Measure theory

Jan Dereziński Department of Mathematical Methods in Physics Warsaw University Hoża 74, 00-682, Warszawa, Poland

Lecture notes, version of Jan. 2006

November 22, 2017

Contents

1	Mea	surability
	1.1	Notation
	1.2	Rings and fields
	1.3	Ordered spaces
	1.4	Elementary functions
	1.5	σ -rings and σ -fields
	1.6	Transport of subsets
	1.7	Transport of σ -rings
	1.8	Measurable transformations
	1.9	Measurable real functions
	1.10	Spaces L^{∞}
2	Mea	sure and integral
	2.1	Contents
	2.2	Measures
	2.3	$\mu - \sigma$ -finite sets
	2.4	Integral on elementary functions I
	2.5	Integral on elementary functions II
	2.6	Integral on positive measurable functions I
	2.7	Integral on positive measurable functions II
	2.8	Integral of functions with a varying sign
	2.9	Transport of a measure—the change of variables in an integral
	2.10	Integrability
	2.11	The Hölder and Minkowski inequalities
		Dominated Convergence Theorem
	2.13	L^p spaces
		Egorov theorem

3	Ext	tension of a measure	20			
	3.1	Hereditary families	20			
	3.2	Extension of a measure by null sets	21			
	3.3	Complete measures	21			
	3.4	External measures	21			
	3.5	External measure generated by a measure	23			
	3.6	Extension of a measure to localizable sets	$\frac{24}{24}$			
	3.7	Sum-finite measures	25			
	3.8	Boolean rings	$\frac{25}{25}$			
	3.9	Measures on Boolean rings	26			
	5.9	Measures on Doolean rings	20			
4	Cor	nstruction and uniqueness of a measure	26			
	4.1	Dynkin classes	26			
	4.2	Semirings	27			
	4.3	σ -Dynkin classes	28			
	4.4	Monotone classes	28			
	4.5	Extension and uniqueness of contents	29			
	4.6	Uniqueness of a measure	30			
	4.7	Dense subsets in L^p spaces	30			
		•				
	4.8	Premeasures	30			
	4.9	Extending a premeasure to a measure	31			
5	Tensor product of measures					
	5.1	Tensor product of σ -rings	32			
	5.2	Tensor product of measures	32			
			94			
	5.3	Multiple integrals	34			
6	5.3 5.4	Multiple integrals	34			
6	5.3 5.4	Multiple integrals	34 35			
6	5.3 5.4 Me s	Multiple integrals	34 35 35			
6	5.3 5.4 Me 6.1	Multiple integrals	34 35 35 35			
6	5.3 5.4 Me s 6.1 6.2	Multiple integrals	34 35 35 35 36			
6	5.3 5.4 Me a 6.1 6.2 6.3 6.4	Multiple integrals . Layer-cake representation . Layer-cake representation . Resures in \mathbb{R}^n Regular contents	34 35 35 35 36 36 37			
6	5.3 5.4 Me 6.1 6.2 6.3 6.4 6.5	$\begin{array}{c} \text{Multiple integrals} \\ \text{Layer-cake representation} \\ \text{\textbf{asures in }} \mathbb{R}^n \\ \text{Regular contents} \\ \text{Borel sets in } \mathbb{R} \\ \text{Borel premeasures on } \mathbb{R} \\ \text{Borel measures on } \mathbb{R} \\ \text{The Cantor set and devil's staircase} \\ \end{array}$	34 35 35 35 36 36 37 38			
6	5.3 5.4 Me : 6.1 6.2 6.3 6.4 6.5 6.6	Multiple integrals	34 35 35 36 36 37 38 38			
6	5.3 5.4 Me : 6.1 6.2 6.3 6.4 6.5 6.6	Multiple integrals	34 35 35 36 36 36 37 38 38 38			
6	5.3 5.4 Me : 6.1 6.2 6.3 6.4 6.5 6.6	Multiple integrals	34 35 35 36 36 37 38 38			
6	5.3 5.4 Me : 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Multiple integrals	34 35 35 36 36 36 37 38 38 38			
	5.3 5.4 Me : 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Multiple integrals . Layer-cake representation	34 35 35 36 36 37 38 38 38 39			
	5.3 5.4 Me : 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	Multiple integrals . Layer-cake representation	34 35 35 35 36 36 37 38 38 38 39			
	5.3 5.4 Me : 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Cha	Multiple integrals	34 35 35 36 36 37 38 38 38 39 41 41			
	5.3 5.4 Me: 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Cha 7.1 7.2 7.3	Multiple integrals Layer-cake representation assures in \mathbb{R}^n Regular contents Borel sets in \mathbb{R} Borel premeasures on \mathbb{R} Borel measures on \mathbb{R} The Cantor set and devil's staircase Transport of the Lebesgue measure in \mathbb{R} The Lebesgue measure in \mathbb{R}^n Transport of the Lebesgue measure in \mathbb{R}^n arges and the Radon-Nikodym theorem Extension of a measure from a σ -ring Measures singular and continuous wrt an ideal Pure point and continuous measures	34 35 35 36 36 36 37 38 38 38 39 41 41 41 43			
	5.3 5.4 Mea 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Cha 7.1 7.2 7.3 7.4	Multiple integrals . Layer-cake representation . Layer-cake in \mathbb{R}^n . Regular contents . Layer-cake in \mathbb{R} . Borel sets in \mathbb{R} . Layer-cake measures on \mathbb{R} . Layer-cake measures on \mathbb{R} . Layer-cake measures in \mathbb{R} . Layer-cake measure in \mathbb{R}^n . Layer-cake measure in $$	34 35 35 36 36 37 38 38 38 39 41 41 41 43 44			
	5.3 5.4 Mea 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Cha 7.1 7.2 7.3 7.4 7.5	Multiple integrals	34 35 35 36 36 37 38 38 38 39 41 41 41 43 44 44			
	5.3 5.4 Mea 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 Cha 7.1 7.2 7.3 7.4	Multiple integrals . Layer-cake representation . Layer-cake in \mathbb{R}^n . Regular contents . Layer-cake in \mathbb{R} . Borel sets in \mathbb{R} . Layer-cake measures on \mathbb{R} . Layer-cake measures on \mathbb{R} . Layer-cake measures in \mathbb{R} . Layer-cake measure in \mathbb{R}^n . Layer-cake measure in $$	34 35 35 36 36 37 38 38 38 39 41 41 41 43 44			

8 Measures on topological spaces					
	8.1	δ -open and σ -closed sets	49		
	8.2	Baire and Borel sets of 1st kind	50		
	8.3	Baire and Borel sets of 2nd kind	51		
	8.4	Baire measures on compact spaces	52		
	8.5	Borel measures on compact spaces	56		
	8.6	Baire measures on locally compact spaces	57		
	8.7	Borel measures on locally compact spaces	58		
9	Mea	asures on infinite Cartesian products	58		
	9.1	Infinite Cartesian products	58		
	9.2	Compatible measures	59		
	9.3	Infinite tensor product of measures	59		
	9.4	The Kolmogorov theorem	59		

1 Measurability

1.1 Notation

 2^{X} denotes the family of subsets of the set X. The symmetric difference is defined as

$$A\Delta B := (A \cup B) \backslash (A \cap B).$$

Let $A_1, A_2, \dots \in X$. We write $A_n \nearrow A$, if $A_n \subset A_{n+1}$, $n \in \mathbb{N}$ and $\bigcup_{n=1}^{\infty} A_n = A$. We write $A_n \searrow A$, if $A_n \supset A_{n+1}$, $n \in \mathbb{N}$ and $\bigcap_{n=1}^{\infty} A_n = A$.

1.2 Rings and fields

Definition 1.1 $\mathcal{R} \subset 2^X$ is called a ring if

- (1) $A, B \in \mathcal{R} \Rightarrow A \backslash B \in \mathcal{R}$;
- (2) $A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R}$

Proposition 1.2 *Let* \mathcal{R} *be a ring. Then* $A, B \in \mathcal{R} \Rightarrow A \cap B \in \mathcal{R}$.

Proof.
$$A \cap B = A \setminus (A \setminus B)$$
. \square

If $(\mathcal{R}_i)_{i\in I}$ is a family of rings in X, then so is $\cap_{i\in I}\mathcal{R}_i$. Hence for any $\mathcal{T}\subset 2^X$ there exists the smallest ring containing \mathcal{T} . We denote it by $\mathrm{Ring}(\mathcal{T})$.

Definition 1.3 $\mathcal{R} \subset 2^X$ is called a field if

- (1) $\emptyset \in \mathcal{R}$;
- (2) $A \in \mathcal{R} \Rightarrow X \backslash A \in \mathcal{R};$
- (3) $A, B \in \mathcal{R} \Rightarrow A \cup B \in \mathcal{R}$.

Equivalently, a field is a ring containing X. (Field is a ring, because $A \setminus B = X \setminus ((X \setminus A) \cup B)$). For $\mathcal{T} \subset 2^X$, Field(\mathcal{T}) denotes the smallest field of sets containing \mathcal{T} .

1.3 Ordered spaces

Suppose that (X, \leq) is an ordered set. Let U be a nonempty subset of X.

We say that u_0 is a largest minorant of U if

- (1) $u \in U$ implies $u_0 \le u$
- (2) $u_1 \leq u$ for all $u \in U$ implies $u_1 \leq u$

If U possesses a largest minorant, then it is uniquely defined. The largest minorant of a set $\{x_1, x_2\}$ is often denoted $x_1 \wedge x_2$ and of a set U is denoted $\bigwedge_{x \in U} x$.

Analogously we define the smallest majorant of U. The smallest majorant of a set $\{x_1, x_2\}$ is often denoted $x_1 \vee x_2$ and of a set U is denoted $\bigvee_{x \in U} x$.

We say that (X, \leq) is a lattice if every two-element (hence every finite) set of elements of X possess the smallest majorant and the largest minorant. It is a countably complete lattice if every countable subset that has a majorant and a minorant has the smallest majorant and the largest minorant. It is a complete lattice if every countable subset that has a majorant and a minorant has the smallest majorant and the largest minorant.

Let \mathcal{X} be a vector space. (\mathcal{X}, \leq) is an ordered vector space iff

- (1) $x, y, z \in \mathcal{X}, x \leq y \Rightarrow x + z \leq y + z;$
- (2) $x \in \mathcal{X}, x \geq 0, \lambda \in \mathbb{R}, \lambda \geq 0 \Rightarrow \lambda x \geq 0$.

 $\mathcal{X}_{+} := \{x \in \mathcal{X} : x \geq 0\}$ is a cone called the positive cone.

We say that an ordered vector space (\mathcal{X}, \leq) is a Riesz space if it is a lattice. It is enough to check that it has \vee of two elements, since

$$x \wedge y := -(-x) \vee (-y).$$

1.4 Elementary functions

Definition 1.4 Let (X, \mathcal{R}) be a space with a ring. $u: X \to \mathbb{R}$ is called an elementary function if u(X) is a finite set and $u^{-1}(\alpha) \in \mathcal{R}$, $\alpha \in \mathbb{R} \setminus \{0\}$. The set of elementary functions is denoted by $\mathcal{E}(X, \mathcal{R})$ or $\mathcal{E}(X)$. Positive elementary functions will be denoted $\mathcal{E}_+(X)$.

Lemma 1.5 (1) Let $u, v \in \mathcal{E}(X)$ and $\alpha \in \mathbb{R}$. Then

$$\alpha u, u + v, uv, \max(u, v), \min(u, v) \in \mathcal{E}(X).$$

In particular, $\mathcal{E}(X)$ is an algebra and a lattice.

(2) $1 \in \mathcal{E}(X)$ iff \mathcal{R} is a field.

1.5 σ -rings and σ -fields

Definition 1.6 $\mathcal{F} \subset 2^X$ is called a σ -ring if

- (1) $A, B \in \mathcal{F} \Rightarrow A \backslash B \in \mathcal{F}$;
- (2) $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

Clearly, every σ -ring is a ring.

Proposition 1.7 Let \mathcal{F} be a σ -ring. Then

- (1) $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$,
- (2) $A_1, A_2, \dots \in \mathcal{F}, A_n \setminus A \Rightarrow A \in \mathcal{F},$

(3) $A_1, A_2, \dots \in \mathcal{F}, A_n \nearrow A \Rightarrow A \in \mathcal{F},$

Proof. Let us prove (1). Clearly, $A := \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$. Now by the de Morgan's law

$$\bigcap_{i=1}^{\infty} A_i = A \setminus \bigcup_{i=1}^{\infty} (A \setminus A_i) \in \mathcal{F}.$$

For $\mathcal{T} \subset 2^X$, $\sigma - \text{Ring}(\mathcal{T})$ denotes the smallest σ -ring of sets containing \mathcal{T} .

Theorem 1.8 Let $\mathcal{T} \subset 2^X$ and $A \in \sigma - \text{Ring}(\mathcal{T})$. Then there exists a countable $\mathcal{T}_0 \subset \mathcal{T}$ such that $A \in \sigma - \text{Ring}(\mathcal{T}_0)$.

Proof. Let \mathcal{F} be the family of $A \subset X$ such that there exists a countable $\mathcal{T}_0 \subset \mathcal{T}$ with $A \in \sigma$ -Ring (\mathcal{T}_0) . Then $\mathcal{T} \subset \mathcal{F}$ and \mathcal{F} is a σ -ring. Hence σ -Ring $(\mathcal{T}) \subset \mathcal{F}$. \square

Definition 1.9 $\mathcal{F} \subset 2^X$ is called a σ -field if

- (1) $\emptyset \in \mathcal{F}$;
- (2) $A \in \mathcal{F} \Rightarrow X \backslash A \in \mathcal{F}$:
- (3) $A_1, A_2 \cdots \in \mathcal{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Equivalently, a σ -field is a σ -ring containing X. Clearly, every σ -field is a field. For $\mathcal{T} \subset 2^X$, σ -Field(\mathcal{T}) denotes the smallest σ -field of sets containing \mathcal{T} .

1.6 Transport of subsets

Let $F: X \to X'$ be a transformation. As usual, for $A \subset X$, F(A) denotes the image of A, and for $A' \subset X'$, $F^{-1}(A')$ denotes the preimage of A'. Thus we have two maps

$$2^{X} \ni A \mapsto F(A) \in 2^{X'},$$

$$2^{X'} \ni A' \mapsto F^{-1}(A') \in 2^{X}.$$
(1.1)

Theorem 1.10 (1) For $A \subset X$, $F^{-1}F(A) \supset A$ and we have the equality for all A iff F is injective.

(2) For $A' \in X'$, $FF^{-1}(A') \subset A'$ and we have the equality for all A' iff F is surjective.

$$(3) \ F^{-1}(\emptyset) = \emptyset, \ F^{-1}(X') = X, \ F^{-1}(A' \cup B') = F^{-1}(A') \cup F^{-1}(B'), \ F^{-1}(A' \setminus B') = F^{-1}(A') \setminus F^{-1}(B'),$$

Let $F^*: 2^{X'} \to 2^X$ be the map given by (1.1). (We prefer not to denote it by F^{-1} to avoid ambiguous notation).

For $C' \subset 2^{X'}$, we can write

$$F^*(\mathcal{C}') = \{F^{-1}(A') : A' \in \mathcal{C}'\}.$$

Let $\mathcal{C} \subset 2^X$. We will write

$$F_*(\mathcal{C}) := (F^*)^{-1}(\mathcal{C}) = \{ A' \in 2^{X'} : F^{-1}(A') \in \mathcal{C} \}.$$

The following facts follow from Theorem 1.10 (1), (2) applied to F^* :

Theorem 1.11 (1) $F_*F^*(\mathcal{C}') \supset \mathcal{C}'$;

(2) $F^*F_*(\mathcal{C}) \subset \mathcal{C}$.

1.7 Transport of σ -rings

Theorem 1.12 (1) If \mathcal{F}' is a σ -ring over X', then $F^*(\mathcal{F}')$ is a σ -ring over X.

- (2) If \mathcal{F} is a σ -ring over X, then $F_*(\mathcal{F})$ is a σ -ring over X'.
- (3) If $C' \subset 2^{X'}$, then

$$F^*(\sigma - \operatorname{Ring}(C')) = \sigma - \operatorname{Ring}(F^*(C')).$$

Proof. To see (1) and (2), we use Theorem 1.10 (3), which says that F^* is a homomorphism for set-theoretical operations.

Let us prove (3). By (1), $F^*(\sigma - \text{Ring}(\mathcal{C}'))$ is a σ -ring. It contains $F^*(\mathcal{C}')$. Hence

$$F^*(\sigma - \operatorname{Ring}(C')) \supset \sigma - \operatorname{Ring}(F^*(C')).$$

By (2), $F_*(\sigma - \text{Ring}(F^*(\mathcal{C}')))$ is a σ -ring. Clearly

$$F_*(\sigma - \operatorname{Ring}(F^*(\mathcal{C}'))) \supset F_*(F^*(\mathcal{C}')) \supset \mathcal{C}'.$$

Hence $F_*(\sigma - \text{Ring}(F^*(\mathcal{C}'))) \supset \sigma - \text{Ring}(\mathcal{C}')$. Hence,

$$\sigma - \operatorname{Ring}(F^*(\mathcal{C}')) \supset F^*F_*(\sigma - \operatorname{Ring}(F^*(\mathcal{C}'))) \supset F^*(\sigma - \operatorname{Ring}(\mathcal{C}')).$$

For $A \in 2^X$ and $\mathcal{C} \subset 2^X$, we set

$$\mathcal{C}\Big|_{A} := \{A \cap C : C \in \mathcal{C}\}.$$

Theorem 1.13 If $\mathcal{T} \subset 2^X$ and $A \subset X$, then

$$\sigma - \operatorname{Ring}(\mathcal{T})\Big|_{\Delta} = \sigma - \operatorname{Ring}(\mathcal{T}\Big|_{\Delta}).$$

Proof. Consider the inclusion map $J: A \to X$. If $C \in 2^X$, then $J^{-1}(C) = C \cap A$. Hence if $C \subset 2^X$, then $J^*(C) = C \Big|_A$. Thus it is sufficient to apply Theorem 1.12 (3). \Box

1.8 Measurable transformations

Definition 1.14 Let (X, \mathcal{F}) , (X', \mathcal{F}') be spaces with σ -rings and $F: X \to X'$. Then F is called a $\mathcal{F} - \mathcal{F}'$ -measurable transformation if

$$F^*(\mathcal{F}') \subset \mathcal{F}$$
.

Proposition 1.15 The composition of measurable transformations is measurable.

Theorem 1.16 Let $C' \subset 2^{X'}$. If $F' = \sigma - \text{Ring}(C')$, then $F : X \to X'$ is F - F'-measurable iff $F^*(C') \subset F$.

Proof.

$$F^*(\mathcal{F}') = F^*(\sigma - \operatorname{Ring}(\mathcal{C}')) = \sigma - \operatorname{Ring}(F^*(\mathcal{C}')) \subset \sigma - \operatorname{Ring}(\mathcal{F}) = \mathcal{F},$$

where we used Theorem 1.12 (3) in the second equality. \Box

1.9 Measurable real functions

 $\mathbb{R} \cup \{-\infty, \infty\} =: [-\infty, \infty]$ is a topological space in the obvious way. We can extend the addition to $[-\infty, \infty]$ except that $\infty - \infty$ is undefined. We extend the multiplication to $[-\infty, \infty]$, adopting the convention $0(\pm \infty) = 0$. Let $\operatorname{Borel}([-\infty, \infty])$ denote the σ -field of Borel subsets of $[-\infty, \infty]$, that is the σ -field generated by open subsets of $[-\infty, \infty]$. If $Y \subset \mathbb{R}$, then $\operatorname{Borel}(Y)$ will denote the σ -field in X generated by open subsets in X. Note in particular that $\operatorname{Borel}([-\infty, 0[\cup]0, \infty])$ is generated by the sets $[-\infty, -\alpha[$ and $]\alpha, \infty[$ for $0 \le \alpha$.

Let (X, \mathcal{F}) be a space with a σ -ring. We say that

$$f: X \to [-\infty, \infty]$$

is a \mathcal{F} -measurable function iff for any $A \in \operatorname{Borel}([-\infty, 0[\cup]0, \infty]), f^{-1}(A) \in \mathcal{F}$. The set of such functions will be denoted $\mathcal{M}(X, \mathcal{F})$, or for shortness, $\mathcal{M}(X)$. The set of measurable functions with values in $[0, \infty]$ will be called $\mathcal{M}_+(X)$.

Let $A \subset X$. Its characteristic function is denoted by

$$1_A(x) = \begin{cases} 1, & x \in A \\ 0, & x \in X \backslash A, \end{cases}$$

 1_A is \mathcal{F} -measurable iff $A \in \mathcal{F}$.

If f, g are real functions on X, we will write

$$\{f \ge g\} := \{x \in X : f(x) \ge g(x)\}.$$

Similarly, we define $\{f > g\}$, etc.

Lemma 1.17 $f: X \to [-\infty, \infty]$ is \mathcal{F} -measurable if

$$\{\pm f > \pm \alpha\} \in \mathcal{F}, \quad 0 \le \alpha < \infty.$$

Lemma 1.18 Let $f, g \in \mathcal{M}(X)$. Then

- (1) $\alpha f \in \mathcal{M}(X)$
- (2) $f + g \in \mathcal{M}(X)$ (if defined);
- (3) $fg \in \mathcal{M}(X)$
- (4) $1 \in \mathcal{M}(X)$ iff \mathcal{F} is a σ -field.

Proof. (2) For simplicity, we assume in addition that \mathcal{F} is a σ -field. Using the countability of \mathbb{Q} we see that

$$\{f+g>\alpha\}=\bigcup_{\beta\in\mathbb{Q}}\{f>\alpha+\beta\}\cap\{g>-\beta\}.$$

(3) First we show that $f \in \mathcal{M}(X)$ implies $f^2 \in \mathcal{M}(X)$.

By (1) and (2), f - g is measurable.

Finally

$$fg = \frac{1}{4}(f+g)^2 - \frac{1}{4}(f-g)^2.$$

implies that fg is measurable. \square

Proposition 1.19 Let $f_1, f_2, \dots \in \mathcal{M}(X)$. Then

$$\sup_{n} f_{n}, \inf_{n} f_{n}, \limsup_{n \to \infty} f_{n}, \liminf_{n \to \infty} f_{n}$$

are measurable. If there exists the pointwise limit of f_n , then also $\lim_{n\to\infty} f_n$ is measurable.

Proof. Let $f := \sup f_n$. Then

$$\{f \le \alpha\} = \bigcap_{n=1}^{\infty} \{f_n \le \alpha\} \in \mathcal{F}.$$

Hence f is measurable. inf f_n is treated similarly.

Then we use

$$\limsup_{n \to \infty} f_n = \inf_{n \in \mathbb{N}} \sup_{m \ge n} f_m, \quad \liminf_{n \to \infty} f_n = \sup_{n \in \mathbb{N}} \inf_{m \ge n} f_m$$

Finally,

$$\lim_{n \to \infty} f_n = \limsup_{n \to \infty} f_n = \liminf_{n \to \infty} f_n.$$

Theorem 1.20 Let $f: X \to \mathbb{R}$. Then $f \in \mathcal{M}_+(X)$ iff there exists an increasing sequence $u_n \in \mathcal{E}_+(X)$ such that

$$f = \sup_{n \in \mathbb{N}} u_n$$

Proof. \Leftarrow is obvious. Let us prove the converse statement.

Let $f \in \mathcal{M}_+(X)$. The sets

$$A_{in} := \begin{cases} \left\{ \frac{i}{2^n} \le f < \frac{i+1}{2^n} \right\} & i = 0, 1, \dots, n2^n - 1, \\ \left\{ n \le f \right\} & i = n2^n \end{cases}$$

are disjoint and measurable. Hence

$$u_n := \sum_{j=0}^{n2^n} \frac{j}{2^n} 1_{A_{jn}} \in \mathcal{E}_+(X).$$

The sequence u_n is increasing and $\sup_{n\in\mathbb{N}} u_n = f$. \square

1.10 Spaces L^{∞}

Assume that $\mathcal{I} \subset \mathcal{F} \subset 2^X$ are rings. We say that say that \mathcal{I} is an ideal in \mathcal{F} if

$$A \in \mathcal{I}, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{I}.$$

In what follows let $\mathcal{I} \subset \mathcal{F} \subset 2^X$ be σ -rings and \mathcal{I} be an ideal in \mathcal{F} . Then

Proposition 1.21 (1) $\mathcal{M}(X,\mathcal{I}) \subset \mathcal{M}(X,\mathcal{F})$

- (2) $\mathcal{M}(X,\mathcal{I}) := \{ f \in \mathcal{M}(X,\mathcal{F}) : \text{ there exists } N \in \mathcal{I} \text{ such that } f = 0 \text{ on } X \setminus N \}$
- (3) $f \in \mathcal{M}(X, \mathcal{F}), g \in \mathcal{M}(X, \mathcal{I}) \text{ implies } fg \in \mathcal{M}(X, \mathcal{I}).$

For $f \in \mathcal{M}(X, \mathcal{F})$ we set

$$||f||_{\infty} := \inf \{ \sup \{ |f(x)| : x \in X \setminus N \} : N \in \mathcal{I} \}.$$

Theorem 1.22 (1) Given $f \in \mathcal{M}(X,\mathcal{F})$, we can always find $N \in \mathcal{I}$ such that $\sup |f|_{X \setminus N} = ||f||_{\infty}$;

- (2) $||f + g||_{\infty} \le ||f||_{\infty} + ||g||_{\infty};$
- (3) $\|\alpha f\| = |\alpha| \|f\|_{\infty}$.

Proof. (2) We can find $N, M \in \mathcal{I}$ such that

$$\sup |f|_{X \setminus N} = ||f||_{\infty},$$
$$\sup |f|_{X \setminus M} = ||g||_{\infty}.$$

Then

$$\begin{split} \|f+g\|_{\infty} & \leq \sup|f+g|\Big|_{X\backslash(N\cup M)} \\ & \leq \sup(|f|+|g|)\Big|_{X\backslash(N\cup M)} \\ & \leq \sup|f|\Big|_{X\backslash(N\cup M)} + \sup|g|\Big|_{X\backslash(N\cup M)} \\ & \leq \sup|f|\Big|_{X\backslash N} + \sup|g|\Big|_{X\backslash M} = \|f\|_{\infty} + \|g\|_{\infty}. \end{split}$$

Let

$$\mathcal{L}^{\infty}(X, \mathcal{F}, \mathcal{I}) := \{ f \in \mathcal{M}(X, \mathcal{F}) : \|f\|_{\infty} < \infty \},$$

Theorem 1.23 (Riesz-Fischer) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{L}^{\infty}(\mu)$ satisfying the Cauchy condition, that is for any $\epsilon > 0$ there exists N such that for $n, m \geq N$

$$||f_n - f_m||_{\infty} \le \epsilon.$$

Then there exists $f \in \mathcal{L}^{\infty}(\mu)$ such that

$$||f - f_n||_{\infty} \to 0$$

We can also find a subsequence of $(f_n)_{n\in\mathbb{N}}$ pointwise convergent μ -a.e. to f.

Proof. There exists a subsequence $(f_{n_k})_{k\in\mathbb{N}}$ such that $||f_{n_{k+1}}-f_{n_k}||_{\infty}\leq 2^{-k}$, for any k. We set

$$g_k := f_{n_{k+1}} - f_{n_k}, \ g := \sum_{k=1}^{\infty} |g_k|.$$

Then

$$||g||_{\infty} \le \sum_{k=1}^{\infty} ||g_k||_{\infty} \le \sum_{k=1}^{\infty} 2^{-k} = 1.$$

Hence $g \in \mathcal{L}^{\infty}$ and therefore g is finite outside of a set N in \mathcal{I} . Hence the series $\sum_{k=1}^{\infty} g_k$ is convergent outside of N. This means that the sequence $(f_{n_k})_{k \in \mathbb{N}}$ is convergent to a function f outside of N. Inside N we set f := 0. We check that $f \in \mathcal{L}^{\infty}$ and $||f - f_n||_{\infty} \to 0$. \square

Theorem 1.24 (1) $\mathcal{M}(X,\mathcal{I}) = \{ f \in \mathcal{L}^{\infty}(X,\mathcal{F},\mathcal{I}) : ||f||_{\infty} = 0 \}$

- (2) Therefore, $||f + \mathcal{M}(X,\mathcal{I})||_{\infty} := ||f||_{\infty}$ defines a norm in $L^{\infty}(X,\mathcal{F},\mathcal{I}) := \mathcal{L}^{\infty}(X,\mathcal{F},\mathcal{I})/\mathcal{M}(X,\mathcal{I})$.
- (3) $L^{\infty}(X, \mathcal{F}, \mathcal{I})$ is a Banach space.
- (4) Elementary functions are dense in $L^{\infty}(X, \mathcal{F}, \mathcal{I})$.
- (5) $f, g \in L^{\infty}(X, \mathcal{F}, \mathcal{I}), 0 \le f \le g \text{ a.e. } \Rightarrow ||f||_{\infty} \le ||g||_{\infty}.$
- (6) $L^{\infty}(X, \mathcal{F}, \mathcal{I})$ is a countably complete lattice.

2 Measure and integral

2.1 Contents

Let \mathcal{R} be a ring. $\nu: \mathcal{R} \to [0, \infty]$ is a content if

- (1) $\nu(\emptyset) = 0;$
- (2) $A_1, A_2 \in \mathcal{R}, A_1 \cap A_2 = \emptyset, \Rightarrow \nu(A_1 \cup A_2) = \nu(A_1) + \nu(A_2).$

Theorem 2.1 Let (X, \mathcal{R}, ν) be a content on a ring. Then if $A_1, A_2, \dots \in \mathcal{R}$ are disjoint and $A = \bigcup_{i=1}^{\infty} A_i \in \mathcal{R}$, then

$$\nu(A) \ge \sum_{i=1}^{\infty} \nu(A_i).$$

Proof. For any n,

$$\nu(A) \ge \nu(\bigcup_{j=1}^n A_j) = \sum_{j=1}^n \nu(A_j).$$

Passing to the limit $n \to \infty$, we obtain the inequality. \square

2.2 Measures

Let (X, \mathcal{F}) be a space with a σ -ring. A function $\mu : \mathcal{F} \to [0, \infty]$ is called a measure if

- (1) $\mu(\emptyset) = 0$,
- (2) $A_1, A_2 \cdots \in \mathcal{F}, A_i \cap A_j = \emptyset \text{ for } i \neq j \Rightarrow \mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n).$

The triple (X, \mathcal{F}, μ) is called a space with a measure.

Proposition 2.2 (1) If $A \subset B$, then $\mu(A) \leq \mu(B)$.

- (2) $A_1, A_2, \dots \in \mathcal{F} \Rightarrow \mu((\bigcup_{n=1}^{\infty} A_n) \leq \sum_{n=1}^{\infty} \mu(A_n).$
- (3) $A_1, A_2, \dots \in \mathcal{F}, A_n \nearrow A \Rightarrow \mu(A_n) \nearrow \mu(A).$
- (4) If $A_1, A_2, \dots \in \mathcal{F}$, $A_n \searrow A$ and for some $n, \mu(A_n) < \infty$, then $\mu(A_n) \searrow \mu(A)$.

Definition 2.3 Let (X, \mathcal{F}, μ) be a space with a measure. and P(x) be a property defined on X. We say that P(x) is true μ -almost everywhere $(\mu$ -a.e.) if

$$\mu(\lbrace x \in X : P(x) \text{ is not true } \rbrace) = 0.$$

2.3 $\mu - \sigma$ -finite sets

Let (X, \mathcal{F}, μ) be a measure. A set $A \in \mathcal{F}$ is called μ -null if $\mu(A) = 0$. It is μ -finite if $\mu(A) < \infty$. It is called μ - σ -finite iff there exist a sequence of μ -finite sets $A_1, A_2, \dots \in \mathcal{F}$ such that $A_n \nearrow A$. Set

$$\mathcal{F}^0_{\mu} := \{ A \in \mathcal{F} : \mu(A) = 0 \}.$$

$$\mathcal{F}^{\mathrm{f}}_{\mu} := \{ A \in \mathcal{F} : A \text{ is } \mu\text{-finite} \}.$$

$$\mathcal{F}_{\mu}^{\sigma f} := \{ A \in \mathcal{F} : A \text{ is } \mu - \sigma \text{-finite} \}.$$

We say that μ is σ -finite iff $\mathcal{F} = \mathcal{F}_{\mu}^{\sigma f}$ and μ is finite iff $\mathcal{F} = \mathcal{F}_{\mu}^{f}$. We say that μ is probabilistic iff $\mu(X) = 1$.

Theorem 2.4 (1) \mathcal{F}^0_{μ} is a σ -ring and an ideal in \mathcal{F}^f_{μ} , $\mathcal{F}^{\sigma f}_{\mu}$, \mathcal{F} .

- (2) $\mathcal{F}_{\mu}^{\sigma f}$ is a σ -ring and an ideal in \mathcal{F}
- (3) \mathcal{F}^f_{μ} is a ring and an ideal in $\mathcal{F}^{\sigma f}_{\mu}$, \mathcal{F} . We have $\mathcal{F}^{\sigma f}_{\mu} = \sigma \mathrm{Ring}(\mathcal{F}^f_{\mu})$.
- (4) If \mathcal{F} is a σ -field, then μ is σ -finite iff X is μ - σ -finite; μ is finite if X is μ -finite.

Note that if (X, \mathcal{F}, μ) is any measure, then $X, \mathcal{F}^{\mu f}, \mu \Big|_{\mathcal{F}^{\mu f}}$ is a σ -finite measure. We will call say that the latter measure has been obtained from the former by restricting to $\mu - \sigma$ -finite sets.

2.4 Integral on elementary functions I

Let (X, \mathcal{R}, μ) be a space with a ring and a content. For $f \in \mathcal{E}_+(X)$ we set

$$\int f d\mu := \sum_{t \in \mathbb{R}} t\mu \left(f^{-1} \{t\} \right).$$

Theorem 2.5 The function

$$\mathcal{E}_{+}(X) \ni u \mapsto \int u d\mu \in [0, \infty]$$

satisfies

- $(1) \int 1_A d\mu = \mu(A)$
- (2) $\alpha \geq 0$ implies $\int (\alpha u) d\mu = \alpha \int u d\mu$;
- (3) $\int (u+v)d\mu = \int ud\mu + \int vd\mu.$
- (4) $u \le v$ implies $\int u d\mu \le \int u d\mu$.

2.5 Integral on elementary functions II

Assume now that (X, \mathcal{F}, μ) is a set with a σ -ring and a measure. We define the integral on elementary functions as in the previous subsection.

Lemma 2.6 Let $(u_n)_{n\in\mathbb{N}}$ be an increasing sequence in $\mathcal{E}_+(X)$ and $v\in\mathcal{E}_+(X)$. Then

$$v \le \sup_{n \in \mathbb{N}} u_n \Rightarrow \int v d\mu \le \sup_{n \in \mathbb{N}} \int u_n d\mu.$$

Proof. It is sufficient to assume that

$$\{v \neq 0\} =: A \neq \emptyset.$$

Let $\alpha := \inf v(A), \ \beta := \sup v, \ 0 < \epsilon < \alpha$. Set

$$A_n := \{u_n \ge v - \epsilon\} \cap A.$$

Then $A_n \in \mathcal{F}$ and $A_n \nearrow A$. Hence $\mu(A_n) \nearrow \mu(A)$.

Consider two cases:

1) $\mu(A) = \infty$. Then

$$(\alpha - \epsilon)1_{A_n} \le (v - \epsilon)1_{A_n} \le u_n.$$

Hence

$$(\alpha - \epsilon)\mu(A_n) \le \int u_n d\mu$$

But the lhs tends to $(\alpha - \epsilon)\infty = \infty$. Therefore,

$$\lim_{n \to \infty} \int u_n \mathrm{d}\mu = \infty.$$

2) $\mu(A) < \infty$. Set $B_n := A \setminus A_n$. Then $B_n \in \mathcal{F}$, $\mu(B_n) < \infty$ and $B_n \searrow \emptyset$. Thus $\mu(B_n) \searrow 0$. Adding $v1_{A_n} \le u_n + \epsilon 1_{A_n}$ and $1_{B_n} v \le \beta 1_{B_n}$ we get

$$v \le \epsilon 1_{A_n} + \beta 1_{B_n} + u_n$$

Hence

$$\int v d\mu \le \epsilon \mu(A_n) + \beta \mu(B_n) + \int u_n d\mu.$$

After passing to the limit we get

$$\int v d\mu \le \epsilon \mu(A) + \sup_{n \in \mathbb{N}} \int u_n d\mu.$$

 ϵ can be taken arbitrarily close to zero, therefore,

$$\int v \mathrm{d}\mu \le \sup_{n \in \mathbb{N}} \int u_n \mathrm{d}\mu.$$

Lemma 2.7 Let $(u_n)_{n\in\mathbb{N}}$ and $(v_n)_{n\in\mathbb{N}}$ be increasing sequences from $\mathcal{E}_+(X)$. Then

$$\sup_{n\in\mathbb{N}}u_n=\sup_{n\in\mathbb{N}}v_n\Rightarrow\sup_{n\in\mathbb{N}}\int u_n\mathrm{d}\mu=\sup_{n\in\mathbb{N}}\int v_n\mathrm{d}\mu.$$

Proof. For any m = 1, 2, ... we have $v_m \leq \sup u_n$. Therefore,

$$\int v_m \mathrm{d}\mu \le \sup_{n \in \mathbb{N}} \int u_n \mathrm{d}\mu.$$

Thus

$$\sup_{m \in \mathbb{N}} \int v_m d\mu \le \sup_{n \in \mathbb{N}} \int u_n d\mu.$$

2.6 Integral on positive measurable functions I

For $f \in \mathcal{M}_+(X)$ we define

$$\int f d\mu := \sup \left\{ \int u d\mu : u \in \mathcal{E}_+(X), u \le f \right\}.$$

Theorem 2.8 The function

$$\mathcal{M}_+(X)\ni f\mapsto \int f\mathrm{d}\mu\in [0,\infty]$$

satisfies

- (1) If $u_n \in \mathcal{E}_+(X)$ is an increasing sequence such that $f = \sup u_n$ (which always exists), then $\int u_n d\mu \to \int f d\mu$.
- $(2) \int 1_A d\mu = \mu(A);$
- (3) $\int \lambda f d\mu = \lambda \int f d\mu$, $f \in \mathcal{M}_{+}(X)$, $\lambda \in [0, \infty[$;
- (4) $\int (f+g)d\mu = \int fd\mu + \int gd\mu;$
- (5) on $\mathcal{E}_{+}(X)$ it coincides with the previously defined integral.
- (6) if $f, g \in \mathcal{M}_+(X)$, $f \leq g$, then $\int f d\mu \leq \int g d\mu$.

Theorem 2.9 (Beppo Levi) Let $(f_n)_{n\in\mathbb{N}}$ be an increasing sequence from $\mathcal{M}_+(X)$. Then $\sup_{n\in\mathbb{N}} f_n \in \mathcal{M}_+(X)$ and

$$\int \sup_{n \in \mathbb{N}} f_n d\mu = \sup_{n \in \mathbb{N}} \int f_n d\mu.$$

Proof. Set $f := \sup_{n \in \mathbb{N}} f_n$. Using $f_n \leq f$, we see that

$$\int f_n \mathrm{d}\mu \le \int f \mathrm{d}\mu.$$

Hence

$$\sup \int f_n \mathrm{d}\mu \le \int f \mathrm{d}\mu.$$

Let us prove the converse inequality.

We can find $u_{mn} \in \mathcal{E}_+(X)$ such that the sequences $(u_{mn})_{m \in \mathbb{N}}$ are increasing and $\sup_{m \in \mathbb{N}} u_{mn} = f_n$. Set

$$v_m := \sup\{u_{m1}, \dots, u_{mm}\} = \sup\{u_{ij} : i, j \le m\}$$

Then $v_m \in \mathcal{E}_+(X)$, $(v_m)_{m \in \mathbb{N}}$ is increasing and $\sup v_m = f$. Hence

$$\int f \mathrm{d}\mu = \sup \int v_n \mathrm{d}\mu.$$

Using $v_n \leq f_n$, we obtain

$$\int v_n \mathrm{d}\mu \le \int f_n \mathrm{d}\mu.$$

Hence

$$\int f \mathrm{d}\mu \le \sup_{n} \int f_n \mathrm{d}\mu.$$

2.7 Integral on positive measurable functions II

Theorem 2.10 (The Fatou lemma) Let $(f_n)_{n\in\mathbb{N}}$ be a sequence in $\mathcal{M}_+(X)$. Then

$$\int \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int f_n d\mu.$$

Proof. Set $f := \lim \inf_{n \to \infty} f_n$, $g_n := \inf_{m \ge n} f_m$. We have $f, g_n \in \mathcal{M}_+(X)$ and $g_n \nearrow f$. Hence

$$\int f \mathrm{d}\mu = \sup_{n \in \mathbb{N}} \int g_n \mathrm{d}\mu.$$

 $g_n \leq f_m$ for $m \geq n$, therefore

$$\int g_n d\mu \le \inf_{m \ge n} \int f_m d\mu.$$

Proposition 2.11 For any $f \in \mathcal{M}_{+}(X)$

$$\int f d\mu = 0 \Leftrightarrow f = 0 \text{ μ-almost everywhere.}$$

Proof. Set

$$M := \{ f \neq 0 \}.$$

 \Rightarrow Let

$$M_n := \{ f \ge n^{-1} \}.$$

Then $M_n \in \mathcal{F}$ and

$$n^{-1}\mu(M_n) \le \int f \mathrm{d}\mu = 0.$$

Thus $\mu(M_n) = 0$. But $M_n \nearrow M$, so $\mu(M_n) \nearrow \mu(M)$. Hence $\mu(M) = 0$. \Leftarrow Set

$$f_n := \inf\{f, n\}$$

Then $f_n \in \mathcal{M}_+(\mathcal{F})$ and $f_n \nearrow f$. So $\int f_n d\mu \nearrow \int f d\mu$. But

$$f_n \leq n1_M$$

therefore

$$\int f_n \mathrm{d}\mu \le n\mu(M) = 0.$$

Hence $\int f d\mu = 0$. \square

Theorem 2.12 Let $f \in \mathcal{M}_+(X)$ and

$$\int f \mathrm{d}\mu < \infty.$$

Then $f < \infty$ μ -a.e. and $\{f \neq 0\} \in \mathcal{F}_{\mu}^{\sigma f}$.

Proof. Let $A := \{f = \infty\}$. Then $0 \le \infty 1_A \le f$. Hence $\infty \mu(A) \le \int f d\mu$. \square

2.8 Integral of functions with a varying sign

For $f: X \to [-\infty, \infty]$ we set

$$f_+ := \sup(f, 0), f_- := -\inf(f, 0).$$

Thus

$$f = f_{+} - f_{-}, \quad |f| = f_{+} + f_{-}.$$

Clearly, $f \in \mathcal{M}(X)$ iff $f_+, f_- \in \mathcal{M}_+(X)$.

Definition 2.13 Let $f \in \mathcal{M}(X)$. Assume that one of the numbers $\int f_+ d\mu$, $\int f_- d\mu$ is finite. Then we say that the integral of f is well defined and

$$\int f d\mu := \int f_+ d\mu - \int f_- d\mu.$$

Theorem 2.14 Let $f, g \in \mathcal{M}_+(X)$ and f = g μ -a.e. Then

$$\int f \mathrm{d}\mu = \int g \mathrm{d}\mu.$$

2.9 Transport of a measure—the change of variables in an integral

If (X, \mathcal{F}) , (X', \mathcal{F}') are spaces with σ -rings, μ is a measure on (X, \mathcal{F}) and $T: X \to X'$ is a measurable transformation, then $T_*\mu$ is the measure on (X', \mathcal{F}') defined as

$$T_*\mu(A') := \mu(T^{-1}(A')), \ A' \in \mathcal{F}'.$$

Clearly, we then have the formula for $f' \in \mathcal{M}_+(X')$:

$$\int f' dT_* \mu = \int f' \circ T d\mu.$$

If T is injective, and μ' is a measure on (X', \mathcal{F}') , then we define the measure $T^*\mu'$ on (X, \mathcal{F}) by

$$T^*\mu'(A) := \mu'(T(A)), \ A \in \mathcal{F}.$$

and for $f \in \mathcal{M}_+(X)$:

$$\int f \mathrm{d}\mu' = \int f \circ T \mathrm{d}T^*\mu'.$$

2.10 Integrability

Definition 2.15 Let $f \in \mathcal{M}(X)$. If

$$\int f_{+} d\mu < \infty, \quad \int f_{-} d\mu < \infty,$$

or equivalently, if $\int |f| d\mu < \infty$, then we say that $f \in \mathcal{L}^1$, or integrable (in the sense of \mathcal{L}^1) and we write

$$f \in \mathcal{L}^1(\mu), \quad \int f d\mu := \int f_+ d\mu - \int f_- d\mu.$$

Proposition 2.16 (1) If $f \in \mathcal{L}^1(\mu)$, $g \in \mathcal{M}(X)$ and f = g μ -a.e., then $g \in \mathcal{L}^1(\mu)$.

- (2) $f \in \mathcal{L}^1(\mu)$, then $|f| < \infty$ μ -a.e. and $\{f \neq 0\} \in \mathcal{F}_{\mu}^{\sigma f}$.
- (3) If $f \in \mathcal{M}(X)$, $g \in \mathcal{L}^1(\mu)$ and $|f| \leq g$ μ -a.e., then $f \in \mathcal{L}^1(\mu)$.

Lemma 2.17 If $u, v \in \mathcal{L}^1(\mu)$, $u, v \geq 0$ and

$$f = u - v$$
,

then $f \in \mathcal{L}^1(\mu)$.

Proof. We have

$$f \le u \le u + v, \quad -f \le v \le u + v.$$

Therefore,

$$|f| \le u + v \in \mathcal{L}^1(\mu).$$

Proposition 2.18 Let $f, g \in \mathcal{L}^1(\mu), \alpha \in \mathbb{R}$. Then

- (1) $\alpha f \in \mathcal{L}^1(\mu)$;
- (2) $f + g \in \mathcal{L}^1(\mu)$;

- (3) $\sup(f,g)$, $\inf(f,g) \in \mathcal{L}^1(\mu)$;
- (4) $f \leq g \Rightarrow \int f d\mu \leq \int g d\mu$
- (5) $|\int f d\mu| \le \int |f| d\mu$.

Proof. (1) We have,

$$(\alpha f)_+ = \alpha f_+, \ (\alpha f)_- = \alpha f_-, \qquad \alpha > 0$$

$$(\alpha f)_{+} = |\alpha|f_{-}, \ (\alpha f)_{-} = |\alpha|f_{+}, \ \alpha < 0.$$

Hence $\alpha f \in \mathcal{L}^1(\mu)$.

(2) Next we write

$$f + g = f_{+} - f_{-} + g_{+} - g_{-}, (2.2)$$

put

$$u := f_+ + g_+ \in \mathcal{L}^1(\mu), \ v := f_- + g_- \in \mathcal{L}^1(\mu),$$

and use Lemma 2.17, which shows that (2.2) belongs to $L^1(\mu)$.

(3) The estimates

$$|\sup(f,g)| \le |f| + |g|, \ |\inf(f,g)| \le |f| + |g|$$

and $|f| + |g| \in \mathcal{L}^1(\mu)$ show that $\sup(f, g), \inf(f, g) \in \mathcal{L}^1(\mu)$.

(4) $f \leq g$ implies that $f_+ \leq g_+$ and $f_- \geq g_-$. Hence

$$\int f \mathrm{d}\mu \le \int g \mathrm{d}\mu. \tag{2.3}$$

(5) We have $f \leq |f|$ and $-f \leq |f|$. Therefore, if we put in (2.3) g = |f| we get

$$|\int f d\mu| \leq \int |f| d\mu$$
.

2.11 The Hölder and Minkowski inequalities

Let $1 \leq p \leq \infty$.

Definition 2.19 Let $f \in \mathcal{M}(X)$. Put

$$||f||_p := (\int |f|^p d\mu)^{\frac{1}{p}}, \ 1 \le p < \infty,$$
$$||f||_{\infty} := \inf \{ \sup \{ |f(x)| : x \in X \setminus N \} : N \in \mathcal{F}_{\mu}^0 \}.$$

We define $\mathcal{L}^p(X,\mu)$ as the space of $f \in \mathcal{M}(X)$ such that $||f||_p < \infty$.

Theorem 2.20 (The Hölder inequality) Let $1 \le p, q \le \infty$,

$$\int |fg| \mathrm{d}\mu \le \|f\|_p \|g\|_q, \ \frac{1}{p} + \frac{1}{q} = 1.$$

Proof. Assume first that $1 < p, q < \infty$. By the convexity of e^x ,

$$\frac{a}{p} + \frac{b}{q} \ge a^{\frac{1}{p}} b^{\frac{1}{q}}.$$

We substitute

$$a = \frac{|f|^p(x)}{\|f\|_p^p}, \quad b = \frac{|g|^q(x)}{\|f\|_q^q}.$$

We get

$$\frac{1}{p} \frac{|f|^p(x)}{\|f\|_p^p} + \frac{1}{q} \frac{|g|^q(x)}{\|f\|_q^q} \ge \frac{|f|(x)|g|(x)}{\|f\|_p \|g\|_q}.$$

We integrate

$$1 \ge \frac{\int |f||g| \mathrm{d}\mu}{\|f\|_p \|g\|_q}.$$

The case p = 1, $q = \infty$ is straightforward. \square

Theorem 2.21 Let $1 \le r \le \infty$, $0 \le \alpha \le 1$, $\frac{\alpha}{q} + \frac{1-\alpha}{r} = \frac{1}{p}$. Then

$$\|f\|_p \le \|f\|_q^\alpha \|\|f\|_r^{1-\alpha} \le \alpha \|f\|_q + (1-\alpha)\|f\|_r.$$

Proof.

$$\int |f|^p = \int |f|^{p\alpha} |f|^{p(1-\alpha)} \le |||f|^{p\alpha}||_{\frac{q}{\alpha p}} |||f|^{p(1-\alpha)}||_{\frac{r}{(1-\alpha)p}}.$$

Theorem 2.22 (The generalized Minkowski inequality) Let X, Y be spaces with measures μ and ν , $1 \le p < \infty$.

$$\left(\int \mathrm{d}\nu(y) \left| \int f(x,y) \mathrm{d}\mu(x) \right|^p \right)^{\frac{1}{p}} \le \int \mathrm{d}\mu(x) \left(\int |f|^p(x,y) \mathrm{d}\nu(y) \right)^{\frac{1}{p}}$$

Proof. Let $\frac{1}{p} + \frac{1}{q} = 1$. It suffices to assume that $f \ge 0$. We will restrict ourselves to the case p > 1.

$$\int dy \left(\int f(x,y) dx \right)^{p}$$

$$= \int dy \left(\int f(x_{1},y) dx_{1} \right)^{p-1} \left(\int f(x_{2},y) dx_{2} \right)$$

$$= \int dx_{2} \left(\int dy \left(\int f(x_{1},y) dx_{1} \right)^{p-1} f(x_{2},y) \right)$$

$$\leq \int dx_{2} \left(\int dy_{1} \left(\int f(x_{1},y_{1}) dx_{1} \right)^{q(p-1)} \right)^{\frac{1}{q}} \left(\int f^{p}(x_{2},y_{2}) dy_{2} \right)^{\frac{1}{p}} \quad \text{(the H\"older inequality)}$$

$$= \left(\int dy_{1} \left(\int f(x_{1},y_{1}) dx_{1} \right)^{p} \right)^{1-\frac{1}{p}} \left(\int dx_{2} \left(\int f^{p}(x_{2},y_{2}) dy_{2} \right)^{\frac{1}{p}} \right).$$

Then we divide by the first factor on the left. \Box

Corollary 2.23 Setting $X = \{1, 2\}$ with the counting measure we get

$$||f_1 + f_2||_p \le ||f_1||_p + ||f_2||_p$$
.

2.12 Dominated Convergence Theorem

Theorem 2.24 (Lebesgue) Assume that $1 \le p < \infty$, $g, f_n \in \mathcal{L}^p(\mu)$, f_n is μ -a.e. pointwise convergent and

$$|f_n| \leq g$$
.

Then there exists $f \in \mathcal{L}^p(\mu)$ such that $f_n \to f$ μ -a.e. and

$$||f - f_n||_p \to 0.$$

Proof. We define

$$f(x) := \begin{cases} \lim_{n \to \infty} f_n(x) & \text{if } \lim_{n \to \infty} f_n(x) \text{ exists} \\ 0 & \text{if } \lim_{n \to \infty} f_n(x) \text{ does not exists} \end{cases}$$

Then $f \in \mathcal{M}(X)$ and

$$|f| \leq g \ \mu$$
-a.e.

hence $f \in \mathcal{L}^p(\mu)$. Set

$$h_n := |f - f_n|^p.$$

Then

$$0 \le h_n \le (|f_n| + |f|)^p \le |2g|^p =: h.$$

Clearly, h and therefore also h_n are integrable. Besides, μ -a.e.

$$h = \lim_{n \to \infty} (h - h_n)$$

Therefore, by the Fatou Lemma applied to the sequence $h - h_n$ we get

$$\int h d\mu = \int \lim_{n \to \infty} (h - h_n) d\mu$$

$$\leq \lim \inf_{n \to \infty} \int (h - h_n) d\mu$$

$$= \int h d\mu - \lim \sup_{n \to \infty} \int h_n d\mu.$$

Thus

$$\limsup_{n \to \infty} \int h_n \mathrm{d}\mu \le 0$$

Using $h_n \geq 0$ we get

$$\lim_{n \to \infty} \int h_n \mathrm{d}\mu = 0.$$

Theorem 2.25 (Scheffe's lemma) Let $f, f_1, f_2, \dots \in \mathcal{L}^1(\mu)$ and $f_n \to f$ a.e. Then

$$\int |f_n - f| \mathrm{d}\mu \to 0 \iff \int |f_n| \mathrm{d}\mu \to \int |f| \mathrm{d}\mu.$$

2.13 L^p spaces

Theorem 2.26 (Riesz-Fischer) Let $1 \le p \le \infty$. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence in $\mathcal{L}^p(\mu)$ satisfying the Cauchy condition, that is for any $\epsilon > 0$ there exists N such that for $n, m \ge N$

$$||f_n - f_m||_p \le \epsilon.$$

Then there exists $f \in \mathcal{L}^p(\mu)$ such that

$$||f - f_n||_p \to 0$$

We will also find a subsequence of $(f_n)_{n\in\mathbb{N}}$ pointwise convergent μ -a.e. to f.

Proof. There exists a subsequence $(f_{n_k})_{k\in\mathbb{N}}$ such that $||f_{n_{k+1}}-f_{n_k}||_p\leq 2^{-k}$, for any k. We set

$$g_k := f_{n_{k+1}} - f_{n_k}, \ g := \sum_{k=1}^{\infty} |g_k|.$$

Then

$$||g||_p \le \sum_{k=1}^{\infty} ||g_k||_p \le \sum_{k=1}^{\infty} 2^{-k} = 1.$$

Hence $g \in \mathcal{L}^p(\mu)$ and therefore g is finite μ -a.e. Hence the series $\sum_{k=1}^{\infty} g_k$ is μ -a.e. convergent. This means that the sequence $(f_{n_k})_{k \in \mathbb{N}}$ is μ -a.e. convergent.

In the case $p = \infty$ it is sufficient to take the limit and to check that it is the limit in the \mathcal{L}_{∞} sense. In the case $1 \leq p < \infty$, we need to apply the Lebesgue theorem. We first check hat

$$|f_{n_k}| \le |f_{n_1} + g_1 + \dots + g_{k-1}| \le |f_{n_1}| + g$$

and $g + |f_{n_1}| \in \mathcal{L}^p(\mu)$. Therefore, we will find $f \in \mathcal{L}^p(\mu)$ such that

$$\lim_{k\to\infty} \|f_{n_k} - f\|_p = 0,$$

$$\lim_{k\to\infty} f_{n_k} = f \mu$$
-a.e.

Using the Cauchy condition we get

$$\lim_{n\to\infty} ||f_n - f||_p = 0.$$

Let $\mathcal{N}(\mu)$ be the space of functions in $\mathcal{M}(X)$ equal 0 μ -a.e. (That is, $\mathcal{N}(\mu) = \mathcal{M}(X, \mathcal{F}^0_\mu)$).

Theorem 2.27 Let $1 \le p \le \infty$

- (1) $\mathcal{N}(\mu)$ is a vector subspace of $\mathcal{L}^p(\mu)$ such that $||f||_p = 0$, $f \in \mathcal{L}^p(\mu)$ iff $f \in \mathcal{N}(\mu)$.
- (2) Therefore,

$$||f + \mathcal{N}(\mu)||_p := ||f||_p$$

defines a norm in

$$L^p(\mu) := \mathcal{L}^p(\mu)/\mathcal{N}(\mu).$$

- (3) $L^p(\mu)$ is a Banach space.
- (4) Elementary functions are dense in $L^p(\mu)$.
- (5) $f, g \in L^p(\mu), 0 \le f \le g \text{ a.e. } \Rightarrow ||f||_p \le ||g||_p.$
- (6) For $1 \le p < \infty$, if we restrict the measure to $\mu \sigma$ -finite sets, we obtain the same $L^p(\mu)$ space.
- (7) For $1 \leq p < \infty$, $L^p(\mu)$ is a complete lattice. $L^{\infty}(\mu)$ is a countably complete lattice. (Later on, we will show that under some additional conditions it is also a complete lattice).

Proof. (4) Let $f \in \mathcal{L}^p(\mu)$. Then $f_+, f_- \in \mathcal{L}^p(\mu)$. We know that there exist sequences $u_{\pm,n} \in \mathcal{E}_+(\mu)$ with $u_{\pm,n} \nearrow f_{\pm}$. By the Lebesgue theorem, $||f_{\pm} - u_{\pm,n}||_p \to 0$. \square

2.14 Egorov theorem

Theorem 2.28 Let $f, f_1, f_2, \dots \in \mathcal{M}(X)$. Consider the following statements:

- (1) $f_n(x) \to f(x)$ for a.a. $x \in X$.
- (2) For all $\epsilon > 0$

$$\mu\Big(\bigcap_{n=1}^{\infty}\bigcup_{j=n}^{\infty}|f_j-f|\geq\epsilon\Big)=0.$$

(3) For all $\epsilon > 0$

$$\lim_{n \to \infty} \mu\Big(\bigcup_{j=n}^{\infty} |f_j - f| \ge \epsilon\Big) = 0.$$

(4) For every $\delta > 0$, there exists $A \in \mathcal{F}$ with $\mu(A) < \delta$ and

$$\lim_{n \to \infty} \sup_{x \in X \setminus A} |f - f_n| = 0.$$

Then $(1)\Leftrightarrow(2)\Leftarrow(3)\Leftarrow(4)$. If $\mu(X)<\infty$, then $(1)\Leftrightarrow(2)\Leftrightarrow(3)\Leftrightarrow(4)$. (The implication $(1)\Rightarrow(4)$ is called the **Egorov theorem**).

Proof. Only (3) \Rightarrow (4) is not immediate, and we are going to prove this implication. Let $\delta > 0$ and $k \in \mathbb{N}$. Then by (3) there exists n_k such that for

$$B_k := \bigcup_{j=n_k}^{\infty} \{ |f - f_j| > 1/k \},$$

we have $\mu(B_k) < \delta 2^{-k}$. Set $A := \bigcup_{k=1}^{\infty} B_k$. We have $\mu(A) < \delta$ and on $X \setminus A$, $|f(x) - f_j(x)| \le 1/k$ for $j \ge n_k$. Hence on $X \setminus A$, f_n converges uniformly to f. \square

3 Extension of a measure

3.1 Hereditary families

 $\mathcal{T} \subset 2^X$. We say that \mathcal{T} is hereditary if $A \subset B \in \mathcal{T}$ implies $A \in \mathcal{T}$. For any \mathcal{T} we denote by $\text{Her}(\mathcal{T})$ the smallest hereditary family containing \mathcal{T} .

Theorem 3.1 (1) Let \mathcal{R} be a ring. Then $\operatorname{Her}(\mathcal{R})$ is a ring.

(2) Let $\mathcal{T} \subset 2^X$. Then $Q \in \text{Her}(\sigma - \text{Ring}(\mathcal{T}))$ iff there exist $A_1, \ldots, A_n \in \mathcal{T}$ such that $Q \subset A_1 \cup \cdots \cup A_n$.

Theorem 3.2 (1) If \mathcal{I} is a σ -ring, then $\text{Her}(\mathcal{I})$ is a σ -ring.

(2) If $\mathcal{T} \subset 2^X$, then $Q \in \text{Her}(\mathcal{T})$ iff there exist $A_1, A_2, \dots \in \mathcal{T}$ such that $Q \subset \bigcup_{i=1}^{\infty} A_i$.

Theorem 3.3 If $\mathcal{I} \subset \mathcal{F}$ are σ -rings and \mathcal{I} is an ideal in \mathcal{F} , then

$$\sigma - \operatorname{Ring} (\mathcal{F} \cup \operatorname{Her}(\mathcal{I})) = \{ A \cup N : A \in \mathcal{F}_1, N \in \operatorname{Her}(\mathcal{I}) \}$$
$$= \{ A \setminus N : A \in \mathcal{F}, N \in \operatorname{Her}(\mathcal{I}) \}.$$

3.2 Extension of a measure by null sets

Let X be a set and (\mathcal{F}_2, μ_2) , (\mathcal{F}_1, μ_1) be measures on X. We say that (\mathcal{F}_2, μ_2) extends (\mathcal{F}_1, μ_1) by null sets iff

- (1) $\sigma \operatorname{Ring}(\mathcal{F}_1 \cup (\mathcal{F}_2)_{\mu_2}^0) = \mathcal{F}_2;$
- (2) $\mu_2\Big|_{\mathcal{F}_1} = \mu_1.$

Theorem 3.4 Suppose that (\mathcal{F}_2, μ_2) extends (\mathcal{F}_1, μ_1) by null sets. Then

- (1) $\mathcal{F}_2 = \{ A \cup N : A \in \mathcal{F}_1, N \in (\mathcal{F}_2)_{\mu_2}^0 \}$.
- (2) $\mathcal{N}(\mu_2) \cap \mathcal{M}(\mathcal{F}_1) = \mathcal{N}(\mu_2)$. Hence, we can identify $\mathcal{M}(X, \mathcal{F}_1)/\mathcal{N}(\mu_1)$ with $\mathcal{M}(X, \mathcal{F}_2)/\mathcal{N}(\mu_2)$ in the obvious way.
- (3) We can identify $L^p(\mu_1)$ with $L^p(\mu_2)$.

3.3 Complete measures

Let (X, \mathcal{F}, μ) be a space with a measure. We say that the measure μ is complete if \mathcal{F}^0_{μ} is hereditary. Let μ be a not necessarily complete measure. Set

$$\mathcal{F}^{\mathrm{cp}}_{\mu} := \{A \cup N \ : \ A \in \mathcal{F}, \ N \in \mathrm{Her}(\mathcal{F}^0_{\mu})\} = \sigma - \mathrm{Ring}(\mathcal{F} \cup \mathrm{Her}(\mathcal{F}^0_{\mu})).$$

Define $\mu^{\mathrm{cp}}: \mathcal{F}_{\mu}^{\mathrm{cp}} \to [0, \infty],$

$$\mu^{\mathrm{cp}}(A \cup N) := \mu(A), \quad A \in \mathcal{F}, \quad N \in \mathrm{Her}(\mathcal{F}^0_\mu).$$

Theorem 3.5 (1) \mathcal{F}_{μ}^{cp} is a σ -ring and μ^{cp} is a complete measure.

- (2) μ^{cp} is an extension of μ by null sets.
- (3) μ^{cp} is the unique extension of μ to a content on \mathcal{F}^{cp} .
- (4) Every extension of (\mathcal{F}, μ) to a complete measure is an extension of $(\mathcal{F}^{cp}, \mu^{cp})$.

We will call $(X, \mathcal{F}^{cp}, \mu^{cp})$ the completion of μ .

3.4 External measures

Definition 3.6 A function $\mu^*: 2^X \to [0, \infty]$ is called an external measure if

- (1) $\mu^*(\emptyset) = 0$,
- (2) $Q_1, Q_2 \dots \in 2^X \Rightarrow \mu^* (\bigcup_{n=1}^{\infty} Q_n) \leq \sum_{n=1}^{\infty} \mu^* (Q_n).$
- (3) $Q \subset P$, $Q, P \in 2^X \Rightarrow \mu^*(Q) < \mu^*(P)$.

Clearly, every measure on $(X, 2^X)$ is an external measure.

For any set X the function that assigns 0 to \emptyset and 1 to a nonempty set is an external measure on X. It is not a measure if X contains more than one element.

Definition 3.7 Let μ^* be an external measure. We say that $A \in 2^X$ is measurable wrt μ^* , if one of the following two equivalent conditions holds

$$\mu^*(Q) \ge \mu^*(Q \cap A) + \mu^*(Q \setminus A), \ Q \in 2^X;$$
 (3.4)

$$\mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \setminus A), \ Q \in 2^X.$$
(3.5)

(The equivalence of the conditions (3.5) follows from (2) of the definition of the external measure applied to $Q \cap A$ and $Q \setminus A$.)

The family of sets measurable wrt μ^* will be denoted \mathcal{F}^{ms} . μ^* restricted to \mathcal{F}^{ms} will be denoted μ^{ms} .

Theorem 3.8 Let μ^* be an external measure on X. Let \mathcal{F}^{ms} and μ^{ms} be defined as above. Then

- (1) \mathcal{F}^{ms} is a σ -field
- (2) $(X, \mathcal{F}^{ms}, \mu^{ms})$ is a complete measure;

(3)

$$A \in 2^X$$
, $\mu^*(A) = 0 \Leftrightarrow A \in \mathcal{F}^{\text{ms}}$, $\mu^{\text{ms}}(A) = 0$.

Proof. Step 0. Clearly, $\emptyset, X \in \mathcal{F}^{ms}$.

Step 1. $A, B \in \mathcal{F}^{ms} \Rightarrow A \backslash B \in \mathcal{F}^{ms}$.

Let $Q \in 2^X$.

Applying the measurability condition to $Q \cap A$ and B we get

$$\mu^*(Q \cap A) = \mu^*(Q \cap A \cap B) + \mu^*(Q \cap A \setminus B). \tag{3.6}$$

(Note that $(Q \cap B) \setminus A = Q \cap (B \setminus A)$). Then we apply it to $Q \setminus A$ and B to get

$$\mu^*(Q \backslash A) = \mu^*(Q \cap B \backslash A) + \mu^*(Q \backslash (A \cup B)). \tag{3.7}$$

Thus by (3.5)

$$\mu^*(Q) = \mu^*(Q \cap A \cap B) + \mu^*(Q \cap A \setminus B) + \mu^*(Q \cap B \setminus A) + \mu^*(Q \setminus (A \cup B)). \tag{3.8}$$

Applying the measurability condition to $Q \setminus (A \setminus B)$ and B gives

$$\mu^*(Q \setminus (A \setminus B)) = \mu^*(Q \setminus (A \cup B)) + \mu^*(Q \cap B). \tag{3.9}$$

Applying it to $Q \cap B$ and A we get

$$\mu^*(Q \cap B) = \mu^*(Q \cap B \setminus A) + \mu^*(Q \cap A \cap B). \tag{3.10}$$

Inserting (3.10) into (3.9) gives

$$\mu^*(Q \setminus (A \setminus B)) = \mu^*(Q \setminus (A \cup B)) + \mu^*(Q \cap B \setminus A) + \mu^*(Q \cap A \cap B). \tag{3.11}$$

Thus, by (3.8),

$$\mu^*(Q) = \mu^*(Q \setminus (A \setminus B)) + \mu^*(Q \cap (A \setminus B)). \tag{3.12}$$

Hence $A \backslash B \in \mathcal{F}^{\mathrm{ms}}$.

Step 2. $A, B \in \mathcal{F}^{ms} \Rightarrow B \cup A \in \mathcal{F}^{ms}$.

We have, applying the measurability condition to $Q \cap (A \cup B)$ and A.

$$\mu^*(Q \cap (A \cup B)) = \mu^*(Q \cap A) + \mu^*(Q \cap B \setminus A). \tag{3.13}$$

Inserting (3.6) into (3.13) we get

$$\mu^*(Q \cap (A \cup B)) = \mu^*(Q \cap A \cap B) + \mu^*(Q \cap A \setminus B) + \mu^*(Q \cap B \setminus A). \tag{3.14}$$

Hence

$$\mu^*(Q) = \mu^*(Q \setminus (A \cup B)) + \mu^*(Q \cap (A \cup B)). \tag{3.15}$$

Therefore $A \cup B \in \mathcal{F}^{ms}$. Thus we proved that \mathcal{F}^{ms} is a field.

Step 3.

$$A_1, A_2, \dots \in \mathcal{F}^{\text{ms}} \Rightarrow \bigcup_{j=1}^{\infty} A_j =: A \in \mathcal{F}^{\text{ms}}.$$
 (3.16)

It suffices to assume that A_j are disjoint. For any n we have

$$\mu^*(Q) \geq \mu^* \left(\bigcup_{j=1}^n (Q \cap A_j) \cup Q \backslash A \right)$$

$$= \sum_{j=1}^n \mu^* (Q \cap A_j) + \mu^* (Q \backslash A).$$

$$(3.17)$$

Since n was arbitrary,

$$\mu^*(Q) \geq \sum_{j=1}^{\infty} \mu^*(Q \cap A_j) + \mu^*(Q \setminus A).$$

$$\geq \mu^*(Q \cap A) + \mu^*(Q \setminus A),$$
(3.18)

Hence, by the equivalence of (3.4) and (3.5) we get

$$\mu^*(Q) = \mu^*(Q \cap A) + \mu^*(Q \setminus A),$$

which shows $A \in \mathcal{F}^{\mathrm{ms}}$.

Step 4. As a by-product we get

$$\mu^*(Q \cap A) = \sum_{j=1}^{\infty} \mu^*(Q \cap A_j).$$

Putting Q = A we see that

$$\mu^*(A) = \sum_{j=1}^{\infty} \mu^*(A_j),$$

hence μ^* restricted to $\mathcal{F}^{\mathrm{ms}}$ is a measure. **Step 5.** Let $A \in 2^X$ and $\mu^*(A) = 0$. Let $Q \in 2^X$. Then $Q \cap A \subset A$, hence $\mu^*(Q \cap A) = 0$. Moreover, $Q \setminus A \subset Q$, hence $\mu^*(Q \setminus A) \leq \mu^*(Q)$. Therefore,

$$\mu^*(Q) > \mu^*(Q \cap A) + \mu^*(Q \setminus A).$$

Hence $A \in \mathcal{F}^{\text{ms}}$ and $\mu^{\text{ms}}(A) = 0$. This proves (3), which implies the completeness of the measure μ^{ms} . \square

External measure generated by a measure 3.5

Theorem 3.9 Let (X, \mathcal{F}, μ) be a measure. For $Q \in 2^X$ define

$$\mu^*(Q) := \inf \{ \mu(A) : A \in \mathcal{F}, \ A \supset Q \}$$

Then

- (1) μ^* is an external measure;
- (2) $\mu^* = \mu \text{ on } \mathcal{F}$.
- (3) Let \mathcal{F}_{μ}^{ms} , μ^{ms} be defined from μ^* as in the previous subsection. Then \mathcal{F}_{μ}^{ms} is a σ -field containing \mathcal{F} .
- (4) In the definition of μ^* we can replace $\mathcal F$ with $\mathcal F_\mu^f$, $\mathcal F_\mu^{\sigma f}$, $\mathcal F_\mu^{cp}$, $\mathcal F_\mu^{ms}$, etc., obtaining the same μ^* .

Proof. (1) The properties (1) and (3) of the definition of an external measure are obvious. Let us show the property (2).

Let $Q_1, Q_2, \dots \in 2^X$. For any $\epsilon > 0$ we will find a sequence $A_1, A_2, \dots \in \mathcal{F}$ such that

$$Q_n \subset A_n,$$

 $\mu(A_n) \le \mu^*(Q_n) + 2^{-n}\epsilon.$

Then

$$\mu^*(\bigcup_{n=1}^{\infty} Q_n) \le \mu(\bigcup_{n=1}^{\infty} A_n) \le \sum_{n=1}^{\infty} \mu(A_n) \le \sum_{n=1}^{\infty} \mu^*(Q_n) + \epsilon.$$

Hence

$$\mu^*(\bigcup_{n=1}^{\infty} Q_n) \le \sum_{n=1}^{\infty} \mu^*(Q_n).$$

(2) is obvious.

Let us prove (3). Let $B \in \mathcal{F}$, $Q \in 2^X$. For any $\epsilon > 0$ and suitable $A \in \mathcal{F}$ such that $Q \subset A$ we have

$$\mu^*(Q) \ge \mu(A) - \epsilon$$

$$= \mu(A \cap B) + \mu(A \setminus B) - \epsilon > \mu^*(Q \cap B) + \mu^*(Q \setminus B) - \epsilon.$$

Therefore,

$$\mu^*(Q) \ge \mu^*(Q \cap B) + \mu^*(Q \setminus B).$$

Thus, $B \in \mathcal{F}_{\mu}^{\mathrm{ms}}$. \square

The measure $(X, \mathcal{F}^{\text{ms}}, \mu^{\text{ms}})$ is called the Caratheodory completion of the measure (X, \mathcal{F}, μ) .

A measure (X, \mathcal{F}, μ) is called Caratheodory complete if it coincides with its Caratheodory completion.

The Caratheodory completion of a measure is always Caratheodory complete.

Theorem 3.10 Suppose that (X, \mathcal{F}, μ) be a set with a σ -field and a finite measure. Let μ^* be the corresponding outer measure and let $S \subset X$ satisfy $\mu^*(S) = \mu(X)$. For $A \in \mathcal{F}|_{S}$ set

$$\mu_S(A) := \mu^*(A).$$

Then $(S, \mathcal{F}|_{\mathfrak{S}}, \mu_S)$ is a measure, which is isomorphic to μ modulo sets of measure zero,

3.6 Extension of a measure to localizable sets

Let $\mathcal{F} \subset 2^X$ be a σ -ring. Let

$$\mathcal{F}^{\text{loc}} := \{ A \in 2^X : B \in \mathcal{F} \text{ implies } A \cap B \in \mathcal{F} \}.$$

We say that \mathcal{F}^{loc} is the family of sets localizable in \mathcal{F} . It is a σ -field and \mathcal{F} is its ideal.

Let (X, \mathcal{F}, μ) be a measure We can extend canonically μ to \mathcal{F}^{loc} by setting

$$\mu^{\mathrm{loc}}(A) := \left\{ \begin{array}{ll} \mu(A) & A \in \mathcal{F} \\ \infty & A \in \mathcal{F}^{\mathrm{loc}} \backslash \mathcal{F}. \end{array} \right.$$

Note that $(\mathcal{F}_{loc})_{\mu_{loc}}^{\sigma f} = \mathcal{F}_{\mu}^{\sigma f}$, so the L^p spaces for both measures are the same.

Theorem 3.11 Suppose (X, \mathcal{F}, μ) and $(X, \mathcal{F}_{\mu}^{ms}, \mu^{ms})$ are as in Theorem 3.9. Then $(\mathcal{F}_{\mu}^{ms}, \mu^{ms})$ can be obtained by applying consecutively to (\mathcal{F}, μ) the following constructions:

- 1. restricting to σ -finite subsets,
- 2. completion
- 3. extending to localizable sets.

3.7 Sum-finite measures

Let (X, \mathcal{F}, μ) be a measure. Define the set of locally μ -measurable sets by

$$\begin{split} \mathcal{F}_{\mu}^{\mathrm{loc}} &:= \{ A \in 2^X \ : \ A \cap B \in \mathcal{F}, \ B \in \mathcal{F}_{\mu}^{\mathrm{of}} \} \\ &= \{ A \in 2^X \ : \ A \cap B \in \mathcal{F}, \ B \in \mathcal{F}_{\mu}^{\mathrm{f}} \}. \end{split}$$

In other words, \mathcal{F}_{μ}^{loc} is the family of all sets localizable in $\mathcal{F}_{\mu}^{\sigma f}$ (or in \mathcal{F}_{μ}^{f}). Clearly, \mathcal{F}_{μ}^{loc} is a σ -field containing \mathcal{F} as an ideal.

A family $\{X_i : i \in I\}$ of disjoint elements of $\mathcal{F}^{\mathrm{f}}_{\mu}$ such that $\bigcup_{i \in I} X_i = X$ and

$$\mu(A) = \sum_{i \in I} \mu(A \cap X_i), \quad A \in \mathcal{F},$$

is called a localizing family for μ .

We say that the measure (X, \mathcal{F}, μ) is sum-finite if

- (1) $\mathcal{F} = \mathcal{F}_{\mu}^{\text{loc}}$;
- (2) There there exists a localizing family for μ .

Clearly, every σ -finite measure is sum-finite.

Theorem 3.12 If $\{X_i : i \in I\}$ and $\{Y_j : j \in J\}$ are localizing families for μ , then so is $\{X_i \cap Y_j : (i,j) \in I \times J\}$

Theorem 3.13 If (X, \mathcal{F}, μ) is a measure possessing a localizing family $\{X_i : i \in I\}$, then if for $A \in \mathcal{F}_{\mu}^{loc}$ we set

$$\mu^{\mathrm{loc}}(A) = \sum_{i \in I} \mu(A \cap X_i),$$

then $(X, \mathcal{F}_{\mu}^{loc}, \mu^{loc})$ is a sum-finite measure.

3.8 Boolean rings

We say that $(\mathcal{R}, \Delta, \emptyset, \cap)$ is a Boolean ring if it is an additive ring where all its elements are idempotent, that is $A \cap A = A$, $A \in \mathcal{R}$. We then set

$$A \cup B := (A \Delta B) \Delta (A \cap B), \quad A \backslash B := A \Delta (A \cap B),$$

 $A \subset B \iff B \supset A \iff A = A \cap B.$

If there exists an identity element for \cap , called X, then $(\mathcal{R}, \Delta, \emptyset, \cap, X)$ is called a Boolean field.

Clearly, every ring/field in 2^X is a Boolean ring/field.

In the obvious way we introduce the notion of Boolean σ -rings, Boolean σ -fields, etc. In what follows we concentrate on σ -rings/fields.

If $\mathcal{I} \subset \mathcal{F}$ are σ -rings and \mathcal{I} is an ideal in \mathcal{F} , then \mathcal{F}/\mathcal{I} is a Boolean σ -ring.

Theorem 3.14 Le $\mathcal{F} \subset \mathcal{F}_1$ be σ -rings. Let $\mathcal{I}_1 \subset \mathcal{F}_1$ be a σ -ring, which is an ideal in \mathcal{F}_1 . Let $\mathcal{I} := \mathcal{I}_1 \cap \mathcal{F}$, which is clearly a σ -ring and an ideal in \mathcal{F} . Then the σ -rings \mathcal{F}/\mathcal{I} and $\mathcal{F}_1/\mathcal{I}_1$ are in the obvious way isomorphic to one another.

If \mathcal{F} is a Boolean σ -ring, we can define the space $\mathcal{M}(\mathcal{F})$ as the set of all function

$$[-\infty, 0[\cup]0, \infty]\alpha \mapsto F(\alpha) \to \mathcal{F}$$

such that for $\alpha \neq \beta$, $F(\alpha) \cap F(\beta) = \emptyset$. If $\mathcal{F} \subset 2^X$, then we identify $f \in \mathcal{M}(X, \mathcal{F})$ with $F \in \mathcal{M}(\mathcal{F})$ where $F(\alpha) = f^{-1}(\{\alpha\})$.

If \mathcal{F} is a Boolean σ -ring and $F \in \mathcal{M}(\mathcal{F})$, we set $||F||_{\infty} := \sup\{|\alpha| : F(\alpha) \neq \emptyset\}$ and define the space $L^{\infty}(\mathcal{F})$. If $\mathcal{I} \subset \mathcal{F} \subset 2^X$ are σ -rings and \mathcal{I} is an ideal in \mathcal{F} , then we can identify $L^{\infty}(X, \mathcal{F}, \mathcal{I})$ with $L^{\infty}(\mathcal{F}/\mathcal{I})$.

3.9 Measures on Boolean rings

We can consider measures on Boolean σ -rings as well. Clearly, one can define L^p spaces for measures on Boolean rings.

If (\mathcal{F}, μ) is a measure on a Boolean σ -ring, we say that it is faithful if $A \in \mathcal{F}$, $\mu(A) = 0$ implies $A = \emptyset$.

If \mathcal{F}^0_{μ} is the family of zero sets, then we can define $\tilde{\mathcal{F}} := \mathcal{F}/\mathcal{F}^0_{\mu}$ and $\tilde{\mu}(A\Delta N) := \mu(A)$ for $N \in \mathcal{F}^0_{\mu}$. Then $(\tilde{\mathcal{F}}, \tilde{\mu})$ is a faithful measure.

Theorem 3.15 Let X be a set and $\mathcal{F} \subset \mathcal{F}_1$ are σ -rings over X. Let (\mathcal{F}, μ) and (\mathcal{F}_1, μ_1) be measures such that

- (1) $\mu = \mu_1$ on \mathcal{F} ;
- (2) $\sigma \operatorname{Ring} \left(\mathcal{F} \cup (\mathcal{F}_1)_{\mu_1}^0 \right) = \mathcal{F}_1.$

If $\tilde{\mathcal{F}}$ and $\tilde{\mathcal{F}}_1$ are faithful measures defined as above, then they are isomorphic.

4 Construction and uniqueness of a measure

4.1 Dynkin classes

We say that $\mathcal{T} \subset 2^X$ is \cap -stable if $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$.

We say that \mathcal{D} is a Dynkin class if

- (1) $A, B \in \mathcal{D}, A \subset B \Rightarrow B \setminus A \in \mathcal{D};$
- (2) $A_1, A_2 \in \mathcal{D}, A_1 \cap A_2 = \emptyset \Rightarrow A_1 \cup A_2 \in \mathcal{D}$

Theorem 4.1 Let $\mathcal{R} \subset 2^X$ satisfy

- (1) $A, B \in \mathcal{R}, A \subset B \Rightarrow B \setminus A \in \mathcal{R};$
- (2) $A_1, A_2 \in \mathcal{R}, A_1 \cap A_2 = \emptyset \Rightarrow A_1 \cup A_2 \in \mathcal{R}$
- (3) $A, B \in \mathcal{R}, \Rightarrow B \cap A \in \mathcal{R}.$

Then \mathcal{R} is a ring. In other words, a \cap -stable Dynkin class is a ring.

For $\mathcal{A} \subset 2^X$ let $\mathrm{Dyn}(\mathcal{A})$ denote the smallest Dynkin class containing \mathcal{A} .

Theorem 4.2 Let C be a \cap -stable family. Then Dyn(C) = Ring(C).

Proof. By Theorem 4.1 every ring is a Dynkin class. Hence

$$\mathrm{Dyn}(\mathcal{C}) \subset \mathrm{Ring}(\mathcal{C}).$$

Let us prove the converse inclusion. For $B \in 2^X$. Set

$$K(B) := \{ A \in 2^X : A \cap B \in Dyn(\mathcal{C}) \}.$$

Note that

$$A \in \mathcal{K}(B) \iff B \in \mathcal{K}(A).$$
 (4.19)

Using the fact that Dyn(C) is a Dynkin class we check that K(B) is a Dynkin class. Using the fact that C is \cap -stable we see that

$$B \in \mathcal{C} \implies \mathcal{C} \subset K(B)$$
 (4.20)

Hence,

$$B \in \mathcal{C} \Rightarrow \operatorname{Dyn}(\mathcal{C}) \subset \operatorname{K}(B)$$
 (4.21)

From (4.19) and (4.21) we get

$$A \in \mathrm{Dyn}(\mathcal{C}) \Rightarrow \mathcal{C} \subset \mathrm{K}(A)$$
 (4.22)

Hence

$$A \in \mathrm{Dyn}(\mathcal{C}) \Rightarrow \mathrm{Dyn}(\mathcal{C}) \subset \mathrm{K}(A)$$
 (4.23)

Therefore, Dyn(C) is \cap -stable. Hence, by Theorem 4.1 it is a ring. \square

4.2 Semirings

Definition 4.3 $\mathcal{T} \subset 2^X$ is called a semiring if

- (1) $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$;
- (2) $A, B \in \mathcal{T} \Rightarrow A \setminus B = \bigcup_{i=1}^{n} C_i$, where C_i are disjoint elements of \mathcal{T}

Theorem 4.4 Let \mathcal{T} be a semiring. Then $A \in \text{Ring}(\mathcal{T})$ iff A is a disjoint union of elements of \mathcal{T} .

Proof. Let \mathcal{R} be the family of finite unions of disjoint elements of \mathcal{T} . It is obvious that $\mathcal{R} \subset \text{Ring}(\mathcal{T})$. Let us prove the converse inclusion. To this end it is enough to prove that \mathcal{R} is a ring.

Step 1. Let $A \in \mathcal{R}$, $B \in \mathcal{T}$. Then $A = \bigcup_{i=1}^{n} A_i$ with disjoint $A_i \in \mathcal{T}$. Now

$$A \backslash B = \bigcup_{i=1}^{n} (A_i \backslash B),$$

where $A_i \setminus B \in \mathcal{T}$ are disjoint and each $A_i \setminus B$ is a finite union of disjoint elements of \mathcal{T} . Hence $A \setminus B \in \mathcal{R}$.

Step 2. Let $A \in \mathcal{R}$, $B \in \mathcal{R}$. Then $B = \bigcup_{i=1}^{n} B_i$ with disjoint $B_i \in \mathcal{T}$. Now

$$A \backslash B = (\cdots (A \backslash B_1) \cdots \backslash B_n).$$

Hence, by Step 1, $A \setminus B \in \mathcal{R}$.

Step 3. Let $A \in \mathcal{R}$, $B \in \mathcal{R}$. Then $A = \bigcup_{i=1}^{n} A_i$ with disjoint $A_i \in \mathcal{T}$ and $B = \bigcup_{j=1}^{m} B_j$ with disjoint $B_i \in \mathcal{T}$. Now

$$A \cap B = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} A_i \cap B_j,$$

where $A_i \cap B_j \in \mathcal{T}$ are disjoint Hence $A \cap B \in \mathcal{T}$.

Step 4. Let $A \in \mathcal{R}, B \in \mathcal{R}$. Then

$$A \cup B = (A \backslash B) \cup (A \cap B) \cup (B \backslash A).$$

thus by Steps 2 and 3, the left hand side is a union of three disjoint elements of \mathcal{R} . Therefore, it is a union of a finite family of elements of \mathcal{T} . Hence, $A \cup B \in \mathcal{R}$.

Thus we proved that \mathcal{R} is a ring. \square

4.3 σ -Dynkin classes

We say that \mathcal{D} is a σ -Dynkin class if

(1) $A, B \in \mathcal{D}, A \subset B \Rightarrow B \setminus A \in \mathcal{D};$

(2)
$$A_1, A_2, \dots \in \mathcal{D}, A_i \cap A_j = \emptyset, i \neq j, \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{D}$$

Theorem 4.5 Let $\mathcal{R} \subset 2^X$ satisfy

(1) $A, B \in \mathcal{R}, A \subset B \Rightarrow B \backslash A \in \mathcal{R};$

(2)
$$A_1, A_2, \dots \in \mathcal{R}, A_i \cap A_j = \emptyset, i \neq j \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{R}$$

(3) $A, B \in \mathcal{R}, \Rightarrow B \cap A \in \mathcal{R}.$

Then \mathcal{R} is a σ -ring. In other words, a \cap -stable σ -Dynkin class is a σ -ring.

For $\mathcal{A} \subset 2^X$ let σ -Dyn(\mathcal{A}) denote the smallest σ -Dynkin class containing \mathcal{A} .

Theorem 4.6 Let C be a \cap -stable family. Then $\sigma - \text{Dyn}(C) = \sigma - \text{Ring}(C)$.

4.4 Monotone classes

Let $\mathcal{M} \subset 2^X$, We say that \mathcal{M} is a monotone class if

(1) $A_1, A_2, \dots \in \mathcal{M}, A_n \searrow A \Rightarrow A \in \mathcal{M};$

(2)
$$A_1, A_2, \dots \in \mathcal{M}, A_n \nearrow A \Rightarrow A \in \mathcal{M}.$$

Proposition 4.7 (1) A σ -ring is a monotone class;

(2) A monotone ring is a σ -ring

For $\mathcal{T} \subset 2^X$, we denote by $Mon(\mathcal{T})$ the smallest monotone class containing \mathcal{T} .

Theorem 4.8 Let R be a ring. Then

$$Mon(\mathcal{R}) = \sigma - Ring(\mathcal{R}).$$

Proof. Since a σ -ring is a monotone class and since $\mathcal{R} \subset \sigma - \text{Ring}(\mathcal{R})$, it follows that

$$Mon(\mathcal{R}) \subset \sigma - Ring(\mathcal{R}).$$

Let us prove the converse inclusion. Let $A \in 2^X$. Set

$$K(A) := \{ B \in 2^X : A \backslash B, B \backslash A, A \cup B \in Mon(\mathcal{R}) \}.$$

Note that

$$A \in \mathcal{K}(B) \Leftrightarrow B \in \mathcal{K}(A).$$
 (4.24)

We easily check that for every $A \in 2^X$, K(A) is a monotone class. Clearly,

$$A \in \mathcal{R} \Rightarrow \mathcal{R} \subset K(A).$$
 (4.25)

Hence

$$A \in \mathcal{R} \Rightarrow \operatorname{Mon}(\mathcal{R}) \subset \operatorname{K}(A).$$
 (4.26)

From (4.24) and (4.26), we get

$$A \in \operatorname{Mon}(\mathcal{R}) \Rightarrow \mathcal{R} \subset \operatorname{K}(A)$$
.

Hence,

$$A \in \operatorname{Mon}(\mathcal{R}) \Rightarrow \operatorname{Mon}(\mathcal{R}) \subset \operatorname{K}(A).$$

Therefore, $Mon(\mathcal{R})$ is a ring. By Proposition 4.7 (2) it is a σ -ring. Hence,

$$Mon(\mathcal{R}) \supset \sigma - Ring(\mathcal{R}).$$

4.5 Extension and uniqueness of contents

We will need a generalization of the notion of a content to the case of $\mathcal{T} \subset 2^X$ with $\emptyset \in \mathcal{T}$. We say that $\nu : \mathcal{T} \to [0, \infty]$ is a content if

(1) $\nu(\emptyset) = 0;$

$$(2) \ A_1, \cdots, A_n \in \mathcal{T}, \ A_i \cap A_j = \emptyset, \ i \neq j, \ A_1 \cup \cdots \cup A_n \in \mathcal{R} \Rightarrow \nu(A_1 \cup \cdots \cup A_n) = \nu(A_1) + \cdots + \nu(A_n).$$

Theorem 4.9 Let \mathcal{T} be a \cap -stable family containing \emptyset and $\mathcal{R} = \operatorname{Ring}(\mathcal{T})$. Let ν_1, ν_2 be finite contents on \mathcal{R} coinciding on \mathcal{T} . Then $\nu_1 = \nu_2$.

Proof. Let $\mathcal{W} := \{A \in \mathcal{R} : \nu_1(A) = \nu_2(A)\}$. Then

 $A, B \in \mathcal{W}, A \subset B \Rightarrow B \setminus A \in \mathcal{W}$

$$A_1, A_2 \in \mathcal{W}, A_1 \cap A_2 = \emptyset \Rightarrow A_1 \cup A_2 \in \mathcal{W}$$

Hence W is a Dynkin system. Hence it contains $Dyn(\mathcal{T})$. But by Theorem 4.2, $Dyn(\mathcal{T}) = \mathcal{R}$. Hence $W = \mathcal{R}$. \square

Theorem 4.10 Suppose that \mathcal{T} is a semiring and ν is a content on \mathcal{T} . Then there exists a unique content on Ring(\mathcal{T}) extending ν .

Proof. Every $A \in \text{Ring}(\mathcal{T})$ can be written as $A = \bigcup_{i=1}^{n} B_i$ for some disjoint $B_i \in \mathcal{T}$. Then we set

$$\nu(A) := \sum_{i=1}^{n} \nu(B_i).$$

Suppose now that $A = \bigcup_{i=1}^{n} B_i = \bigcup_{j=1}^{m} C_j$ are decompositions of the above type. Then

$$A = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} B_i \cap C_j$$

is also a decomposition into disjoint elements of the semiring, and

$$\nu(B_i) = \sum_{j=1}^m \nu(B_i \cap C_j), \quad \nu(C_j) = \sum_{i=1}^n \nu(B_i \cap C_j).$$

Therefore,

$$\sum_{i=1}^{n} \nu(B_i) = \sum_{i=1}^{n} \sum_{j=1}^{m} \nu(B_i \cap C_j) = \sum_{j=1}^{m} \nu(C_j).$$

Hence the definition is correct.

It is easy to check that the extended ν is a content. \square

4.6 Uniqueness of a measure

Theorem 4.11 Let (X, \mathcal{F}) be a set with a σ -ring. Let μ_1 and μ_2 be two measures defined on (X, \mathcal{F}) Suppose that $\mathcal{T} \subset \mathcal{F}$ is a \cap -stable family such that $\mu_1 = \mu_2$ on \mathcal{T} and is finite on \mathcal{T} . Then $\mu_1 = \mu_2$ on σ -Ring (\mathcal{T}) .

Proof. Let $W := \{ A \in \mathcal{F} : \mu_1(A) = \mu_2(A) \}.$

Step 0. By Theorem 4.9, $\mu_1 = \mu_2$ on Ring(\mathcal{T}). Note that $\sigma - \text{Ring}(\mathcal{T}) = \sigma - \text{Ring}(\text{Ring}(\mathcal{T}))$. Hence in what follows it suffices to assume that \mathcal{T} is a ring.

Step 1. Assume that μ_1 is finite. Clearly, W is a σ -Dynkin class and $\mathcal{T} \subset W$. Hence σ -Ring(\mathcal{T}) $\subset W$ in this case.

Step 2. Assume that $A \in \mathcal{F}$. Then μ_1 restricted to $\sigma - \text{Ring}(\mathcal{T}|_A) = \sigma - \text{Ring}(\mathcal{T})|_A$ is finite and $\mu_1 = \mu_2$ on $\mathcal{T}|_A$. Hence, by Step 1, we have $\mu_1 = \mu_2$ on $\sigma - \text{Ring}(\mathcal{T})|_A$.

Step 3. Let $A \in \sigma$ -Ring(\mathcal{T}). Then by Theorem 3.2, there exist $A_1, A_2, \dots \in \mathcal{T}$ such that $A_n \nearrow A$ and $\mu(A_n) < \infty$. Then

$$\mu_2(A) = \lim_{n \to \infty} \mu_2(A_n) = \lim_{n \to \infty} \mu_1(A_n) = \mu_1(A).$$

4.7 Dense subsets in L^p spaces

Theorem 4.12 Let $\mathcal{T} \subset \mathcal{F}$ be a semiring such that σ -Ring(\mathcal{T}) = \mathcal{F} and μ is finite on \mathcal{T} . Assume that there exists a localizing family $\{X_i : i \in I\}$ contained in \mathcal{T} . If $1 \leq p < \infty$, then the span of characteristic functions of \mathcal{T} is dense in $L^p(\mu)$.

Proof. Let W be the family of sets whose characteristic functions can be approximated in $L^p(\mu)$ by linear combinations of characteristic functions of elements in \mathcal{T} .

Step 1. Assume first that μ is finite. Clearly, W is then a σ -Dynkin class. Hence $\mathcal{F} \subset W$.

Step 2. Let μ be arbitrary. Let $A \in \mathcal{F}_{\mu}^{f}$. Let $\{X_{i} : i \in I\}$ be a localizing family for μ contained in \mathcal{T} . Then there exists a sequence $i_{1}, i_{2}, \dots \in I$ such that $\mu(A) = \sum_{j=1}^{\infty} \mu(A \cap X_{i_{j}})$. We apply Step 1. to μ restricted to $\mathcal{T}\Big|_{X_{i_{j}}}$. We conclude that $A \in \mathcal{W}$. Hence $\mathcal{F}_{\mu}^{f} \subset \mathcal{W}$ Consequently, linear combinations of characteristic functions of elements in \mathcal{T} are dense in $\mathcal{E} \cap \mathcal{L}^{p}(\mu)$.

Step 3. Let $f \in \mathcal{L}^p(\mu)$. There exist sequences $u_n^{\pm} \in \mathcal{E}_+$ such that $u_n^{\pm} \nearrow f_{\pm}$. Clearly, $u_n^{\pm} \in \mathcal{L}^p(\mu)$, $u_n^+ - u_n^-$ is dominated by $|f| \in \mathcal{L}^p(\mu)$, hence by the Lebesgue dominated convergence theorem $u_n^+ - u_n^- \to f$ in the $\mathcal{L}^p(\mu)$ sense. \square

4.8 Premeasures

Definition 4.13 Let (X, \mathcal{R}) be a set with a ring. A function $\nu : \mathcal{R} \to [0, \infty]$ is called a premeasure if $(1) \ \nu(\emptyset) = 0$,

(2)
$$A_1, A_2 \dots \in \mathcal{R}, \ \bigcup_{n=1}^{\infty} A_n \in \mathcal{R}, \ A_i \cap A_j = \emptyset \text{ for } i \neq j \Rightarrow \nu \left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \nu(A_n).$$

Clearly, every premeasure is a content.

If (X, \mathcal{F}, μ) is a measure and $\mathcal{R} \subset \mathcal{F}$ is a ring, then $(X, \mathcal{R}, \mu \Big|_{\mathcal{R}})$ is a premeasure.

Theorem 4.14 Let (X, \mathcal{R}, ν) be a premeasure, $A_1, A_2, \dots \in \mathcal{R}$, $A \in \mathcal{R}$ and $A \subset \bigcup_{i=1}^{\infty} A_i$. Then

$$\nu(A) \le \sum_{i=1}^{\infty} \nu(A_i).$$

Proof. $B_n := (A_n \setminus \bigcup_{i=1}^{n-1} A_i) \cap A$ are disjoint elements of \mathcal{R} , $B_i \subset A_i$ and $A = \bigcup_{i=1}^{\infty} B_i$. Hence

$$\nu(A) = \sum_{i=1}^{\infty} \nu(B_i) \le \sum_{i=1}^{\infty} \nu(A_i).$$

4.9 Extending a premeasure to a measure

Theorem 4.15 Let (X, \mathcal{R}) be a set with a ring. Let (X, \mathcal{R}, ν) be a premeasure. For any $Q \in 2^X$ define

$$\mu^*(Q) := \inf \{ \sum_{i=1}^{\infty} \nu(A_i) : A_i \in \mathcal{R}, \ Q \subset \bigcup_{i=1}^{\infty} A_i \}.$$

Then

- (1) μ^* is an external measure;
- (2) $\nu = \mu^* \text{ on } \mathcal{R};$
- (3) Let \mathcal{F}^{ms} be the σ -field of μ^* -measurable sets and μ^{ms} the corresponding measure. Then $(X, \mathcal{F}^{ms}, \mu^{ms})$ is a complete measure extending the premeasure (X, \mathcal{R}, ν) .
- (4) Let $\mathcal{F} := \sigma \text{Ring}(\mathcal{R})$. Let the restriction of μ^* to \mathcal{F} be denoted μ . Then for $Q \in 2^X$

$$\mu^*(Q) = \inf\{\mu(A) : Q \subset A, A \in \mathcal{F}\}.$$

Proof. (1) The properties (1) and (3) of the definition of an external measure are obvious. Let us show the property (2). Let $Q_1, Q_2, \dots \in 2^X$. For any $\epsilon > 0$ we will find a double sequence $(A_{nm})_{m \in \mathbb{N}}$ such that

$$Q_n \subset \bigcup_{m=1}^{\infty} A_{nm}$$

$$\sum_{m=1}^{\infty} \mu(A_{nm}) \le \mu^*(Q_n) + 2^{-n}\epsilon.$$

Then

$$\mu^*(\bigcup_{n=1}^{\infty} Q_n) \le \sum_{n,m=1}^{\infty} \mu(A_{nm}) \le \sum_{n=1}^{\infty} \mu^*(Q_n) + \epsilon.$$

Hence

$$\mu^*(\bigcup_{n=1}^{\infty} Q_n) \le \sum_{n=1}^{\infty} \mu^*(Q_n).$$

(2) It is obvious that $\mu^*(A) \leq \mu(A)$. The converse inequality follows by Theorem 4.14

(3) Let $A \in \mathcal{R}$, $Q \in 2^X$. For any $\epsilon > 0$ and suitable $A_1, A_2, \dots \in \mathcal{R}$ such that $Q \subset \bigcup_{i=1}^{\infty} A_i$, we have

$$\mu^*(Q) \ge \sum_{j=1}^{\infty} \mu(A_j) - \epsilon$$

$$= \sum_{j=1}^{\infty} \mu(A_j \cap A) + \sum_{j=1}^{\infty} \mu(A_j \setminus A) - \epsilon$$

$$\ge \mu^*(Q \cap A) + \mu^*(Q \setminus A) - \epsilon.$$

Therefore,

$$\mu^*(Q) \ge \mu^*(Q \cap A) + \mu^*(Q \setminus A).$$

Thus, $A \in \mathcal{F}^{\mathrm{ms}}$. \square

5 Tensor product of measures

5.1 Tensor product of σ -rings

Theorem 5.1 Let \mathcal{T}_i be semirings over X_i , i = 1, 2. Set

$$\mathcal{T}_1 * \mathcal{T}_2 := \{ A_1 \times A_2 : A_i \in \mathcal{T}_i, i = 1, 2 \}.$$

Then $\mathcal{T}_1 * \mathcal{T}_2$ is a semiring.

Now assume that \mathcal{F}_i are σ -rings. Set $\mathcal{F}_1 \otimes \mathcal{F}_2 := \sigma - \text{Ring}(\mathcal{F}_1 * \mathcal{F}_2)$.

Definition 5.2 Let $B \subset X_1 \times X_2$, $x_i \in X_i$.

$$\pi_2^{x_1}(B) = \{x_2 \in X_2 : (x_1, x_2) \in B\},\$$

$$\pi_1^{x_2}(B) = \{x_1 \in X_1 : (x_1, x_2) \in B\}.$$

Proposition 5.3 Let $B \in \mathcal{F}_1 \otimes \mathcal{F}_2$, $x_i \in X_i$. Then $\pi_1^{x_2}(B) \in \mathcal{F}_1$ and $\pi_2^{x_1}(B) \in \mathcal{F}_2$.

Proof. Note that

$$\pi_{1}^{x_{2}}(\emptyset) = \emptyset,$$

$$\pi_{1}^{x_{2}}(A \backslash B) = \pi_{1}^{x_{2}}(A) \backslash \pi_{1}^{x_{2}}(B),$$

$$\pi_{1}^{x_{2}}(\bigcup_{i=1}^{\infty} A_{i}) = \bigcup_{i=1}^{\infty} \pi_{1}^{x_{2}}(A_{i}).$$

Hence

$$\mathcal{W} := \{ B \subset X_1 \times X_2 : \pi_1^{x_2}(B) \in \mathcal{F}_1 \}$$

is a σ -ring. Clearly \mathcal{W} contains $\mathcal{F}_1 * \mathcal{F}_2$. Hence $\mathcal{F}_1 \otimes \mathcal{F}_2 \subset \mathcal{W}$. \square

5.2 Tensor product of measures

Let $(X_i, \mathcal{F}_i, \mu_i)$ be set with σ -rings and measures. Let $\mathcal{F}_{\mu_i}^{\sigma f}$ be the σ -ring of μ_i - σ -finite sets.

Proposition 5.4 Let $B \in \mathcal{F}_1 \otimes \mathcal{F}_{\mu_2}^{\text{of}}$. Then the map

$$X_1 \ni x_1 \mapsto \mu_2(\pi_2^{x_1}(B))$$
 is \mathcal{F}_1 -measurable.

Proof. Set

$$s_B(x_1) := \mu_2(\pi_2^{x_1}(B)).$$

Set

$$W := \{ B \subset X_1 \times X_2 : s_B \text{ is measurable } \}.$$

Step 1. Assume that $\mu(X_2) < \infty$. Clearly, $\mathcal{F}_1 * \mathcal{F}_{\mu_2}^{\sigma f} \subset \mathcal{W}$. If $A, B \in \mathcal{W}$ with $A \subset B$, then $s_{B \setminus A} = s_B - s_A$, Hence $B \setminus A \in \mathcal{W}$. Let $B_1, B_2, \dots \in \mathcal{W}$ be disjoint and $B = \bigcup_{j=1}^{\infty} B_j$. Then $s_B = \sum_{j=1}^{\infty} s_{B_j}$. Hence $\bigcup_{j=1}^{\infty} B_j \in \mathcal{W}$. Therefore, \mathcal{W} is a σ -Dynkin class. Hence it contains $\sigma - \text{Ring}(\mathcal{F}_1 * \mathcal{F}_{\mu_2}^{\sigma f})$

Alternative version of Step 1. Assume that $\mu(X_2) < \infty$. If disjoint $B_1, B_2, \dots \subset \mathcal{W}$ and B = 0 $\bigcup_{j=1}^{\infty} B_j$, then $s_{\bigcup_{j=1}^{\infty} B_j} = \sum_{j=1}^{\infty} s_{B_j}$. We know that $\operatorname{Ring}(\mathcal{F}_1 * \mathcal{F}_{\mu_2}^{\sigma f})$ are disjoint unions of elements in

 $\mathcal{F}_1 * \mathcal{F}_{\mu_2}^{\sigma f} \subset \mathcal{W}$. Hence $\operatorname{Ring}(\mathcal{F}_1 * \mathcal{F}_{\mu_2}^{\sigma f}) \subset \mathcal{W}$. Clearly, if $A_1, A_2, \dots \in \mathcal{W}$ and $A_n \nearrow A$, then $s_{A_n} \nearrow s_A$. Hence, $A \in \mathcal{W}$. Likewise, if $A_1, A_2, \dots \in \mathcal{W}$ and $A_n \searrow A$, then $s_{A_n} \searrow s_A$. Hence, using the finiteness of $X, A \in \mathcal{W}$.

Therefore, \mathcal{W} is a monotone class. Hence it contains $\sigma - \text{Ring}(\mathcal{F}_1 * \mathcal{F}_{\mu_2}^{\sigma f}) = \mathcal{F}_1 \otimes \mathcal{F}_{\mu_2}^{\sigma f})$. **Step 2.** Now drop the assumption $\mu_2(X_2) < \infty$. Let $B \in \mathcal{F}_1 \otimes \mathcal{F}_{\mu_2}^{\sigma f}$. Then there exists a disjoint family $A_1, A_2, \dots \in \mathcal{F}_2$ such that $\mu_2(A_i) < \infty$ and $B \subset X_1 \times \bigcup_{i=1}^{\infty} A_i$. Set $B_j := B \cap X_1 \times A_j$. Then

$$s_B = \sum_{j=1}^{\infty} s_{B_j},$$

and each s_{B_i} is measurable. Hence s_B is measurable. \square

Now we assume that both measures are σ -finite. If $A \in \mathcal{F}_{\mu_1} \otimes \mathcal{F}_{\mu_2}$, we define

$$\mu_1 \otimes \mu_2(A) := \int \mu_2(\pi_2^{x_1}(A)) d\mu_1(x_1).$$
 (5.27)

Theorem 5.5 (1) $\mu_1 \otimes \mu_2$ is a measure.

(2) If $X_1 \times X_2 \ni (x_1, x_2) \mapsto \tau(x_1, x_2) := (x_2, x_1) \in X_2 \times X_1$ is the flip, then for $A \in \mathcal{F}_1 \otimes \mathcal{F}_2$,

$$\mu_1 \otimes \mu_2(A) = \mu_2 \otimes \mu_1(\tau A). \tag{5.28}$$

In particular, for $A \in \mathcal{F}_{\mu_1} \otimes \mathcal{F}_{\mu_2}$ (5.28) equals

$$\int \mu_2(\pi_2^{x_1}(A)) d\mu_1(x_1) = \int \mu_1(\pi_1^{x_2}(A)) d\mu_2(x_2)$$

(3) If ν is a measure on $\mathcal{F}_1 \otimes \mathcal{F}_2$ satisfying

$$\nu(A_1 \times A_2) = \mu_1(A_1)\mu_2(A_2), \ A_1 \in \mathcal{F}_{\mu_1}, A_2 \in \mathcal{F}_{\mu_2},$$

then it coincides with $\mu_1 \otimes \mu_2$.

(4) $(\mu_1 \otimes \mu_2)^{\text{cp}} = (\mu_1^{\text{cp}} \otimes \mu_2^{\text{cp}})^{\text{cp}}$.

Proof. The formula (5.27) is well defined by Proposition 5.4. Then we check that it is a measure. The uniqueness follows by Theorem 4.11, because both measures coincide on the semiring $\mathcal{F}_{\mu_1} * \mathcal{F}_{\mu_2}$.

5.3 Multiple integrals

For any $x_2 \in X_2$, the function

$$X_1 \ni x_1 \mapsto (x_1, x_2) \in X_1 \times X_2$$

is measurable. Hence if $f \in \mathcal{M}(X_1 \times X_2)$, then

$$X_1 \ni x_1 \mapsto f(x_1, x_2) \in [-\infty, \infty]$$

belongs to $\mathcal{M}(X_1)$.

Theorem 5.6 Let $(X_i, \mathcal{F}_i, \mu_i)$ be spaces with measures. Let $f \in \mathcal{M}_+(X_1 \times X_2)$.

(1)

$$x_1 \mapsto \int f(x_1, x_2) \mathrm{d}\mu_2(x_2)$$

belongs to $\mathcal{M}_+(X_1)$,

(2) $\int f d(\mu_1 \otimes \mu_2) = \int (\int f(x_1, x_2) d\mu_2(x_2)) d\mu_1(x_1) = \int (\int f(x_1, x_2) d\mu_1(x_1)) d\mu_2(x_2). \tag{5.29}$

Proof. For elementary functions the theorem is obvious. For an arbitrary function from $\mathcal{M}_+(X_1 \times X_2)$ we use the monotone convergence. \square

Theorem 5.7 (Fubini) Let $(X_i, \mathcal{F}_i, \mu_i)$ be spaces with measures and

$$f \in \mathcal{L}^1(\mu_1 \otimes \mu_2).$$

The map

$$x_2 \mapsto f(x_1, x_2)$$

for μ_1 -almost all x_1 belongs to $\mathcal{L}^1(\mu_2)$. Let N_1 be the set of x_1 for which this is not true. Define

$$f_1(x_1) := \begin{cases} \int f(x_1, x_2) d\mu_2(x_2) & x_1 \in X_1 \backslash N_1 \\ 0 & x_1 \in N_1. \end{cases}$$

Then f_1 belongs to $\mathcal{L}^1(\mu_1)$ and

$$\int f d(\mu_1 \otimes \mu_2) = \int f_1 d\mu_1.$$

Proof. We have $f_{\pm} \in \mathcal{L}^1(\mu_1 \otimes \mu_2)$. Hence

$$\infty > \int f_{+} d\mu_{1} \otimes \mu_{2} = \int \left(\int f_{+}(x_{1}, x_{2}) d\mu_{2}(x_{2}) \right) d\mu_{1}(x_{1}).$$
 (5.30)

Thus $x_1 \mapsto \int f_+(x_1, x_2) d\mu_2(x_2)$ belongs to $L^1(\mu_1)$. Hence, by Theorem 2.12, for μ_1 -a.a. x_1 ,

$$\int f_+(x_1, x_2) \mathrm{d}\mu_2(x_2) < \infty.$$

In other words, for μ_1 -a.a., x_1 $f_+(x_1, \cdot) \in \mathcal{L}^1(\mu_2)$.

Of course, the same is true for f_{-} . \square

Loosely speaking, the above theorem says that for $f \in \mathcal{L}^1(\mu_1 \otimes \mu_2)$

$$\int f d(\mu_1 \otimes \mu_2) = \int \Big(\int f(x_1, x_2) d\mu_2(x_2) \Big) d\mu_1(x_1) = \int \Big(\int f(x_1, x_2) d\mu_1(x_1) \Big) d\mu_2(x_2).$$

Theorem 5.8 If \otimes denotes the tensor product in the sense of Hilbert spaces, then $L^2(\mu_1) \otimes L^2(\mu_2) = L^2(\mu_1 \otimes \mu_2)$.

5.4 Layer-cake representation

Let (X, \mathcal{F}, μ) be a measure. Let ν be a Borel measure on $[0, \infty[$ and $f \in \mathcal{M}_+(X)$. For $a, t \geq 0$, set

$$\phi(t) := \int_0^t d\nu(s), \quad u(a) := \mu\{f > a\}.$$

Proposition 5.9

$$\int \phi(f(x))\mathrm{d}\mu(x) = \int_0^\infty u(a)\mathrm{d}\nu(a).$$

Proof.

$$\begin{split} \int_0^\infty u(a)\mathrm{d}\nu(a) &= \int \bigg(\int \mathbf{1}_{\{f>a\}}(x)\mathrm{d}\mu(x)\bigg)\mathrm{d}\nu(a) \\ &= \int \bigg(\int \mathbf{1}_{\{f>a\}}(x)\mathrm{d}\nu(a)\bigg)\mathrm{d}\mu(x) = \int \bigg(\int_0^{f(x)}\mathrm{d}\nu(a)\bigg)\mathrm{d}\mu(x) = \int \phi(f(x))\mathrm{d}\mu(x). \end{split}$$

Corollary 5.10 (1) $\int |f(x)|^p d\mu(x) = p \int_0^\infty u(a) a^{p-1} da$.

(2)
$$f(x) = \int 1_{\{f>a\}}(x) da$$
.

Proof. For (1) we set $\phi(t) = t^p$, $d\nu(t) = pt^{p-1}dt$.

For (2) we put $\phi(t) := t$, $d\nu(t) = dt$, and μ is the Dirac delta at x. \square

6 Measures in \mathbb{R}^n

6.1 Regular contents

Suppose that X is a topological space. Let \mathcal{R} be a ring over X and ν a content on \mathcal{R} . We say that ν is regular iff for $F \in \mathcal{R}$ the following two conditions hold:

$$\begin{split} \nu(F) &= \sup \{ \nu(G) \ : \ G^{\operatorname{cl}} \subset F, \ G^{\operatorname{cl}} \in \operatorname{Compact}(X) \} \\ &= \inf \{ \nu(H) \ : \ F \subset H^o \}. \end{split}$$

Theorem 6.1 Every regular content is a premeasure.

Let $F_1, F_2, \dots \in \mathcal{R}$ be disjoint and $F := \bigcup_{j=1}^{\infty} F_j \in \mathcal{R}$. We know by Theorem 2.1 that

$$\nu(F) \ge \sum_{j=1}^{\infty} \nu(F_j).$$

Let us show the converse inequality. Let $\epsilon > 0$. For any $j = 1, \ldots, n$ we can find $H_j \in \mathcal{R}$ such that $F_j \subset H_j^o$ and $\nu(H_j \backslash F_j) < \epsilon 2^{-j-1}$. Likewise, we can find $G \in \mathcal{R}$ such that $G^{\operatorname{cl}} \subset F$, G^{cl} is compact and $\nu(F \backslash G) < \epsilon/2$. Thus $\{H_j^o : j = 1, 2, \ldots\}$ is an open cover of the compact set G^{cl} . We can choose a finite subcover $\{H_{j_k}^o : k = 1, \ldots, m\}$, so that

$$G^{\operatorname{cl}} \subset \bigcup_{k=1}^m H_{j_k}^o$$
.

Consequently,

$$G \subset \bigcup_{k=1}^m H_{j_k}$$
.

Thus

$$\nu(F) \le \nu(G) + \epsilon/2 \le \sum_{k=1}^{m} \nu(H_{j_k}) + \epsilon/2 \le \sum_{j=1}^{\infty} \nu(F_j) - \epsilon.$$

6.2 Borel sets in $\mathbb R$

Let $\mathcal{T} := \{ [a, b] : a, b \in \mathbb{R}, a \leq b \}.$

Theorem 6.2 \mathcal{T} is a semiring. Moreover, let $A_1, \ldots, A_n \in \mathcal{T}$ be disjoint, $A \in \mathcal{T}$ and $\bigcup_{i=1}^n A_i = A$. Then, after a possible renumbering of A_i , $A_i =]a_{i-1}, a_i]$, where $a_0 \leq a_1 \leq \cdots \leq a_n$. σ -Field(\mathcal{T}) equals the σ -field of Borel subsets of \mathbb{R} and will be denoted by Borel(\mathbb{R}).

6.3 Borel premeasures on \mathbb{R}

Let $f: \mathbb{R} \to \mathbb{R}$ be an increasing function. Define $\nu: \mathcal{T} \to [0, \infty[$ as

$$\nu(|a,b|) := f(b) - f(a).$$

Theorem 6.3 ν is a content on \mathcal{T} . Hence it extends uniquely to a content on Ring(\mathcal{T}).

Assume now in addition that $f: \mathbb{R} \to \mathbb{R}$ is continuous from the right, that means

$$\lim_{t \downarrow t_0} f(t) = f(t_0), \quad t_0 \in \mathbb{R}.$$

Lemma 6.4 Let $F \in \text{Ring}(\mathcal{T})$ and $\epsilon > 0$. Then there exist $H, G \in \text{Ring}(\mathcal{T})$ such that

$$G^{\mathrm{cl}} \subset F \subset H^o, \quad \nu(F \backslash G) < \epsilon, \quad \nu(H \backslash F) < \epsilon.$$

In other words, ν is a regular content.

Proof. We can assume that $F = \bigcup_{i=1}^{n} [a_{2i-1}, a_{2i}]$ and $0 < \delta < \min\{a_{j+1} - a_j : j = 0, \dots, 2n-1\}$. By decreasing δ we can demand in addition that $f(a_i + \delta) - f(a_i) < \epsilon/n$. Then we can set

$$G := \bigcup_{j=1}^{n} [a_{2j-1} + \delta, a_{2j}], \quad H := \bigcup_{j=1}^{n} [a_{2j-1}, a_{2j} + \delta].$$

By Theorem 6.1, we get:

Theorem 6.5 ν is a premeasure on Ring(\mathcal{T}).

6.4 Borel measures on \mathbb{R}

Theorem 6.6 (1) Let $f : \mathbb{R} \to \mathbb{R}$ be an increasing function continuous from the right. Then there exists a unique measure μ_f on $(\mathbb{R}, \operatorname{Borel}(\mathbb{R}))$ such that

$$\mu_f([a,b]) = f(b) - f(a).$$

This measure is σ -finite.

(2) Let $(\mathbb{R}, \operatorname{Borel}(\mathbb{R}), \mu)$ be a measure such that $\mu(A) < \infty$ for compact $A \subset \mathbb{R}$. Set

$$f(x) := \begin{cases} -\mu(]x, 0], & x < 0 \\ \mu(]0, x], & x \ge 0. \end{cases}$$

Then $\mu = \mu_f$.

Proof. The premeasure ν_f can be extended by the Caratheodory construction to a σ -field containing Borel(\mathbb{R}). \square

Definition 6.7 The measure on Borel(\mathbb{R}) with the distribution function f(x) = x is called the Borel-Lebesgue measure, and denoted λ . Its complete extension is called the Lebesgue measure. In integrals, if the generic variable in \mathbb{R} will be denoted by x, then instead of $d\lambda(x)$ we will usually write dx.

Theorem 6.8 The Borel-Lebesgue measure is the only measure on Borel(\mathbb{R}) invariant wrt translations such that $\mu([0,1])=1$.

Proof. Let $(\mathbb{R}, \operatorname{Borel}(\mathbb{R}), \mu)$ be translation invariant. This means $\mu([a, b]) = \mu([a + x, b + x])$. Using this and $\mu([0, 1])$ we get $\mu([k/n, (k+1)/n]) = 1/n$. This easily implies $\mu([a, b]) = b - a$ for any $a \leq b$. \square

Theorem 6.9 (1) Let μ be a measure on $2^{\mathbb{R}}$ invariant wrt translations (that means if $\tau_t(x) = x - t$, then $\tau_{t*}\mu = \mu$). Suppose that μ is finite on compact sets. Then $\mu = 0$.

(2) Let $\mathbb{T} := \mathbb{R}/\mathbb{Z}$ denote the 1-dimensional torus. Let μ be a finite measure on $2^{\mathbb{T}}$ invariant wrt translations. Then $\mu = 0$.

Proof. (2) Introduce in \mathbb{T} the equivalence relation

$$x \sim y \Leftrightarrow x - y \in \mathbb{Q}.$$

Let \mathcal{I} be the set of equivalence classes. Choose from every class a representant x_i . We have

$$[0,1[=\bigcup_{y\in\mathbb{Q}}A_y]$$

for

$$A_y := \{x_i + y : i \in \mathcal{I}\}.$$

But $\tau_{y_2-y_1} A_{y_2} = A_{y_1}$. Hence

$$\mu(\mathbb{T}) = \sum_{y \in \mathbb{Q}} \mu(A_y) = \sum_{y \in \mathbb{Q}} \mu(A_0) = \infty \mu(A_0).$$

Thus $\mu(\mathbb{T}) = 0$ or $\mu(\mathbb{T}) = \infty$.

(1) Let μ be a translation invariant measure on $(\mathbb{R}, 2^{\mathbb{R}})$. Consider the canonical projection $\mathbb{R} \to \mathbb{T}$ restricted to [0,1[it is a bijection. Denote it by $\pi:[0,1[\to \mathbb{T}.$ Define $\tilde{\mu}(A):=\mu(\pi^{-1}(A)), A\subset \mathbb{T}.$

Let us check that $\tilde{\mu}$ is translation invariant and $\tilde{\mu}(\mathbb{T}) = 1$. By (2) it is zero. \square

6.5 The Cantor set and devil's staircase

Definition 6.10 Let $q \in \mathbb{N}$. To every sequence of numbers $(p_j)_{j \in \mathbb{N}}$ with values in $\{0, 1, \ldots, q-1\}$ we assign a number from the interval [0, 1]:

$$0.p_1p_2\cdots := \sum_{j=1}^{\infty} \frac{p_j}{q^j} = x.$$

We say that $0.p_1p_2...$ denotes the number x in the system based on q

Note that every $x \in [0,1]$ has such a representation. It is ambiguous only if for some n we have $q^n x \in \mathbb{N}$. Then

$$0.p_1 \dots p_{n-1}p_n 00 \dots = 0.p_1p_2 \dots p_{n-1}(p_n-1)(q-1)(q-1) \dots$$

Definition 6.11 The Cantor set C, is the subset of [0,1] consisting of the numbers that in the trinary system have only 0 and 2. It can be defined also as follows: $C_0 = [0,1]$, $C_1 = C_0 \setminus]\frac{1}{3}, \frac{2}{3}[$, $C_2 = C_1 \setminus]\frac{1}{9}, \frac{2}{9}[\cup]\frac{7}{9}, \frac{8}{9}[$, etc. We set $C = \bigcap_{n=1}^{\infty} C_n$.

It is a closed set with an empty interior, uncountable and has zero Lebesgue measure (because $\lambda(C_n) = \frac{2^n}{3^n}$).

Definition 6.12 Define the transformation, called devil's staircase, $F:[0,1] \to [0,1]$ as follows. If $x = 0.p_1p_2 \cdots \in C$ in the trinary system, where $p_i \in \{0,2\}$, then $F(x) = 0.\frac{p_1}{2} \frac{p_2}{2} \cdots$ in the binary system. If $x \in [0,1] \setminus C$, then $x \in]x_-, x_+[$ where $x_- = 0.p_1 \dots p_n 022 \dots$ and $x_+ = 0.p_1 \dots p_n 200 \dots$. We see that $F(x_-) = F(x_+)$ and we set $F(x_-) = F(x_+)$

The function F is increasing, continuous, locally constant beyond C, and F(1) - F(0) = 1. It defines a Borel measure μ , which is continuous and singular wrt the Lebesgue measure, since $\mu([0,1]\backslash C) = 0$.

6.6 Transport of the Lebesgue measure in \mathbb{R}

Let $g:[a,b]\to\mathbb{R}$ be an increasing function. Then there exists a unique increasing function $f:[g(a),g(b)]\to[a,b]$, which is continuous from the right and $g\circ f(x)=x,\ x\in[g(a),g(b)]$. It is easy to see that $g^*\lambda=\mu_f$. In fact,

$$g^*\lambda([\alpha,\beta]) = \lambda(g^{-1}([\alpha,\beta]) = \lambda([f(\alpha),f(\beta)]) = f(\beta) - f(\alpha).$$

6.7 The Lebesgue measure in \mathbb{R}^n

Let Borel(\mathbb{R}^n) denote the σ -field of Borel sets in \mathbb{R}^n .

In \mathbb{R}^n we can define the *n*-dimensional Borel-Lebesgue measure as the measure on Borel(\mathbb{R}^n) equal $\lambda^n := \lambda \otimes \cdots \otimes \lambda$.

Theorem 6.13 (1) The n-dimensional Borel-Lebesgue measure λ^n is the unique measure on Borel(\mathbb{R}^n) such that

$$\lambda^n \left(\underset{i=1}{\overset{n}{\times}}]a_i, b_i] \right) = \prod_{i=1}^n |b_i - a_i|.$$

(2) It is also the unique translation invariant measure on $Borel(\mathbb{R}^n)$ such that

$$\lambda^n \left(\underset{i=1}{\overset{n}{\times}}]0,1] \right) = 1.$$

We can also consider its completion, called the n-dimensional Lebesgue measure. There are several equivalent ways to construct the Lebesgue measure, described in the following theorem.

Theorem 6.14 The following measures coincide:

- (1) $(\lambda^n)^{cp}$ (the completion of the n-dimensional Borel-Lebesgue measure).
- (2) $(\lambda^{cp} \otimes \cdots \otimes \lambda^{cp})^{cp}$.
- (3) Let \mathcal{T}^n be the semiring of sets $\underset{i=1}{\overset{n}{\times}}]a_i, b_i]$. Set

$$\nu^n \left(\underset{i=1}{\overset{n}{\times}}]a_i, b_i \right] = \prod_{i=1}^n |b_i - a_i|.$$

Then ν^n is a premeasure. We consider the measure obtained by the Caratheodory construction.

6.8 Transport of the Lebesgue measure in \mathbb{R}^n

Theorem 6.15 Let U be an open subset of \mathbb{R}^n and $\phi: U \to \mathbb{R}^n$ a C^1 bijection with $\det \phi'(x) \neq 0$, $x \in U$. Let λ be the Lebesque measure. Then

$$\frac{\mathrm{d}\phi^*\lambda}{\mathrm{d}\lambda} = |\det\phi'|. \tag{6.31}$$

Thus if $f \in \mathcal{M}_+(\phi(U))$, then

$$\int_{\phi(U)} f \mathrm{d} \lambda = \int_U f \circ \phi |\det \phi'| \mathrm{d} \lambda.$$

We will also write the transformation as

$$(y^1,\ldots,y^n) \stackrel{\phi}{\mapsto} (x^1,\ldots,x^n).$$

Then we can write

$$\int f(x)dx = \int f(x(y)) \left| \frac{\partial x(y)}{\partial y} \right| dy.$$

Proof. We will say that the transformation ϕ satisfies the change of variables formula iff it satisfies (6.31).

Step 1. If the transformations ϕ , ψ satisfy the change of variables formula, then the transformation $\phi \circ \psi$ satisfies it as well.

Step 2. Transformations of the form $(y^1, \ldots, y^n) \mapsto (y^{\pi(1)}, \ldots, y^{\pi(n)})$, where π is a permutation, satisfy the change of variables formula.

Step 3. If a transformation ϕ has the form

$$(y^1, \dots, y^n) \mapsto (x^1, \dots, x^n) = (f(y^1, \dots, y^n), y^2, \dots, y^n),$$

then it satisfies the change of variables formula. In fact,

$$\int F(x^{1}, \dots, x^{n}) dx^{1} \cdots dx^{n} = \int dx^{n} \cdots \int dx^{1} F(x^{1}, \dots, x^{n})$$

$$= \int dx^{n} \cdots \int dx^{2} \int dy^{1} \left| \frac{\partial f(y^{1}, x^{2}, \dots, x^{n})}{\partial y^{1}} \right| F(f(y^{1}, x^{2}, \dots, x^{n}), x^{2}, \dots, x^{n})$$

$$= \int dy^{n} \cdots \int dy^{2} \int dy^{1} \left| \frac{\partial f(y^{1}, y^{2}, \dots, y^{n})}{\partial y^{1}} \right| F(f(y^{1}, y^{2}, \dots, x^{n}), y^{2}, \dots, y^{n})$$

$$= \int F(x(y)) \left| \det \frac{\partial x(y)}{\partial y} \right| dy.$$

Step 4. We proceed by induction wrt n. We assume that the theorem is true for n-1.

If $F \in \mathcal{M}_+(U)$, then we can find a sequence of functions $F_n \in \mathcal{M}_+(U)$ of compact support with $F_n \nearrow F$.

Therefore, it is sufficient to assume that the support of F is compact.

Let $a=(a^1,\ldots,a^n)\in \mathrm{supp} F$. There exist i,j such that $\frac{\partial x^i}{\partial y^j}(a)\neq 0$. We can find $\delta>0$ such that for $|y^i - a^i| < \delta, \ i = 1, \dots, n, \ \frac{\partial x^i(y^1, \dots, y^n)}{\partial y^j} > 0, \text{ or } \frac{\partial x^i(y^1, \dots, y^n)}{\partial y^j} < 0. \text{ Set } W_a := [a^1 - \delta, a^1 + \delta] \times \dots \times [a^n - \delta, a^n + \delta].$ Clearly, we can find a finite family of $a_1, \dots, a_n \in \mathbb{R}^n$ such that W_{a_1}, \dots, W_{a_n} covers supp F. Then we can write $F = \sum_{i=1}^{n} F_i$ with supp $F_i \subset W_i$.

In what follows we assume that on the support of F, $\frac{\partial x^i(y^1,...,y^n)}{\partial y^j} > 0$. By Step 2, we can assume that i = j = 1. Define

$$(y^1,\ldots,y^n) \stackrel{\psi}{\mapsto} (z^1,\ldots,z^n),$$

where

$$z^{1}(y^{1},...,y^{n}) = x^{1}(y^{1},...,y^{n}), z^{2} = y^{2},...,z^{n} = y^{n}.$$

The map ψ is injective. Define $\rho := \phi \psi^{-1}$, that is

$$(z^1,\ldots,z^n) \stackrel{\rho}{\mapsto} (x^1,\ldots,x^n).$$

Note that $x^1 = z^1$.

The map ψ is of the type considered in Step 3. Hence it satisfies the change of variables formula. We have $\phi = \rho \psi$. By Step 1, it is thus sufficient to prove that ρ satisfies the change of variables formula.

We have

$$\rho' = \begin{bmatrix} \frac{\partial x}{\partial z} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \dots & 0 \\ \frac{\partial x^2}{\partial z^1} & \frac{\partial x^2}{\partial z^2} & \dots & \frac{\partial x^2}{\partial z^n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial x^n}{\partial z^1} & \frac{\partial x^n}{\partial z^2} & \dots & \frac{\partial x^n}{\partial z^n} \end{bmatrix},$$

and hence

$$\det \frac{\partial x}{\partial z} = \det \begin{bmatrix} \frac{\partial x^2}{\partial z^2} & \dots & \frac{\partial x^2}{\partial z^n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial x^n}{\partial z^2} & \dots & \frac{\partial x^n}{\partial z^n} \end{bmatrix}$$

Thus

$$\begin{split} &\int \mathrm{d}x^1 \cdots \int \mathrm{d}x^n F(x^1,\dots,x^n) \\ &= \int \mathrm{d}x^1 \int \mathrm{d}x^2 \cdots \int \mathrm{d}x^n F(x^1,x^2\dots,x^n) \\ &= \int \mathrm{d}x^1 \int \mathrm{d}z^2 \cdots \int \mathrm{d}z^n F(x^1,x^2(x^1,z^2,\dots,z^n),\dots,x^n(x^1,z^2,\dots,z^n)) \left| \det \begin{bmatrix} \frac{\partial x^2}{\partial z^2} & \dots & \frac{\partial x^2}{\partial z^n} \\ & \dots & \\ \frac{\partial x^n}{\partial z^2} & \dots & \frac{\partial x^n}{\partial z^n} \end{bmatrix} \right| \\ &= \int \mathrm{d}z^1 \int \mathrm{d}z^2 \cdots \int \mathrm{d}z^n F(x^1(z^1,\dots,z^n),\dots,x^n(z^1,\dots,z^n)) \left| \det \begin{bmatrix} \frac{\partial x^2}{\partial z^2} & \dots & \frac{\partial x^2}{\partial z^n} \\ & \dots & \\ \frac{\partial x^n}{\partial z^2} & \dots & \frac{\partial x^n}{\partial z^n} \end{bmatrix} \right| \\ &= \int F(x(z)) \left| \det \frac{\partial x(z)}{\partial z} \right| \mathrm{d}z. \end{split}$$

7 Charges and the Radon-Nikodym theorem

7.1 Extension of a measure from a σ -ring

Let \mathcal{F}, \mathcal{I} be σ -rings over X and let \mathcal{I} be an ideal in \mathcal{F} . Let (X, \mathcal{I}, μ) be a space with a measure. We can then extend the measure μ from \mathcal{I} to \mathcal{F} . We can do this in many ways.

Theorem 7.1 (1) Define $\mu^{\max}: \mathcal{F} \to [0, \infty]$ by

$$\mu^{\max}(A) := \inf\{\mu(B) : A \subset B, B \in \mathcal{I}\}.$$

Then μ^{\max} is a measure. We have $\mu^{\max}(A) = \mu(A)$, $A \in \mathcal{I}$, and $\mu^{\max}(A) = \infty$, $A \in \mathcal{F} \setminus \mathcal{I}$. μ^{\max} is the largest measure on \mathcal{F} extending μ onto \mathcal{F} . σ -finite and null sets coincide for μ and μ_{\max} .

(2) Define $\mu^{\min}: \mathcal{F} \to [0, \infty]$ by

$$\mu^{\min}(A) := \sup \{ \mu(B) : B \subset A, B \in \mathcal{I} \}.$$

Then μ^{\min} is a measure. We have $\mu^{\min}(A) = \mu(A)$, $A \in \mathcal{I}$. μ^{\min} is the smallest measure extending μ onto \mathcal{F} .

Proof. (1) is obvious.

(2) Let us prove that μ^{\min} is σ -additive. Let $A_1, A_2, \dots \in \mathcal{F}$ be disjoint, $A = \bigcup_{j=1}^{\infty} A_j$. Let $B \in \mathcal{I}$, $B \subset A$. Then using $A_j \cap B \in \mathcal{I}$ we get

$$\mu(B) = \sum_{j=1}^{\infty} \mu(A_j \cap B) \le \sum_{j=1}^{\infty} \mu^{\min}(A_j).$$

Hence

$$\mu^{\min}(A) \le \sum_{j=1}^{\infty} \mu^{\min}(A_j).$$

Let $B_j \subset A_j$, $B_j \in \mathcal{I}$. Then B_1, B_2, \ldots are disjoint and $\bigcup_{j=1}^{\infty} B_j \subset A$, hence

$$\sum_{j=1}^{\infty} \mu(B_j) = \mu(\bigcup_{j=1}^{\infty} B_j) \le \mu^{\min}(A).$$

Thus

$$\sum_{j=1}^{\infty} \mu^{\min}(A_j) \le \mu^{\min}(A).$$

7.2 Measures singular and continuous wrt an ideal

Let \mathcal{F} be a σ -ring over X and let \mathcal{I} be a σ -ring—an ideal in \mathcal{F} . Let (X, \mathcal{F}, ν) be a space with a measure. We say that ν is \mathcal{I} -singular if

$$\nu(A) = \sup \{ \nu(B) : B \subset A, B \in \mathcal{I} \}, A \in \mathcal{F}.$$

We say that ν is \mathcal{I} -continuous if

$$A \in \mathcal{I} \implies \nu(A) = 0. \tag{7.32}$$

(More generally, if ν is a charge, we say it is \mathcal{I} -continuous if (7.32) is true).

In particular, if (X, \mathcal{F}, μ) is also a space with a measure, then

$$\mathcal{F}_{\mu}^{0} := \{ A \in \mathcal{F} : \mu(A) = 0 \}$$

is an ideal in \mathcal{F} . We say that ν is μ -singular if it is \mathcal{F}^0_{μ} -singular. We say that ν is μ -continuous if it is \mathcal{F}^0_{μ} -continuous.

Theorem 7.2 Let (X, \mathcal{F}, ν) be a measure. Let \mathcal{I} be a σ -ring, an ideal in \mathcal{F} .

(1) There exists a decomposition

$$\nu = \nu_{\mathcal{I}s} + \nu_{\mathcal{I}c},\tag{7.33}$$

where $\nu_{\mathcal{I}_S}$ is a \mathcal{I} -singular measure and $\nu_{\mathcal{I}_C}$ is a \mathcal{I} -continuous measure. The \mathcal{I} -singular part is uniquely given by

$$\nu_{\mathcal{I}_{S}}(A) := \sup \{ \nu(B) : B \subset A, B \in \mathcal{I} \}.$$

The I-continuous part does not have to be unique, but there is a canonical choice given by

$$\nu_{\mathcal{I}c}(A) := \inf\{\nu(A \backslash B) : B \subset A, B \in \mathcal{I}\}.$$

- (2) If ν is σ -finite, then the decomposition of ν into a \mathcal{I} -singular and a \mathcal{I} -continuous measure is unique.
- (3) If X is $\nu \sigma$ -finite, then there exists a set $N \in \mathcal{I}$ such that

$$\nu_{\mathcal{I}_{S}}(A) = \nu(A \cap N), \quad \nu_{\mathcal{I}_{C}}(A) = \nu(A \setminus N).$$

Proof. The fact that $\nu_{\mathcal{I}_{S}}$ is a measure follows from Theorem 7.1 applied to $\nu\Big|_{\mathcal{I}}$.

We need to show that $\nu_{\mathcal{I}_{\mathbf{C}}}$ is a measure. Let $A_1, A_2, \dots \in \mathcal{F}$ be disjoint and $A = \bigcup_{j=1}^{\infty} A_j$. Let us prove that

$$\nu_{\mathcal{I}c}(A) \le \sum_{j=1}^{\infty} \nu_{\mathcal{I}c}(A_j). \tag{7.34}$$

It is sufficient to assume that $\nu_{\mathcal{I}c}(A_j) < \infty$, $j = 1, 2 \dots$ Let $\epsilon > 0$. We will find $B_j \in \mathcal{I}$, $B_j \subset A_j$ with $\nu_{\mathcal{I}c}(A_j) > \nu(A_j \setminus B_j) - 2^{-j}\epsilon$. Then

$$\nu_{\mathcal{I}c}(A) \le \nu(A \setminus \bigcup_{j=1}^{\infty} B_j) = \sum_{j=1}^{\infty} \nu(A_j \setminus B_j) \le \sum_{j=1}^{\infty} \nu_{\mathcal{I}c}(A_j) + \epsilon.$$

This proves (7.34).

Let us prove that

$$\sum_{j=1}^{\infty} \nu_{\mathcal{I}c}(A_j) \le \nu_{\mathcal{I}c}(A). \tag{7.35}$$

It is sufficient to assume that $\nu_{\mathcal{I}c}(A) < \infty$. Let $\epsilon > 0$. We will find $B \in \mathcal{I}$, $B \subset A$ with $\nu_{\mathcal{I}c}(A) > \nu(A \setminus B) - \epsilon$. Then

$$\sum_{j=1}^{\infty} \nu_{\mathcal{I}c}(A_j) \le \sum_{j=1}^{\infty} \nu(A_j \backslash B) = \nu(A \backslash B) < \nu_{\mathcal{I}c}(A) + \epsilon.$$

This proves (7.35)

(3) Let us prove the existence of the set N. Assume that X is ν -finite. Let

$$\alpha := \sup \{ \nu(A) : A \in \mathcal{I} \}.$$

Then $\alpha < \infty$. We can find a sequence $(N_j)_{j \in \mathbb{N}}$ in \mathcal{I} such that $\lim_{j \to \infty} \nu(N_j) = \alpha$. We can assume that the sequence $N_i \nearrow N$. Then $N \in \mathcal{I}$ and $\nu(N) = \alpha$.

It is obvious that $\nu(A \cap N) \leq \nu_{\mathcal{I}s}(A)$. Suppose that for some $A \in \mathcal{F}$,

$$\nu(A \cap N) < \nu_{\mathcal{I}_{S}}(A)$$
.

Then there exists $B \in \mathcal{I}$ with $B \subset A$ and

$$\nu(A \cap N) < \nu(B)$$
.

Then $B \cup N \in \mathcal{I}$ and

$$\nu(N \cup B) = \nu(N \setminus B) + \nu(B) > \nu(A \cap N) + \nu(N \setminus A) = \nu(N),$$

which is a contradiction

If X is $\nu - \sigma$ -finite, then we can find a sequence $X_n \nearrow X$ such that $\nu(X_n) < \infty$. We will also find sets $N_n \subset X_n$ constructed as above. We easily check that $\nu(A \cap N) = \nu_{\mathcal{I}_S}(A)$.

The decomposition of ν is uniquely determined on σ -finite sets. Hence it is unique. \square

7.3 Pure point and continuous measures

Definition 7.3 Suppose that (X, \mathcal{F}, ν) is a space with measure and

$$\{\{x\} : x \in X\} \subset \mathcal{F}. \tag{7.36}$$

We say that ν is a point (atomic) measure if

$$\nu(A) = \sum_{x \in A} \nu(\{x\}).$$

 ν is continuous (diffuse) if

$$\nu(\{x\}) = 0, \ x \in X.$$

Theorem 7.4 Let (X, \mathcal{F}, ν) be a measure. Assume (7.36).

(1) There exists a decomposition

$$\nu = \nu_{\rm p} + \nu_{\rm c}$$

where ν_p is a point measure and ν_c is a continuous measure. The point part is uniquely given by

$$\nu_{\rm p}(A) := \sup \{ \nu(B) : B \subset A, B \text{ is finite} \},$$

The I-continuous part does not have to be unique, but there is a canonical choice given by

$$\nu_{\rm c}(A) := \inf \{ \nu(A \backslash B) : B \subset A, B \text{ is finite} \}.$$

- (2) If ν is σ -finite, then the decomposition of ν into a point and a continuous measure is unique.
- (3) If \mathcal{X} is $\nu \sigma$ -finite, there exists a countable set $N \in \mathcal{F}$ such that

$$\nu_{\mathbf{p}}(A) = \nu(A \cap N), \quad \nu_{\mathbf{c}}(A) = \nu(A \setminus N).$$

Corollary 7.5 Let (X, \mathcal{F}) be a set with a σ -field Let

$$\{\{x\} : x \in X\} \subset \mathcal{F}$$

Let ν , μ be measures on (X, \mathcal{F}) and let μ be continuous. Then there exists a decomposition

$$\nu = \nu_{\rm p} + \nu_{\rm sc} + \nu_{\rm ac}$$

such that

 $\nu_{\rm p}$ is pure point,

 $\nu_{\rm sc}$ is μ -singular and continuous,

 $\nu_{\rm ac}$ is μ -continuous.

If ν is σ -finite, then the decomposition is unique.

7.4 Charges (signed measures)

Let (X, \mathcal{F}) be a space with a σ -ring. A function $\mu : \mathcal{F} \to]-\infty, \infty]$ is called a bounded from below charge (or signed measure) if

- $(1) \ \mu(\emptyset) = 0,$
- (2) $A_1, A_2 \cdots \in \mathcal{F}, A_i \cap A_j = \emptyset \text{ for } i \neq j \Rightarrow \mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n).$

Proposition 7.6 (1) If $A \subset B$, and $\mu(B) < \infty$, then $\mu(A) < \infty$.

- (2) $A_1, A_2, \dots \in \mathcal{F}, A_i \cap A_j = \emptyset, i \neq j, \text{ and } \mu(\bigcup_{n=1}^{\infty} A_n) < \infty, \text{ then } \sum_{n=1}^{\infty} \mu(A_n) \text{ is absolutely convergent.}$
- (3) $A_1, A_2, \dots \in \mathcal{F}, A_n \nearrow A \Rightarrow \mu(A_n) \rightarrow \mu(A).$
- (4) If $A_1, A_2, \dots \in \mathcal{F}$, $A_n \searrow A$ and for some $n, \mu(A_n) < \infty$, then $\mu(A_n) \to \mu(A)$.

Proof. (1) $\mu(B) = \mu(A) + \mu(B \setminus A)$ and $\mu(B \setminus A) > -\infty$. Hence $\mu(A) = \mu(B) - \mu(B \setminus A)$ with both summands less than ∞ .

(2) We group the sets A_i into two subfamilies: those with a positive charge and a nonpositive charge. After renumbering we can call the former B_1, B_2, \ldots and the latter C_1, C_2, \ldots We have

$$-\sum_{n=1}^{\infty} \mu(B_n) = -\mu\left(\bigcup_{n=1}^{\infty} B_n\right) < \infty$$

and

$$\sum_{n=1}^{\infty} \mu(C_n) = \mu\left(\bigcup_{n=1}^{\infty} C_n\right) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) - \mu\left(\bigcup_{n=1}^{\infty} B_n\right) < \infty.$$

7.5 Hahn and Jordan decompositions of a charge

Let (X, \mathcal{F}, μ) be a space with a bounded from below charge.

We say that $A \in \mathcal{F}$ is positive iff $B \in \mathcal{F}$, $B \subset A$ implies $\mu(B) \geq 0$. We say that $A \in \mathcal{F}$ is negative iff $B \in \mathcal{F}$, $B \subset A$ implies $\mu(B) \leq 0$. Let \mathcal{F}^{\pm}_{μ} denote the family of positive/negative sets.

Theorem 7.7 \mathcal{F}^{\pm}_{μ} are σ -rings and ideals of \mathcal{F} . $\pm \mu$ restricted to \mathcal{F}^{\pm}_{μ} are measures.

For $A \in \mathcal{F}$, we set

$$\mu_{+}(A) := \sup\{\mu(B) : B \subset A, B \in \mathcal{F}_{\mu}^{+}\},$$

 $\mu_{-}(A) := \sup\{-\mu(B) : B \subset A, B \in \mathcal{F}_{\mu}^{-}\}.$

Theorem 7.8 (1) μ_- , μ_+ are measures.

- (2) On \mathcal{F}^{\pm}_{μ} , μ coincides with $\pm \mu_{\pm}$.
- (3) μ_{-} is finite.
- (4) There exists $E \in \mathcal{F}_{\mu}^-$ with $\mu_-(E) = \mu_-(X)$. In what follows we fix such a set E.
- (5) If $\mu(A) < \infty$, then $\mu_{+}(A)$ is finite.
- (6) $X \setminus E \in \mathcal{F}_{\mu}^+$.
- (7) (Jordan decomposition) $\mu = \mu_+ \mu_-$.
- (8) (Hahn decomposition) For $A \in \mathcal{F}$,

$$\mu_{-}(A) = -\mu(A \cap E), \quad \mu_{+}(A) = \mu(A \setminus E).$$

(9)

$$\mu_{+}(A) := \sup\{\mu(B) : B \subset A, B \in \mathcal{F}\},$$

 $\mu_{-}(A) := \sup\{-\mu(B) : B \subset A, B \in \mathcal{F}\}.$

Proof. (1) and (2) follow immediately from Theorem 7.1 (2).

Let $\beta := \mu_{-}(X)$. Then there exist negative E_1, E_2, \ldots such that $\mu_{-}(E_n) \to \beta$. Since negative sets form a σ -ring, $E := \bigcup_{j=1}^{n} E_j \in \mathcal{F}_{\mu}^-$. Clearly, $\mu_{-}(E) \leq \mu_{-}(E_n)$. Hence $\beta = \mu_{-}(E)$. This implies (4) and (3). A similar argument yields (5).

We interrupt the proof. \Box

Lemma 7.9 Suppose that $\mu(X) < \mu_+(X)$. Then there exists $B \in \mathcal{F}_{\mu}^-$ with $\mu(B) < 0$.

Proof. If $\mu_+(X) = 0$, then $X \in \mathcal{F}_{\mu}^-$ and $\mu(X) < 0$. We can thus set B := X The condition $\mu(X) < \infty$ implies that $\mu_+(X) < \infty$. Let $\mu_+(X) > 0$. We can find q < 1 such that

$$\mu(X) - q\mu_+(X) < 0.$$

We can find $E \in \mathcal{F}_{\mu}^+$ such that $\mu(E) \geq q\mu_+(X)$. Set $X_1 := X \setminus E$. Then

$$\mu_{+}(X_{1}) = \mu_{+}(X) - \mu_{+}(E) \le (1 - q)\mu_{+}(X),$$

$$\mu(X_{1}) = \mu(X) - \mu(E) \le \mu(X) - q\mu_{+}(X) < 0.$$

By induction, we can find a sequence of disjoint sets $E_1, \dots \in \mathcal{F}_{\mu}^+$ such that for $X_n := X_1 \setminus \bigcup_{j=1}^{n-1} E_j$, then

$$\mu(E_n) \ge q\mu_+(X_n).$$

(Note that $E_j \subset X_j$). Then

$$\mu_{+}(X_{n+1}) = \mu_{+}(X_n) - \mu_{+}(E_n)$$
$$= \mu_{+}(X_n) - \mu(E_n) \le (1 - q)\mu_{+}(X_n).$$

Hence,

$$\mu_+(X_n) \le (1-q)^n \mu_+(X_0).$$

Moreover,

$$\mu(X_{n+1}) = \mu(X_1) \setminus \sum_{j=1}^n \mu(E_j) \le \mu(X_1) < 0.$$

Set $B := \bigcap_{j} X_{j}$. Then

$$\mu_+(B) = \lim_{j \to \infty} \mu_+(X_j) = 0,$$

and hence $B \in \mathcal{F}_{\mu}^{-}$, and

$$\mu(B) = \lim_{j \to \infty} \mu(X_j) \le \mu(X_1) < 0.$$

Continuation of the proof of Theorem 7.8. Suppose that $X \setminus E$ is not positive. This means that there exists $X_0 \subset X \setminus E$ and $\mu(X_0) < 0$. Then X_0 satisfies the conditions of Lemma 7.9. Hence X_0 contains $B \in \mathcal{F}_{\mu}^-$ with $\mu(B) < 0$. Hence $E \cup B \in \mathcal{F}_{\mu}^-$ with $\mu(E \cup B) < \beta$, which is a contradiction. This proves (6).

Now note that for $B \in \mathcal{F}_{\mu}^+$ we have $\mu(B) = \mu_+(B \setminus E)$. Hence for $A \in \mathcal{F}$,

$$\mu_+(A) = \sup\{\mu_+(B\backslash E) : B \subset A, B \in \mathcal{F}_\mu^+\} = \mu_+(A\backslash E) = \mu(A\backslash E).$$

This proves (8) and (7).

$$\mu_{+}(A) \leq \sup\{\mu(B) : B \subset A, B \in \mathcal{F}\},\$$

 $\leq \sup\{\mu_{+}(B) : B \subset A, B \in \mathcal{F}\} = \mu_{+}(A).$

This proves (9). \square

7.6 Banach space of finite charges

Let (X, \mathcal{F}) be a set with a σ -field. We define $\mathrm{Ch}(X, \mathcal{F})$ (or $\mathrm{Ch}(X)$) as the ordered linear space of finite charges on (X, \mathcal{F}) . We set

$$\|\mu\| := |\mu|(X).$$

Theorem 7.10 (1) $Ch(X, \mathcal{F})$ is a Banach space.

- (2) $Ch(X, \mathcal{F})$ is a complete lattice.
- (3) $0 \le \mu \le \nu \text{ implies } \|\mu\| \le \|\nu\|.$

7.7 Measures with a density

Theorem 7.11 Let (X, \mathcal{F}, μ) be a space with a measure. Let $f \in \mathcal{M}_+(X)$ Then

$$\mathcal{F} \ni A \mapsto \nu(A) := \int 1_A f d\mu \tag{7.37}$$

is a measure. If $f \in \mathcal{M}(X)$ and $f_{-} \in \mathcal{L}^{1}(\mu)$, then (7.37) is a bounded from below charge.

Definition 7.12 The measure ν is called the measure with the density f wrt the measure μ and is denoted $\nu = f\mu$. We will also write $f := \frac{d\nu}{d\mu}$.

Theorem 7.13 (1) For $f, g \in \mathcal{M}_+(X)$ we have

$$f = g \ \mu$$
-a.e. $\Rightarrow f \mu = g \mu$.

(2) If $f\mu$ is sum-finite, then the converse implication is also true.

Proof. The implication \Rightarrow is obvious. Let us show the converse statement. First assume that $f\mu$ is finite, or in other words $f \in \mathcal{L}^1(\mu)$. Let $N := \{f < g\}$ and

$$h := g1_N - f1_N.$$

Clearly, $f1_N \leq f$ and $g1_N \leq g$. Hence, $f1_N \in \mathcal{L}^1(\mu)$, $g1_N \in \mathcal{L}^1(\mu)$. Therefore, $h \in \mathcal{L}^1(\mu)$. Besides, $\int h d\mu = 0$ and $h \geq 0$. Thus h = 0 μ -a.e. But $N = \{h > 0\}$. Hence $\mu(N) = 0$.

Assume now that μ is sum-finite. Let X_i be a localizing family. Then $f\mu = g\mu$ restricted to X_i . Hence $f_i = g_i$ on X_i almost everywhere wrt the measure μ restricted to X_i . This implies that f = g μ -a.e. \square

Recall that the charge ν is called continuous wrt μ (or μ -continuous), if

$$\mu(N) = 0 \Rightarrow \nu(N) = 0, \quad N \in \mathcal{F}.$$

Theorem 7.14 (Radon-Nikodym) Let μ be a sum-finite measure on (X, \mathcal{F}) and let ν be a charge. Then the following conditions are equivalent:

- (1) there exists $f \in \mathcal{M}(X)$ such that $\nu = f\mu$ and $f_- \in \mathcal{L}^1(\mu)$;
- (2) ν is μ -continuous.

Proof. The implication \Rightarrow is obvious. Let us show the converse statement.

Step 0. If $\mu = 0$, then $\nu = 0$, and the theorem is obviously true.

Step 1. Assume that $0 < \mu(X) < \infty$, $\nu(X) < \infty$. Let

$$\mathcal{G} := \{ g \in \mathcal{M}_+(\mathcal{F}) : g\mu \le \nu \}.$$

Clearly, \mathcal{G} is non-empty, since $0 \in \mathcal{G}$.

We have

$$g, h \in \mathcal{G} \Rightarrow \sup(g, h) \in \mathcal{G}.$$

In fact, if $A_1 := \{g < h\}, A_2 := \{g \ge h\}$ and $A \in \mathcal{F}$, then

$$\int_{A} \sup(g,h) d\mu = \int_{A \cap A_1} g d\mu + \int_{A \cap A_2} h d\mu \le \nu(A \cap A_1) + \nu(A \cap A_2) = \nu(A).$$

Let

$$\gamma := \sup\{ \int g d\mu : g \in \mathcal{G} \}. \tag{7.38}$$

Then $\gamma \leq \nu(X) < \infty$. We can find $g'_n \in \mathcal{G}$ such that

$$\lim_{n\to\infty} \int q'_n d\mu = \gamma.$$

Let

$$f := \sup(g'_n)_{n \in \mathbb{N}}.$$

We claim that

$$f \in \mathcal{G} \text{ and } \int g \mathrm{d}\mu = \gamma.$$
 (7.39)

In fact, we have

$$g_n := \sup(g'_1, \dots, g'_n) \in \mathcal{G}, \ g_n \nearrow f,$$

which immediately implies (7.39).

Suppose now that

$$(f\mu)(X) < \nu(X). \tag{7.40}$$

Using $\mu(X) < \infty$, we can find $\beta > 0$ such that

$$\beta\mu(X) < \nu(X) - (f\mu)(X).$$

Set

$$\rho(A) := \nu(A) - (f\mu)(A) - \beta\mu(A), \quad A \in \mathcal{F}.$$

 ρ is a bounded μ -continuous charge satisfying $\rho(X) > 0$. By Lemma 7.9, we can find a ρ -positive set $E \in \mathcal{F}$ such that $\rho(E) > 0$. Recall that ρ -positivity of E means that

$$A \in 2^E \cap \mathcal{F} \Rightarrow \rho(A) \geq 0.$$

Hence $f_0 = f + \beta 1_E \in \mathcal{G}$.

Note that the μ -continuity of the charge ρ and $\rho(E) > 0$ implies $\mu(E) > 0$. Hence

$$\int f_0 d\mu = \int f d\mu + \beta \mu(E) = \gamma + \beta \mu(E) > \gamma,$$

which is a contradiction with (7.38).

Step 2. ν is σ -finite, μ is finite. We decompose X into a disjoint union of sets of finite measure ν and use **Step 1.**

Step 3. ν is arbitrary, μ is finite. Let $\mathcal{F}^{\mathrm{f}}_{\nu} := \{A \in \mathcal{F} : \nu(A) < \infty\}$ and $\alpha := \sup\{\mu(A) : A \in \mathcal{F}^{\mathrm{f}}_{\nu}\}$. We can find $A_n \in \mathcal{F}^{\mathrm{f}}_{\nu}$ such that $\lim_{n \to \infty} \mu(A_n) = \alpha$. We can assume that $A_n \nearrow X_0$. Then ν on X_0 is σ -finite and on $X_1 := X \setminus X_0$ it has the property

or
$$\mu(A) = \nu(A) = 0$$
,

or
$$\mu(A) > 0$$
, $\nu(A) = \infty$.

In fact, if $A \subset X_1$, $\mu(A) > 0$ and $\nu(A) < \infty$, then $A_n \cup A \in \mathcal{F}_{\nu}^f$ and $\mu(A_n \cup A) \nearrow \alpha + \mu(A)$, which means $\mu(A) = 0$. We apply **Step 2.** to X_0 and on X_1 we put $\nu = \infty \mu$.

Step 4. ν is arbitrary and μ sum-finite. We decompose X into a union of disjoint sets with a finite measure μ and use **Step 3.** \square

7.8 Dual of $L^p(\mu)$

Theorem 7.15 Let (X, \mathcal{F}, μ) be a space with a measure, $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. For $g \in L^q(\mu)$ set

$$\langle v_g | f \rangle := \int g f d\mu, \quad f \in L^p(\mu).$$
 (7.41)

Then

(1) $v_g \in (L^p(\mu))^\#$ and $||v_g|| = ||g||_q$. Thus

$$L^{q}(\mu) \ni g \mapsto v_{q} \in L^{p}(\mu)^{\#} \tag{7.42}$$

is an isometry.

(2)
$$\tilde{f} := \overline{f}|f|^{p-2}/(\int |f|^p)^{1/q}$$
 (7.43)

 $v_{\tilde{f}}$ is a functional tangent to f.

(3) Let $1 \le p < \infty$ and let μ be sum-finite. Then for v, a bounded functional on $L^p(\mu)$, there exists a unique $g \in L^q$ such that (7.41) holds. Thus, the map (7.42) is bijective.

Proof. (1) Using the Hölder inequality we check that if $g \in L^q(\mu)$, then $v_g \in L^p(\mu)^\#$ and $||v_g|| \le ||g||_q$. Setting

$$\tilde{g} := \overline{g}|g|^{q-2}/(\int |g|^q)^{1/p},$$
(7.44)

we see that $\langle v_g | \tilde{g} \rangle = \|g\|_q$ and $\|\tilde{g}\|_p = 1$. Hence $\|v_g\| = \|g\|_q$. (3) To prove the existence first assume that the measure is finite and $v \in L^p(\mu)^{\#}$. Then

$$\mathcal{F} \ni A \mapsto \langle v | 1_A \rangle$$

is a μ -continuous finite charge. By the Radon-Nikodym Theorem, there exists $g \in \mathcal{M}(X)$ such that

$$\langle v|1_A\rangle = \int g1_A \mathrm{d}\mu,$$

Assume that $g \notin L^q(\mu)$ Clearly, $g_+ \notin L^q(\mu)$ or $g_- \notin L^q(\mu)$. Hence it is sufficient to assume that $g \geq 0$. We can find $g_n \in \mathcal{E}_+(X)$ such that $g_n \nearrow g$. Clearly, $||g_n||_q \to \infty$. Set $\tilde{g}_n := g_n^{q-1}/(\int |g_n|^q)^{1/p}$. Clearly, $\tilde{g}_n \in L^p(\mu), \|\tilde{g}_n\| = 1$ and

$$\langle v|\tilde{g}_n\rangle = \int gg_n^{q-1} \mathrm{d}\mu/(\int |g_n|^q)^{1/p} \ge ||g_n||_q \to \infty.$$

Hence v is not bounded.

Thus $g \in L^q(\mu)$. We already know that v_q is bounded and it coincides with v on $\mathcal{E}(X)$, which is dense in $L^p(\mu)$. Hence (7.41) is true for all $f \in L^p(\mu)$

The uniqueness follows from Theorem (7.13) (2). \square

Theorem 7.16 Let μ be sum-finite. Then $L^{\infty}(\mu)$ is a complete lattice.

8 Measures on topological spaces

δ -open and σ -closed sets

If X is a topological space, we will write Open(X), $Open_0(X)$, Closed(X) and Compact(X) for the family of open, open pre-compact, closed and compact subsets of X.

Definition 8.1 δ -open sets are countable intersection of open sets.

 σ -closed sets are countable unions of closed sets.

The complement of a σ -closed set is a δ -open set and vice versa.

Theorem 8.2 Let X be a metrizable space. Then every closed set is δ -open.

Proof. Let C be closed. Define

$$C_n := \{ x \in X : d(x, C) < 1/n \}.$$

Then C_n are open and

$$C = \bigcap_{n=1}^{\infty} C_n.$$

Hence C is a δ -open set. \square

8.2 Baire and Borel sets of 1st kind

Theorem 8.3 (1) Let $f \in C(X, \mathbb{R})$. Then $f^{-1}(]\alpha, \infty[) \in \text{Open} \cap \sigma - \text{Closed}(X)$.

(2) Let X be normal and $A \in \text{Open} \cap \sigma\text{-Closed}(X)$. Then there exists $f \in C(X, \mathbb{R})$ such that $A = f^{-1}(]\alpha, \infty[)$

Proof. We have

$$f^{-1}(]a,\infty[) = \bigcup_{n=1}^{\infty} f^{-1}([a+1/n,\infty[)$$
(8.45)

Clearly, (8.45) are σ -closed.

Let

$$A = \bigcup_{n=1}^{\infty} A_n$$

be open σ -closed and A_n let be closed. We can then find $f_n \in C(X)$ such that $0 \le f \le 1$, $f_n = 1$ on A_n and $f_n = 0$ outside A. We define

$$f := \sum_{n=1}^{\infty} 2^{-n} f_n.$$

Then

$$A = f^{-1}(]0, \infty[).$$

Definition 8.4 Let X be a topological space. Then the σ -field of Baire sets of 1st kind, denoted $\operatorname{Baire}_1(X)$, is the smallest σ -field such that all elements of $C(X,\mathbb{R})$ are measurable.

Theorem 8.5 Let X be normal, $A \subset B \subset X$, A be closed and B open. Then there exist $A_0 \in \text{Closed} \cap \text{Baire}_1(X)$ and $B_0 \in \text{Open} \cap \text{Baire}_1(X)$ such that $A \subset B_0 \subset A_0 \subset B$.

Proof. We can find $f \in C(X, \mathbb{R})$ such that f = 0 on A and f = 1 on $X \setminus B$. Then $f^{-1}(] - \infty, \frac{1}{2}[) \in \text{Open} \cap \text{Baire}_1(X)$ and $f^{-1}(] - \infty, \frac{1}{2}]) \in \text{Closed} \cap \text{Baire}_1(X)$. \square

Theorem 8.6 (1) In any topological space, $Baire_1(X)$ is generated e.g. by

$$\{f^{-1}(U) : U \in \mathrm{Open}(\mathbb{R}), f \in C(X, \mathbb{R})\},$$
$$\{f^{-1}(C) : C \in \mathrm{Closed}(\mathbb{R}), f \in C(X, \mathbb{R})\},$$
$$\{f^{-1}(]\alpha, \infty[, \alpha \in \mathbb{R}, f \in C(X, \mathbb{R}).$$

(2) If X is normal, then $Baire_1(X)$ is generated by

Open
$$\cap \sigma$$
-Closed(X),

Closed
$$\cap \delta$$
-Open(X).

Theorem 8.7 Let X be compact Hausdorff. Then

- (1) Open \cap Baire₁ $(X) = Open \cap \sigma Closed(X)$,
- (2) Closed \cap Baire₁(X) =Closed $\cap \delta$ Open(X).

Proof. It is sufficient to prove $(2) \subset$.

Let C be closed Baire. By Theorem 1.8, there exists a countable family C_1, C_2, \ldots of σ -closed sets such that $C \in \sigma$ -Ring (C_1, C_2, \ldots) . We can find functions $f_n \in C(X)$ such that $\{f_n = 0\} = C_n$. Then

$$d(x,y) := \sum_{n=1}^{\infty} 2^{-n} |f_n(x) - f_n(y)|$$

is a semimetric on X.

Let (\tilde{X}, \tilde{d}) be the reduced metric space and $T: X \to \tilde{X}$ the corresponding reduction. Clearly, $x \in C_n$, d(x, y) = 0 imply $y \in C_n$. Therefore, $T^*2^{\tilde{X}}$ contains C_1, C_2, \ldots

 $T^*2^{\tilde{X}}$ is a σ -ring. Hence

$$T^*2^{\tilde{X}} \supset \sigma - \operatorname{Ring}(C_1, C_2, \dots).$$

Thus there exists $\tilde{C} \in 2^{\tilde{X}}$ with $C = T^{-1}\tilde{C}$. But C is compact and T continuous. Therefore, \tilde{C} is compact as well. Thus \tilde{C} is a closed subset of a metric space, and hence it is σ -open. Hence there exist open $\tilde{U}_1, \tilde{U}_2, \ldots$ in \tilde{X} with $\tilde{U}_n \searrow \tilde{C}$. Now $T^{-1}\tilde{U}_n$ are open in X and $T^{-1}\tilde{U}_n \searrow C$. \square

Definition 8.8 σ -field of Borel sets of 1st kind, denoted Borel₁(X), is the σ -field generated by open sets.

Clearly, $Baire_1(X) \subset Borel_1(X)$.

Theorem 8.9 If X is metrizable, then $Baire_1(X) = Borel_1(X)$.

Proof. In a metrizable space every open set is σ -closed. \square

Example 8.10 Let I be uncountable and X_i be sets of at least two elements. Let $X = \prod_{i \in I} X_i$. Then one-element sets in X are closed (hence Borel) but not δ -open (hence not Baire). In fact, let $x \in Y \subset X$ and Y be δ -open. Then Y contains a subset of the form $\prod_{i \in I} Y_i$ with $Y_i = X_i$ for all but a countable number of $i \in I$.

8.3 Baire and Borel sets of 2nd kind

Theorem 8.11 (1) Let $f \in C_c(X, \mathbb{R})$ and $\alpha \geq 0$. Then $f^{-1}([0, \infty[) \in \mathrm{Open} \cap \sigma\mathrm{-Compact}(X)$.

(2) Let X be Tikhonov and $A \in \text{Open} \cap \sigma\text{--Compact}(X)$. Then there exists $f \in C_c(X, \mathbb{R})$ such that $A = f^{-1}(]0, \infty[)$

Definition 8.12 Let X be a topological space. Then the σ -ring of Baire sets of 2nd kind, denoted $\operatorname{Baire}_2(X)$, is the smallest σ -ring such that all elements of $C_c(X)$ are measurable.

Lemma 8.13 Let X be Tikhonov, $A \subset B \subset X$, A be compact and B open. Then there exist $A_0 \in \text{Compact} \cap \text{Baire}_2(X)$ and $B_0 \in \text{Open} \cap \text{Baire}_2(X)$ such that $A \subset B_0 \subset A_0 \subset B$.

Theorem 8.14 (1) Baire₂(X) is is generated by

$$\{f^{-1}(U) : U \in \text{Open}(\mathbb{R} \setminus \{0\}), f \in C_{c}(X)\};$$

$$\{f^{-1}(C) : K \in \text{Closed}(\mathbb{R} \setminus \{0\}), f \in C_{c}(X)\},$$

$$\{f^{-1}([\alpha, \infty[), f^{-1}([-\infty, -\alpha[), 0 < \alpha, f \in C_{c}(X)]).$$

- (2) The closures of all elements of $\operatorname{Baire}_2(X)$ are σ -compact.
- (3) If X is Tikhonov, then $Baire_2(X)$ is generated by

Open
$$\cap \sigma$$
-Compact(X),

$$\operatorname{Compact} \cap \delta - \operatorname{Open}(X).$$

Theorem 8.15 Let X be Tikhonov. Then

- (1) Compact \cap Baire₂ $(X) = \text{Compact } \cap \delta \text{Open}(X)$.
- (2) Open \cap Baire₂ $(X) = Open \cap \sigma Compact(X)$

Definition 8.16 σ -ring of Borel sets of 2nd kind, denoted Borel₂(X), is the σ -ring generated by compact sets.

Clearly, $Baire_2(X) \subset Borel_2(X)$.

Theorem 8.17 If X is metrizable, then $Baire_2(X) = Borel_2(X)$.

Theorem 8.18 For σ -compact spaces $\operatorname{Baire}_1(X) = \operatorname{Baire}_2(X)$ and $\operatorname{Borel}_1(X) = \operatorname{Borel}_2(X)$.

In what follows, we will consider σ -rings of sets only on locally compact Hausdorff spaces. We will use the σ -rings $\mathrm{Baire}_2(X)$ and $\mathrm{Borel}_2(X)$. We will call them simply Baire and Borel σ -rings and denote by $\mathrm{Baire}_1(X)$ and $\mathrm{Borel}_1(X)$ respectively. For σ -compact spaces they are in fact σ -fields and coincide with $\mathrm{Baire}_1(X)$ and $\mathrm{Borel}_1(X)$ respectively.

8.4 Baire measures on compact spaces

Let X be a compact Hausdorff space. A finite measure on Baire(X) is called a Baire measure on X. A linear functional $\lambda: C(X) \to \mathbb{R}$ is called a positive functional (or a Radon measure) if

$$f\in C(X),\ f\geq 0\ \Rightarrow\ \lambda(f)\geq 0.$$

Theorem 8.19 Let ν be a Baire measure. Then

$$C(X) \ni f \mapsto \int f d\nu \in \mathbb{R}$$
 (8.46)

is a positive linear functional.

(1) If $C \in \text{Closed} \cap \text{Baire}(X)$, then

$$\nu(C) = \inf\{ \int f d\nu : f \in C(X), f = 1 \text{ on } C, 0 \le f \le 1 \}.$$

(2) If $U \in \text{Open} \cap \text{Baire}(X)$, then

$$\nu(U) = \sup\{ \int f d\nu : f \in C(X), \operatorname{supp} f \subset U, 0 \le f \le 1 \}.$$

Proof. The positivity is obvious.

Let us prove (1). The inequality \leq is obvious.

There exists a sequence $U_1, U_2 \cdots \in \text{Open}(X)$ such that $U_n \searrow C$. Let $f_n \in C(X)$, $\text{supp} f_n \subset U_n$, $0 \le f_n \le 1$, and $f_n = 1$ on C. Then $f_n \to 1_C$ pointwise, $f_n \le 1 \in \mathcal{L}^1(\mu)$. Hence by the Lebesgue theorem

$$\lim_{n \to \infty} \int f_n d\nu = \nu(C).$$

This shows the inequality \geq . \square

Theorem 8.20 (Riesz-Markov) Let λ be a positive linear functional on C(X). Then there exists a unique Baire measure ν satisfying

$$\lambda(f) = \int f d\nu, \quad f \in C(X).$$
 (8.47)

The proof of Theorem 8.20 will be split into a number of steps. Let us assume that we are given a positive functional λ .

Lemma 8.21 A Baire measure satisfying (8.47) is uniquely determined.

Proof. By Theorem 8.19 (1), ν is uniquely determined by λ on Closed \cap Baire(X). This is a \cap -stable family that generates Baire(X). Hence ν is uniquely determined. \square

For $U \in \text{Open} \cap \text{Baire}(X)$ we set

$$\nu^*(U) := \sup \{ \lambda(f) : f \in C(X), \ \text{supp} f \subset U, \ 0 \le f \le 1. \}$$
 (8.48)

For any $A \in 2^X$ we set

$$\nu^*(A) := \inf\{\nu^*(U) : A \subset U, U \in \operatorname{Open} \cap \operatorname{Baire}(X)\}. \tag{8.49}$$

(For $U \in \text{Open} \cap \text{Baire}(X)$, (8.48) agrees with (8.49)).

Lemma 8.22 ν^* is an external measure.

Proof. We need to show that

$$\nu^* \left(\bigcup_{j=1}^{\infty} A_j \right) \le \sum_{j=1}^{\infty} \nu^* \left(A_j \right).$$

If the sum on the right is infinite, the inequality is obvious. Assume it is finite. We will find $U_j \in \text{Open} \cap \text{Baire}(X)$ with $A_j \subset U_j$ and

$$\nu^*(U_i) \le \nu^*(A_i) + 2^{-j}\epsilon.$$

Let $f \in C(X)$ satisfy $0 \le f \le 1$,

$$\operatorname{supp} f \subset \bigcup_{j=1}^{\infty} A_j \text{ i } \nu^* \left(\bigcup_{j=1}^{\infty} A_j \right) < \lambda(f) + \epsilon.$$

By the compactness of supp f, for some n,

$$\operatorname{supp} f \subset \bigcup_{j=1}^n U_j.$$

We will find $h_1, \ldots, h_n \in C(X)$ such that $h_j \geq 0$, supp $h_j \subset U_j$ and $\sum_{j=1}^n h_j = 1$ on suppf. Hence,

$$\nu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \nu^* \left(\bigcup_{n=1}^{\infty} U_n \right)$$

$$\le \lambda(f) + \epsilon = \sum_{j=1}^{n} \lambda(fh_j) + \epsilon$$

$$\le \sum_{n=1}^{\infty} \nu^*(U_n) + \epsilon$$

$$\le \sum_{n=1}^{\infty} \nu^*(A_n) + \epsilon \sum_{n=1}^{\infty} 2^{-n} + \epsilon = \sum_{n=1}^{\infty} \nu^*(A_n) + 2\epsilon.$$

Lemma 8.23 All Baire sets on X are ν^* -measurable.

Proof. It suffices to show that open Baire sets are ν^* -measurable. Let U be open and $Q \in 2^X$. Let $A \in \text{Open} \cap \text{Baire}(X)$ such that $Q \subset A$ and $\nu^*(A) \leq \nu^*(Q) + \epsilon$. Consider the set $A_1 := A \cap U \in \text{Open} \cap \text{Baire}(X)$. Let $f_1 \in C(A)$ such that $0 \leq f_1 \leq 1$, supp $f_1 \subset A_1$ and

$$\nu^*(A_1) \le \lambda(f_1) + \epsilon.$$

Next consider set $A_2 := A \setminus \text{supp} f_1 \in \text{Open}$. We will find $f_2 \in C(X)$ such that $0 \le f_2 \le 1$, supp $f_2 \subset A_2$ and

$$\nu(A_2) \le \lambda(f_2) + \epsilon$$
.

We have $0 \le f_1 + f_2 \le 1$ and supp $(f_1 + f_2) \subset A$. Besides, $Q \cap U \subset A_1$ and $Q \setminus U \subset A_2$. Hence

$$\nu^*(Q \cap U) + \nu^*(Q \setminus U)$$

$$\leq \nu^*(A_1) + \nu^*(A_2)$$

$$\leq \lambda(f_1) + \lambda(f_2) + 2\epsilon = \lambda(f_1 + f_2) + 2\epsilon$$

$$\leq \nu^*(A) + 2\epsilon \leq \nu^*(Q) + 3\epsilon.$$

Hence,

$$\nu^*(Q \cap U) + \nu^*(Q \setminus U) \le \nu^*(A).$$

Hence U is ν^* -measurable. \square

Set ν to be equal to ν^* restricted to Baire (X). By Lemmas 8.22 and 8.23 it is a Baire measure.

Lemma 8.24 Let $f \in C(X)$. Then

$$\lambda(f) = \int f d\nu.$$

Proof. We can assume that $0 \le f \le 1$. Set

$$U_{n,j} := \{f > j/n\}, \quad C_{n,j} := \{f \ge j/n\}.$$

Let $g_{n,j} \in C(X)$ with $\operatorname{supp} g_{n,j} \subset U_{n,j}$ and $0 \leq g_{n,j} \leq 1$. Set

$$g_n := \frac{1}{n} \sum_{j=1}^{n-1} g_{n,j}.$$

Then $g_n \leq f$. Hence

$$\lambda(f) \ge \lambda(g_n) = \frac{1}{n} \sum_{j=1}^{n-1} \lambda(g_{n,j}).$$

Thus

$$\lambda(f) \ge \frac{1}{n} \sum_{i=1}^{n-1} \nu(U_{n,i}) = \int f_n d\nu,$$

where $f_n := \frac{1}{n} \sum_{j=1}^{n-1} 1_{U_{n,j}}$. But $f_n \to f$ and $0 \le f_n \le 1$. Hence $\int f_n d\nu \to \int f d\nu$. Thus

$$\lambda(f) \ge \int f d\nu.$$

We will find a sequence of open sets W_n such that $W_n \searrow \operatorname{supp} f$. Choose functions $\tilde{g}_{n,j}$ such that $\operatorname{supp} \tilde{g}_{n,0} \subset W_n$, $\tilde{g}_{n,0} = 1$ on $\operatorname{supp} f$; $\operatorname{supp} \tilde{g}_{n,j} \subset U_{n,j}$, $\tilde{g}_{n,j} = 1$ on $C_{n,j+1}$. Set $\tilde{g}_n := \frac{1}{n} \sum_{j=0}^{n-1} \tilde{g}_{n,j}$. Then $f \leq \tilde{g}_n$. Thus

$$\lambda(f) \leq \lambda(\tilde{g}_n) = \frac{1}{n} \sum_{j=0}^n \lambda(\tilde{g}_{n,j})$$

$$\leq \frac{1}{n} \nu(W_n) + \frac{1}{n} \sum_{j=0}^{n-1} \nu(U_{n,j}) = \frac{1}{n} \nu(W_n) + \int \tilde{f}_n d\nu,$$

where $\tilde{f}_n := \frac{1}{n} \sum_{j=1}^{n-1} 1_{U_{n,j}}$. We have $\tilde{f}_n \to f$ and $0 \le \tilde{f}_n \le 1$. Hence, by the Lebesgue theorem, $\int \tilde{f}_n d\nu \to \int f d\nu$. Hence

$$\lambda(f) \le \int f d\nu.$$

Proof of Theorem 8.20. We define the Baire measure ν as described before Lemma 8.24. By Lemma 8.24, $\lambda(f) = \int f d\nu$. By Lemma 8.21, ν is uniquely defined. \square

Theorem 8.25 Let ν be a Baire measure on X. Then it satisfies the following regularity properties:

- (1) $\nu(A) = \inf \{ \nu(U) : A \subset U, U \in \text{Open} \cap \text{Baire}(X) \}, A \in \text{Baire}(X);$
- (2) $\nu(A) = \sup \{ \nu(C) : C \subset A, C \in \text{Closed} \cap \text{Baire}(X) \}$ $A \in \text{Baire}(X)$.

Proof. We define λ by the formula (8.46). We construct the corresponding ν^* . By construction, it satisfies

$$\nu^*(A) = \inf\{\nu^*(U) : A \subset U, U \in \text{Open} \cap \text{Baire}(X)\}.$$

But on Baire(X) ν^* coincides with ν . Hence it satisfies the property (1). \square

8.5 Borel measures on compact spaces

Let X be a compact Hausdorff space. A finite measure on Borel(X) is called a Borel measure on X.

Theorem 8.26 Let μ be a Borel measure on X. The following conditions are equivalent:

- (1) $\mu(A) = \inf\{\mu(U) : A \subset U, U \in \text{Open}(X)\}, A \in \text{Borel}(X).$
- (2) $\mu(A) = \sup\{\mu(C) : C \subset A, C \in \text{Closed}(X)\}, A \in \text{Borel}(X)...$

If the above conditions are satisfied then μ is called a regular Borel (or Radon) measure on X. **Proof of Theorem 8.26** Using $\mu(X) < \infty$, we get

$$\mu(A) = \mu(X) - \mu(X \backslash A),$$

$$\inf\{\mu(U)\ :\ U\in \operatorname{Open}(X)\}=\mu(X)-\sup\{\mu(C)\ :\ C\in \operatorname{Closed}(X)\}.$$

Theorem 8.27 Let ν be a Baire measure on X. Then there exists a unique regular Borel measure μ extending ν . It has the following properties:

(1) If $U \in \text{Open}(X)$, then

$$\mu(U) = \sup \{ \nu(C) : C \subset U, C \in \text{Baire} \cap \text{Closed}(X) \};$$

(2) If $C \in \text{Closed}(X)$, then

$$\mu(C) = \inf \{ \nu(U) : C \subset U, U \in \text{Baire} \cap \text{Open}(X) \}.$$

Theorems 8.19 and 8.27 imply the following version of the Riesz-Markov theorem:

Theorem 8.28 Let λ be a positive linear functional on C(X). Then there exists a unique regular Borel measure μ satisfying

$$\lambda(f) = \int f d\mu, \quad f \in C(X). \tag{8.50}$$

Proof of Theorem 8.27 Let us prove (2).

The inequality \leq is obvious.

For any $U \in \operatorname{Open}(X)$ such that $C \subset U$, There exists an open Baire U_1 such that $C \subset U_1 \subset U$. Therefore,

$$\mu(C) = \inf\{\nu(U) : C \subset U, U \in \text{Open}(X)\}$$

$$\geq \inf\{\nu(U) : C \subset U_1, U_1 \in \operatorname{Open} \cap \operatorname{Baire}(X)\}.$$

This proves the \geq inequality.

It follows from (2) that μ is uniquely determined on the family of closed sets. But this family is \cap -stable and generates Borel(X). Hence μ is uniquely determined.

Let us now describe the proof of the existence of μ . Define λ as in (). Then for $U \in \text{Open}(X)$ we set

$$\mu^*(U) := \sup\{\lambda(f) : f \in C(X), \text{ supp} f \subset U, 0 \le f \le 1.\}$$
 (8.51)

For any $A \in 2^X$ we set

$$\mu^*(A) := \inf\{\nu^*(U) : A \subset U, U \in \text{Open}(X)\}.$$
 (8.52)

(For $U \in \text{Open}(X)$, (8.51) agrees with (8.52)).

Exactly as in the previous subsection, we show that μ^* is an external measure and Borel sets are μ^* -measurable. We define μ to be the restriction of μ^* to Borel(X). By (8.52), it is a regular Borel measure.

Clearly, if $U \in \text{Open} \cap \text{Baire}(X)$, then

$$\nu(U) = \nu^*(U) = \mu^*(U) = \mu(U).$$

Thus ν coincides with μ on Open \cap Baire(X). But this is a \cap -closed family generating Baire(X). Hence ν coincides with μ on Baire(X). \square

8.6 Baire measures on locally compact spaces

Let X be a locally compact space. A measure on $\operatorname{Baire}(X)$ finite on compact sets is called a Baire measure on X.

A linear functional $\lambda: C_{c}(X) \to \mathbb{R}$ is called a positive functional if

$$f \in C_{c}(X), f \geq 0 \Rightarrow \lambda(f) \geq 0.$$

Theorem 8.29 Let ν be a Baire measure. Then

$$C_{\rm c}(X) \ni f \mapsto \int f \mathrm{d}\nu \in \mathbb{R}$$
 (8.53)

is a positive linear functional.

(1) If $C \in \text{Compact} \cap \text{Baire}(X)$, then

$$\nu(C) = \inf\{ \int f d\nu : f \in C_{c}(X), f = 1 \text{ on } C, 0 \le f \le 1 \}.$$

(2) If $U \in \text{Open}_0 \cap \text{Baire}(X)$, then

$$\nu(U) = \sup\{ \int f d\nu : f \in C_{c}(X), \operatorname{supp} f \subset U, 0 \le f \le 1 \}.$$

The following theorem is called the Riesz-Markov Theorem.

Theorem 8.30 Let λ be a positive linear functional on $C_c(X)$. Then there exists a unique Baire measure ν satisfying

$$\lambda(f) = \int f d\nu, \quad f \in C_{c}(X).$$
 (8.54)

Theorem 8.31 Let ν be a Baire measure on X. Then it satisfies the following regularity properties:

- $(1) \ \nu(A) = \inf\{\nu(U) \ : \ A \subset U, \ U \in \operatorname{Open}_0 \cap \operatorname{Baire}(X)\}, \quad A \in \operatorname{Baire}(X);$
- (2) $\nu(A) = \sup \{ \nu(C) : C \subset A, C \in \text{Compact} \cap \text{Baire}(X) \}$ $A \in \text{Baire}(X)$.

8.7 Borel measures on locally compact spaces

A measure on Borel(X) finite on compact sets is called a Borel measure on X.

Theorem 8.32 Let μ be a Borel measure on X. The following conditions are equivalent:

- (1) $\mu(A) = \inf\{\mu(U) : A \subset U, U \in \text{Open}_0(X)\}, A \in \text{Borel}(X).$
- (2) $\mu(A) = \sup\{\mu(C) : C \subset A, C \in \text{Compact}(X)\}, A \in \text{Borel}(X).$

If the above conditions are satisfied then μ is called a regular Borel (or Radon) measure on X.

Theorem 8.33 Let ν be a Baire measure on X. Then there exists a unique regular Borel measure μ extending ν . It has the following properties:

(1) If $U \in \text{Open}_0(X)$, then

$$\mu(U) = \sup \{ \nu(C) : C \subset U, C \in \text{Baire} \cap \text{Compact}(X) \};$$

(2) If $C \in \text{Compact}(X)$, then

$$\mu(C) = \inf \{ \nu(U) : C \subset U, U \in \text{Baire} \cap \text{Open}(X) \}.$$

Theorems 8.29 and 8.33 imply the following version of the Riesz-Markov theorem:

Theorem 8.34 Let λ be a positive linear functional on $C_c(X)$. Then there exists a unique regular Borel measure μ satisfying

$$\lambda(f) = \int f d\mu, \quad f \in C_{c}(X). \tag{8.55}$$

9 Measures on infinite Cartesian products

9.1 Infinite Cartesian products

Let X_i , $i \in I$ be a family of sets. For any $K \subset J \subset I$ we can define the map

$$\pi^{KJ}: \underset{j \in J}{\times} X_j \to \underset{k \in K}{\times} X_k,$$

where for $x_J = (x_j)_{j \in J} \in \underset{j \in J}{\times} X_j$, $\pi^{KJ} x_J$ is $(x_k)_{k \in K}$. Clearly, $M \subset K \subset J$ implies

$$\pi^{MK}\pi^{KJ} = \pi^{MJ}$$

If (X_i, \mathcal{F}_i) , $i \in I$ is a family of sets with σ -fields, then for $J \subset I$ we set $\underset{j \in J}{*} \mathcal{F}_j$ to be the family of subsets of $\underset{j \in J}{\times} X_j$ of the form $\underset{j \in J}{\times} A_j$ with $A_j \in \mathcal{F}_j$ and $A_j = X_j$ for all but a finite number of $j \in J$. We set $\underset{j \in J}{\otimes} \mathcal{F}_j := \sigma - \text{Field}(\underset{j \in J}{*} \mathcal{F}_j)$.

Clearly, the maps π^{KJ} for $K \subset J \subset I$ are measurable.

9.2 Compatible measures

Let (X_i, \mathcal{F}_i) , $i \in I$ is a family of sets with σ -fields. Let $K \subset J \subset I$ and μ_J , μ_K are probabilistic measures on $(\underset{j \in J}{\times} X_j, \underset{j \in J}{\otimes} \mathcal{F}_j)$ and $(\underset{k \in K}{\times} X_k, \underset{k \in K}{\otimes} \mathcal{F}_k)$ respectively. We say that they are compatible iff $\pi_{KJ*}\mu_J = \mu_K$, that means

$$\int f(x_K) d\mu_K(x_K) = \int f(x_K) d\mu_J(x_K, x_{J \setminus K}).$$

Theorem 9.1 If μ_I is a measure on $(\underset{i \in I}{\times} X_i, \underset{i \in I}{\otimes} \mathcal{F}_i)$, then for any $K \subset J \subset I$, the measures $\pi_{KI*}\mu_I$ and $\pi_{JI*}\mu_I$ are compatible.

9.3 Infinite tensor product of measures

Theorem 9.2 $(X_i, \mathcal{F}_i, \mu_i)$, $i \in I$, be a family of spaces with probabilistic measures. Then there exists a unique measure $\underset{i \in I}{\otimes} \mu_i$ on $(\underset{i \in I}{\times} X_i, \underset{i \in I}{\otimes} \mathcal{F}_i)$ such that for any $A_i \in \mathcal{F}_i$, where all but a finite number of $A_i = X_i$,

$$\underset{i \in I}{\otimes} \mu_i(\underset{i \in I}{\times} A_i) = \underset{i \in I}{\prod} \mu_i(A_i).$$

 $K \subset J \subset I$, the measures $\underset{j \in J}{\otimes} \mu_j$ and $\underset{k \in K}{\otimes} \mu_k$ are compatible.

9.4 The Kolmogorov theorem

Suppose that X_i , $i \in I$, is a family of compact sets.

Theorem 9.3 Suppose that for any finite set $J \in 2^I$ we are given a Baire measure ν_J on $\underset{j \in J}{\times} X_j$. Assume that for any finite $K, J \in 2^I$ with $K \subset J$, ν_K is compatible with ν_J . Then there exists a unique Baire measure ν_I on $\underset{i \in I}{\times} X_i$ compatible with all ν_J for finite J.

Proof. It is easy to see that the family of measures μ_J defines a regular content on Ring $\binom{*}{i \in I}$ Baire (X_i) . By Theorem 6.1, it is a premeasure. Hence it admits a unique extension to

$$\sigma$$
-Ring $\left(\operatorname{Ring}\left(\underset{i\in I}{*}\operatorname{Baire}(X_i)\right)\right)$ = Baire $(\underset{i\in I}{\times}X_i)$.

Theorem 9.4 Let X_i , $i \in I$ be a family of topological spaces. Then $\operatorname{Baire}_1(\prod_{i \in I} X_i) = \underset{i \in I}{\otimes} \operatorname{Baire}_1(X_i)$.

References

- [Bau] Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Masstheorie, Walter de Gruyter & Co, Berlin 1968
- [Bour] Bourbaki, N.: Elements de mathematique. Les structures fondamentales de l'analyse. Livre VI. Integration
- [Hal] Halmos, P.: Measure theory, Van Nostrand 1950
- [LL] Lieb, E., Loss, M.: Analysis, AMS 1997