
C∗-algebras

Jan Dereziński
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1 C∗-algebras

1.1 ∗-algebras

Let A be an algebra. A mapping A 3 A 7→ A∗ ∈ A is an antilinear involution iff

A∗∗ = A, (AB)∗ = B∗A∗, (αA+ βB)∗ = αA∗ + βB∗.

An algebra with an involution is called a ∗-algebra.
Let A be a ∗-algebra. A ∈ A is invertible iff A∗ is, and (A−1)∗ = (A∗)−1.
A subset B of A is called self-adjoint iff B ∈ B ⇒ B∗ ∈ B.
Let A, B be ∗-algebras. A homomorphism π : A → B is called a ∗-homomorphism iff π(A∗) = π(A)∗.

1.2 C∗-algebras

A is a C∗-algebra if it is a Banach algebra equipped with an involution ∗ satisfying

‖A∗A‖ = ‖A‖2. (1.1)

‖A∗‖ = ‖A‖. (1.2)

We can weaken the conditions (1.1) and (1.2) in the definition of a C∗ -algebra as follows:

Theorem 1.1 If A is a Banach algebra with an involution ∗ satisfying

‖A‖2 ≤ ‖A∗A‖, (1.3)

then it is a C∗-algebra.

Proof. Clearly,
‖A∗A‖ ≤ ‖A∗‖‖A‖. (1.4)

Hence, by (1.3), ‖A‖ ≤ ‖A∗‖. Using A∗∗ = A, this gives ‖A∗‖ ≥ ‖A‖. Hence (1.2) is true.
(1.2) and (1.4) give ‖A∗A‖ ≤ ‖A‖2. This and (1.3) imply (1.1). 2

Let A be a fixed C∗-algebra. A subset of A is a C∗-algebra iff it is a self-adjoint closed algebra. If
B ⊂ A, then C∗(B) will denote the smallest C∗-subalgebra in A containing B.

Let H be a Hilbert space. Then B(H) is a C∗-algebra. A C∗-algebra inside B(H) is called a concrete
C∗-algebra.

A concrete C∗-algebra is called nondegenerate if for Φ ∈ H, AΦ = 0 for all A ∈ A implies Φ = 0.
If A is not necessarily non-degenerate, and H1 := {Φ ∈ H : Ax = 0, A ∈ A}, then A restricted to

H⊥1 is nondegenerate.

Theorem 1.2 If 1 ∈ A, then ‖1‖ = 1.

Proof. By the uniqueness of the identity, we have 1 = 1∗. Hence ‖1‖2 = ‖1∗1‖ = ‖1‖. 2
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1.3 Special elements of a ∗-algebra

A ∈ A is called normal if AA∗ = A∗A. It is called self-adjoint if A∗ = A. Asa denotes the set of self-adjoint
elements of A

P ∈ A is called a projection if it is a self-adjoint idempotent. P (A) denotes the set of projections of
A.

Theorem 1.3 Let P ∗ = P and P 2 = P 3. Then P is a projection.

U ∈ A is called a partial isometry iff U∗U is a projection. If this is the case, then UU∗ is also a
projection. U∗U is called the right support of U and UU∗ is called the left support of U .

U is called an isometry if U∗U = 1.
U is called a unitary if U∗U = UU∗ = 1. U(A) denotes the set of unitary elements of A.
U is called a partial isometry iff U∗U and UU∗ are projections.
We can actually weaken the above condition:

Theorem 1.4 Let either U∗U or UU∗ be a projection. Then U is a partial isometry.

1.4 Spectrum of elements of C∗-algebras

Theorem 1.5 Let A ∈ A be normal. Then

sr(A) = ‖A‖.

Proof.
‖A2‖2 = ‖A2∗A2‖ = ‖(A∗A)2‖ = ‖A∗A‖2 = ‖A‖4.

Thus ‖A2n‖ = ‖A‖2n

. Hence, using the formula for the spectral radius of A we get ‖A2n‖2−n

= ‖A‖. 2

Theorem 1.6 (1) Let V ∈ A be isometric. Then sp(V ) ⊂ {|z| ≤ 1}.
(2) U ∈ A is unitary ⇒ U is normal and sp(U) ⊂ {z : |z| = 1}.
(3) A ∈ A is self-adjoint ⇒ A is normal and sp(A) ⊂ R.

Proof. (1) We have ‖V ‖2 = ‖V ∗V ‖ = ‖1‖ = 1. Hence, sp(V ) ⊂ {|z| ≤ 1}.
(2) Clearly, U is normal.
U is an isometry, hence sp(U) ⊂ {|z| ≤ 1}.
U−1 is also an isometry, hence sp(U−1) ⊂ {|z| ≤ 1}. This implies sp(U) ⊂ {|z| ≥ 1}.
(3) For |λ−1| > ‖A‖, 1+iλA is invertible. We check that U := (1− iλA)(1+iλA)−1 is unitary. Hence,

by (2).⇒, sp(U) ⊂ {|z| = 1}. By the spectral mapping theorem, sp(A) ⊂ R. 2

Note that in (2) and (3) we can actually replace ⇒ ⇔, which will be proven later.

1.5 Dependence of spectrum on the Banach algebra

Theorem 1.7 Let B be a closed subalgebra of a Banach algebra A and 1, A ∈ B.
(1) rsB(A) is an open and closed subset of rsA(A) containing a neighborhood of ∞.

(2) The connected components of rsA(A) and of rsB(A) containing a neighborhood of infinity coincide.

(3) If rsA(A) is connected, then rsA(A) = rsB(A).
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Proof. rsB(A) is open in C. Hence also in rsA(A).
Let z0 ∈ rsA(A) and zn ∈ rsB(A), zn → z0. Then (zn − A)−1 → (z0 − A)−1 in A, hence also in B.

Therefore, z0 ∈ rsB(A). Hence rsB(A) is closed in rsA(A). This proves 1.
(2) and (3) follow immediately from (1). 2

If A ∈ A, define B̃an(A) to be the closed algebra generated by Ãlg(A).

Lemma 1.8 Let U ⊂ C be open. Then there exists a countable family of open connected sets {Ui : i ∈ I}
such that U = ∪i∈IUi and U cl

i ∩ Uj = ∅, i 6= j. Besides, Ui are isolated in U .

Proof. For z1, z2 ∈ U we will write z1 ∼ z2 iff there exists a continuous path in U connecting z1 and z2.
This is an equivalence relation. Let {Ui : i ∈ I} be the family of equivalence classes. Clearly, Ui are
open (and hence also open in the relative topology of U).

Suppose that z0 ∈ U cl
i ∩Uj . Then there esists ε > 0 with K(z0, ε) ⊂ Uj . There exists z1 ∈ Ui∩K(z0, ε).

Clearly, z1 ∼ z0. Hence Ui = Uj .
Thus U cl

i ∩ U = Ui. Thus it is closed in the relative topology of U . 2

The sets Ui described in the above lemma will be called connected components of U . Clearly, if C\U
is compact, then one of them is a neighborhood of infinity.

Theorem 1.9 (1) If rsA(A) is connected, then B̃an(A) = Ban(A, 1).

(2) If rsA(A) is disconnected, choose one point λ1, λ2, . . . in every connected component of rsA(A) that
does not contain a neighborhood of infinity. Then B̃an(A) = Ban(A, (λ1 −A)−1, (λ2 −A)−1, . . .).

Example 1.10 Let U ∈ L2(N), Uen := en+1. Consider the algebras B := Ban(1, U), A = Ban(1, U, U∗).
Then

spBU = {|z| ≤ 1}, spAU = {|z| = 1},

because

(z − U)−1 = −
∞∑

n=0

znU∗(n+1).

1.6 Invariance of spectrum in C∗-algebras

Lemma 1.11 Let A be invertible in A. Then A−1 belongs to C∗(1, A).

Proof. First assume that A is self-adjoint. Then spA(A) ⊂ R. Hence rsA(A) is connected. But
C := C∗(1, A) = Ban(1, A). Hence, by Theorem 1.7,

rsC(A) = rsA(A) (1.5)

A is invertible iff 0 ∈ rsA(A). By (1.5), this means that 0 ∈ rsC(A) and hence A−1 ∈ C.
Next assume that A be an arbitrary invertible element of A. Clearly, A∗ is invertible in A and

(A∗)−1 = (A−1)∗. Likewise, A∗A is invertible in A and (A∗A)−1 = (A∗)−1A−1. But A∗A is self-adjoint
and hence (A∗A)−1 ∈ C∗(1, A∗A) ⊂ C∗(1, A). Next we check that A−1 = (A∗A)−1A∗. 2

Theorem 1.12 Let B ⊂ A be C∗-algebras and A, 1 ∈ B. Then spB(A) = spA(A).

Proof. By Lemma 1.11, spA(A) = spC(A), where C := C∗(1, A). But C ⊂ B ⊂ A. 2

Motivated by the above theorem, when speaking about C∗-algebras, we will write sp(A) instead of
spA(A).
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1.7 Holomorphic spectral theorem for normal operators

If K is a compact subset of C let Chol(K) be the completion of Hol(K) in C(K).

Theorem 1.13 Let A be unital and A ∈ A be normal. Then there exists a unique continuous isomor-
phism

Chol(sp(A)) 3 f 7→ f(A) ∈ C∗(1, A) ⊂ A,

such that
(1) id(A) = A if id(z) = z.

Moreover, we have

(2) If f ∈ Hol(sp(A)), then f(A) coincides with f(A) defined in (??).

(3) sp(f(A)) = f(sp(A)).

(4) g ∈ Chol(f(sp(A))) ⇒ g ◦ f(A) = g(f(A)).

(5) ‖f(A)‖ = sup |f |.

Remark 1.14 The previous theorem will be improved in next section so that the functional calculus will
be defined on the whole C(spA).

In the case A is self-adjoint or unitary, C(spA) = Chol(spA), so in this case we do not need the
Gelfand theory.

1.8 Fuglede’s theorem

Theorem 1.15 Let A,B ∈ A and let B be normal. Then AB = BA implies AB∗ = B∗A.

Proof. For λ ∈ C, the operator U(λ) := eλB∗−λB = e−λBeλB∗
is unitary. Moreover, A = eλBAe−λB .

Hence
e−λB∗

AeλB∗
= U(−λ)AU(λ) (1.6)

is a uniformly bounded analytic function. Hence is constant. Differentiating it wrt λ we get [A,B∗] = 0.
2

2 Adjoining a unit

2.1 Adjoining a unit in an algebra

Let A be an algebra. Introduce the algebra Aun equal as a vector space to C⊕ A with the product

(λ,A)(µ,B) := (λµ, λB + µA+AB).

Then Aun is a unital algebra and A is an ideal of Aun of codimension 1.
If A is non-unital, B is unital and π : A → B is a homomorphism, then there exists a unique extension

πun : Aun → B such that π(1) = 1.
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2.2 Unit in a Banach algebra

Let A be a unital Banach algebra. Then ‖1‖ ≥ 1. Besides, if λ is the regular representation, then

‖A‖ ≤ ‖λ(A)‖‖1‖ ≤ ‖1‖‖A‖.

Thus the norms ‖A‖ an ‖λ(A)‖ are equivalent. Note also that ‖λ(1)‖ = 1.
This means, that if A is a unital Banach algebra, then by replacing the initial norm with the equivalent

norm λ(A) we can always assume that ‖1‖ = 1. We will make always this assumption.

Theorem 2.1 If A is a unital Banach algebra such that ‖1‖ = 1, then the regular representation A 3
A 7→ λ(A) ∈ L(A) is isometric.

Theorem 2.2 Let A be a Banach algebra. Equip Aun with the norm

‖λ+A‖ := ‖A‖+ |λ|.

Then Aun is a Banach algebra and A → Aun is an isometry.

Note, however, that there may be other (even more natural) norms on Aun extending the norm on A.

Theorem 2.3 Let A be a unital Banach algebra. Then 1 is an extreme point of the unit ball (A)1.

Proof. A can be isometrically embedded in B(V), where V is a Banach space. Hence the theorem follows
from the fact that if V is a Banach space, then 1 is an extreme point in (B(V))1. 2

2.3 Approximate units

Let A be a normed algebra. If A does not have a unit, then we can use the so-called approximate unit.
We say that a net (Eα) ⊂ (A)1 is a left appproximate unit in A, if for any A ∈ A, ‖EαA−A‖ → 0.
Let A be a Banach algebra without a unit. In Aun we define

‖λ+A‖un := sup
‖B‖≤1

‖λB +AB‖.

Clearly, ‖ · ‖un is a seminorm satisfying

‖(λ+A)(µ+B)‖un ≤ ‖(λ+A)‖un‖(µ+B)‖un.

Theorem 2.4 If A possesses an approximate unit, then ‖ · ‖un is a norm and A → Aun is an isometry.
Moreover, the regular representation A 3 A 7→ λ(A) ∈ L(A) is isometric.

Recall that if I is a closed ideal in a Banach algebra A, then

‖A+ J‖ := inf{||A+ I‖ : I ∈ J}.

Theorem 2.5 Suppose that J is aclosed ideal in a Banach algebra A and J possesses a left approximate
unit (Eα) such that

‖1− Eα‖ ≤ 1. (2.7)

Then the norm in A/J is given by

‖A+ J‖ = lim
α
‖(1− Eα)A‖.
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Proof. Let A ∈ A and I ∈ J. Using first ‖EαI − I‖ → 0 and then ‖1− Eα‖ ≤ 1, we get

lim sup
α

‖(1− Eα)A‖ = lim sup
α

‖(1− Eα)(A+ I)‖ ≤ ‖A+ I‖.

Hence
lim sup

α
‖(1− Eα)A‖ ≤ inf{‖A+ I‖ : I ∈ J}.

Moreover,
lim inf

α
‖(1− Eα)A‖ ≥ inf ‖(1− Eα)A‖

≥ inf{‖A+ I‖ : I ∈ J}.
2

2.4 Adjoining a unit to a C∗-algebra

Theorem 2.6 Let A be an C∗-algebra. Then the algebra Aun with the norm given by

‖λ+A‖un := sup
B 6=0

‖λB +AB‖
‖B‖

,

and the involution (λ+A)∗ := (λ+A∗) is a C∗-algebra.

Proof. Step 1. Recall from the theory of Banach algebras that ‖·‖un is a seminorm on Aun that satisfies

‖(λ+A)(µ+B)‖un ≤ ‖λ+A‖un‖µ+B‖un.

Step 2. We show that ‖ · ‖un coincides on A with ‖ · ‖. In fact, ‖A‖un ≤ ‖A‖ is obvious for any
Banach algebra. The converse inequality follows by

‖A‖un ≥
‖AA∗‖
‖A∗‖

= ‖A‖.

Step 3. For any µ < 1 there exists B such that ‖B‖ = 1 and µ‖λ+A‖un ≤ ‖λB +AB‖. Then

µ2‖λ+A‖2un ≤ ‖λB +AB‖2 = ‖B∗(λ+A)∗(λ+A)B‖ ≤ ‖(λ+A)∗(λ+A)‖.

This proves
‖λ+A‖2un ≤ ‖(λ+A)∗(λ+A)‖.

2

3 Gelfand theory

3.1 Characters and maximal ideals in an algebra

Let A be an algebra.
A nonzero homomorphism of A into C is called a character. We define Char(A) to be the set of

characters of A. For any A ∈ A let Â be the function

Char(A) 3 φ 7→ Â(φ) := φ(A) ∈ C. (3.8)

Char(A) is endowed with the weakest topology such that (3.8) is continuous for any A ∈ A. Note that
thus Char(A) becomes a Tikhonov space and a net (φα) in Char(A) converges to φ ∈ Char(A) iff for any
A ∈ A, φα(A) → φ(A).

7



Theorem 3.1
A 3 A 7→ Â ∈ C(Char(A)) (3.9)

is a homomorphism. Moreover, the range of (3.9) separates points and does not vanish on every element
of Char(A).

Proof. Let A,B ∈ A, φ ∈ Char(A). Then

Â(φ)B̂(φ) = φ(A)φ(B) = φ(AB) = ÂB(φ).

If φ, ψ ∈ Char(A). If φ 6= ψ, then there exists A ∈ A such that φ(A) 6= ψ(A). Hence the range of
(3.9) separates points. 2

I is a maximal ideal if it is a proper ideal such that if K is a proper ideal containing I, then I = K.
Let I(A), MI(A) and MI1(A) denote the set of ideals, maximal ideals and ideals of codimesion 1 in A.

Clearly,
MI1(A) ⊂ MI(A) ⊂ I(A).

Theorem 3.2 (1) If φ ∈ Char(A), then Kerφ is an ideal of codimension 1.

In what follows we assume that A is unital.

(2) Let φ ∈ Char(A). Then φ(1) = 1.

(3) If I is an ideal of codimension 1, then there exists a unique character φ such that I = Kerφ.

Proof. (1) Kerφ is an ideal, because φ is a homomorphism. It is of codimension 1 because φ is a nonzero
linear functional onto C. (3) If A ∈ I and λ ∈ C we set φ(A+ λ) := λ. 2

Theorem 3.3 (1) For any φ ∈ Char(A) there exists a unique extension of φ to a character φun on
Aun. It is given by φun(λ+A) = λ+ φ(A).

(2) There exists a unique φ∞ ∈ Char(Aun) such that Kerφ∞ = A.

(3) The map
Char(A) 3 φ 7→ φun ∈ Char(Aun)\{φ∞}

is a homeomorphism.

Theorem 3.4 If A is unital and I ⊂ A is a proper ideal, then there exists a maximal ideal containing
I.

Proof. We use the Kuratowski-Zorn lemma. 2

Theorem 3.5 Let A ∈ A. Then
(1) spA(A) ⊃ {φ(A) : φ ∈ Char(A)}.
(2) Char(A) 3 φ 7→ φ(A) ∈ spA(A) is a continuous map.

Proof. If A is non-unital, then we adjoin the identity and extend all the characters to Aun.
Let φ ∈ Char(A) and φ(A) = λ. Then φ(A− λ) = 0. Hence A− λ belongs to a proper ideal. Hence

it is not invertible. Hence λ ∈ sp(A). 2

Theorem 3.6 Let A be a commutative unital algebra. Let A ∈ A be non-invertible. Then
(1) I := {AB : B ∈ A} is a proper ideal;
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(2) There exists a maximal ideal containing A;

(3) There exists φ ∈ Char(A) with φ(A) = 0.

Proof. Clearly, I is an ideal such that 1 6∈ I. This shows (1). (2) follows from Theorem 3.4. 2

Theorem 3.7 (1) Let π : A → B be a homomorphism. Then

Char(B) 3 φ 7→ π#(φ) ∈ Char(A), (3.10)

defined for ψ ∈ Char(B) by (π#ψ)(A) := ψ(π(A)), is continuous.

(2) If I is an ideal in B, then π−1(I) is an ideal in A containing Kerπ. Thus we obtain a map

I(B) 3 I 7→ π−1(I) ∈ I(A) (3.11)

(3) (3.11) maps MI(B) into MI(A).

(4) (3.11) maps MI1(B) into MI1(A).

(5) If π is surjective, then (3.11) maps I(B) bijectively onto {I ∈ I(A) : Kerπ ⊂ I}.

Proof. (1) Let (ψi) be a net in Char(B) converging to ψ ∈ Char(B). Let A ∈ A. Then

π#(ψi)(A) = ψi(π(A)) → ψ(π(A)) = π#(ψ)(A).

Hence π#(ψi) → π#(ψ). 2

We say that an algebra is simple if it has no nontrivial ideals.

Theorem 3.8 Let A be an algebra with a maximal ideal I. Then A/I is simple.

3.2 Characters and maximal ideals in a Banach algebra

Theorem 3.9 Let A be a unital Banach algebra.
(1) Let I be a maximal ideal in A. Then I is closed.

(2) Let φ be a character on A. Then it is continuous and ‖φ‖ = 1.

(3) Char(A) is a compact Hausdorff space.

(4) The Gelfand transform
A 3 A 7→ Â ∈ C(Char(A))

is a norm decreasing unital homomorphism of Banach algebras.

Proof. (1) Invertible elements do not belong to any proper ideal. But a neighborhood of 1 consists of
invertible elements. Hence the closure of any proper ideal does not contain 1.

By the continuity of operations, the closure of an ideal is an ideal. Hence if I is any proper ideal,
then Icl is also a proper ideal.

(2) Kerφ is a maximal ideal. Hence it is closed. Hence φ is continuous.
Suppose that ‖φ‖ > 1. Then for some A ∈ A, ‖A‖ < 1 we have |φ(A)| > 1. Now An → 0 and

|φ(An)| = |φ(A)|n →∞, which means that φ is not continuous.
(3) and (4) follow easily from (2). 2

Theorem 3.10 Let A be a Banach algebra.
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(1) Let φ be a character on A. Then it is continuous and ‖φ‖ ≤ 1.

(2) Char(A) is a locally compact Hausdorff space.

(3) The Gelfand transform
A 3 A 7→ Â ∈ C∞(Char(A))

is a norm decreasing homomorphism of Banach algebras.

Theorem 3.11 (Gelfand-Mazur) Let A be a unital Banach algebra such that all non-zero elements
are invertible. Then A = C.

Proof. Let A ∈ A. We know that sp(A) 6= ∅. Hence, there exists λ ∈ sp(A). Thus λ−A is not invertible.
Hence λ−A = 0. Hence A = λ. 2

3.3 Gelfand theory for commutative Banach algebras

Theorem 3.12 Let A be a commutative unital Banach algebra. Every maximal ideal in A has codimen-
sion 1. Hence the map

Char(A) 3 φ 7→ Kerφ ∈ MI(A)

is a bijection.

Proof. Let φ be a character. Then we know that kerφ has codimension 1 and hence is a maximal ideal
by Theorem 3.4.

Conversely, let I be a maximal ideal. If it has a codimension 1, then it is the kernel of a character by
Theorem 3.2. Thus it is sufficient to show that every maximal ideal has the codimension 1.

Let I be a ideal of A. Then A/I is a commutative Banach algebra and π : A → A/I is a homomor-
phism. Assume that the codimension of I is not 1. This means that A/I is not C. By the Gelfand-Mazur
theorem, A/I contains non-invertible elements. Every such an element is contained in a proper ideal K.
By theorem 3.7, π−1(K) is a proper ideal of A containing I. Hence I is not maximal. 2

Theorem 3.13 Let A be a commutative unital Banach algebra. For each A ∈ A,

sp(A) = {φ(A) : φ ∈ Char(A)}.

Hence
sr(A) = sup{|Â(φ)| : φ ∈ Char(A)} = ‖Â‖.

Proof. The inclusion ⊃ was proven in Theorem 3.5.
Let z ∈ sp(A). Then (z − A) is not invertible. Hence there exists a maximal ideal containing z − A.

Therefore, exists φ ∈ Char(A) such that φ(z −A) = 0. Hence z = φ(A) = Â(φ). 2

Theorem 3.14 Let A be a commutative unital Banach algebra. Let A ∈ A. The following conditions
are equivalent:
(1) A belongs to the intersection of all maximal ideals;

(2) For all φ ∈ Char(A) we have φ(A) = 0

(3) Â = 0;

(4) sr(A) = 0;

(5) lim sup ‖An‖1/n = 0.
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The set of A ∈ A satisfying the conditions of Theorem 3.14 is called the radical of A. It is a closed
ideal of A.

Theorem 3.15 Let A be a unital Banach algebra. Let A ∈ A. Set C := B̃anA(A), (which is a unital
commutative Banach algebra). Recall that spC(A) = spA(A). Recall also that we have the homomorphisms

Hol(spA(A)) 3 f 7→ f(A) ∈ C, (3.12)

C 3 B 7→ B̂ ∈ C(sp(A)), (3.13)

where Ĉ is the Gelfand transform of C with respect to the algebra C. Then the following holds:
(1) For f ∈ Hol(spA(A)), φ ∈ Char(C),

f̂(A)(φ) = φ(f(A)) = f(φ(A)).

In other words, if we apply (3.12) and then (3.13), we obtain the identity.

(2) The following map is a homeomorphism:

Char(C) 3 φ 7→ φ(A) ∈ spC(A) = spA(A). (3.14)

Thus spA(A) can be identified with Char(C).

Proof. (1) Let φ ∈ Char(C) and z ∈ C. Then φ(z−A) = z−φ(A). Hence, φ
(
(z −A)−1

)
= (z−φ(A))−1,

for z ∈ rsA. But the span of (z −A)−1 is dense in C and φ is continuous.
(2) If φ1, φ2 ∈ Char(C) and φ1(A) = φ2(A), then, by (1), φ1 = φ2 on the range of (3.12), which is

dense in C. Hence φ1 = φ2 on C. Therefore, (3.14) is injective. We already know that it is continuous
and surjective. A continuous bijection on a compact Hausdorff space is always a homeomorphism. 2

Recall that if X is a compact Hausdorff space, A is Banach algebra and γ : C(X) → A a homomor-
phism, we defined the spectrum of γ as

spγ := ∩
F∈Kerγ

F−1(0).

The following theorem gives the relationship between the above definition and the Gelfand theory.

Theorem 3.16 Let X, A and γ be as above. Identify Char(C(X)) with X. Let γ̃ be γ, where we restrict
the target to γ(C(X)). Let γ̃# be defined as in (3.10). Then

spγ = γ̃#(Char(γ(C(X))))

3.4 Gelfand theory for commutative C∗-algebras

Theorem 3.17 Let A be a C∗-algebra and φ a character on A. Then φ is a ∗-homomorphism and
‖φ‖ = 1.

Proof. Adjoin the unit if needed. Let A = A∗. Let φ̃ := φ
∣∣∣
C∗(1,A)

. Then φ̃ is a character on the

commutative C∗-algebra C∗(1, A). Hence φ̃(A) ∈ spA ⊂ R. Thus φ(A) ∈ R.
Let A ∈ A be arbitrary. Then ReA := 1

2 (A+A∗) and ImA := 1
2i (A

∗
A) are self-adjoint. Hence, φ(ReA),

φ(ImA) ∈ R. By linearity, this implies
φ(A∗) = φ(A). (3.15)

2
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Theorem 3.18 Let A be a unital commutative C∗-algebra. Then the Gelfand transform

A 3 A 7→ Â ∈ C(Char(A))

is a ∗-isomorphism.

Proof. Step 1 We already know that it is a norm-decreasing homomorphism by Theorem 3.9.
Step 2 Using (3.15) we see that the Gelfand transform is a ∗-homomorphism.
Step 3 Every A ∈ A is normal. Hence ‖A‖ = sr(A) by Theorem 1.5. But we know that ‖Â‖ = sr(A).

This show that the Gelfand transform is isometric.
Step 4 We know that the image of the Gelfand transform is dense in C(Char(A)) and A is complete.

We proved also that it is isometric. Hence it is bijective. 2

Theorem 3.19 (1) U ∈ A is unitary ⇔ U is normal and sp(U) ⊂ {z : |z| = 1}.
(2) A ∈ A is self-adjoint ⇔ A is normal and sp(A) ⊂ R.

Proof. ⇒ was proven before.
(1)⇐. Consider the algebra C := C∗(1, U). By the normality of U , it is commutative. Let φ ∈ Char(C).

Then φ(U∗)φ(U) = φ(U)φ(U) = 1. Hence sp(U) ⊂ {|z| = 1}. Hence U∗U = 1.
(2)⇐. Consider the algebra C := C∗(1, A). By the normality of A, it is commutative. Let φ ∈ Char(C),

Then φ(A) ∈ sp(A) ⊂ R. Hence φ(A∗) = φ(A). Hence A∗ = A. 2

Theorem 3.20 Let A be a commutative C∗-algebra. Then the Gelfand transform

A 3 A 7→ Â ∈ C∞(Char(A))

is a ∗-isomorphism.

3.5 Functional calculus for normal operators

Theorem 3.21 Let A be a unital C∗-algebra. Let A ∈ A be normal. Then there exists a unique
continuous unital ∗-isomorphism

C(sp(A)) 3 f 7→ f(A) ∈ C∗(1, A) ⊂ A,

such that
(1) id(A) = A if id(z) = z.

Moreover, we have

(2) If f ∈ Hol(sp(A)), then f(A) coincides with f(A) defined by the holomorphic functional calculus.

(3) sp(f(A)) = f(sp(A)).

(4) g ∈ C(f(sp(A))) ⇒ g ◦ f(A) = g(f(A).

(5) ‖f(A)‖ = sup |f |.

Proof. If f is a polynomial, that is f(z) =
∑
anmz

nzm, we set

f(A) :=
∑

anmA
nA∗m.

C∗(1, A) is a commutative algebra. Let φ be a character on C∗(1, A). Then we easily check that
φ(f(A)) = f(φ(A)). Hence sp(f(A)) = f(sp(A)).

12



Clearly, f(A) is normal. Hence

‖f(A)‖ = sr(f(A)) = sup |f |.

Therefore, on polynomials the map f → f(A) is isometric. Since polynomials are dense in a complete
metric space C(sp(A)) and polynomials in A, A∗ are dense in a complete metric space C∗(1, A), there is
exactly one continuous extension of this map to the whole C(sp(A)), which is an isometric bijection of
C(sp(A)) to C∗(1, A).

Clearly, on polynomials, the map f 7→ f(A) is a ∗-homomorphism. Since the multiplication, and
involution are continuous both in C(sp(A)) and C∗(1, A), this map is a homomorphism on C(sp(A)). 2

If A is not unital, either we can adjoin the identity and consider the algebra Aun, or we can use the
following version of the above theorem:

Theorem 3.22 Let A be a C∗-algebra. Let A ∈ A be normal. Then there exists a unique continuous
∗-isomorphism

C∞(sp(A)\{0}) 3 f 7→ f(A) ∈ C∗(A) ⊂ A,

such that id(A) = A if id(z) = z.

4 Positivity in C∗-algebras

4.1 Positive elements

Let A ∈ A. We say that A is positive iff A is self-adjoint and sp(A) ⊂ [0,∞[. A+ will denote the set of
positive elements in A. We will write A ≥ B iff A−B ∈ A+. We will write A > B iff A ≥ B and A 6= B.

Lemma 4.1 Let A be self-adjoint. Then ‖λ−A‖ ≤ λ iff A ≥ 0 and ‖A‖ ≤ 2λ.

Theorem 4.2 (1) A ∈ A+ and λ ≥ 0 implies λA ∈ A+.

(2) A,B ∈ A+ implies A+B ∈ A+.

(3) A,−A ∈ A+ implies A = 0.

(4) A+ is closed.
In other words, A+ is a closed pointed cone.

Proof. (2) ∥∥‖A‖+ ‖B‖ −A−B
∥∥ ≤ ∥∥‖A‖ −A

∥∥ +
∥∥‖B‖ −B‖

∥∥ ≤ ‖A‖+ ‖B‖.

Hence A+B ≥ 0.
(3) sp(A), sp(−A) ⊂ [0,∞[ implies sp(A) = {0}. But A is self-adjoint. Hence A = 0.
(4) Let An → A. Then ‖An‖ → ‖A‖. An ∈ A+ iff ‖An − ‖An‖‖ ≤ ‖An‖. By taking the limit,

‖A− ‖A‖‖ ≤ ‖A‖. Hence A ∈ A+. 2

Theorem 4.3 Let A ∈ A+ and n ∈ N\{0}. Then there exists a unique B ∈ A+ such that Bn = A.

Proof. [0,∞[3 λ 7→ λ1/n is a continuous function. Hence B := A1/n is well defined. Clearly, B satisfies
the requirements of the theorem.

Let B ∈ A+, Bn = A. Clearly,
BA = Bn+1 = AB. (4.16)

Let C := C∗(1, B,A). By (4.16), C is commutative. If φ ∈ Char(C), then φ(A) = φ(Bn) = φ(B)n.
Moreover, φ(B) > 0. Hence φ(B) = φ(A)1/n. Hence B is uniquely determined, and equals A1/n. 2
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Theorem 4.4 (Jordan decomposition of a self-adjoint operator.) Let A ∈ A be self-adjoint. Then
there exist unique A+, A− ∈ A+ such that A+A− = A−A+ = 0 and A = A+ −A−.

Proof. The functions |x|+ := max(x, 0) and |x|− := max(−x, 0) are continuous. Hence A+ and A− can
be defined as |A|+ and |A|− by the functional calculus.

Assume that A− and A+ satisfy the conditions of the theorem. Then

A2 = A2
− +A2

+ = (A+ +A−)2.

By the uniqueness of the positive square root, |A| = A+ + A−. Hence A+ = 1
2 (|A| + A) and A− =

1
2 (|A| −A). 2

Theorem 4.5 Let A ∈ A. The following conditions are equivalent
(1) A ≥ 0.

(2) There exists B ∈ A such that A = B∗B.

Proof. (1) ⇒ (2) is contained in Theorem 4.3.
Let us prove (1) ⇐ (2). Clearly, B∗B is self-adjoint. Let B∗B = A+−A− be its Jordan decomposition.
Clearly

(BA−)∗(BA−) = A−(A+ −A−)A− = −A3
− ∈ −A+.

Let BA− = S + iT . Then

(BA−)(BA−)∗ = S2 + T 2 + i(TS − ST )

= −(BA−)∗(BA−) + 2(S2 + T 2) ∈ A+,

using the fact that A+ is a convex cone.
But

sp
(
(BA−)∗(BA−)

)
∪ {0} = sp

(
(BA−)(BA−)∗

)
∪ {0}.

Hence sp
(
(BA−)∗(BA−)

)
= {0}. Consequently, (BA−)∗(BA−) = 0. Consequently, A3

− = 0. By the
uniqueness of the positive third root, A− = 0. 2

Theorem 4.6 (1) Let A be self-adjoint, then −‖A‖ ≤ A ≤ ‖A‖.
In what follows, let 0 ≤ B ≤ A. Then

(2) ‖B‖ ≤ ‖A‖,
(3) If D∗D ≤ 1, then DD∗ ≤ 1.

(4) 0 ≤ C∗BC ≤ C∗AC.

(5) 0 ≤ (λ+A)−1 ≤ (λ+B)−1, 0 < λ.

(6) B(λ+B)−1 ≤ A(λ+A)−1.

(7) 0 ≤ Bθ ≤ Aθ, 0 ≤ θ ≤ 1,

Proof. (1) sp(A) ⊂ [−‖A‖, ‖A‖]. Hence ‖A‖ −A ≥ 0 and ‖A‖+A ≥ 0.
(2) By (1), A ≤ ‖A‖. Hence, B ≤ ‖A‖. Hence sp(B) ⊂ [0, ‖A‖]. Therefore, ‖B‖ ≤ ‖A‖.
(3) Clearly, ‖D∗D‖ ≤ 1. Hence ‖DD∗‖ ≤ 1. Hence, by (1), DD∗ ≤ 1.
(4) C∗(A−B)C =

(
(A−B)

1
2C

)∗(A−B)
1
2C ≥ 0.

(5) Clearly, λ+A ≥ λ+B ≥ λ. Hence λ+A and λ+B are positive invertible. By (4), applied with
C = (λ+A)−

1
2 , for D := (λ+B)

1
2 (λ+A)−

1
2 we have 1 ≥ D∗D. Hence 1 ≥ DD∗.
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(6) follows immediately from (5).
(7). We use (6) and

Aθ = cθ

∫ ∞

0

λθ−1A(λ+A)−1dλ.

2

4.2 Left and right ideals

Theorem 4.7 Let I be a right ideal and Bi ∈ I∩A+, ‖Bi‖ < 1, i = 1, 2. Then there exists B ∈ I∩A+,
such that ‖B‖ < 1 and Bi ≤ B, i = 1, 2.

Proof. Set Ai := Bi(1−Bi)−1. Note that Ai ∈ I ∩ A+ and

Bi = Ai(1 +Ai)−1, (4.17)

We set
B := (A1 +A2)(1 +A1 +A2)−1. (4.18)

Clearly B ∈ A+, ‖B‖ < 1 Clearly, Ai ≤ A1 +A2, i = 1, 2. Hence, by (4.17), (4.18) and Theorem 4.6, we
get Bi ≤ B. 2

Let I be a right ideal of A. Then a positive left approximate unit of I is defined to be a net {Eα} of
elements of I such that
(1) 0 ≤ Eα ≤ 1,

(2) α ≤ β implies Eα ≤ Eβ ,

(3) limα ‖EαA−A‖ = 0 for all A ∈ I.
The following theorem implies that every ideal possesses a canonical positive approximate unit.

Theorem 4.8 Let I be a right ideal of A. Then

E := {A ∈ I+ : ‖A‖ < 1} (4.19)

ordered by ≤ is a positive approximate unit in I.

Proof. By Theorem 4.7, E is a directed set.
Let A ∈ I. Then, for any λ > 0, set Eλ := AA∗(λ−1 +AA∗)−1.
Let E ∈ E, Eλ ≤ E. Then

‖(1− E)A‖2 = ‖A∗(1− E)2A‖ ≤ ‖A∗(1− E)A‖ ≤ ‖A∗(1− Eλ)A‖

= ‖A∗(1 + λAA∗)−1A‖ = ‖A∗A(1 + λAA∗)−1‖ ≤ λ−1.

2

Theorem 4.9 If K is a closed left ideal in a C∗-algebra A, and S ∈ K, then there exists A ∈ A and
K ∈ K+ such that S = AK.

Proof. Set K := (S∗S)1/4, An := S(n−1 + K2)−1/2. Then we easily show that ‖Am − An‖ ≤
sup

t∈spK2
|
√
m−1 + t−

√
n−1 + t|. Thus An is a Cauchy sequence. We set A := limn→∞An. 2

Corollary 4.10 Every closed ideal is self-adjoint.
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4.3 Quotient algebras

Theorem 4.11 Let I be a closed ideal of a C∗-algebra A. Then A/I is a C∗-algebra and we have a
short exact sequence of ∗-homomorphisms:

0 → I → A → A/I → 0.

If (Eα) is a positive approximate unit, then the norm in A/I is given by

‖A+ I‖ = lim
α
‖A(1− Eα)‖. (4.20)

Proof. The approximate unit E, defined in (4.19), satisfies the condition (2.7), so (4.20) holds. Now let
A ∈ A and I ∈ I.

‖A+ I‖2 = limα ‖A(1− Eα)‖2

= limα ‖(1− Eα)A∗A(1− Eα)‖2

= limα ‖(1− Eα)(A∗A+ I)(1− Eα)‖2

≤ ‖A∗A+ I‖.

Hence
‖A+ I‖2 ≤ ‖(A+ I)∗(A+ I)‖.

Therefore, A/I is a C∗-algebra. 2

4.4 Homomorphisms of C∗-algebras

Theorem 4.12 Let A,B be C∗-algebras and π : A → B a ∗-homomorphism. Then
(1) ‖π(A)‖ ≤ ‖A‖;
(2) π(A) is a C∗-algebra.

(3) The following conditions are equivalent

(i) Kerπ = {0},
(ii) ‖π(A)‖ = ‖A‖.

Proof. First we would like to argue that it is sufficient to assume that π preserves the identity. If A has a
unit, then π(1) = P is a projection in B. We can replace B with PBP , and then consider π : A → PBP .

If A does not have a unit, we simply adjoin the unit to A, if needed also to B, and consider the
extended ∗-homomorphism πun : Aun → Bun such that πun(1) = 1.

Proof of (1). Clearly, if A ∈ A, then sp(π(A)) ⊂ sp(A). If A is self-adjoint, then

‖π(A)‖ = sr(π(A)) ≤ sr(A) = ‖A‖.

For an arbitrary B ∈ A,

‖π(B)‖2 = ‖π(B)∗π(B)‖ = ‖π(B∗B)‖ ≤ ‖B∗B‖ = ‖B‖2.

Proof of (3.i)⇒(3.ii). Step 1. Let A be commutative. Then so is π(A). We have A ' C(Y ) and
π(A) ' C(X) for some compact Hausdorff spaces Y,X. Besides, for some continuous map p : X → Y ,
π(f)(x) = f◦p(x), for f ∈ A. We know that π is injective iff p is surjective. This means that ‖π(f)‖ = ‖f‖
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Step 2. Let A be arbitrary and A ∈ A self-adjoint. By considering the commutative C∗-algebra
C∗(1, A), Step 1 implies that ‖π(A)‖ = ‖A‖.

Step 3. Let B ∈ A be arbitrary. Then

‖π(B)‖2 = ‖π(B)∗π(B)‖ = π(B∗B)‖ = ‖B∗B = ‖B‖2.

(3.i)⇐(3.ii) is obvious.
Proof of (2). Clearly, π̃ : A/Kerπ → π(A) is a ∗-isomorphism. By (3.ii) it is also isometric. Since

A/ ker A is a C∗-algebra by Theorem 4.11, so is π(A). 2

4.5 Linear functionals

Let ω be a linear functional on A. The adjoint functional ω∗ is defined by

ω∗(A) := ω(A∗).

We say that ω is self-adjoint iff ω∗ = ω, or equivalently, if ω(A) ∈ R for A self-adjoint.
We say that ω is positive iff

ω(A) ≥ 0, A ∈ A+.

The set of continuous functionals over A will be denoted A#. The set of continuous positive functionals
over A will be denoted A#

+ .

Theorem 4.13 If ω is a positive functional, then it is self-adjoint and

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B). (4.21)

Proof. If A is self-adjoint, then we can decompose A as A = −A− + A+ with A−, A+ positive. Now
ω(A±) ≥ 0. Hence ω(A) = ω(A+)− ω(A−) ∈ R.

To prove (4.21), we note that for any λ ∈ C,

ω
(
(A+ λB)∗(A+ λB)

)
≥ 0.

2

Theorem 4.14 Let ω be a linear functional on a unital C∗-algebra A. The following conditions are
equivalent:
(1) ω is positive

(2) ω is continuous and ‖ω‖ = ω(1)

Proof. (1)⇒(2). Step 1 Let A ∈ A+. Then A ≤ ‖A‖. Hence |ω(A)| = ω(A) ≤ ‖A‖ω(1).
Step 2 Let B ∈ A. Then, by (4.21), using the positivity of B∗B and Step 1, we get

|ω(B)|2 ≤ ω(1)ω(B∗B) ≤ ω(1)2‖B∗B‖ = ω(1)2‖B‖2.

Hence ‖ω‖2 ≤ ω(1)2.
(1)⇐ (2). It is enough to assume that ‖ω‖ = 1.

Step 1 Let A be self-adjoint. Let α, β, γ ∈ R and ω(A) = α + iβ. It is enough to assume that
ω(1) = ‖ω‖ = 1. Clearly,

‖γ − iA‖ =
√
γ2 + ‖A‖2, ω(γ − iA) = γ + β − iα.
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But
|ω(γ − iA)|2 ≤ ‖γ − iA‖2.

Hence
(γ + β)2 + α2 ≤ γ2 + ‖A‖2.

For large |γ|, this is possible only if β = 0. Hence ω is self-adjoint.
Step 2 Let A ∈ A+. Then

∥∥‖A‖ −A
∥∥ ≤ ‖A‖. Therefore,∣∣‖A‖ω(1)− ω(A)

∣∣ ≤ ‖A‖.

But ω(1) = 1, and ω(A) is real. Hence ω(A) ≥ 0. 2

Theorem 4.15 Let ω be a linear functional on a non-unital C∗-algebra. The following conditions are
equivalent:
(1) ω is positive

(2) ω is continuous and for some positive approximate identity {Eα} of A

‖ω‖ = lim
α
ω(E2

α).

(3) ω is continuous and if the functional ωun : Aun → C is given by ωun(λ + A) := λ‖ω‖ + ω(A), then
ωun is a positive functional on Aun

Moreover, ωun is the unique functional on Aun that extends ω and satisfies ‖ω‖ = ‖ωun‖.

Proof. (1)⇒(2). Step 1. We want to show that

c := sup{ω(A) : 0 ≤ A ≤ 1}

is finite. Suppose that it is not true, 0 ≤ An ≤ 1 and ω(An) → ∞. Then we will find λn ≥ 0 such that∑
λn <∞ and

∑
λnω(An) = ∞. But A :=

∑
λnAn is convergent and, for any n,

n∑
j=1

λjω(Aj) ≤ ω(A) <∞,

which is a contradiction.
Step 2. If A ∈ A, then A =

∑3
j=0 ijAj with Aj ∈ A+ and ‖Aj‖ ≤ ‖A‖. Hence

|ω(A)| ≤
3∑

j=0

ω(Aj) ≤ 4c‖A‖.

Hence ω is continuous.
Step 3. Let Eα be a positive approximate unit. ω(Eα) is an increasing bounded net, so c :=

limα ω(Eα) exists. Since ‖Eα‖ ≤ 1, we have c ≤ ‖ω‖.
Step 4 Let A ∈ A. Then

|ω(EαA)|2 ≤ ω(E2
α)ω(A∗A) ≤ ω(E2

α)‖ω‖‖A∗A‖ ≤ c‖ω‖‖A‖2.

Moreover, EαA → A and ω is continuous, hence the left hand side goes to |ω(A)|2. Hence |ω(A)|2 ≤
c‖ω‖‖A‖2. Therefore, ‖ω‖ ≤ c.

(2)⇒(3). It is obvious that ‖ωun‖ ≥ ‖ω‖. Let us prove the converse inequality.
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Let Eα be a positive approximative unit. We have

ωun(λ+A) = lim
α
ω(λEα + EαA).

Hence
|ωun(λ+A)| = limα |ω(λEα + EαA)| ≤ limα ‖ω‖‖λEα + EαA‖

≤ ‖ω‖ lim supα ‖Eα‖‖λ+A‖ = ‖ω‖‖λ+A‖.
Hence, ‖ωun‖ ≤ ‖ω‖.

Thus we proved that ‖ω‖ = ‖ωun‖. Therefore, ωun(1) = ‖ωun‖. Therefore, ω is positive by the
previous theorem.

(3)⇒(1) is obvious. 2

A positive functional over A satisfying ‖ω‖ = 1 will be called a state. For a unital algebra it is
equivalent to ω(1) = 1. For a non-unital algebra it is equivalent to 1 = sup{ω(A) : A ≤ 1}. The set of
states on a C∗-algebra A will be denoted E(A).

If ω is a positive functional on A, then

ωun(A+ λ) := ω(A) + λ‖ω‖ A ∈ A, λ ∈ C,

defines a state on Aun extending ω with ‖ω‖ = ‖ωun‖.
If φ is a positive functional on Aun, then

φ(A+ λ) = θω(A) + λ‖φ‖, A ∈ A, λ ∈ C,

where 0 ≤ θ ≤ ‖φ‖, and ω is a state on A.

4.6 The GNS representation

Let (H, π) be a ∗-representation of A, Ω ∈ H and ω ∈ A#
+ . We say that Ω is a vector representative of ω

iff
ω(A) = (Ω|π(A)Ω).

We say that Ω is cyclic iff π(A)Ω is dense in H. (H, π,Ω) is called a cyclic ∗-representation iff (π,H) is
a ∗-representation and Ω is a cyclic vector.

Theorem 4.16 Let ω be a state on A. Then there exists a cyclic ∗-representation (Hω, πω,Ωω) such
that Ωω is a vector representative of ω. Such a representation is unique up to a unitary equivalence.

Proof. We adjoin the unit if needed.
For A,B ∈ A, ω(A∗B) is a pre-Hilbert scalar product on A. Define Nω := {A ∈ A : ω(A∗A) = 0}.

Then N is a closed left ideal. The scalar product on A/Nω is well defined. Let Hω be the completion of
A/Nω.

The left regular representation

A 3 A 7→ λ(A) ∈ L(A), λ(A)B := AB,

preserves Nω. Hence we can define the representation πω on A/Nω by

πω(A)(B + Nω) := AB + Nω.

We have
‖πω(A)(B + Nω)‖2 = ω(B∗A∗AB) ≤ ‖A∗A‖ω(B∗B)

= ‖A‖2‖B + Nω‖2.
Hence ‖πω(A)‖ ≤ ‖A‖ and πω extends to a linear map on Hω.

We set Ωω := 1 + Nω. Clearly, πω(A)Ωω = A+ Nω, hence Ωω is cyclic. 2

19



4.7 Existence of states and representation

Theorem 4.17 Let A be a C∗-algebra and A ∈ Ah. Then there exists a state ω on A such that |ω(A)| =
‖A‖.

Proof. We adjoin the unit if needed.
Let A0 = C∗(1, A) ' C(spA). Let ω0 be the character on A0 with |ω0(A)| = srA = ‖A‖. Then ω0 is

a state on A0. By the Hahn-Banach Theorem we extend ω0 to a functional ω on A with ‖ω‖ = 1. But
ω(1) = ω0(1) = 1, hence by Theorem 4.14, ω is a state. 2

Theorem 4.18 There exists an injective representation (H, π) of A.

Proof. For any A ∈ Ah there exists a state ωA such that ωA(A) 6= 0. Let (πA,HA,ΩA) be the
corresponding GNS representation. Then (ΩA|πA(A)ΩA) = ωA(A). Hence πA(A) 6= 0. Set

H := ⊕
A∈Ah

HA, π := ⊕
A∈Ah

πA.

Then π is a representation of A in H and for any A ∈ Ah, π(A) 6= 0. Since self-adjoint elements span A,
π is injective. 2

Theorem 4.19 Let A0 be a C∗-subalgebra of a C∗-algebra A. Let ω0 be a state on A0. Then there
exists a state ω on A extending ω0. If Ω0 is hereditary, then ω is unique.

Proof. By the Hahn-Banach Theorem, there exists a linear functional ω on A extending ω0 with
‖ω0‖ = ‖ω‖. But ‖ω‖ ≥ ω(1) ≥ ‖omega0‖. Hence ω‖ = ω(1). Therefore, ω is a state. 2

4.8 Jordan decomposition of a form

Let ω ∈ A#. Then Reω := 1
2 (ω + ω∗), Imω := 1

2i (ω − ω∗) are self-adjoint. Moreover, ω = Reω + iImω.

Theorem 4.20 Let A be a C∗-algebra and φ, ψ ∈ A#
+ . Then the following conditons are equivalent:

(1) ‖φ− ψ‖ = ‖φ‖+ ‖ψ‖,
(2) For every ε > 0 there is a A ∈ A+ with ‖A‖ ≤ 1 such that

‖φ‖1− φ(A) < ε, ψ(A) < ε.

Proof. We adjoin the unit, if needed, and consider the extended ψun, φun.
(1)⇒(2). Since φ− ψ is self-adjoint, there exists B ∈ Ah with ‖B‖ ≤ 1 such that

(φ− ψ)(B) + ε ≥ ‖φ− ψ‖. (4.22)

We set A := 1
2 (1 +B). Clearly, 0 ≤ A ≤ 1.

The rhs of (4.22) equals ‖φ‖+ ‖ψ‖ = φ(1) + ψ(1). Hence φ(1−A) + ψ(A) < ε. Hence φ(1−A) < ε,
ψ(A) < ε.

(1).⇐(2). Clearly, ‖φ− ψ‖ ≤ ‖φ‖+ ‖ψ‖.
Let us prove the converse inequality. Let ε > 0 and A satisfy the conditions of (2). Then ‖2A−1‖ ≤ 1,

and hence
‖φ‖+ ‖ψ‖ = φ(1) + ψ(1) ≤ (φ− ψ)(2A− 1) + 4ε ≤ ‖φ− ψ‖+ 4ε.

But ε > 0 was arbitrary, hence ‖φ‖+ ‖ψ‖ ≤ ‖φ− ψ‖. 2

If the (equivalent) conditions of the above theorem are satisfied, then we will write φ ⊥ ψ.

20



Theorem 4.21 (Jordan decomposition of a self-adjoint form.) Let A be a C∗-algebra. Let ω ∈
A# be self-adjoint. Then there exist unique ω+, ω− ∈ A#

+ such that

ω = −ω− + ω+, ω− ⊥ ω+.

Proof. Existence. Step 1. First note that (A#
h )1 (the unit ball in A#

h ) is compact in the σ(A#
h ,A)

topology. Hence E(A) (the set of states on A) is compact too, because it is a closed subset of (A#
h )1.

Therefore,
CH(−E(A) ∪ E(A)) (4.23)

is also compact. Clearly, (4.23) is contained in (A#
h )1.

Step 2. Suppose that φ0 ∈ (A#
h )1, but does not belong to (4.23). By the 2nd Separation Theorem,

there exists A ∈ A such that

φ0(A) > sup{Reφ(A) : φ ∈ CH(−E(A) ∪ E(A)}.

By replacing A with 1
2 (A+A∗) and using the self-adjointness of φ, we can assume that A ∈ Ah. Now

φ0(A) > sup{φ(A) : φ ∈ CH(−E(A) ∪ E(A)}

= sup{|φ(A)| : φ ∈ E(A)} = ‖A‖.

Hence ‖φ0‖ > 1. Therefore,
CH(−E(A) ∪ E(A) = (A#

h )1. (4.24)

Step 3. Now let us prove the existence part of the theorem. Let ω ∈ A#
h . It is sufficient to assume

that ‖ω‖ = 1. By (4.24), there exist ω̃−, ω̃+ ∈ E(A) and θ ∈ [0, 1] such that ω = −θω̃− + (1− θ)ω̃+. We
set ω− := θω̃− and ω+ := (1− θ)ω̃+. They clearly satisfy

‖ω−‖+ ‖ω+‖ = θ + (1− θ) = 1.

Uniqueness. Let us prove the uniqueness part of the theorem. Suppose that

ω = −ω− + ω+ = −ω′− + ω′+

and
‖ω‖ = ‖ω−‖+ ‖ω+‖ = ‖ω′−‖+ ‖ω′+‖.

Let ε > 0 and choose C ∈ (Ah)1 such that

ω(C) ≥ ‖ω‖ − 1
2
ε2. (4.25)

Set B := 1
2 (1 + C). Clearly, 0 ≤ B ≤ 1. Adding 1

2 times (4.25) and −ω−( 1
2 )− ω+( 1

2 ) = − 1
2‖ω‖ we get

ω−(B) + ω+(1−B) <
1
4
ε2.

Hence,

ω−(B) <
1
4
ε2, ω+(1−B) <

1
4
ε2.

For A ∈ A, by the Cauchy-Schwarz inequality,

|ω−(BA)|2 ≤ ω−(B)ω−(A∗BA) ≤ 1
4ε

2‖A‖2,

|ω+((1−B)A)|2 ≤ ω+(1−B)ω+(A∗(1−B)A) ≤ 1
4ε

2‖A‖2,
(4.26)
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Using ω− − ω′− = ω+ − ω′+, we get

ω−(A)− ω′−(A) = ω−(BA)− ω′−(BA) + ω+((1−B)A)− ω′+((1−B)A).

Hence, using (4.26) and analogous inequalities for ω′− and ω′+, we get

|ω−(A)− ω′−(A)| < 2ε‖A‖.

Since the last inequality is true for any ε > 0, ω−(A) = ω′−(A). 2

Corollary 4.22 Let ω ∈ A. Then there exists a ∗-representation π : A → B(H) and vectors Φ,Ψ such
that

ω(A) = (Φ|π(A)Ψ).

Theorem 4.23 Let A be a C∗-algebra, φ ∈ A# and A ∈ A+. Assume that

φ(A) = ‖φ‖‖A‖.

Then φ is positive.

Proof. We can assume that ‖φ‖ = 1 and ‖A‖ = 1.
Step 1 If A does not have the identity, then we can extend φ to a functional φun on Aun such that
‖φ‖ = ‖φun‖. If φun is positive, then so is φ is. Therefore, in what follows it is sufficient to assume that
A has an identity.
Step 2 Let φ(1) = α+ iβ, α, β, λ ∈ R. Then

|φ(1 + λiA)| = |α+ i(λ+ β)| ≥ |λ+ β|, ‖1 + iλA‖ = (1 + λ2)
1
2 .

But
|φ(1 + iλA)| ≤ ‖1 + iλA‖.

Hence
|λ+ β|2 ≤ (1 + λ2).

If this is true for all λ, then β = 0. Hence φ(1) ∈ R.
Step 3 We will show that φ(1) = 1.

It is clear that φ(1) ≤ ‖φ‖ = 1. Using first the positivity of A, ‖A‖ = 1, and then ‖φ‖ = 1, we get

1 ≥ ‖1− 2A‖ ≥ |φ(1− 2A)|.

But φ(1− 2A) = φ(1)− 2. Hence φ(1) ≥ 1.
This proves that φ(1) = 1. By Theorem 4.14, this means that φ is positive. 2

Theorem 4.24 Let φ be a state on A and A ∈ A. Suppose that A 3 B 7→ φ(BA) is hermitian. Then

|φ(AH)| ≤ ‖A‖φ(H), H ∈ A+.

Proof. Iterating φ(B∗A) = φ(BA) = φ(A∗B∗) we obtain ρ(BA2n) = φ(An∗BAN ). If H ∈ A+, then

φ(HAn) = φ(H1/2H1/2An) ≤ φ(An∗HAn)1/2φ(H)1/2

= φ(HA2n)1/2φ(H)1/2.

Hence,
ρ(HA) ≤ φ(HA2n

)2
−n

φ(H)2
−1+...+2−n

≤ ‖H‖2−n‖A‖φ(H)1−2−n → ‖A‖φ(H).
2
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4.9 Unitary elements

Let A ∈ A. Then ReA := 1
2 (A+A∗), ImA := 1

2i (A−A∗) are self-adjoint and A = ReA+ iA∗.
For A ∈ A we set |A| := (A∗A)

1
2 .

Theorem 4.25 Assume that A is invertible. Then there exists a unique unitary U such that A = U |A|.

Theorem 4.26 If A is unital, then the unit ball (A)1 is the closed convex hull of unitary elements of A.

Proof. The theorem is easy for self-adjoint elements. If A is self-adjoint and of norm less than 1, then
for U = 1

2A+ i
2

√
1−A∗A, we have A = U + U∗.

In the general case, set

U(z) := (1−AA∗)−1/2(z +A)(1 + zA∗)−1(1−A∗A)1/2.

Then U(0) = A, U(z) is unitary for |z| = 1 and by the Cauchy formula

A =
1
2π

∫ 2π

0

U(eiφ)dφ.

2

4.10 Extreme points of the unit ball

Theorem 4.27 The extreme points of (A)1 ∩ Ah are precisely the self-adjoint unitary elements.

Theorem 4.28 The extreme points of (A)1 ∩ A+ are precisely the projections.

Theorem 4.29 The extreme points of the unit ball (A)1 are precisely the elements A ∈ A such that

(1−AA∗)A(1−A∗A) = {0}.
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