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Chapter 1

Basic rules of Quantum
Mechanics

1.1 Observables – finite dimension

We would like to describe basic framework of quantum mechanics – the descrip-
tion of states and observables. To avoid technical complications, in this section
we will always assume that the Hilbert space H describing a quantum system
is finite dimensional, so that it can be identified with CN , for some N .

In basic curses on Quantum Mechanics we learn that quantum states are
described by a density matrix ρ and a yes/no experiment by an orthogonal
projection P . The probability of the affirmative outcome of such an experiment
equals

TrρP.

Two orthogonal projections P1 and P2 are simultaneously measurable iff they
commute.

We say that a family of orthogonal projections P1, . . . , Pn is an orthogonal
partition of unity on H iff

n∑
i=1

Pi = 1l, PiPj = δijPj , i, j = 1, . . . n.

Clearly, all elements of an orthogonal partition of unity commute with one
another. Therefore, in principle, one can design an experiment that measures
simultaneously all of them.

Note that if P1, . . . , Pn is an orthogonal partition of unity, then setting Hi :=
RanPi, i = 1, . . . , n, we obtain an orthogonal direct sum decomposition H =
n
⊕
i=1
Hi. Thus specifying an ortogonal partition of unity is equivalnt to speciifying

an orthogonal direct sum decomposition.
Let P1, . . . , Pn be a maximal orthogonal partition of unity, that is, an or-

thogonal partition of unity satisfying dimPi = 1, i = 1, . . . , n. If we choose a
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normalized vector Ψi in the range of Pi for i = 1, . . . , n, we obtain an orthonor-
mal basis of H.

To any self-adjoint operator A we can associate an orthogonal partition of
unity given by the spectral projections of A onto its eigenvalues:

1l{a}(A), a ∈ sp(A). (1.1)

By measuring the observable A we mean measuring the partition of unity (1.1).
Clearly, A =

∑
a∈sp(A)

a1la(A). Hence, the average eigenvalue of A in such an

experiment equals

TrρA =
∑

a∈sp(A)

aTrρ1la(A). (1.2)

We call (1.2) the expectation value of the observable A in the state ρ.
Let self-adjoint operators A1, . . . , An commute. Then so do their spectral

projections. Define the joint spectrum of A1, . . . , An by

sp(A1, . . . , An) := {(a1, . . . , an) ∈ Rn : 1l{a1}(A1) · · · 1l{an}(An) 6= 0.}.

For any subset Ω ⊂ sp(A1, . . . , An) we can define the spectral projection of
A1, . . . , An onto Ω:

1lΩ(A1, . . . An) :=
∑

(a1,...,an)∈Ω

1l{a1}(A1) · · · 1l{an}(An).

If the partition of unity

1l{a1}(A1) · · · 1l{an}(An) : (a1, . . . , an) ∈ sp(A1, . . . , An)

is maximal, then we say that the joint spectrum of A1, . . . , An is simple. Physi-
cists often try to find families of self-adjoint operators with a simple joint spec-
trum. Then they choose a normalized vector in Ran1l{a1}(A1) · · · 1l{an}(An).
We will use the traditional way to denote such a vector, which goes back to
Dirac, that is |a1, . . . , an). Note that a slightly different notation is used when
this vector is on the left hand side of a scalar product: then it is written as
(a1, . . . , an|.

Clearly, the vectors |a1, . . . , an) form an o.n. basis of simultaneous eigenvec-
tors of Ai:

Ai|a1, . . . , an) = ai|a1, . . . , an).

Note that if Ω ⊂ sp(A1, . . . , An), then

1lΩ(A1, . . . , An) =
∑

(a1,...,an)∈Ω

|a1, . . . , an) (a1, . . . , an| .

The setting of the following examples are an infinite dimensional Hilbert
spaces but it can be easily understood with finite dimensional concepts.



Example 1.1 Consider a function R 3 x 7→ V (x) such that lim
|x|→∞

V (x) = ∞.

Consider the the Schrödinger operator H := −∂2
x + V (x) on L2(R). One can

show that it has a purely point simple spectrum.

Example 1.2 Let R 3 r 7→ V (r) be a function such that lim
r→∞

V (r) =∞. Con-

sider the space L2(R3), the Schrödinger operator H := −∆ + V (|x|), the square
of angular momentum L2 and the zth component of the angular momentum
Lz. H,L2, Lz is a triple of commuting self-adjoint operators with a simple joint
spectrum.

So far we assumed that all orthogonal projections on H, hence all self-adjoint
operators on H, correspond to possible experiments. We say that all self-adjoint
elements of B(H) are observable.

Sometimes this is not the case. We are going to describe several situations
where only a part of self-adjoint operators are observable.

It may happen that the Hilbert space H has a distinguished direct sum
decomposition

H =
n
⊕
i=1
Hn (1.3)

such that only self-adjoint operators that preserve each subspace Hi are mea-
surable. We say then that Hi, i = 1, . . . , n, are superselection sectors.

Let Qi denote the orthogonal projection onto Hi. Then linear combinations
of Qi can be measured simultaneously with all other observables. We say that
they are classical observables.

If we choose an o.n. basis of H compatible with (1.3), then only block
diagonal self-adjoint matrices are observable.

Note that states are also described by block diagonal matrices.
Superselection sectors arise typically when we have a strictly conserved quan-

tity. For instance, the total charge of the system usually determines a su-
perselection sector. States of an even and odd number of fermions form two
superselection sectors.

Suppose that two quantum systems are described by Hilbert spaces H1, H2.
Then the composite system is described by the tensor product H1⊗H2. Observ-
ables of the first system are described by self-adjoint elemens of B(H1)⊗ 1lH2 ,
whereas observables of the second system are described by self-adjoint elements
of 1lH1

⊗ B(H2). Note that they commute, so that one can simultaneously
measure them. From the point of view of the first system only self-adjoint ele-
ments of B(H1)⊗ 1lH2

are observable. Again, we have a situation where not all
self-adjoint elements of B(H) are observable.

Let H1 = Cp with an o.n. basis e1, . . . , ep and H2 = Cq with an o.n. basis
f1, . . . , fq. Then ei ⊗ fj i = 1, . . . , p, j = 1, . . . , q is an o.n. basis of H1 ⊗ H2.
Matrices in B(Cp)⊗ 1lCq have the form

A 0
0 A

A

 , A ∈ B(Cp),



and matrices in 1lH1 ⊗B(H2) have the form
b111l b121l
b211l b221l

bqq1l

 , [bij ] ∈ B(Cq),

It may happen that H = CN , N =
n∑
i=1

piqi,

H =
n
⊕
i=1

Cpi ⊗ Cqi ,

and observables are self-adjoint elements of

A :=
n
⊕
i=1

B(Cpi)⊗ 1lqi .

Note that A is an example of what mathematicians call a ∗-algebra, which we
recall below. We will say that A is the ∗-algebra of observables.

Let A be a vector space over C. We say that A is an algebra if it is equipped
with an operation

A× A 3 (A,B) 7→ AB ∈ A

satisfying

A(B + C) = AB +AC, (B + C)A = BA+ CA,
(αβ)(AB) = (αA)(βB).

If in addition
A(BC) = (AB)C,

we say that it is an associative algebra. (In practice by an algebra we will
usually mean an associative algebra).

The center of an algebra A equals

Z(A) = {A ∈ A : AB = BA, B ∈ A}.

Let A, B be algebras. A map φ : A → B is called a homomorphism if it is
linear and preserves the multiplication, ie.

1. φ(λA) = λφ(A);

2. φ(A+B) = φ(A) + φ(B);

3. φ(AB) = φ(A)φ(B).

We say that an algebra A is a ∗-algebra if it is equipped with an antilinear
map A 3 A 7→ A∗ ∈ A such that (AB)∗ = B∗A∗, A∗∗ = A and A 6= 0 implies
A∗A 6= 0.

If H is a Hilbert space, then B(H) equipped with the hermitian conjugation
is a ∗-algebra

If A, B are ∗-algebras, then a homomorphism π : A→ B satisfying π(A∗) =
π(A)∗ is called a ∗-homomorphism.



Theorem 1.3 1. Every finite dimensional ∗-algebra A is ∗-isomorphic to

n
⊕
i=1

B(Cpi),

for some p1, . . . , pn

2. If in addition A is a subalgebra of B(CN ) and contains the identity on

CN , then there exist q1, . . . , qn with N =
n∑
i=1

piqi, and a basis of CN such

that
A =

n
⊕
i=1

B(Cpi)⊗ 1lqi . (1.4)

As discussed before, in the finite dimensional case, observables of a quantum
system are described by the self-adjoint part of a certain ∗-subalgebra of B(H).

If B ⊂ B(H), then the commutant of B is defined as

B′ := {A ∈ B(H) : AB = BA, B ∈ B}.

It is easy to see that a commutant is always an algebra containing 1lH. If B is
∗-invariant, then so is B′. Therefore, in such a case B′ is a ∗-algebra.

We say that A is a von Neumann algebra if A = A′′. Clearly, von Neumann
algebras are ∗-algebras.

It is easy to see that all ∗-subalgebras of B(CN ) containing 1lN are von
Neumann algebras. Indeed, if A is given by (1.4), then A is obviously ∗-invariant
and

A′ =
n
⊕
i=1

1lpi ⊗B(Cqi).

So, A′′ = A.
Physically, if we know that self-adjoint operators A1, . . . , An are observables,

then as the observable algebra it is natural to take

A = {A1, . . . , An}′′.

We will then say that A is the von Neumann algebra generated by A1, . . . , An.

1.2 Observables – infinite dimension

In infinite dimensions we have several technical complications of the formalism
developed in the previous section.

The theory of ∗-algebras is much richer in infinite dimension. The definition
of a von Neumann algebra is still valid in any dimension. But Theorem 1.3 does
not extend to infinite dimension. Besides, there are other kinds of ∗-algebras
that are interesting candidates for a description of quantum systems, such as
C∗-algebras. We will however stick to von Neumann algebras.

Observables are often described by unbounded self-adjoint operators. This is
not a serious problem. What is relevant for quantum measurements are spectral



projections, which are bounded. Thus by saying that an algebra A ⊂ B(H) is
generated by A1, . . . , An we will mean that it is generated by spectral projections
of these operators (or, equivalently, by their bounded Borel function).

Another difficulty that was absent in finite dimension is the fact that self-
adjoint operators may have continuous spectrum. This means that spA may
not coincide with the set of eigenvalues of A. We need to change the defini-
tion of simple joint spectrum of a family of commuting self-adjoint operators
A1, . . . , An. We will say that they have a simple joint spectrum if {A1, . . . , An}′′
is a maximal commutative von Neumann subalgebra of B(H).

Example. Consider the operators x̂i, i = 1, 2, 3 on L2(R3). They are self-
adjoint and commute. They have simple joint spectrum. The von Neumann
algebra generated by x̂i, i = 1, 2, 3 is equal to the operators of multiplication by
functions in L∞(R3).

Example. Consider in addition the operators p̂i := i−1∂xi , i = 1, 2, 3 on
L2(R3). The von Neumann algebra generated by x̂i, p̂i, i = 1, 2, 3, coincides
with B(L2(R3)).

Example. Let r 7→ V (r) be a real function such that limr→∞ V (r) = 0.
H := −∆ + V (r) has a continuous spectrum [0,∞[ and it may have some point
spectrum. H,L2, Lz is a triple of commuting self-adjoint operators with a simple
joint spectrum.

In the case of continuous spectrum, one often tries to find generalized eigen-
functions. Unfortunately, there seems to be no universal theory of generalized
eigenfunctions of self-adjoint operators. In concrete situations, however, they
can be useful. Let us describe an example of the momentum operator, where it
is clear how to define generalized eigenfunctions.

Consider L2(Rd) and the self-adjoint operators p̂i := i−1∂xi , i = 1, . . . , d.
They commute and have simple joint spectrum equal to Rd. We will sometimes
write p̂ for (p̂1, . . . , p̂d).

Clearly,

i−1∂xie
ix·k = kie

ix·k.

One says that

eix·k (1.5)

is a generalized eigenfunction of p̂i with eigenvalue ki, i = 1, . . . , d. We will
denote it by |k) Unfortunately, |k) does not belong to L2(Rd).

One way of giving meaning to |k) is as follows. Consider the space of
Schwartz test functions S(Rd). Its dual, that is the space of continuous function-
als on S(Rd) is denoted S ′(Rd) and is called the space of tempered distributions.
We have

S(Rd) ⊂ L2(Rd) ⊂ S ′(Rd).

S(Rd) is dense in S ′(Rd). The operators p̂i preserve S(Rd), and they extend
uniquely to a continuous operator on S ′(Rd). Thus |k) are true eigenfunctions
of the extended p̂i in S ′(Rd). In particular, if Ψ ∈ S(Rd), then (Ψ|ki) is well
defined.



One of the main applications of generalized eigenfunctions is an explicit
expression for spectral projections. If Ω is a Borel subset of Rd = sp(p̂), then

1lΩ(p̂) =

∫
Ω

|k)(k|dk. (1.6)

In other words, the integral kernel of (1.6) equals

1lΩ(p̂)(x, y) =

∫
Ω

eik(x−y)dk.

Note that (1.6) is a priori defined as a continuous operator from S(Rd) to
S ′(Rd). It extends to a bounded operator on L2(Rd).

1.3 Quantum dynamics

Suppose that a quantum system described by a Hilbert spaceH is invariant with
respect to time. This is usually described by considering a strongly continuous
1-parameter unitary group on H, that is, a strongly continuous function R 3
t 7→ U(t) ∈ U(H) such that

U(t1)U(t2) = U(t1 + t2), t1, t2 ∈ R,

The Stone Theorem says that U(t) := e−itH for a uniquely defined self-adjoint
operator H, called a Hamiltonian.

If we prepare a state ρ at time 0 and measure an observable A at time t > 0,
then the expectation value of the measurement equals

TrρeitHAe−itH . (1.7)

There are two equivalent ways of computing (1.7)

1. The Schrödinger picture: We let the state evolve ρt := e−itHρeitH and
keep the observable constant. Then (1.7) equals TrρtA.

2. The Heisenberg picture: We let the observable evolve At := eitHAe−itH

and keep the state constant. Then (1.7) equals TrρAt.

(By the Schrödinger picture one also means the unitary evolution Ψt := e−itHΨ
on H.)

Note that neither the evolution of an observable in the Heisenberg picture
nor of a state in the Schrödinger picture changes if we add a real constant to
the Hamiltonian.

If we consider two noninteracting quantum systems described by Hilbert
spaces H1, H2 and Hamiltonians H1, H2, then the composite system has the
Hilbert space H := H1 ⊗H2 and the Hamiltonian

H := H1 ⊗ 1l + 1l⊗H2.

Note that spH = spH1 + spH2. and eitH = eitH1 ⊗ eitH2 .
The following assumptions are often satisfied for real quantum systems:



1. The Hamiltonian is bounded from below, that means E := inf spH > −∞.

2. The Hamiltonian has a unique ground state, that means dim 1lE(H) = 1.

A partial justification for the above two assumptions is given by the following
proposition:

Proposition 1.4 Consider two quantum systems described by Hi, Hi, i = 1, 2.

1. Suppose both Hamiltonians are bounded from below. Then the Hamiltonian
of the composite system is also bounded from below.

2. If both systems have a unique ground state, then the composite system has
a unique ground state.

1.4 Symmetries

Let H be a Hilbert space. Let us denote the group of ∗-automorphisms of B(H)
by Aut(B(H)). One can show that every σ ∈ Aut(B(H)) has the form

σ(A) = UAU∗, A ∈ B(H),

for some U ∈ U(H).
Consider a quantum system described by a Hilbert space H with algebra

of observables B(H). A symmetry of this system should correspond to a linear
map on B(H), which transforms self-adjoint elements onto self-adjoint elements.
Clearly, all elements of Aut(B(H)) have this property.

Suppose that G is a group of symmetries of a quantum system. More pre-
cisely, suppose that we have a homomorphism

G 3 g 7→ σg ∈ Aut(B(H)). (1.8)

The most obvious approach to obtain (1.8) is to consider a unitary repre-
sentation

G 3 g 7→ U(g) ∈ U(H).

If G is a topological group, we will assume that its action is strongly continuous.
In the Heisenberg picture we obtain the action on the observable algebra

σg(A) := U(g)AU(g)∗, A ∈ B(H), g ∈ G.

Sometimes one assumes that only the operators invariant wrt σ are observ-
ables. In this case we often say that G is a gauge group of our system.

Thus the algebra of observables coincides with the fixed point algebra

B(H)σ := {A ∈ B(H) : σg(A) = A, g ∈ G}
= {U(g) : g ∈ G}′. (1.9)

Note that (1.9) is a von Neumann algebra.



Let Ĝ denote the set of equivalence classes of irreducible unitary representa-
tions. For each equivalence class π ∈ Ĝ we choose its representative and denote
it by

G 3 g 7→ πi(g) ∈ U(Vi).

A rather complete understanding an arbtrary unitary representation is avail-
able in the case of compact groups. If G is a compact group, then there exist
Hilbert spaces Kπ, π ∈ Ĝ, such that

H ' ⊕
πi∈Ĝ

Vi ⊗Ki, U(g) ' ⊕
πi∈Ĝ

πi(g)⊗ 1lKi .

We have then

B(H)σ = ⊕
πi∈Ĝ

1lVi ⊗B(Ki).

Thus superselection sectors are parametrized by irreducible representations of
G

Example. Consider G = U(1). Irreducible unitary representations are 1-
dimensional and are parametrized by integers called often the charge:

U(1) 3 θ 7→ einθ.

Example. Consider G = SO(3). Irreducible unitary representations are are
parametrized by numbers j = 0, 1, . . . called the spin. The representation of
spin j is 2j + 1 dimensional.

1.5 Projective representations

What is physically relevant is not the action of the group on the Hilbert space,
but on the algebra of observables. Having a representation in automorphisms

G 3 g 7→ σg ∈ Aut(B(H))

is equivalent to a projective unitary representation of G on H, that is a map

G 3 g 7→ U(g) ∈ U(H)

such that

U(g1)U(g2) = c(g1, g2)U(g1g2),

with |c(g1, g2)| = 1. Of course, we can always replace U(g) with b(g)U(g),
|b(g)| = 1.

Not every projective representation can be modified so that it becomes a
true representation.

Suppose we have several projective representations of the same group

G 3 g 7→ Ui(g) ∈ U(Hi) (1.10)



which have different multipliers

G×G 3 (g2, g1) 7→ ci(g2, g1) ∈ C (1.11)

Then as a Hilbert space of our system we can use

H := ⊕
i
Hi. (1.12)

and we can define a map

G 3 g 7→ U(g) := ⊕
i
Ui(g) ∈ U(H). (1.13)

However, (1.13) is no longer a projective representation and if we set

σg(A) := U(g)AU(g)−1 ∈ Aut
(
B(H)

)
, (1.14)

then G 3 g 7→ σg is no longer a homomorphism. Nevertheless, if we restrict
(1.14) to the block diagonal algebra

A := ⊕
i
B(Hi), (1.15)

then G 3 g 7→ σg is a homomorphism, and hence a symmetry of our system.
Thus, if we insist that G is a symmetry, then we the decomposition (1.12) define
strict superselection sectors of our system.

1.5.1 Covering group

We still assume that G is a symmetry group of our system. It is usually incon-
venient to use projective representations. Instead, one tries to use true repre-
sentations of a larger group G̃ This formalism we describe below. If we choose G̃
appropriately, then each projective irreducible representation of G corresponds
to a true irreducible representation of G̃. This construction goes back to Shur
(1904 and 1907), where G̃ is called a “representation group”. After choosing G̃
we can treat it as the true group of symmetries of physics.

Suppose we have another group G̃ such that

1l→ N → G̃
φ→ G→ 1l. (1.16)

Proposition 1.5 Let

G
ψ7→ G̃

be a right inverse of the homomorphism G̃ → G. This means that φ ◦ ψ = id.
(ψ does not need to be a homomorphism itself, nor continuous–any choice is
allowed). Let

G̃ 3 g̃ 7→ Ũ(g̃) ∈ U(H) (1.17)

be a representation such that Ũ(n) are scalar (proportional to the identity) for
n ∈ N . Then

U(g) := Ũ(ψ(g)) (1.18)



defines a projective representation of G.
If ψ is also a representation (which means that the short exact sequence

(1.16) is “split”) then (1.18) is a true representation.

Proof. For any g1, g2 ∈ G

φ
(
ψ(g1)ψ(g2)

)
= φ(ψ(g1))φ(ψ(g2)) = g1g2 = φ

(
ψ(g1g2)

)
. (1.19)

Hence, there exists n ∈ N such that

ψ(g1)ψ(g2) = nψ(g1g2). (1.20)

Therefore,

U(g1)U(g2) = Ũ(ψ(g1))Ũ(ψ(g2)) (1.21)

= Ũ(ψ(g1)ψ(g2)) = Ũ(nψ(g1g2)) (1.22)

= Ũ(n)Ũ
(
ψ(g1g2)

)
= Ũ(n)U(g1g2), (1.23)

where Ũ(n) is a scalar factor depending on g1, g2.
If ψ is also a representation, then U is a composition of homomorphisms,

hence (1.18) is a true representation. 2

Proposition 1.6 Assume that N is contained in the center of G̃, that means
n ∈ N , h ∈ G̃ implies nh = hn. Let π̃ be an irreducible representation of of G̃.
Then elements of N are represented by scalar operators (of the form c1l).

Proof. Indeed, π̃(n), for n ∈ N commute with π̃(h), h ∈ G̃. Hence by
Schur’s Lemma they have to be scalar. 2

We can try to treat G̃ as the symmetry group of our quantum system. Let
ˆ̃G be the set of representations of G̃. For any π̃ ∈ ˆ̃G we have a projective
representation π with the multipliers g1, g2 7→ cπ(g1, g2). We can introduce in
ˆ̃G an equivalence relation: we say that two irreducible representations belong
to the same category if they have the same multipliers. We obtain a partition

ˆ̃G = t
k
Sk. (1.24)

Let Ũ : G̃→ U(H) be a unitary representation. Then we can write

H ' ⊕
π̃∈ ˆ̃G

Vπ̃ ⊗Kπ̃, Ũ(g) ' ⊕
π̃∈ ˆ̃G

π̃(g)⊗ 1lKπ̃ .

Then

Hk := ⊕
π̃∈Sk

Vπ̃ ⊗Kπ̃, (1.25)

form separate superselection sectors.



1.6 Group SO(3)

This problem arises in the case of the group SO(3). One can show that to get
all irreducible projective representations one needs to consider the group SU(2),
which is a two-fold covering of SO(3):

1l→ {1l,−1l} → SU(2)→ SO(3)→ 1l.

In particular, the preimage of any element of SO(3) consists of a pair of the
form {r,−r} ⊂ SU(2).

Irreducible representations of SU(2) are are parametrized by numbers j =
0, 1

2 , 1, . . . called the spin. They are

SU(2) 3 A 7→ ⊕2j
s A ∈ U(⊕2j

s C2) ' U(C2j+1). (1.26)

For entire j, −1l ∈ SU(2) is mapped on 1l. Therefore, these representations
are the compositions of a representation of SO(3) and of the homomorphism
SU(2)→ SO(3). We have Uj(r) = Uj(−r).

For non-entire j, −1l ∈ SU(2) is mapped on −1l. Therefore, these represen-
tations do not come from representations of SO(3). We have Uj(r) = −Uj(−r).

Therefore, if our quantum system has the symmetry SO(3), this means that
the Hilbert space is equipped with the representation Ũ : SU(2)→ U(H). Then
Ũ(−1l) has two spectral subspaces, H+ and H−.

On H+ the multiplier can be chosen to be trivial. On H− the multiplier is
always nontrivial. Therefore, H+ and H− are superselection sectors.


