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(0(2)83 + 7(2)0, + 77) F(z)=0

is called a hypergeometric type equation if n € C and o(z), 7(2)

are polynomials with
dego < 2, degr < 1.
It is given by the hypergeometric type operator

C(2,0:) = 0(2)0; +7(2)0: +n



Below we list normal forms of all nontrivial classes of hypergeo-

metric type operators.

The hypergeometric operator z(1—2)9%+ (¢c— (a+b+1)z)d, — ab.
The Gegenbauer operator (1 — 2%)0* — (a + b+ 1)20. — ab.

The confluent operator 20* + (¢ — 2)0. — a.

The Hermite operator 0 — 220, — 2a.

The (F} operator (related to the Bessel operator) 20* + 0. — 1.



We will see that all hypergeometric type equations can be obtained
by separating the variables of a certain 2nd order PDE's with constant

coefficients. Every such a PDE has a Lie algebra and a Lie group of

generalized symmetries.

1. The orthogonal Lie algebra so(C"™2) describes generalized sym-
metries of the Laplace equation Acnf = 0.

2. The Schrodinger Lie algebra sch(C"2) = C*®C" % (sl(C?)@so(C"?))
generalized symmetries of the heat equation (A@n_Q + @t)f = 0.

3. The affine orthogonal Lie algebra C" ! xs0(C" 1) describes sym-
metries of the Helmholtz equation (A@H — 1)f = 0.



All the equations from the above list can be derived by an appro-

priate reduction from the Laplace equation in n + 2 dimensions
A(CnJrQK — O

On the (n + 2)-dimensional level the corresponding symmetries are
very straightforward. In particular, all the corresponding symmetries

sit in the conformal symmetries of C":

sch(C"™%) C so(C"™),
C" ! x50(C" 1) C s0(C"™) C s0(C"F?)



In the Lie algebra of generalized symmetries we fix a certain max-
imal commutative algebra, which we will call the “Cartan algebra”.
The eigenvalues of the “Cartan algebra” correspond to parameters
of the equation.

Operators whose adjoint action is diagonal in the “Cartan alge-
bra” will be called “root operators’. Root operators correspond to
commutation relations of the equation.

In the Lie group of generelized symmetries we will distinguish a
discrete subgroup, which leaves invariant the “Cartan algebra”. It
will be called the group of “Weyl symmetries”. Weyl symmetries

correspond to discrete symmetries of the equation.



Lie discrete number of number of

PDE equation
algebra symmetries parameters basic com. rel
AV s0(C?) cube hypergeometric 3 12;
Aes so(C?) square Gegenbauer 2 8;
Ac2+ 0 sch(C?) Ly X o confluent 2 6;
Ac+0;  sch(Ch) 24 Hermite 1 4;

ACQ — 1 (Cz X SO(C2) Zg ()F1 1 2.



Thus to derive the hypergeometric and confluent equation together

with all its symmetries one should start with
A66K — O

To derive the Gegenbauer, Hermite and (F} equation together with

all its symmetries it is enough to start with
A@5K — O

It is easy to reduce the Laplace equation from 6 to 5 dimensions.
Thus the Laplace equation in 6 dimensions is the mother of all hy-

pergeometric type equations.



Every hypergeometric type operator can be written as
C(z,0:) = p~(2)0-p(2)0: + 1,

which defines a function p(z) called the weight. The operator

D[ —

C"\(z,0.) == p(2)2C(z,0.)p(2) 2,

will be called the balanced form of C.



On the following slides we list all normal forms of hypergeometric
type equations both in the standard form and in the balanced form.
We also present two classes of identities whose group-theoretical
derivation we would like to present: commutation relations and dis-
crete symmetries.

We will always use special parameters. The special parameters and

the balanced form will help us to visualize the symmetries.



The (standard) hypergeometric operator

Fopulw,0y) = ’w(ll — w)&i + ((1 +a)(l —w)—(1+ B)w)@w

|
2 2
Y 1)2.
+—u (a+ B +1)

The balanced hypergeometric operator

Pt 0,00) = w501 ), 551 )
— 1

dw 41— w) 4



Discrete symmetries, known as Kummer's table:

]:b,%,u<w’ 0y) does not change if we flip the signs of «, f3, .

«

Besides, the following operators coincide with FOE%,M(w, Op):
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Commutation relations.

o 6 bal
w(l —w) (&U— %—F o0 —w)) fa’57u(w, Ow)

- bal _ _ i 5
= P s, 9 VT =00 (2 5t ).
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w(l —w) <(')w 0 21 w)) Folp p(w, Op)

. bal _ _ g — B
= ‘FCX—Fl,,B—l,,lL(w’ 8’(1)) UJ(l w) (8’(1) ow 2(1 _ w)) y
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o
Vw (2(1 —w) Oy — i T 3) Fs (w, 8y)
— FP L (w, By) Vo (2(1 —w) Dy — g - 1> ,
o
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b (‘210310 a iUJ Bl 3) fﬁ]ﬁ%,u(wa aw)
= Fo Bt e (w, Ou) VI —w (—Qwaw — % - 1> 7
vi-w (_2““% TR 3) Fos u(w, Ou)

1 —w
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The (standard) Gegenbauer operator

2
Sar(w,dy) = (1 — w02 —2(1 + a)wd, + \* — (a + %) :

The balanced Gegenbauer operator

ShA(w, dy) = (w? — 1)28, 0 (w, Oy) (w? — 1)72
o? 1
1 — w? 4

= O0p(1 — w0, —



Discrete symmetries. Sbal(w, 0y ) does not change if we flip the

signs of v, A. Besides, the following operators coincide with Sbal “(w, Oy):



Commutation relations.

i=w? (5~ 0 - 55— A) s, 2

1
=S, 0 VI (<L —wa, - —0 ),
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2 1 —w?
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The (standard) confluent operator

FQ,a<w7 aw) = wa@% =+ (1 + o — w)@w — %(1 + 6+ Oz).

The balanced confluent operator

.F;Zl(w, Op) = 21)76_%.7-"9,04(w7 (%)w_%e%
2



Discrete symmetries. F % (w, 0,) does not change if we flip the

sign of . Besides, the following operators coincide with F;Zl(w, Ow):

w= z: F;Zl(z,az),

w=—z: FEZ{a(z,(‘?Z).



Commutation relations.

\%(wa+§+-)fwm¢m
ekﬂ,a—l(wa Ow)

i%(wa-—%+ ) Faw, 0)
lei—a},oz—l—l(w7 Ow)

7%(wa-+%——)fmhua>

Qb—ai, a—l(w7 aw)

(w@-—%——)?m%ma@

A

Ql?i,aﬁ—l(w? aw)

(w0 =5+73);






The (standard) Hermite operator
Si\(w, ) = 02 — 2w, — 2\ — 1.

The balanced Hermite operator
2 2

Sljal(w, Op) = e_MTSA(w, 8w)ew7
= 07 —w? — 2\



Discrete symmetries. The following operators coincide with S,"(w, 0,,):

w= z: Sz 0.),
w= iz : —S8"(z,0.),
w= —z: S¥z,0.),

w=—iz : —8"(z,0.).



Commutation relations.
(8 -+ w)Sbal(w, Ow)
= S (w, Oy) (0 +w),
(0w —w)Sbal(w Ow)
(w, 8y) (0 —w),

(Fwu = —u? = SP(w 0
= 8w, ) (—wdy — A —w? — 1)

9)

(w0 = A —w” + )Sbal(w Ow)
bal<w 8>(waw_)\—’w2—|—%>,



The (standard) (F} operator
Folw,dy) = w2 + (a+1)d, — 1.

The balanced (F operator

Fsal(w, Op) = w%Fa(w, &w)w_%
o2
= Opwdy — 1 — —



Discrete symmetries. JF,(w, 0,,) does not change if we flip the sign
of a.

Commutation relations.

\/1@(108 — ) Fw, 0,) = F2w, aw)\%(w 00 -5,
\}E(wﬁ + ) Fr(w, 0,) = 2 (w, 0 )%(wam%)



Symmetries of PDE’s

Let C be a linear differential operator on a complex manifold U.
Let o be a biholomorphic transformation on UU. Then « acts on

analytic functions on U by

af(u) = fla™ (u)).
We say that it is a symmetry of C iff

aC = Ca.



One can also consider a pair of actions of « that involve multipliers
& f(u) = mi(u) fla™(u)),
@’ f(u) = m’(u) fla™ (u)).
We say that a pair (af, o) is a generalized symmetry of C if
o’C = Ca.

Clearly, CF = 0 implies CafF = (. Generalized symmetries form a
group.



Let A be a holomorphic vector field on U. A acts on analytic

functions on U:
Af(u) = A'(u)0; f(u).

We say that it is an infinitesimal symmetry of C iff

AC =CA.



One can also consider a pair of actions of A that involve Oth order

terms:

A f(u) = A)df(u) + MF(u) f(u),
Af(u) = A f (u) + M (u) f(u).
We say that a pair (A%, A’) is a generalized infinitesimal symmetry

of C if
A°C = CA"

Clearly, CF = 0 implies CA*F = 0. Infinitesimal generalized

symmetries form a Lie algebra.



Generalized symmetries of 2nd order PDE’s

PDE infinitesimal symmetries
Laplace Acn so(C"*2)  conformal transformations (n > 2)
Heat Acn + 9, sch(n) = C*QC" x (sl(C*)@so(n)) found by Schrédinger

Helmholz Acn — 1 aso(n) = C" x so(n) affine orthogonal transformations



Conformal invariance
Consider C""* equipped with a bilinear nondegenerate form (-|-).
Choose coordinates on C"™? such that the scalar product has a

“Split” f‘orm
— (Z_1,21,---7Z—m—172m+1>7
z = (2’07 K1y R]lyewesf_m—1, Zm+1>7

(z]z) = zg—l—Zz_lzl—F---—l—z_m_lzmH, n =2m + 1.

O(C"*2) and so(C""?) act on functions on C"* in the obvious way.



To a function f(...,y_m,ym) on C" we associate the function on

(Cn—|—2

ONf =z f(, T, ),

" Zm41? el
To a function K (..., 2_m, 2m, Z—m-1, Zms1) on C"% we associate

the function on C"

VK = f(---:y—myyma _<' o _I_y—mym)a 1)



We have
id =V o ®7,

For any 17 we have representations on functions on C":
AT = WAP"T, A € so(C"T?),

oM = vad’ o e O(C"?).



We have the identity
A(Cn — \IJA(CTH—2CI)2_T”

Therefore, for this special value of 7 we have a generalized symmetry

of the Laplace equation:

n+2

Acn AR = AR T Ac, A € s0(C"2),

n—2 n+2
—g f

Acnd™ 7 =" Acn,  a € O(C").

Note that it is important to consider the Laplacian Agn+2 on func-

n—2

tions homogeneous of degree —*5=.



Geometric description: Introduce the null quadric in C"™2
Vi={zcC" : (z]2) =0, z+#0}
and the corresponding projective quadric
Yy =V/C~.

O(C"*2) acts naturally on C"*2, hence also on .
We have a map of an open dense subset of V:

1
C" >y (y, —5{yly), 1) xC* e,

Such maps endow ) with a conformal structure, which is preserved

by O(C"*2).



On C" (which can be viewed as an open dense subset of ))) we
have the Laplacian Ac¢n and a bilinear metric g. The action of
a € O(C"*?), resp. A € s0(C"2) on C" will be denoted o', resp.

A!. This action is conformal, in other words, for some function 0,
a'g =e*’g,  Alg=2¢g.
|dentifying ) with C", we obtain

ol = gmogtt A — Al 4 e



Set t = y_,,, so that Acn = Agn—2 4+ 20,0,,,. On functions of the

form
flo o Ymet,t,r) =€""h( .. Ym_1,t). (5)

the Laplace equation becomes the heat equation:
(20; + Acn—2)h(. .., ym_1,t) = 0.

The Schrodinger group Sch(C"?) consists of transformations o €
O(C""2) such that ! preserves the ansatz (5).
The Schradinger Lie algebra sch(C"~?) consists of transformations

A € 50(C""?) such that A" preserves the ansatz (5).



For a function h(...,¥ym,_1,t) on C"2 x C we define the function

on C" 2 x C?

Oh(. .. Ym—1, Y, Ym) = A Y1, Yo )™,

For a function f(...,Ym—1,Y—m,Ym) on C"2 x C* we define the

function on C" 2 x C

Cf( s 7ym—17t) = f( -y Ym—1, L, O)-



Clearly,
(o6 =1id,
CA(CTLH — 2&; + ACn—Q.

For any 17 we obtain representations
A — cAlng A e sch(C"2),

oM = a9, o € Sch(C"?).

For a special 7 we obtain a generalized symmetry
(28t‘|—A(Cn 2)ASCh 2 ASCh __<28t‘|—ACn 2) A c SCh(Cn_2>,

(2875 + A@n—Q)OéSCh’_nT_Q — OéSCh _Tl_+2(28t + A(Cn 2) Qo € SCh(Cn_2).



Laplace equation in C* — the hypergeometric equation

Extended space CY
Consider first the “extended space” C° with scalar product defined
by

(z|2) = 22921 + 22929 + 22_323,

where z = (2_1, 21, 29, 22, 2_3, 23)

The Lie algebra so(C®) is spanned by
Ni — Z—iaz_i — Ziazia 1= ]-7 27 37

Bi,j = z_z-(?zj — z_jﬁzl., 1 < |Z| < |]| < 3.



Its Weyl group is generated by permutations o € S35 and flips 7,

1 =1,2,3. For instance,

TIK — K(Zl, R—1yR—2y%2,Z—3, 23)7

0-(12)K — K(Z—Qa Ry 15 #1y Z—3; ZS)-
We have relations

[Nka B:I:k,j] — iB:l:k,j)
JNjO'_l = N,.,
j

TZ'NZ'TZ-_I — (—1>5ijNi,



Choose coordinates

T = \/2 (2_121 + Z_QZQ) ,

Z_1%1
w = ,
2121+ 2_9%9
<1
uy = )
<1
&2
Uy — -,
<2
<3
Uz — —



The Cartan algebra is especially simple in these coordinates: we

use operators fromn the Cartan algebra

sph__
sph
N2 — u2 auQ 3

sph __

The null quadric in these coordinates is given by 72+ p? = 0. The
generator of dilations is 1 0, 4+ p 0,.



The Laplacian is

rco= (3 (0022000 Do)

,r.2
(w1 00)*  (u104,)° 7% (uzOuy)”
+ Oy w(l —w) 9y, " —w 72 1 .

: . 2 .
If we restrict to the null quadric given by ]% = —1 and to functions

homogeneous of degree —"T_Q = —1, by setting 70, + p0, = —1,

and finally fix the gauge (section of the null quadric) r* = 4, we

obtain

(NP2 (NP2 (N2 1
e T T s R e




On functions of the form
f<w7u17u27u3> — ’LL1U2’LL3F< )

we obtain the balanced hypergeometric operator

o2 32 02— 1

Ouolt =w)0 = = T =y T



Laplace equation in C? — Gegenbauer equation

The “extended space” C° has the scalar product given by
(z|2) = 25 + 22929 + 22323,

where z = (29, 2_9, 22, Z_3, 23).

The Lie algebra so(C?) is spanned by
N; = 2.0, , — 20,, ©=2,3;
B;j =20, — 20, |i| <|j],il,|j| € {0,2,3}.



Here are examples of Weyl symmetries

TOK — K(_Z(): Ry Z—2y Z—3, Z3>7
TlK — K<ZOy Ry Z—2y Z—3, 23)7

0-(12)K — K(Z()? L3y %3y Z4—2, 22)-



We choose coordinates




Similarly as previously the null quadric in these coordinates is given
by % + p* = 0 and the generator of dilations is 7 9, + p 9,.

Cartan operators

NP = 459, , (6)
Nsph — Us 0u3 . (7)



The Laplacian in these coordinates is

1 r?
Aos = — (10, +(r0) + 50y
2 (ug 0uy)* 17 2
If we restrict to the null quadric by setting % = —1, to functions
p
homogeneous of degree —”7_2 = —% by setting r 0, + p 0, = —%,
and finally fix the gauge r? = 1, we obtain
NP2 1
(9w(1—w2)(9w—< 2 > —|—<N§ph>2——.

1 — w? 4



On functions of the form
f(w, ug, u3) = uSus F(w)

we obtain the balanced Gegenbauer operator

9

Q 1
N — =

1—wzjL 4

Op(1 — w?)0,, —



The heat equation in C?> @ C — the confluent equation

Extended space C°

We start from the same extended space CY, as in the case of the
hypergeometric equation. sch(2) can be defined as the commutant
of B_3 inside s0(6).

Here is its “Cartan algebra”

Nog = 290, , — 290, + 230, 5 — 2305,
Ny =210, |, — 210,

B_3’2 = 23(922 — 2_282_3.



Here are the root operators of sch(2):

By 1 =290, | — 210,
Byy = 2.90,, — 210,_,,
B—S,—l — 2362_1 — 2182_37
B_31 = 235’,21 — 2—13:5_3,

B—S,—Q — ZSaZ_Q - 2282_37

Bg 9 = Z_3az2 — z_gﬁzg.



The "Weyl group” of Sch(2) is generated by
kK = K(z_1,21,—23, —2_3, 22, 2_2),
K = K(z1,2.1,2 9, 20, 2_3, 23).
We have relations
[Na3, By 11] = Ba 11,
[Nos, B_3 11| = —DB_3 11,
[Noz, By(z9)] = 2B (39,
(N1, Bj+1] = £B; 11,
KNogk™" = —Nas,

7'1N17'1—1 = —Nl.




Auxiliary space C*

Ny’ = y_10y 1 + 110y, +y—20, , — 1,
Nlﬂ’77 = y-10y 1 — Y10y,

By"\ =y 20, 1 = 110,

Bg’{] = Y-20y, — Y10,

BY | =0, Bﬂ’:?@ = Oy Bﬁ’3,—2 = 0yys

fl
B3”§7 = —y—1y13y2 + y—2<y—1ay—1 + ylaw + (y—2)ay—2 - 77)5

fl
g = g(y1,y-1, y—2, Y2),

i, _ 0, (Y1 2Yy—1y1+2y—oy2 1




Heat equation on C* @ C
A vector in C* @ C will be denoted by (y_1,91,%). The heat
operator in C? @ C is defined as

‘C(CQ = 2(3‘y_1(9y1 + 2825

E(CQBSCh’_l = BSCh’_?)LCQ, B € SCh(C2),

Lo =M 3L, o € Sch(C?).



Ny =y 10, | + 110, + 2t0; — n,
N = g0y, — 10y,
By =10, , — .
2,1 t0y, — y-1,
Bs—cg,’ﬁl — ay_la
BSC?? = Oy,
BS—C?EI,’Zz — ata
B;fg’" = t(y_10,_, + 110y, + 10 — 1) — y_141.
n M = hiy,y-1, 1),

/iSCh’nh — 7 exp<y—tlyl>h<y

—1ﬂ_l>
t ot )



We introduce the coordinates

Y-1Yy1
w = :
t
Y—1
U= ,/—,
U1

s=t.

We also sandwich all the operators

AN

B :=¢"

IS
SIS

Be



The Cartan algebra becomes

\rsch,n

N23 —_— S as - /’7,
N =40,
Ssch

)

Here is the heat opeator after these transformations:

- 2
- w w 2 n NSCh 1 ) B
£(C2:e ZL(CQGQ — — awwaw___< 1 ) 4= sch,—1

52 4 4w 923



We make an ansatz
hlw, u,s) = us " LF(w).
Then 8%2@2 becomes the balanced confluent operator

w 0 o?

0, w0, — — 2 _ @
v 12 dw



The heat equation in C @& C — the Hermite equation
Extended space C°
We start from the same extended space C° as in the case of the

Gegenbauer equation. sch(C!) has a Cartan algebra

N = 290, , — 200, + 2_30,_, — 230

<3

B_3,2 — 23822 — 2_282_3.



and root operators

By = 2—2@0 — ZoazQ,
B_30 = 230, — 200;_,,
B_3_9 = 230. , — 220,

Bso = 2_30., — 220, _,.

-3



We consider also x € Sch(C'): given by
KK = K(sz) TR2, TR-2, A1, Z—l)-

It generates a group isomorphic to Zj.

We have relations
[N, B1o] = By,
N, B30 = —B 2y,
[N, Bj:(2,1): — i2Bi(2,1)7

kNrk™1 = —N.



Auxiliary space C?
On C? the Lie algebra sch(C!) acts as follows:

ﬂ7
N2377 — ?Joayo + 29—2(%_2 — 1,

B, =9,
Bg,’g = Y20y, — Y00y,
B%],O - ayov

Bﬁyg,—l — 8y—27

f,

By = y—2y00y, + Y220y — 3Y50y — N2,
2

/iﬂ,ng _ y7279<y0 Yo +2y—212 1 )7

v 2y 0y
(K129 = (1)79(—yo, y—2, y2)-



Heat equation on C e C
The heat operator in C & C is defined as

ﬁ(c = (9; + 25’t

1

LeA=z = gsh=sp A € 5ch(C),

Lea™dz = OzSCh’_%Ec, a € Sch(C).



We have
N3 = 99, + 2t0, — n,

B =10, —y,

BS—CSZ(;7 — aya

BS_C;’L = 0},

By = t(yd, + 0 — ) — 1/
Ry, 1) = tTexp()h(2, —1),

t? 1

(K*"1)?h(y, t) = (—=1)"h(—y,1).



Space C & C in special coordinates

S gl

S =

We sandwich all operators with a Gaussian weight:

A~ w2 w2

C:=¢ 2(Ce2.



Cartan operators.

\schn
N23 — Sas - 777



We make an ansatz
h(w,s) = SA_%F(UJ).

25°Lc coincides on such functions with the balanced Hermite oper-

ator

0% — w? — 2.



