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HOMOGENEOUS SCHRÖDINGER OPERATORS

(in collaboration with LAURENT BRUNEAU
and VLADIMIR GEORGESCU)

Consider a formal differential expression

Lα = −∂2
x +

(
− 1

4
+ α
) 1

x2
.

We would like to interpret it as a well-defined (unbounded)
operator. To do this we need to specify its domain.



We will obtain operators with surprisingly rich mathe-
matical phenomenology, which should be close to physi-
cists’ hearts: the “running coupling constant” flows under
the action of the “renormalization group”, there are two
”phase transitions”, attractive and repulsive fixed points,
limit cycles, breakdown of conformal symmetry, etc.

I will discuss both the self-adjoint and non-self-adjoint
cases. The latter have quite curious properties and I am
looking for their physical applications.



Let Uτ be the group of dilations on L2[0,∞[, that is

(Uτf )(x) = eτ/2f (eτx).

We say that B is homogeneous of degree ν if

UτBU
−1
τ = eντB.

Clearly, Lα is homogeneous of degree −2.



Here are two natural questions:

1. If α ∈ R, how to interpret Lα as a self-adjoint operator
on L2[0,∞[? When is it homogeneous of degree −2?

2. If α ∈ C, how to interpret Lα as a closed operator on
L2[0,∞[? When is it homogeneous of degree −2?



Lα, and closely related operators Hm, which we intro-
duce shortly, are interesting for many reasons.

• They appear as the radial part of the Laplacian in all
dimensions, in the decomposition of the Aharonov-
Bohm Hamiltonian, in the membranes with conical sin-
gularities, in the theory of many body systems with
contact interactions and in the Efimov effect.

• They have rather subtle and rich properties illustrat-
ing various concepts of the operator theory in Hilbert
spaces (eg. the Friedrichs and Krein extensions, holo-
morphic families of closed operators).



• Essentially all basic objects related to Hm, such as
their resolvents, spectral projections, wave and scat-
tering operators, can be explicitly computed.

• A number of nontrivial identities involving special func-
tions, especially from the Bessel family, find an ap-
pealing operator-theoretical interpretation in terms of
the operators Hm. Eg. the Barnes identity leads to the
formula for wave operators.



Two naive interpretations of Lα:

1. The minimal operator Lmin
α : We start from Lα on C∞c ]0,∞[,

and then we take its closure.

2. The maximal operator Lmax
α : We consider the domain

consisting of all
f ∈ L2[0,∞[ such that Lαf ∈ L2[0,∞[.

Clearly, Dom(Lmin) ⊂ Dom(Lmax) and

Lmax

∣∣∣
Dom(Lmin)

= Lmin.

In other words Lmin ⊂ Lmax.



We will see that it is often natural to write α = m2

Theorem 1 .

1. For 1 ≤ Rem, Lmin
m2 = Lmax

m2 .

2. For−1 < Rem < 1, Lmin
m2 ( Lmax

m2 , and the codimension
of their domains is 2.

3. (Lmin
α )∗ = Lmax

α . Hence, for α ∈ R, Lmin
α is Hermitian.

4. Lmin
α and Lmax

α are homogeneous of degree −2.



Notice that
Lx

1
2±m = 0.

Let ξ be a compactly supported cutoff equal 1 around 0.

Let −1 < Rem. Note that x
1
2+mξ belongs to DomLmax

m2 .

This suggests to define the operator Hm to be the re-
striction of Lmax

m2 to

DomLmin
m2 + Cx

1
2+mξ.



Theorem 2 .

1. For 1 ≤ Rem, Lmin
m2 = Hm = Lmax

m2 .

2. For −1 < Rem < 1, Lmin
m2 ( Hm ( Lmax

m2 and the codi-
mension of the domains is 1.

3.H∗m = Hm. Hence, for m ∈]− 1,∞[, Hm is self-adjoint.

4.Hm is homogeneous of degree −2.

5. spHm = [0,∞[.

6. {Rem > −1} 3 m 7→ Hm is a holomorphic family of
closed operators.



Theorem 3 .

1. For α ≥ 1, Lmin
α = H√α is essentially self-adjoint on

C∞c ]0,∞[.

2. For α < 1, Lmin
α is not essentially self-adjoint on C∞c ]0,∞[.

3. For 0 ≤ α < 1, the operator H√α is the Friedrichs
extension and H−√α is the Krein extension of Lmin

α .

4.H1
2

is the Dirichlet Laplacian and H−1
2

is the Neumann
Laplacian on halfline.

5. For α < 0, Lmin
α has no homogeneous selfadjoint ex-

tensions.



It is easy to see that

x−
1
2

(
− ∂2

x +
(
− 1

4
+ α
) 1

x2
± 1
)
x

1
2

= −∂2
x −

1

x
∂x +

(
− 1

4
+ α
) 1

x2
± 1,

which is the (modified) Bessel operator.

Therefore, it is not surprising that various objects related
to Hm can be computed with help of functions from the
Bessel family.



Theorem 4 . If Rm(λ;x, y) is the integral kernel of the
operator (λ−Hm)−1, then for Re k > 0 we have

Rm(−k2;x, y) =

{√
xyIm(kx)Km(ky) if x < y,
√
xyIm(ky)Km(kx) if x > y,

where Im is the modified Bessel function and Km is the
MacDonald function.



Proposition 5 . For 0 < a < b < ∞, the integral kernel
of 1l[a,b](Hm) is

1l[a,b](Hm)(x, y) =

∫ √b
√
a

√
xyJm(kx)Jm(ky)kdk,

where Jm is the Bessel function.



Let Fm be the operator on L2(0,∞) given by

Fm : f (x) 7→
∫ ∞

0
Jm(kx)

√
kxf (x)dx

Fm is the so-called Hankel transformation. Define also
the operator Xf (x) := xf (x).

Theorem 6 . Fm is a bounded invertible involution on
L2[0,∞[ diagonalizing Hm and anticommuting with the
self-adjoint generator o dilations A = 1

2i(x∂x + ∂xx):

F2 = 1l,

FmHmF−1
m = X2,

FmA = −AFm.



Theorem 7 Set

If (x) = x−1f (x−1), Ξm(t) = ei ln(2)tΓ(m+1+it
2 )

Γ(m+1−it
2 )

.

Then
Fm = Ξm(A)I.

Therefore, we have the identity

Hm := Ξ−1
m (A)X−2Ξm(A)

(Result obtained independently by Bruneau, Georgescu,
D, and by Richard and Pankrashkin).



Theorem 8 . The wave operators associated to the pair
Hm, Hk exist and

Ω±m,k := lim
t→±∞

eitHme−itHk

= e±i(m−k)π/2FmFk
= e±i(m−k)π/2 Ξk(A)

Ξm(A)
.



The formula

Hm := Ξ−1
m (A)X−2Ξm(A) (1)

valid for Rem > −1 can be used as an alternative defini-
tion of the family Hm also beyond this domain. It defines
a family of closed operators for the parameter m that be-
longs to

{m | Rem 6= −1,−2, . . . } ∪ R. (2)

Its spectrum is always equal to [0,∞[ and it is analytic in
the interior of (2).



In fact, Ξm(A) is a unitary operator for all real values of
m. Therefore, for m ∈ R, (1) is well-defined and self-
adjoint.

Ξm(A) is bounded and invertible also for all m such that
Rem 6= −1,−2, . . . . Therefore, the formula (1) defines an
operator for all such m.



One can then pose various questions:

•What happens with this operator along the lines Rem =

−1,−2, . . .?

•What is the meaning of the operator to the left of Re =

−1? (It is not a differential operator!)



The definition (or actually a number of equivalent defi-
nitions) of a holomorphic family of bounded operators is
quite obvious and does not need to be recalled. In the
case of unbounded operators the situation is more sub-
tle.



Suppose that Θ is an open subset of C, H is a Banach
space, and Θ 3 z 7→ H(z) is a function whose values
are closed operators on H. We say that this is a holo-
morphic family of closed operators if for each z0 ∈ Θ

there exists a neighborhood Θ0 of z0, a Banach space K
and a holomorphic family of injective bounded operators
Θ0 3 z 7→ B(z) ∈ B(K,H) such that RanB(z) = D(H(z))

and
Θ0 3 z 7→ H(z)B(z) ∈ B(K,H)

is a holomorphic family of bounded operators.



We have the following practical criterion:

Theorem 9 . Suppose that {H(z)}z∈Θ is a function whose
values are closed operators on H. Suppose in addition
that for any z ∈ Θ the resolvent set of H(z) is nonempty.
Then z 7→ H(z) is a holomorphic family of closed opera-
tors if and only if for any z0 ∈ Θ there exists λ ∈ C and a
neighborhood Θ0 of z0 such that λ belongs to the resol-
vent set of H(z) for z ∈ Θ0 and z 7→ (H(z)−λ)−1 ∈ B(H)

is holomorphic on Θ0.



The above theorem indicates that it is more difficult to
study holomorphic families of closed operators that for
some values of the complex parameter have an empty
resolvent set.

Conjecture 10 . It is impossible to extend

{Rem > −1} 3 m 7→ Hm

to a holomorphic family of closed operators on a larger
connected open subset of C.



ALMOST HOMOGENEOUS SCHRÖDINGER
OPERATORS (in collaboration with SERGE RICHARD)

For any κ ∈ C ∪ {∞} let Hm,κ be the restriction of Lmax
m2

to the domain

Dom(Hm,κ) =
{
f ∈ Dom(Lmax

m2 ) | for some c ∈ C,
f (x)− c

(
x1/2−m + κx1/2+m) ∈ Dom(Lmin

m2 )

around 0
}
, κ 6=∞;

Dom(Hm,∞) =
{
f ∈ Dom(Lmax

m2 ) | for some c ∈ C,
f (x)− cx1/2+m ∈ Dom(Lmin

m2 ) around 0
}
.



For ν ∈ C ∪ {∞}, let Hν
0 be the restriction of Lmax

0 to

Dom(Hν
0 ) =

{
f ∈ Dom(Lmax

0 ) | for some c ∈ C,
f (x)− c

(
x1/2 lnx + νx1/2) ∈ Dom(Lmin

0 )

around 0
}
, ν 6=∞;

Dom(H∞0 ) =
{
f ∈ Dom(Lmax

0 ) | for some c ∈ C,
f (x)− cx1/2 ∈ Dom(Lmin

0 ) around 0
}
.



Proposition 11 .

1. For any |Re (m)| < 1, κ ∈ C ∪ {∞}

Hm,κ = H−m,κ−1.

2.H0,κ does not depend on κ, and these operators coin-
cide with H∞0 .



Proposition 12 . For any m with |Re (m)| < 1 and any
κ, ν ∈ C ∪ {∞}, we have

UτHm,κU−τ = e−2τHm,e−2τmκ,

UτH
ν
0U−τ = e−2τHν+τ

0 .

In particular, only

Hm,0 = H−m,

Hm,∞ = Hm,

H∞0 = H0

are homogeneous.



Proposition 13 .

H∗m,κ = Hm,κ and Hν∗
0 = Hν

0 .

In particular,

(i)Hm,κ is self-adjoint for m ∈] − 1, 1[ and κ ∈ R ∪ {∞},
and for m ∈ iR and |κ| = 1.

(ii)Hν
0 is self-adjoint for ν ∈ R ∪ {∞}.



Self-adjoint extensions of the Hermitian operator

Lα = −∂2
x +

(
− 1

4
+ α
) 1

x2
.

K—Krein, F—Friedrichs, dashed line—single bound state,
dotted line—infinite sequence of bound states.



The essential spectrum of Hm,κ and Hν
0 is [0,∞[.

Theorem 14 .

1. z ∈ C\[0,∞[ belongs to the point spectrum of Hm,κ iff

(−z)−m = κ
Γ(m)

Γ(−m)
.

2.Hν
0 possesses an eigenvalue iff −π < Im 2ν < π, and

then it is z = −e−2ν.



For a given m,κ all eigenvalues form a geometric se-
quence that lies on a logarithmic spiral, which should be
viewed as a curve on the Riemann surface of the loga-
rithm. Only its “physical sheet” gives rise to eigenvalues.

For m which are not purely imaginary, only a finite piece
of the spiral is on the “physical sheet” and therefore the
number of eigenvalues is finite.

If m is purely imaginary, this spiral degenerates to a half-
line starting at the origin.

If m is real, the spiral degenerates to a circle. But then
the operator has at most one eigenvalue.



Theorem 15 . Let m = mr + imi ∈ C× with |mr| < 1.

(i) Let mr = 0.

(a) If
ln
∣∣κ Γ(m)

Γ(−m)

∣∣
mi

∈]− π, π[, then #σp(Hm,λ) =∞,

(a) if
ln
∣∣κ Γ(m)

Γ(−m)

∣∣
mi

6∈]− π, π[ then #σp(Hm,λ) = 0.

(ii) If mr 6= 0 and if N ∈ N satisfies N <
m2

r+m2
i

|mr| ≤ N + 1,
then

#σp(Hm,λ) ∈ {N,N + 1}.
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HOMOGENEOUS RANK ONE PERTURBATIONS

Consider the Hilbert space H = L2(R+) and operator X

Xf (x) := xf (x).

Let m ∈ C, λ ∈ C ∪ {∞}. We consider a family of opera-
tors formally given by

Hm,λ := X + λ|x
m
2 〉〈x

m
2 |.



Note that X is homogeneous of degree 1.

|x
m
2 〉〈x

m
2 | is homogeneous of degree 1 + m. However

strictly speaking, it is not a well defined operator, be-
cause x

m
2 is never square integrable.



If −1 < Rem < 0, the perturbation |x
m
2 〉〈x

m
2 | is form

bounded relatively to X and then Hm,λ can be defined.
The perturbation is formally rank one. Therefore,

(z −Hm,λ)−1 = (z −X)−1

+

∞∑
n=0

(z −X)−1|x
m
2 〉(−λ)n+1〈x

m
2 |(z −X)−1|x

m
2 〉n〈x

m
2 |(z −X)−1

= (z −X)−1

+
(
λ−1 − 〈x

m
2 |(z −X)−1|x

m
2 〉
)−1

(z −X)−1|x
m
2 〉〈x

m
2 |(z −X)−1.



By straightforward complex analysis methods we obtain

〈x
m
2 |(z −X)−1|x

m
2 〉

=

∫ ∞
0

xm(z − x)−1dx = (−z)m
π

sinπm
.

Therefore, the resolvent of Hm,λ can be given in a closed
form:

(z −Hm,λ)−1 = (z −X)−1

+
(
λ−1 − (−z)m

π

sinπm

)−1
(z −X)−1|x

m
2 〉〈x

m
2 |(z −X)−1.



The above formula defines a resolvent of a closed opera-
tor for all −1 < Rem < 1 and λ ∈ C∪{∞}. This allows us
to define a holomorphic family of closed operators Hm,λ.

Note that Hm,0 = X.

m = 0 is special: H0,λ = X for all λ.



We introduce Hρ
0 for any ρ ∈ C ∪ {∞} by

(z −Hρ
0 )−1 = (z −X)−1

−
(
ρ + ln(−z)

)−1
(z −X)−1|x0〉〈x0|(z −X)−1.

In particular, H∞0 = X.



The group of dilations (“the renormalization group”) acts
on our operators in a simple way:

UτHm,λU
−1
τ = eτHm,eτmλ,

UτH
ρ
0U
−1
τ = eτH

ρ+τ
0 .



Define the unitary operator

(If )(x) := x−
1
4f (2
√
x).

Its inverse is

(I−1f )(x) :=
(y

2

)1
2
f
(y2

4

)
.

Note that

I−1XI =
X2

4
,

I−1AI =
A

2
.



We change slightly notation: the almost homogeneous
Schrödinger operators Hm, Hm,κ and Hν

0 will be denoted
H̃m, H̃m,κ and H̃ν

0

Recall that we introduced the Hankel transformation Fm,
which is a bounded invertible involution satisfying

FmH̃mF−1
m = X2,

FmAF−1
m = −A.



Theorem 16 .

1.
F−1
m I−1Hm,λIFm =

1

4
H̃m,κ,

where
λ

π

sin(πm)
= κ

Γ(m)

Γ(−m)
,

2.
F−1
m I−1H

ρ
0 IFm =

1

4
H̃ν

0 ,

where ρ = −2ν.


