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Level shift operator and second order perturbation theory
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We give approximate formulas for spectrum and the corresponding spectral projec-
tions of perturbed linear operators. The main tool is the so-c#dheal shift opera-

tor, which expresses the effects of second order perturbation theory on the point
spectrum. €2005 American Institute of PhysicDOI: 10.1063/1.1850833

I. INTRODUCTION

One of the main tools of quantum mechanics is perturbation theory for eigenvalues of family
of linear operators of the form, := Lo+ \Q. This theory is particularly simple if one considers an
isolated eigenvalue df, of finite degeneracy and one assumes thgand Q are self-adjoint. In
this case, both the eigenvalues and the eigenvectors can be described by functions analytic in the
coupling constané(\). This is described in almost every textbook on quantum mechanics.

In quantum mechanics self-adjoint operators play a prominent role. However, non-self-adjoint
operators are also physically relevant. For instance, they are used to describe resonances. In fact,
resonances are often defined as complex eigenvalues of analytically deformed Hamiltonians,
which are usually non-self-adjoint. The perturbation theory of non-self-adjoint operators is more
complicated than that of self-adjoint operators. In the case of non-self-adjoint operators, eigenval-
ues and eigenvectors are typically described by a multivalued analytic function with a branch point
at \=0. This is described, e.g., in Refs. 11 and 16.

The method of analytic functions may be inapplicable if the isolated eigenvalue has infinite
degeneracy, because it may then happen that the perturbed operator has continuous spectrum close
to the unperturbed eigenvalue. Thus one cannot follow individual eigenvalues.

In practice one is not interested in the full perturbation expansion of eigenvalues or eigenvec-
tors. One usually uses the lowest order approximation. The first order approximation to the eigen-
value is very simple—it is just the appropriate matrix element of the perturbation. More interesting
is the second order approximation. Its importance has been noted since the early days of quantum
mechanics. Not without a reason the computations based on the second order perturbation theory
have been called by Fermi the golden rule of quantum mechanics.

In our paper we describe a method of constructing approximate eigenvalues and approximate
eigenprojections that summarizes the usual second order perturbation theory. We do not restrict
ourselves to self-adjoint operators. We prove that our construction can be applied without any
problem in the case when the eigenvalue has infinite multiplicity. Thus, the formulas that we give
are quite robust—they do not need the assumptions typical of the usual approach to perturbation
theory through expansion in a power series.

Let us now describe our results a little more closely. Supposelihé a closed operator
having a cluster of isolated eigenvalugs The spectral projection df, onto =, denotedl=(L,),
gives a natural decomposition of the Banach space into a directtsafi’ & H".

Let Q be a perturbation. Our main object is the perturbed operator
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Lig= Lot MQV+Q") + 5Q.

Note that we assume that insi@’ the perturbation is zero. This guarantees that there is no first
order shift of the spectrun@”+Q" is the “off-diagonal” part of the perturbation—it conne@t$
andHY. Q' is the “external” part of the perturbation—it acts insitl&. We use two perturbation
parameters) for the off-diagonal angB for the diagonal part. We are interested in what happens
for small complex\ and 8. We will try to estimate carefully the deviations from our predictions
in terms of these two coupling constants.

It is easy to see that for small and 3, the spectrum ot, ; does not differ much from the
spectrumL,. Thus, for smallx and B, for any isolated poine of =, there exists a patch of
spectrum oL, ; located aroune, which we will denote by®.. (We say “a patch,” not “a cluster,”
because the spectrum does not have to be disc#twill give the formula for a projectiop,
that approximates the spectral projectionlgfs onto ®.. We will show that this projection
approximately diagonalizels, ;. By this we mean thalt —pel, sp.—(1-pe)L, s(1-pe) is small.

The above results are contained in Theorem 2.1. They are quite easy. What is more interesting
is the study of the splitting of the pat@,, which is the subject of Theorem 2.3—the main result
of our paper.

We show that if the eigenvalue is semisimple then the patch of the spectrum aroand
naturally splits into subpatches separated by a distance of @deF). The subpatches will be
parametrized by eigenvalues of the so-cal®ckl shift operatoLSO). The level shift operator is
a certain operator that describes the shift of spectrum under the influence of second order pertur-
bation theory. The subpatch of the spectrunipf; arounde+\°m, wherem is an eigenvalue of
the LSO, will be denoted bW, We will also give a formula for the projectiop,, that
approximates the spectral projectionlgf; onto O, Finally, we will show thatp, ,, approxi-
mately diagonalize&, g.

Clearly, the results that we present are quite general and applicable in many situations. The
main motivation for our paper comes, however, from the class of problems first considered by
Jaksic and Pillet in Refs. 12, 13, and 15. Using the terminology of Ref. 7 we can say that the
results of our paper can be used to describe approximately resonances of Pauli-Fierz Liouvillean.
The last section is devoted to a short description of this application.

Let us briefly explain what we mean by resonances of Pauli—Fierz Liouvilleans. We use the
name “Pauli—Fierz system” to describe a quantum system consisting of a small sgsgenan
atom) interacting with a bosonic fiel@e.g., photons or phononsAVe are especially interested in
the case when the field has a positive density, for instance it is at a positive temperature. The
dynamics of this system is generated by a certain self-adjoint operator, which, following Ref. 7,
we call the “Pauli—Fierz Liouvillean.” Next we apply the so-called Jaksic—Pillet method and we
obtain an analytically deformed Pauli—Fierz Liouvillean. Analytically deformed Liouvilleans are
non-self-adjoint and have spectrum in the lower half-plane. Moreover, they often have isolated
eigenvalues. These eigenvalues are called resonances. They do not depend on the parameter of
deformation. They are physically relevant, they are responsible for the decay of certain correlation
functions. They can be naturally written as the sum of an explicit operator with discrete eigenval-
ues and a perturbation. The method of our paper allows us to give approximate predictions about
the resonances.

Another class of operatofsot discussed in our paperhere our results could be applied are
the generators of a Pauli-Fierz dynamics on an operator algeallad C-Liouvilleans in Ref.

14).

Level shift operators appear in the mathematics and physics literature in various disguises
whenever the second order perturbation theory is considered. They are often introduced in the case
of embedded eigenvalues. For instance, they appeared implicitly in the work of Ref. 6 devoted to
the perturbation theory for embedded eigenvalues of Pauli—-Fierz operators. The analysis of the
point spectrum given in Ref. 6 is very closely related to the analysis given in our paper. Never-
theless, there are some differences. Reference 6 was devoted to the studyenfdectigenval-
ues, and therefore additional tools were required: the limiting absorption principle and Mourre’s
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positive commutator method. Another difference is the self-adjointness of the operator studied in
Ref. 6, whereas in our paper we do not restrict ourselves to self-adjoint operators.

Constructions similar to ours can be found in the papers of Bach—Frthich—%ig&de
authors study the spectrum of certain operateimilar to the Pauli—Fierz operators considered in
Refs. 6 and Y by an iterative procedurérenormalization group. The basic step of this proce-
dure resembles our prescription for locating the spectrum and constructing the approximate spec-
tral projection.

The LSO appears naturally in the so-called weak cougiag Hove limit.*>®In this context
it is sometimes called the Davies generator.

II. MAIN RESULTS
A. Notation

If ECO®CC, then we say thaE is an isolated subset @ if it is closed and open in the
relative topology of®.

0O° denotes the closure @ in C.

If L is a linear operator, sp denotes its spectrum and Ddnits domain. IfE is an isolated
and bounded subset of Epthen we can define the spectral projectiohafnto = by the formula

1

1=(L) = Z_mjg (z-L)tdz,
Y

wherey is a closed path that encirclé& counterclockwise.

If eis an isolated point of sp, then we will write 1,(L) for 1;(L). For suche set N,
:=(L-€)14(L). We say that the degree of nilpotenceedt equal ton iff NJ '+ 0 butN2=0. We
say thate is semisimple iffn=1 (i.e., No=0).

If ®CC ande>0, then we set

D(0,¢) :={z e C:dist(z,0) < €.

For ee C, D(e,e) will denote the open disc centered atwith radius e. Moreover, we set
D(D,e):=2.
If A(\,B) are bounded operators, afd,3) a positive function, then

A(N,B) = O(f(N, B))
means that there existssuch that

IAC Bl < cf(X. ).

Moreover,
Ai(N, B) = Ay(\, B) + O(f(N, B))
or
O(f(\,B))
AiNB) = ANP)
means that

Al()\!:B) - AZ()\7B) = O(f()\uB)) .

B. Assumptions

Let Ly be a closed operator on a Banach spateSuppose thaE is an isolated bounded
subset of sph.
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It will be convenient to denoté=(L,) by 1** and setl”’:=1-1"". We can also introduce the
subspaces

M= 1M, HY = 1"H,
so thatH is decomposed into a direct sum
H=H" & H". (2.1
With respect to the decompositig@.1) any operatoB on H satisfying
Dom(B) = (Dom(B) N H*) & (Dom(B) N H?)

can be written as

BUU BUU_
B=| — —|. (2.2
BUU BUU
In particular, we have
L O
Lo= — . (2.3
0 Ly

It will be convenient to writeE for L§’. Note thatE is a bounded operator oH” and sgE)=E.

Let Q be another operator, that we will treat as a perturbationyofMore precisely, we make
the following assumptions.

Assumption 2.A: @=0. B B

Assumption 2.B: Off-diagonal elements ofi@., Q" and @Y, are bounded

We will also use either one of the following two assumptions.

Assumption 2.C: @ is an operator bounded perturbation of’L(Ref. 11. .

Assumption 2.DH™ is a Hilbert spaceLg’ is self-adjoint, bounded from below and*Qs a
form bounded perturbation ofgl (Ref. 11). _ o

Let N, B e C. Note that under Assumption 2.C or 2.D the operaig+ BQ"" is well defined
for small enoughB (Ref. 11). Likewise,

)\QUU_
)\Qa) L8v+IBQE
is well defined for small enougBs. For simplicity we will write L instead ofL, 4.

Fix an open subsgf C C such thatQ®NspLy== andZ C Q. Note that there existg, such
that, for| B8] < Bo, spLY’+B8QY") N Q%=7. We fix 3, satisfying these conditions.

Lipi= Lo+ AQ+AQ™ + BQ™ = [

C. Results

The main results of our paper are stated in the following two theorems. Note that Theorem 2.1
is quite easy and basically describes the well-known stability of spectrum under a perturbation.
Theorem 2.3 is more difficult—it describes the splitting of the spectrum according to second order
perturbation theory. In that theorem, an important role is played by the level shift operator. Note
that we tried to make the two theorems as parallel as possible.

Theorem 2.1: Suppose that Assumptions 2.A and 2.B hold. We also suppose that either
Assumption 2.C or 2.D is satisfied. Then the following is true:

(1) There exists a continuous and increasing function

[0, [3 x> &(x) e [0,~],

such thatlim,_, 8(x)=0, and for|8| < 8, and |\| <\, for somer,>0, we have
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sp(L) N Q C D(spE, &(A])°. (2.4

(2) Inwhat follows we assume thétis an isolated subset apE. Clearly, (1) implies that there
existsO< \g such that, forl\| <\,

O.:=D(& 8(N])¥ N spL (2.5

is an isolated subset afpL and @ .C ().
(3) For [\|<\; we have

1o,(L) = 1e(Lo) = O(A). (2.6
(4) For |\|<\¢ we have

(5 Inwhat follows we assume that e is an isolated poirgpiE. We will write ©, for 0. If the
degree of nilpotence of e as an eigenvalue of E is equal then there exists Csuch that

0. C D(e,CeA|7M.
(6) For
N < |[1e(Lo) Q7 (61 — LY)2Q7 1o(Lo)|| H2=: e, (2.9
we set
Pe = (Le(Lo) + MeL™ = Lg") Q7 Le(Lo))(Le(Lo) + A21e(Lo) Q™ (1™ = L") 2Q7 1e(Lg)) ™
X (Lo(Lo) + M1o(Lo)Q™(e1™ = L§") ™). (2.9
Then R is a projection. Moreover
(€Y
Lo (L) - Pe=O(\]); (2.10
(b) if e is a semisimple eigenvalue of E then
Lo, (L) = pe=O(N[* + [NB)); (2.1
(c) if, in addition, sp(E)={e}, then

Lo (L) = pe=O(N[*+\A)). (212
(7) For |\|<X we have
(@
L = peLpe = (1 - pe)L(1 = pe) = O(|A]); (2.13
(b) if e is a semisimple eigenvalue of E then
L = peLpe = (1= pL(1 = pe) = O(N >+ |\ B)); (2.19
(c) if, moreover spE)={e} then
L = peLpe— (1= pL(1 = pe) = O(N[>+ N B)). (2.19

_Note that in Eq.(2.9 we use the nOtatiO(Ela—LE)_l for the inverse of the operat(mlE
—Lw restricted toH’. In what follows we will often use similar notation without a comment.
Let us now assume that &pis a finite set.
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Definition 2.2: We define the level shift operator (LSO) as
[= 2 1(E)Q™(el” -L§) Q" 1E).
eesp(E)

From now on we will write for shortness®®:= 1,(E)I'1(E).

Now we are ready to state our main theorem.

Theorem 2.3: Suppose that Assumptions 2.A and 2.B hold. We also assume either Assumption
2.C or 2.D. Assume also thapE is a finite set consisting of semisimple eigenvalues. Then the
following is true:

(1) There exists a continuous and increasing function
[0,0 [3 x> &(x) e [0,%],
such thatlim,_, 8(x)=0, and, for | 8| < By,

\| <\q, for some\,>0, we have

N2S(NZ+ B

L) 1.0 C DISHE+NT) NN+ 8= U _Dle+\>sp(r™,
eespE

(2.16

(2) In what follows we fix & spE, and M is an isolated subset apl™®¢ Clearly, (1) implies
that there exist9 <\, and 0< B, such that for\| <\, and |8 < Be s

O 1 = D@+ N2M,NS(IN? + ) N spL

is an isolated subset @ipL and O, C ().
(3) For |\|<Ngu and|B|< Ber We have

Lo, (L) = 1, (I'*9 = O(IN[+18)- (2.17)
(4) For |\|[ <N and|B]< Ber We have
dim 1®e,M(L) =dim1,,(T°9. (2.189

(5 Assume now that m is an isolated pointspfl™*©. We will write © , for O . Suppose that
the degree of nilpotence of m as an eigenvalu€“fis equal to n Then

Ocm C D(e+N2mM,Cq | MA(N2+ (8N,

for some Gq>0.
(6) For

N < [1n(Te9Q™(e1™ - LE") 2Q7 LT 2=:N g m, (2.19

we set

Pem= (19 + ML = L") TQLy(I"*9) (119 + M1 (T*9Q (61" - L§") 2

X Q1(I%9) HL(T®9 + MLy TIQ™ (1" = L") Y. (2.20
Then R, is a projection. Moreover
@
l@)e,m(L) ~Pem= O(|)\| + |B|)y (2-2])

(b) if mis a semisimple eigenvalue bBf€ then

Lo, (L) = Pem=O(N?+|B)). (2.22
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(7) For |\|<Xem we have
@
L- pe|mLpe,m - (1 - pe,m)l—(1 - pe,m) = O(|7\|2 + |)\:8|),
(b) if 1v=1,(1"®® then
L- pe,mLpe,m_ (1- pe,m)L(l - pe,m) = O(|)\|3 + |)\B|)

Remark 2.4: Note that in both theorems (6) describes how close the projectiand p, , are
to the corresponding spectral projections of L and (7) describes how well they diagonalize L

In Theorem 2.1, we have the same order of smallness in (6) and (7). We will see from the
proof, that (7) essentially follows from (6)

On the other hand, in Theorem 2.3, the order of smallness of (7) is much better than that of
(6). Thus (7) requires a separate proof
11l. PROOFS

Let us begin with a general fact about the stability of the spectrum of bounded opéRefirs
11).
Theorem 3.1:Let Ae B(H). Then there exists an increasing and continuous fungtion

[0, [3 x> ua(¥) € [0,2],

such thatlim, . us(x)=0 and for any Be B(H) we havesp(A+B) CD(sp(A), ua(|B|)°.
If a e sp(A) is an isolated eigenvalue with the degree of nilpotence equaltteen there exists
€>0 such that for = D(a, €)\{a} we have

lz-A Y <Clz-4d™, (3.0
for some C>0. Moreover, for|]\| <A, for someA,>0 we have
sp(A+AB) N D(a,e) C D(a,c|A|YM®, (3.2

where & (C||BJ))*".
Proof: We prove only the last statement. Let]\|<eC|B|)™ If z
e D(a,e)\D(a, (C|\B|)¥M then

|z—al > (C|nB)*™,
so by the inequality3.1),
1> C|nB|l [z-a™ = []AB] [l(z- A7 = [xB(z- A7

This shows thaz—A-\B is invertible and hence ¢ sp(A+\B), so we get3.2). [ |
Let us comment on some additional notation that we will use. &an isolated subset of
sp(E) we will write

1%:= 14(E) = 1e(Lg), 1%:=1-1%, 1%:=1"-1%

HE:=Ranlg(E), H°:=Ranl®, #&:=Ran1%.

Now the Banach spacK can be decomposed in the following way:

H=H & HE=HE @ HE @ MO,

and operatot. can be written as
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0 EX Q¥ | (3.3

EE \Q
L= ce |EE
AQ )\Qvig )\QFE L8U+BQE
If e is an isolated point of gf) then we writel1®® for 1{eHel 74¢ for H'®, etc. Note thaEE®
=E&.
We will use the following theorem for several operators and for various decompositions of the
spaceH. B
Theorem 3.2: Let H be a closed operator on a Banach spddeH’ @ H. Assume that
off-diagonal elements of H.e., H"” andH"’ are boundedFor ze C\sp(H"?) define

] E&f 0 )\Q&T

G,(2) 1= Z1% — HY = HY(Z1% — H*) T IHe,
Then for z¢ sp(HE) we have

(1) zespH) iff 0esp(G,(2),
(2) if 0&splG,(2) then

(z— H) ™= (207 = H) 4 (170 + (207 = HY)HHY) G M) (1 + HYY (21 - H) ™Y,

The last equation is often called the Feshbach formula. We will keep this name. For more
information about the above theorem the reader is referred to Refs. 6 and 10.

Lemma 3.3: Suppose that Assumptions 2.A and 2.B kdddalso assume either Assumption
2.C or 2.D. Let¢ be an isolated subset sfE) and fix r>0. Then there exist§ <A, such that
for \|<Ag, |8/ < B, we have(Q\D(sp(E¥),r)) Nsp(L¥)=® and

sup (22T - LF) Y < 0. (3.4
2e O\D(spE®) 1)
N<Ag 18/<Bo

Proof: If ze Q and|8|< B, thenzgsp(LE) and hence we can use the Theorem 3.2 for the

operatorL¥ and for decompositiort{¢:=H£®H*. We obtain that, for some\;>0, and|\|
<A¢ and forze Q\D(sp[E%),r),

Gel2) = 21 - B - \2Q8 (1™ - L) 'Q¥%,

is invertible and hence ¢ sp(LE). Moreover, for suclz, G¢(2) has a uniformly bounded inverse.
Therefore, the Feshbach formula impligs4). . n

_Proof of the Theorem 2.1(1) By Theorem 3.2,ze spL)NQ iff ze SpE+N\2Q" (21"
-Lw)~1Qw) N Q. By Theorem 3.1,

SP(E + \2Q" (21" — L") 1Q™) C D(sp(E), ue(A %)),

where

c= sup ||vi(zlvv — va)—lev”,
zeQ,|B|<Bo
(which as we know is finitg and ug:[0,o[—[0,%[ is a continuous increasing function with
lim,_o ue(X)=0. Thus spL) N Q CD(sp(E), 8(A[))¥, where 8(x) = ug(x%c).
(2) A simple consequence @1).
(3) For some B<\g, |\ <\¢, and|g| < Bo, there exists a closed pathc ) that encircle®d ¢
counterclockwise, but no other parts of(lsp We have
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sup (-7 <=

zey, |BI<Boy
IN<\g
Besides,
(2wi)-13£ (1% - L)t dz= (27Ti)-1§§ (1% - L")t dz=0.
Y Y
Therefore,

1o,(L) = Le(Lo) = (2Wi)-13§ (ZL-L) L= (Z1% - E) 1 - (1% - L") Ydz

= x(zm)—ljg (ZL-L)HQ + Q) (2™ - B) ™+ (1% - L) Ydz= O(\).
Y

(4) Equation(2.6) implies that for|\| sufficiently small we hav#lgg(L)—lg(Lo)||<1 so by a
well-known theorem(Ref. 11 Eq. (2.7) holds for|\| small. ButA+—dim 1o,(L) € N is a continu-
ous function sg2.7) holds for all|\| <\¢.

(5 Let &, r, and A¢ be the same as in the Lemma 3.3. Fo<Ag, |8/ < B, we can use
Theorem 3.2, which implies that fare Q\D(sp(E¥),r) we haveze sp(L) iff

Z ¢ SHEEE + \2Q(21FE - LFE)1Q%),
By Theorem 3.1 we get

SPEE + \2Q(21%F - L¥)1Q) C D(&, pees(|N[20)7, (3.5
where
ci= sup [|Q%(z1% - L) 1Q¥
ze O\D(SPEES) r)
IB1<Bo N<Ag

is finite by Lemma 3.3.

Now set€={e} and assume thathas a degree of nilpotence equahtorhen by Theorem 3.1
we can takeugedX) := c;x".

(6) For |\| <X,

1ee+ KzQQT(elE _ LS_U)_ZQU_ey
is an invertible operator so the expression frrmakes sense. Direct computations show that
p2=p.. Note that
(1ee+ )\ZQaT(elﬁ _ Lg_v)—ZQv_e)—l - 1ee_ )\ZQaT(elw _ LE}F)—ZQU_E + OO\4)

SO

Pe= 1%+ M(Q¥(e1” — L§") ™+ (1 — L") IQ¥9) +2\%(e1” - Lg)IQeQ(e1” - Lg) !
- Q%(e1” - L§) Q) + O(N). (3.6

We have
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Lo,(L) = 1e(Lo) + x<2wi)-1§j€ (21" - By IQ7 (21" - L) ™+ (20 - L") Q™ (21" - B) Hdz
b

- )\2(27-ri)'1§ (21" - E) Q7 (21" - L) Q™ (A - B) !
Y

+ (2% - L) Q@1 - BN - L) Yz + O(N + [MB).

eis the only one eigenvalue & inside y so(z1°’~E)~! has only one pole insidg. All points on
and insidey are not in spL5® so (z1*’~L%")™! is analytic inside and continuous op If e is
semisimple therfz1"* -E)™1=(z-e) 11®®+analytic partand hence

Lo, (L) = Le(Lo) + M(Q¥(eL™ — L) ™+ (e - L5") Q%) + xz((zm)‘lfﬁ (21 -
Y

X (21 - L§) QP (21 ~ B) T dz + (e1” - L") IQRQ (el - Lz;_”)‘l) + O

+\g)). (3.7

Now part(b) [Eg. (2.11)] is a simple consequence &.7) and(3.6). In general, whem is not
semisimple, terms of orded(|\|) will not cancel so parta) [Eg. (2.10] cannot be improved.
If sp(E)={e} ande is semisimple theriz1**-E)1=(z-e)11%¢=(z—e)"11"*. Now

(27Ti)"1jg (2™ - B)IQU(21™ - L§) 'Q™ (1™ - E) dz= - Q¥(el™ - LY) 2Q™".
Y

Now part(c) [Eq. (2.12] is a simple consequence (8.7) and(3.6).
(7) The proof of(6) in the casega), (b), and(c) shows actually slightly improved results,

(1o (L) = PJL=O(N]), O(N?+[Ng]), andO(A[*+[A),

L(1e(L) =P =O(N]), O(N+[NA), andO(N[*+NA]).

To obtain(7) we use

L = peLPe = (1 = po)L(1 = pe) = = [Pe[Pe, L 1] = = [Pes[Pe — Le(L), L]

|
Proof of the Theorem 2.31) Let ee sp(E). Let £={e}, Ac.=A; andr be the same as in the
Lemma 3.3 and in the proof ab) of the previous theorem. Fdik| <A, |B]< By and forz
e O\D(sp(E®®,r) we can use Theorem 3.2 for the operatoand for decompositiori := ¢
®HE. If ze splL) NQ\D(sp(E®®),r) then

0 e sp(z1%8— E®¢— \2Q°q(z1%- L=91Q%). (3.9

Note thate e sp(E) is semisimple sdE®e=e1®® and moreover, we hav®®=Q® and Q®e=Q%.
Now (3.8) can be written as

z)\;ze e sp(Q¥(z1%®- L®91Q®). (3.9

Note that
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(z1°°- L% 1= (e1%®- L®*® 1 + (e - 2)(z1°°- L®9 }(e1®®- L&t
= (17~ L§9 ™ + (e1°°- L™ I(M(Q¥ + Q9) + Q™) (e1%°- L§Y
+(e-2)(z1°°- L®9 Y(e1®®- L®9 71, (3.10

and (e1°®-L5% 1=(e1ee- Ee—e)‘1+(e1”_”—L8_”)‘1. Now we can write

Q¥(z1%- L9 1Que=T"+ |+l +Il , (3.11)

where
| = BQ¥(e1"~ L% Q™ (e1%°- L§) Q™.
Il = AQ%(e1°®- L®9 Q"¢ + Q%) (el°*- L§H Q" (3.12

Il = (e—-2)Q% (21~ L®9*(e1®®- L*9 Qe
Clearly, [|l||<C,|8|. If we note that

17(e1°°- L*9 1188 = \ (e1™ - L*)"'Q"°G,Y(e) = O(\)

and similarly18§e1®®-L*8-11°*=0(\) then we geffll ||< C,|\|2 Moreover, Theorem 2.1 implies
that|z—e| <C\? and hence by the Lemma JBq. (3.4)] we get/|lll ||<C,;\2. So for|]\| <A and
|8l < By we have

[1+1+ 11| < CN?+18])
for someC.>0. Now we can apply the Theorem 3.1 to the expresg®f) and get for|\|

<Ae and|ﬁ| <16)01

£ € DS, pared Col 2+ [BD))7, (3.13

where functionguree: [0, —[0,0] are continuous, increasing and JimyuredX) =0. This implies

sp(L) N Q\D(SPE™),r) C D(e+ A2 spI"®9), |\ [2ured Co(IN? + |8)))Y,

and hence fof\| <\g:=mins.sye)Ae and|B| < B, we have
SHL) NQC U D(e+N?spl,\28(N[*+[8])7,
eesp(E)

where we denoted(x) := MaX. gye)(tred CeX)).

(2) A simple consequence @1).

(3) Let y be a closed path such thatencirclesM but no other parts of $p©. By (1) and
(2), for small enough\ and g, the translated and rescaled path\?y encircles only®, ., but no
other parts of sfi.). Now

1
ey nl-L

1®eYM(L) =(2m)*t d».

For all 7€ e+\?y we can use Feshbach formula for the operatand for the decomposition
H=H*®HE. We get
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39 , (nl—L)-ldn:§ | (1% (1% L7NQ) G () (154 NQH(71%° - L™ Hdl,
et\ et\“y
where

Ge(7) = 71°°- €1°°- N2Q (71°°~ L*9 Q.
Note that
(7= 9)1°0=NT*9 = G () = A((m - €)1~ A9 *Q((e1"" - L§) !
~ 17 (717~ L% 1) QG (), (3.19
where we used’®=Q%* and Q®=Q°®® Moreover,
(€17 — Lg) 1 - 17(m1oe- L9711
= (e1% — L") L= (3117 ~ g - BQ™) - N1 - Ly - pQ) QG ()
XQ¥(n1™ - g - pQ)
- (elvv _ Lgv)—l((,r]_ e)lvv + IBQW)(ﬂlUU _ LSU _ BQUU)_]. _ )\2( 7]1UU _ LSU _ BQUU)—].
X QG () Q¥ (1™ - L§’ - BQ™) ™, (3.19
where
Gel(7) = 7125~ B2~ N2Q (71" ~ L) 'Q"%.
If we change the variablg=e+\?z and use the equatiori8.14 and(3.15 we get
3€ (p1-L)tdy= 3€ (124 (e + \?2) 1% L= IAQ%®)(z1°¢- I*9 2
e+)\27 Y
X (14 \Q%{(e+\%)1%°- L9 Hdz+ O(N?+[8]).  (3.16
Since
(ZWi)'le (z1°%8-T°91dz=1,,I°9,
we getly  (L)=1y(I*9=O(\|+|B).
(4) Equatlon (2.17) implies that for [\| and |g| sufficiently small we havelle_, (L)
-1,,(I'*9||< 1 so by a well-known theoreriRef. 1) equality(2.18 holds. But dimle (L) € N is
a continuous function ok and 8 so (2.18 holds for all]\|<\g ¢ and|B] < Beu-

(5) If the degree of nilpotence af as an eigenvalue df¢¢is n then due to the Theorem 3.1,
Eq. (3.13 can be written as

£ DM Con A2+ [B) ) U (SR Wb, paree Col A2+ [B)))°.
(6) For |\ <Z;m,

1[0 + A1 (T*9 Q" (e = L§) Q1T
|s an invertible operator so the expression [y, makes sense. Direct computations show that
pem Pe,m:
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In the proof of the part3) we showed thaneem(L)zlm(Fe%+O(|)\|+|/8|) so (a) is already
done. To showb), we use the approximation fdr@)(;m(L) given by (3.16);

oZ+ig) 1 B
toent) = ﬁﬂg (M(e+2\?2)1°°- L*97IQ%+ 1%9(z1°e- *9
Y

_ O(NZ+INBD - 1
X(ANQ%®((e+\%2)1%- L®*® 1+ 1°9dz = ;3€ (AMe+2\%) 1%°- 591
T
Y

X Q% +1°9(z1%¢- T'9~I(AQ°Y (e + A\?2)1°°~ LEY 1 + 1°9dz

-~ B o3
= (\M((e+N2m)1%°- L§H Q% + 1291 (T*H(NQ°((e+ N2 M) 1%~ L§Y 1+ 1°9 = pgp,

where we used

((e+\%2)1%°- LS9 1~ ((e+ %) 1%°- L9 1= O(]A| + | 8)).
(7) Let us denote™:=1,_(T®9), Q™ :=1™MQ and Q"™:= Q"*1™™ so that

Pem = (1™™+ M(e1” ~ L§")IQ"™) (1™ + N2Q™ (€1 - Lg) Q™)
X(1MM+ Q™ (61" - Lg") Y.

We compute

Pea(L =€) = (1™ N(e1” - L§") 1M (1M + A2Q™ (e1” - Lg) QM) L
X(NPQ™(e1™ ~ L) 7IQ™ + ABQ™ (e1™ ~ L) Q™) = O(N2 + [\A),

PelPem = €km = (174 A(€1°7 = L§")2Q ™) (1™ + N2Q™ (€1 - L) 2Q™)
% ()\ZQ"“T(elw _ LE)—lQle +)\2 ,8Q”“7(e15 _ LE)"lQE(elﬁ _ Lv_u)—leTm)
X(1MM+ A2QM(e1” - L) 2QM) 1™+ AQ™ (€L ~ L") Y
=O(A[?+ N
Thus

Pem(L =€) (1= Pem) = O(N>+NA)).
Similarly,

(1= Pem)(L = ©)Pem=O(N*+\g]).

Finally, we use

L- pe,ml—pe,m - (1 - pe,m)l—(l - pe,m) = pe,m(l— - e)(l - pe,m) + (l - pe,m)(l— - e)pe,m-

This proves(a).
Assume now that gf)={e}. Then

Qﬂ??(elﬁ _ Lv_v)—lQlTv - Qm?(elﬁ _ LE)—IQE - erﬂ(elﬁ _ LE)_lQle.

[The first identity follows from sfE)={e}, the second is a consequence of the definitiof"8t ]
Using this we get
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Pem(L =€) = (1M™+ A(€1* ~ L") IQUM) (1™ + N2Q™ (€1 - L) Q) QM (e1” - L)
X QU™+ \2QM (1™ - LE) 2QU) HLM+ AQ™ (61" — L)) + O(N ).
This proves(b). |

IV. APPLICATION: ANALYTICALLY DEFORMED PAULI-FIERZ LIOUVILLEANS

In this section we describe a class of operators to which the results of our paper can be
applied. These operators arise naturally as models used in quantum physics. They provided for us
a part of motivation to write this paper.

In order to introduce these operators we have to introduce a number of concepts taken from
operator algebra and mathematical physics. Our presentation is based on Refs. 6, 7, 12, 13, and 9.

A. W'-dynamical systems and Liouvilleans

Let us start with a brief description of some elements of theory of operator algebras, that we
will use®?

A pair (9, 7), wheret is aW -algebra and® is a o-weakly continuous group of automor-
phisms oft, is called aW'-dynamical system. In many circumstances it is convenient to describe
a quantum system by & -dynamical system. One of important results of theory\bfalgebras
says that there exists a distinguished representation, unique up to the unitary equivalence, called
the standard representati%ﬁ.lt is a quadruple(=,W,J,W,), whereW is a Hilbert spaces
=9—B()W) is a *-representation] an antiunitary involution, called the modular conjugation,
and W, is a self-dual cone, called the positive cone, W satisfying certain axioms. In this
representation there exists a unique self-adjoint opetatealled the Liouvillean, that implements
the dynamics

w(H(A) = & m(A)et

and leaves invariant the positive com; W, =W,.

The properties of th&V'-dynamics7 are encoded in a simple way in the Liouvillean. For
instance, the dynamicg has no stationary states iff has no point spectrum; it has a single
stationary state ift has a simple eigenvalue at zero.

One can argue that the resonance& abrrespond to metastable states of the sygtdimr).

B. Massless bosons at zero density interacting with a small quantum system

Our main object of interest will be Pauli—-Fierz systems at a positive density. They will be
introduced in the next section. In order, however, to understand their physical content it is appro-
priate to describe first Pauli—Fierz systems at a zero defisigther words, at zero temperatire
which we will do in this section.

Let £ be a Hilbert space associated with quantum mechanical system aKdbleta self-
adjoint Hamiltonian for this system.

Let L2(RY be the one particle bosonic space andHdie the one particle energy operator
given by the multiplication by¢| whereé e RY. The Hamiltonian & (h) of the Bose gas acts on the
symmetric(bosonig Fock spacd’(L2(RY)).

Let the interaction between systems be given by a measurable operator valued fiiiction
s &—v(€) € B(K). The following sections are based on Ref(sée also Ref. )6

The Hilbert space of the system at zero denéigro temperatuyes H=K @ I'(L4(RY)) and
the free Hamiltonian is
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Hi = K® Ip2md) + 1 ® f |ga’ (Ha(é)de,

wherea’(¢)/a(é) are the usual creation/annihilation operators of the boson of momehtiliime
interaction is given by the operator

Vi= f (O ®a () +v' () ® a(9)dé.
The full Pauli—-Fierz Hamiltonian equals

H = Hy +\V,
where A e R. To guarantee the self-adjointness bfwe can assume that(1+|&™Y)|v(&)|]? d¢
<oo,

C. Massless bosons at density  p interacting with a small quantum system

In this section we explain the notion of a Pauli-Fierz system at depsity
Suppose that we are given a measurable function

RYs £~ p(8) e [0

Let us consider the “doubled” Fock spagL?(RY @ L2(R)). The creation/annihilation operators
corresponding to the left/right?(RY) will be denoted byaf(g)/ a(é anda: (&)1a,(é), respectively.
Let us introduce the left and right Araki-Woods creation and annihilation operators

&, (9) = 1+ p(9a (&) + \p(&)a, (&),
a,1(8) =1 +p(&a(&) +\p(&a; (&),
a, (&) = \p(Hay(&) + V1 +p(Ha; (&),

a,,(8) = \p(day (9 + V1 +p(&a(d).

The subW -algebra ofB(K ® K @ T(L¥R% & L2(RY)) generated by operators of the form

A®1c® eXP<i f f(§a, (§d¢+i ff_(g)apJ(f)d&),

where A e B(K) and [|f(&)[28(¢)dé<o, will be called the Pauli-FiersV -algebra. It is in a
standard representation.
Note that the Pauli—Fierz algebra is isomorphic to the tensor product of the algebra of the
small systen3(K) and the algebra of Araki-Woods canonical commutation relations at dgnsity
The free Liouvillean is given by

Lfr==K®1®1—1®E®1+1®1®f(|g

a (Ha(9 - |&a (Ha,(9)dé;

the perturbation is

Qp==Jv(§) ®1l@a,(§dé+ hc—f(1®v_(§))®a;r(§)d§+ hc.

Assumption 4.A: If (1+]£?)(1+p(&))|[v(&)||? d¢<o holds then
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L,=Ly+AQ,

essentially self-adjoint on the intersection of the domainsgoaid Q,.
The most important class of densities is that given by the Planck law at the inverse tempera-
ture B,

pﬂ<§) = (e - 1)L,

In particular,3=« corresponds to the temperature zéxnd density zenp and the corresponding
Liouvillean is unitarily equivalent to

Hel-19H. (4.2)

Thus in this case all the information is encoded in the Pauli—Fierz Hamiltonian described in the
preceding section. One can argue that for a general, is a kind of a thermodynamical limit
4.2).

D. Analytically deformed Pauli—Fierz Liouvilleans

Pauli—Fierz Liouvilleans have continuous spectrum that covers the whole real line. They may
also have some embedded eigenvalues. In particular, a thermal Pauli—Fierz Lioutileean
whose density is given by the Planck lralways has a zero eigenvalue corresponding to a KMS
state. In general, eigenvalues of a Liouvillean are related to stationary states, therefore their study
is very important from the physical point of view.

Another physically relevant question about Pauli—Fierz Liouvilleans is whether they have
resonances and if so what is their location. They may manifest themselves as polésroaaix
or decay rates of certain correlation functions.

In order to define resonances we use the approach of Jaksic—Pillet. The first step of this
approach consists of “gluing” the “left” and “right” one-particle subspaces. This is done as fol-
lows. We use the spherical coordinatesifi and we introduce the Jaksic—Pillet gluing map

defined as
L2RY & LARY) 5 (f,,f_) — f e LAR) ® L3S, (4.2
p Y2, (pw), p>0,
f(pvw) = _ e
(- p) 4 V2f_(- pw), P=<0O.

Here,(p,») € R X "1 andS™* denotegd- 1) dimensional sphere. The canonical conjugation in
L%(R) ® L3(S™Y) is given by the complex conjugation.
If we assume that

V(O =v(=9, p&=p(-9

and introduce

o (Do) = p 4 Y2(1 + p(pw)) Y2 (pw), p>0,
o(P,w) = (- p)(d_l)lzp(pw)llzv(pw), p=0.
In the new representation, the free Liouvillean and its perturbation can be written as

Li=K®lel-19Kel+lele f pa’ (p, w)a(p, w)dp dw,
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Q, :f v, (pw) ®1®a (pw)+ v;(p,w) ® 1® a(p,w))dp dw

+ f (18v,(pow) @a (-pw) +187v,(p0) ®a-pw)dpdo

as an operator oft ® K ® Ty(LA(R) ® L3(S+Y)).
Let us make the following assumption.
Assumption 4.B: The function

Rsp—uv,p, ) e BIK,K®LAS)
extends to an analytic function in a stripm p| < 7, and
sup [ I, (o, IFoRep) <=
[imp| <o

Let i‘lvp be the generator of translations @(R) in the spectral parametes. Let S
= dl“(i‘lvp) be its second quantization. Note that for any compiex

Lfr( 77) = einsl-fre_i "= I—fr + 771®1 @ N,
whereN=dI'(1) is the number operator. Moreover, fdm 7| < 7,

Qu(7) = €7Q,e" ™

=f v,((p+7),0) ® 1@ a (p,w)dp dw+fv;((p+;),w) ® 1® a(p,w)dp dw

+f1®v_p((p+773,w)®a*(— p,w)dpdw+f1®5*p((p+n),w)®a(— p,w)dp dw.

Theorem 4.1: Assume that 4.A, and 4.B hold. Then we have the follawing

(1) There exists a unique operator-valued functigr>L () defined for0<-Im»< 7, such
that

(@ L (m=€mL,e""Sfor neR.
(b) For 0<Imun< g, n— Lf(n) is an analytic family
(© ForImz>0, (z-L,(7)" is strongly continuous up tim»=0.

(2 For and open U-C, UNspgsdL,(7) is locally independent ofy, as long as
UNspsdL,(7))=0.

If we assume thadim K <, then for0<-Im#< 7, there exists\,> 0 such that forf\ | <\, the
following statements hold:

(3 sp.,(n) C{zeC : Imz=<0},
(4) There exists & 0 such that

Shsskp(7) C{z € C 1 Imz< - |Im7|(1 -c[\])].
(5 Real eigenvalues of L#) are semisimple and
SpL, =spL,(7) NR.

So real discrete eigenvalueslof(») are semisimple, independent pfand coincide with the
embedded eigenvalues bf. The nonreal discrete eigenvalueslof»), which are called reso-
nances or metastable states, are also independepnbuof they do not have to be semisimple.
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E. LSO for Pauli—Fierz Liouvilleans

In this section we indicate how one can apply the method described in our paper to an
analytically deformed Pauli—Fierz Liouvillean. We will see that many objects, including the LSO,
do not depend on the parameter of deformatipror depend rather mildly.

It is easy to see thdt NspL;(#) is an isolated subset of §p(7) equal to

SqK@ 1_1®E):{kl_k2: kl7k2 € SpK}

The corresponding spectral projection equals the orthogonal projectiomvgéz) Q, whereQ)
is the Fock vacuum. Note that it does not dependrnodenote this projection by®. Clearly,

E=1"L;(%) does not depend on either and can be identified witk® 1-1® K.
We can apply the method developed in this paper to the opetgtop =L (7)+\Q,(7)
obtaining the LSO, which again does not dependpon

L= 2 LEQ(nEl” - L (7)) QP (n)1dE).
eespE)
One can computé&, from the undeformed Liouvillean as well,
[,=lim ¥ 1E)QV(e+i €)1 - L) QU 1(E). 4.3
€\OeespE)

Note that(4.3) coincides with the definition of LSO contained in Ref. 7.
One can also compute the project@gs) and p,(7). They depend om, but in a rather
controlled way, they are analytic functions gffor satisfyingse R,

Pe(7) = €5e( 7+ 9SS, pom(m) = €5 m(m+9)eS.

ACKNOWLEDGMENTS

The authors were partly supported by the Postdoctorial Training Program HPRN-CT-2002-
0277 and by the Komitet BadaNaukowych(Grant Nos. SPUB127 and 2 P0O3A027)25

'Bach, V., Frohlich, J., and Sigal, I., “Convergent renormalization group analysis for non-selfadjoint operators on Fock
space,” Adv. Math.137, 205(1998.
2Bach, V., Frohlich, J., and Sigal, 1., “Spectral analysis for systems of atoms and molecules coupled to the quantized

radiation field,” Commun. Math. Phy207, 249 (1999.

3Brattelli, 0., and Robinson, D. W., Operator algebras and quantum statistical mechanics, Vol. 1, @mtieder-Verlag,
Berlin, 1987.

*Davies, E. B., “Markovian master equations,” Commun. Math. PI3@.91 (1974.

SDavies, E. B.One Parameter Semigrougcademic, New York, 1980

SDereziiski, J., and Jakéj V., “Spectral theory of Pauli-Fierz operators,” J. Funct. Ar80, 243 (2002).

"Derezhski, J., and Jakj V., “Return to equilibrium for Pauli-Fierz systems,” Ann. Henri Poincae739 (2003.
8Dereziiski, J., and Jaksj V., “On the nature of the Fermi golden rule for open quantum systems,” J. Stat. Ptfy<l11
(2004.

®Dereziiski, J., Jak&, V., and Pillet, C.-A., “Perturbation theory &% -dynamics, Liouvilleans and KMS-states,” Rev.
Math. Phys.5, 447 (2003.

10Gohberg, I., Goldberg, S., and Kaashoek, M. Blasses of Linear Operator@irkhduser, Basel, 1993Vol. 2.

HKato, T., Perturbation Theory for Linear Operator€nd ed.(Springer-Verlag, Berlin, 1976

12Jakst, V., and Pillet, C.-A., “On a model for quantum friction Il: Fermi’s golden rule and dynamics at positive
temperature,” Commun. Math. Phy&76, 619 (1996.

13Jakst, V., and Pillet, C.-A., “On a model for quantum friction 1ll: Ergodic properties of the spin-boson system,”
Commun. Math. Phys178 627 (1996.

14 Jakst, V., and Pillet, C.-A., “Mathematical theory of non-equilibrium quantum statistical mechanics,” J. Stat. RIgs.
787 (2002.

15Jakst, V., and Pillet, C.-A., Non-equilibrium steady states of finite quantum systems coupled to thermal reservoirs
Commun. Math. Phys226 131(2002.

6Reed, M., and Simon, BMethods of Modern Mathematical Physics, IV. Analysis of Operatacademic, London,
1978.

Downloaded 23 Jul 2010 to 193.0.85.159. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



