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We give approximate formulas for spectrum and the corresponding spectral projec-
tions of perturbed linear operators. The main tool is the so-calledlevel shift opera-
tor, which expresses the effects of second order perturbation theory on the point
spectrum. ©2005 American Institute of Physics.fDOI: 10.1063/1.1850833g

I. INTRODUCTION

One of the main tools of quantum mechanics is perturbation theory for eigenvalues of family
of linear operators of the formLlªL0+lQ. This theory is particularly simple if one considers an
isolated eigenvalue ofL0 of finite degeneracy and one assumes thatL0 andQ are self-adjoint. In
this case, both the eigenvalues and the eigenvectors can be described by functions analytic in the
coupling constantesld. This is described in almost every textbook on quantum mechanics.

In quantum mechanics self-adjoint operators play a prominent role. However, non-self-adjoint
operators are also physically relevant. For instance, they are used to describe resonances. In fact,
resonances are often defined as complex eigenvalues of analytically deformed Hamiltonians,
which are usually non-self-adjoint. The perturbation theory of non-self-adjoint operators is more
complicated than that of self-adjoint operators. In the case of non-self-adjoint operators, eigenval-
ues and eigenvectors are typically described by a multivalued analytic function with a branch point
at l=0. This is described, e.g., in Refs. 11 and 16.

The method of analytic functions may be inapplicable if the isolated eigenvalue has infinite
degeneracy, because it may then happen that the perturbed operator has continuous spectrum close
to the unperturbed eigenvalue. Thus one cannot follow individual eigenvalues.

In practice one is not interested in the full perturbation expansion of eigenvalues or eigenvec-
tors. One usually uses the lowest order approximation. The first order approximation to the eigen-
value is very simple—it is just the appropriate matrix element of the perturbation. More interesting
is the second order approximation. Its importance has been noted since the early days of quantum
mechanics. Not without a reason the computations based on the second order perturbation theory
have been called by Fermi the golden rule of quantum mechanics.

In our paper we describe a method of constructing approximate eigenvalues and approximate
eigenprojections that summarizes the usual second order perturbation theory. We do not restrict
ourselves to self-adjoint operators. We prove that our construction can be applied without any
problem in the case when the eigenvalue has infinite multiplicity. Thus, the formulas that we give
are quite robust—they do not need the assumptions typical of the usual approach to perturbation
theory through expansion in a power series.

Let us now describe our results a little more closely. Suppose thatL0 is a closed operator
having a cluster of isolated eigenvaluesJ. The spectral projection ofL0 onto J, denoted1JsL0d,
gives a natural decomposition of the Banach space into a direct sumH=Hv % Hv̄.

Let Q be a perturbation. Our main object is the perturbed operator
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Ll,b ª L0 + lsQvv̄ + Qv̄vd + bQvv.

Note that we assume that insideHv the perturbation is zero. This guarantees that there is no first
order shift of the spectrum.Qvv̄+Qv̄v is the “off-diagonal” part of the perturbation—it connectsHv

andHv̄. Qvv is the “external” part of the perturbation—it acts insideHv̄. We use two perturbation
parameters,l for the off-diagonal andb for the diagonal part. We are interested in what happens
for small complexl andb. We will try to estimate carefully the deviations from our predictions
in terms of these two coupling constants.

It is easy to see that for smalll andb, the spectrum ofLl,b does not differ much from the
spectrumL0. Thus, for smalll and b, for any isolated pointe of J, there exists a patch of
spectrum ofLl,b located arounde, which we will denote byQe. sWe say “a patch,” not “a cluster,”
because the spectrum does not have to be discrete.d We will give the formula for a projectionpe

that approximates the spectral projection ofLl,b onto Qe. We will show that this projection
approximately diagonalizesLl,b. By this we mean thatL−peLl,bpe−s1−pedLl,bs1−ped is small.

The above results are contained in Theorem 2.1. They are quite easy. What is more interesting
is the study of the splitting of the patchQe, which is the subject of Theorem 2.3—the main result
of our paper.

We show that if the eigenvaluee is semisimple then the patch of the spectrum arounde
naturally splits into subpatches separated by a distance of orderOsulu2d. The subpatches will be
parametrized by eigenvalues of the so-calledlevel shift operatorsLSOd. The level shift operator is
a certain operator that describes the shift of spectrum under the influence of second order pertur-
bation theory. The subpatch of the spectrum ofLl,b arounde+l2m, wherem is an eigenvalue of
the LSO, will be denoted byQe,m. We will also give a formula for the projectionpe,m that
approximates the spectral projection ofLl,b onto Qe,m. Finally, we will show thatpe,m approxi-
mately diagonalizesLl,b.

Clearly, the results that we present are quite general and applicable in many situations. The
main motivation for our paper comes, however, from the class of problems first considered by
Jaksic and Pillet in Refs. 12, 13, and 15. Using the terminology of Ref. 7 we can say that the
results of our paper can be used to describe approximately resonances of Pauli–Fierz Liouvillean.
The last section is devoted to a short description of this application.

Let us briefly explain what we mean by resonances of Pauli–Fierz Liouvilleans. We use the
name “Pauli–Fierz system” to describe a quantum system consisting of a small systemse.g., an
atomd interacting with a bosonic fieldse.g., photons or phononsd. We are especially interested in
the case when the field has a positive density, for instance it is at a positive temperature. The
dynamics of this system is generated by a certain self-adjoint operator, which, following Ref. 7,
we call the “Pauli–Fierz Liouvillean.” Next we apply the so-called Jaksic–Pillet method and we
obtain an analytically deformed Pauli–Fierz Liouvillean. Analytically deformed Liouvilleans are
non-self-adjoint and have spectrum in the lower half-plane. Moreover, they often have isolated
eigenvalues. These eigenvalues are called resonances. They do not depend on the parameter of
deformation. They are physically relevant, they are responsible for the decay of certain correlation
functions. They can be naturally written as the sum of an explicit operator with discrete eigenval-
ues and a perturbation. The method of our paper allows us to give approximate predictions about
the resonances.

Another class of operatorssnot discussed in our paperd where our results could be applied are
the generators of a Pauli–Fierz dynamics on an operator algebrascalled C-Liouvilleans in Ref.
14d.

Level shift operators appear in the mathematics and physics literature in various disguises
whenever the second order perturbation theory is considered. They are often introduced in the case
of embedded eigenvalues. For instance, they appeared implicitly in the work of Ref. 6 devoted to
the perturbation theory for embedded eigenvalues of Pauli–Fierz operators. The analysis of the
point spectrum given in Ref. 6 is very closely related to the analysis given in our paper. Never-
theless, there are some differences. Reference 6 was devoted to the study ofembeddedeigenval-
ues, and therefore additional tools were required: the limiting absorption principle and Mourre’s
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positive commutator method. Another difference is the self-adjointness of the operator studied in
Ref. 6, whereas in our paper we do not restrict ourselves to self-adjoint operators.

Constructions similar to ours can be found in the papers of Bach–Fröhlich–Sigal.1,2 The
authors study the spectrum of certain operatorsssimilar to the Pauli–Fierz operators considered in
Refs. 6 and 7d by an iterative procedures“renormalization group”d. The basic step of this proce-
dure resembles our prescription for locating the spectrum and constructing the approximate spec-
tral projection.

The LSO appears naturally in the so-called weak couplingsvan Hoved limit.4,5,8 In this context
it is sometimes called the Davies generator.

II. MAIN RESULTS

A. Notation

If J,Q,C, then we say thatJ is an isolated subset ofQ if it is closed and open in the
relative topology ofQ.

Qcl denotes the closure ofQ in C.
If L is a linear operator, spL denotes its spectrum and DomL its domain. IfJ is an isolated

and bounded subset of spL, then we can define the spectral projection ofL ontoJ by the formula

1JsLd =
1

2pi
R

g

sz− Ld−1 dz,

whereg is a closed path that encirclesJ counterclockwise.
If e is an isolated point of spL, then we will write 1esLd for 1hejsLd. For suche set Ne

ª sL−ed1esLd. We say that the degree of nilpotence ofe is equal ton iff Ne
n−1Þ0 but Ne

n=0. We
say thate is semisimple iffn=1 si.e., Ne=0d.

If Q,C ande.0, then we set

DsQ,ed ª hzP C : distsz,Qd , ej.

For ePC, Dse,ed will denote the open disc centered ate with radius e. Moreover, we set
Dsx ,edªx.

If Asl ,bd are bounded operators, andfsl ,bd a positive function, then

Asl,bd = Osfsl,bdd

means that there existsc such that

iAsl,bdi ø cfsl,bd.

Moreover,

A1sl,bd = A2sl,bd + Osfsl,bdd

or

A1sl,bd =
Osfsl,bdd

A2sl,bd

means that

A1sl,bd − A2sl,bd = Osfsl,bdd.

B. Assumptions

Let L0 be a closed operator on a Banach spaceH. Suppose thatJ is an isolated bounded
subset of spL0.
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It will be convenient to denote1JsL0d by 1vv and set1vv
ª1−1vv. We can also introduce the

subspaces

Hv
ª 1vvH, Hv̄

ª 1vvH,

so thatH is decomposed into a direct sum

H = Hv
% Hv̄. s2.1d

With respect to the decompositions2.1d any operatorB on H satisfying

DomsBd = sDomsBd ù Hvd % sDomsBd ù Hv̄d

can be written as

B = FBvv Bvv̄

Bv̄v BvvG . s2.2d

In particular, we have

L0 = FL0
vv 0

0 L0
vvG . s2.3d

It will be convenient to writeE for L0
vv. Note thatE is a bounded operator onHv and spsEd=J.

Let Q be another operator, that we will treat as a perturbation ofL0. More precisely, we make
the following assumptions.

Assumption 2.A: Qvv=0.
Assumption 2.B: Off-diagonal elements of Q, i.e., Qvv̄ and Qv̄v, are bounded.
We will also use either one of the following two assumptions.
Assumption 2.C: Qvv is an operator bounded perturbation of L0

vv sRef. 11d.
Assumption 2.D:Hvv is a Hilbert space, L0

vv is self-adjoint, bounded from below and Qvv is a
form bounded perturbation of L0

vv sRef. 11d.
Let l ,bPC. Note that under Assumption 2.C or 2.D the operatorL0

vv+bQvv is well defined
for small enoughb sRef. 11d. Likewise,

Ll,b ª L0 + lQvv̄ + lQv̄v + bQvv = F E lQvv̄

lQv̄v L0
vv + bQvvG

is well defined for small enoughb. For simplicity we will writeL instead ofLl,b.
Fix an open subsetV,C such thatVclùspL0=J andJ,V. Note that there existsb0 such

that, for ubuøb0, spsL0
vv+bQvvdùVcl=x. We fix b0 satisfying these conditions.

C. Results

The main results of our paper are stated in the following two theorems. Note that Theorem 2.1
is quite easy and basically describes the well-known stability of spectrum under a perturbation.
Theorem 2.3 is more difficult—it describes the splitting of the spectrum according to second order
perturbation theory. In that theorem, an important role is played by the level shift operator. Note
that we tried to make the two theorems as parallel as possible.

Theorem 2.1: Suppose that Assumptions 2.A and 2.B hold. We also suppose that either
Assumption 2.C or 2.D is satisfied. Then the following is true:

s1d There exists a continuous and increasing function

f0,`gf{x ° dsxdg P f0,`g,

such thatlimx→0 dsxd=0, and for ubu,b0 and ulu,l0, for somel0.0, we have
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spsLd ù V , DsspE,dsuluddcl. s2.4d

s2d In what follows we assume thatE is an isolated subset ofspE. Clearly, s1d implies that there
exists0,lE such that, forulu,lE,

QE ª DsE,dsuluddcl ù spL s2.5d

is an isolated subset ofspL and QE,V.
s3d For ulu,lE we have

1QEsLd − 1EsL0d = Osulud. s2.6d

s4d For ulu,lE we have

dim 1QEsLd = dim 1EsL0d. s2.7d

s5d In what follows we assume that e is an isolated point ofspE. We will writeQe for Qhej. If the
degree of nilpotence of e as an eigenvalue of E is equal to n, then there exists Ce such that

Qe , Dse,Ceulu2/ndcl.

s6d For

ulu , i1esL0dQvv̄se1vv − L0
vvd−2Qv̄v1esL0di−1/2

¬lê, s2.8d

we set

peª s1esL0d + lse1vv − L0
vvd−1Qv̄v1esL0dds1esL0d + l21esL0dQvv̄se1vv − L0

vvd−2Qv̄v1esL0dd−1

3 s1esL0d + l1esL0dQvv̄se1vv − L0
vvd−1d. s2.9d

Then pe is a projection. Moreover,

sad

1Qe
sLd − pe = Osulud; s2.10d

sbd if e is a semisimple eigenvalue of E then

1Qe
sLd − pe = Osulu2 + ulbud; s2.11d

scd if, in addition, spsEd=hej, then

1Qe
sLd − pe = Osulu3 + ulbud. s2.12d

s7d For ulu,lê we have

sad

L − peLpe − s1 − pedLs1 − ped = Osulud; s2.13d

sbd if e is a semisimple eigenvalue of E then

L − peLpe − s1 − pedLs1 − ped = Osulu2 + ulbud; s2.14d

scd if, moreover, spsEd=hej then

L − peLpe − s1 − pedLs1 − ped = Osulu3 + ulbud. s2.15d

Note that in Eq.s2.9d we use the notationse1vv−Lvvd−1 for the inverse of the operatore1vv

−Lvv restricted toHv̄. In what follows we will often use similar notation without a comment.
Let us now assume that spE is a finite set.
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Definition 2.2: We define the level shift operator (LSO) as

G ª o
ePspsEd

1esEdQvv̄se1vv − L0
vvd−1Qv̄v1esEd.

From now on we will write for shortnessGee
ª1esEdG1esEd.

Now we are ready to state our main theorem.
Theorem 2.3: Suppose that Assumptions 2.A and 2.B hold. We also assume either Assumption

2.C or 2.D. Assume also thatspE is a finite set consisting of semisimple eigenvalues. Then the
following is true:

s1d There exists a continuous and increasing function

f0,`gf{x ° dsxdg P f0,`g,

such thatlimx→0 dsxd=0, and, for ubu,b0, ulu,l0, for somel0.0, we have

spsLd ù V , DsspsE + l2Gd,ulu2dsulu2 + ubuddcl = ø
ePspsEd

Dse+ l2 spsGeed,ulu2dsulu2 + ubuddcl.

s2.16d

s2d In what follows we fix ePspE, and M is an isolated subset ofspGee. Clearly, (1) implies
that there exists0,le,M and 0,be,M such that forulu,le,M and ubu,be,M,

Qe,M ª Dse+ l2M,ulu2dsulu2 + ubuddcl ù spL

is an isolated subset ofspL and Qe,M,V.
s3d For ulu,le,M and ubu,be,M we have

1Qe,MsLd − 1MsGeed = Osulu + ubud. s2.17d

s4d For ulu,le,M and ubu,be,M we have

dim 1Qe,MsLd = dim 1MsGeed. s2.18d

s5d Assume now that m is an isolated point ofspGee. We will writeQe,m for Qe,hmj. Suppose that
the degree of nilpotence of m as an eigenvalue ofGee is equal to n. Then

Qe,m , Dse+ l2m,Ce,mulu2sulu2 + ubud1/ndcl,

for some Ce,m.0.
s6d For

ulu , i1msGeedQvv̄se1vv − L0
vvd−2Qv̄v1msGeedi−1/2

¬le,m̂, s2.19d

we set

pe,mª s1msGeed + lse1vv − L0
vvd−1Qv̄v1msGeedds1msGeed + l21msGeedQvv̄se1vv − L0

vvd−2

3Qv̄v1msGeedd−1s1msGeed + l1msGeedQvv̄se1vv − L0
vvd−1d. s2.20d

Then pe,m is a projection. Moreover,

sad

1Qe,m
sLd − pe,m = Osulu + ubud; s2.21d

sbd if m is a semisimple eigenvalue ofGee then

1Qe,m
sLd − pe,m = Osulu2 + ubud. s2.22d
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s7d For ulu,le,m̂ we have

sad

L − pe,mLpe,m − s1 − pe,mdLs1 − pe,md = Osulu2 + ulbud;

sbd if 1vv=1msGeed then

L − pe,mLpe,m − s1 − pe,mdLs1 − pe,md = Osulu3 + ulbud.

Remark 2.4: Note that in both theorems (6) describes how close the projections pe and pe,m are
to the corresponding spectral projections of L and (7) describes how well they diagonalize L.

In Theorem 2.1, we have the same order of smallness in (6) and (7). We will see from the
proof, that (7) essentially follows from (6).

On the other hand, in Theorem 2.3, the order of smallness of (7) is much better than that of
(6). Thus (7) requires a separate proof.

III. PROOFS

Let us begin with a general fact about the stability of the spectrum of bounded operatorssRef.
11d.

Theorem 3.1:Let APBsHd. Then there exists an increasing and continuous function,

f0,`gf{x ° mAsxdg P f0,`g,

such thatlimx→0 mAsxd=0 and for any BPBsHd we havespsA+Bd,DsspsAd ,mAsiBiddcl.
If aPspsAd is an isolated eigenvalue with the degree of nilpotence equal to n, then there exists

e.0 such that for zPDsa,ed \ haj we have

isz− Ad−1i ø Cuz− au−n, s3.1d

for some C.0. Moreover, forulu,La for someLa.0 we have

spsA + lBd ù Dsa,ed , Dsa,culu1/ndcl, s3.2d

where c=sCiBid1/n.
Proof: We prove only the last statement. Letulu,ensCiBid−1. If z

PDsa,ed \Dsa,sCilBid1/ndcl then

uz− au . sCilBid1/n,

so by the inequalitys3.1d,

1 . CilBi uz− au−n ù ilBi isz− Ad−1i ù ilBsz− Ad−1i.

This shows thatz−A−lB is invertible and hencez¹spsA+lBd, so we gets3.2d. j

Let us comment on some additional notation that we will use. ForE an isolated subset of
spsEd we will write

1EE
ª 1EsEd = 1EsL0d, 1EE

ª 1 − 1EE, 1EEI
ª 1vv − 1EE,

HE
ª Ran1EsEd, HĒ

ª Ran1EE, HEI ª Ran1EEI .

Now the Banach spaceH can be decomposed in the following way:

H = HE
% HĒ = HE

% HEI
% Hv̄,

and operatorL can be written as
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L =F EEE
lQEĒ

lQĒE LEE G = 3 EEE 0 lQEv̄

0 EEEI lQEI v̄

lQv̄E lQv̄EI L0
vv + bQvv 4 . s3.3d

If e is an isolated point of spsEd then we write1ee for 1hejhej, He for Hhej, etc. Note thatEEE

=EEEI.
We will use the following theorem for several operators and for various decompositions of the

spaceH.
Theorem 3.2: Let H be a closed operator on a Banach spaceH=Hv % Hv̄. Assume that

off-diagonal elements of H, i.e., Hvv̄ andHv̄v are bounded. For zPC \spsHvvd define

Gvszd ª z1vv − Hvv − Hvv̄sz1vv − Hvvd−1Hv̄v.

Then for z¹spsHvvd we have

s1d zPspsHd iff 0PspsGvszdd,
s2d if 0¹spsGvszdd then

sz− Hd−1 = sz1vv − Hvvd−1 + s1vv + sz1vv − Hvvd−1Hv̄vdGv
−1szds1vv + Hvv̄sz1vv − Hvvd−1d.

The last equation is often called the Feshbach formula. We will keep this name. For more
information about the above theorem the reader is referred to Refs. 6 and 10.

Lemma 3.3: Suppose that Assumptions 2.A and 2.B hold. We also assume either Assumption
2.C or 2.D. LetE be an isolated subset ofspsEd and fix r.0. Then there exists0,LE such that
for ulu,LE, ubu,b0 we havesV \DsspsEEEd ,rddùspsLEEd=x and

sup
zPV\DsspsEEEd,rd

ulu,LE, ubu,b0

isz1EE − LEEd−1i , `. s3.4d

Proof: If zPV and ubu,b0 thenz¹spsLvvd and hence we can use the Theorem 3.2 for the

operatorLEE and for decompositionHĒ
ªHEI % Hv̄. We obtain that, for someLE.0, and ulu

,LE and forzPV \DsspsEEEId ,rd,

GEIszd = z1EEI − EEEI − l2QEI v̄sz1vv − Lvvd−1Qv̄EI ,

is invertible and hencez¹spsLEEd. Moreover, for suchz, GEIszd has a uniformly bounded inverse.
Therefore, the Feshbach formula impliess3.4d. j

Proof of the Theorem 2.1:s1d By Theorem 3.2,zPspsLdùV iff zPspsE+l2Qvv̄sz1vv

−Lvvd−1Qv̄vdùV. By Theorem 3.1,

spsE + l2Qvv̄sz1vv − Lvvd−1Qv̄vd , DsspsEd,mEsulu2cddcl,

where

c = sup
zPV,ubu,b0

iQvv̄sz1vv − Lvvd−1Qv̄vi,

swhich as we know is finited, and mE: f0,`f→f0,`f is a continuous increasing function with
limx→0 mEsxd=0. Thus spsLdùV,DsspsEd ,dsuluddcl, wheredsxd=mEsx2cd.

s2d A simple consequence ofs1d.
s3d For some 0,lE, ulu,lE, andubu,b0, there exists a closed pathg,V that encirclesQE

counterclockwise, but no other parts of spsLd. We have
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sup
zPg, ubu,b0

ulu,lE

isz− Ld−1i , `.

Besides,

s2pid−1R
g

sz1vv − L0
vvd−1 dz= s2pid−1R

g

sz1vv − Lvvd−1 dz= 0.

Therefore,

1QEsLd − 1EsL0d = s2pid−1R
g

ssz1 − Ld−1 − sz1vv − Ed−1 − sz1vv − Lvvd−1ddz

= ls2pid−1R
g

sz1 − Ld−1sQvv̄ + Qv̄vdssz1vv − Ed−1 + sz1vv − Lvvd−1ddz= Osulud.

s4d Equations2.6d implies that forulu sufficiently small we havei1QEsLd−1EsL0di,1 so by a
well-known theoremsRef. 11d Eq. s2.7d holds for ulu small. Butl°dim 1QEsLdPN is a continu-
ous function sos2.7d holds for all ulu,lE.

s5d Let E, r, and LE be the same as in the Lemma 3.3. Forulu,LE, ubu,b0, we can use
Theorem 3.2, which implies that forzPV \DsspsEEEd ,rd we havezPspsLd iff

zP spsEEE + l2QEĒsz1EE − LEEd−1QĒEd.

By Theorem 3.1 we get

spsEEE + l2QEĒsz1EE − LEEd−1QĒEd , DsE,mEEEsulu2cddcl, s3.5d

where

cª sup
zPV\DsspsEEEd,rd

ubu,b0, ulu,LE

iQEĒsz1EE − LEEd−1QĒEi

is finite by Lemma 3.3.
Now setE=hej and assume thate has a degree of nilpotence equal ton. Then by Theorem 3.1

we can takemEeesxdªc1x
1/n.

s6d For ulu,lê,

1ee+ l2Qev̄se1vv − L0
vvd−2Qv̄e,

is an invertible operator so the expression forpe makes sense. Direct computations show that
pe

2=pe. Note that

s1ee+ l2Qev̄se1vv − L0
vvd−2Qv̄ed−1 = 1ee− l2Qev̄se1vv − L0

vvd−2Qv̄e + Osl4d

so

pe = 1ee+ lsQev̄se1vv − L0
vvd−1 + se1vv − L0

vvd−1Qv̄ed + l2sse1vv − L0
vvd−1Qv̄eQev̄se1vv − L0

vvd−1

− Qev̄se1vv − L0
vvd−2Qv̄ed + Osulu3d. s3.6d

We have
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1Qe
sLd = 1esL0d + ls2pid−1R

g

ssz1vv − Ed−1Qvv̄sz1vv − L0
vvd−1 + sz1vv − L0

vvd−1Qv̄vsz1vv − Ed−1ddz

+ l2s2pid−1R
g

ssz1vv − Ed−1Qvv̄sz1vv − L0
vvd−1Qv̄vsz1vv − Ed−1

+ sz1vv − L0
vvd−1Qv̄vsz1vv − Ed−1Qvv̄sz1vv − L0

vvd−1ddz+ Osulu3 + ulbud.

e is the only one eigenvalue ofE insideg so sz1vv−Ed−1 has only one pole insideg. All points on
and insideg are not in spsL0

eed so sz1vv−L0
vvd−1 is analytic inside and continuous ong. If e is

semisimple thensz1vv−Ed−1=sz−ed−11ee+analytic partand hence

1Qe
sLd = 1esL0d + lsQev̄se1vv − L0

vvd−1 + se1vv − L0
vvd−1Qv̄ed + l2Ss2pid−1R

g

sz1vv − Ed−1Qvv̄

3sz1vv − L0
vvd−1Qv̄vsz1vv − Ed−1 dz+ se1vv − L0

vvd−1Qv̄eQev̄se1vv − L0
vvd−1D + Osulu3

+ ulbud. s3.7d

Now partsbd fEq. s2.11dg is a simple consequence ofs3.7d ands3.6d. In general, whene is not
semisimple, terms of orderOsulud will not cancel so partsad fEq. s2.10dg cannot be improved.

If spsEd=hej ande is semisimple thensz1vv−Ed−1=sz−ed−11ee=sz−ed−11vv. Now

s2pid−1R
g

sz1vv − Ed−1Qvv̄sz1vv − L0
vvd−1Qv̄vsz1vv − Ed−1 dz= − Qev̄se1vv − L0

vvd−2Qv̄e.

Now part scd fEq. s2.12dg is a simple consequence ofs3.7d and s3.6d.
s7d The proof ofs6d in the casessad, sbd, andscd shows actually slightly improved results,

s1Qe
sLd − pedL = Osulud, Osulu2 + ulbud, andOsulu3 + ulbud,

Ls1Qe
sLd − ped = Osulud, Osulu2 + ulbud, andOsulu3 + ulbud.

To obtains7d we use

L − peLpe − s1 − pedLs1 − ped = − fpe,fpe,Lgg = − fpe,fpe − 1esLd,Lgg.

j

Proof of the Theorem 2.3:s1d Let ePspsEd. Let E=hej, Le=LE and r be the same as in the
Lemma 3.3 and in the proof ofs5d of the previous theorem. Forulu,Le, ubu,b0 and for z
PV \DsspsEeed ,rd we can use Theorem 3.2 for the operatorL and for decompositionHªHe

% Hē. If zPspsLdùV \DsspsEeed ,rd then

0 P spsz1ee− Eee− l2Qeēsz1ee− Leed−1Qēed. s3.8d

Note thatePspsEd is semisimple soEee=e1ee and moreover, we haveQēe=Qv̄e and Qeē=Qev̄.
Now s3.8d can be written as

z− e

l2 P spsQev̄sz1ee− Leed−1Qv̄ed. s3.9d

Note that
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sz1ee− Leed−1 = se1ee− Leed−1 + se− zdsz1ee− Leed−1se1ee− Leed−1

= se1ee− L0
eed−1 + se1ee− Leed−1slsQeIv̄ + Qv̄eId + bQvvdse1ee− L0

eed−1

+ se− zdsz1ee− Leed−1se1ee− Leed−1, s3.10d

and se1ee−L0
eed−1=se1eeI−EeeId−1+se1vv−L0

vvd−1. Now we can write

Qev̄sz1ee− Leed−1Qv̄e = Gee+ I + II + III , s3.11d

where

I = bQev̄se1ee− Leed−1Qvvse1ee− L0
eed−1Qv̄e,

II = lQev̄se1ee− Leed−1sQv̄eI + QeIv̄dse1ee− L0
eed−1Qv̄e, s3.12d

III = se− zdQev̄sz1ee− Leed−1se1ee− Leed−1Qv̄e.

Clearly, iI iøCIubu. If we note that

1vvse1ee− Leed−11eeI = lse1vv − Lvvd−1Qv̄eIGeI
−1sed = Osld

and similarly1eeIse1ee−Leed−11vv=Osld then we getiII iøCII ulu2. Moreover, Theorem 2.1 implies
that uz−eu,Cl2 and hence by the Lemma 3.3fEq. s3.4dg we getiIII iøCIII l

2. So for ulu,Le and
ubu,b0 we have

iI + II + III i , Cesulu2 + ubud

for someCe.0. Now we can apply the Theorem 3.1 to the expressions3.9d and get forulu
,Le and ubu,b0,

z− e

l2 P DsspsGeed,mGeesCesulu2 + ubudddcl, s3.13d

where functionsmGee: f0,`f→f0,`g are continuous, increasing and limx→0mGeesxd=0. This implies

spsLd ù V \ DsspsEeed,rd , Dse+ l2 spsGeed,ulu2mGeesCesulu2 + ubudddcl,

and hence forulu,l0ªminePspsEdLe and ubu,b0 we have

spsLd ù V , ø
ePspsEd

Dse+ l2 spsGeed,ulu2dsulu2 + ubuddcl,

where we denoteddsxdªmaxePspsEdsmGeesCexdd.
s2d A simple consequence ofs1d.
s3d Let g be a closed path such thatg encirclesM but no other parts of spsGeed. By s1d and

s2d, for small enoughl andb, the translated and rescaled pathe+l2g encircles onlyQe,M but no
other parts of spsLd. Now

1Qe,MsLd = s2pid−1R
e+l2g

1

h1 − L
dh.

For all hPe+l2g we can use Feshbach formula for the operatorL and for the decomposition
H=He% Hē. We get
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R
e+l2g

sh1 − Ld−1 dh =R
e+l2g

s1ee+ sh1ee− Leed−1lQēedGe
−1shds1ee+ lQeēsh1ee− Leed−1ddh,

where

Geshd = h1ee− e1ee− l2Qeēsh1ee− Leed−1Qēe.

Note that

ssh − ed1ee− l2Geed−1 − Ge
−1shd = l2ssh − ed1ee− l2Geed−1Qev̄sse1vv − L0

vvd−1

− 1vvsh1ee− Leed−11vvdQv̄eGe
−1shd, s3.14d

where we usedQv̄e=Qēe andQev̄=Qeē. Moreover,

se1vv − L0
vvd−1 − 1vvsh1ee− Leed−11vv

= se1vv − L0
vvd−1 − sh1vv − L0

vv − bQvvd−1 − l2sh1vv − L0
vv − bQvvd−1Qv̄eIGeI

−1shd

3QeIv̄sh1vv − L0
vv − bQvvd−1

= se1vv − L0
vvd−1ssh − ed1vv + bQvvdsh1vv − L0

vv − bQvvd−1 − l2sh1vv − L0
vv − bQvvd−1

3Qv̄eIGeI
−1shdQeIv̄sh1vv − L0

vv − bQvvd−1, s3.15d

where

GeIshd = h1eeI − EeeI − l2QeIv̄sh1vv − Lvvd−1Qv̄eI .

If we change the variableh=e+l2z and use the equationss3.14d and s3.15d we get

R
e+l2g

sh1 − Ld−1 dh =R
g

s1ee+ sse+ l2zd1ee− Leed−1lQēedsz1ee− Geed−1

3s1ee+ lQeēsse+ l2zd1ee− Leed−1ddz+ Osulu2 + ubud. s3.16d

Since

s2pid−1R
g

sz1ee− Geed−1 dz= 1MsGeed,

we get1Qe,MsLd−1MsGeed=Osulu+ ubud.
s4d Equation s2.17d implies that for ulu and ubu sufficiently small we havei1Qe,MsLd

−1MsGeedi,1 so by a well-known theoremsRef. 11d equalitys2.18d holds. But dim1QEsLdPN is
a continuous function ofl andb so s2.18d holds for all ulu,le,M and ubu,be,M.

s5d If the degree of nilpotence ofm as an eigenvalue ofGee is n then due to the Theorem 3.1,
Eq. s3.13d can be written as

z− e

l2 P Dsm,Ce,msulu2 + ubud1/ndcl ø DsspsGeed \ hmj,mGeesCesulu2 + ubudddcl.

s6d For ulu,le,m̂,

1msGeed + l21msGeedQvv̄se1vv − L0
vvd−2Qv̄v1msGeed

is an invertible operator so the expression forpe,m makes sense. Direct computations show that
pe,m

2 =pe,m.
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In the proof of the parts3d we showed that1Qe,m
sLd=1msGeed+Osulu+ ubud so sad is already

done. To showsbd, we use the approximation for1Qe,m
sLd given by s3.16d;

1Qe,m
sLd =

Osul2u+ubud 1

2pi
R

g

slsse+ l2zd1ee− Leed−1Qēe + 1eedsz1ee− Geed−1

3slQēesse+ l2zd1ee− Leed−1 + 1eeddz =
Osul2u+ulbud 1

2pi
R

g

slse+ l2zds1ee− L0
eed−1

3Qēe + 1eedsz1ee− Geed−1slQeēsse+ l2zd1ee− L0
eed−1 + 1eeddz

= slsse+ l2md1ee− L0
eed−1Qēe + 1eed1msGeedslQeēsse+ l2md1ee− L0

eed−1 + 1eed =
Osulu3d

pe,m,

where we used

sse+ l2zd1ee− L0
eed−1 − sse+ l2zd1ee− Leed−1 = Osulu + ubud.

s7d Let us denote1mm
ª1msGeed, Qmv̄

ª1mmQvv̄ andQv̄m
ªQv̄v1mm, so that

pe,m = s1mm+ lse1vv − L0
vvd−1Qv̄mds1mm+ l2Qmv̄se1vv − L0

vvd−2Qv̄md−1

3s1mm+ lQmv̄se1vv − L0
vvd−1d.

We compute

pe,msL − ed = s1mm+ lse1vv − L0
vvd−1Qv̄mds1mm+ l2Qmv̄se1vv − L0

vvd−2Qv̄md−1

3sl2Qmv̄se1vv − Lvvd−1Qv̄v + lbQmv̄se1vv − Lvvd−1Qvvd = Osulu2 + ulbud,

pe,mLpe,m − epe,m = s1mm+ lse1vv − L0
vvd−1Qv̄mds1mm+ l2Qmv̄se1vv − L0

vvd−2Qv̄md−1

3sl2Qmv̄se1vv − Lvvd−1Qv̄m + l2bQmv̄se1vv − Lvvd−1Qvvse1vv − Lvvd−1Qv̄md

3s1mm+ l2Qmv̄se1vv − L0
vvd−2Qv̄md−1s1mm+ lQmv̄se1vv − L0

vvd−1d

= Osulu2 + ulbud.

Thus

pe,msL − eds1 − pe,md = Osulu2 + ulbud.

Similarly,

s1 − pe,mdsL − edpe,m = Osulu2 + ulbud.

Finally, we use

L − pe,mLpe,m − s1 − pe,mdLs1 − pe,md = pe,msL − eds1 − pe,md + s1 − pe,mdsL − edpe,m.

This provessad.
Assume now that spsEd=hej. Then

Qmv̄se1vv − Lvvd−1Qv̄v = Qmv̄se1vv − Lvvd−1Qv̄e = Qmv̄se1vv − Lvvd−1Qv̄m.

fThe first identity follows from spsEd=hej, the second is a consequence of the definition of1mm.g
Using this we get
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pe,msL − ed = s1mm+ lse1vv − L0
vvd−1Qv̄mds1mm+ l2Qmv̄se1vv − L0

vvd−2Qv̄md−1l2Qmv̄se1vv − Lvvd−1

3Qv̄ms1mm+ l2Qmv̄se1vv − L0
vvd−2Qv̄md−1s1mm+ lQmv̄se1vv − L0

vvd−1d + Osulu3d.

This provessbd. j

IV. APPLICATION: ANALYTICALLY DEFORMED PAULI–FIERZ LIOUVILLEANS

In this section we describe a class of operators to which the results of our paper can be
applied. These operators arise naturally as models used in quantum physics. They provided for us
a part of motivation to write this paper.

In order to introduce these operators we have to introduce a number of concepts taken from
operator algebra and mathematical physics. Our presentation is based on Refs. 6, 7, 12, 13, and 9.

A. W*-dynamical systems and Liouvilleans

Let us start with a brief description of some elements of theory of operator algebras, that we
will use.3,9

A pair sM ,ttd, whereM is a W* -algebra andtt is a s-weakly continuous group of automor-
phisms ofM, is called aW* -dynamical system. In many circumstances it is convenient to describe
a quantum system by aW* -dynamical system. One of important results of theory ofW* -algebras
says that there exists a distinguished representation, unique up to the unitary equivalence, called
the standard representation.3,9 It is a quadruplesp ,W ,J,W+d, whereW is a Hilbert space,p
ªM→BsWd is a *-representation,J an antiunitary involution, called the modular conjugation,
and W+ is a self-dual cone, called the positive cone, inW satisfying certain axioms. In this
representation there exists a unique self-adjoint operatorL, called the Liouvillean, that implements
the dynamics

psttsAdd ª eitLpsAde−itL

and leaves invariant the positive cone,eitLW+=W+.
The properties of theW* -dynamicstt are encoded in a simple way in the Liouvillean. For

instance, the dynamicstt has no stationary states iffL has no point spectrum; it has a single
stationary state iffL has a simple eigenvalue at zero.

One can argue that the resonances ofL correspond to metastable states of the systemsM ,td.

B. Massless bosons at zero density interacting with a small quantum system

Our main object of interest will be Pauli–Fierz systems at a positive density. They will be
introduced in the next section. In order, however, to understand their physical content it is appro-
priate to describe first Pauli–Fierz systems at a zero densitysin other words, at zero temperatured,
which we will do in this section.

Let K be a Hilbert space associated with quantum mechanical system and letK be a self-
adjoint Hamiltonian for this system.

Let L2sRdd be the one particle bosonic space and leth be the one particle energy operator
given by the multiplication byuju wherejPRd. The Hamiltonian dGshd of the Bose gas acts on the
symmetricsbosonicd Fock spaceGssL2sRddd.

Let the interaction between systems be given by a measurable operator valued functionRd

{j°vsjdPBsKd. The following sections are based on Ref. 7ssee also Ref. 6d.
The Hilbert space of the system at zero densityszero temperatured is H=K ^ GssL2sRddd and

the free Hamiltonian is
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Hfr ª K ^ 1GssL
2sRddd + 1K ^ E ujua*sjdasjddj,

wherea*sjd /asjd are the usual creation/annihilation operators of the boson of momentumj. The
interaction is given by the operator

VªE svsjd ^ a*sjd + v*sjd ^ asjdddj.

The full Pauli–Fierz Hamiltonian equals

H ª Hfr + lV,

where lPR. To guarantee the self-adjointness ofH we can assume thates1+uju−1divsjdi2 dj
,`.

C. Massless bosons at density r interacting with a small quantum system

In this section we explain the notion of a Pauli–Fierz system at densityr.
Suppose that we are given a measurable function

Rd { j ° rsjd P f0,`f.

Let us consider the “doubled” Fock spaceGssL2sRdd % L2sRdd. The creation/annihilation operators
corresponding to the left/rightL2sRdd will be denoted byal

*sjd /alsjd andar
*sjd /arsjd, respectively.

Let us introduce the left and right Araki–Woods creation and annihilation operators

ar,l
* sjd ª Î1 + rsjdal

*sjd + Îrsjdarsjd,

ar,lsjd ª Î1 + rsjdalsjd + Îrsjdar
*sjd,

ar,r
* sjd ª Îrsjdalsjd + Î1 + rsjdar

*sjd,

ar,rsjd ª Îrsjdal
*sjd + Î1 + rsjdarsjd.

The sub-W* -algebra ofBsK ^ K̄ ^ GssL2sRdd % L2sRdddd generated by operators of the form

A ^ 1K̄ ^ expSi E fsjdar,l
p sjddj + i E f̄sjdar,lsjddjD ,

where APBsKd and eufsjdu2dsjddj,`, will be called the Pauli–FierzW* -algebra. It is in a
standard representation.

Note that the Pauli–Fierz algebra is isomorphic to the tensor product of the algebra of the
small systemBsKd and the algebra of Araki–Woods canonical commutation relations at densityr.

The free Liouvillean is given by

Lfr ª K ^ 1 ^ 1 − 1 ^ K̄ ^ 1 + 1 ^ 1 ^ E sujual
*sjdalsjd − ujuar

*sjdarsjdddj;

the perturbation is

Qr ªE vsjd ^ 1 ^ ar,l
* sjddj + hc−E „1 ^ v̄sjd… ^ ar,r

* sjddj + hc.

Assumption 4.A: Ifes1+uju2ds1+rsjddivsjdi2 dj,` holds then
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Lr ª Lfr + lQr

essentially self-adjoint on the intersection of the domains of Lfr and Qr.
The most important class of densities is that given by the Planck law at the inverse tempera-

ture b,

rb
sjd

ª sebuju − 1d−1.

In particular,b=` corresponds to the temperature zerosand density zerod, and the corresponding
Liouvillean is unitarily equivalent to

H ^ 1 − 1 ^ H̄. s4.1d

Thus in this case all the information is encoded in the Pauli–Fierz Hamiltonian described in the
preceding section. One can argue that for a generalr, Lr is a kind of a thermodynamical limit
s4.1d.

D. Analytically deformed Pauli–Fierz Liouvilleans

Pauli–Fierz Liouvilleans have continuous spectrum that covers the whole real line. They may
also have some embedded eigenvalues. In particular, a thermal Pauli–Fierz Liouvilleansi.e.,
whose density is given by the Planck lawd always has a zero eigenvalue corresponding to a KMS
state. In general, eigenvalues of a Liouvillean are related to stationary states, therefore their study
is very important from the physical point of view.

Another physically relevant question about Pauli–Fierz Liouvilleans is whether they have
resonances and if so what is their location. They may manifest themselves as poles of anS-matrix
or decay rates of certain correlation functions.

In order to define resonances we use the approach of Jaksic–Pillet. The first step of this
approach consists of “gluing” the “left” and “right” one-particle subspaces. This is done as fol-
lows. We use the spherical coordinates inRd and we introduce the Jaksic–Pillet gluing map
defined as

L2sRdd % L2sRdd { sf+, f̄−d ° f P L2sRd ^ L2sSd−1d, s4.2d

fsp,vd ª Hpsd−1d/2f+spvd, p . 0,

s− pdsd−1d/2f̄−s− pvd, p ø 0.J
Here,sp,vdPR3Sd−1 andSd−1 denotessd−1d dimensional sphere. The canonical conjugation in
L2sRd ^ L2sSd−1d is given by the complex conjugation.

If we assume that

v*sjd = vs− jd, rsjd = rs− jd

and introduce

vrsp,vd ª Hpsd−1d/2s1 + rspvdd1/2vspvd, p . 0,

s− pdsd−1d/2rspvd1/2vspvd, p ø 0.
J

In the new representation, the free Liouvillean and its perturbation can be written as

Lfr ª K ^ 1 ^ 1 − 1 ^ K̄ ^ 1 + 1 ^ 1 ^ E pa*sp,vdasp,vddp dv,
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Qr =E svrsp,vd ^ 1 ^ a*sp,vd + vr
*sp,vd ^ 1 ^ asp,vdddp dv

+E s1 ^ v̄rsp,vd ^ a*s− p,vd + 1 ^ v̄r
*sp,vd ^ as− p,vdddp dv

as an operator onK ^ K̄ ^ GssL2sRd ^ L2sSd−1dd.
Let us make the following assumption.
Assumption 4.B: The function

R { p ° vrsp, · d P BsK,K ^ L2sSd−1dd

extends to an analytic function in a stripuIm pu,h0 and

sup
uImpu,h0

E ivrsp, · di2dsRepd , `.

Let i−1¹p be the generator of translations onL2sRd in the spectral parameterp. Let S
ªdGsi−1¹pd be its second quantization. Note that for any complexh,

Lfrshd ª eihSLfre
−ihS= Lfr + h1^1

^ N,

whereN=dGs1d is the number operator. Moreover, foruIm hu,h0,

Qrshd ª eihSQre
−ihS

=E vrssp + hd,vd ^ 1 ^ a*sp,vddp dv +E vr
*ssp + h̄d,vd ^ 1 ^ asp,vddp dv

+E 1 ^ v̄rssp + h̄d,vd ^ a*s− p,vddp dv +E 1 ^ v̄r
*ssp + hd,vd ^ as− p,vddp dv.

Theorem 4.1:Assume that 4.A, and 4.B hold. Then we have the following.

s1d There exists a unique operator-valued functionh°Lrshd defined for0ø−Imh,h0 such
that

sad Lrshd=eihSLre
−ihS for hPR.

sbd For 0, Imh,h0, h°Lrshd is an analytic family.
scd For Imz.0, sz−Lrshdd−1 is strongly continuous up toImh=0.

s2d For and open U,C, UùspdiscsLrshdd is locally independent ofh, as long as
UùspesssLrshdd=0” .

If we assume thatdim K,`, then for0ø−Imh,h0 there existsl0.0 such that forul u ,l0 the
following statements hold:

s3d spLrshd, hz[C : Imzø0j,
s4d There exists c.0 such that

spessLrshd , hz [ C : Imz, − uImhus1 − culudg.

s5d Real eigenvalues of Lrshd are semisimple and

sppp Lr = spLrshd ù R.

So real discrete eigenvalues ofLrshd are semisimple, independent ofh and coincide with the
embedded eigenvalues ofLr. The nonreal discrete eigenvalues ofLrshd, which are called reso-
nances or metastable states, are also independent ofh but they do not have to be semisimple.
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E. LSO for Pauli–Fierz Liouvilleans

In this section we indicate how one can apply the method described in our paper to an
analytically deformed Pauli–Fierz Liouvillean. We will see that many objects, including the LSO,
do not depend on the parameter of deformationh, or depend rather mildly.

It is easy to see thatRùspLfrshd is an isolated subset of spLfrshd equal to

spsK ^ 1 − 1 ^ K̄d = hk1 − k2 : k1,k2 P spKj.

The corresponding spectral projection equals the orthogonal projection ontoK ^ K̄ ^ V, whereV
is the Fock vacuum. Note that it does not depend onh. Denote this projection by1vv. Clearly,

E=1vvLfrshd does not depend onh either and can be identified withK ^ 1−1^ K̄.
We can apply the method developed in this paper to the operatorLrshd=Lfrshd+lQrshd

obtaining the LSO, which again does not depend onh,

Gr ª o
ePspsEd

1esEdQr
vv̄shdse1vv − Lfr

vvshdd−1Qr
v̄vshd1esEd.

One can computeGr from the undeformed Liouvillean as well,

Gr = lim
e↘0

o
ePspsEd

1esEdQr
vv̄sse+ i [ d1vv − sLfr

vvdd−1Qr
v̄v1esEd. s4.3d

Note thats4.3d coincides with the definition of LSO contained in Ref. 7.
One can also compute the projectorspeshd and pe,mshd. They depend onh, but in a rather

controlled way, they are analytic functions ofh for satisfyingsPR,

peshd = eisSpesh + sde−isS, pe,mshd = eisSpe,msh + sde−isS.
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