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Special class of potentials

The main topic of our work was scattering theory for a

certain special class of potentials. Scattering for this class

has a very interesting behavior at low energies. The

exact conditions defining this class are somewhat

complicated, for this talk we will adopt simpler and more

restrictive conditions:

V ∈ C∞(Rd), γ > 0, 0 < µ < 2, ǫ > 0 and

∣

∣∂αx (V (x) + γ|x|−µ)
∣

∣ ≤ Cα|x|−|α|−µ−ǫ, |x| > 1.

Thus V (x) is a small perturbation of −γ|x|−µ. We do not

assume the spherical symmetry of V .
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Standard class of potentials

We will compare properties of potentials from the special

class with properties of more general potentials used in

scattering theory. For simplicity, we will restrict ourselves

to the class given by the following condition:

V ∈ C∞(Rd), 0 < µ,

|∂αxV (x)| ≤ Cα|x|−|α|−µ, |x| > 1.

Using the jargon of PDE, we will say that the potential is

a symbol.
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Hamiltonians

We will consider first the classical Hamiltonian on the

phase space R
d × R

d

H(x, ξ) =
1

2
ξ2 + V (x),

and then the quantum Hamiltonian on the Hilbert space

L2(Rd)

H =
1

2
D2 + V (x),

where D = 1
i
∇ is the momentum operator.
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Classical scattering in the short-range case

Let V be a symbol, µ > 1. Then for any ξ, x ∈ R
d, ξ 6= 0

from an appropriate incoming/outgoing region there

exists a unique solution of

ÿ±(t) = −∇V (y±(t)),

lim
t→±∞

(y±(t) − tξ) = x.
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Classical scattering in the long-range case

Let V be a symbol, µ > 0. Then for any ξ, x ∈ R
d, ξ 6= 0

from an appropriate incoming/outgoing region, there

exists a unique solution of

ÿ±(t) = −∇V (y±(t)),

y±(0) = x,

lim
t→±∞

ẏ±(t) = ξ.

All unbounded orbits of positive energy have this form.

(Clearly, the energy 1
2
ẏ2(t) + V (y(t)) = 1

2
ξ2 is a constant

of motion).
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Eikonal equation

One obtains a family y±(t, x, ξ) of solutions smoothly

depending on parameters. Using these solutions, in an

appropriate incoming/outgoing region one can construct

a solution φ±(x, ξ) to the eikonal equation

1

2

(

∇xφ
±(x, ξ)

)2
+ V (x) =

1

2
ξ2

satisfying ∇xφ
±(x, ξ) = ẏ±(0, x, ξ).
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Exactly solvable potential

We can find exactly the orbits for the potential −γ|x|−µ
at the energy 0. The motion is clearly restricted to 2

dimensions. We can use polar coordinates (r, θ).

Collision orbits are

r(t) = ct
2

2+µ , θ = const,

and the non-collision orbits satisfy

sin(1 − µ

2
)θ(t) =

(r(t)

rtp

)−1+ µ

2

.
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Example of an orbit

µ = 1.8
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Blowing up zero energy

Suppose that the potential belongs to the special class.

We blow up the zero energy by replacing the variable

ξ ∈ R
d with λ ∈ [0,∞[, ω ∈ Sd−1 such that ξ =

√
2λω.

For any ξ 6= 0, there exists a unique solution of

ÿ±(t) = −∇V (y±(t)),

1

2
ẏ±(t)2 + V (y±(t)) = λ,

y±(0) = x,

lim
t→±∞

y±(t)/|y±(t)| = ω.

All unbounded orbits have this form.
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Eikonal equation

One obtains a family y±(t, x, ω, λ) of solutions smoothly

depending on parameters. Using these solutions, in an

appropriate incoming/outgoing region one can construct

a solution φ±(x, ω, λ) to the eikonal equation

1

2

(

∇xφ
±(x, ω, λ)

)2
+ V (x) = λ,

satisfying ∇xφ
±(x, ω, λ) = ẏ±(0, x, ω, λ).
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Quantum scattering in the short-range case

Let V be a symbol, µ > 1. Then there exists

W±
sr := s− lim

t→±∞
eitH e−itH0 .

W±
sr is isometric, W±

srH0 = HW±
sr . The scattering

operator Ssr := W+∗
sr W

−
sr is unitary and SsrH0 = H0Ssr.
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Quantum scattering in the long-range case I

Let V be a symbol, µ > 0. Following Isozaki-Kitada, one

introduces modifiers J± with the integral kernel

J±(x, y) := (2π)−d
∫

eiφ±(x,ξ)−iξ·y a±(x, ξ)dξ.

Here a±(x, ξ) is an appropriate cut-off supported in the

domain of the definition of φ±(x, ξ), equal to one in the

incoming/outgoing region.
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Quantum scattering in the long-range case II

Then one constructs modified wave operators

W± := s− lim
t→±∞

eitH J± e−itH0 .

W± are isometric, W±H0 = HW±. The scattering

operator S := W+∗W− is unitary and SH0 = H0S.

Thus in the long-range case modified wave and scattering

operators enjoy the same properties as in the short-range

case, except that their definition is non-canonical.

14



Abstract definition of wave operators I

There exists the asymptotic velocity D± defined by

g(D±) := s − lim
t→±∞

eitH g(D) e−itH 1c(H).

We say that W̆± is an outgoing/incoming wave operator

associated with H if it is isometric and satisfies

W̆±D = D±W̆±.

Operators of the form S̆ = W̆+∗W̆− are then called

scattering operators.
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Abstract definition of wave operators II

If W̆±
1 and W̆±

2 are two wave operators for a given H,

then there exist functions ψ± such that

W̆±
1 = W̆±

2 eiψ±(D) .

Thus

S̆1 = e−iψ+(D) S̆2 eiψ−(D) .

Therefore, scattering cross-sections

|S̆(λ;ω, ω′)|2,

which are usually considered to be the only measurable

quantities in scattering theory, are insensitive to the

choice of a wave operator.
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Abstract definition of wave operators

in the radial case

If the potential is radial we can restrict ourselves to

spherically symmetric wave and scattering operators. The

arbitrariness of the phase is then significantly reduced:

W̆1 = W̆2 eiχ±(H0),

S̆1 = S̆2 eiχ(H0) .
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Scattering matrices

F(λ)f(ω) = (2λ)(d−2)/4f̂(
√

2λω), f ∈ L2(Rd).

identifies L2(Rd) with
∫ ∞

0
⊕L2(Sd−1)dλ and diagonalizes

H0.

[S,H0] = 0 implies the existence of a decomposition

S =

∫ ∞

0

⊕S(λ)dλ,

where S(λ) ∈ U(L2(Sd−1)) is defined for almost all λ.

One can show that one can choose this decomposition so

that ]0,∞[∋ λ 7→ S(λ) is continuous.
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Wave matrices

Let s > 1
2
. One can show that there exists a unique

strongly continuous function

]0,∞[∋ λ 7→ W±(λ) ∈ B(L2(Sd−1), 〈x〉sL2(Rd))

such that for f ∈ 〈x〉−sL2(Rd)

W±f =

∫ ∞

0

W±(λ)F(λ)fdλ.
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Wave matrices at zero energy

Suppose that the potential belongs to the special class.

Theorem. There exists the wave matrices at zero energy:

W±(0) = lim
λց0

W±(λ)

in the sense of operators in B(L2(Sd−1), 〈x〉sL2(Rd)),

where s > 1
2

+ µ
4
. (Note that we had to change the

weight.)
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Wave matrices at zero energy

There also exists the scattering matrix at zero energy

S(0) = s− lim
λց0

S(λ).

in the sense of operators in B(L2(Sd−1)). S(0) is unitary.
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Low energy asymptotics of short-range wave matrices

Note that in general W±
sr (λ) do not have a limit at zero

energy. One can say that W±(λ) are better behaved than

W±
sr (λ), even if not canonical. They can be used to give

the asymptotics of W±
sr (λ):

W±
sr (λ) = W±(λ) exp

(

iO(λ
1

2
− 1

µ )
)

, 1 < µ < 2.

This asymptotics was first obtained in the 1-dimensional

case by D. Yafaev.
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Wave equation on the sphere

Let Λ be the operator on L2(Sd−1) such that

ΛYl = (l + d/2 − 1)Yl, where Yl is a spherical harmonic of

order l. Alternatively, it can be introduced as follows:

Λ :=
√

L2 + (d/2 − 1)2,

where

L2 =
∑

1≤i<j≤d

L2
ij, iLij = xi∂xj

− xj∂xi
.

The natural wave equation on Sd−1 is

(∂2
t − Λ2)f(t, ω) = 0.
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Evolution operator of the wave equation on the sphere

Theorem eiθΛ belongs to the class of Fourier integral

operators of order 0 in the sense of Hörmander.

Moreover, let k ∈ Z.

1. If θ = π2k, then eiθΛ = (−1)kd.

2. If θ = π(2k + 1), then eiθΛ = (−1)(2k+1)(d/2−1)P ,

where P is the parity.

3. If θ ∈]π2k, π(2k + 1)[, then

eiθΛ(ω, ω′) = (2π)−d/2 sin θ Γ(d/2) e−iπ/2(−ω·ω′+cos θ−i0)−d/2.

4. If θ ∈]π(2k − 1), π2k[, then

eiθΛ(ω, ω′) = (2π)−d/2 sin θ Γ(d/2) e−iπ/2(−ω·ω′+cos θ+i0)−d/2.

24



Type of singularity of the scattering matrix

Assume that the potential belongs to the special class.

Theorem

S(0) = eic e−i µπ

2−µ
Λ +K,

where K is compact.
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