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CLASSICAL SCATTERING AT LOW ENERGIES

J. DEREZIŃSKI AND E. SKIBSTED

ABSTRACT. For a class of negative slowly decaying potentials, including the attractive
Coulombic one, we study the classical scattering theory in the low-energy regime. We
construct a (continuous) family of classical orbits parameterized by initial position
x ∈ R

d , final direction ω ∈ Sd−1 of escape (to infinity), and the energy λ Ê 0, yield-
ing a complete classification of the set of outgoing scattering orbits. The construction
is given in the outgoing part of phase-space (a similar construction may be done in
the incoming part of phase-space). For fixed ω ∈ Sd−1 and λÊ 0 the collection of con-
structed orbits constitutes a smooth manifold that we show is Lagrangian. The family
of those Lagrangians can be used to study the quantum mechanical scattering theory
in the low-energy regime for the class of potentials considered here. We devote this
study to a subsequent paper [7].
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1. INTRODUCTION

In this paper we shall address a classical low-energy scattering problem for a two-
body system. In a subsequent paper [7] we shall combine the results of this paper and
some of [8] in a study of the quantum mechanical low-energy scattering theory within
the same class of potentials; this will include construction of wave operators, corre-
sponding generalized eigenfunctions and S-matrices and the establishment of regu-
larity/asymptotics of these quantities at the threshold energy λ = 0 (for a review see
[6]). A related programme has been carried out for positive energies for a wide class
of potentials, see [14, 15, 22, 18]; for this case the study is based on a relatively simple
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structure of a class of outgoing (or incoming) classical orbits used in the construction
of certain Fourier integral operators.

However there are severe difficulties if one tries to incorporate the low energy regime
λ ≈ 0 in this approach. Some of the difficulties already show up at the classical level,
and therefore one needs additional conditions on the potential from the very outset
of the analysis. In our opinion these “additional conditions” naturally count the virial
condition and spherical symmetry of the leading term of the potential (both conditions
to be imposed at infinity only).

To simplify the presentation, let us in this introduction assume that the potential
takes the form (with x ∈R

d for d Ê 2)

V (x) =−γ|x|−µ+O(|x|−µ−ǫ), (1.1)

where µ ∈ (0,2) and γ,ǫ> 0. For derivatives, assume ∂β{V (x)+γ|x|−µ} =O(|x|−µ−ǫ−|β|).
We look at the classical Hamiltonian h(x,ξ) = 1

2ξ
2 +V (x).

With (1.1) one can prove the existence of the asymptotic normalized velocities for
any classical scattering orbit, i.e. a solution to Newton’s equation with |x(t )|→∞,

ω± =± lim
t→±∞

x(t )

|x(t )|
; (1.2)

notice that this includes orbits with arbitrary energy λ Ê 0. In particular we see that
there is a well defined classical scattering theory for λ= 0 (the quantities ω± are outgo-
ing and incoming directions).

We look at the following mixed problem (restricted to outgoing and incoming re-
gions): Consider the momentum ξ=

p
2λω as depending on the two independent vari-

ables λÊ 0 and ω ∈ Sd−1 and solve


























ÿ(t ) =−∇V (y(t )),

λ= 1
2 ẏ(t )2 +V (y(t )),

y(±1) = x,

ω=± lim
t→±∞

y(t )
|y(t )| .

(1.3)

The bulk of the paper is devoted to solving (1.3) and deriving various regularity
properties. Given solutions to (1.3), we then construct phases φ±(x,ω,λ) in terms of
the velocity fields

∇xφ
±(x,ω,λ) = ẏ(±1) = ẏ(t =±1; x,ω,λ).

It turns out that the constructed phases φ±(x,ω,λ) are jointly continuous but lack
smoothness in the λ-variable at λ= 0.

We give a complete classification of the set of scattering orbits: For any scattering
orbit x(t ) with asymptotic velocities ω± given by (1.2) and energy λ Ê 0, there exists a
(large) T0 > 0 such that for all ±t Ê T Ê T0

x(t ) = y(t ∓T ±1; x(±T ),ω±,λ),

ẋ(t ) =∇xφ
±(x(t ),ω±,λ).

A typical orbit x(t ) for λ= 0 is depicted below, see Example 4.3 for an elaboration.



CLASSICAL SCATTERING AT LOW ENERGIES 53

µ = 1.8

–2

0

2

4

6

8

10

12

–2 2 4 6 8 10

The paper is organized as follows: In Section 2 we impose conditions on the po-
tential. In the case we allow the potential to have a non-spherically symmetric term
we shall need certain regularity properties of the leading spherically symmetric term.
These properties are stated in Condition 2.2; they are fulfilled for the example (1.1)
discussed above.

In Section 3 we show the existence of the asymptotic normalized velocity in the clas-
sical theory (only the +∞ case is treated).

In Sections 4 and 6 we solve the mixed problem (1.3) (the +∞ case only), first in the
case of spherical symmetry, then in the more general non-spherically symmetric case,
and we derive smoothness properties of the solution. The first case is treated by the
implicit function theorem, while our study of the second case is based on a perturba-
tion and Taylor expansion argument (similar to [20, 21]), allowing us to set up a fixed
point problem. The material is technically somewhat complicated, and to improve the
presentation we devote Section 5 to some (abstract) preliminaries for Section 6 related
to the uncertainty principle lemma (Hardy inequality). The basic issue of Section 5
is a limiting absorption principle at zero energy for a one-dimensional vector-valued
problem, in which the time variable plays the role of a configuration space variable!

In Section 7 we prove that the outgoing velocity field (x,F (x)) from Definition 6.3 is
Lagrangian, so that F =∇φ for some phase functionφ. Then we fixφ+ =φby specifying
its value at a (local) point. We also explain how to define φ−. These constructions will
be the outset for studying quantum mechanics in [7]. Finally we show that the family
of orbits (1.3) yields a complete classification of the set of scattering orbits.

2. CONDITIONS

We shall consider a classical Hamiltonian h = 1
2ξ

2+V on R
d ×R

d , where d Ê 2 and V

satisfies Condition 2.1 and possibly Conditions 2.2 and 2.3 (all stated below). We shall
use the standard notation 〈x〉 = (1+x2)1/2 for x ∈R

d .
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Condition 2.1. The function V can be written as a sum of two real-valued smooth
functions, V =V1 +V2, such that: For some µ ∈ (0,2) we have:

(1) V1 is a negative function that only depends on the radial variable r = |x| in the
region r Ê 1 (that is V1(x) =V1(r ) for r Ê 1). There exists ǫ1 > 0 such that

V1(r ) É−ǫ1r−µ, r Ê 1.

(2) For all γ ∈ (N∪ {0})d there exists Cγ > 0 such that

〈x〉µ+|γ|
∣

∣∂γV1(x)
∣

∣ÉCγ.

(3) There exists ǫ̃1 > 0 such that

r V ′
1(r ) É−(2− ǫ̃1)V1(r ), r Ê 1. (2.1)

(4) There exists ǫ2 > 0 such that, for all γ ∈ (N∪ {0})d ,

〈x〉µ+ǫ2+|γ|
∣

∣∂γV2(x)
∣

∣ÉCγ.

We introduce the quantity

t̃ (r ) =
∫r

1
(−2V1(ρ))−1/2dρ, r Ê 1, (2.2)

which is the time of arrival at distance r from the origin for a purely outgoing zero-
energy orbit starting at r = 1 at time t = 0 (assuming V2 = 0).

The following condition will be needed only in the case V2 6= 0. We notice that (2.1)
and (2.3) tend to be somewhat strong conditions for µ≈2. On the other hand Con-
ditions 2.1 and 2.2 hold for all ǫ2 > 0 for the particular example V1(r ) = −γr−µ (with
ǫ1 = γ, ǫ̃1 = 2−µ and some ǭ1 < 1−αµ), cf. Section 1.

Condition 2.2. Let V1 be given as in Condition 2.1, and define α = 2
2+µ . There exists

ǭ1 > max{0,1−α(µ+2ǫ2)} such that

limsup
r→∞

r−1V ′
1(r )t̃ (r )2 < 1

4 (1− ǭ2
1), (2.3)

limsup
r→∞

V ′′
1 (r )t̃ (r )2 < 1

4 (1− ǭ2
1). (2.4)

Let us for convenience assume under Condition 2.1 that

ǫ2 É 1
4 (2−µ). (2.5)

Notice that under Condition 2.2, inequality (2.5) is not in conflict with the condition
ǭ1 > max{0,1−α(µ+2ǫ2)}.

The following condition will be needed only in Subsection 7.2.

Condition 2.3. Let V1, V2 and ǭ1 be given as in Conditions 2.1 and 2.2. Then

limsup
r→∞

−V ′
1(r )

p
−2V1(r )

t̃ (r ) < 1
2 (1+ ǭ1). (2.6)

In the (typical) situation where V1(r ) is concave at infinity obviously the bounds
(2.4) and (2.6) are fulfilled.

We remark that the condition µ< 2 is essential for the problems of this paper, due to
the fact that only with this restriction the potential will be dominating the “centrifugal
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potential” L2

2r 2 at infinity. Thus the regime µ Ê 2 is qualitatively very different. On the
other hand the Conditions 2.2 and 2.3 tend to be more technical, and we shall not here
argue that these conditions are “natural”. However from a practical point of view they
are definitely needed for the fixed point approach we shall follow.

We shall often use the notation x = r x̂ with r = |x| and x̂ = x
r

for vectors x ∈R
d \ {0}.

The notation F (s > ǫ) denotes a smooth increasing function = 1 for s > 3
4ǫ and = 0

for s < 1
2ǫ; F ( · < ǫ) := 1−F ( · > ǫ). Throughout the paper the notation µ refers to the

number µ appearing in Condition 2.1 and α := 2
2+µ , cf. Condition 2.2. The function

g (r ) :=
√

2λ−2V1(r ) (for V1 obeying Condition 2.1) will also be used extensively. This
quantity represents the speed of any orbit with energy λ and located at distance r from
the origin (assuming V2 = 0).

3. ASYMPTOTIC NORMALIZED VELOCITY

We define a classical outgoing scattering orbit to be a solution to Newton’s equation
ẍ(t ) = −∇V (x(t )) obeying |x(t )| → ∞ for t → +∞ (we consider for convenience here
only the case of t →+∞). In this section we investigate various general properties of
scattering orbits. Note that all the conditions on the potentials used in this section are
implied by Condition 2.1.

The energy of the orbit is given by

λ= 1
2 ẋ(t )2 +V (x(t )).

We start with a well known consequence of the positivity of the virial.

Proposition 3.1. Suppose that for |x| Ê R

−2V (x)−x ·∇V (x) Ê 0.

Then, for any outgoing scattering orbit, there exists T such that for t Ê T

x(t ) · ẋ(t ) Ê 2(t −T )λ, x2(t ) Ê 2λ(t −T )2 +R2.

Proof. For |x(t )| Ê R we have

1

2
·

d2

dt 2
x2(t ) =

d

dt

(

x(t ) · ẋ(t )
)

= 2λ−2V (x(t ))−x(t ) ·∇V (x(t ))

Ê 2λ.
(3.1)

If x(t ) is a scattering orbit, we can find T such that d
dt

x2(T ) Ê 0 and |x2(T )| > R2. So
(3.1) is satisfied for all t Ê T , and the result follows from integration. �

The following proposition can be traced back to [9], see also [8, Theorem 4.7].

Proposition 3.2. Suppose that

2V (x)+x ·∇V (x) É−c|x|−µ, c > 0, |x| Ê R. (3.2)

Then for any outgoing scattering orbit for large enough time and some ǫ> 0,

|x(t )| Ê ǫtα. (3.3)



56 J. DEREZIŃSKI AND E. SKIBSTED

Proof. For large enough T and t Ê T we have |x(t )| Ê R. Then

1

2
·

d2

dt 2 x2(t ) = 2λ−2V (x(t ))−x(t ) ·∇V (x(t )) Ê c|x(t )|−µ. (3.4)

We multiply (3.4) from both sides by d
dt

x2(t ) and, using µ< 2, we obtain

d

dt

(

d

dt
x2(t )

)2

Ê c1
d

dt
(x2(t ))1−µ/2.

This yields
(

d

dt
x2(t )

)2

Ê c1(x2(t ))1−µ/2 + c2.

By Proposition 3.1 we know that for large times d
dt

x2(t ) Ê 0 is positive, and hence

d

dt
x2(t ) Ê

(

c1(x2(t ))1−µ/2 + c2
)1/2

.

This implies for large enough time (3.3). �

The upper bound on the zero energy orbit (3.5) can be traced back to [3, 4].

Proposition 3.3. Assume that V (x) =O(|x|−µ). Then the outgoing scattering orbits with

λ= 0 satisfy the bound

x(t ) =O(tα). (3.5)

If in addition, for |x| Ê R, V (x) É−c0|x|−µ, c0 > 0, then all outgoing scattering orbits for

large enough time satisfy the bound

|ẋ(t )| Ê ǫtα−1. (3.6)

If also for (3.2) holds, then the orbits with λ= 0 satisfy

ẋ(t ) =O(tα−1). (3.7)

Proof. For zero energy orbits we have

d

dt
|x(t )| É |ẋ(t )| É

√

|2V (x(t ))| ÉC1|x(t )|−µ/2.

This implies (3.5) for large time.
Again, for zero energy orbits

|ẋ(t )| =
√

−2V (x(t )) Ê c2x(t )−µ/2, c2 > 0,

which together with (3.5) yields (3.6) for large time. For positive energy orbits we clearly
have |ẋ(t )|→

p
2λ, which also implies (3.6) for large time.

Finally, (3.3) and

|ẋ(t )| =
√

−2V (x(t )) =O(|x(t )|−µ/2)

yield (3.7). �
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For a given outgoing scattering orbit x(t ) we define the asymptotic normalized ve-

locity to be

ω+ = lim
t→+∞

ω(t ), ω(t ) =
x(t )

|x(t )|
, (3.8)

provided that this limit exists. We also define

ω̃+ := lim
t→+∞

ω̃(t ), ω̃(t ) =
ẋ(t )

|ẋ(t )|
,

provided that this limit exists.

Proposition 3.4. Suppose that

∇nV (x) = O(|x|−n−µ), n = 1,2,

V (x) É −c0|x|−µ, c0 > 0, |x| Ê R,

2V (x)+x ·∇V (x) É −c|x|−µ, c > 0, |x| Ê R,

∇V (x)− x̂ x̂ ·∇V (x) = O(|x|−1−µ−ǫ2 ), ǫ2 > 0.

(3.9)

Then for any outgoing scattering orbit x(t ) there exists ω+ and ω̃+ and they are equal.

Moreover,

ω(t ) =ω++O(t−αǫ2 ) = ω̃(t )+O(t−αǫ2 ). (3.10)

Proof. Let Li j = xi ẋ j − x j ẋi be the i j ’th component of the angular momentum. Note
that

L2 :=
∑

i< j

L2
i j = x2ẋ2 − (x · ẋ)2 = x2ẋ2(1− (ω · ω̃)2).

By (3.9),
∣

∣

∣

∣

d

dt
Li j

∣

∣

∣

∣

= |x| |∇V (x)−ωω ·∇V (x)| =O(|x|−µ−ǫ2 ) =O(t−α(µ+ǫ2)),

and therefore,
Li j =O(t 1−α(µ+ǫ2)). (3.11)

We compute
d

dt
ω(t ) =

ẋ(t )−ω(t )ω(t ) · ẋ(t )

|x(t )|
.

Hence,
∣

∣

∣

∣

d

dt
ω(t )

∣

∣

∣

∣

=
√

ẋ2(t )− (ω(t )ẋ(t ))2

|x(t )|
=

|L(t )|
|x(t )|2

=O(t−1−αǫ2 ) ∈ L1(dt ).

Hence ω+ is well defined, and the first estimate in (3.10) holds.
Now

dω̃(t )

dt
= −

∇V (x(t ))− ω̃(t ) ·∇V (x(t ))ω̃(t )

|ẋ(t )|

= −
ω(t ) ·∇V (x(t ))(ω(t )−ω(t ) · ω̃(t )ω̃(t ))

|ẋ(t )|
+O(t−1−αǫ2 ).

The norm of the first term equals

|ω(t ) ·∇V (x(t ))||L(t )|
|ẋ(t )|2|x(t )|

=O(t−1−αǫ2 ).
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Hence
dω̃(t )

dt
=O(t−1−αǫ2 ) ∈ L1(dt ).

Hence ω̃+ is well defined, and the second estimate in (3.10) holds.
We have

1− (ω(t ) · ω̃(t ))2 =
L(t )2

x2(t )ẋ2(t )
=O(t−2αǫ2 ).

Hence, |ω+ · ω̃+| = 1.
By Proposition 3.1 (or [8, (4.38)]), we have ω(t )·ω̃(t ) Ê 0, for large t . Hence, ω+ ·ω̃+ Ê

0. Therefore, ω+ = ω̃+. �

Example 3.5 (Extension of an example in a preliminary version of the book [5]). Con-
sider the potential V = r−µχ(θ−c lnr ) specified in two dimensions using polar coordi-
nates. Here χ ∈ C∞(S1) is negative, χ′(0) < 0 and c > 0 (and µ ∈ (0,2)). A computation
shows that there is a classical scattering orbit with θ = c lnr if

χ(0) =µ−1
(

c
( α

1−αµ
−1

)

+ c−1 1−α

1−αµ

)

χ′(0). (3.12)

So in this case the asymptotic normalized velocity ω+ does not exist. This shows the
importance of the smallness condition of Condition 2.1 (4), viz. ǫ2 > 0. We also see
from (3.12) that a weaker notion of smallness would not suffice neither: If χ is taken to
be almost constant, say χ≈−1, which may be viewed as an example of another type of
perturbed radial potential, then there is still a solution to (3.12), in fact one with c ≈ 0.

4. MIXED PROBLEM FOR RADIAL POTENTIALS

In this section we assume that the potential is radial and for r Ê 1,

|∂n
r V (r )| ÉCnr−n−µ, n = 0,1, . . . ,

V (r ) É−cr−µ, c > 0, r V ′(r )+2V (r ) < 0.
(4.1)

Clearly, Condition 2.1 with V2(r ) = 0 implies (4.1).
For radial potentials all orbits are confined to a plane. Let us first investigate the

two-dimensional problem. We will use polar coordinates (y1, y2) = (r cosθ,r sinθ).
The angular momentum L is a preserved quantity, at our disposal. We need to solve

the system
{

θ̇ = Lr−2,

ṙ =
√

2λ−2V (r )−L2r−2.
(4.2)

We impose the conditions

r (1) = r1,
d

dt
r (1) > 0, lim

t→+∞
θ(t ) = 0. (4.3)

Our assumption implies that for any λ Ê 0 and L ∈ R, there exists at most one rtp =
rtp(λ,L) Ê 1 that solves

2λ−2V (rtp)−L2r−2
tp = 0.

Note that the function

(1,∞) ∋ r 7→ r g (r ) = r
√

2λ−2V (r ) is increasing. (4.4)
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Clearly, for any λ Ê 0, L ∈ R and r1 > rtp Ê 1 the problem (4.2) subject to (4.3) has
a unique solution. This solution is a scattering orbit and it has turning point at rtp.
Writing θ1 = θ(1) we obtain

−θ1 = L

∫∞

r1

r−2(2λ−2V (r )−L2r−2)−1/2dr. (4.5)

The angle between the asymptotic direction and the turning point equals

−θtp = L

∫∞

rtp

r−2(2λ−2V (r )−L2r−2)−1/2dr. (4.6)

Clearly, limt→−∞θ(t ) = 2θtp.
Let θal = θal(λ,r1) denote the largest allowed angle such that for |θ1| < θal there exists

a solution to Newton’s equation with energy λ obeying the conditions (4.3) as well as
θ(1) = θ1.

Proposition 4.1. Introduce the constant

C = sup
r ′ÊrÊ1

V (r ′)

V (r )
. (4.7)

Then θal Ê π
2 − arctan

p
C −1. In particular, if V (r ) is increasing, so that C = 1, then

θal Ê π
2 .

Proof. We write L = r1g (r1)κ with κ ∈ [−1,1]. It follows from (4.4) that for any such κ

2λ−2V (r )−L2r−2 > 0 for r > r1.

After a change of variable we may then write (4.5) as

−θ1 = κ

∫∞

1
s−1

(

s2 λ−V (sr1)

λ−V (r1)
−κ2

)−1/2

ds. (4.8)

Note that

cs−µ É
λ−V (sr1)

λ−V (r1)
=

g (sr1)2

g (r1)2
ÉC . (4.9)

Clearly the right hand side of (4.8) is an increasing function of κ. Therefore, we get
the lower bound

∫∞

1
s−1

(

s2 λ−V (sr1)

λ−V (r1)
−1

)−1/2

ds Ê
∫∞

1
s−1(s2C −1)−1/2ds =

π

2
−arctan

p
C −1

for the largest allowed angle. �

Example 4.2. For the purely Coulombic case V (r ) =−γr−1 one can compute the orbit

L2γ−1r (t )−1 = 1−
cos(θtp −θ(t ))

cos(θtp)
,

where θtp(λ,L) = π− arctan
√

2λL2γ−2 (see [16, p. 126], for example). Therefore, the
allowed angle equals

θal(λ,r1) =π−arctan
√

2λ(2λγ−2r 2
1 +2γ−1r1). (4.10)

In particular, for λ> 0 the allowed angle is at least π
2 and for λ= 0 it is π.
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Example 4.3. We look at scattering for the example V (r ) = −γr−µ at energy λ = 0.
The angle between asymptotic direction and the turning point is independent of the
orbit and is equal to θtp = π

2−µ . The fact that this angle is independent of the orbit may
be seen independently by invoking the scaling and rotational symmetry of Newton’s
equation; thus there is essentially only one scattering orbit at λ= 0 (see the illustration
in Section 1 for the case µ= 1.8). The implicit equation for this orbit is

2

1+cos
(

(2−µ)(θtp −θ(t ))
) = r (t )2−µ. (4.11)

4.1. Dependence of the angular momentum on data.

Lemma 4.4. We fix κ0 ∈ (0,1). Then for any L ∈R, λÊ 0 and r1 Ê 1, satisfying

L2

r 2
1

É κ2
0g (r1)2, (4.12)

we have a unique outgoing scattering orbit with the conditions (4.3), the energy λ and

angular momentum L. The initial angle is given by (4.5), and we have the following

estimates:

∂n
r1
∂m

L2

θ1

L
=O(r−1−n−2m

1 g (r1)−1−2m), n,m Ê 0. (4.13)

Proof. Only (4.13) needs elaboration. For n Ê 1, we have

∂n
r (2λ−2V (r )−L2/r 2) =O(r−µ−n)+O(L2r−2−n)

=O(r−µ−n)+O(r 2g (r )2r−2−n)

=O(r−n g (r )2).

The quantity ∂n
r (2λ−2V (r )−L2/r 2)−p is a linear combination of terms of the following

form (where n1 +·· ·+nk = n):

(2λ−2V (r )−L2/r 2)−p−k∂
n1
r (2λ−2V (r )−L2/r 2) · · ·∂nk

r (2λ−2V (r )−L2/r 2)

=O(g (r )−2p−2k g (r )2r−n1 · · ·g (r )2r−nk )

=O(r−n g (r )−2p ).

Hence,

∂n
r (2λ−2V (r )−L2/r 2)−p =O(r−n g (r )−2p ).

Using (4.4) and (4.9) we obtain that

∂m
L2

θ1

L
=Cm

∫∞

r1

r−2−2m(2λ−2V (r )−L2/r 2)−1/2−mdr

=O(r−1−2m
1 g (r1)−1−2m).

For n Ê 1, ∂n
r1
∂m

L2
θ1
L

is a linear combination of terms of the form

r−k−2m−1
1 ∂n−k

r1
(2λ−2V (r1)−L2/r 2

1 )−1/2−m =O(r−n−2m−1
1 g (r1)−1−2m). �
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Lemma 4.5. Let θ0 ∈ (0, π2 −arctan
p

C −1) where C is given by (4.7). Then for all r1 Ê 1,

|θ1| É θ0 and λÊ 0 we can find a unique outgoing scattering orbit satisfying (4.3), with

θ(1) = θ1 and |θ(t )| É |θ1| for all t Ê 1. We have the following estimates:

∂n
r1
∂m
θ2

1
L2 =O(r 2−n

1 g (r1)2), n,m Ê 0, (4.14)

∂n
r1
∂m
θ2

1

L

θ1
=O(r 1−n

1 g (r1)), n,m Ê 0. (4.15)

Proof. We can solve the equation (4.5) for L such that (4.12) is fulfilled for some κ0 ∈
(0,1). Treating L2 as an independent variable, obviously

∂n
r1
∂m

L2 L2 =O(r 2−2m−n
1 g (r1)2−2m). (4.16)

We apply ∂n
r1
∂m

L2 to

θ2
1 =

(

θ1

L

)2

L2,

use (4.13) and (4.16), and obtain

∂n
r1
∂m

L2θ
2
1 =O(r−n−2m

1 g (r1)−2m). (4.17)

Next we note

∂L2θ2
1 =

∫∞

r1

r−2(2λ−2V (r )−L2r−2)−1/2dr

×
∫∞

r1

r−2(2λ−2V (r ))(2λ−2V (r )−L2r−2)−3/2dr

Ê c0r−2
1 g (r1)−2, for some c0 > 0.

(4.18)

We claim that the quantity ∂n
r1
∂m
θ2

1
L2 is a linear combination of terms of the form

∂
n1
r1
∂

m1

L2 θ2
1 · · ·∂

np

r1
∂

mp

L2 θ2
1(∂L2θ2

1)−m−p =O(r 2−n
1 g (r1)2), (4.19)

where n = n1 + ·· · +np and m + p = m1 + ·· · +mp + 1, which obviously proves (4.14).
To see that indeed the terms are of the form given to the left of (4.19) we use induction
with respect to n+m. The first step (justified by the implicit function theorem and the
chain rule) is

∂θ2
1

L2 = (∂L2θ2
1)−1,

∂r1 L2 =−∂r1θ
2
1(∂L2θ2

1)−1.

The inductive step uses the following identities:

∂θ2
1

(∂n1
r1
∂

m1

L2 θ2
1) = ∂

n1
r1
∂

m1+1
L2 θ2

1(∂L2θ2
1)−1,

∂r1 (∂n1
r1
∂

m1

L2 θ2
1) = ∂

n1+1
r1

∂
m1

L2 θ2
1 −∂

n1
r1
∂

m1+1
L2 θ2

1∂r1θ
2
1(∂L2θ2

1)−1.

Finally we use (4.17) and (4.18) yielding the bound (4.19).
The quantity ∂n

r1
∂m
θ2

1

θ1
L

is a linear combination of terms of the form

∂
n1
r1
∂

m1

θ2
1

L2 · · ·∂np

r1
∂

mp

θ2
1

L2∂k
r1
∂

p

L2

θ1

L
=O(r−1−n

1 g (r1)−1),
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where n = n1+·· ·+np +k and m = m1+·· ·+mp ; for the bound we use (4.13) and (4.14).
Thus

∂n
r1
∂m
θ2

1

θ1

L
=O(r−1−n

1 g (r1)−1). (4.20)

We note the inequality

−
θ1

L
Ê r−1

1 g (r1)−1. (4.21)

Finally, the quantity ∂n
r1
∂m
θ2

1

L
θ1

is a linear combination of terms of the form

∂
n1
r1
∂

m1

θ2
1

θ1

L
· · ·∂nk

r1
∂

mk

θ2
1

θ1

L

(

L

θ1

)k+1

=O(r 1−n
1 g (r1)),

where n1 +·· ·+nk = n and m1 +·· ·+mk = m; for the bound we use (4.20) and (4.21).
This proves (4.15). �

Finally, we consider orbits in arbitrary dimension. For R Ê 1 and σ> 0 we introduce

Γ
+
R,σ(ω) = {y ∈R

d : y ·ωÊ (1−σ)|y |, |y | Ê R}, ω ∈ Sd−1,

Γ
+
R,σ = {(y,ω) ∈R

d ×Sd−1 : y ∈ Γ
+
R,σ(ω)}.

The mixed problem consists in finding a solution y(t ) to Newton’s equation subject to
mixed boundary conditions and an energy constraint given in terms of data x ∈R

d , ω ∈
Sd−1 and λÊ 0:























ÿ(t ) =−∇V (y(t )),

λ= 1
2 ẏ(t )2 +V (y(t )),

y(1) = x,

ω= lim
t→+∞

ω(t ), ω(t ) = y(t )
|y(t )| .

(4.22)

Proposition 4.6. For all small enough σ > 0, the problem (4.22) has a solution y(t ),

t Ê 1, for all data (x,ω) ∈ Γ
+
1,σ and λ Ê 0. Moreover this solution y(t ) ∈ Γ

+
1,σ(ω) for all

t Ê 1, and given the latter invariance property it is unique and

∂αx ∂
β
ωL2 =O(|x|2−|α|g (|x|)2). (4.23)

Proof. Note that (r1, sin2θ1) = (|x|,1− (ω · x̂)2). Therefore, θ2
1 and r1 = |x| are smooth

function of x and ω with

∂δω∂
γ
xθ

2
1 =O(|x|−|γ|), ∂

γ
x r1 =O(|x|1−|γ|). (4.24)

In conjunction with (4.14) and the Faá di Bruno formula we obtain (4.23). (Recall that
the Faá di Bruno formula is a basic combinatorial formula for computing derivatives
of composite functions used frequently in the literature see for example [5, proof of
Theorem 1.10.1]). �

Remarks 4.7. 1) The function L2 is continuous in all variables at λ= 0, however as may
readily be checked it is not smooth in λ at this point. This function is smooth for λ> 0.

2) The derivatives in ω and x of the function L2 are also continuous in λ at λ = 0.
This follows by an abstract argument (the proof is very simple, see for example [12,
proof of Lemma 7.7.2]): Suppose U is an open subset of Rn , and that f : U × [0,1] →R

is smooth in z ∈U (for any fixed λ ∈ [0,1]) with |∂βz f | ÉCβ uniformly on U × [0,1], and
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suppose f is continuous in (z,λ) ∈ U × [0,1]. Then all z-derivatives are continuous in
(z,λ) ∈U × [0,1].

3) For the uniqueness statement of Proposition 4.6 the stated invariance property
is crucial due to the fact that orbits may wind around the center of attraction several
times before escaping to infinity along an asymptotic direction, cf. the illustration in
Section 1.

4.2. Dependence of flow on data. Let us examine the dependence of the flow on the
boundary conditions. We start with the dependence on (r1,θ1) of the two-dimensional
flow (θ,r ) = (θ(t ),r (t )).

Lemma 4.8. The orbits described in Lemma 4.5 obey

∂n
r1
∂m
θ2

1
r =O(r 1−n

1 g (r1)g (r )−1), n +m Ê 1, (4.25)

∂n
r1
∂m
θ2

1
θ2 =O(r 2−n

1 r−2g (r1)2g (r )−2), n +m Ê 0, (4.26)

∂n
r1
∂m
θ2

1

θ

θ1
=O(r 1−n

1 r−1g (r1)g (r )−1), n +m Ê 0. (4.27)

Proof. To prove (4.25) we note that the second equation of (4.2) is solved by
∫r

r1

(2λ−2V (ρ)−L2ρ−2)−1/2dρ = t −1. (4.28)

We use induction with respect to n +m. We apply to (4.28) the derivative ∂n
r1
∂m
θ2

1
, ob-

taining that zero is a linear combination of terms of the following form:

∂
n1
r1
∂

m1

θ2
1

L2 · · ·∂nk
r1
∂

mk

θ2
1

L2

× r−2k−u
1 ∂v

r1
(2λ−2V (r1)−L2/r 2

1 )−1/2−k ,
(4.29)

with n1 +·· ·+nk +u + v +1 = n, m1 +·· ·+mk = m;

∂
p1
r1
∂

q1

θ2
1

r · · ·∂pl
r1
∂

ql

θ2
1

r

×∂
n1
r1
∂

m1

θ2
1

L2 · · ·∂nk
r1
∂

mk

θ2
1

L2

× r−2k−u∂v
r (2λ−2V (r )−L2/r 2)−1/2−k ,

(4.30)

with n1 +·· ·+nk +p1 +·· ·+pl = n, u + v +1 = l , m1 +·· ·+mk +q1 +·· ·+ql = m; and

∂
n1
r1
∂

m1

θ2
1

L2 · · ·∂nk
r1
∂

mk

θ2
1

L2

×
∫r

r1

ρ−2k (2λ−2V (ρ)−L2/ρ2)−1/2−k dρ,
(4.31)

with n1 +·· ·+nk = n, m1 +·· ·+mk = m.
Using (4.14) the terms (4.29) are estimated by

O(r−n+1
1 g (r1)−1). (4.32)

The terms (4.30) are divided into the single term

∂n
r1
∂m
θ2

1
r (2λ−2V (r )−L2/r 2)−1/2 (4.33)
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and the remaining ones, which by (4.4) and (4.14) can be estimated by

C
∣

∣∂
p1
r1
∂

q1

θ2
1

r
∣

∣ · · ·
∣

∣∂
pl
r1
∂

ql

θ2
1

r
∣

∣r
p1+···+pl−n
1 r 1−l g (r )−1. (4.34)

By the induction assumption, and using l Ê 1 and (4.9), (4.34) is bounded by

Cr 1−n
1 g (r1)g (r )−2. (4.35)

Using k Ê 1 and (4.9), the terms (4.31) are estimated by

C1g (r1)2k r 2k−n
1

∫r

r1

ρ−2k g (ρ)−1−2k dρ ÉC2g (r1)2g (r )−2r 2−n
1

∫r

r1

ρ−2g (ρ)−1dρ

ÉC3g (r1)g (r )−2r 1−n
1 .

Thus we obtain the estimate
∣

∣∂n
r1
∂m
θ2

1
r
∣

∣g (r )−1 =O(g (r1)g (r )−2r 1−n
1 ),

from which (4.25) follows.
Next we would like to prove (4.26). We start from the identity

θ

L
=−

∫∞

r
ρ−2(2λ−V (ρ)−L2/ρ2)−1/2dρ. (4.36)

This shows θ
L
= O(r−1g (r )−1). Next we obtain that ∂n

r1
∂m
θ2

1

θ
L

is a linear combination of

terms of the following form:

∂
p1
r1
∂

q1

θ2
1

r · · ·∂pl
r1
∂

ql

θ2
1

r

×∂
n1
r1
∂

m1

θ2
1

L2 · · ·∂nk
r1
∂

mk

θ2
1

L2

× r−2−2k−u∂v
r (2λ−2V (r )−L2/r 2)−1/2−k ,

(4.37)

with n1 +·· ·+nk +p1 +·· ·+pl = n, u + v +1 = l , m1 +·· ·+mk +q1 +·· ·+ql = m; and

∂
n1
r1
∂

m1

θ2
1

L2 · · ·∂nk
r1
∂

mk

θ2
1

L2

×
∫∞

r
ρ−2−2k (2λ−2V (ρ)−L2/ρ2)−1/2−k dρ,

(4.38)

with n1 +·· ·+nk = n, m1 +·· ·+mk = m.
The term (4.37) is estimated by

C1r−n+l+2k
1 r−1−l−2k g (r1)l+2k g (r )−1−l−2k ÉC2r−n

1 r−1g (r )−1.

The term (4.38) is estimated by

C1r−n+2k
1 r−1−2k g (r1)2k g (r )−1−2k ÉC2r−n

1 r−1g (r )−1.

Thus

∂n
r1
∂m
θ2

1

θ

L
=O(r−n

1 r−1g (r )−1). (4.39)

Now by

θ2 =
(

θ

L

)2

L2,

(4.14) and (4.39) we obtain (4.26).
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By
θ

θ1
=

θ

L
·

L

θ1
,

(4.15) and (4.39), we obtain (4.27). �

We go back to the case of arbitrary dimension.

Proposition 4.9. The orbits considered in Proposition 4.6 satisfy

∂δω∂
γ
x y =

{

O(|y |) for γ= 0,

O
(

|x|1−|γ|g (|x|)g (|y |)−1
)

for |γ| Ê 1.
(4.40)

In particular,

∂δω∂
γ
x y =O(|x|−|γ||y |). (4.41)

Proof. We use the formula

y = r cosθ ω+ r
sinθ

sinθ1
(x̂ − x̂ ·ωω). (4.42)

Now, ∂δω∂
γ
x r cosθω is a linear combination of terms of the form

∂
π1
ω ∂

ρ1
x r1 · · ·∂πn

ω ∂
ρn
x r1

×∂
σ1
ω ∂

τ1
x θ2

1 · · ·∂
σm
ω ∂

τm
x θ2

1

×∂
n1
r1
∂

m1

θ2
1

r∂
n2
r1
∂

m2

θ2
1

cosθ

×∂
δ0
ω ω.

(4.43)

Likewise, ∂δω∂
γ
x

r sinθ
r1 sinθ1

(x −x ·ω ω) is a linear combination of terms of the form

∂
π1
ω ∂

ρ1
x r1 · · ·∂πn

ω ∂
ρn
x r1

×∂
σ1
ω ∂

τ1
x θ2

1 · · ·∂
σm
ω ∂

τm
x θ2

1

×∂
n1
r1
∂

m1

θ2
1

r∂
n2
r1
∂

m2

θ2
1

sinθ

sinθ1

×∂
δ0
ω ∂

γ0
x (x̂ − x̂ ·ω ω).

(4.44)

Note that

∂
δ0
ω ω=O(1), (4.45)

∂
δ0
ω ∂

γ0
x (x̂ − x̂ ·ωω) =O(|x|−|γ0|). (4.46)

Moreover by Lemma 4.8,

∂
n1
r1
∂

m1

θ2
1

r =
{

O(r ) if n1 +m1 = 0,

r
1−n1
1 g (r1)g (r )−1 if n1 +m1 Ê 1,

(4.47)

∂
n2
r1
∂

m2

θ2
1

cosθ =
{

O(1) if n2 +m2 = 0,

r
2−n2
1 r−2g (r1)2g (r )−2 if n2 +m2 Ê 1,

(4.48)

∂
n2
r1
∂

m2

θ2
1

sinθ

sinθ1
= r

1−n2
1 r−1g (r1)g (r )−1. (4.49)
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(For (4.49) we use the decomposition sinθ
sinθ1

= θ
θ1

· sin(θ)/θ
sin(θ1)/θ1

.)
Now, applying (4.24) and (4.45)–(4.49) to (4.43) and (4.44) yields (4.40). �

One may also estimate derivatives of ẏ :

Proposition 4.10.

∂δω∂
γ
x (ẏ −

p
2λω) =O

(

|x|−|γ||y |−µg (|y |)−1)

. (4.50)

In particular

∂δω∂
γ
x ẏ =O

(

|x|−|γ|g (|y |)
)

. (4.51)

Proof. First we represent

ẏ(t )−
p

2λω=
∫∞

t
∇V (y)dt ′, (4.52)

Now ∂δω∂
γ
x (ẏ(t )−

p
2λω) is a linear combination of terms of the form

∫∞

t
∂
δ1
ω ∂

γ1
x y(t ′) · · ·∂δn

ω ∂
γn
x y(t ′)∇n+1V (y(t ′))dt ′

=O

(

|x|−|γ|
∫∞

|y |
ρ−1−µg (ρ)−1dρ

)

,
(4.53)

which are O(|x|−|γ||y |−µg (|y |)−1). �

We also notice the uniform bounds

|y |−1g (|y |) É
C

t −1
, |y |−1 ÉC t−α, (4.54)

Since |y |−1 É |x|−1 the second estimate of (4.54) may be generalized as

|y |−1 ÉC |x|−δt−α(1−δ), δ ∈ [0,1]. (4.55)

5. TIME–DEPENDENT LINEAR FORCE PROBLEM

We consider the following one-dimensional matrix-valued ODE

z̈(t )−q(t )z(t ) = z̃(t ), t Ê 1, (5.1)

where q(t ) ∈ Md (C) is self-adjoint for all t Ê 1, and as a function of t , q is continuous
and bounded. Moreover we assume the following bound for some ǫ> 0

(t −1)2q(t ) Ê− 1
4 (1−ǫ2) for t Ê 1. (5.2)

The goal of this section is to study the initial value problem given by (5.1) and the
initial value condition z(1) = 0. As the reader will see the relevant tools come from
functional analysis.

Throughout the section we fix any

r ∈
(

− ǫ
2 , ǫ2

)

. (5.3)

We introduce for any such r the following form on the domain D(Qr ) =W 1,2
0 (1,∞) ⊆

L2(1,∞) (W 1,2
0 ⊆ W 1,2 refers to standard Sobolev spaces, see for example [2], although

we are here dealing with C
d -valued functions): Let pt =−i d

dt
and

Qr (ψ,φ) =
〈

ptψ, ptφ
〉

+
〈

ψ,
{

q(t )− r 2t−2 + ir (pt t−1 + t−1pt )
}

φ
〉

. (5.4)
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Formally this is the form of the operator Hr = t r H t−r , where H is the Schrödinger
operator H = p2

t + q(t ) with Dirichlet boundary condition at t = 1. To justify this we
invoke [17, Theorem VIII.16] and the Hardy inequality [2, Lemma 5.3.1]. Due to this
inequality and to (5.2), there exists δ= δ(ǫ,r ) > 0 such that

ReQr (φ) = ReQr (φ,φ) Ê δ
〈

φ,
{

p2
t + (t −1)−2}φ

〉

. (5.5)

Whence, in the terminology of [17], the form Qr is strictly m-accretive. There is an
associated operator Hr for which the open left half-plane C− = {ζ ∈ C : Reζ < 0} is a
subset of the resolvent set, cf. [17, Lemma after Theorem VIII.16].

Lemma 5.1. The B(L2(1,∞))-valued functions

Br (ζ) := (t −1)−1(Hr −ζ)−1(t −1)−1

and

pt (Hr −ζ)−1(t −1)−1 (5.6)

are uniformly bounded on C−.

Proof. Applying (5.5) to φ= (Hr −ζ)−1(t−σ)−1 f where σ< 1 and f ∈ L2(1,∞) yields (by
the Cauchy Schwarz inequality)

∥

∥(t −σ)−1(Hr −ζ)−1(t −σ)−1 f
∥

∥É δ−1‖ f ‖. (5.7)

Letting σ→ 1 and using the Lebesgue convergence theorems we conclude that (Hr −
ζ)−1(t −1)−1 f ∈ D((t −1)−1) for all f ∈ D((t −1)−1), and that (5.7) with σ = 1 holds for
such f ’s.

As for bounding (5.6) we combine (5.5) and (5.7) to obtain uniform boundedness of
pt (Hr −ζ)−1(t −σ)−1. Again we let σ→ 1. �

Lemma 5.2. There exists the weak limit

Br (0) = w− lim
ζ→0,Reζ<0

Br (ζ).

Proof. Let f ∈ L2(1,∞). For any sequence ζn → 0 with Reζn < 0, Br (ζnk
) f * g for

some g and some subsequence ζnk
(cf. Lemma 5.1 and [23, Theorem V.2.1]). Writing

g = Br (0) f it remains to show that for any f ∈D((t −1)−1), g is independent of choice
of sequences. So suppose that for such f , Br (ζ1,n) f * g1 and Br (ζ2,n) f * g2. We need
to show that ψ := g1 − g2 = 0. We readily obtain that for all φ ∈C∞

c (1,∞)
〈

(t −1)H−rφ,ψ
〉

= 0. (5.8)

Using this we can show that, indeed, ψ= 0 by the following approximation argument.
Pick a real-valued χ ∈ C∞[1,∞) such that χ(t ) = 1 for t < 2 and χ(t ) = 0 for t > 3, and
let χn(t ) = χ( t

n
), n ∈ N. We introduce Ψ(t ) = (t − 1)ψ(t ) and ψn = χnΨ. By elliptic

regularity we obtain from (5.8) that Ψ(t ) is smooth up to (and including) t = 1. Since
ψ ∈ L2(1,∞) we must have Ψ(1) = 0, in particular ψn ∈ D(Qr ). Using (5.8) with this
input we compute

Qr (ψn) = ‖χ′
nΨ‖2. (5.9)
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Since (t−1)χ′
n(t ) = (t−1)χ′( t

n
) is uniformly bounded, the Lebesgue dominated con-

vergence theorem yields that the right hand side of (5.9) vanishes as n →∞. Whence
by (5.5)

‖ψ‖ = lim
n→∞

‖χnψ‖ = 0. �

Lemma 5.3. For all ζ ∈C−

(Hr −ζ)−1 = t r (H −ζ)−1t−r .

Proof. We shall only consider the case r Ê 0 (the case r É 0 may be treated similarly). It
suffices to show that

t−r (Hr −ζ)−1 = (H −ζ)−1t−r . (5.10)

Clearly t−r (Hr −ζ)−1 f ∈D(Q0) for any f ∈ L2(1,∞). For all φ ∈C∞
c (1,∞) we compute

Q0(φ, t−r (Hr −ζ)−1 f ) =
〈

φ, t−r Hr (Hr −ζ)−1 f
〉

. (5.11)

Since C∞
c (1,∞) is a core for Q0 we deduce that (5.11) is valid for all φ ∈D(Q0). Whence

H t−r (Hr −ζ)−1 f = t−r Hr (Hr −ζ)−1 f ,

from which we readily obtain (5.10). �

Using Lemma 5.3 we can show strong convergence of Tr (ζ) := t−1(Hr −ζ)−1t−1. No-
tice that by Lemma 5.2 there exists

Tr (0) = w− lim
ζ→0,Reζ<0

Tr (ζ),

and that by Lemma 5.3, Tr (0) = t r T0(0)t−r .

Lemma 5.4.

Tr (0) = s− lim
ζ→0,Reζ<0

Tr (ζ). (5.12)

Proof. Pick δ ∈ (0, ǫ2 −|r |). We claim that for all f ∈D(tδ)

Tr (ζ) f = t−δTr+δ(ζ)tδ f → t−δTr+δ(0)tδ f . (5.13)

Since t−δt−1(Hr +1)−1t is compact the (norm-) convergence, (5.13) follows from the
first resolvent equation and weak convergence. Since t−δTr+δ(0)tδ = Tr (0) this proves
(5.12). �

Remark 5.5. Using the uniform boundedness of the family (5.6) and Lemma 5.2, one
may show the existence of the weak limit

w− lim
ζ→0,Reζ<0

Rr (ζ), Rr (ζ) = pt (Hr −ζ)−1t−1.

Assuming in addition to the given conditions on q that t q(t ) is bounded, one may show
using the proof of Lemma 5.4 the existence of the strong limit, s− limζ→0,Reζ<0 Rr (ζ).

We introduce for s ∈R the weighted spaces

Z−s = L2
−s (1,∞) = t s L2(1,∞). (5.14)

Here L2 refers to the space of Cd -valued square integrable functions.



CLASSICAL SCATTERING AT LOW ENERGIES 69

Lemma 5.6. Suppose s < 1+ ǫ
2 , where ǫ > 0 is given as in (5.2). Suppose z ∈ L2

−s (1,∞)
satisfies the homogeneous analogue of (5.1) in D

′(1,∞) (i.e. we assume that the right

hand side vanishes and that the equation holds in distributional sense), and z(1) = 0.

Then z = 0.

Proof. We consider for any z̃ ∈D(1,∞)

0 = lim
ζ→0,Reζ<0

〈

(H −ζ)−1 z̃, H z
〉

.

By Lemmas 5.3 and 5.4 we may compute the limit as to obtain

0 = 〈H−1 z̃, H z〉
with H−1 z̃ := t 1−r Tr (0)t 1+r z̃, provided |r | < ǫ

2 . For a later application we need r Ê s −1
which by assumption is feasible.

The idea is to integrate by parts in the expression on the right. First we notice that
pt H−1 z̃ ∈ L2

r , cf. Remark 5.5. Next we claim that

pt z ∈ L2
1−s . (5.15)

For that we introduce for n ∈N the multiplication operator Fn(t ) = F ( t
n
< 1), and con-

sider the expression
〈

pt z,Fn(t )t 2−2s pt z
〉

+
〈

z, q(t )Fn(t )t 2−2s z
〉

. (5.16)

Up to a term that can be bounded uniformly in n (using the assumption that z ∈ L2
−s )

this expression is equal to Re〈H z,Fn(t )t 2−2s z〉. Whence (5.15) follows from (5.16) and
the monotone convergence theorem.

Now integration by parts yields (this is a version of Green’s identity)

0 =
[

−H−1 z̃ ·
d

dt
z +

{

d

dt
H−1 z̃

}

· z

]∞

1
+〈H H−1 z̃, z〉.

Obviously the last term to the right is equal to 〈z̃, z〉. We claim that the first term van-
ishes. The lower boundary term (at t = 1) vanishes. The upper limit should be in-
terpreted as a limit along a suitable sequence tm →∞. Specifically, since the form is
[t f (t )]∞1 with f integrable (here we use (5.15)) it follows indeed that tm f (tm) → 0 along
such sequence.

We conclude that
0 = 〈z̃, z〉,

and since this holds for all z̃ ∈D(1,∞) the proof is complete. �

Corollary 5.7. Suppose z̃ ∈ L2
1+r (1,∞) where r > − ǫ

2 with ǫ > 0 given as in (5.2). Then

there exists a uniquely determined z ∈∪s<1+ǫ/2L2
−s (1,∞) satisfying the equation (5.1) in

D
′(1,∞) and z(1) = 0.

Proof. For the existence part we may assume that r < ǫ
2 . Take z =−t 1−r Tr (0)t 1+r z̃. The

uniqueness part follows immediately from Lemma 5.6. �
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6. MIXED PROBLEM IN THE CASE V2 6= 0

In the section we impose Conditions 2.1 and 2.2. We shall find an analogue of Propo-
sition 4.6.

6.1. Solving a fixed point problem. We are interested in solving (4.22) for (x,ω) ∈ Γ
+
R,σ

where R Ê 1 is large and σ > 0 is small. For that we write the solution as y = z + y1,
where y1(t ) is the solution constructed in Section 4 (with V2 = V3 = 0). We shall derive
a fixed point problem for the “perturbation” z. By Newton’s equation

z̈ =−∇V (z + y1)+∇V1(y1) =−∇2V1(y1)z +R(z),

R(z) =−
∫1

0
(1− l )∇3V1(l z + y1){z, z}dl −∇V2(z + y1).

(6.1)

The Hessian in the first term on the right hand side of (6.1) is given by

∇2V1(y1) =V ′′
1 (|y1|)P‖(y1)+|y1|−1V ′

1(|y1|)P⊥(y1), (6.2)

where P‖(y1) = |y1|−2|y1〉〈y1| projects onto the span of y1, and P⊥(y1) = I −P‖(y1).
Using Condition 2.2, (4.28) and representation (6.2) we see that q(t ) := −∇2V1(y1)

satisfies condition (5.2) with ǫ= ǭ1. The equation (6.1) has the form of (5.1)

z̈ −qz = z̃ :=R(z). (6.3)

We shall solve (6.3) using Banach’s fixed point theorem. In this section the notation
Z−s = L2

−s (1,∞) refers to weighted L2-spaces of Rd -valued square integrable functions,
cf. (5.14).

We will choose s of the form
s =α+ 1

2 −ǫ, (6.4)

where ǫ> 0 satisfies
∣

∣α− 1
2 −ǫ

∣

∣< ǭ1
2 , (6.5)

ǫ<αǫ2. (6.6)

By taking ǫ < αǫ2 sufficiently close to αǫ2, indeed (6.5) and (6.6) are fulfilled (here we
use (2.5)).

We shall prove the following result.

Proposition 6.1. Suppose Conditions 2.1 and 2.2. Fix ǫ> 0 sufficiently close to αǫ2 (but

smaller). Then there exist R0 Ê 1 and σ0 > 0 such that for all R Ê R0 and for all positive

σÉσ0 the problem (4.22) is solved by some function y(t ) = z(t )+y1(t ), t Ê 1, for all data

(x,ω) ∈ Γ
+
R,σ and λ Ê 0. The function z(t ) is constructed as a fixed point of (6.7) stated

below. Moreover this solution y(t ) ∈ Γ
+
R,σ(ω) for all large enough t Ê 1.

Proof. We shall use the operator Tr (0) from Lemma 5.4 with r = 1− s and s given by
(6.4). Notice that then (5.3) is fulfilled upon replacing ǫ→ ǭ1 due to (6.5).

Consider the following fixed point problem for z ∈ Z−s :

z =P (z), (6.7)

where
P (z) =−t s Tr (0)t 2−s

R̃(z), R̃(z) =χ1χ2R(z). (6.8)
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Here χ j are auxiliary operators introduced in a first step; once the fixed point is con-

structed they can be removed. They are given in terms of z ∈ Z−s by χ1 = F ( |z|
|y1| <

2
3 )

and χ2 = F ( |z|
tα−ǫ < 2), respectively.

We claim that the map P is a contraction on Z−s for all (x,ω) ∈ Γ
+
R,σ with σ> 0 small

and R large, yielding by Banach’s fixed point theorem a solution to (6.7).
We start by verifying that indeed P : Z−s → Z−s .
We may bound the vector R̃(z) in (6.8) as

R̃(z)(t ) =O(t−α(1+µ)−2ǫ)+O(t−α(1+µ+ǫ2)), (6.9)

using the second estimate of (4.54) and the support properties of the χ j ’s. Since Tr (0)
is bounded on L2(1,∞) we obtain from (6.9) and (6.6) that t s Tr (0)t 2−s

R̃(z) ∈ Z−s .
As for the contraction property let z1, z2 ∈ Z−s be given. Straightforward estimations

using (4.55) and (6.6) show

‖P (z1)−P (z2)‖−s ÉC |x|−δ‖z1 − z2‖−s É 1
2‖z1 − z2‖−s . (6.10)

Here we have taken δ> 0 small; see (6.11) and (6.13) stated below for a similar applica-
tion of (4.55). Clearly C |x|−δ ÉC R−δ É 1

2 if R is large enough.
Finally we show that the factors χ j ’s in (6.7) and (6.8) can be removed for the con-

structed fixed point, say z = z−s ∈ Z−s . First we notice the bound

‖z‖−s É 2‖P (z = 0)‖−s = 2
∥

∥t s Tr (0)t 2−s∇V2(y1(·))
∥

∥

−s

ÉCδ|x|−δ ÉCδR−δ,
(6.11)

obtained using the contraction property (6.10), (6.6) and (4.55). We shall need a point-
wise Sobolev type of bound. Let w(t ) = d

dt
(t 1−2s |z(t )|2). By elementary estimations and

by using (6.11) and Remark 5.5 (notice that in conjunction with the fixed point equa-
tion the uniform bound of Remark 5.5 yields a weighted bound of the time-derivative
of z) we may show that

∫∞

1
|w(t )|dt É 1

4 for R large enough.

From this estimate we get (by integrating to infinity)

|z(t )| É 1
2 tα−ǫ, t Ê 1. (6.12)

Combining (6.12) with the bound

t ǫ−α|y1| Ê c|x|ǫ/α Ê cRǫ/α Ê 2, (6.13)

we conclude that indeed χ1 = F ( |z|
|y1| <

2
3 ) = 1 and χ2 = F ( |z|

tα−ǫ < 2) = 1 for all sufficiently
large R’s. Consequently those factors χ j ’s can be removed.

Obviously z(1) = 0 and the problem (4.22) is solved by y(t ) = z(t )+ y1(t ). �

Remarks 6.2. 1) The above analysis yields the following uniform bound of the fixed
point (with ǫ as above)

|z(t )| ÉCδ|x|−δtα−ǫ,

valid for some δ= δ(ǫ) > 0.
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2) For positive energies there is a simpler procedure, cf. [5, proof of Theorem 1.5.1].
This leads to the improved decay in time

y(t )− (t −1)
p

2λω−x =O(tδ), δ> max{1−µ,0}, (6.14)

with the bounding constant being locally uniform in (ω,λ) ∈ Sd−1 × (0,∞). Obviously
(6.14) is not uniform in λ. Compared to the procedure for positive energies the present
one is based on an additional Taylor expansion. In this way we circumvent a problem
related to the fact that the quantity

∫

t |∇2V (y)|dt is finite only for λ > 0 (causing a
difficulty for the contraction property at λ= 0).

3) Although it is not stated in Proposition 6.1 that Γ
+
R,σ(ω) is invariant under the

forward flow, this is indeed true; see Lemma 6.4 stated below. Notice that it follows
from Proposition 4.6 that Γ+

R,σ(ω) is invariant in the case V2 = 0.
4) We have not proved that the solution to the problem (4.22) is unique in the sense

used in Proposition 4.6 in the case V2 = 0.

Definition 6.3. Under the conditions of Proposition 6.1 we define a vector field F on
Γ
+
R0,σ0

(ω) by

F (x) = ẏ(t = 1; x,ω,λ); (6.15)

here y refers to the solution of (4.22) given in Proposition 6.1.

Lemma 6.4. Let y = y(t ) = y(t ; x,ω,λ) be the solution from Proposition 6.1. Then y ∈
Γ
+
R,σ(ω) for all t Ê 1.

Let F1 be given as in Definition 6.3 in the case V2 = 0, and let ǫ be given as in Proposi-

tion 6.1. Then for all positive ǫ′ < ǫ and ǫ′2 < ǫ2

F (x)−F1(x) =O(|x|−µ/2−ǫ̆), ǫ̆ := min
{

ǫ′

α ,ǫ′2
}

. (6.16)

In particular for constants C ,c > 0 independent of x, ω and λ,

∣

∣

∣

∣

F (x)

|F (x)|
−

F1(x)

|F1(x)|

∣

∣

∣

∣

ÉC |x|−ǫ̆, (6.17)

and

F (x)

|F (x)|
· x̂ Ê 1−C (1− x̂ ·ω)−C |x|−ǫ̆, (6.18)

F (x)

|F (x)|
· x̂ É 1− c(1− x̂ ·ω)+C |x|−ǫ̆, (6.19)

F (x)

|F (x)|
·ωÊ 1−C (1− x̂ ·ω)−C |x|−ǫ̆. (6.20)

Proof. Let y1 = y1(t ) signify the solution in the case V2 = 0. From (4.52) and Taylor’s
formula we obtain

ẏ(t )− ẏ1(t ) =
∫∞

t

{∫1

0
∇2V1(l z + y1)zdl +∇V2(y)

}

ds. (6.21)
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To bound the contribution from the first term on the right hand side we use (4.54)

and (6.12), and estimate with δ= 1−α+ǫ′
2 for ǫ′ < ǫ

∫∞

t

∫1

0
∇2V1(l z + y1)zdlds =

∫∞

t
O(|y1|−δ(2+µ))s−(1−δ)α(2+µ)sα−ǫds

=O(|y1(t )|−µ/2−ǫ′/α).

(6.22)

The contribution from the second term on the right hand side is estimated similarly
∫∞

t
∇V2(y)ds = |y1(t )|−µ/2−ǫ′2

∫∞

t
O(|y1|−1−µ/2+ǫ′2−ǫ2 )ds

=O(|y1(t )|−µ/2−ǫ′2 ).
(6.23)

We conclude that

ẏ(t )− ẏ1(t ) =O(|y1(t )|−µ/2−ǫ̆)) = |ẏ1(t )|O(|x|−ǫ̆). (6.24)

We obtain (6.16) by taking t = 1 in (6.24). Clearly (6.17) follows from (6.16). More-
over (6.18) and (6.19) in turn follow from (6.17) and from Section 4 (possibly after di-
minishing σ0), while (6.20) readily follows from (6.18) (for a new constant). Notice for
(6.18) and (6.19) in the case V2 = 0 that 1− F (x)

|F (x)| · x̂ = 1−cosψ1 and 1− x̂ ·ω= 1−cosθ1.
Whence the statements are equivalent to the bounds cθ1 É ψ1 É Cθ1, which may be
derived from the following formula (representing κ=−sinψ1):

∂κ2

∂θ2
1

(θ1 = 0) =
(∫∞

1
s−2 g (r1

g (sr1)
ds

)−2

. (6.25)

Finally we obtain from (6.17), (6.24), and the above considerations (for the case V2 =
0), that y(t ) ∈ Γ

+
R,σ(ω) for all t Ê 1 given that x = y(1) ∈ Γ

+
R,σ(ω). �

We shall show in Section 7 that F is a smooth gradient field. The following result,
the proof of which is somewhat complicated since we have not proved uniqueness, cf.
Remarks 6.2 4), will be useful.

Lemma 6.5. Let y = y(t ) = y(t ; x,ω,λ) be the solution from Proposition 6.1. Then ẏ(t ) =
F (y(t )) for all t Ê 1.

Proof. Let us omit ω,λ in the notation, and consider the following equivalent state-
ment, say p(T ),

y(t + t̄ −1; x) = y(t ; y(t̄ ; x)) for all t Ê 1 and all t̄ ∈ [1,T ]. (6.26)

Here T Ê 1 is arbitrary.
Obviously p(1) is true. Let us prove that p(T ) is true for a T > 1 that may be chosen

to be independent of x: We consider

z̃( · ) := y( · + t̄ −1; x)− y1( · ; y(t̄ ; x))

for t̄ ∈ (1,T ]. We claim that (with s given by (6.4))

z̃ ∈ Z−s , (6.27)

|z̃| < 1
3

∣

∣y1( · ; y(t̄ ; x))
∣

∣ , (6.28)

|z̃| < tα−ǫ. (6.29)
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Notice that by using (6.27)–(6.29), the fact that z̃(1) = 0, Lemma 5.6 and the unique-
ness property for contractions we obtain that z̃(t ) = z(t ; y(t̄ ; x)) and therefore indeed
(6.26) (for suitably small T −1 > 0). Here Lemma 5.6 is applied to the vector z̃ −P (z̃).

We estimate

|z̃(t )| É |y(t + t̄ −1; x)− y(t ; x)|+ |z(t ; x)|+ |y1(t ; x)− y1(t ; y(t̄ ; x))|, (6.30)

|y(t + t̄ −1; x)− y(t ; x)| É
∫t̄−1

0
|ẏ(s + t ; x)|ds =O(t 0), (6.31)

and

y1(t ; x)− y1(t ; y(t̄ ; x)) =
∫1

0
(∇x y1)

(

t ; l (x − y(t̄ ; x))+ y(t̄ ; x)
)

· (x − y(t̄ ; x))dl

=O(g (|y1|)−1) =O(tαµ/2),

(6.32)

cf. (4.40).
From (6.30)–(6.32) we obtain (6.27).
As for (6.28) we may use the estimates

∣

∣y1(t ; y(t̄ ; x))
∣

∣Ê |y1(t ; x)|−
∣

∣y1(t ; y(t̄ ; x))− y1(t ; x)
∣

∣, (6.33)

|z(t ; x)| É 1
4 |y1(t ; x)|, (6.34)

and the previous estimates. (Here the smallness of T −1 > 0 comes in.) The proof of
(6.29) is similar.

Now to show (6.26) in the general case, suppose p(T ) for some T > 1. Then for
△t̄ > 0 small (in agreement with the previous step) we have, with t̄ = T +△t̄ ,

y(t + t̄ −1; x) = y((t +△t̄ )+T −1; x) = y(t +△t̄ ; y(T ; x))

= y
(

t ; y(△t̄ +1; y(T ; x))
)

= y
(

t ; y(t̄ ; x)
)

.

Here we used p(T ) as well as the previous step with x replaced by y(T ; x). Whence we
have shown p(T ′) for a T ′ > T , and therefore (6.26) for all T Ê 1. �

6.2. Smoothness properties of solution y . We shall compute and estimate derivatives
with respect to initial position x and final direction ω of the constructed solution y =
z + y1 and of the vector field F given in Definition 6.3. We studied the derivatives of
y = y1 in Subsection 4.2. It is well-known that under general conditions a solution to
a fixed point equation depending on parameters will be smooth in these variables, see
for instance [13, Appendix C].

From the fixed point equation (6.7) one may derive (for example) the representation

∂x z = (I −∇zP )−1∂xP . (6.35)

Notice here the bound
‖∇zP ‖B(Z−s ) É 1

2 , (6.36)

cf. (6.10) (with s given by (6.4)). To deal with higher order derivatives we need a more
elaborate analysis.

Motivated by (6.12) we introduce the following modification of the spaces Z−σ of
(5.14). Let Z unif

−σ be the space of Rd -valued continuous functions z̃ on [1,∞) obeying

‖z̃‖unif
−σ := sup

tÊ1
t−σ|z̃(t )| <∞.
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We shall first estimate various derivatives of the contraction P on Z−s .

Lemma 6.6. For all multi-indices δ and γ, k ∈N∪ {0}, and z1, . . . , zk ∈ Z unif
ǫ−α ∩Z−s ,

∥

∥∂δω∂
γ
x∂

k
z P {z1, . . . , zk }

∥

∥

−s ÉCδ,γ,k |x|−|γ|‖z1‖unif
ǫ−α · · ·‖zk‖unif

ǫ−α, (6.37)
∥

∥

∥

∥

d

dt
∂δω∂

γ
x∂

k
z P {z1, . . . , zk }

∥

∥

∥

∥

1−s

ÉCδ,γ,k |x|−|γ|‖z1‖unif
ǫ−α · · ·‖zk‖unif

ǫ−α. (6.38)

Proof. We start by verifying (6.37) for k = 0, δ = 0 and |γ| = 1. So we need to trace the
x-dependence of P as defined by (6.8). There is a contribution from differentiating
the factor Tr (0) and another from differentiating the factor R̃(z). Using Lemma 5.4 we
may use the formal computation

∂x Tr (0) =−Tr (0)t (∂x q)tTr (0); (6.39)

here
∂x q =−∇3V1(y1)∂x y1. (6.40)

Using (4.54), (4.41) and (6.40) we derive t (∂x q)t =O(|x|−1), so ∂x Tr (0) =O(|x|−1). As
for the x-dependence from the factor R̃(z) we may combine (4.41) and the arguments
for (6.9) to pick up an extra factor |x|−1 in the estimation of ∂xR̃(z).

Higher derivatives are treated similarly.
As for (6.38) we use Remark 5.5 and the same estimates as before. �

Lemma 6.7. For all multi-indices δ and γ

‖∂δω∂
γ
x z‖−s =O(|x|−|γ|), (6.41)

‖∂t∂
δ
ω∂

γ
x z‖1−s =O(|x|−|γ|), (6.42)

‖∂δω∂
γ
x z‖unif

ǫ−α =O(|x|−|γ|). (6.43)

Proof. We notice that (6.41)–(6.43) in the case |δ|+|γ| = 0 follow from (6.11), (6.12) and
the arguments for (6.12).

By the same reasoning (the Sobolev bound) if (6.41) and (6.42) are known for |δ| +
|γ| É n for some n ∈N, then also (6.43) for |δ|+ |γ| É n is valid.

So suppose we know (6.41)–(6.43) for all multi-indices δ and γ with |δ|+ |γ| É n −1
for some n ∈N, then we only need to verify the bounds (6.41) and (6.42) for |δ|+|γ| É n.
For this we fix multi-indices δ and γ with |δ|+|γ| = n−1 and look at the representation
of z̆ = ∂δω∂

γ
x z obtained from differentiating (6.7) (a Faá di Bruno formula)

z̆ =(∂zP ){z̆}+∂δω∂
γ
xP

+
∑

cδ′,δ1,...,δk ,γ′,γ1,...,γk
(∂δ

′
ω ∂

γ′

x ∂k
z P ){∂δ1

ω ∂
γ1
x z, . . . ,∂δk

ω ∂
γk
x z},

(6.44)

where summation is over k Ê 1, δ′+δ1 + ·· ·+δk = δ,γ′+γ1 + ·· · +γk = γ and n −1 Ê
k +|δ′|+ |γ′| Ê 2. The meaning of (6.44) if n = 1 is (6.7), while for n = 2 the third term to
the right should be omitted. Now we may compute ∂z̆ (meaning either ∂ei

ω z̆ or ∂
e j

x z̆) by
differentiating (6.44). The result is, cf. (6.35),

∂z̆ = (∂zP ){∂z̆}+ z̃,

where z̃ may be treated using (6.37) and the induction hypothesis. So (again) we may
invoke (6.36). This yields (6.41) (as well as the representation (6.44)) for |δ|+ |γ| = n.
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It remains to prove (6.42) in the inductive argument. For that we use the proven
formula (6.44) for |δ| + |γ| = n. We proceed somewhat similarly applying now t∂t to
both sides of this formula with z̆ now given in terms of indices with |δ|+ |γ| = n. This
leads to

t∂t z̆ = t
d

dt
∂zP {z̆}+ t∂t z̄.

The first term to the right may be treated using Remark 5.5; it is estimated as
∥

∥

∥

∥

t
d

dt
∂zP {z̆}

∥

∥

∥

∥

−s

ÉC‖z̆‖−s ,

cf. (6.10). The second term may be treated using (6.38) and the induction hypothesis
(specifically only (6.43)). The estimate (6.42) follows. �

Proposition 6.8. With F the vector field in Definition 6.3, there are uniform bounds

valid for all multi-indices δ and γ:

∂δω∂
γ
x F (x) = 〈x〉−|γ|O(g (|x|)), (6.45)

∂δω∂
γ
x (F (x)−F1(x)) = 〈x〉−ǫ̆−|γ|O(g (|x|)). (6.46)

Here F1 is given as F for the case V2 = 0, and ǫ̆> 0 is given as in Lemma 6.4.

Proof. As for (6.45) we shall use the same scheme as for proving (4.50). First we notice
the following consequence of (6.43):

|∂δω∂
γ
x z(t )| ÉCδ,γ|y1(t )| |x|−|γ|. (6.47)

By (4.41)
|∂δω∂

γ
x y1(t )| ÉCδ,γ|y1(t )| |x|−|γ|. (6.48)

The combination of (6.47) and (6.48) is

|∂δω∂
γ
x y(t )| ÉCδ,γ|y1(t )| |x|−|γ|. (6.49)

As in the proof of (4.50), we represent

∂∗F = ∂∗ ẏ(t = 1) = ∂∗
p

2λω+
∫∞

1
∂∇V (y)∂∗ydt , (6.50)

from which we may derive a Faá di Bruno formula (by repeated differentiation) to
which (6.49) applies. The argument for the case δ = 0 and |γ| = 1 is similar to (4.53):
By combining (6.49) and (6.50) we obtain

∂x ẏ(t = 1; x,ω,λ) =
∫∞

1
∇2V (y)O

( |y |
|x|

)

dt

=O(|x|−1−µ/2) = 〈x〉−1O(g (|x|)),
(6.51)

which obviously is a particular case of (6.45). The general case is similar.
As for (6.46) we need a more refined argument than (6.51); this is now based on

(6.21). We need to differentiate and estimate the expressions to the left in (6.22) and
(6.23). The estimation of the differentiated expressions is done using (6.43) and (6.48)
in a similar manner as done in the proof of Lemma 6.4. Details are omitted. �

Lemma 6.9. The vector field F = F (x,ω,λ) as well as all derivatives ∂δω∂
γ
x F are jointly

continuous in the variables (x,ω) ∈ Γ
+
R0,σ0

and λÊ 0.
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Proof. Since in fact F (x,ω,λ) is smooth in (x,ω) ∈ Γ
+
R0,σ0

and λ> 0, cf. Remarks 4.7 1),
only continuity at λ = 0 is non-trivial. Due to Remarks 4.7 2) and Proposition 6.8 it
suffices to show that

F (x,ω,λ) → F (x,ω,0) as λ→ 0. (6.52)

For that we first notice that

y1(t ; x,ω,λ) → y1(t ; x,ω,0) as λ→ 0. (6.53)

This may be seen by combining Remarks 4.7 1) and a standard continuity statement of
a flow in terms of variation of the initial values and the vector field, see for example [1,
Theorem 3, p.177].

Since P =P (ζ,λ) ∈ Z−s is jointly continuous in λÊ 0 and ζ ∈ Z−s (as may readily be
checked) and there is a uniform contraction constant, a general principle for contrac-
tions, cf. [13, Appendix C], yields continuity for the fixed points; viz.

zλ → z0 = zλ=0 in Z−s . (6.54)

Next we represent, cf. (6.21),

F (x,ω,λ)−F (x,ω,0) =
∫∞

1
(∇V (yλ)−∇V (y0))dt .

The norm of the integrand on the right is estimated uniformly by C t−α(1+µ). Combining
this fact, (6.53), (6.54) and [19, Theorems 1.34, 3.12] we conclude (6.52). �

We end this section by stating a somewhat similar approximation result needed in
the next section; clearly there are results for higher derivatives as in Lemma 6.9 but
they will not be needed. Let V2,n(x) = F ( |x|

n
< 1)V2(x) for n ∈ N, and let zn , yn ,Pn and

Fn be the quantities defined upon replacing V2 by V2,n in previous constructions.

Lemma 6.10. The vector field Fn = Fn(x,ω,λ) is defined on the same domain as F (pos-

sibly after a slight shrinking), and pointwisely

∂x Fn → ∂x F as n →∞.

Proof. Clearly for all multi-indices γ, the function 〈x〉µ+ǫ2+|γ|∂γV2,n(x) is bounded uni-
formly in n. Employing this property one may check the first statement as well as
the existence of uniform bounds on supx〈x〉|γ|‖∂γx zn‖−s and supx g (x)−1〈x〉|γ||∂γFn(x)|.
Whence it suffices to show that

Fn(x) → F (x) as n →∞, (6.55)

cf. Remarks 4.7 2).
Since Pn(ζ) ∈ Z−s is jointly continuous in n ∈N and ζ ∈ Z−s (more precisely we have

‖Pn(ζn)−P (ζ)‖−s → 0 for any sequence ζn → ζ in Z−s ) we have continuity for the fixed
points; viz. zn → z in Z−s .

We represent

Fn −F =
∫∞

1
(∇Vn(yn)−∇V (y))dt .

As in the proof of Lemma 6.9 we have a uniform bound as well as pointwise conver-
gence (along subsequences) for the integrand; we can argue as before and conclude
(6.55). �
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7. SOLUTION TO EIKONAL EQUATION

In this section we shall see that the vector field F of Definition 6.3 can be written as
F (x) =∇φ(x) for some smooth function φ. We impose Conditions 2.1 and 2.2, however
if V2 = 0 Condition 2.1 suffices; in that case F is given by the same definition.

Definition 7.1. Under the conditions of Proposition 6.1 (or Proposition 4.6) we intro-
duce for (x,ω) ∈ Γ

+
R0,σ0

and λÊ 0,

φ(x) =φ(x,ω,λ) = (x −R0ω) ·
∫1

0
F (l (x −R0ω)+R0ω)dl +

p
2λR0.

It follows from Lemma 6.9 that φ = φ(x,ω,λ), as well as all derivatives ∂δω∂
γ
xφ, are

jointly continuous in the variables (x,ω) ∈ Γ
+
R0,σ0

and λ Ê 0. We shall show that the

image of the map Γ
+
R0,σ0

(ω) ∋ x 7→ (x,F (x) is Lagrangian, so that indeed this function φ

is an antiderivative of F .

Proposition 7.2. Under the conditions of Definition 7.1

F (x) =∇xφ(x),

and φ solves the eikonal equation

1
2 (∇xφ)2 +V (x) =λ, x ∈ Γ

+
R0,σ0

(ω). (7.1)

Proof. Let us denote by θt = (y,F (y)) the Hamiltonian orbit located at time t = 1 at the
point (x,F (x)), cf. Lemma 6.5. Viewing θt = θt (x) as a function of x we shall show that

θ∗1σ= 0, (7.2)

where here σ=
∑

dξi ∧dxi is the canonical two-form. For that we invoke the continuity
property in the dependence through the term V2 as specified in Lemma 6.10. We obtain
that θ∗1σ = limn→∞θ∗1,nσ (using obvious notation), and henceforth we may assume
that V2 is compactly supported.

Next, since θ∗1σ= θ∗t σ for all t Ê 1, it suffices to show the strong limit equality

lim
t→∞

θ∗t σ= 0. (7.3)

We pick t̄ > 1 so large that the first coordinate, say x̄, of θt̄ (x) is outside the support of
V2 (and similarly for all later times). Considering x̄ = x̄(x) as a function of x we may
write θ∗t σ= x̄∗θt−t̄+1(x̄)∗σ, cf. (6.26), and compute

θt−t̄+1(x̄)∗σ=
∑

k<l

∂x̄l
y · (F ′−F ′tr)∂x̄k

ydx̄k ∧dx̄l .

Here F ′ signifies the derivative of F at y , and “tr” is used for the transposed operator.
Now, using (4.40) and (6.45) we get

∂x̄l
y · (F ′−F ′tr)∂x̄k

y =O
(

g (|y |)|y |−1)

O

(

g (|x̄|)2

g (|y |)2

)

=O

(

g (|x̄|)2

|y |g (|y |)

)

.

The right hand side tends to 0, and therefore (7.3) follows. �
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Remarks 7.3. 1) For λ > 0 the constructed phase function essentially coincides with
the Isozaki-Kitada (outgoing) phase function, φ(x,ξ), ξ=

p
2λω, cf. [14, Definition 2.3]

or [5, Proposition 2.8.2]. In particular, according to the method of proof of Proposition
6.8, there are bounds

∂k
λ∂

κ
ω∂

γ
x {φ(x,ω,λ)−

p
2λx ·ω} =O(|x|δ−|γ|) as |x|→∞,

δ> max{1−µ,0}.
(7.4)

However these bounds are not uniform in λ as opposed to (6.45). (In (6.45) we paid the
price of weaker pointwise decay.)

2) We constructed the phase by integrating the vector field F . In [14] and [5] this
is constructed by a different procedure. Since it is assumed there that λ keeps away
from 0, one would need additional elaboration to include λ= 0 by that procedure. Our
arguments are related to [10, p.16] and [11, proof of Theorem 2.1].

3) We may integrate from R0x̂ to x along the line segment joining the two points
plus in addition on the (small) arc joining R0ω and R0x̂ on a great circle of radius R0.
This gives the following representation in the case V2 = 0

φ(x,ω,λ) = φ̃(r, x̂ ·ω,λ)+φ2(x̂,ω,λ),

φ̃= r

∫1

R0/r
g (l r )

√

1−κ2(l r,θ2)dl .
(7.5)

7.1. Constructions in incoming region. We introduce for R Ê 1 and σ> 0

Γ
−
R,σ(ω) = {y ∈R

d : y ·ωÉ (σ−1)|y |, |y | Ê R}, ω ∈ Sd−1,

Γ
−
R,σ = {(y,ω) ∈R

d ×Sd−1 : y ∈ Γ
−
R,σ(ω)}.

Mimicking the previous procedure, starting from the mixed problem






















ÿ(t ) =−∇V (y(t )),

λ= 1
2 ẏ(t )2 +V1(y(t )),

y(−1) = x,

ω=− lim
t→−∞

ω(t ), ω(t ) = y(t )
|y(t )| ,

(7.6)

cf. (4.22), we may similarly construct a solution φ−(x,ω,λ) to the eikonal equation
in some Γ

−
R,σ(ω). In fact denoting by φ+(x,ω,λ) the solution from Definition 7.1 this

amounts to taking

φ−(x,ω,λ) =−φ+(x,−ω,λ), x ∈ Γ
−
R0,σ0

(ω) = Γ
+
R0,σ0

(−ω). (7.7)

7.2. Classification of scattering orbits. The scattering orbits may be characterized in
terms of the solutions to (4.22) and (7.6) as follows.

Proposition 7.4. Suppose Conditions 2.1–2.3. For any scattering orbit x(t ) with asymp-

totic velocities ω±, given by (1.2) and energy λÊ 0, there exists a (large) T0 > 0 such that

for all ±t Ê T Ê T0,

x(t ) = y(t ∓T ±1; x(±T ),ω±,λ), (7.8)

ẋ(t ) =∇xφ
±(x(t ),ω±,λ). (7.9)
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Proof. It suffices to look at the case t →+∞. The proof of (7.8) is somewhat similar to
the proof of Lemma 6.5. We introduce

z̃(t ) = x(t −1+T )− y1(t ; x(T ),ω+,λ).

It needs to be shown that z̃(t ) = z(t ; x(T ),ω+,λ), t Ê 1.
Clearly z̃(1) = 0. We omit the notation ω+ and λ. As in the proof of Lemma 6.5 it

suffices to show (6.27)–(6.29) (with y1( · ) = y1( · ; x(T )) used to the right in (6.28)).
By Newton’s equation

¨̃z =−
∫1

0
∇2V1(l z̃ + y1){z̃}dl −∇V2(z̃ + y1).

Writing q =−
∫1

0 ∇2V1(l z̃ + y1)dl and R =−∇V2(z̃ + y1), the form is

¨̃z = qz̃ +R,

or equivalently
(p2

t +q)z̃ =−R. (7.10)

By (3.3) we may estimate R as follows in terms of any non-negative κ< 1+µ+ǫ2:

|R(t )| ÉC t−α(1+µ+ǫ2−κ)|x(T )|−κ. (7.11)

As for the matrix q we claim that indeed it satisfies the condition (5.2) with ǫ = ǭ1

provided T > 0 is large enough. (Notice that the particular case l = 0 was used in Sec-
tion 6.) To see this it suffices to show that for any δ> 0 there exists T > 0 large enough
such that

t −1 É (1+δ)t̃
(

|l z̃(t )+ y1(t )|
)

(7.12)

uniformly in t Ê 1 and l ∈ [0,1], cf. Condition 2.2. Define θ = θ(t ) ∈ [0, π2 ] by the relation

cosθ = x(t )·y1(t )
|x(t )||y1(t )| (abusing here and henceforth notation x(t −1+T ) → x(t )). We may

estimate
∣

∣l x(t )+ (1− l )y1(t )
∣

∣Ê cos θ(t )
2 min{|x(t )|, |y1(t )|},

and use this bound to the upper limit in the integral. Since θ(t ) → 0 as T → ∞ uni-
formly in t Ê 1, we are left with estimating

t −1 É (1+δ)t̃ ((1−κ)|x(t )|) (7.13)

for a sufficiently small κ > 0. Notice that we need this also for the particular choice
x(t ) = y1(t ).

Now since (7.13) is valid for t = 1 it suffices to show that the derivative

(1+δ)(1−κ)
x(t )

|x(t )|
· ẋ(t )

(

−2V1((1−κ)|x(t )|)
)−1/2 Ê 1. (7.14)

Using Proposition 3.4 and elementary estimates we may see that uniformly in t Ê 1,

lim
T→∞

x(t )

|x(t )|
·

ẋ(t )

|ẋ(t )|
= 1,

lim
T→∞

|ẋ(t )|
(

−2V1(|x(t )|)
)−1/2 Ê 1,

lim
T→∞

(

−2V1(|x(t )|)
)1/2(−2V1((1−κ)|x(t )|)

)−1/2 = 1.

From this we obtain (7.14), and hence (7.13) and the above assertion for the matrix q .
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If λ> 0 the condition (5.2) holds for the matrix q for any ǫ ∈ (0,1) (provided T > 0 is
sufficiently large).

Next we claim that (7.10) is “solved” by

z̃ =−(p2
t +q)−1

R, (7.15)

in agreement with the theory of Section 5. To see this we distinguish between the cases
λ = 0 and λ > 0. Suppose first that λ = 0. The right hand side of (7.15) belongs to
L2
−s̃ (1,∞) for some s̃ < 1+ ǭ1

2 due to (7.11) (this is similar to the argument following
(6.9), in fact it holds with s̃ = s). We also claim that

z̃ ∈ L2
−s̃ (1,∞) for some s̃ < 1+ ǭ1

2 . (7.16)

To show (7.16) we shall use (3.10) and the fact that

ǭ1 > 1−α(µ+2ǫ2) (7.17)

as follows: Abbreviate ω+ =ω and decompose

z̃ = (x −x ·ωω)− (y1 − y1 ·ωω)+ z̃ ·ωω. (7.18)

The first two terms on the right are of the form O(tα−αǫ2 ), cf. (3.10) and (3.5). By
(7.17) the function tα−αǫ2 ∈ L2

−s̃ for some s̃ < 1+ ǭ1
2 .

As for the third term to the right in (7.18) we write

˙̃z = |ẋ|
ẋ

|ẋ|
− |ẏ1|

ẏ1

|ẏ1|
= (|ẋ|− |ẏ1|)ω+O(t−αµ/2−αǫ2 ),

cf. (3.7).
We estimate

|ẋ| =
√

−2V1(|x|)+O(t−αµ/2−αǫ2 ).

Combining this with the equation |ẏ1| =
√

−2V1(|y1|) and the estimate

l x + (1− l )y1

|l x + (1− l )y1|
=ω+O(t−αǫ2 ),

we conclude that
|ẋ|− |ẏ1| = q̃ z̃ ·ω+O(t−αµ/2−αǫ2 ),

where

q̃ =
∫1

0

−V ′
1(l z̃ + y1)

√

−2V1(l z̃ + y1)
dl .

It follows that
d

dt
z̃ ·ω= q̃ z̃ ·ω+O(t−αµ/2−αǫ2 ),

which in turn yields

z̃ ·ω=
∫t

1
e

∫t
s q̃dt ′O(s−αµ/2−αǫ2 )ds. (7.19)

Using Condition 2.3 and (7.12) we get, uniformly in t Ê 1,

q̃(t ) É
κ

t −1
for some κ<

1

2
(1+ ǭ1). (7.20)

We insert (7.20) into the right hand side of (7.19). Invoking (7.17) we get z̃ ·ω=O(tκ);
in particular z̃ ·ω ∈ L2

−s̃ (1,∞) for some s̃ < 1+ ǭ1
2 and (7.16) is proven.
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Finally by combining Lemma 5.6, the fact that z̃(1) = 0, (7.10), (7.16) and the state-
ment following (7.15) we conclude that indeed (7.15) holds in the case λ= 0.

The case λ > 0 may be treated similarly although the estimates are simpler in this
case. Now it is enough to verify that both sides of (7.15) belong to L2

−s̃ for some s̃ < 3
2 .

The right hand of (7.15) satisfies this by the same argument as for λ= 0. As for the left
hand of (7.15) the arguments above lead to

z̃ − z̃ ·ωω=O(t 1−αǫ2 ), (7.21)

and to the representation

z̃ ·ω=
∫t

1
e

∫t
s q̃dt ′O(s−αǫ2 )ds. (7.22)

In combination (7.21) and (7.22) lead to z̃ =O(t 1−αǫ2 ). Consequently indeed z̃ ∈ L2
−s̃

for some s̃ < 3
2 in the case λ> 0, and we may conclude (7.15) as before.

Using (7.11), (7.15) and the theory of Section 5 one may now verify (6.27)–(6.29)(with
the same s) for T > 0 sufficiently big, yielding (7.8) (by the arguments of the proof of
Lemma 6.5). The arguments are similar to the proof of Proposition 6.1. (Notice for
(6.28) that the estimate (3.3) with x(t ) → y1(t ; x(T )) holds uniformly in all large T > 0.)

Clearly (7.9) follows from (7.8) and Lemma 6.5. �
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(J. Dereziński) DEPARTMENT OF MATHEMATICAL METHODS IN PHYSICS, WARSAW UNIVERSITY, HOŻA 74,
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