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INTRODUCTION

Bogoliubov Hamiltonians formally given by

+5 [ o6.€hatags + 5 [ g6, agagrs + c

Van Hove Hamiltonians formally given by

H = /h(f)a§a§d§+/§(§)a§d§+/z(§)a§df+6.

a’g /a¢ are bosonic creation/annihilation operators, h()
is positive, c is a constant, which can be infinite.

When does the above expression define a self-adjoint
operator on a bosonic Fock space?
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FORMALISM OF SECOND QUANTIZATION

1-particle Hilbert space: Z.
O
Bosonic Fock space: ['4(Z) .= & QIZ.

n=0
Vacuum vector: Q) =1¢ ®Z = C.
IfVe®!Z &cw!"Z, then we define the symmetric

tensor product
U Rsd =0, Vb c """z,

where Oq is the symmetrizing operator.



Creation and annihilation operators

For z € Z we define the creation operator
()0 =vn+1z2QsV, ¥erlZ,

and the annihilation operator a(z) := (a*(2))".

Traditional notation: identify Z with L?(Z) for some
measure space (=,d¢). If 2z equals a function
=3¢ 2(£), then:

)= [ dQais, alz) = [=Qags



2-particle creation and annihilation operators

For g € ®§Z we define the 2-particle creation operator

(g =/ (n+2n+1)gs V¥, VeERLZ,

and the annihilation operator a(g) = a*(g)*.

Traditional notation: if g equals a function g(¢,&’):

(9) = [ 9(6.€)atazdeds’s  alg) = [ 96, acagacas




Second quantization

For an operator ¢ on Z we define the operator ['(¢) on
['s(Z) by

:q@...(@q.

I’
(D] gz
For an operator i on Z we define the operator dI'(h)

on [ (Z) by

dr(h)| =heln-Ue . . j-D®gp

RNZ

Traditional notation: If h is the multiplication opera-
tor by h(£), then

dT'(h) = / h(€)agagdé.

Note the identity ['(elt?) = eltdl(h),




VAN HOVE HAMILTONIANS

We assume that h(&) > 0.

H = dl'(h)+a"(2) + a(z) + ¢
— /h(f)azagdﬁ + /E(ﬁ)agdf + /z(f)azdf + c.

Note that ¢ can be infinite.

When does the above expression define a self-adjoint
operator?



Projective 1-parameter unitary group

> 2(€)[?
/h IR + /h i<

we can define a family of unitary operators
V(t) .= D(eth) exp (a*((l _ Tithyp=1y) hc) .

One can check that
V(t1)V (t2) = clt1,82)V (1 + t2).

When




Rigorous definition of a van Hove operator

For an operator B € B(['y(Z)) define
Bt (B) = V(t)BV(t)*,

Then ( is a 1-parameter group of x-automorphisms of
the algebra of bounded operators on the Fock space.
continuous in the strong operator topology.

By a general theorem, there exists a self-adjoint oper-
ator H such that

ﬁt(B> _ eitHBe_itH.

H is definded uniquely up to an additive constant. We
call it a van Hove Hamiltonian. Formally it is given
by the expression from one of previous slides.



Type I van Hove Hamiltonians

Theorem. Let

2 !Z(§)|2d |
/h(§)<1 €)1+ /h(§)>1 h(¢) e
Then

Ui(t) .= exp (1/ !z(§>|23m thfg(f_) th@df) V(t)

is a strongly continuous unitary group.

We define the type I van Hove operator by
Up(t) = AT
Formally,

H| = /h(§)a§a§d§+/E(ﬁ)agdf—k/z(f)agdf.



Properties of type I van Hove Hamiltonians

It satisfies () € DomH, (Q2|H[2) =0,

!Z |2

inf spH7 =

(which can be —o0).
Perturbation is an operator iff [ |z(£ (€)]2dé < oo, other-
wise it is a form.



Type II van Hove Hamiltonians

Theorem. Let

2(8))? 2(8)]2
d d :
/h<g><1 h(€) . //z<g)z1 h2(§) S

Uni(t) —eXp< /!Z Qsmth )V(t)

is a strongly continuous umtary group.

Then

We define the type 1II van Hove operator by
Upp(t) = eI

Formally,

o= [0 (o 29) (o 29



Properties of type 1II van Hove Hamiltonians

It satisfies inf spHy; = 0.
The dressing operator
2z 2

U :=exp (—a*(ﬁ) +- a(ﬁ))

i1s well defined iff
2(6)|?
/ 3 B dé < o0.

It intertwines Hj; and the free van Hove Hamiltonian:

HH — U/h(f)agagdf U*.

Hence, in this case Hj; has a ground state. Otherwise
Hi1 has no ground state.




Both H; and Hpj are well defined iff
(&)
d
[ g <
!/V@W
h(¢)

2P . _ 2P
tﬂ@dmadfé&glh@>ﬁ’

then neither H; nor Hiyj is well defined.

and then

d¢ < oc.

HH = HI +
If
2




Jusa 2P < o0

Jpoa |17 = 00
2

1217 ER
N Jis1 5r <0
f l2? < 00 Hy; defined
h<l h? gr. st. exists
B 00 H7 defined
h<1 |h‘22 1
121~ no gr. st.
S 7 <0 S
EE
hol o = OO unbounded
fh<1 |2]? < o0 from below
H; defined H; defined ) .
. . infinite
pert. 1s pert. 1s not . .
renormalization

an operator

an operator




Massless scalar QFT with a linear perturbation
Infrared problem in various dimensions.

H = % / : (7T<£E)2 + (ngb(x))Q) dx + / q(x)o(x)dx.
“Total charge”: [ q(z)dz.
Dimension of configuration space | Nonzero total charge |Zero total charge
d=1 Hamiltonian undefined (2)
d=2 (3) (1)
d=3 (2) (1)
d>4 (1) (1)

(1), (2), (3) denote the three kinds of the infrared condition.



Massive scalar QFT
with a point-like linear perturbation
Ultraviolet problem in various dimensions.

1

= / ; (ﬂx)? + (Vao(z))” + ngb(x)Q) dx + ¢(0).

Dimension of configuration space
d=1 (2)
d=2 (3)
d>3 Hamiltonian undefined

(1), (2), (3) denote the three kinds of the ultraviolet condition.




SCATTERING THEORY OF VAN HOVE
HAMILTONIANS

General scattering theory — the standard approach

We are given two self-adjoint operators: Hy and H.
The wave operators: OF = s— limy s+ oo eltdl g—itty
They satisfy QT H;, = HQT and are isometric.

If RanQ)™ = Ran{?~, then the scattering operator

S =00
is unitary and HyS = SH).



General scattering theory — the Abelian approach

Define the Abelian unrenormalized wave operators:

0

OF = s— lim 26/ o 26l FIH (FitHo g
X0 Jo

They satisfy QljfrHO = H er but do not have to be iso-

metric

Let ZT = Q1*Q% have a zero kernel. Then we can

define the renormalized wave operators

+ + 7\ —1/2
O = 05(Z27) / :
They also satisfy QF Hy = HQE and are isometric.

If RanQ2 = Ran{), then the renormalized scattering

operator
+¥()—
St = m Sl

is unitary and HySi, = SinH)p.



Scattering theory for van Hove Hamiltonians
Let

Hy = /h(ﬁ)agagd&
e 2
H = /h(§)a§a§d§+/E(ﬁ)agdf—k/z(f)agdﬁJr/‘h(é))| dé.

Suppose that 7 has an absolutely continuous spectrum
and the assumption for the existence of Hpj is satisfied.
Let U be the dressing operator and

_ 2O
Z—eXp/ (e dé.

Then the Abelian wave operators exist, but after renor-
malization the scattering operator is trivial:

Oee — AN O — 0 S —




BOGOLIUBOV HAMILTONIANS

We assume that A({) > 0. We want to interpret the
following formal expression

H = [ h(§)agagdg
1

+ [ ole.€atagac + 3 [ 906 agagds + o

as a self-adjoint operator.



Classical phase space of a bosonic system

Z denotes the space complex conjugate to Z.
The real vector space

Y ={(2,2) : 2€ ZYCZZ.
equipped with a natural symplectic form
(21, Z1)w(29, Z2) = Im(21|22).

has the meaning of the dual of the classical phase space
of the quantum system described by the bosonic Fock
space ['4(Z).



Canonical commutation relations

For y = (2,Z) € V we define the corresponding
Weyl operator

W(y) = eia*(z)ﬂa(z).
Note that T (y1)W (y2) = ¢ 31217 (y; + yo).

A map r on ) is called symplectic if

(ry1)w(rys) = y1wys.

For such r,

W (ry )W (rys) = e 192 T (r(y; + ).



Matrix represention of symplectic maps

Every linear map 7 on )Y can be uniquely extended to
a complex linear map on Z ¢ Z and written as

=[5

p’p—qq=1, —-pq+¢p=0,
pp —qq" =1, @p" —pq" =0.

We have the decomposition

=] [0 o]

with symmetric operators d := ¢p 1, ¢ .= p~ L.

r is symplectic iff



1-parameter symplectic groups
If h is a self-adjoint operator on Z
h=h"

and g is a bounded symmetric operator from Z to Z

then

is a 1-parameter symplectic group.
Clearly, in finite dimension every symplectic group is
of this form.



Classical quadratic Hamiltonians

Consider a classical quadratic Hamiltonian
H(E, Z) = /h(§)§§z§d§
1 1
b [ o6& zezeagae’ + 5 [ gl6 €zezas’

It is a function on the classical phase space

V={F2) : 2€¢2}CZ®Z.



Bogoliubov Hamiltonians for a finite number
of degrees of freedom

Suppose that dimZ < oo. The Weyl quantization of
H(Z, z) equals

1 1
H = 5/h(f)a§a§d§+§/h(§)a§a§df
1 I\ _* % / 1 — / /
b [ €€ atazdsa’ + 5 [ 9(6.¢agagus

and corresponds to the choice

1 1
o= 5 [ e.epae =

H is essentially self-adjoint on finite particle vectors.
We have
|

eitH _ det(p(t))_? e—%a*(d(t)) F(p(t)*—l) e%a(c(t)) .



Metaplectic group

Operators of the form
det p—% e—%a*(d) F(p*—l) e%a(c)

are closed wrt the multiplication and consitute the
metaplectic group Mp()).

They are well defined also if dim Z = oo provided that
p — 1 is trace class, or equivalently, »r — 1 is trace class.
Operators of this form are also closed wrt multiplica-
tion. Thus, as noticed by , the metaplectic
group can be defined also in the case of an infinite
number of degrees of freedom.



Bogoliubov x-automorphisms

Shale Theorem. Let r be symplectic. There exists a
unitary U, which we call a Bogoliubov implementer,
such that

UW(y)U* =W(ry), yel,
iff Trq™q < oo.
The map B(['s(Z)) 3 A — UAU™, where U is a Bogoli-
ubov implementer, will be called a
Bogoliubov automorphism. For a given r, a Bogoli-

ubov implementer is determined up to a phase. There

exists a distinguished choice, denoted U,,:, satisfying
(2|Upatf2) > 0, given by

Unat = | det pp*| =1 20 (@ p(p=1y ez0(c)



1-parameter groups
of Bogoliubov x-automorphisms

We say that a strongly continuous 1-parameter group
of symplectic transformations

tHT@_[Mﬂﬂ@]

q(t) p(t)
is implementable iff there exists a strongly continuous
1-parameter unitary group t — U(t¢) such that

UW (U™ (t) = W(r(t)y), ye .
If U(t) is a 1-parameter unitary group satisfying the

above condition, then H := —i%U (t)‘t_o will be called a
Bogoliubov Hamiltonian. N

Theorem. t — r(t) is implementable iff Trq*(t)q(t) < oo
and lim;_, Trq™(t)q(t) = 0.



Type I Bogoliubov Hamiltonians

Let t — r(t) be implementable. We say that it is of

type I iff
d
—p(t = ih

p(t) e_itﬁ —1 is trace class and
Ip(t) e —1]|; — .
Theorem. In the type I case
- 1 1 « |
Ui(t) := det(p(t) e )72 e 20 1A P (p(t) 1) e20(cA)
is a 1-parameter group.

A type I Bogoliubov Hamiltonian is defined as

d
H; = —i—=Uj(t)

dt t=0



Type 11 Bogoliubov Hamiltonians

Let t — r(t) be implementable. We say that it is of
type 1II iff the implementing 1-parameter group has a
generator, which is bounded from below. In this case
we define the type II Hamiltonian to be

d
Hyp = —1=Uy(t .
= =i Un(t)|,

such that infspHy; =0 and Up(t) implements 7(t).



Type I and II Bogoliubov Hamiltonians
in a finite number of degrees of freedom

Let Z be finite dimensional.
Then r(t) is always type I and

Hy = dT(h) + 2a"(g) + 5alg)

r(t) is type II iff its classical Hamiltonian is positive

definite
_ __ 1 _
zhz + §zgz + 57;92 >0,

and then

1 B =0 T — T /2 h 0
Hy = Hy— -Tv < — 99 99) _<Oh>

4 hg—gEhQ—gg




Essential self-adjointness
of type I Bogoliubov Hamiltonians

Theorem. Let g be Hilbert-Schmidt. Then

1 1
Hy =dI'(h) + 561*(9) + 561(9)
is essentially self-adjoint on the algebraic Fock space

over Dom(h) and ™1 implements r(t).



Bogoliubov Hamiltonians defined
by the relative boundedness technique

Theorem. Let h be positive,
|~ 2@hY2 gl < 1,
—1/2
172 /g”B(ZZ) < 00.

Then 1a*(g)+3a(g) is relatively dI'(h)-bounded with the
bound less than 1. Therefore, in this case both the
type 1 and type 1I Bogoliubov Hamiltonians are well

defined.



Case of commuting i and g

Suppose that gh = hg. Without loss of generality we
can assume that they are diagonal in a common or-

thonormal basis e, e9,...:
hep = hpen, hn €R;  gép = gnen, gn € C.

Theorem.
(1) r(t) is well defined iff for some b, a < 1, |gn| < ahy+b.

2
(2) r(t) is implementable iff Z |g”‘

(3) r(t) is type I iff Z 1‘1”}!

2
(4) r(t) is type II iff > h‘leh? < 00.



Conclusion

Infrared problem. There exist implementable
1-parameter symplectic groups, which are not type
II, even though their classical Hamiltonian is positive
definite. Thus there exist Bogoliubov Hamiltonians
unbounded from below with a positive classical sym-
bol.

Ultraviolet problem. There exist implementable
1-parameter symplectic groups, which are not type I.
This means that in order to express them in terms of
creation and annihilation operators one needs to add
an infinite constant — perform an appropriate renor-
malization.

Open question. Give sufficient and necessary condi-
tions for the symplectic group r(¢) to be of type II.



