ(z)

]

=

 F◦β,α,µ(1− z)

(1− z)−βF◦−β,α−µ(1− z)

 ,

1

sinπβΓ( 1+α−β−µ
2

)Γ( 1+α−β+µ
2

)

 −1 1

− cos π
2

(α+β−µ) cos π
2

(α+β+µ)

cos π
2

(α−β+µ) cos π
2

(α−β−µ)
1

 F◦β,α,µ(1− z)

(1− z)−βF◦−β,α−µ(1− z)



=

[
F◦α,β,µ(z)

z−αF◦−α,β,−µ(z)

]
.

π

sinπµ

[− cos π
2

(−α+ β + µ) cos π
2

(−α+ β − µ)

− cos π
2

(α+ β + µ) cos π
2

(α+ β − µ)

] (−z)
−1−α−β−µ

2 F◦µ,β,α(z−1)

(−z)
−1−α−β+µ

2 F◦−µ,β,−α(z−1)


=

[
F◦α,β,µ(z)

(−z)−αF◦−α,β,−µ(z)

]

π

sinπα

[− cos π
2

(α+ β − µ) cos π
2

(−α+ β − µ)

− cos π
2

(α+ β + µ) cos π
2

(−α+ β + µ)

][
F◦α,β,µ(z)

(−z)−αF◦−α,β,−µ(z)

]

=

 (−z)
−1−α−β−µ

2 F◦µ,β,α(z−1)

(−z)
−1−α−β+µ

2 F◦−µ,β,−α(z−1)


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3.9 Recurrence relations

The following recurrence relations follow easily from the commutation
relations of Subsect. 3.4:

∂zF
I
α,β,µ(z) =

1+α+β+µ

2
FI
α+1,β+1,µ(z),

(z(1−z)∂z+α(1−z)−βz)FI
α,β,µ(z) =

−1+α+β−µ
2

FI
α−1,β−1,µ(z),

((1− z)∂z − β)FI
α,β,µ(z) =

1+α−β−µ
2

FI
α+1,β−1,µ(z),

(z∂z + α)FI
α,β,µ(z) =

−1+α−β+µ

2
FI
α−1,β+1,µ(z),

(
z∂z +

1 + α+ β + µ

2

)
FI
α,β,µ(z) =

1 + α+ β + µ

2
FI
α,β+1,µ+1(z),

(
z(1−z)∂z−β+

1+α+β−µ
2

(1−z)
)

FI
α,β,µ(z) =

1 + α− β − µ
2

FI
α,β−1,µ−1(z),

(
z∂z +

1 + α+ β − µ
2

)
FI
α,β,µ(z) =

−1 + α−β+µ

2
FI
α,β+1,µ−1(z),

(
z(1−z)∂z−β+

1+α+β+µ

2
(1−z)

)
FI
α,β,µ(z) =

−1 + α+β−µ
2

FI
α,β−1,µ+1(z),

(
(z − 1)∂z +

1 + α+ β + µ

2

)
FI
α,β,µ(z) =

1+α+β+µ

2
FI
α+1,β,µ+1(z),

(
z(1−z)∂z+α−

1+α+β−µ
2

z

)
FI
α,β,µ(z) =

−1+α−β+µ

2
FI
α−1,β,µ−1(z),

(
(z − 1)∂z +

1 + α+ β − µ
2

)
FI
α,β,µ(z) =

1+α−β−µ
2

FI
α+1,β,µ−1(z),

(
z(1−z)∂z+α−

1+α+β+µ

2
z

)
FI
α,β,µ(z) =

−1+α+β−µ
2

FI
α−1,β,µ+1(z).
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3.10 Additional recurrence relations

There exist other, more complicated recurrence relations for hypergeo-
metric functions, for example( (1+α+β+µ)(−1−α+β−µ)

4

+
(1+α+β+µ)(µ+1)

2
z − (1+µ)z(1−z)∂z

)
Fα,β,µ

=
(1+α+β+µ)(−1−α+β−µ)

4
Fα,β,µ+2(z), (3.55)

( (1+α+β−µ)(−1−α+β+µ)

4

+
(1+α+β−µ)(−µ+1)

2
z − (1−µ)z(1−z)∂z

)
Fα,β,µ

=
(1+α+β−µ)(−1−α+β+µ)

4
Fα,β,µ−2(z). (3.56)

Note that (3.55) follows from the 6th and 7th recurrence relation, and
(3.56) follows from the 5th and 8th of Subsect. 3.9.

3.11 Degenerate case–regular solutions

α = m ∈ Z is the degenerate case of the hypergeometric equation at 0.
We have then

F(a, b; 1 +m; z) =
∑

n=max(0,−m)

(a)n(b)n
n!(m+ n)!

zn.

This easily implies the identity

(a−m)m(b−m)mF(a, b; 1+m; z) = z−mF(a−m, b−m; 1−m; z). (3.57)

Thus the two standard solutions determined by the behavior at zero are
proportional to one another. Equivalently, in the two notations that we
use, (3.57) can be rewritten as

F◦(a+m, b, 1 +m; z) = z−mF◦(a, b−m; 1−m; z),

F◦m,β,µ(z) = z−mF◦−m,β,µ(z). (3.58)

One can also see the degenerate case in the integral representation
(3.48). If we go around 0, z, the phase of the integrand changes by ei2πc =
ei2πα. Therefore, if α = m ∈ Z, then the loop around 0, z is closed on the
Riemann surface of the integrand.
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We have an additional integral representation and a generating func-
tion:

1

2πi

∫
[(0,z)+]

(1− t)−a(1− z/t)−bt−m−1dt = (a)mFm,a+b−1,a−b+m(z),

(1− t)−a(1− z/t)−b =
∑
m∈Z

tm(a)mFm,a+b−1,a−b+m(z).

To see the integral representation we note that the integral on the l.h.s. is
annihilated by the hypergeometric operator. Then we check that its value
at zero equals

1

2πi

∫
[0+]

(1− t)−at−m−1dt =
(a)m
m!

,

see (2.44).
(3.58) can be obtained from the integral representation. Indeed, make

the substitution t = z
s
. Note that [(0, z)+] becomes [(∞, 1)+], which

coincides with [(0, z)−]. Then we change the sign in front of the integral
and the orientation of the contour of integration, obtaining

z−m

2πi

∫
[(0,z)+]

(1− s)−b(1− z/s)−as−m−1ds.

Finally, we apply the first integral representation again.
The generating function follows from the integral representation.

3.12 Degenerate case–logarithmic solutions

The solutions determined by the behavior at 1 and ∞ can be expanded
near zero. These expansions involve logarithmic terms:

Fβ,m,µ(1− z)

=
(−1)m+1

Γ( 1−m+β−µ
2

)Γ( 1−m+β+µ
2

)

(
m∑
k=1

(−1)k−1 (k − 1)!( 1+m+β+µ
2

)−k( 1+m+β−µ
2

)−k

(m− k)!
z−k

+

∞∑
j=0

(
ψ
(1 +m+ β + µ

2
+ j
)

+ ψ
(1 +m+ β − µ

2
+ j
)

− ψ(j + 1)− ψ(m+ j + 1) + ln(z)

)
( 1+m+β+µ

2
)j(

1+m+β−µ
2

)j

(m+ j)!j!
zj
)
,
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(1− z)−βF−β,m,−µ(1− z)

=
(−1)m+1

Γ( 1−m−β+µ
2

)Γ( 1−m−β−µ
2

)

×

(
m∑
k=1

(−1)k−1 (k − 1)!( 1+m+β+µ
2

)−k( 1+m+β−µ
2

)−k

(m− k)!
z−k

+

∞∑
j=0

(
ψ
(1−m− β − µ

2
− j
)

+ ψ
(1−m− β + µ

2
− j
)

− ψ(j + 1)− ψ(m+ j + 1) + ln(z)

)
( 1+m+β+µ

2
)j(

1+m+β−µ
2

)j

(m+ j)!j!
zj
)
,

(−z)
−1−m−β−µ

2 Fµ,β,m(z−1)

=
(−1)m+1

Γ( 1−m−β+µ
2

)Γ( 1−m+β+µ
2

)

(
m∑
k=1

(−1)k−1 (k − 1)!( 1+m+β+µ
2

)−k( 1+m+β−µ
2

)−k

(m− k)!
z−k

+

∞∑
j=0

(
ψ
(1 +m+ β + µ

2
+ j
)

+ ψ
(1−m− β + µ

2
− j
)

− ψ(j + 1)− ψ(m+ j + 1) + ln(−z)
)

( 1+m+β+µ
2

)j(
1+m+β−µ

2
)j

(m+ j)!j!
zj
)

(−z)
−1−m−β+µ

2 F−µ,β,m(z−1)

=
(−1)m+1

Γ( 1−m−β−µ
2

)Γ( 1−m+β−µ
2

)

(
m∑
k=1

(−1)k−1 (k − 1)!( 1+m+β+µ
2

)−k( 1+m+β−µ
2

)−k

(m− k)!
z−k

+

∞∑
j=0

(
ψ
(1 +m+ β − µ

2
+ j
)

+ ψ
(1−m− β − µ

2
− j
)

− ψ(j + 1)− ψ(m+ j + 1) + ln(−z)
)

( 1+m+β+µ
2

)j(
1+m+β−µ

2
)j

(m+ j)!j!
zj
)

To show these identities, we use the connection formulas:

F◦β,α,µ(1− z) =
1

sinπαΓ( 1−α+β+µ
2

)Γ( 1−α+β−µ
2

)

×
(
− F◦α,β,µ(z) + z−αF◦−α,β,−µ(z)

)
,

(1− z)−βF◦−β,α,−µ(1− z) =
1

sinπαΓ( 1−α+β+µ
2

)Γ( 1−α+β−µ
2

)

×
(
−

cos π
2

(α+ β − µ) cos π
2

(α+ β + µ)

cos π
2

(α− β + µ) cos π
2

(α− β − µ)
F◦α,β,µ(z) + z−αF◦−α,β,−µ(z)

)
,
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(−z)
−1−α−β−µ

2 F◦µ,β,α(z−1) =
π

sinπα

(
− cos

π

2
(α+ β − µ)F◦α,β,µ(z)

+ cos
π

2
(−α+ β − µ)(−z)−αF◦−α,β,−µ(z)

)
,

(−z)
−1−α−β+µ

2 F◦−µ,β,−α(z−1) =
π

sinπα

(
− cos

π

2
(α+ β + µ)F◦α,β,µ(z)

+ cos
π

2
(−α+ β + µ)(−z)−αF◦−α,β,−µ(z)

)
.

We introduce
T◦α,β,µ(z) := ∂αF◦α,β,µ(z). (3.59)

We apply the de l’Hopital rule obtaining

F◦β,m,µ(1− z) =
(−1)m+1

πΓ( 1−m+β+µ
2

)Γ( 1−m+β−µ
2

)

×
(
T◦m,β,µ(z) + z−mT◦−m,β,−µ(z) + ln(z)F◦m,β,µ(z)

)
,

(1− z)−βF◦−β,m,−µ(1− z) =
(−1)m+1

πΓ( 1−m+β+µ
2

)Γ( 1−m+β−µ
2

)

×
(
T◦m,β,µ(z) + z−mT◦−m,β,−µ(z)

+
(

ln(z)− π tan
π

2
(m+ β − µ)− π tan

π

2
(m+ β − µ)

)
F◦m,β,µ(z)

)
(−z)

−1−m−β−µ
2 F◦µ,β,m(z−1) =(−1)m+1 cos

π

2
(m+ β − µ)

×
(
T◦m,β,µ(z) + z−mT◦−m,β,−µ(z) +

(
ln(−z)− π tan

π

2
(m+ β − µ)

)
F◦m,β,µ(z)

)
,

(−z)
−1−m−β+µ

2 F◦−µ,β,m(z−1) =(−1)m+1 cos
π

2
(m+ β + µ)

×
(
T◦m,β,µ(z) + z−mT◦−m,β,−µ(z) +

(
ln(−z)− π tan

π

2
(m+ β + µ)

)
F◦m,β,µ(z)

)
.

3.13 Jacobi polynomials

If −a = n = 0, 1, . . . , then hypergeometic functions are polynomials. We
will call them the Jacobi polynomials.

Following Subsect. 1.6, the Jacobi polynomials are defined by the
Rodriguez-type formula

Rα,βn (z) := (−1)n

n!
z−α(z − 1)−β∂nz z

α+n(z − 1)β+n.

Remark 3.3 In most of the literature, the Jacobi polynomials are slightly
different:

Pα,βn (z) := Rα,βn

(1− z
2

)
= (−1)nRβ,αn

(1 + z

2

)
.

The equation:

0 = F(−n, 1 + α+ β + n;β + 1; z, ∂z)P
α,β
n (z)

=
(
z(1− z)∂2

z +
(
(1 + α)(1− z)− (1 + β)z

)
∂z + n(n+ α+ β + 1)

)
Pα,βn (z).
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Generating functions:

(1 + t(1− z))α(1− tz)β =

∞∑
n=0

tnRα−n,β−nn (z),

(1 + zt)−1−α−β(1 + t)α =

∞∑
n=0

tnRα−n,βn (z),

(1 + (z − 1)t)−1−α−β(1− t)β =

∞∑
n=0

tnRα,β−nn (z).

Integral representations:

Rα,βn (z) =
1

2πi

∫
[0+]

(1 + (1− z)t)α+n(1− zt)β+nt−n−1dt

=
1

2πi

∫
[0+]

(1 + zt)−α−β−n−1(1 + t)α+nt−n−1dt

=
1

2πi

∫
[0+]

(1 + (z − 1)t)−α−β−n−1(1− t)β+nt−n−1dt.

Discrete symmetries:

Rα,βn (z) = (1− z)nRα,−1−α−β−2n
n

( z

z − 1

)
= (−1)nRβ,αn (1− z) = (−z)nRβ,−1−α−β−2n

n

(z − 1

z

)
= znR−1−α−β−2n,β

n

(1

z

)
= (z − 1)nR−1−α−β−2n,α

n

( 1

1− z

)
.
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Recurrence relations:

∂zR
α,β
n (z) = −(α+ β + n+ 1)Rα+1,β+1

n−1 (z),

(z(1− z)∂z − α(z − 1)− βz)Rα,βn (z) = (n+ 1)Rα−1,β−1
n+1 (z),

((1− z)∂z − β)Rα,βn (z) = −(β + n)Rα−1,β+1
n (z),

(z∂z + α)Rα,βn (z) = (β + n)Rα−1,β+1
n (z),

(z∂z − n)Rα,βn (z) = −(α+ n)Rα,β+1
n−1 (z),

(z(1− z)∂z + 1 + α+ n− (1 + α+ β + n)z)Rα,βn (z) = (n+ 1)Rα,β−1
n+1 (z),

(z∂z + 1 + α+ β + n)Rα,βn (z) = (1 + α+ β + n)Rα,β+1
n (z),

(z(1− z)∂z − n− β + nz)Rα,βn (z) = −(β + n)Rα,β−1
n (z),

((z − 1)∂z − n)Rα,βn (z) = (β + n)Rα+1,β
n−1 (z),

(z(1− z)∂z + α− (1 + α+ β + n)z)Rα,βn (z) = (n+ 1)Rα−1,β
n+1 (z),

((z − 1)∂z + 1 + n+ α+ β)Rα,βn (z) = (1 + n+ α+ β)Rα+1,β
n (z),

(z(1− z)∂z + α+ nz)Rα,βn (z) = (n+ α)Rα−1,β
n (z).

The first, second, resp. third integral representation is easily seen to
be equivalent to the first, second, resp. third generating function. The
first follows immediately from the Rodriguez-type formula.

The symmetries can be interpreted as a subset of Kummer’s table.
The first line corresponds to the symmetries of the solution regular at 0,
see (3.53) (or Subsubsect. 3.7.1). Note that from 4 expressions in (3.53)
only the first and the third survive, since n = −a should not change. The
second line corresponds to the solution regular at 1 (Subsubsect. 3.7.3),
finally the third line to the solution ∼ z−a = zn (Subsubsect. 3.7.5).

The differential equation, the Rodriguez-type formula, the first gener-
ating function, the first integral representation and the first pair of recur-
rence relations are special cases of the corresponding formulas of Subsect.
1.6.

Note that Jacobi polynomials are regular at 0, 1, and behave as zn

in infinity. Thus (up to coefficients) they coincide with the 3 standard
solutions. They have the following values at 0, 1 and the behavior at ∞:

Rα,βn (0) =
(α+ 1)n

n!
, Rα,βn (1) = (−1)n

(β + 1)n
n!

,

lim
z→∞

Rα,βn (z)

zn
= (−1)n

(α+ β + n+ 1)n
n!

.
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We have several alternative expressions for Jacobi polynomials:

Rα,βn (z) := lim
ν→n

(−1)n(ν − n)FI
α,β,2ν+α+β+1(z) =

(α+ 1)n
n!

Fα,β,2n+α+β+1(z)

=
Γ(α+ 1 + n)

Γ(α+ 1)Γ(n+ 1)
F (−n, n+ α+ β + 1;α+ 1; z)

=

n∑
j=0

(1 + α+ j)n−j(1 + α+ β + n)j
j!(n− j)! (−z)j .

One way to derive the first of the above identities is to use integral
representation (3.51). Using that a is an integer we can replace the open
curve [1, (0, z)+, 1] with a closed loop [∞−]:

lim
ν→n

(−1)n(ν − n)FI
α,β,2ν+α+β+1(z)

= lim
ν→n

sin νπ

π
FI
α,β,2ν+α+β+1(z)

=
1

2πi

∫
[∞−]

(−s)β+n(1− s)α+n(z − s)−1−α−β−nds.

Then, making the substitions s = z − 1
t
, s = zt, resp. s = (z − 1)t we

obtain the 1st, 2nd, resp. 3rd integral representation.
Additional identities valid in the degenerate case:

Rα,βn (z) =
(n+ 1)α

(β + n+ 1)α
(−z)−αR−α,βn+α (z), α ∈ Z;

Rα,βn (z) =
(n+ 1)β

(α+ n+ 1)β
(1− z)−βRα,−βn+β (z), β ∈ Z;

Rα,βn (z) = (−z)−α(1− z)−βR−α,−βn+α+β(z), α, β ∈ Z.

There is a region where Jacobi polynomials are zero. This happens iff
α, β ∈ Z and α, β are in the triangle

0 ≤ α+ n,

0 ≤ β + n,

0 ≤ −α− β − n− 1. (3.60)

In the analysis of symmetries of Jacobi polynomials it is useful to go
back to the Lie-algebraic parameters, more precisely, to set µ := −α −
β − 2n − 1. Then (3.60) acquires a more symmetric form, since we can
replace its last condition by

0 ≤ µ+ n.

One can distinguish 3 strips where Jacobi polynomials have special
properties. Note that the intersection of the strips below is precisely the
triangle described in (3.60).

1. µ ∈ Z and −n ≤ µ ≤ −1 or, equivalently, α + β ∈ Z and −2n ≤
α+ β ≤ −n− 1. Then Rα,βn = 0 or

degRα,βn = µ+ n = −α− β − n− 1.
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2. α ∈ Z and −n ≤ α ≤ −1. Then Rα,βn = 0 or

Rα,βn = z−αW, W not divisible by z.

3. β ∈ Z and −n ≤ β ≤ −1. Then Rα,βn = 0 or

Rα,βn = (z − 1)−βV, V not divisible by z − 1.

These regions are presented in the following picture:

(-n,-1)

(-1,-n)(-n,-n)

Finally Jacobi polynomials satisfy some identities related to Subsect.
3.10. An additional generating function:

2α+βr−1(1− t+ r)−α(1 + t+ r)−β =

∞∑
n=0

tnRα,βn (z),

where r =
√

(1− t)2 + 4zt. (3.61)

Additional recurrence relations:(
(n+ α+ β + 1)

(
(n+ β + 1)− (2n+ α+ β + 2)z

)
+(2n+ α+ β + 2)z(1− z)∂z

)
Rα,βn (z) = (n+ α+ β + 1)(n+ 1)Rα,βn+1(z),

(
n
(
(n+ α)− (2n+ α+ β)z

)
−(2n+ α+ β)z(1− z)∂z

)
Rα,βn (z) = (n+ α)(n+ β)Rα,βn−1(z).

3.14 Special cases

Beside the polynomial and degenerate cases, the hypergeometric equation
has a number of other special cases. In their description most of the time
we will use the Lie-algebraic parameters, which are here more convenient
than the classical parameters.
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3.14.1 Gegenbauer equation through an affine transforma-
tion

Consider a hypergeometric equation whose two parameters coincide up to
a sign. After applying an appropriate symmetry we can assume that they
are at the first and second place, and that they are equal to one another.
In other words, α = β. A simple affine transformation (6.96) can be then
applied to obtain a reflection invariant equation called the Gegenbauer
equation. We study it separately in Sect. 6.

3.14.2 Gegenbauer equation through a quadratic transfor-
mation

Hypergeometric equations with one of the parameters equal to 1
2

or − 1
2

also enjoy special properties. After applying, if needed, one of the sym-
metries, we can assume that µ = ± 1

2
. Then identity (6.98) or (6.99) leads

to the Gegenbauer equation.

3.14.3 Chebyshev equation

Even more special properties have equations with a pair of parameters ± 1
2
.

After applying one of the symmetries we can assume that α = β = 1
2
.

Thus we are reduced to the Chebyshev equation of the first kind; see
(6.112). Another option is to reduce it to the Chebyshev equation of the
second kind, which corresponds to α = β = − 1

2
; see (6.113).

3.14.4 Legendre equation

Let L be the sublattice of Z3 consisting of points whose sum of coordinates
is even. It is a sublattice of Z3 of degree 2. By using recurrence relations
of Subsect. 3.9 we can pass from hypergeometric functions with given
Lie-algebraic parameters (α, β, µ) to parameters from (α, β, µ) + L.

This is especially useful in the degenerate case, when some of the pa-
rameters are integers. In particular, if two of the parameters are integers,
by applying recurrence relations we can make both of them zero. By ap-
plying an appropriate symmetry we can assume that α = β = 0. Thus we
obtain the Legendre equation, see (6.111).

3.14.5 Elementary solutions

One can easily check that

F (a, b; b; z) = Fb−1,a,b−a(z) = (1− z)−a.

Therefore, using Kummer’s table and recurrence relations we see that if

ε1α+ ε2β + ε3µ is an odd integer for some ε1, ε2, ε3 ∈ {−1, 1} (3.62)

then Fα,β,µ is an elementary function involving power functions, but not
logarithms.
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3.14.6 Fully degenerate case

An interesting situation arises if α, β, µ ∈ Z, that is, we have the degen-
erate case at all singular points. We can distinguish two situations:

1. If α + β + µ is even, by walking on the lattice L we can reduce
ourselves to the equation for the complete elliptic integral, which
corresponds to α = β = µ = 0.

2. If α + β + µ is odd, by walking on the lattice L we can reduce
ourselves to the equation for the Legendre polynomial of degree 0,
which corresponds to α = β = 0, µ = 1. This equation is solved by

F0,0,1(z) = F (0, 1; 1; z) = 1,

z−1F1,0,0(1− z−1) = z−1F (1, 1; 2; 1− z−1) = log(z − 1)− log z,

where we used Kummer’s table and

F (1, 1; 2;w) = −w−1 log(1− w).

4 The 1F1 and 2F0 equation

4.1 The 1F1 equation

Let a, c ∈ C. The confluent or the 1F1 equation is given by the operator

F(a; c; z, ∂z) := z∂2
z + (c− z)∂z − a. (4.63)

This equation is a limiting case of the hypergeometric equation:

lim
b→∞

1

b
F(a, b; c; z/b, ∂z/b) = F(a; c; z, ∂z).

4.2 The 2F0 equation

Parallel to the 1F1 equation we will consider the 2F0 equation, given by
the operator

F(a, b;−; z, ∂z) := z2∂2
z + (−1 + (1 + a+ b)z)∂z + ab, (4.64)

where a, b ∈ C. This equation is another limiting case of the hypergeo-
metric equation:

lim
c→∞

F (a, b; c; cz, ∂(cz)) = −F (a, b;−; z, ∂z). (4.65)

4.3 Equivalence of the 1F1 and 2F0 equation

Note that

F(a, b;−; z, ∂z) = w2∂2
w + (−w2 + (1− a− b)w)∂w + ab

where w = −z−1, z = −w−1. Moreover,

(−z)a+1F(a, b;−; z, ∂z)(−z)−a = F(a; 1 + a− b;w, ∂w). (4.66)

Hence the 2F0 equation is equivalent to the 1F1 equation. We will treat
the 1F1 equation as the principal one.

The relationship between the parameters is

c = 1 + a− b, b = 1 + a− c.
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4.4 Lie-algebraic parameters

Instead of the classical parameters we usually prefer the Lie-algebraic
parameters α, θ:

α := c− 1 = a− b, θ := −c+ 2a = −1 + a+ b;

a = 1+α+θ
2

, b = 1−α+θ
2

, c = 1 + α.

In these parameters the 1F1 operator (4.63) becomes

Fθ,α(z, ∂z) = z∂2
z + (1 + α− z)∂z −

1

2
(1 + θ + α),

and the 2F0 operator (4.64) becomes

F̃θ,α(z, ∂z) = z2∂2
z + (−1 + (2 + θ)z)∂z +

1

4
(1 + θ)2 − 1

4
α2.

The Lie-algebraic parameters have an interesting interpretation in
terms of a natural basis of a “Cartan algebra” of the Lie algebra sch(2)
[DM].

4.5 Integral representations

Two kinds of integral representations of solutions to the 1F1 equation are
described below:

Theorem 4.1 1. Let [0, 1] 3 t 7→ γ(t) satisfy

ta−c+1et(t− z)−a−1
∣∣∣γ(1)

γ(0)
= 0.

Then

F(a; c; z, ∂z)

∫
γ

ta−cet(t− z)−adt = 0. (4.67)

2. Let [0, 1] 3 t 7→ γ(t) satisfy

e
z
t t−c(1− t)c−a

∣∣∣γ(1)

γ(0)
= 0.

Then

F(a; c; z, ∂z)

∫
γ

e
z
t t−c(1− t)c−a−1dt = 0. (4.68)

Proof. We check that for any contour γ the l.h.s of (4.67) and (4.68)
equal

−a
∫
γ

(
∂tt

a−c+1et(t− z)−a−1
)

dt,

−
∫
γ

(
∂te

z
t t−c(1− t)c−a

)
dt

respectively. 2

For solutions of the 2F0 equation we also have two kinds of integral
representations:
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Theorem 4.2 Let [0, 1] 3 t 7→ γ(t) satisfy

e−
1
t tb−a−1(t− z)−b−1

∣∣∣γ(1)

γ(0)
= 0.

Then

F(a, b;−; z, ∂z)

∫
γ

e−
1
t tb−a−1(t− z)−bdt (4.69)

Proof. We check that for any contour γ (4.69) equals

−b
∫
γ

(
∂te
− 1
t tb−a−1(t− z)−b−1

)
dt.

2

The second integral representation is obtained if we interchange a and
b.

4.6 Symmetries

The following operators equal Fθ,α(w, ∂w) for the appropriate w:

w = z :
Fθ,α(z, ∂z),

z−α Fθ,−α(z, ∂z) zα,
w = −z :

−e−z F−θ,α(z, ∂z) ez,

−e−zz−α F−θ,−α(z, ∂z) ezzα.

The third symmetry is sometimes called the 1st Kummer transformation.
Symmetries of the 1F1 operators can be interpreted as the “Weyl

group” of the Lie algebra sch(2).

4.7 Factorizations and commutation relations

There are several ways of factorizing the 1F1 operator.

Fθ,α =
(
z∂z + 1 + α− z

)
∂z −

1

2
(θ + α+ 1),

= ∂z
(
z∂z + α− z

)
− 1

2
(θ + α− 1),

=
(
z∂z + 1 + α

)(
∂z − 1

)
+

1

2
(−θ + α+ 1),

=
(
∂z − 1

)(
z∂z + α

)
+

1

2
(−θ + α− 1);

zFθ,α =
(
z∂z +

1

2
(θ + α− 1)

)(
z∂z +

1

2
(−θ + α+ 1)− z

)
−1

4
(−θ + α+ 1)(θ + α− 1),

=
(
z∂z +

1

2
(−θ + α− 1)− z

)(
z∂z +

1

2
(θ + α+ 1)

)
−1

4
(−θ + α− 1)(θ + α+ 1).
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One can use the factorizations to derive the following commutation
relations:

∂z Fθ,α
= Fθ+1,α+1 ∂z,

(z∂z + α− z) Fθ,α
= Fθ−1,α−1 (z∂z + α− z),

(z∂z + α) Fθ,α
= Fθ+1,α−1 (z∂z + α),

(∂z − 1) Fθ,α,
= Fθ−1,α+1 (∂z − 1);(

z∂z + 1
2
(θ + α+ 1)

)
zFθ,α

= zFθ+2,α

(
z∂z + 1

2
(θ + α+ 1)

)
,(

z∂z + 1
2
(−θ + α+ 1)− z) zFθ,α

= zFθ−2,α

(
z∂z + 1

2
(−θ + α+ 1)− z

)
.

Each of these commutation relations can be associated with a “root” of
the Lie algebra sch(2).

4.8 Canonical forms

The natural weight of the 1F1 operator equals zαe−z, so that

Fθ,α = z−αez∂zz
α+1e−z∂z −

1

2
(1 + α+ θ).

The balanced form of the 1F1 operator is

z
α
2 e−

z
2Fθ,αz−

α
2 e

z
2 = ∂zz∂z −

z

4
− θ

2
− α2

4z
.

Remark 4.3 We have

2z
α
2
−1e−

z
2F0,α(z, ∂z)z

−α
2 e

z
2 = ∂2

w +
1

w
∂w − 1− α2

w2
, z = 2w;

2iz
α
2
−1e−

z
2F0,α(z, ∂z)z

−α
2 e

z
2 = ∂2

u +
1

u
∂u + 1− α2

u2
, z = 2iu.

which are the operators for the modified Bessel and Bessel equations. Thus
both these equations essentially coincide with the balanced form of the 1F1

equation with θ = 0. We will discuss them further in Rem. 5.3.

The Schrödinger form of the 1F1 equation is

z
α
2
− 1

2 e−
z
2Fθ,αz−

α
2
− 1

2 e
z
2 = ∂2

z −
1

4
− θ

2z
+
(1

4
− α2

4

) 1

z2
. (4.70)

46



Remark 4.4 In the literature the equation given by (4.70) is often called
the Whittaker equation. Its standard form is

∂2
z −

1

4
+
κ

z
+
(1

4
− µ2

) 1

z2
.

Thus, κ, µ correspond to − θ
2

, α
2

.

The natural weight of the 2F0 operator equals zθe
1
z , so that

F̃θ,α = z−θe−
1
z ∂zz

θ+2e
1
z ∂z +

(1 + θ)2

4
− α2

4
.

The balanced form of the 2F0 operator is

z
θ
2 e

1
2z F̃θ,αz−

θ
2 e−

1
2z = ∂zz

2∂z −
1

4z2
+

θ

2z
+

1− α2

4
. (4.71)

The symmetries α 7→ −α, as well as (z, θ) 7→ (−z,−θ) are obvious in
both balanced forms and in the Whittaker equation.

4.9 The 1F1 function

Equation (4.63) has a regular singular point at 0. Its indices at 0 are
equal 0, 1− c. For c 6= 0,−1,−2, . . . , the unique solution of the confluent
equation analytic at 0 and equal to 1 at 0 is called the 1F1 hypergeometric
function or the confluent function. It is equal to

F (a; c; z) :=

∞∑
n=0

(a)n
(c)n

zn

n!
.

It is defined for c 6= 0,−1,−2, . . . . Sometimes it is more convenient to
consider the function

F(a; c; z) :=
F (a; c; z)

Γ(c)
=

∞∑
n=0

(a)n
Γ(c+ n)

zn

n!
.

Other useful functions proportional to 1F1 are

FI(a; c; z) :=
Γ(a)Γ(c− a)

Γ(c)
F (a; c; z),

F◦(a; c; z) :=
Γ(a)

Γ(c)
F (a; c; z).

The confluent function can be obtained as the limit of the hypergeo-
metric function:

F (a; c; z) = lim
b→∞

F (a, b; c; z/b).

It satisfies the so-called Kummer’s identity:

F (a; c; z) = ezF (c− a; c;−z) . (4.72)

Integral representations for all parameters

1

2πi

∫
]−∞,(0,z)+,−∞[

ta−cet(t− z)−adt = F(a; c; z),
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for Rea > 0, Re(c− a) > 0∫
[1,+∞[

e
z
t t−c(t− 1)c−a−1dt = FI(a; c; z),

and for Re(c− a) > 0

1

2πi

∫
[1,0+,1]

e
z
t (−t)−c(−t+ 1)c−a−1dt =

sinπa

π
FI(a; c; z). (4.73)

In the Lie-algebraic parameters:

Fθ,α(z) := F
(1 + α+ θ

2
; 1 + α; z

)
,

Fθ,α(z) := F
(1 + α+ θ

2
; 1 + α; z

)
=

1

Γ(α+ 1)
Fθ,α(z),

FI
θ,α(z) := FI

(1 + α+ θ

2
; 1 + α; z

)
=

Γ( 1+α+θ
2

)Γ( 1+α−θ
2

)

Γ(α+ 1)
Fθ,α(z),

F◦θ,α(z) := F◦
(1 + α+ θ

2
, 1 + α; z),

=
Γ( 1+α+θ

2
)

Γ(α+ 1)
Fθ,α(z).

Remark 4.5 In the literature the 1F1 function is often called Kummer’s
function and denoted

M(a, c, z) := F (a; c; z).

One also uses the Whittaker function of the 1st kind

Mκ,µ(z) := exp(−z/2)zµ+1/2M
(
µ− κ+

1

2
, 1 + 2µ, z

)
,

which solves the Whittaker equation.

4.10 The 2F0 function

We define, for z ∈ C\[0,+∞[,

F (a, b;−; z) := lim
c→∞

F (a, b; c; cz),

where | arg c−π| < π− ε, ε > 0. It extends to an analytic function on the
universal cover of C\{0} with a branch point of an infinite order at 0. It
has the following asymptotic expansion:

F (a, b;−; z) ∼
∞∑
n=0

(a)n(b)n
n!

zn, | arg z − π| < π − ε.

48



Sometimes instead of 2F0 it is useful to consider the functions

F I(a, b;−; z) := Γ(a)F (a, b;−; z),

F ◦(a, b;−; z) := Γ(a)Γ(b)F (a, b;−; z).

We have an integral representation for Rea > 0∫ ∞
0

e−
1
t tb−a−1(t− z)−bdt = F I(a, b;−; z), z 6∈ [0,∞[,

and without a restriction on parameters

1

2πi

∫
[0,z+,0]

e−
1
t tb−a−1(t− z)−bdt =

sinπa

π
F I(a, b;−; z), z 6∈ [0,∞[.

When we use the Lie-algebraic parameters, we denote the 2F0 function
by F̃ . The tilde is needed to avoid the confusion with the 1F1 function:

F̃θ,α(z) := F
(1 + α+ θ

2
,

1− α+ θ

2
;−; z

)
,

F̃ I
θ,α(z) := F I

(1 + α+ θ

2
,

1− α+ θ

2
;−; z

)
= Γ

(1 + α+ θ

2

)
F̃θ,α(z),

F̃ ◦θ,α(z) := F ◦
(1 + α+ θ

2
,

1− α+ θ

2
;−; z

)
= Γ

(1 + α+ θ

2

)
Γ
(1− α+ θ

2

)
F̃θ,α(z).

Remark 4.6 In the literature the 2F0 function is seldom used. Instead
one uses Tricomi’s function

U(a, c, z) := z−aF (a, 1 + a− c;−;−z−1).

It is one of solutions of the 1F1 equation, which we will discuss in Sub-
subsect 4.11.3. One also uses the Whittaker function of the 2nd kind

Wκ,µ(z) := exp(−z/2)zµ+1/2U
(
µ− κ+

1

2
,1 + 2µ; z

)
,

which solves the Whittaker equation.

4.11 Standard solutions

The 1F1 equation has two singular points. 0 is a regular singular point and
with each of its two indices we can associate the corresponding solution. ∞
is not a regular singular point. However we can define two solutions with
a simple behavior around ∞. Altogether we obtain 4 standard solutions,
which we will describe in this subsection.

It follows by Thm 4.1 that, for appropriate contours γ1, γ2, the inte-
grals ∫

γ1

t
−1+θ−α

2 et(t− z)
−1−θ−α

2 dt,

∫
γ2

e
z
t t−1−α(t− 1)

−1−θ+α
2 dt
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solve the 1F1 equation.
In the first integral the natural candidates for the endpoints of the

intervals of integration are {−∞, 0, z}. We will see that all 4 standard
solutions can be obtained as such integrals.

In the second integral the natural candidates for endpoints are {1, 0−
0,∞}. (Recall from Subsect 2.3 that 0−0 denotes 0 approached from the
left). The 4 standard solutions can be obtained also from the integrals
with these endpoints.

4.11.1 Solution ∼ 1 at 0

For α 6= −1,−2, . . . , the only solution ∼ 1 around 0 is

Fθ,α(z) = ezF−θ,α(−z).

The first integral representation is valid for all parameters:

1

2πi

∫
]−∞,(0,z)+−∞[

t
−1+θ−α

2 et(t− z)
−1−θ−α

2 dt = Fθ,α(z).

The second is valid for Re(1 + α) > |Reθ|:∫
[1,+∞[

e
z
t t−1−α(t− 1)

−1−θ+α
2 dt = FI

θ,α(z).

4.11.2 Solution ∼ z−α at 0

If α 6= 1, 2, . . . , then the only solution of the confluent equation behaving
as z−α at 0 is equal to

z−αFθ,−α(z) = z−αezF−θ,−α(−z).

Integral representation for Re(1− α) > |Reθ|:∫ z

0

t
−1+θ−α

2 et(z − t)
−1−θ−α

2 dt = z−αFI
θ,−α(z), z 6∈]−∞, 0];∫ 0

z

(−t)
−1+θ−α

2 et(t− z)
−1−θ−α

2 dt = (−z)−αFI
θ,−α(z), z 6∈ [0,∞[;

and without a restriction on parameters:

1

2πi

∫
(0−0)+

e
z
t t−1−α(1− t)

−1−θ+α
2 dt = z−αFθ,−α(z), Rez > 0.

4.11.3 Solution ∼ z−a at +∞
The following solution to the confluent equation behaves as ∼ z−a =

z−
1+θ+α

2 at +∞ for | arg z| < π − ε:

z
−1−θ−α

2 F̃θ,±α(−z−1).
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Integral representations for Re(1 + θ − α) > 0:∫ 0

−∞
(−t)

−1+θ−α
2 et(z − t)

−1−θ−α
2 dt = z

−1−θ−α
2 F̃ I

θ,α(−z−1), z 6∈]−∞, 0];

and, for Re(1 + θ + α) > 0:∫ 0

−∞
e
z
t (−t)−1−α(1− t)

−1−θ+α
2 dt = z

−1−θ−α
2 F̃ I

θ,−α(−z−1), Rez > 0.

4.11.4 Solution ∼ (−z)b−1ez at −∞
The following solution to the confluent equation behaves as∼ (−z)b−1ez =

(−z)
−1+θ−α

2 ez at ∞ for | arg z − π| < π − ε:

ez(−z)
−1+θ−α

2 F̃−θ,±α(z−1).

Integral representation for Re(1− θ − α) > 0:∫ z

−∞
(−t)

−1+θ−α
2 et(z − t)

−1−θ−α
2 dt = ez(−z)

−1+θ−α
2 F̃ I

−θ,−α(z−1), z 6∈ [0,∞[;

and for Re(1− θ + α) > 0:∫ 1

0

e
z
t t−1−α(1− t)

−1−θ+α
2 dt = ez(−z)

−1+θ−α
2 F̃ I

−θ,α(z−1), Rez < 0.

4.12 Connection formulas

We decompose standard solutions in pair of solutions with a simple be-
havior around zero.

z
−1−θ−α

2 F̃θ,±α(−z−1) =
π

sinπ(−α)Γ
(

1+θ−α
2

)Fθ,α(z)

+
π

sinπαΓ
(

1+θ+α
2

)z−αFθ,−α(z),

ez(−z)
−1+θ−α

2 F̃−θ,±α(z−1) =
π

sinπ(−α)Γ
(

1−θ−α
2

)Fθ,α(z)

+
π

sinπαΓ
(

1−θ+α
2

) (−z)−αFθ,−α(z).

For Im(z) > 0, one can rewrite these relations using F◦ and F̃ ◦:
z
−1−θ−α

2 F̃ ◦θ,±α(−z−1)

πez(−z)
−1+θ−α

2

Γ( 1−θ+α
2

)Γ( 1−θ−α
2

)
F̃ ◦−θ,±α(z−1)



=
π

sinπα

 −1 e−iπ
2
α

− cos π
2

(θ + α) eiπ
2
α cos π

2
(θ − α)

[ F◦θ,α(z)

(−iz)−αF◦θ,−α(z)

]
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The determinant of the matrix (with prefactor) is − ie
−iπ

2
θ

sinπα
. Hence the

inverse relation is[
F◦θ,α(z)

(−iz)−αF◦θ,−α(z)

]

=
ieiπ

2
θ

π

eiπ
2
α cos π

2
(θ − α) −e−iπ

2
α

cos π
2

(θ + α) −1


 z

−1−θ−α
2 F̃ ◦θ,±α(−z−1)

πez(−z)
−1+θ−α

2

Γ( 1−θ+α
2

)Γ( 1−θ−α
2

)
F̃ ◦−θ,±α(z−1)



4.13 Recurrence relations

The following recurrence relations follow easily from the commutation
relations of Subsect. 4.7:

∂zFθ,α(z) =
1 + θ + α

2
Fθ+1,α+1(z),

(z∂z + α− z) Fθ,α(z) = Fθ−1,α−1(z),

(z∂z + α) Fθ,α(z) = Fθ+1,α−1(z),

(∂z − 1) Fθ,α(z) =
−1 + θ − α

2
Fθ−1,α+1(z),

(
z∂z +

1 + θ + α

2

)
Fθ,α(z) =

1 + θ + α

2
Fθ+2,α(z),(

z∂z +
1− θ + α

2
− z
)

Fθ,α(z) =
1− θ + α

2
Fθ−2,α(z).

The recurrence relations for the 2F0 functions are similar:(
z∂z +

1 + θ + α

2

)
F̃I
θ,α(z) =

1 + θ + α

2
F̃I
θ+1,α+1(z),(

z2∂z − 1 +
1 + θ − α

2
z

)
F̃I
θ,α(z) = −F̃I

θ−1,α−1(z),

(
z∂z +

1 + θ − α
2

)
F̃I
θ,α(z) = F̃I

θ+1,α−1(z),(
z2∂z − 1 +

1 + θ + α

2
z

)
F̃I
θ,α(z) =

1− θ + α

2
F̃I
θ−1,α+1(z),

∂zF̃
I
θ,α(z) =

1+θ+α

2
F̃I
θ+2,α(z),

(z2∂z − 1− θz)F̃I
θ,α(z) =

1− θ + α

2
F̃I
θ−2,α(z).
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4.14 Additional recurrence relations

There exists an additional pair of recurrence relations:(
(1−α)z2∂z+

(1−α)(1− α+ θ)

2
z+
−1−θ+α

2

)
F̃θ,α(z) =

−1−θ+α
2

F̃θ,α−2(z),

(
(1+α)z2∂z+

(1+α)(1 + α+ θ)

2
z+
−1−θ−α

2

)
F̃θ,α(z) =

−1−θ−α
2

F̃θ,α+2(z).

4.15 Degenerate case–regular solutions

α = m ∈ Z is the degenerate case of the confluent equation at 0. We have
then

F(a; 1 +m; z) =
∑

n=max(0,−m)

(a)n
n!(m+ n)!

zn.

This easily implies the identity

(a−m)mF(a; 1 +m; z) = z−mF(a−m; 1−m; z). (4.74)

Thus the two standard solutions determined by the behavior at zero are
proportional to one another. Equivalently, in the two notations that we
use, (4.74) can be rewritten as

F◦(a; 1 +m; z) = z−mF◦(a−m; 1−m; z),

F◦θ,m(z) = z−mF◦θ,−m(z). (4.75)

One can also see the degenerate case in the integral representations:

1

2πi

∫
[(z,0)+]

et(1− z/t)−at−m−1dt = F−1+2a−m,m(z),

1

2πi

∫
[(0,1)+]

ez/t(1− t)−at−m−1dt = z−mF−1+2a+m,−m(z).

The corresponding generating functions are

et(1− z/t)−a =
∑
m∈Z

tmF−1+2a−m,m(z),

ez/t(1− t)−a =
∑
m∈Z

tmz−mF−1+2a+m,−m(z).

4.16 Degenerate case–logarithmic solutions

The solutions determined by the behavior at ∞ can be expanded near
zero. These expansions involve logarithmic terms:
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z
−1−θ−α

2 F̃θ,m(−z−1) =
(−1)m+1

Γ( 1+θ−m
2

)

(
m∑
k=1

(−1)k−1
(k − 1)!

(
1+m+θ

2

)
−k

(m− k)!
z−k

+

∞∑
j=0

( 1+m+θ
2

)j

(m+ j)!j!

(
ln(z) + ψ

(1 +m+ θ

2
+ j
)
− ψ(j + 1)− ψ(j +m+ 1)

)
zj
)
,

ez(−z)
−1+θ−α

2 F̃−θ,m(z−1) =
(−1)m+1

Γ( 1−θ−m
2

)

(
m∑
k=1

(−1)k−1
(k − 1)!

(
1+m+θ

2

)
−k

(m− k)!
z−k

+

∞∑
j=0

( 1+m+θ
2

)j

(m+ j)!j!

(
ln(z) + ψ

(1−m− θ
2

− j
)
− ψ(j + 1)− ψ(j +m+ 1)

)
zj
)
.

Let us derive this from the connection formulas

z
−1−θ−α

2 F̃ ◦θ,±α(−z−1) =
π

sinπα

(
− F◦θ,α(z) + z−αF◦θ,−α(z)

)
,

ez(−z)
−1+θ−α

2

Γ( 1−θ+α
2

)Γ( 1−θ−α
2

)
F̃ ◦−θ,±α(z−1) =

π

sinπα

(
− cos

π

2
(θ + α)F◦θ,α(z)

+ cos
π

2
(θ − α)(−z)−αF◦θ,−α(z)

)
.

Introduce
T◦θ,α(z) := ∂αF◦θ,α(z)

Applying the de l’Hospital formula we obtain for m ∈ Z

z
−1−θ−α

2 F̃ ◦θ,m(−z−1) =(−1)m+1
(
T◦θ,m(z) + z−mT◦θ,−m(z)

+ ln(z)F◦θ,m(z)
)

(4.76)

πez(−z)
−1+θ−m

2

Γ( 1−θ+m
2

)Γ( 1−θ−m
2

)
F̃ ◦−θ,m(z−1) = (−1)m+1 cos

π

2
(θ +m)

(
T◦θ,m(z) + z−mT◦θ,−m(z)

+
(

ln(z)− π tan
π

2
(θ +m)

)
F◦θ,m(z)

)
. (4.77)

Then we divide (4.76) by Γ( 1+θ+m
2

)Γ( 1+θ−m
2

) and (4.77) by π.

4.17 Laguerre polynomials

1F1 functions for −a = n = 0, 1, 2, . . . are polynomials. They are known
as Laguerre polynomials.

Following Subsect. 1.6, they can be defined by the following version
of the Rodriguez-type formula:

Lαn(z) :=
1

n!
ezz−α∂nz e−zzn+α.

The differential equation:

F(−n;α+ 1; z, ∂z)L
α
n(z)

=
(
z∂2
z + (1 + α− z)∂z + n

)
Lαn(z) = 0.
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Generating functions:

e−tz(1 + t)α =
∞∑
n=0

tnLα−nn (z),

(1− t)−α−1 exp tz
t−1

=
∞∑
n=0

tnLαn(z).

Integral representations:

Lαn(z) = 1
2πi

∫
[0+]

e−tz(1 + t)α+nt−n−1dt

= 1
2πi

∫
[0+]

(1− t)−α−1 exp( tz
t−1

)t−n−1dt.

Expression in terms of the Bessel polynomials (to be defined in the next
subsection):

Lαn(z) = znB−2n−α−1
n (−z−1).

Recurrence relations:

∂zL
α
n(z) = −Lα+1

n−1(z),

(z∂z + α− z)Lαn(z) = (n+ 1)Lα−1
n+1(z),

(z∂z + α)Lαn(z) = (α+ n)Lα−1
n (z),

(∂z − 1)Lαn(z) = −Lα+1
n (z),

(z∂z − n)Lαn(z) = −(n+ α)Lαn−1(z),

(z∂z + n+ α+ 1− z)Lαn(z) = (n+ 1)Lαn+1(z).

The first, resp. second integral representation is easily seen to be
equivalent to the first, resp. second generating function.

The differential equation, the Rodriguez-type formula, the first gener-
ating function, the first integral representation and the first pair of recur-
rence relations are special cases of the corresponding formulas of Subsect.
1.6.

We have several alternative expressions for Laguerre polynomials:

Lαn(z) = lim
ν→n

(−1)n(ν − n)FI
1+α−2ν,α(z) =

(1 + α)n
n!

F (−n; 1 + α; z)

= zn lim
ν→n

(ν − n)F̃I
1+α−2ν,α(z) =

1

n!
(−z)nF (−n,−α− n;−;−z−1)

=

n∑
j=0

(1 + α+ j)n−j
j!(n− j)! (−z)j .

Let us derive the above identity using the integral representation (4.73).
Using that a is an integer we can replace the open curve [1, 0+, 1] with a
closed loop [∞−]:

lim
ν→n

(−1)n(ν − n)FI
1+α−2ν,α(z)

= lim
ν→n

sin νπ

π
FI

1+α−2ν,α(z)

=
1

2πi

∫
[∞−]

e
z
s (−s)−1−α(1− s)α+nds.
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Then we set s = − 1
t
, resp. s = 1− 1

t
to obtain the integral representations.

The value at 0 and behavior at ∞:

Lαn(0) =
(α+ 1)n

n!
, lim

z→∞

Lαn(z)

zn
=

(−1)n

n!
.

An additional identity valid in the degenerate case:

Lαn(z) = (n+ 1)α(−z)−αL−αn+α(z), α ∈ Z.

4.18 Bessel polynomials

The 2F0 functions for −a = n = 0, 1, 2, . . . are polynomials. Appropri-
ately normalized they are called Bessel polynomials. They are seldom
used in the literature, because they do not form an orthonormal basis in
any weighted space and they are easily expressed in terms of Laguerre
polynomials.

Following Subsect. 1.6, they can be defined by the following version
of the Rodriguez-type formula:

Bθn(z) := 1
n!
z−θez

−1

∂nz e−z
−1

zθ+2n.

Differential equation:

F(−n, n+ θ + 1;−; ∂z, z)B
θ
n(z)

=
(
z2∂2

z + (−1 + (2 + θ)z)∂z −
1

2
n(1 + θ − α)

)
Bθn(z) = 0.

Generating functions:

e−t(1− tz)−θ−1 =
∞∑
n=0

tnBθ−nn (z),

(1 + tz)θ exp( −t
1+tz

) =
∞∑
n=0

tnBθ−2n
n (z).

Integral representations:

Bθn(z) = 1
2πi

∫
[0+]

et(1− tz)−θ−n−1t−n−1dt

= 1
2πi

∫
[0+]

(1 + tz)θ+2n exp( −t
1+tz

)t−n−1dt.

Expression in terms of the Laguerre polynomials:

Bθn(z) = (−z)nL−θ−2n−1
n (−z−1).

Recurrence relations:

(z∂z + n+ θ + 1)Bθn(z) = (n+ θ + 1)Bθ+1
n (z),(

z2∂z − 1− nz
)
Bθn(z) = −Bθ−1

n (z),

(z∂z − n)Bθn(z) = −Bθ+1
n−1(z),(

z2∂z − 1 + (n+ θ + 1)z
)
Bθn(z) = −(n+ 1)Bθ−1

n+1(z),

∂zB
θ
n(z) = −(n+ θ + 1)Bθ+2

n−1(z),(
z2∂z − 1− θz

)
Bθn(z) = −(n+ 1)Bθ−2

n+1(z).
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Most of the above identities can be directly obtained from the corre-
sponding identities about Laguerre polynomials.

The differential equation, the Rodriguez-type formula, the second gen-
erating function, the second integral representation and the last pair of
recurrence relations are special cases of the corresponding formulas of
Subsect. 1.6.

We have several alternative expressions for Bessel polynomials:

Bθn(z) = lim
ν→n

(−1)n(ν − n)F̃I
θ,−1−θ−2n(z) =

1

n!
F (−n, n+ θ + 1;−; z)

= zn lim
ν→n

(ν − n)FI
θ,−1−θ−2ν(−z−1)

=
(1 + θ + n)n

n!
(−z)nF (−n;−θ − 2n;−z−1).

The value at zero and behavior at ∞:

Bθn(0) =
1

n!
, lim

z→∞

Bθn(z)

zn
=

(−1)n(n+ θ + 1)n
n!

.

Both for Laguerre and Bessel polynomials there exist additional recur-
rence relations and a generating function. Below we give a pair of such
recurrence relations for Bessel polynomials.(

(2 + 2n+ θ)z2∂z + (2 + 2n+ θ)(n+ θ + 1)z

−(n+ θ + 1)
)
Bθn(z) = −(n+ 1)(n+ θ + 1)Bθn+1(z),

(
− (2n+ θ)z2∂z + (2n+ θ)nz + n

)
Bθn(z) = Bθn−1(z).

They correspond to an additional generating function

2θr−1(1 + r)−θ exp( 2t
1+r

) =
∞∑
n=0

tnBθn(z),

where r :=
√

1 + 4zt.

4.19 Exponential integral

The case a = 0, c = 1, equivalently, a = b = 0, equivalently, θ = −1, α = 0,
is special. It corresponds to Laguerre and Bessel polynomial of degree
zero. We have

F−1,0 = z∂2
z + (1− z)∂z, (4.78)

and F−1,0(z) = 1. Similarly,

F̃−1,0 = z2∂2
z + (−1 + z)∂z, (4.79)

and F̃−1,0(z) = 1. The fourth standard solution of the confluent equation
is expressed in terms of the so-called exponential integral defined as

E1(z) :=

∫ ∞
z

e−t
dt

t
(4.80)

=

∫ ∞
1

e−zu
du

u
=

∫ 1

0

e−
z
s

ds

s
. (4.81)
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If we introduce

Ein(z) :=

∫ z

0

(1− e−t)
dt

t
=
∑
k=1

(−1)k+1zk

kk!
, (4.82)

then
E1(z) = −γ − log(z) + Ein(z). (4.83)

Remark 4.7 One sometimes introduces for real t

Ei(x) =

∫ ∞
−x

e−t
dt

t
. (4.84)

Then
Ei(x) = γ + log |x| − Ein(−x), x > 0. (4.85)

4.20 Special cases

Apart from the polynomial case and the degenerate case, the confluent
equation has some other cases with special properties.

4.20.1 Bessel equation

If θ = 0, the confluent equation is equivalent to the (modified) Bessel
equation, which we already remarked in Rem. 4.3. By a square root
substitution, it is also equivalent to the 0F1 equation; see (5.87).

4.20.2 Hermite equation

If α = ± 1
2
, the confluent equation is equivalent to the Hermite equation

by the quadratic substitutions (7.116) and (7.115).

4.20.3 Fully degenerate case

θ, α ∈ Z will be called fully degenerate case. It can be divided into two
sublattices: even, for θ + α even, and odd, for θ + α odd. Recurrence
relations preserve these sublattices.

The Bessel equation with integer parameters correspond to θ = 0,
α ∈ 2Z and lie in the even lattice.

The Bessel equation with half-integer parameters correspond to θ = 0,
α ∈ 2Z + 1 and lie in the odd lattice.

Exponential integral belongs to the odd lattice.

5 The 0F1 equation

5.1 Introduction

Let c ∈ C. In this section we will consider the 0F1 equation given by the
operator

F(c; z, ∂z) := z∂2
z + c∂z − 1.

58



It is a limiting case of the 1F1 and 2F1 operator:

lim
a,b→∞

1

ab
F(a, b; c; z/ab, ∂(z/ab)) = lim

a→∞

1

a
F(a; c; z/a, ∂(z/a)) = F(c; z, ∂z).

Instead of c it is often more natural to use its Lie-algebraic parameter

α := c− 1, c = α+ 1. (5.86)

Thus we obtain the operator

Fα(z, ∂z) := z∂2
z + (α+ 1)∂z − 1.

The Lie-algebraic parameter has well-known interpretation in terms of
the “Cartan element” of the Lie algebra aso(2), [V, Wa, DM].

5.2 Equivalence with a subclass of the confluent
equation

The 0F1 equation can be reduced to a special class of the confluent equa-
tion by the so-called Kummer’s 2nd transformation:

F(c; z, ∂z) =
4

w
e−w/2F

(
c− 1

2
; 2c− 1;w, ∂w

)
ew/2, (5.87)

where w = ±4
√
z, z = 1

16
w2. Using the Lie-algebraic parameters this can

be rewritten as

Fα(z, ∂z) =
4

w
e−w/2F0,2α(w, ∂w)ew/2. (5.88)

5.3 Integral representations

There are two kinds of integral representations of solutions to the 0F1

equation. Thm 5.1 describes representations of the first kind, which will
be called Bessel-Schläfli representations. They will be treated as the main
ones.

Theorem 5.1 Suppose that [0, 1] 3 t 7→ γ(t) satisfies

ete
z
t t−c

∣∣∣γ(1)

γ(0)
= 0.

Then

F(c; z, ∂z)

∫
γ

ete
z
t t−cdt = 0. (5.89)

Proof. We check that for any contour γ (5.89) equals

−
∫
γ

(
∂te

te
z
t t−c

)
dt.

2

Integral representations that can be derived from the representations
for the confluent equation by 2nd Kummer’s identity will be called Poisson-
type representations. They will be treated as secondary ones. They are
described in the following theorem.
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Theorem 5.2 1. Let the contour γ satisfy

(t2 − z)−c+3/2e2t
∣∣∣γ(1)

γ(0)
= 0.

Then

F(c; z, ∂z)

∫
γ

(t2 − z)−c+1/2e2tdt = 0.

2. Let the contour γ satisfy

(t2 − 1)c−1/2e2t
√
z
∣∣∣γ(1)

γ(0)
= 0.

Then

F(c; z, ∂z)

∫
γ

(t2 − 1)c−3/2e2t
√
zdt = 0.

Proof. By (5.87) and (4.67), for appropriate contours γ and γ′,

e−2
√
z

∫
γ

ess−c+
1
2 (s− 4

√
z)−c+

1
2 ds

= 2−2c+2

∫
γ′

e2t(t2 − z)−c+
1
2 dt

is annihilated by F(c), where we set t = s
2
−
√
z. This proves 1.

By (5.87) and (4.68), for appropriate contours γ and γ′,

e−2
√
z

∫
γ

e
4
√
z
s s−2c+1(1− s)c−

3
2 ds

= −2−2c+2

∫
γ′

e2t
√
z(1− t2)c−

3
2 dt

is annihilated by F(c), where we set t = 2
s
− 1. This proves 2. 2

5.4 Symmetries

The only nontrivial symmetry is

z−α F−α zα = Fα.

It can be interpreted as a “Weyl symmetry” of aso(2).

5.5 Factorizations and and commutation relations

There are two ways to factorize the 0F1 operator:

Fα =
(
z∂z + α+ 1

)
∂z − 1

= ∂z
(
z∂z + α

)
− 1.
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The factorizations can be used to derive the following commutation
relations:

∂z Fα
= Fα+1 ∂z,

(z∂z + α) Fα
= Fα−1 (z∂z + α).

Each commutation relation can be associated with a “root” of the Lie
algebra aso(2).

5.6 Canonical forms

The natural weight of the 0F1 operator is zα, so that

Fα = z−α∂zz
α+1∂z − 1.

The balanced form of the 0F1 operator is

z
α
2 Fαz−

α
2 = ∂zz∂z − 1− α2

4z
.

The symmetry α→ −α is obvious in the balanced form.

Remark 5.3 In the literature, the 0F1 equation is seldom used. Much
more frequent is the modified Bessel equation, which is equivalent to the

0F1 equation:

z
α
2 Fα(z, ∂z)z

−α
2 = ∂2

w +
1

w
∂w − 1− α2

w2
,

where z = w2

4
, w = ±2

√
z.

Even more frequent is the Bessel equation:

−z
α
2 Fα(z, ∂z)z

−α
2 = ∂2

u +
1

u
∂u + 1− α2

u2
,

where z = −u
2

4
, u = ±2i

√
z. Clearly, we can pass from the modified

Bessel to the Bessel equation by w = ±iu.

5.7 The 0F1 function

The 0F1 equation has a regular singular point at 0. Its indices at 0 are
equal to 0, 1− c.

If c 6= 0,−1,−2, . . . , then the only solution of the 0F1 equation ∼ 1 at
0 is called the 0F1 hypergeometric function. It is

F (c; z) :=
∞∑
j=0

1

(c)j

zj

j!
.

It is defined for c 6= 0,−1,−2, . . . . Sometimes it is more convenient to
consider the function

F(c; z) :=
F (c; z)

Γ(c)
=

∞∑
j=0

1

Γ(c+ j)

zj

j!
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defined for all c.
We can express the 0F1 function in terms of the confluent function

F (c; z) = e−2
√
zF
(2c− 1

2
; 2c− 1; 4

√
z
)

= e2
√
zF
(2c− 1

2
; 2c− 1;−4

√
z
)
.

It is also a limit of the confluent function.

F (c; z) = lim
a→∞

F (a; c; z/a).

For all parameters we have an integral representation called the Schläfli
formula:

1

2πi

∫
]−∞,0+,−∞[

ete
z
t t−cdt = F(c, z), Rez > 0.

For Rec > 1
2

we have a representation called the Poisson formula:∫ 1

−1

(1− t2)c−
3
2 e2t

√
z = Γ(c− 1

2
)
√
πF(c, z).

We will usually prefer to use the Lie-algebraic parameters:

Fα(z) := F (α+ 1; z),

Fα(z) := F(α+ 1; z).

Remark 5.4 In the literature the 0F1 function is seldom used. Instead,
one uses the modified Bessel function and, even more frequently, the Bessel
function:

Iα(w) =
(w

2

)α
Fα
(w2

4

)
,

Jα(w) =
(w

2

)α
Fα
(
− w2

4

)
.

They solve the modified Bessel, resp. the Bessel equation.

5.8 Standard solutions

z = 0 is a regular singular point. We have two standard solutions corre-
sponding to its two indices. Besides, we have an additional solution with
a special behavior at ∞.

We know from Thm 5.1 that for appropriate contours γ the integrals∫
γ

ete
z
t t−α−1dt

solve the 0F1 equation. The integrand goes to zero as t → −∞ and
t → 0 − 0 (the latter for Rez > 0). Therefore, contours ending at these
points yield solutions. We will see that in this way we can obtain all 3
standard solutions.

Besides, we can use Thm 5.2 to obtain other integral representations,
which are essentially special cases of representations for the 1F1 and 2F0

functions.
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5.8.1 Solution ∼ 1 at 0

If α 6= −1,−2, . . . , then the only solution of the 0F1 equation ∼ 1 at 0 is

Fα(z) = e−2
√
zF0,2α

(
4
√
z
)

= e2
√
zF0,2α

(
− 4
√
z
)
.

For all parameters we have an integral representation

1

2πi

∫
]−∞,0+,−∞[

ete
z
t t−α−1dt = Fα(z), Rez > 0;

and for Reα > − 1
2

we have another integral representation∫ 1

−1

(1− t2)α−
1
2 e2t

√
zdt = Γ(α+

1

2
)
√
πFα(z), z 6∈]−∞, 0].

5.8.2 Solution ∼ z−α at 0

If α 6= 1, 2, . . . , then the only solution to the 0F1 equation ∼ z−α at 0 is

z−αF−α(z) = z−αe−2
√
zF0,−2α

(
4
√
z
)

= z−αe2
√
zF0,−2α

(
− 4
√
z
)
.

For all parameters we have

1

2πi

∫
[(0−0)+]

ete
z
t t−α−1dt = z−αF−α(z), Rez > 0;

and for 1
2
> α we have∫ √z

−
√
z

(z − t2)−α−
1
2 e2tdt = Γ

(
−α+

1

2

)√
πz−αF−α(z), z 6∈]−∞, 0].

5.8.3 Solution ∼ exp(−2z 1
2 )z−

α
2 − 1

4 for z → +∞
The following function is also a solution of the 0F1 equation:

F̃α(z) := e−2
√
zz−

α
2
− 1

4 F̃0,2α

(
− 1

4
√
z

)
.

We have the identity

F̃α(z) = z−αF̃−α(z).

Integral representations for all parameters:∫ 0

−∞
ete

z
t (−t)−α−1dt = π

1
2 F̃α(z), Rez > 0;

for Reα > − 1
2
:∫ −1

−∞
(t2 − 1)α−

1
2 e2t

√
zdt =

1

2
Γ
(
α+

1

2

)
F̃α(z), z 6∈]−∞, 0];
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for Reα < 1
2
:∫ −√z

−∞
(t2 − z)−α−

1
2 e2tdt =

1

2
Γ
(
− α+

1

2

)
F̃α(z), z 6∈]−∞, 0].

As |z| → ∞ and | arg z| < π/2− ε, we have

F̃α(z) ∼ exp(−2z
1
2 )z−

α
2
− 1

4 . (5.90)

Fα is a unique solution with this property.
To prove (5.90) we can use the saddle point method. We write the left

hand side as ∫ ∞
0

eφ(s)s−α−1ds

with φ(s) = −s− z
s
. We compute:

φ′(s) = −1 +
z

s2
, φ′′(s) = −2

z

s3
.

We find the stationary point at s0 =
√
z with φ′′(s0) = −2z−

1
2 and

φ(s0) = −2
√
z. Hence the left hand side of (5.90) can be approximated

by ∫ ∞
−∞

eφ(s0)+ 1
2

(s−s0)2φ′′(s0)s−α−1
0 ds = π

1
2 z−

α
2
− 1

4 e−2
√
z.

Remark 5.5 In the literature, instead of the F̃ function one uses the
MacDonald function, solving the modified Bessel equation:

Kα(w) =
√
π
(w

2

)α
F̃α
(w2

4

)
,

and the Hankel functions of the 1st and 2nd kind, solving the Bessel equa-
tion:

H(1)
α (w) =

i√
π

(e−iπ/2w

2

)α
F̃α
(

e−iπw
2

4

)
,

H(2)
α (w) = − i√

π

(eiπ/2w

2

)α
F̃α
(

eiπw
2

4

)
.

5.9 Connection formulas

We can use the solutions with a simple behavior at zero as the basis:

F̃α(z) =

√
π

sinπ(−α)
Fα(z) +

√
π

sinπα
z−αF−α(z). (5.91)

Alternatively, we can use the F̃ function and its analytic continuation
around 0 in the clockwise or anti-clockwise direction as the basis:

Fα(z) =
1

2π
3
2

(
e−iπ(α− 1

2
)F̃α(z)− eiπ(α− 1

2
)F̃α(e−i2πz)

)
=

1

2π
3
2

(
e−iπ(α− 1

2
)F̃α(ei2πz)− eiπ(α− 1

2
)F̃α(z)

)
,

z−αF−α(z) =
1

2π
3
2

(
eiπ(α+ 1

2
)F̃α(z)− e−iπ(α+ 1

2
)F̃α(e−i2πz)

)
=

1

2π
3
2

(
eiπ(α+ 1

2
)F̃α(ei2πz)− e−iπ(α+ 1

2
)F̃α(z)

)
.
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5.10 Recurrence relations

The following recurrence relations easily follow from the commutation
relations of Subsect. 5.5:

∂zFα(z) = Fα+1(z),

(z∂z + α) Fα(z) = Fα−1(z).

5.11 Degenerate case

α = m ∈ Z is the degenerate case of the 0F1 equation at 0. We have then

F(1 +m; z) =
∑

n=max(0,−m)

1

n!(m+ n)!
zn.

This easily implies the identity (which we write in two notations)

F(1 +m; z) = z−mF(1−m; z),

Fm(z) = z−mF−m(z).

Thus the two standard solutions determined by the behavior at zero are
proportional to one another.

We have an integral representation, called the Bessel formula, and a
generating function:

1

2πi

∫
[0+]

et+z/tt−m−1dt = Fm(z) = z−mF−m(z),

etez/t =
∑
m∈Z

tmFm(z).

Introduce
Tα(z) := ∂αFα(z).

Applying the de l’Hospital formula to (5.91) we obtain for m ∈ Z

F̃m(z) =
(−1)m+1

√
π

(
Tm(z) + z−mT−m(z) + ln(z)Fm(z)

)
(5.92)

=
(−1)m+1

√
π

(
m∑
k=1

(−1)k−1 (k − 1)!

(m− k)!
z−k (5.93)

+

∞∑
j=0

(
ln(z)− ψ(j + 1)− ψ(j +m+ 1)

)
j!(m+ j)!

zj
)
. (5.94)

5.12 Special cases

If α = ± 1
2
, then the 0F1 equation can be reduced to an equation easily

solvable in terms of elementary functions:

F− 1
2
(z, ∂z) = ∂2

u − 1,

F 1
2
(z, ∂z) = u−1(∂2

u − 1)u,
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where u = 2
√
z. They have solutions

F− 1
2
(z) = cosh 2

√
z, F̃− 1

2
(z) = exp(−2

√
z),

F 1
2
(z) =

sinh 2
√
z

2
√
z

, F̃ 1
2
(z) =

exp(−2
√
z)√

z
.

6 The Gegenbauer equation

6.1 Introduction

The hypergeometric equation can be moved by an affine transformation
so that its finite singular points are placed at −1 and 1. If in addition
the equation is reflection invariant, then it will be called the Gegenbauer
equation.

Because of the reflection invariance, the third classical parameter can
be obtained from the first two: c = a+b+1

2
. Therefore, we will use only

a, b ∈ C as the (classical) parameters of the Gegenbauer equation. It will
be given by the operator

S(a, b; z, ∂z) := (1− z2)∂2
z − (a+ b+ 1)z∂z − ab. (6.95)

To describe the symmetries of the Gegenbauer operator it is convenient
to use its Lie-algebraic parameters

α := a+b−1
2

, λ := b−a
2
,

a = 1
2

+ α− λ, b = 1
2

+ α+ λ.

Thus (6.95) becomes

Sα,λ(z, ∂z) := (1− z2)∂2
z − 2(1 + α)z∂z + λ2 −

(
α+

1

2

)2

.

The Lie-algebraic parameters have an interesting interpretation in terms
of the natural basis of the Cartan algebra of the Lie algebra so(5) [DM].

6.2 Equivalence with the hypergeometric equa-
tion

The Gegenbauer equation is equivalent to certain subclasses of the hyper-
geometric equation by a number of different substitutions.

First of all, we can reduce the Gegenbauer equation to the hyperge-
ometric equation by two affine transformations. They move the singular
points from −1, 1 to 0, 1 or 1, 0:

S(a, b; z, ∂z) = F(a, b; a+b+1
2

;u, ∂u), (6.96)

where
u = 1−z

2
, z = 1− 2u,

or u = 1+z
2
, z = −1 + 2u.
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In the Lie-algebraic parameters

Sα,λ(z, ∂z) = Fα,α,2λ(u, ∂u).

Another pair of substitutions is a consequence of the reflection invari-
ance of the Gegenbauer equation (see Subsect. 2.4):

S(a, b; z, ∂z) = 4F(a
2
, b

2
; 1

2
;w, ∂w),

z−1S(a, b; z, ∂z)z = 4F(a+1
2
, b+1

2
; 3

2
;w, ∂w),

(6.97)

where
w = z2, z =

√
w.

In the Lie-algebraic parameters

Sα,λ(z, ∂z) = F− 1
2
,α,λ(w, ∂w), (6.98)

z−1Sα,λ(z, ∂z)z = F 1
2
,α,λ(w, ∂w). (6.99)

6.3 Symmetries

All the operators below equal Sα,λ(w, ∂w) for an appropriate w:

w = ±z :
Sα,±λ,

w = ±z :
(z2 − 1)−α S−α,±λ (z2 − 1)α,

w = ±z

(z2−1)
1
2

:

(z2 − 1)
1
2

(α+λ+ 5
2

) Sλ,±α (z2 − 1)
1
2

(−α−λ− 1
2

),

w = ±z

(z2−1)
1
2

:

(z2 − 1)
1
2

(α−λ+ 5
2

) S−λ,±α (z2 − 1)
1
2

(−α+λ− 1
2

).

The symmetries of the Gegenbauer operator have an interpretation in
terms of the Weyl group of the Lie algebra so(5).

Note that the first two symmetries from the above table are inherited
from the hypergeometric equation through the substitution (6.96).

The symmetries involving w = ±z

(z2−1)
1
2

go under the name of the

Whipple transformation. To obtain them we first use the substitution

(6.97) z → z2, then z2 → z2

1−z2 , which is one of the symmetries from
the Kummer’s table, finally the substitution (6.97) in the opposite direc-

tion z2

1−z2 →
√

z2

1−z2 . We will continue our discussion of the Whipple

transformation in Subsect. 6.5.
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6.4 Factorizations and commutation relations

There are several ways of factorizing the Gegenbauer operator:

Sα,λ =
(

(1− z2)∂z − 2(1 + α)z
)
∂z

+
(
α+ λ+

1

2

)(
− α+ λ− 1

2

)
= ∂z

(
(1− z2)∂z − 2αz

)
+
(
α+ λ− 1

2

)(
− α+ λ+

1

2

)
,

(1− z2)Sα,λ =
(

(1− z2)∂z +
(
α− λ+

3

2

)
z
)(

(1− z2)∂z +
(
α+ λ+

1

2

)
z
)

−
(
α+ λ+

1

2

)(
α− λ+

3

2

)
=

(
(1− z2)∂z +

(
α+ λ+

3

2

)
z
)(

(1− z2)∂z +
(
α− λ+

1

2

)
z
)

−
(
α− λ+

1

2

)(
α+ λ+

3

2

)
;

z2Sα,λ =
(
z(1− z2)∂z − α− λ−

3

2
+
(
− α+ λ− 1

2

)
z2
)(
z∂z + α+ λ+

1

2

)
+
(
α+ λ+

1

2

)(
α+ λ+

3

2

)
=

(
z∂z + α+ λ− 3

2

)(
z(1− z2)∂z − α− λ+

1

2
+
(
− α+ λ− 1

2

)
z2
)

+
(
α+ λ− 1

2

)(
α+ λ− 3

2

)
=

(
z(1− z2)∂z − α+ λ− 3

2
+
(
− α− λ− 1

2

)
z2
)(
z∂z + α− λ+

1

2

)
+
(
α− λ+

1

2

)(
α− λ+

3

2

)
=

(
z∂z + α− λ− 3

2

)(
z(1− z2)∂z − α+ λ+

1

2
+
(
− α− λ− 1

2

)
z2
)

+
(
α− λ− 1

2

)(
α− λ− 3

2

)
.

The following commutation relations can be derived from the factor-
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izations:

∂z Sα,λ
= Sα+1,λ ∂z,

((1− z2)∂z − 2αz) Sα,λ
= Sα−1,λ ((1− z2)∂z − 2αz),

((1− z2)∂z − (α+ λ+ 1
2
)z) (1− z2)Sα,λ

= (1− z2)Sα,λ+1 ((1− z2)∂z − (α+ λ+ 1
2
)z),

((1− z2)∂z − (α− λ+ 1
2
)z) (1− z2)Sα,λ

= (1− z2)Sα,λ−1 ((1− z2)∂z − (α− λ+ 1
2
)z);

(z∂z + α− λ+ 1
2
) z2Sα,λ

= z2Sα+1,λ−1 (z∂z + α− λ+ 1
2
),

(z(1−z2)∂z−α+λ+ 1
2
−(α+λ+ 1

2
)z2) z2Sα,λ

= z2Sα−1,λ+1 (z(1−z2)∂z−α+λ+ 1
2
−(α+λ+ 1

2
)z2),

(z∂z + α+ λ+ 1
2
) z2Sα,λ

= z2Sα+1,λ+1 (z∂z + α+ λ+ 1
2
),

(z(1−z2)∂z−α−λ+ 1
2
−(α−λ+ 1

2
)z2) z2Sα,λ

= z2Sα−1,λ−1 (z(1−z2)∂z−α−λ+ 1
2
−(α−λ+ 1

2
)z2).

Each of these commutation relations is associated with a root of the Lie
algebra so(5).

Note that only the first pair of commutation relations is directly inher-
ited from the basic commutation relations of the hypergeometric equation
of Subsect. 3.4. The next pair comes from what we called additional com-
mutation relations (see Subsect. 3.10), which in the reflection invariant
case simplify, so that they can be counted as basic commutation relations
(see a discussion in Subsect. 1.2). Note that the Whipple transformation
transforms the first pair of the commutation relations into the second, and
the other way around.

The last four commutation relations form a separate class – they can
be obtained by applying consecutively an appropriate pair from the first
four commutation relations.

6.5 The Riemann surface of the Gegenbauer equa-
tion

Let us analyze more closely the Whipple symmetry.
First let us precise the meaning of the holomorphic function involved

in this symmetry. If z ∈ Ω+ := C\[−1, 1], then 1 − z−2 ∈ C\] − ∞, 0].
Therefore,

z

(z2 − 1)
1
2

:=
1

(1− z−2)
1
2

(6.100)

defines a unique anlytic function on z ∈ Ω+ (where on the right we have
the principal branch of the square root). Note that, for z → ∞, (6.100)
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converges to 1.
Consider a second copy of Ω+, denoted Ω−. Glue them together along

] − 1, 1[, so that crossing ] − 1, 1[ we go from Ω± to Ω∓. The result-
ing complex manifold will be called Ω. The elements of Ω± correspond-
ing to z ∈ C\] − 1, 1[ will be denoted will be denoted z±. Ω is biholo-
morphic to the sphere with 4 punctures, which correspond to the points
−1, 1,∞+,∞−.

It is easy to see that Ω is the Riemann surface of the maximal holo-
morphic function extending (6.100). On Ω− it equals − z

(z2−1)
1
2

.

It is useful to reinterpret this holomorphic function as a biholomorphic
function from Ω into itself:

τ(z+) :=


(

z√
z2−1

)
+

, Rez > 0,(
z√
z2−1

)
−
, Rez < 0,

τ(z−) :=


(
− z√

z2−1

)
−
, Rez > 0,(

− z√
z2−1

)
+

, Rez < 0.

We also introduce

ε(z±) := z∓,

(−1)z± := (−z)±.

Note that τ2 = id, ε2 = id, (−1)2 = id, τε = (−1)ετ . τ and ε generate
a group isomorphic to the group of the symmetries of the square. The
vertices of this square can be identified with (1,∞+,−1,∞−). They are
permuted by these transformations as follows:

ε(1,∞+,−1,∞−) = (1,∞−,−1,∞+),

(−1)(1,∞+,−1,∞−) = (−1,∞+, 1,∞−),

τ(1,∞+,−1,∞−) = (∞+, 1,∞−,−1).

It is useful to view the Gegenbauer equation as defined on Ω.

6.6 Integral representations

Theorem 6.1 1. Let [0, 1] 3 t 7→ γ(t) satisfy

(t2 − 1)
b−a+1

2 (t− z)−b−1
∣∣∣γ(1)

γ(0)
= 0.

Then

S(a, b; z, ∂z)

∫
γ

(t2 − 1)
b−a−1

2 (t− z)−bdt = 0. (6.101)
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2. Let [0, 1] 3 t 7→ γ(t) satisfy

(t2 + 2tz + 1)
−b−a

2
+1tb−2

∣∣∣γ(1)

γ(0)
= 0.

Then

S(a, b; z, ∂z)

∫
γ

(t2 + 2tz + 1)
−b−a

2 tb−1dt = 0. (6.102)

Proof. We compute that (6.101) and (6.102) equal

a

∫
γ

(
∂t(t

2 − 1)
b−a+1

2 (t− z)−b−1
)

dt,∫
γ

(
∂t(t

2 + 2tz + 1)
−b−a

2
+1tb−2

)
dt

respectively.
Note that (6.101) is essentially a special case of Theorem 3.1.
(6.102) can be derived from (6.101). In fact, using the Whipple sym-

metry we see that, for an appropriate contour γ̃,

(z2 − 1)−
a
2
∫̃
γ

(s2 − 1)
−b−a

2 (s− z√
z2−1

)b−1ds (6.103)

solves the Gegenbauer equation. Then we change the variables

t = s
√
z2 − 1− z, s = t+z√

z2−1
,

and we obtain that (6.103) equals∫
γ

(t2 + 2tz + 1)
−b−a

2 tb−1dt,

with an appropriate contour γ. 2

Note that in the above theorem we can interchange a and b. Thus we
obtain four kinds of integral representations.

6.7 Canonical forms

The natural weight of the Gegenbauer operator equals (z2 − 1)α, so that

Sα,λ = −(z2 − 1)−α∂z(z
2 − 1)α+1∂z + λ2 −

(
α+

1

2

)2

.

The balanced form of the Gegenbauer operator is

(z2 − 1)
α
2 Sα,λ(z2 − 1)−

α
2

= ∂z(1− z2)∂z −
α2

1− z2
+ λ2 − 1

4
.

Note that the symmetries α → −α and λ → −λ are obvious in the
balanced form.
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Remark 6.2 In the literature the Gegenbauer equation is used mostly in
the context of Gegenbauer polynomials, that is for −a = 0, 1, 2, . . . . In
the general case, instead of the Gegenauer equation one usually considers
the so-called associated Legendre equation. It coincides with the balanced
form of the Gegenbauer equation, except that one of its parameters is
shifted by 1

2
. In the standard form it is

(1− z2)∂2
z − 2z∂z −

m2

1− z2
+ l(l + 1),

so that m, l correspond to α, λ− 1
2

according to our convention.

6.8 Even solution

Inserting a power series into equation we see that the Gegenbauer equation
possesses an even solution equal to

S+
α,λ(z) :=

∞∑
j=0

(a
2
)j(

b
2
)j

(2j)!
(2z)2j

= F
(a

2
,
b

2
;

1

2
; z2
)

= F− 1
2
,α,λ(z2).

It is the unique solution of the Gegenbauer equation satisfying

S+
α,λ(0) = 1,

d

dz
S+
α,λ(0) = 0. (6.104)

One way to derive the expression in terms of the hypergeometric function
is to use the transformation (6.97).

We have the identities

S+
α,λ(z) = (1− z2)

−1−2α±2λ
4 S+

∓λ,α

( iz√
1− z2

)
= (1− z2)−αS+

−α,λ(z),

beside the obvious ones

S+
α,λ(z) = S+

α,−λ(z) = S+
α,λ(−z) = S+

α,−λ(−z),

6.9 Odd solution

Similarly, the Gegenbauer equation possesses an odd solution equal to

S−α,λ(z) :=

∞∑
j=0

(a+1
2

)j(
b+1

2
)j

(2j + 1)!
(2z)2j+1

= 2zF
(a+ 1

2
,
b+ 1

2
;

3

2
; z2
)

= 2zF 1
2
,α,λ(z2).

It is the unique solution of the Gegenbauer equation satisfying

S−α,λ(0) = 0,
d

dz
S−α,λ(0) = 2. (6.105)
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We have the identities

S−α,λ(z) = −i(1− z2)
−1−2α±2λ

4 S−∓λ,α

( iz√
1− z2

)
= (1− z2)−αS−−α,λ(z),

beside the obvious ones:

S+
α,λ(z) = S+

α,−λ(z) = −S+
α,λ(−z) = −S+

α,−λ(−z),

6.10 Standard solutions

As usual, by standard solutions we mean solutions with a simple behavior
around singular points. The singular points of the Gegenbauer equation
are at {1,−1,∞}. The discussion of the point −1 can be easily reduced to
that of 1. Therefore, it is enough to discuss 2× 2 solutions corresponding
to two indices at 1 and ∞.

By Thm 6.1, for appropriate γ1, γ2 the integrals∫
γ1

(t2 − 1)−
1
2

+λ(t− z)−
1
2
−α−λdt, (6.106)

∫
γ2

(t2 + 2tz + 1)−α−
1
2 (−t)−

1
2

+α+λdt (6.107)

are solutions.
The natural endpoints of γ1 are −1, 1, z,∞. We will see that all stan-

dard solutions can be obtained from such integrals.
The natural endpoints of γ2 are z +

√
z2 − 1, z −

√
z2 − 1, 0,∞. Simi-

larly, all standard solutions can be obtained from the integrals over con-
tours with these endpoints.

It is interesting to note that in some aspects the theory of the Gegen-
bauer equation is more complicated than that of the hypergeometric equa-
tion. One of its manifestations is a relatively big number of natural nor-
malizations of solutions. Indeed, let us consider e.g. integral representa-
tions of the type (6.106). The natural endpoints fall into two categories:
{1,−1} and {0,∞}. Therefore, we have 3 kinds of contours joining two
of these endpoint: [−1, 1], [0,∞[ and the contours joining two distinct
categories. This corresponds two three distinct natural normalizations,
which we describe in the wht follows.

6.10.1 Solution ∼ 1 at 1

If α 6= −1,−2, . . . , then the unique solution of the Gegenbauer equation
equal to 1 at 1 is the following function:

Sα,λ(z) : = Fα,α,2λ
(1− z

2

)
= F

(
a, b;

a+ b+ 1

2
;

1− z
2

)
= Fα,− 1

2
,λ(1− z2) = F

(a
2
,
b

2
;
a+ b+ 1

2
; 1− z2

)
.
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We will also introduce several alternatively normalized functions:

Sα,λ(z) :=
1

Γ(α+ 1)
Sα,λ(z)

=
1

Γ(a+b+1
2

)
F
(
a, b;

a+ b+ 1

2
;

1− z
2

)
= Fα,α,2λ

(1− z
2

)
,

SI
α,λ(z) := 2−

1
2
−α+λΓ( 1+2α−2λ

2
)Γ( 1+2λ

2
)

Γ(α+ 1)
Sα,λ(z)

= 2−a
Γ(a)Γ(−a+b+1

2
)

Γ(a+b+1
2

)
F
(
a, b;

a+ b+ 1

2
;

1− z
2

)
= 2−

1
2
−α+λFI

α,α,2λ

(1− z
2

)
,

SII
α,λ(z) :=

Γ( 1+2α−2λ
2

)Γ( 1+2α+2λ
2

)

Γ(2α+ 1)
Sα,λ(z)

=
Γ(a)Γ(b)

Γ(a+ b)
F
(
a, b;

a+ b+ 1

2
;

1− z
2

)
,

S0
α,λ(z) := 22α Γ( 1+2α

2
)2

Γ(2α+ 1)
Sα,λ(z) =

√
π

Γ( 1+2α
2

)

Γ(α+ 1)
Sα,λ(z)

= 2a+b−1 Γ(a+b
2

)2

Γ(a+ b)
F
(
a, b;

a+ b+ 1

2
;

1− z
2

)
.

Assuming that z 6∈]−∞,−1], we have the following integral represen-
tations: for Reα+ 1

2
> Reλ > − 1

2

−1∫
−∞

(t2 − 1)−
1
2

+λ(z − t)−
1
2
−α−λdt = SI

α,λ(z),

and for Reα+ 1
2
> |Reλ|

∞∫
0

(t2 + 2tz + 1)−α−
1
2 t−

1
2

+α+λdt = SII
α,λ(z).

6.10.2 Solution ∼ 2−α(1− z)−α at 1

If α 6= 1, 2, . . . , then the unique solution of the Gegenbauer equation
behaving as 2−α(1− z)−α at 1 is the following function:

(1− z2)−αS−α,−λ(z) = 2−α(1− z)−αF−α,α,−2λ

(1− z
2

)
= (1− z2)−αF−α,− 1

2
,−λ(1− z2).

Assuming that z 6∈] −∞,−1] ∪ [1,∞[, we have the following integral
representations: for −Reα+ 1

2
> Reλ > − 1

2

z∫
−1

(1− t2)−
1
2

+λ(z − t)−
1
2
−α−λdt = (1− z2)−αSI

−α,λ(z),
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and for 1
2
> Reα

i
√

1−z2−z∫
−i
√

1−z2−z

(t2 + 2tz + 1)−α−
1
2 (−t)−

1
2

+α+λdt = (1− z2)−αS0
α,λ(z).

6.10.3 Solution ∼ z−a at ∞
If 2λ 6= −1,−2, . . . , then the unique solution of the Gegenbauer equation

behaving as z−a = z−
1
2
−α+λ at ∞ is the following function:

(z2 − 1)
−1−2α+2λ

4 S−λ,−α
( z√

z2 − 1

)
= (1 + z)−

1
2
−α+λF−2λ,α,−α

( 2

1 + z

)
= z−

1
2
−α+λF−λ,α, 1

2
(z−2).

Assuming that z 6∈]−∞, 1], we have the following integral representa-
tions: for 1

2
> Reλ

1∫
−1

(t2 − 1)−
1
2
−λ(z − t)−

1
2
−α+λdt = (z2 − 1)

−1−2α+2λ
4 S0

−λ,α

( z√
z2 − 1

)
,

and for −Reλ+ 1
2
> −Reα > − 1

2

0∫
√
z2−1−z

(t2 + 2tz + 1)−α−
1
2 (−t)−

1
2

+α−λdt = (z2 − 1)
−1−2α+2λ

4 SI
−λ,α

( z√
z2 − 1

)
.

6.10.4 Solution ∼ z−b at ∞
If 2λ 6= 1, 2, . . . , then the unique solution of the Gegenbauer equation

behaving as z−b = z−
1
2
−α−λ at ∞ is the following function:

(z2 − 1)
−1−2α−2λ

4 Sλ,α
( z√

z2 − 1

)
= (1 + z)−

1
2
−α−λF2λ,α,α

( 2

1 + z

)
= z−

1
2
−α−λFλ,α, 1

2
(z−2).

Assuming that z 6∈]−∞, 1], we have the following integral representa-
tions: for Reλ+ 1

2
> |Reα|

∞∫
z

(t2 − 1)−
1
2
−λ(t− z)−

1
2
−α+λdt = (z2 − 1)

−1−2α−2λ
4 SII

λ,α

( z√
z2 − 1

)
,

and for Reλ+ 1
2
> −Reα > − 1

2

−
√
z2−1−z∫
−∞

(t2 + 2tz + 1)−α−
1
2 (−t)−

1
2

+α−λdt = (z2 − 1)−
1
4
−α

2
−λ

2 SI
λ,α

( z√
z2 − 1

)
.
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Remark 6.3 As mentioned in Remark 6.2, in the literature instead of
the Gegenbauer equation the associated Legendre equation usually appears.
One class of its standard solutions are the associated Legendre function
of the 1st kind

Pm
l (z) =

(
z + 1

z − 1

)m
2

F
(
− l, l + 1; 1−m;

1− z
2

)
=

2m

(z2 − 1)
m
2

F
(

1−m+ l,−m− l; 1−m;
1− z

2

)
=

2m

(z2 − 1)
m
2

S−m,l+ 1
2
(z),

which up to a constant are (z2 − 1)
m
2 times the solutions of Subsubsect.

6.10.2. Another class of solutions are the associated Legendre function of
the 2nd kind

Qm
l (z) =

(z2 − 1)
m
2

2l+1zl+m+1
F
( l +m+ 2

2
,
l +m+ 1

2
; l +

3

2
; z−2

)
=

(z2 − 1)
m
2

2l+1(1 + z)l+m+1Γ(l + 3
2
)
F
(
l + 1, l +m+ 1; 2l + 2;

2

z + 1

)
= 2−l−1(z2 − 1)−

l+1
2 Sl+ 1

2
,m

( z√
z2 − 1

)
,

which up to a constant are (z2 − 1)
m
2 times the solutions of Subsubsect.

6.10.4. (In the literature one can find a couple of other varieties of as-
sociated Legendre functions of the 1st and 2nd kind, differing by their
normalization, see e.g. [NIST]).
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6.11 Connection formulas

We can express the standard solutions in terms of the even and odd solu-
tions

Sα,λ(z) =

√
π

Γ( 3
4

+ α
2
− λ

2
)Γ( 3

4
+ α

2
+ λ

2
)
S+
α,λ(z)

+

√
π

Γ( 1
4

+ α
2
− λ

2
)Γ( 1

2
+ α

2
+ λ

2
)
S−α,λ(z),

(1− z2)−αS−α,−λ(z) =

√
π

Γ( 3
4
− α

2
+ λ

2
)Γ( 3

4
− α

2
− λ

2
)
S+
α,λ(z)

+

√
π

Γ( 1
4
− α

2
+ λ

2
)Γ( 1

4
− α

2
− λ

2
)
S−α,λ(z),

(1− z2)−
1
4
−α

2
+λ

2 S−λ,−α(
z√

z2 − 1
) =

√
π

Γ( 3
4
− α

2
− λ

2
)Γ( 3

4
+ α

2
− λ

2
)
S+
α,λ(z)

+
i
√
π

Γ( 1
4
− α

2
− λ

2
)Γ( 1

4
+ α

2
− λ

2
)
S−α,λ(z),

(1− z2)−
1
4
−α

2
−λ

2 Sλ,α
( z√

z2 − 1

)
=

√
π

Γ( 3
4
− α

2
+ λ

2
)Γ( 3

4
+ α

2
+ λ

2
)
S+
α,λ(z)

+
i
√
π

Γ( 1
4
− α

2
+ λ

2
)Γ( 1

4
+ α

2
+ λ

2
)
S−α,λ(z).

We set

Zα,λ(w) := (w2 − 1)−
1
4
−α

2
−λ

2 Sλ,α
( w√

w2 − 1

)
(6.108)

We have the connection formulas

2α
√
π√

2 sin(πλ)

− 1

Γ( 1
2

+α−λ)

1

Γ( 1
2

+α+λ)

− 1

Γ( 1
2
−α−λ)

1

Γ( 1
2
−α+λ)

2−λZα,λ(z)

2λZα,−λ(z)

 =

 Sα,±λ(z)

22α

(z2−1)α
S−α,±λ(z)

 ;

2−α
√
π√

2 sin(πα)

− 1

Γ( 1
2
−α+λ)

1

Γ( 1
2

+α+λ)

− 1

Γ( 1
2
−α−λ)

1

Γ( 1
2

+α−λ)

 Sα,±λ(z)

22α

(z2−1)α
S−α,±λ(z)

 =

2−λZα,λ(z)

2λZα,−λ(z)

 ;

π

sin(πα)

 − cosπλ
π

1

Γ( 1
2

+α−λ)Γ( 1
2

+α+λ)

− 1

Γ( 1
2
−α+λ)Γ( 1

2
−α−λ)

cosπλ
π

 Sα,λ(∓z)

22α

(1−z2)α
S−α,λ(∓z)


=

 Sα,λ(±z)

22α

(1−z2)α
S−α,λ(±z)

 .
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6.12 Recurrence relations

The following recurrence relations can be easily derived from the commu-
tation properties of Subsect. 6.4

∂zSα,λ(z) = −1

2

(1

2
+ α− λ

)(1

2
+ α+ λ

)
Sα+1,λ(z),(

(1− z2)∂z − 2αz
)
Sα,λ(z) = −2Sα−1,λ(z),(

(1− z2)∂z −
(1

2
+ α+ λ

)
z

)
Sα,λ(z) = −

(1

2
+ α+ λ

)
Sα,λ+1(z),(

(1− z2)∂z −
(1

2
+ α− λ

)
z

)
Sα,λ(z) = −

(1

2
+ α− λ

)
Sα,λ−1(z),

(
z∂z +

1

2
+ α− λ

)
Sα,λ(z) =

1

2

(1

2
+ α− λ

)(3

2
+ α− λ

)
Sα+1,λ−1(z),(

z(1−z2)∂z+
(1

2
−α+λ

)
(1−z2)−2αz2

)
Sα,λ(z) = −2Sα−1,λ+1(z),

(
z∂z +

1

2
+ α+ λ

)
Sα,λ(z) =

1

2

(1

2
+ α+ λ

)(3

2
+ α+ λ

)
Sα+1,λ+1(z),(

z(1−z2)∂z+
(1

2
−α−λ

)
(1−z2)−2αz2

)
Sα,λ(z) = −2Sα−1,λ−1(z).

6.13 Gegenbauer polynomials

If −a = n = 0, 1, 2, . . . , then Gegenbauer functions are polynomials.
We will use two distinct normalizations of these polynomials. The CI

n

polynomials have a natural Rodriguez-type definition:

CI,α
n (z) :=

1

2nn!
(z2 − 1)−α∂nz (z2 − 1)n+α.

The CII
n polynomials are defined as

CII,α
n (z) :=

(2α+ 1)n
(α+ 1)n

CI,α
n (z).

Remark 6.4 The first kind polynomials is just the special case of the
conventional Jacobi polynomials (see Rem. 3.3) with α = β:

CI,α
n (z) = Pα,αn (z).

The second kind of polynomials is called in the literature the Gegenbauer
polynomials. In the standard notation its parameter is shifted by 1

2
, which

is motivated by the generating function (6.110):

CII,α
n (z) = C

α+ 1
2

n (z).

When describing the properties of Gegenbauer polynomials we can
choose between CI

n and CII
n . We either give properties of both kinds of

polynomials or choose those that give simpler formmulas.
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Both kinds of polynomials solve the Gegenbauer equation:(
(1− z2)∂2

z − 2(1 + α)z∂z + n(n+ 2α+ 1)
)
CI/II,α
n (z)

= S(−n, n+ 2α+ 1; z, ∂z)C
I/II,α
n (z) = 0.

Generating functions:

(1− 2tz + t2(z2 − 1))−α =

∞∑
n=0

(2t)nCI,−α−n
n (z), (6.109)

(1− 2zt+ t2)−α−
1
2 =

∞∑
n=0

CII,α
n (z)tn. (6.110)

Integral representations:

CI,α
n (z) =

1

2πi(−2)n

∫
[0+]

(
1− 2tz + t2(z2 − 1)

)α+n

t−n−1dt,

CII,α
n (z) =

1

2πi

∫
[0+]

(1− 2zt+ t2)−α−
1
2 t−n−1dt.

We give symmetries for both kinds of polynomials:

CI,α
n (z) = (−1)nCI,α

n (−z)

=
(2α+ 1 + n)n

(∓2)n(α+ 1
2
)n

(z2 − 1)
n
2 C

I,− 1
2
−α−n

n

( ±z√
z2 − 1

)
.

CII,α
n (z) = (−1)nCII,α

n (−z)

=
(∓2)n(α+ 1

2
)n

(2α+ 1 + n)n
(z2 − 1)

n
2 C

II,− 1
2
−α−n

n

( ±z√
z2 − 1

)
.

We give recurrence relations only for CII,α
n , those for CI,α

n differ by coeffi-
cients on the right, but have a comparable level of complexity:

∂zC
II,α
n (z) = (2α+ 1)CII,α+1

n−1 (z),(
(1− z2)∂z − 2αz

)
CII,α
n (z) =

−(n+ 1)(n+ 2α)

2α
CII,α−1
n+1 (z),

(
(1− z2)∂z − (n+ 2α+ 1)z

)
CII,α
n (z) = −(n+ 1)CII,α

n+1(z),(
(1− z2)∂z + nz

)
CII,α
n (z) = (n+ 2α)CII,α

n−1(z),

(z∂z − n)CII,α
n (z) = (2α+ 1)CII,α+1

n−2 (z),(
z(1− z2)∂z + 1 + n− (n+ 2α+ 1)z2)CII,α

n (z) = − (n+ 1)(n+ 2)

2α− 1
CII,α−1
n+2 (z),

(z∂z + n+ 2α+ 1)CII,α
n (z) = (2α+ 1)CII,α+1

n (z),(
z(1− z2)∂z − n− 2α+ nz2)CII,α

n (z) = − (2α+ n− 1)(2α+ n)

2α− 1
CII,α−1
n (z).
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The differential equation, the Rodriguez-type formula, the first gener-
ating function and the first integral representation are special cases of the
corresponding formulas of Subsect. 1.6. Thus the polynomials CI belong
to the scheme of Subsect. 1.6. CII do not have a natural Rodriguez-type
formula, and do not belong to the scheme of Subsect. 1.6.

The CI polynomials have simple expressions in terms of the Jacobi
polynomials:

CI,α
n (z) = (±1)nRα,αn

(1∓ z
2

)
=

(±1− z
2

)n
Rα,−2α−2n−1
n

( 2

1∓ z

)
=

(z ∓ 1

2

)n
R−2α−2n−1,α
n

(±1 + z

∓1 + z

)
.

We have several alternative expressions for CI and CII polynomials:

CI,α
n (z) := lim

ν→n
(−1)n(ν−n)SI

α,ν+α+ 1
2
(z) = lim

ν→n
(ν−n)FI

α,α,2ν+2α+1

(1∓ z
2

)
= (±1)n

(α+ 1)n
n!

F
(
− n, n+ 2α+ 1;α+ 1;

1∓ z
2

)
,

CII,α
n (z) := lim

ν→n
(−1)n(ν−n)SII

α,ν+α+ 1
2
(z)

= (±1)n
(2α+ 1)n

n!
F
(
− n, n+ 2α+ 1;α+ 1;

1∓ z
2

)
=

[n
2

]∑
k=0

(−1)k(α+ 1
2
)n−k

k!(n− 2k)!
(2z)n−2k.

Values at ±1, behavior at infinity we give for both kinds of polynomi-
als:

CI,α
n (±1) = (±1)n (α+1)n

n!
, lim

z→∞

CI,α
n (z)

zn
=

2−n(2α+ n+ 1)n
n!

,

CII,α
n (±1) = (±1)n (2α+1)n

n!
, lim

z→∞

CII,α
n (z)

zn
=

2n(α+ 1
2
)n

n!
.

The degenerate case has a simple expression in terms of CI polynomi-
als:

CI,α
n =

( 4

z2 − 1

)α
CI,−α
n+2α(z), α ∈ Z.

The initial conditions at 0 and the identities for the even and odd case
are given only for CII,α

n , since those for CI,α
n are more complicated:

CII,α
2m (0) =

(−1)m(α+ 1
2

)m
m!

, ∂zC
II,α
2m (0) = 0;

CII,α
2m+1(0) = 0, ∂zC

II,α
2m+1(0) =

(−1)m2(α+ 1
2
)m

m!
.
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CII,α
2m (z) = (−1)m

(α+ 1
2
)m

(α+ 1)m
R
α,− 1

2
m (z2)

= (−1)m
(α+ 1

2
)m

m!
S+

α,2m+ 1
2

+α
(z)

= (−1)m
(α+ 1

2
)m

m!
F
(
−m,m+

1

2
+ α;

1

2
; z2
)
,

CII,α
2m+1(z) = (−1)m

(α+ 1
2
)m

(α+ 1)m
2zR

α, 1
2

m (z2)

= (−1)m
(α+ 1

2
)m

m!
S−
α,2m+ 3

2
+α

(z)

= (−1)m
(α+ 1

2
)m

m!
2zF

(
−m,m+

3

2
+ α;

3

2
; z2
)
.

We have the following special cases:

1. If α ∈ Z, −n ≤ α ≤ −n−1
2

, then CI,α
n = 0.

2. If α ∈ Z + 1
2
, −n−1

2
≤ α ≤ − 1

2
, then CII,α

n = 0.

3. If α ∈ Z, −n+1
2
≤ α ≤ −1, then C

I/II,α
n = (1− z2)−αW , where W is

a polynomial not divisible by 1− z2.

6.14 Special cases

When describing special cases of the Gegenbauer quation we will primarily
use the Lie-algebraic parameters.

6.14.1 The Legendre equation

Suppose that one of the parameters is an integer. Using, if necessary,
recurrence relations we can assume it is zero. After applying an appropri-
ate symmetry, we can assume that α = 0. We obtain then the Legendre
operator:

S0,λ(z, ∂z) = (1− z2)∂2
z − 2z∂z + λ2 − 1

4
. (6.111)

For the particular case λ = 0 its solutions can be expressed by the so
called complete elliptic functions.

The Legendre equation is usually parametrized by n = − 1
2
± λ. Thus

we rewrite the Legendre operator as

Pn(z, ∂z) := (1− z2)∂2
z − 2z∂z + n(n+ 1).

Let us introduce the Legendre function

Pn(z) = S0,±(n+ 1
2

)(z)

= F
(
− n, 1 + n; 1;

1− z
2

)
= F0,0,±(2n+1)

(1− z
2

)
= F

(
− n

2
,

1 + n

2
; 1; 1− z2) = F0,− 1

2
,±(n+ 1

2
)

(
1− z2).
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We also introduce its variety differing by a normalization:

Pn := − π

sinπn
Pn(z).

Here are integral representations of Pn(z) valid for all n:

2−n

2πi

∫
[(1,z)+]

(1− t2)n(t− z)−n−1dt =
2n+1

2πi

∫
[(1,z)+]

(1− t2)−n−1(t− z)ndt,

i

π

i
√

1−z2−z∫
−i
√

1−z2−z

(t2 + 2tz + 1)−
1
2 (−t)ndt =

i

π

i
√

1−z2−z∫
−i
√

1−z2−z

(t2 + 2tz + 1)−
1
2 (−t)−n−1dt.

We give also a few integral representations of Pn(z) valid for −1 < Ren <
0: ∫ ∞

0

(t2 + 2tz + 1)−
1
2 tndt =

∫ ∞
0

(t2 + 2tz + 1)−
1
2 t−n−1dt,

2−n
−1∫
−∞

(t2 − 1)n(z − t)−n−1dt = 21+n

−1∫
−∞

(t2 − 1)−n−1(z − t)ndt,

2−n
z∫

1

(1− t2)n(z − t)−n−1dt = 21+n

z∫
1

(1− t2)−n−1(z − t)ndt.

We also introduce the associated Legendre function:

Qn(z) := (z2 − 1)
−n−1

2 Sn+ 1
2
,0

( z√
z2 − 1

)
= (1 + z)−n−1F

(
n+ 1, n+ 1; 2n+ 2;

2

1 + z

)
= (1 + z)−n−1F2n+1,0,0

( 2

1 + z

)
= z−n−1F

(n+ 1

2
,
n+ 2

2
;n+

3

2
; z−2) = z−n−1Fn+ 1

2
,0, 1

2

(
z−2).

Here is a differently normalized associated Legendre function:

Qn(z) :=
√
π2−n−1 Γ(n+ 1)

Γ(n+ 3
2
)
Qn(z).

Here is an integral representation of Qn(z) valid for all n:

2−n−1

2i sinnπ

∫
[1−,−1+]

(1− t2)n(t− z)−n−1dt.

The following integral representations of Qn(z) are valid for Ren > −1:

0∫
√
z2−1−z

(t2 + 2tz + 1)−
1
2 (−t)ndt =

−
√
z2−1−z∫
−∞

(t2 + 2tz + 1)−
1
2 (−t)−n−1dt,

2−n−1

1∫
−1

(t2 − 1)n(t− z)−n−1dt = 2n
∞∫
z

(t2 − 1)−n−1(t− z)ndt.
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Remark 6.5 According to eg. [WW], the standard Legendre function is
Pn(z), whereas the standard associated Legendre function is Qn(z)

6.14.2 Legendre polynomials

Assume now that n = 0, 1, . . . .
The Legendre polynomials are special cases of both CI and CII, as well

as special cases of the Legendre function:

Pn(z) = CI,0
n (z) = CII,0

n (z)

=
1

2nn!
∂nz (z2 − 1)n.

Their generating function is a special case of the generating function for
CII:

(1− 2zt+ t2)−
1
2 =

∞∑
n=0

Pn(z)tn.

6.14.3 Chebyshev equation of the 1st kind

Suppose that one of the parameters belongs to Z + 1
2
. Using, if neces-

sary, recurrence relation, we can assume it equals − 1
2
. After applying an

appropriate symmetry we can assume that α = − 1
2
. We obtain then the

Chebyshev operator of the 1st kind:

S− 1
2
,λ(z, ∂z) = (1− z2)∂2

z − z∂z + λ2. (6.112)

After substitution z = cosφ it becomes

∂2
φ + λ2.

Thus the coresponding equation can be solved in terms of elementary
functions.

To obtain an operator that annihilates a polynomial of degree n we
simply set λ = n:

(1− z2)∂2
z − z∂z + n2.

The Chebyshev polynomials of the 1st kind are

Tn(z) =
n!

(1/2)n
C

I,− 1
2

n (z) =
d

dα
C

II,− 1
2

n (z)

=
1

2

(
(z + i

√
1− z2)n + (z − i

√
1− z2)n

)
.

Note that C
II,− 1

2
n = 0, therefore the usual generating function for CII

cannot be applied for the Chebyshev polynomials of the 1st kind. Instead,
we have generating functions

− log(1− 2zt+ t2) =

∞∑
n=0

Tn(z)
tn

n
,

1− zt
1− 2zt+ t2

=

∞∑
n=0

Tn(z)tn.
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6.14.4 Chebyshev equation of the 2nd kind

If one of the parameters belongs to Z+ 1
2
, instead of α = − 1

2
we can reduce

ourselves to the case α = 1
2
. We obtain then the Chebyshev operator of

the 2nd kind:

S 1
2
,λ(z, ∂z) = (1− z2)∂2

z − 3z∂z + λ2 − 1. (6.113)

After substitution z = cosφ it becomes

sinφ(∂2
φ + λ2)(sinφ)−1.

Clearly, the corresponding equation can also be solved in elementary func-
tions.

To obtain an operator that annihilates a polynomial of degree n we
set λ = n+ 1:

(1− z2)∂2
z − 3z∂z + n(n+ 2).

The Chebyshev polynomials of the 2nd kind are

Un(z) =
n!

(3/2)n
C

I, 1
2

n (z) = C
II, 1

2
n (z)

=
(z + i

√
1− z2)n+1 − (z − i

√
1− z2)n+1

2i
√

1− z2
.

Their generating function is a special case of the generating function for
CII:

(1− 2zt+ t2)−1 =

∞∑
n=0

Un(z)tn.

7 The Hermite equation

7.1 Introduction

Let a ∈ C. In this section we study the Hermite equation, which is given
by the operator

S(a, z, ∂z) := ∂2
z − 2z∂z − 2a.

The choice of the parameter a is dictated by the analogy with the pa-
rameters of the Gegenbauer. It will be called a classical parameter, even
though it is not the usual one in the literature.

The Hermite operator can be obtained as the limit of the Gegenbauer
operator:

lim
b→∞

2

b
S
(
a, b; z

√
2/b, ∂(

z
√

2/b
)) = S(a; z, ∂z). (7.114)

To describe the symmetries it is convenient to use its Lie-algebraic
parameter:

λ = a− 1

2
, a = λ+

1

2
.

In the new parameter the Hermite operator equals

Sλ(z, ∂z) = ∂2
z − 2z∂z − 2λ− 1.

The Lie-algebraic parameter has an interesting interpretation in terms of
a “Cartan element” of the Lie algebra sch(1) [DM].
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7.2 Equivalence with a subclass of the confluent
equation

The Hermite equation is reflection invariant. By using the quadratic trans-
formation we can reduce it to a special case of the confluent equation:

S(a; z, ∂z) = 4F(
a

2
;

1

2
;w, ∂w), (7.115)

z−1S(a; z, ∂z)z = 4F(
a+ 1

2
;

3

2
;w, ∂w), (7.116)

where
w = z2, z =

√
w.

In the Lie-algebraic parameters

Sλ(z, ∂z) = 4Fλ,− 1
2
(w, ∂w),

z−1Sλ(z, ∂z)z = 4Fλ, 1
2
(w, ∂w).

7.3 Symmetries

The following operators equal Sλ(w, ∂w) for an appropriate w:

w = ±z :
Sλ(z, ∂z),

w = ±iz :
− exp(−z2) S−λ(z, ∂z) exp(z2).

The group of symmetries of the Hermite equation is isomorphic to Z4 and
can be interpreted as the “Weyl group” of sch(1).

7.4 Factorizations and commutation properties

There are several ways to factorize the Hermite operator:

Sλ =
(
∂z − 2z

)
∂z − 2λ− 1

= ∂z
(
∂z − 2z

)
− 2λ+ 1,

z2Sλ =
(
z∂z + λ− 3

2

)(
z∂z − λ+

1

2
− 2z2

)
+
(
λ− 3

2

)(
λ− 1

2

)
=

(
z∂z − λ−

3

2
− 2z2

)(
z∂z + λ+

1

2

)
+
(
λ+

3

2

)(
λ+

1

2

)
.
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The factorizations can be used to derive the following commutation rela-
tions:

∂z Sλ
= Sλ+1 ∂z,

(∂z − 2z) Sλ
= Sλ−1 (∂z − 2z),

(z∂z + λ+ 1
2
) z2Sλ

= z2Sλ+2 (z∂z + λ+ 1
2
),

(z∂z − λ+ 1
2
− 2z2) z2Sλ

= z2Sλ−2 (z∂z − λ+ 1
2
− 2z2).

Each of these commutations relations is associated with a “root” of the
Lie algebra sch(1).

7.5 Convergence of the Gegenbauer equation to
the Hermite equation

It is interesting to describe the transition from the symmetries of the
Gegenbauer equation to the symmetries of the Hermite equation. We
consider the limit (7.114). We also consider the surface Ω described in
Subsect. 6.5.

Let us look only at the part of Ω given by the union of Ω+∩{Imz > 0}+
and Ω− ∩ {Imz > 0}− glued along ] − 1, 1[. The scaling involved in the
limit (7.114) transforms this part of Ω into C.

τ(Ω+ ∩ {Imz > 0}) is equal to the union of Ω− ∩ {Imz > 0,Rez > 0}
and Ω− ∩ {Imz < 0,Rez > 0} glued along ]0, 1[. Thus the limit of τ on
Ω+ ∩ {Imz > 0} equals the multiplication by −i.
−τ(Ω−∩{Imz < 0}) is equal to the union of Ω+∩{Imz > 0,Rez < 0}

and Ω− ∩ {Imz < 0,Rez < 0} glued along ]− 1, 0[. Thus the limit of −τ
on Ω− ∩ {Imz > 0} also equals the multiplication by −i.

Thus the multiplication by −i is not the limit of a single element of the
group of the symmetries of ther Gegenbauer equation, but a combination
of the limits of two symmetries.

7.6 Integral representations

Below we describe two kinds of integral representations of the Hermite
equation.

Theorem 7.1 1. Let [0, 1] 3 t 7→ γ(t) satisfy

et
2

(t− z)−a−1
∣∣∣γ(1)

γ(0)
= 0.

Then

S(a; z, ∂z)

∫
γ

et
2

(t− z)−adt. (7.117)
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2. Let [0, 1] 3 t 7→ γ(t) satisfy

e−t
2−2ztta

∣∣∣γ(1)

γ(0)
= 0.

Then

S(a; z, ∂z)

∫
γ

e−t
2−2ztta−1dt = 0. (7.118)

Proof. We check that for any contour γ, (7.117) and (7.118) equal

−a
∫
γ

(
∂te

t2(t− z)−a−1
)

dt,

−2

∫
γ

(
∂te
−t2−2ztta

)
dt

respectively.
We can also deduce the second representation from the first by the

symmetry involving the multiplication by ez
2

and the change of variables
z 7→ iz. 2

7.7 Canonical forms

The natural weight of the Hermite operator equals e−z
2

, so that

Sλ = ez
2

∂ze
−z2∂z − 2λ− 1.

The balanced (as well as Schrödinger-type) form of the Hermite operator
is

e−
z2

2 Sλe
z2

2 = ∂2
z − z2 − 2λ.

Note that the symmetry (z, λ) 7→ (iz,−λ) is obvious in the balanced form.

Remark 7.2 The balanced form of the Hermite equation is known in
the literature as the Weber or parabolic cylinder equation. It is usually
written in one of two forms

∂2
z −

1

4
z2 − k, ∂2

z +
1

4
z2 − k.

7.8 Even solution

Inserting a power series in the equation we see that the Hermite equation
has an even solution

S+
λ (z) :=

∞∑
j=0

(a
2
)j

(2j)!
(2z)2j

= F
(a

2
;

1

2
; z2
)

= F− 1
2
,λ(z2).

It is the unique solution satisfying

S+
λ (0) = 1,

d

dz
S+
λ (0) = 0. (7.119)

It has the properties

S+
λ (z) = S+

λ (−z) = ez
2

S+
−λ(iz).
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7.9 Odd solution

The Hermite equation has an odd solution

S−λ (z) :=

∞∑
j=0

(a+1
2

)j

(2j + 1)!
(2z)2j+1,

= 2zF
(a+ 1

2
;

3

2
; z2
)

= 2zF 1
2
,λ(z2).

It is the unique solution of the Hermite equation satisfying

S−λ (0) = 0,
d

dz
S−λ (0) = 2. (7.120)

It has the properties

S−λ (z) = −S−λ (−z) = −iez
2

S−−λ(iz).

7.10 Standard solutions

The Hermite equation has only one singular point, ∞. We will see that
one can define two kinds of solutions with a simple asymptotics at ∞.

By Thm 7.1, for appropriate γ1 and γ2 the following integrals are
solutions: ∫

γ1

e−t
2−2tztλ−

1
2 dt,

∫
γ2

et
2

(z − t)−λ−
1
2 dt.

In the first case the integrand has a singular point at 0 and goes to
zero as t → ±∞. We can thus use γ1 with such endpoints. We will see
that they give all standard solutions.

In the second case the integrand has a singular point at z and goes to
zero as t → ±i∞. Using γ2 with such endpoints we will also obtain all
standard solutions.

7.10.1 Solution ∼ z−a for z → +∞
The following function is the solution of the Hermite equation that behaves

as z−a = z−λ−
1
2 for |z| → ∞, | arg z| < π/2− ε:

Sλ(z) := z−λ−
1
2 F̃− 1

2
,λ(−z−2) = z−aF

(a
2
,
a+ 1

2
;−;−z−2

)
.

We will also introduce alternatively normalized solutions:

SI
λ(z) := 2−λ−

1
2 Γ
(
λ+

1

2

)
Sλ(z)

= 2−az−aΓ(a)F
(a

2
,
a+ 1

2
;−;−z−2

)
,

S0
λ(z) :=

√
πSλ(z).
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(The normalization of S0
λ is somewhat trivial – we introduce it to preserve

the analogy with the Gegenbauer equation, which had a less trivially
normalized solution S0

α,λ.)
Assuming that z 6∈] −∞, 0], we have an integral representation valid

for − 1
2
< Reλ:

∞∫
0

e−t
2−2tztλ−

1
2 dt = SI

λ(z),

and for all parameters:

−i

∫
]−i∞,z−,i∞[

et
2

(z − t)−λ−
1
2 dt = S0

λ(z).

7.10.2 Solution ∼ (−iz)a−1ez
2

for z → +i∞
The following function is the solution of the Hermite equation that behaves

as (−iz)a−1ez
2

= (−iz)λ−
1
2 ez

2

for |z| → ∞, | arg z − π/2| < π/2− ε:

ez
2

S−λ(−iz) = (−iz)λ−
1
2 ez

2

F̃− 1
2
,−λ(z−2).

Assuming that z 6∈ [0,∞[, we have an integral representation valid for
all parameters: ∫

]−∞,0+,∞[

e−t
2−2tz(−it)λ−

1
2 dt = ez

2

S0
−λ(−iz),

and for Reλ < 1
2
:

−i

∫
[z,i∞[

et
2

(−i(t− z))−λ−
1
2 dt = ez

2

SI
−λ(−iz).

7.11 Connection formulas

We can decompose the standard solutions into the even and odd solutions:

Sλ(z) =

√
π

Γ( 2λ+3
4

)
S+
λ (z)−

√
π

Γ( 2λ+1
4

)
S−λ (z);

ez
2

S−λ(−iz) =

√
π

Γ( 3−2λ
4

)
S+
λ (z) + i

√
π

Γ( 1−2λ
4

)
S−λ (z).
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7.12 Recurrence relations

The following recurrence relations follow easily from the commutation
properties of Subsect. 7.4:

∂zSλ(z) = −
(1

2
+ λ

)
Sλ+1(z),

(∂z − 2z)Sλ(z) = −2Sλ−1(z),

(z∂z +
1

2
− λ− 2z2)Sλ(z) = −2Sλ−2(z),

(z∂z +
1

2
+ λ)Sλ(z) = −1

2

(1

2
+ λ

)(3

2
+ λ

)
Sλ+2(z).

7.13 Hermite polynomials

If −a = n = 0, 1, 2, . . . , then Hermite functions are polynomials.
Following Subsect. 1.6, they can be defined by the following version

of the Rodriguez-type formula:

Hn(z) :=
(−1)n

n!
ez

2

∂nz e−z
2

.

Remark 7.3 The Hermite polynomials found usually in the literature
equal

n!Hn(z).

The advantage of our convention is that the Rodriguez-type formula has
the same form for all classes of hypergeometric type polynomials.

The differential equation: (
∂2
z − 2z∂z + 2n

)
Hn(z)

= (−n; z, ∂z)Hn(z) = 0.

The generating function:

exp(2tz − t2) =
∞∑
n=0

tnHn(z).

The integral representation:

Hn(z) = 1
2πi

∫
[0+]

exp(2tz − t2)t−n−1dt.

Recurrence relations:

∂zHn(z) = 2Hn−1(z),

(∂z − 2z)Hn(z) = −(n+ 1)Hn+1(z),

(z∂z − n)Hn(z) = 2Hn−2(z),(
z∂z + n+ 1− 2z2)Hn(z) = −(n+ 1)(n+ 2)Hn+2(z).

90



The differential equation, the Rodriguez-type formula, the generat-
ing function, the integral representation and the first pair of recurrence
relations are special cases of the corresponding formulas of Subsect. 1.6.

We have several alternative expressions for Hermite polynomials:

Hn(z) = − lim
ν→n

(−1)n(ν−n)SI

−n− 1
2
(z) =

2n

n!
S−n− 1

2
(z)

=
2n

n!
znF

(
− n

2
,
−n+ 1

2
;−;−z−2

)
=

[n
2

]∑
k=0

(−1)k(2z)n−2k

k!(n− 2k)!
.

Behavior at ∞.
lim
n→∞

Hn(z)
zn

= 2n

n!
.

Initial conditions at 0.

H2m(0) = (−1)m

m!
, H ′2m(0) = 0,

H2m+1(0) = 0, H ′2m+1(0) = (−1)m2
m!

.

Identities for even and odd polynomials.

H2m(z) =
(−1)m22mm!

(2m)!
L−1/2
m (z2) =

(−1)m(2z)2mm!

(2m)!
B
−2m− 1

2
m (−z−2),

=
(−1)m

m!
S+

−2m− 1
2
(z) =

(−1)m

m!
F
(
−m;

1

2
; z2
)
,

H2m+1(z) =
(−1)m22m+1m!

(2m+ 1)!
zL1/2

m (z2) =
(−1)m(2z)2m+1m!

(2m+ 1)!
B
−2m− 3

2
m (−z−2)

=
(−1)m

m!
S−−2m− 3

2
(z) =

(−1)m

m!
2zF

(
−m;

3

2
; z2
)
.

A Contours for integral representations

In this appendix we collect contours used in various integral representa-
tions of hypergeometric type functions.

For each basic type of integral representations considered in our text
we give at least one contour for every standard representation. We give
the priority to type (a) contours. If they are unavailable, we show a type
(b) contour. In some cases we present both a type (a) and type (b).

We also show contours that yield the degenerate solutions and the
polynomial solutions. They are given by closed loops.

Here is the explanation of basic elements of our figures:
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