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1 Measurability

1.1 Notation

2% denotes the family of subsets of the set X. The symmetric difference is defined as
AAB := (AUB)\(AN B).

Let A17A2, e X

We write A4,, 1A, if A, C A4, n € Nand US2 A, = A.

We write A, \( A, if A, D Apt1, n € Nand N2, A4, = A.
1.2 Rings and fields

Definition 1.1 R C 2% is called a ring if
(1) A, BeR=A\BeR;
(2) ABeER=AUBeR

Proposition 1.2 Let R be a ring. Then A, BER=ANBeR.

Proof. AnB = A\(A\B). O

If (Ri)ier is a family of rings in X, then so is N;c;R;. Hence for any 7 C 2% there exists the smallest

ring containing 7. We denote it by Ring(7).

Definition 1.3 R C 2% is called a field if
(1) D eR;

(2) Ae R=X\AeR;

(3) ABeR=AUBER.

Equivalently, a field is a ring containing X . (Field is a ring, because A\B = X\((X\A) U B)).

For 7 C 2%, Field(T) denotes the smallest field of sets containing 7.



1.3 Ordered spaces
Suppose that (X, <) is an ordered set. Let U be a nonempty subset of X.
We say that ug is a largest minorant of U if
(1) w e U implies up < u
(2) w3 <wufor all w € U implies u3 < u

If U possesses a largest minorant, then it is uniquely defined. The largest minorant of a set {x1,z2}

is often denoted x1 A x2 and of a set U is denoted /\U x.
x€

Analogously we define the smallest majorant of U. The smallest majorant of a set {x1,z2} is often

denoted 1 V 22 and of a set U is denoted ¥U xT.
€T

We say that (X, <) is a lattice if every two-element (hence every finite) set of elements of X possess
the smallest majorant and the largest minorant. It is a countably complete lattice if every countable
subset that has a majorant and a minorant has the smallest majorant and the largest minorant. It is a
complete lattice if every countable subset that has a majorant and a minorant has the smallest majorant
and the largest minorant.

Let X be a vector space. (X, <) is an ordered vector space iff

(1) zy,zeX,z<y=z+z<y+z
(2) zeX,z2>20, AeR, A>0= Az >0.

Xi:={zxe€X : x>0} is a cone called the positive cone.
We say that an ordered vector space (X, <) is a Riesz space if it is a lattice. It is enough to check
that it has V of two elements, since

Ay i=—(=x)V(=y).
1.4 Elementary functions

Definition 1.4 Let (X,R) be a space with a ring. u: X — R is called an elementary function if uw(X)
is a finite set and u=(a) € R, a € R\{0}. The set of elementary functions is denoted by E(X,R) or
E(X). Positive elementary functions will be denoted £ (X).

Lemma 1.5 (1) Letu,v € £(X) and a € R. Then
au, u + v, uv, max(u, v), min(u, v) € E(X).
In particular, £(X) is an algebra and a lattice.

(2) 1€ &(X) iff R is a field.

1.5 o-rings and o-fields

Definition 1.6 F C 2% is called a o-ring if
(1) A, Be F= A\Bec F;

(2) Ay Az, eF= U AeF
Clearly, every o-ring is a ring.

Proposition 1.7 Let F be a o-ring. Then
(1) Al,A27"'€./T:>ﬂJO»i1Aj€.F,
(2) A, Ag,--- € F, An\A:>A€]:,



(3) Al,A27~'~€f, A,L/‘A:>A€]:,

Proof. Let us prove (1). Clearly, A := fjl A; € F. Now by the de Morgan’s law
i=

(2

0 A=A\ U (A\4) e F.

For 7 C 2%, 0 —Ring(7) denotes the smallest o-ring of sets containing 7.

Theorem 1.8 Let T C 2% and A € o—Ring(T). Then there exists a countable To C T such that
A € o—Ring(T).

Proof. Let F be the family of A C X such that there exists a countable 7o C 7 with A € o—Ring(7p).
Then 7 C F and F is a o-ring. Hence o —Ring(7) C F. O

Definition 1.9 F C 2% is called a o-field if
(1) e F;

(2) Ae F=X\AeF;

(3) A1, A2 €F = UL A €F.

Equivalently, a o-field is a o-ring containing X. Clearly, every o-field is a field.
For T C 2%, 0 —Field(T) denotes the smallest o-field of sets containing 7.

1.6 Transport of subsets

Let F : X — X' be a transformation. As usual, for A C X, F(A) denotes the image of A, and for
A’ C X', F71(A’) denotes the preimage of A’. Thus we have two maps

2X 5 A F(A) € 2¥X,
2X' 5 A F1(A') € 2%, (1.1)
Theorem 1.10 (1) For AC X, F7'F(A) D A and we have the equality for all A iff F is injective.

(2) For A € X', FF~Y(A’) C A" and we have the equality for all A" iff F is surjective.
3) F7Y(0) =0, FFY (X" =X, FY(AuUB)=F Y A)UFYB), F"Y(A\B') = F-Y(A)\F~ (B,

Let F* : 2% — 2X be the map given by (1.1). (We prefer not to denote it by F~! to avoid ambiguous
notation).

For ¢’ C 2%’ we can write
F*(={F1(A) : A e

Let C C 2X. We will write
F.(C):=(F")'(C)={A €2 . F'(4A) e}
The following facts follow from Theorem 1.10 (1), (2) applied to F™*:

Theorem 1.11 (1) F.F*(C') > C';
(2) F*F,(C) CC.



1.7 Transport of o-rings
Theorem 1.12 (1) If F' is a o-ring over X', then F*(F') is a o-ring over X.
(2) If F is a o-ring over X, then Fy(F) is a o-ring over X'.

(3) If ¢’ c 2%, then
F*(c—Ring(C")) = o —Ring(F*(C")).

Proof. To see (1) and (2), we use Theorem 1.10 (3), which says that F"* is a homomorphism for
set-theoretical operations.
Let us prove (3). By (1), F*(c —Ring(C’)) is a o-ring. It contains F*(C’). Hence

F*(o—Ring(C')) D o—Ring(F*(C')).
By (2), F,(c—Ring(F*(C"))) is a o-ring. Clearly
F,(0—Ring(F*(C'))) D F.(F*(C")) > C'.
Hence F, (o —Ring(F*(C'))) D o—Ring(C’). Hence,

o—Ring(F*(C")) D F*F.(c—Ring(F*(C"))) D F*(c—Ring(C")).

For A € 2% and C C 2%, we set
c]A ={ANC : CeC).
Theorem 1.13 If T C 2X and A C X, then
J—Rlng(T)‘A = a—Rlng(T’A).

Proof. Consider the inclusion map J : A — X. If C € 2%, then J~1(C) = C N A. Hence if C C 2%,
then J*(C) =C R Thus it is sufficient to apply Theorem 1.12 (3). O

1.8 Measurable transformations

Definition 1.14 Let (X, F), (X', F') be spaces with o-rings and F' : X — X'. Then F is called a
F — F'-measurable transformation if
F*(F) C F.

Proposition 1.15 The composition of measurable transformations is measurable.

Theorem 1.16 Let ' ¢ 2X'. If F/ = o —Ring(C'), then F : X — X' is F — F'-measurable iff
F*(C") C F.

Proof.
F*(F') = F*(c—Ring(C")) = o0 —Ring(F*(C")) C o —Ring(F) = F,

where we used Theorem 1.12 (3) in the second equality. O



1.9 Measurable real functions

R U {—o00,00} =: [—00,00] is a topological space in the obvious way. We can extend the addition to
[—00, 00] except that oo — oo is undefined. We extend the multiplication to [—oo, 0], adopting the
convention 0(£o0) = 0. Let Borel([—o0, oc]) denote the o-field of Borel subsets of [—oo, oo], that is the
o-field generated by open subsets of [—o0,00]. If Y C R, then Borel(Y) will denote the o-field in X
generated by open subsets in X. Note in particular that Borel([—oo, 0[U]0, oc]) is generated by the sets
[0, —af and Ja, oo for 0 < a.

Let (X, F) be a space with a o-ring. We say that

f:X = [—00,0]

is a F-measurable function iff for any A € Borel([—oo, 0[U]0, oc]), f~1(A) € F. The set of such functions
will be denoted M (X, F), or for shortness, M (X). The set of measurable functions with values in [0, o0]
will be called M__(X).

Let A C X. Its characteristic function is denoted by

1, ze A
1A(x)_{ 0, x € X\A4,

14 is F-measurable iff A € F.
If f, g are real functions on X, we will write

{fzgt={zeX: flz)=g()}
Similarly, we define {f > g}, etc.
Lemma 1.17 f: X — [—o00,00] is F-measurable if

{£f>zxa}eF, 0<a<o.

Lemma 1.18 Let f,g € M(X). Then
(1) af € M(X)

(2) f+g€ M(X) (if defined);

(3) fg € M(X)

(4) 1 e M(X) iff F is a o-field.

Proof. (2) For simplicity, we assume in addition that F is a o-field. Using the countability of Q we see
that

{f+g>at=J{f>a+pn{g>-p}
BeQ
(3) First we show that f € M(X) implies f? € M(X).
By (1) and (2), f — g is measurable.
Finally . .
fg= 1(f+9)2 - Z(f - 9)%

implies that fg is measurable. O



Proposition 1.19 Let f1, fo, - € M(X). Then
sup fn, inf f,, limsup f,, liminf f,
n n n—00 n—0o0
are measurable. If there exists the pointwise limit of f,, then also lim,_,~ f, is measurable.

Proof. Let f :=sup f,. Then
{f<af=mii{fn<aler.

Hence f is measurable. inf f,, is treated similarly.
Then we use
limsup f,, = inf sup f,,, liminf f,, =sup inf f,,
n— o0 ne€N >y n—00 neNm>n
Finally,

lim f, =limsup f,, = liminf f,.
n—oo n—oo n—oo

d

Theorem 1.20 Let f: X — R. Then f € M_(X) iff there exists an increasing sequence u, € E4(X)
such that

f=supu,
neN

Proof. <« is obvious. Let us prove the converse statement.
Let f € M_(X). The sets

(& <f<B} i=0,1,...,n2" —1,
Ain.:
{n < f} i =n2"

are disjoint and measurable. Hence

The sequence u, is increasing and sup,,cy Un = f. O

1.10 Spaces L™
Assume that Z C F C 2% are rings. We say that say that 7 is an ideal in F if

A€l BeF = AnBel.
In what follows let Z C F C 2% be o-rings and Z be an ideal in F. Then

Proposition 1.21 (1) M(X,Z) C M(X,F)
(2) M(X,Z):={f e M(X,F) : there exists N € T such that f =0 on X\N}
(3) fe M(X,F), g M(X,I) implies fg € M(X,T).

For f € M(X,F) we set

I flloo := inf{sup{|f(z)| : =€ X\N} : N eI}



Theorem 1.22 (1) Given f € M(X,F), we can always find N € T such that sup | f] v 1 lloos

() [1f + glloo <l flloe + llglloo;
3) lleefll = lelll flloo-

Proof. (2) We can find N, M € Z such that
SUP|f\X\N = ||f\|oo»

sup | flx\ar = [|glso-

Then
I1f +gllee <suplf ol o
< sup(171 419D voan
< sup ‘f|‘X\(NuM) +sup ‘g|‘X\(NUM)
<suplfl . +swwlol] = Il gl
Let

LYX,FI):={fe MX,F) : |flloc <00},

Theorem 1.23 (Riesz-Fischer) Let (f,)nen be a sequence in L°°(u) satisfying the Cauchy condition,
that is for any € > 0 there exists N such that for n,m > N

[frn = fmlloe < e
Then there exists f € L%°(u) such that
If = falloe =0

We can also find a subsequence of (fn)nen pointwise convergent u-a.e. to f.

Proof. There exists a subsequence (fn, )ren such that || f,, ., — fa, [l <27, for any k. We set

oo

Gk = Fops — frs 9= D lowl.

k=1

Then
o0 oo
lglloe < llgrllee <> 27F =1.
k=1 k=1

Hence g € £ and therefore ¢ is finite outside of a set N in Z. Hence the series Z;ozl g is convergent
outside of N. This means that the sequence (fy, )ren is convergent to a function f outside of N. Inside
N we set f:=0. We check that f € £L> and ||f — fulloo = 0. O

Theorem 1.24 (1) M(X,I)={f € L2(X,F,I) : | fllec =0}

(2) Therefore, || f + M(X,T)|loo := | flloo defines a norm in L (X, F,I) := L®(X,F,I)/M(X,T).
(3) L>(X,F,Z) is a Banach space.

(4) Elementary functions are dense in L>(X,F,T).

(5) fog € L¥(X, F.1),0< f < g ae. = || fllo < glloc.

(6) L>(X,F,Z) is a countably complete lattice.



2 Measure and integral

2.1 Contents

Let R be aring. v: R — [0,00] is a content if

(1) v(0) = 0;

(2) A1, Ay e R, AiNAs =10, = v(A1 UAg) =v(A;1) + v(Ag).

Theorem 2.1 Let (X,R,v) be a content on a ring. Then if A1, As, -+ € R are disjoint and A =
iE:jl A; € R, then

v(A) > w(4).

oS
i=1

Proof. For any n,
n

v(A) 2 v( 0 A;) =3 v(4)).

j=1
Passing to the limit n — oo, we obtain the inequality. O

2.2 DMeasures

Let (X, F) be a space with a o-ring. A function p : F — [0, 00] is called a measure if
(1) p(®) =0,
(2) Ay, Ap--- e F, AinA;j=0fori+#j= p(USLA4,) =7 u(Ay).
The triple (X, F, u) is called a space with a measure.
Proposition 2.2 (1) If A C B, then u(A) < u(B).
(2) A1, Ag, - € F = p((UpZyAn) < 3507, p(An).
(3) A, Az, € F, Ay S A = p(An) 7 u(A).
(4) If Ay, As,--- € F, Ay \( A and for some n, pu(A,) < oo, then u(Ay) N\ 1u(A).

Definition 2.3 Let (X, F, u) be a space with a measure. and P(x) be a property defined on X. We say
that P(x) is true p-almost everywhere (p-a.e.) if

pw({x e X : P(x) is not true }) = 0.

2.3 p — o-finite sets

Let (X, F, ) be a measure. A set A € F is called p-null if y(A) = 0. It is p-finite if p(A) < co. It is
called p-o-finite iff there exist a sequence of u-finite sets Ay, As,--- € F such that A,, 7 A. Set

Fli={AeF : p(A) =0}

.7:; ={A e F : Ais pfinite}.
Fil={A€F : Ais u— o-finite}.

We say that p is o-finite iff 7 = F7 and p is finite iff 7 = F,. We say that p is probabilistic iff
wX) =1

10



Theorem 2.4 (1) F) is a o-ring and an ideal in ]-",f“ fﬁf, F.

(2) ]:gf is a o-ring and an ideal in F

(3) }‘i is a ring and an ideal in F', F. We have F]' = o —Ring(F),).

(4) If F is a o-field, then p is o-finite iff X is p-o-finite; p is finite if X is p-finite.

Note that if (X, F, ) is any measure, then X, F*f, M’; f) is a o-finite measure. We will call say that
n

the latter measure has been obtained from the former by restricting to p — o-finite sets.

2.4 Integral on elementary functions I
Let (X, R, ) be a space with a ring and a content. For f € £, (X) we set
[ =S ).
teR
Theorem 2.5 The function
Ei(X)dur /udu € [0, 0]
satisfies

(1) [1adp = p(A)
2) a >0 implies [(au)dp = o [ udpy;

(2)
3) [(u+v)dp = [udp+ [vdp.
(4) u < wv implies [udp < [udp.

2.5 Integral on elementary functions II

Assume now that (X, F, u) is a set with a o-ring and a measure. We define the integral on elementary
functions as in the previous subsection.

Lemma 2.6 Let (u,)nen be an increasing sequence in €4 (X) and v € £, (X). Then
v < sup uy = /vdu < sup/undu.
neN neN

Proof. It is sufficient to assume that
{v#0} = A#0.
Let a :=infw(A), B :=supwv, 0 < e < a. Set

Ap o =A{u, >v—€}NA.

Then A, € F and A, 7~ A. Hence p(Ay,) 7 p(4).
Consider two cases:
1) p(A) = co. Then
(a—e€)lyg, <(v—e)la, <up.

Hence

<wwmm0s/%w

11



But the lhs tends to (o — €)oo = co. Therefore,

lim [ w,du = oco.
n— oo

2) p(A) < o0. Set By, := A\A,,. Then B, € F, u(B,) < co and B,, \, 0. Thus u(B,) 0.
Adding v14, <wu, +€ly, and 1p v < flp, we get

v<ela, +B1p, +uy

Hence

/vdﬂ < en(An) + Bu(Bn) + /undﬂ~

After passsing to the limit we get

/’Ud/J, <eu(A4) + Sup/undu.

neN

€ can be taken arbitrarily close to zero, therefore,

/Udu < sup/undu.
neN

d

Lemma 2.7 Let (uy)nen and (vn)nen be increasing sequences from £, (X). Then
Sup Uy, = sup v, = sup/undu = Sup/vndu.

neN neN neN neN

Proof. For any m =1,2,... we have v,, < supu,. Therefore,

/’Umd/,t < sug/undu.
ne

sup /vmd,u < sup/undu.
meN neN

Thus

2.6 Integral on positive measurable functions I

For f € M, (X) we define
/fdp::sup{/udu s u € &4 (X), u<f}.

Theorem 2.8 The function
M+(X)9f»—>/fdue[0,oo]

satisfies

12



(1) }fun € E4(X) is an increasing sequence such that f = supu, (which always exists), then [ w,dp —
fdp.

(2) J1adp = p(A);

(3) JAfdu=X[ fdp, f € M (X), A€ [0,00];

) J(f+g)du= [ fdp+ [gdp;

(5)

(6) fo,geM (X), f<g, then [ fdpu < [ gdp.

on 4 (X) it coincides with the previously defined integral.

Theorem 2.9 (Beppo Levi) Let (fn)nen be an increasing sequence from M (X). Then sup, ey fn €
M (X) and

/ sup frdp = sup / fndp.

neN

Proof. Set f :=sup,cy fn- Using f, < f, we see that

[t [ san

sup/fndu < /fdu-
Let us prove the converse inequality.

We can find U, € £4(X) such that the sequences (umy)men are increasing and sup,, ey Umn = fn-
Set

Hence

Upy 1= SUP{Um1, . - -, Uman } = sup{u;; : 4,5 < m}

Then vy, € £4(X), (Um)men 18 increasing and sup v,, = f. Hence

/fdu :sup/vndp.

Jot< [ g
/fdu < sgp/fndu-

Using v, < f,, we obtain

Hence

2.7 Integral on positive measurable functions 11

Theorem 2.10 (The Fatou lemma) Let (fn)nen be a sequence in M (X). Then
/liminf fodp < liminf/fnd,u.
n—roo n—oo

Proof. Set f :=liminf, . fn, gn := infy>n fr. We have f,g, € M, (X) and g, /' f. Hence

/fdu = sup/gndu-
neN

13



gn < fm for m > n, therefore

/ gudp < inf / Fndlpt.

O
Proposition 2.11 For any f € M (X)

/fdu =0< f =0 p-almost everywhere.

Proof. Set
M = {f # 0}.
= Let
My :={f>n""}.

Then M,, € F and
w ) < [ fap=o,
Thus p(M,) =0. But M,, /M, so u(M,) / pu(M). Hence u(M) = 0.

< Set
fn i=1nf{f,n}
Then f, € M (F) and f, /' f. So [ fadp 2 [ fdu. But
Jn <nly,
therefore

/fndu < nu(M) = 0.
Hence [ fdp=0. O

Theorem 2.12 Let f € M (X) and

/fd,u < 00.
Then f < oo p-a.e. and {f # 0} € F'.
Proof. Let A:={f=o00}. Then 0 < cols < f. Hence cou(A4) < [ fdu. O

2.8 Integral of functions with a varying sign
For f: X — [—00, 0] we set
[+ =sup(f,0), f-:=—inf(f,0).
Thus
f=f—=r- fl=fe+ /-
Clearly, f € M(X) iff fy, f- € M (X).

Definition 2.13 Let f € M(X). Assume that one of the numbers [ fidu, [ f_du is finite. Then we
say that the integral of f is well defined and

/fdu = /f+du—/ffdu~

Theorem 2.14 Let f,g € M (X) and f = g p-a.e. Then

/fdu:/gdu-

14



2.9 Transport of a measure—the change of variables in an integral

If (X,F), (X', F') are spaces with o-rings, u is a measure on (X,F) and T : X — X' is a measurable
transformation, then T, u is the measure on (X', ') defined as

Top(A') := (T71(A)), A € F'.

Clearly, we then have the formula for f' € M (X’):

/ AT = / # o Tdp.

If T is injective, and p' is a measure on (X', F'), then we define the measure 7%y’ on (X, F) by

T*1/(A) = i/ (T(A)), A€ F.

/fd//:/fonT*,u’.

and for f € M (X):

2.10 Integrability
Definition 2.15 Let f € M(X). If

[rdn<oo [fan<

or equualently, if [|f|du < oo, then we say that f € L', or integrable (in the sense of L) and we write

feLt(m), /fdﬂ :=/f+du—/ffdu~

Proposition 2.16 (1) If f € LY (n), g € M(X) and f = g p-a.e., then g € L (p).
(2) fe L), then |f| < oo p-a.e. and {f # 0} € .F/‘jf.
(3) If f e M(X), g € LY (1) and |f| < g p-a.e., then f € LY ().

Lemma 2.17 If u,v € LY(p), u,v > 0 and
f:U/—’U7
then f € L1(p).

Proof. We have
f<u<u+v, —f<v<u+o.

Therefore,
fl Sutoe Li(p).

d

Proposition 2.18 Let f,g € L(11), « € R. Then
(1) af € L (n);
(2) f+geLl(w);

15



(3) sup(f,g), inf(f,g) € L (u);
(4) f<g = [fdu< [gdu
(5) | [ fdul < [|fldp.

Proof. (1) We have,
(af)+ =afy, (af)- =af_, a>0

(af)+ = lalf-, (af)- =la|fs, a<O.

Hence af € £L1(u).
(2) Next we write

frg=fr—f-+g9+—9g-, (2.2)
put
wi=fr+gr € LNp), vi=f_+g- €L (),

and use Lemma 2.17, which shows that (2.2) belongs to L!(u).
(3) The estimates

[sup(f, 9)| < |f| + gl [inf(f,9)] < [f]+ 9]

and || + |g] € £1(1) show that sup(f, g), inf(f, g) € L' (1)
(4) f < g implies that fy < gy and f- > g_. Hence

/fdu < /gdu- (2.3)

(5) We have f < |f| and —f < |f|. Therefore, if we put in (2.3) g = | f| we get

| [ fdu| < [|fldp.

2.11 The Holder and Minkowski inequalities
Let 1 <p < o0.
Definition 2.19 Let f € M(X). Put

1£1lp = ([1fPdm)7, 1< p < oo,

[ flloo := inf{sup{|f(z)| : @€ X\N} : Ne€Fj}.
We define £P(X, i) as the space of f € M(X) such that ||f||, < oco.
Theorem 2.20 (The Holder inequality) Let 1 < p,q < oo,

1 1
foldp < | flpllgllg, —+-=1.
/| < ol 5+~

Proof. Assume first that 1 < p,q < co. By the convexity of e*,

Q=

ba.

=

+->a

SERS
ISHRSS
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We substitute

PE o)
= T e
We get
LG | 1ol 11@lgl@)
p I T IAE = Tl
We integrate il
fllgldu
"2 Ll

The case p =1, ¢ = oo is straightforward. O

Theorem 2.21 Let1 <,r<o0,0<a <1, %—1—17—_0‘: %. Then

1l < IFISILAIE < all fly + (1 — )l £l
Proof.
J1aw = [1r=apt= < jape) g o)

Theorem 2.22 (The generalized Minkowski inequality) Let X,Y be spaces with measures p and

v, 1<p<oo. 1 z
(/dy(y) ‘/f(m,y)d,u(lb”) p) " < /d,u(ac) </|f|p(m,y)du(y)>p

Proof. Let % + % = 1. It suffices to assume that f > 0. We will restrict ourselves to the case p > 1.
Sy (f £, y)dx)”
= [dy ([ f@1,9)dar)"" (] (w2, y)das)
= [da» (fdy (f f(@1,y)day) *f(m%y))
< Jdes (fdy (f flan, yl)dxl)q(p ”) (f £7(w2,52)dya)?  (the Holder inequality)
=y ([ Flarn)dan)”) 7 ([ das (] 57 (@2, p)dne) ).

Then we divide by the first factor on the left. O

Corollary 2.23 Setting X = {1,2} with the counting measure we get

11+ Fallp < [1frllp + (1 f2llp-

2.12 Dominated Convergence Theorem

Theorem 2.24 (Lebesgue) Assume that 1 < p < oo, g, fn € LP(u), fn is p-a.e. pointwise convergent
and

ful < g
Then there exists f € LP(u) such that f, = f p-a.e. and

If = fallp = 0.

17



Proof. We define

Fz) = limy, oo fr(x)  if limy, oo fr(2) exists
=Y 0 if limy,—, 00 frn(z) does not exists

Then f € M(X) and

|f] < g prae.
hence f € L£P(u).
Set
b o= |f = fal”.
Then

0< ho < (Iful + 1FDP < 2917 =: b

Clearly, h and therefore also h,, are integrable. Besides, u-a.e.

h= lim (h— hy)

n—oo

Therefore, by the Fatou Lemma applied to the sequence h — h,, we get
Jhdp = [lim, o0 (h — hy)dp
<liminf, o [(h— hy)dp
= [hdp — limsup,,_, . [ hndp.

Thus
lim sup / hpdp <0

n—oo

Using h,, > 0 we get
lim [ h,du=0.
n—oo

O
Theorem 2.25 (Scheffe’s lemma) Let f, fi, f2,--- € LY (i) and f, — f a.e. Then
J15= a0 = [inide— [ 17

2.13 LP spaces

Theorem 2.26 (Riesz-Fischer) Let 1 < p < oo. Let (fn)nen be a sequence in LP(u) satisfying the
Cauchy condition, that is for any € > 0 there exists N such that for n,m > N

||fn - meP S €.

Then there exists f € LP(u) such that
If = fallp =0

We will also find a subsequence of (fn)nen pointwise convergent p-a.e. to f.

18



Proof. There exists a subsequence (fn, )ren such that || f,, ., — fa.llp < 27, for any k. We set

o0
gk ‘= fnk+1 - f’ﬂk7 g = Z |gk‘
k=1

Then

lglly < llgl, <> 27F =1.
k=1

k=1

Hence g € £P(p) and therefore g is finite p-a.e. Hence the series Y -, gi is p-a.e. convergent. This
means that the sequence (fy, )ken is p-a.e. convergent.
In the case p = oo it is sufficient to take the limit and to check that it is the limit in the £, sense.
In the case 1 < p < 0o, we need to apply the Lebesgue theorem. We first check hat

|fnk| <|for +o1+ g1l < |fu | +g

and g + | fn,| € LP(u). Therefore, we will find f € £P(u) such that

limy— o0 [|.fne = fllp =0,
limg oo fn, = f p-a.e.
Using the Cauchy condition we get
m [[fa £l = 0.
O
Let () be the space of functions in M(X) equal 0 p-a.e. (That is, N'(u) = M(X, F})).

Theorem 2.27 Let1 <p <
(1) N(u) is a vector subspace of LP(p) such that || f|l, =0, f € LP(n) iff f e N(pn).

(2) Therefore,
1f+NWllp = 1£1lp

defines a norm in
LP(p) := L2 (1) /N ().
3

4) Elementary functions are dense in LP(1).

(3) LP(u) is a Banach space.

(4)

(5) f,9€LP(n), 0< f<gae = |fllp<lglp
(6)

(7)

6
7

For 1 < p < oo, if we restrict the measure to p — o-finite sets, we obtain the same LP(u) space.

For 1 <p < oo, LP(u) is a complete lattice. L™ (u) is a countably complete lattice. (Later on, we
will show that under some additional conditions it is also a complete lattice).

Proof. (4) Let f € £P(p). Then fi,f_ € LP(u). We know that there exist sequences uy , € E4(p)
with ux , / fi. By the Lebesgue theorem, ||fi — ug »|p — 0. O
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2.14 Egorov theorem

Theorem 2.28 Let f, f1, fa, - € M(X). Consider the following statements:
(1) fu(z) — f(x) for a.a. x € X.
(2) Foralle >0

(UL -112¢) =0

n=1j=n
(3) For alle >0
dim u( 1= flze) =0

j=n
(4) For every 6 > 0, there exists A € F with p(A) < ¢ and

lim sup |f— fau|=0.
n=0 peX\A

Then (1) (2)<=(3)<=(4). If W(X) < oo, then (1)=(2)<(3)<(4). (The implication (1)=(4) is called
the Egorov theorem).

Proof. Only (3)=(4) is not immediate, and we are going to prove this implication. Let § > 0 and k € N.
Then by (3) there exists ny such that for

By = |J{If = fi| > 1/k},

Jj=nk

we have p(By) < 027%. Set A := ]:L_jl By. We have p(A) < 6 and on X\A4, |f(z) — fj(z)| < 1/k for
j > ny. Hence on X\ A, f, converges uniformly to f. O

3 Extension of a measure

3.1 Hereditary families

T c 2X. We say that 7T is hereditary if A C B € T implies A € 7. For any T we denote by Her(7) the
smallest hereditary family containing 7.

Theorem 3.1 (1) Let R be a ring. Then Her(R) is a ring.
(2) Let T C 2X. Then Q € Her(o—Ring(T)) iff there exist Ay,..., A, € T such that Q C AyU---UA,.

Theorem 3.2 (1) IfZ is a o-ring, then Her(Z) is a o-ring.
(2) If T C 2%, then Q € Her(T) iff there exist Ay, Ag,--- € T such that Q C idl A;.
Theorem 3.3 IfZ C F are o-rings and Z is an ideal in F, then
o—Ring (FUHer(Z)) ={AUN : Ae F;, N €Her(Z)}
={A\N : AeF, NeHer(1)}.
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3.2 Extension of a measure by null sets

Let X be a set and (Faz, p2), (F1, 1) be measures on X. We say that (Fa, uo) extends (Fi, 1) by null
sets iff

(1) U*Ring(]:l U (.7:2)22) = .FQ;
(2) p2 R

Theorem 3.4 Suppose that (Fa, pua) extends (Fi, p1) by null sets. Then
(1) F,={AUN : AeF, Ne(FR))}L

K2
(2) N(u2) N M(F1) = N(uz2). Hence, we can identify M(X, F1)/N(u1) with M(X, F2)/N (us2) in the
obvious way.

(3) We can identify LP(u1) with LP(uz).

3.3 Complete measures

Let (X, F, 1) be a space with a measure. We say that the measure p is complete if .7-"2 is hereditary.
Let u be a not necessarily complete measure. Set

FP:={AUN : A€ F, N € Her(F,))} = c—Ring(F U Her(F})).
Define pP : FP — [0, o0],
uP(AUN) :=pu(A), AeF, NEe€ Her(]:g).
Theorem 3.5 (1) FP is a o-ring and pP is a complete measure.
(2) pcP is an extension of u by null sets.

(3) u® is the unique extension of u to a content on F°P.

(4) Every extension of (F,u) to a complete measure is an extension of (FP, u°P).

We will call (X, F°P, u°P) the completion of .

3.4 External measures

Definition 3.6 A function u* : 2% — [0, 00] is called an external measure if
(1) p*(0) =0,
(2) Q1,Q2---€2% = p(UpL,Qn) < 307 1 (Qn)-
(3) QC P, Q,Pe2%,= p*(Q) <p*(P).
Clearly, every measure on (X,2%) is an external measure.

For any set X the function that assigns 0 to () and 1 to a nonempty set is an external measure on X.
It is not a measure if X contains more than one element.

Definition 3.7 Let u* be an external measure. We say that A € 2% is measurable wrt p*, if one of the
following two equivalent conditions holds

PA(Q) 2 1 (QNA) +p(Q\A), Q €2%; (3.4)

P(Q) = 1 (QNA) +p(Q\A), Q €2¥. (3.5)

(The equivalence of the conditions (3.5) follows from (2) of the definition of the external measure applied
to QN A and Q\A.)
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The family of sets measurable wrt p* will be denoted F™*. u* restricted to F™° will be denoted p™*.

Theorem 3.8 Let u* be an external measure on X. Let F™ and u™° be defined as above. Then

(1) F™s 4s a o-field
(2) (X, F™s, ™) is a complete measure;

(3)
Ae2X, (A =0e AcF™, ™(A)=0.

Proof. Step 0. Clearly, (), X € F™s,
Step 1. A,B € F™ = A\B € F™.
Let Q € 2.
Applying the measurability condition to Q@ N A and B we get

QN A) = 1*(QN AN B) + u*(Q N A\B).
(Note that (Q N B)\A = QN (B\A)). Then we apply it to Q\A and B to get

W (Q\A) = 1*(Q N B\A) + 5" (Q\(AU B)).
Thus by (3.5)

pH(Q) = p (QNANB)+p* (QNA\B) + u*(Q N B\A) + " (Q\(AU B)).

Applying the measurability condition to Q\(A\B) and B gives
1 (Q\(A\B)) = 1" (Q\(AU B)) + p*(Q N B).
Applying it to @ N B and A we get
©(QNB)=p (QNB\A)+p"(QNANB).
Inserting (3.10) into (3.9) gives
1 (Q\(A\B)) = p*(Q\(AU B)) + p*(QN B\A) + " (@ N AN B).

Thus, by (3.8),
1 (@Q) = p (Q\(A\B)) + 1 (Q N (A\B)).

Hence A\B € F™s.
Step 2. A,Be€ F™ = BUA € F™s.
We have, applying the measurability condition to @ N (AU B) and A.

QN (AUB)) = p"(QNA)+ p"(QNB\A).
Inserting (3.6) into (3.13) we get
QN (AUB)) = (@M AN B) + u*(QN A\B) + (@ 1 B\A).

Hence
1*(Q) = " (Q\(AU B)) + 1*(Q N (AU B)).
Therefore AU B € F™2. Thus we proved that F™* is a field.
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Step 3.

Al,A27"' e F™ = U;ozlAj = AeFm,

It suffices to assume that A; are disjoint. For any n we have

Q) > pr (Ui (@NA;) UQ\A))

=21 QN Aj) + pH(Q\A)).

Since n was arbitrary,

Q) =320, 1 (QNA ) + p*(Q\A)).

> pr(QNA) + pr(Q\A)),
Hence, by the equivalence of (3.4) and (3.5) we get

pH(Q) = pr(QNA) + p"(Q\A)),

which shows A € F™s,
Step 4. As a by-product we get

pHQNA) =) p QN Ay).
j=1

Putting Q = A we see that

hence p* restricted to F™° is a measure.

(3.16)

(3.17)

(3.18)

Step 5. Let A € 2% and pu*(A) = 0. Let Q € 2X. Then QN A C A, hence u*(Q N A) = 0. Moreover,

Q\A C @, hence p*(Q\A) < p*(Q). Therefore,

p(Q) = p(Q M A) + p*(Q\A).

Hence A € F™* and pu™5(A) = 0. This proves (3), which implies the completeness of the measure p™s. O

3.5 External measure generated by a measure

Theorem 3.9 Let (X, F,u) be a measure. For Q € 2% define

pw(Q):=inf{u(4) :AeF, ADQ}

Then
(1) p* is an external measure;

2) p*=p on F.

4) In the definition of u* we can replace F with Ft

I’ Mmoo no
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(3) Let Fi*, u™* be defined from p* as in the previous subsection. Then F;*° is a o-field containing F.
(4) Fot, Fop, Fs, ete.
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Proof. (1) The properties (1) and (3) of the definition of an external measure are obvious.

the property (2).
Let Q1,Q2,--- € 2%. For any € > 0 we will find a sequence Ay, Ay, --- € F such that

Qn C ATL7

H(An) < 1 (Qu) + 27",
Then

oo

1 (U Qn) < (U2, Ay) Z )< 1 (Qn) te
n=1

Hence

=1 Qn Z /”' Qn

(2) is obvious.

Let us show

Let us prove (3). Let B € F, Q € 2X. For any € > 0 and suitable A € F such that Q C A we have

p(Q) = p(A) —e

— (AN B) + u(A\B) — ¢ > 1*(Q N B) + u*(Q\B) — .
Therefore,

(@) = p (@ N B) + p*(Q\B).
Thus, B € F*. O

The measure (X, F™ pu™%) is called the Caratheodory completion of the measure (X, F, u).
A measure (X, F, u) is called Caratheodory complete if it coincides with its Caratheodory completion.

The Caratheodory completion of a measure is always Caratheodory complete.

Theorem 3.10 Suppose that (X, F,u) be a set with a o-field and a finite measure. Let p* be the

corresponding outer measure and let S C X satisfy p*(S) = u(X). For A€ F < set

s (4) = p* ().

Then (S, F| ,us) is a measure, which is isomorphic to p modulo sets of measure zero,
s

3.6 Extension of a measure to localizable sets
Let F C 2% be a o-ring. Let
Flo¢.={Ae2X . Be Fimplies ANB € F}.

We say that F!°¢ is the family of sets localizable in F. It is a o-field and F is its ideal.
Let (X, F, ) be a measure We can extend canonically y to F'°° by setting

loc N N(A) AerF
e(A) '—{ 0o A€ Flo\F.

Note that (]—'IOC)ZlfDC = ]-'Zf, so the LP spaces for both measures are the same.

Theorem 3.11 Suppose (X, F,u) and (X, F;*, u™*) are as in Theorem 3.9. Then (F;*,

obtained by applying consecutively to (F, u) the following constructions:
1. restricting to o-finite subsets,

2. completion

3. extending to localizable sets.
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3.7 Sum-finite measures

Let (X, F, 1) be a measure. Define the set of locally p-measurable sets by
loc ._ X . of

Fr¢ ={A€2® : ANBeF, BeEF]}
={Ae2¥ : AnNBeF, Be F.}.

In other words, fboc is the family of all sets localizable in ]-'/ff (or in ]-'i) Clearly, .FLOC is a o-field
containing F as an ideal.
A family {X; : i € I} of disjoint elements of F}, such that U X; =X and
[4S]

p(A) =Y uwAnX;), AcF,
iel
is called a localizing family for u.
We say that the measure (X, F, p1) is sum-finite if
(1) F =7l

(2) There there exists a localizing family for p.

Clearly, every o-finite measure is sum-finite.

Theorem 3.12 If{X; : i€ I} and {Y; : j € J} are localizing families for p, then so is {X; NY;
(i,5) € I x J}

Theorem 3.13 If (X,F,u) is a measure possessing a localizing family {X; : ¢ € I}, then if for
A€ .7:/1;” we set
po0(4) = 3o (AN X)),

el

then (X, .FLOC, p'o%) is a sum-finite measure.

3.8 Boolean rings

We say that (R, A,0,N) is a Boolean ring if it is an additive ring where all its elements are idempotent,
that is AN A=A, A€ R. We then set

AUB := (AAB)A(ANB), A\B:=AA(ANB),

ACB & BDA & A=ANB.

If there exists an identity element for N, called X, then (R, A, (), N, X) is called a Boolean field.

Clearly, every ring/field in 2% is a Boolean ring/field.

In the obvious way we introduce the notion of Boolean o-rings, Boolean o-fields, etc. In what follows
we concentrate on o-rings/fields.

If T C F are o-rings and Z is an ideal in F, then F/Z is a Boolean o-ring.

Theorem 3.14 Le F C F; be o-rings. Let Ty C F1 be a o-ring, which is an ideal in F1. LetT := I1NF,
which is clearly a o-ring and an ideal in F. Then the o-rings F/I and F1/Iy are in the obvious way
isomorphic to one another.
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If F is a Boolean o-ring, we can define the space M(F) as the set of all function
[—00,0[U]0, 0] = F(a) = F

such that for o # 3, F(a) N F(B) = 0. If F C 2% then we identify f € M(X,F) with F € M(F) where
F(a) = f~'({a}).

If F is a Boolean o-ring and F € M(F), we set ||F| := sup{|la] : F(a) # 0} and define the
space L= (F). If T C F C 2% are o-rings and T is an ideal in F, then we can identify L>°(X,F,T) with
L>(F/I).

3.9 Measures on Boolean rings

We can consider measures on Boolean o-rings as well. Clearly, one can define LP spaces for measures on
Boolean rings.
If (F, ) is a measure on a Boolean o-ring, we say that it is faithful if A € F, u(A) = 0 implies A = 0.
If F}) is the family of zero sets, then we can define F = F/F) and i(AAN) := p(A) for N € F},.

Then (F, ji) is a faithful measure.

Theorem 3.15 Let X be a set and F C Fy are o-rings over X. Let (F,u) and (Fi, p1) be measures
such that

(1) p=p on F;
(2) o—Ring (.FU (]:1)21> = Fi.

If F and Fy are faithful measures defined as above, then they are isomorphic.

4 Construction and uniqueness of a measure

4.1 Dynkin classes

We say that 7 C 2% is N-stable if A BT = ANBcT.
We say that D is a Dynkin class if

(1) A, BeD,AC B= B\A€D;
(2) A, A €D, AiNAy=0= A UA, €D

Theorem 4.1 Let R C 2% satisfy

(1) AABeR, ACB= B\AeR;

(2) A1, Ao eR, AiNAy=0= A UAeR
(3) ABeER,= BNAEeR.

Then R is a ring. In other words, a N-stable Dynkin class is a ring.

For A C 2% let Dyn(A) denote the smallest Dynkin class containing A.
Theorem 4.2 Let C be a N-stable family. Then Dyn(C) = Ring(C).
Proof. By Theorem 4.1 every ring is a Dynkin class. Hence

Dyn(C) C Ring(C).

Let us prove the converse inclusion. For B € 2¥X. Set

K(B):={Ac2¥ : AnB < Dyn(C)}.
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Note that
Ae€eK(B) & BeK(A). (4.19)

Using the fact that Dyn(C) is a Dynkin class we check that K(B) is a Dynkin class.
Using the fact that C is N-stable we see that

BeC = CCK(B) (4.20)
Hence,
BeC = Dyn(C) C K(B) (4.21)
From (4.19) and (4.21) we get
AeDyn(C) = CCK(4) (4.22)
Hence
A € Dyn(C) = Dyn(C) C K(A) (4.23)

Therefore, Dyn(C) is N-stable. Hence, by Theorem 4.1 it is a ring. O

4.2 Semirings

Definition 4.3 T C 2% is called a semiring if
(1) ABeT=ANBeT;

(2) A,BeT = A\B = _Ql C;, where C; are disjoint elements of T

Theorem 4.4 Let T be a semiring. Then A € Ring(T) iff A is a disjoint union of elements of T .

Proof. Let R be the family of finite unions of disjoint elements of 7. It is obvious that R C Ring(T).
Let us prove the converse inclusion. To this end it is enough to prove that R is a ring.

Step 1. Let A€ R, B T. Then A = ,61 A; with disjoint 4; € T. Now
=

A\B = U (A\B),

where A;\B € T are disjoint and each A;\B is a finite union of disjoint elements of 7. Hence A\B € R.
Step 2. Let A€ R, B€R. Then B = 4@1 B; with disjoint B; € T. Now

A\B = (-+- (A\B1) - - \Bn).

Hence, by Step 1, A\B € R.
Step 3. Let Ac R, B€ R. Then A = Gl A; with disjoint 4; € T and B = 46‘1 B with disjoint B; € 7.
1= J=
Now o m
ANB=U U AiﬁBj,
i=1j=1

where A; N B; € T are disjoint Hence AN B € 7.
Step 4. Let A€ R, B € R. Then

AUB = (A\B)U (AN B) U (B\A).

thus by Steps 2 and 3, the left hand side is a union of three disjoint elements of R. Therefore, it is a
union of a finite family of elements of 7. Hence, AU B € R.
Thus we proved that R is a ring. O
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4.3 o-Dynkin classes

We say that D is a o-Dynkin class if
(1) ABeD, ACB= B\AeD;

(2) Ay, Ay, €D, AiNA;=0,i+#j, = ileAieD
Theorem 4.5 Let R C 2% satisfy

(1) AABER, ACB= B\A€eR;

(2) A, Ay, €R, ANA; =0, i#j = i@lAieR
(3) AL BER,=BNAcR.

Then R is a o-ring. In other words, a N-stable o-Dynkin class is a o-ring.
For A C 2% let o—Dyn(A) denote the smallest o-Dynkin class containing .A.

Theorem 4.6 Let C be a N-stable family. Then 0 —Dyn(C) = o —Ring(C).

4.4 Monotone classes

Let M C 2%, We say that M is a monotone class if
(1) Al,AQ,"'EM,A7L\(A:>AEM;
(2) Al,Ag,"'GM,A7L/‘A:>A€M.

Proposition 4.7 (1) A o-ring is a monotone class;

(2) A monotone ring is a o-ring
For T C 2%, we denote by Mon(7") the smallest monotone class containing 7.
Theorem 4.8 Let R be a ring. Then
Mon(R) = 0 —Ring(R).
Proof. Since a o-ring is a monotone class and since R C o — Ring(R), it follows that
Mon(R) C o — Ring(R).
Let us prove the converse inclusion. Let A € 2X. Set
K(A):={Bec2X . A\B, B\A, AUB € Mon(R)}.

Note that
A€ K(B) < BeK(A). (4.24)

We easily check that for every A € 2%, K(A) is a monotone class. Clearly,
AeR=TRCK(A). (4.25)

Hence
A€ R = Mon(R) C K(A). (4.26)

From (4.24) and (4.26), we get
A € Mon(R) = R C K(A).
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Hence,
A € Mon(R) = Mon(R) C K(A4).

Therefore, Mon(R) is a ring. By Proposition 4.7 (2) it is a o-ring. Hence,

Mon(R) D o —Ring(R).

4.5 Extension and uniqueness of contents

We will need a generalization of the notion of a content to the case of 7 C 2% with ) € 7. We say that
v:T —[0,00] is a content if

(1) v(0) = 0;

(2) Ay, A, €T, AiNAj=0,i#j, AiU---UA, e R=>v(A1U---UA,) =v(A1) + -+ v(An).

Theorem 4.9 Let T be a N-stable family containing ) and R = Ring(T). Let v1,vo be finite contents
on R coinciding on T. Then vy = vs.

Proof. Let W:={A€R :v1(A) =12(A)}. Then

A BeW, ACB = B\AeW

A, Ay €W, Ay ﬂAQZ@ = AjUAyeW

Hence W is a Dynkin system. Hence it contains Dyn(7). But by Theorem 4.2, Dyn(7) = R. Hence
W=R. O

Theorem 4.10 Suppose that T is a semiring and v is a content on T. Then there exists a unique
content on Ring(T) extending v.

Proof. Every A € Ring(7) can be written as A = 0 B; for some disjoint B; € T. Then we set

=1

=Y v(Bi)

i=1

Suppose now that A = ‘61 B, = U C; are decompositions of the above type. Then
i= j=1

A—U UBﬂC’

i=17=1

is also a decomposition into disjoint elements of the semiring, and

m

v(B;) =Y v(B;NCj), v( Zn:yB ncy)
j=1 i=1
Therefore,
S uB) =Y w(B;NC)) =Y vC)
i=1 i=1 j=1 j=1

Hence the definition is correct.
It is easy to check that the extended v is a content. O
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4.6 Uniqueness of a measure

Theorem 4.11 Let (X,F) be a set with a o-ring. Let py and ps be two measures defined on (X, F)
Suppose that T C F is a N-stable family such that py = pa on T and is finite on T. Then py = ps on
o—Ring(T).

Proof. Let W:={A € F : u1(A) = p2(4)}.

Step 0. By Theorem 4.9, 1 = pg on Ring(7). Note that o —Ring(7) = o —Ring(Ring(7)). Hence
in what follows it suffices to assume that 7 is a ring.

Step 1. Assume that p; is finite. Clearly, W is a o-Dynkin class and T C W. Hence o—Ring(7) C W
in this case.

Step 2. Assume that A € F. Then p; restricted to o —Ring (T‘A) = o —Ring(T) N is finite and

1 = o On T‘A. Hence, by Step 1, we have p; = uo on U—Ring(T)‘A.
Step 3. Let A € 0—Ring(T). Then by Theorem 3.2, there exist Ay, Ag, -+ € T such that A, " A
and p(Ay,) < co. Then
p2(A) = lm po(An) = lim g (An) = pa(A).

n— oo

d

4.7 Dense subsets in LP spaces

Theorem 4.12 Let T C F be a semiring such that c—Ring(T) = F and p is finite on T. Assume that
there exists a localizing family {X; : i € I} contained inT. If 1 < p < oo, then the span of characteristic
functions of T is dense in LP(u).

Proof. Let W be the family of sets whose characteristic functions can be approximated in LP(u) by
linear combinations of characteristic functions of elements in 7.

Step 1. Assume first that pu is finite. Clearly, W is then a o-Dynkin class. Hence F C W.

Step 2. Let p be arbitrary. Let A € }',i. Let {X; : i € I} be a localizing family for p contained in
T. Then there exists a sequence iy,42,- -+ € I such that pu(A4) = Z;}il (AN X;,). We apply Step 1. to
w restricted to 7| . We conclude that A € WW. Hence .7-"; C W Consequently, linear combinations of
characteristic functions of elements in T are dense in €N LP ().

Step 3. Let f € L£P(u). There exist sequences ur € £, such that ul 7 fi. Clearly, ulr € LP(u),
u,t —u,, is dominated by |f| € LP(u), hence by the Lebesgue dominated convergence theorem u,” —u,, — f
in the £P(u) sense. O

4.8 Premeasures

Definition 4.13 Let (X,R) be a set with a ring. A function v : R — [0,00] is called a premeasure if
(1) v»(0) =0,
(2) A1, Ap-- €R, U A, €R, AiNA; =0 fori#j=v(Ul1A,) =00 v(A4).

Clearly, every premeasure is a content.

If (X,F,p) is a measure and R C F is a ring, then (X, R, | ) is a premeasure.
R

30



Theorem 4.14 Let (X,R,v) be a premeasure, A1, As,--- € R, A€ R and A C _ijl A;. Then

=1

4.9 Extending a premeasure to a measure

Theorem 4.15 Let (X,R) be a set with a ring. Let (X,R,v) be a premeasure. For any Q € 2% define
— mf{Zz/(Ai) P AiER, QC U A}

Then
(1) p* is an external measure;
(2) v=p* on R;

(3) Let F™S be the o-field of p*-measurable sets and ™ the corresponding measure. Then (X, F™, u™s)
is a complete measure extending the premeasure (X, R,v).

(4) Let F := o—Ring(R). Let the restriction of u* to F be denoted p. Then for Q € 2%

p*(Q) =inf{u(4) : QC A, Ae F}.

Proof. (1) The properties (1) and (3) of the definition of an external measure are obvious. Let us show
the property (2). Let Q1,Q2,--- € 2X. For any ¢ > 0 we will find a double sequence (A, )men such that

Qn CUZ_1Apm,

oo
D i Anm) < p(Qn) +27"e
m=1

Then - -
M*(Uzolen) < Z (Apm) < ZM*(Qn) +e.
n,m=1 n=1
Hence

1Qn Z

(2) It is obvious that p*(A) < u(A). The converse inequality follows by Theorem 4.14
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(3) Let A€ R, Q € 2X. For any € > 0 and suitable Ay, Ay, -+ € R such that Q C ile A;, we have

w(Q) =Y 4y) e
= 2 Ay NA) + 5, u(A\A) e
> 1M (@QNA) + 1 (Q\A) — e.

Therefore,
pH(Q) = p(Q@NA)+ " (Q\A).
Thus, A € F™s. O

5 Tensor product of measures
5.1 Tensor product of o-rings
Theorem 5.1 Let T; be semirings over X;, i = 1,2. Set
TixTe:={A1 x Ay : A, €T, i=1,2}.
Then Ty * Ty is a semiring.
Now assume that F; are o-rings. Set F; ® F := 0 —Ring(F7 * F2).

Definition 5.2 Let B C X1 X Xo, z; € X;.

5t (B) = {x2 € Xo : (21,22) € B},

m2(B) ={x1 € X1 : (x1,22) € B}.
Proposition 5.3 Let B € F1 ® Fa, x; € X;. Then n7*(B) € F1 and 5 (B) € Fa.

Proof. Note that
w2 (0) = 0,

w72 (A\B) = 72 (A)\ni* (B),
n2(0 A0 = T i (Ay).

Hence
W = {B C X1 xXo 7Tf2(B) 6]:1}

is a o-ring. Clearly W contains F; * Fo. Hence F1 ® Fo C W. O

5.2 Tensor product of measures

Let (X, F;, pi) be set with o-rings and measures. Let ]-"Zlf be the o-ring of w;-o-finite sets.
Proposition 5.4 Let B € F1 ® fﬁ Then the map

X1 2z — po(ngt(B)) is Fi-measurable.
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Proof. Set

Set
W:={BC X; x Xy : sp is measurable }.

Step 1. Assume that u(Xs) < co. Clearly, Fp * f"f CW. If A)B € W with A C B, then sp\a =
sp — sA, Hence B\A € W. Let By,Bs,--- € W be dlSJOlnt and B = U2 B;. Then sp = S sB;-

Hence U B; € W. Therefore, W is a o-Dynkin class. Hence it contains o —Ring(F; * f"f)

j=1

Alternatlve version of Step 1. Assume that u(Xs) < oo. If disjoint By, Bs,--- C W and B =

U2, Bj, then s o B, = > j=158;- We know that Ring(F; * F5l) are disjoint unions of elements in

j=1
Fy * fng C W. Hence Ring(F; * .ngf) CcW.
Clearly, if Ay, Ag,--- € W and A,, /A, then s4, " sa. Hence, A € W.
Likewise, if A, Ag,--- € W and A,, \, A4, then s4, \, sa. Hence, using the finiteness of X, A € W.
Therefore, W is a monotone class. Hence it contains o —Ring(F; * ]-'ﬂ) =F® }"ﬁgf)
Step 2. Now drop the assumption us(Xs3) < co. Let B € F; ® ]_—ng Then there exists a disjoint

family Ay, Ao, --- € Fy such that us(A;) < oo and B C X5 X 4061 Aj. Set Bj := BN Xy x A;. Then
]:

o
SB = E SB]-,
i=1

and each sp, is measurable. Hence sp is measurable. O

Now we assume that both measures are o-finite. If A € F,,, ® F,,,, we define

i1 ® pin(A) = / o (72 (A))dpan (21): (5.27)

Theorem 5.5 (1) p1 ® pe is a measure.
(2) If X1 X X2 3 (x1,22) = 7(x1,22) := (2,21) € Xa x X7 1is the flip, then for A € F1 @ Fa,
1 ® p2(A) = po @ pa(TA). (5.28)

In particular, for A€ F,,, & F,, (5.28) equals
[ s ()i 1) = [ (st

(3) If v is a measure on F1 @ Fo satisfying
V(Ap x Ag) = pi(Ar)pe(Az), A1 € Fuy, As € Fuy,
then it coincides with py ® ps.
(4) (p1 ® p2)® = (ui” @ p5”)°P

Proof. The formula (5.27) is well defined by Proposition 5.4. Then we check that it is a measure.
The uniqueness follows by Theorem 4.11, because both measures coincide on the semiring F,, * F,.
O
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5.3 Multiple integrals

For any x5 € X5, the function
X122 — (1‘1,:172) € X1 x Xo

is measurable. Hence if f € M (X7 x X5), then
X1 3z = f(x1,22) € [—00, ]
belongs to M (X7).

Theorem 5.6 Let (X;, Fi, ;) be spaces with measures. Let f € M_ (X1 x X3).

(1)
z1 > [ f(21, 22)dpe(cs)

belongs to M (X1),

Jfd(pr @ p2) = [(f flar,22)dpa(@2))dpn (1) = [([ f(@1, w2)dp(21))dpz(22). (5.29)

Proof. For elementary functions the theorem is obvious. For an arbitrary function from M, (X; x X5)
we use the monotone convergence. O

Theorem 5.7 (Fubini) Let (X;, F;, ;) be spaces with measures and
fe L (m © pg).

The map
wo > f(1,72)

for p1-almost all xy belongs to LY (us). Let Ny be the set of o1 for which this is not true. Define
ff(1'1;552)dﬂ2($2) z1 € Xi\M
fi(wy) =
0 T, € Ny.

Then fi belongs to L' (u1) and

/fd(/h ® p2) Z/fldul.

Proof. We have fi € £'(u1 ® p2). Hence

o > / Fodpsn ® iy = / ( / i, w2)dpn(2) ) dpn (). (5.30)

Thus z1 — [ f4(z1,2)dps(z2) belongs to L' (uy). Hence, by Theorem 2.12, for pj-a.a. 1,

/f+($1,$2)dﬂ2(1‘2) < 0.

In other words, for ui-a.a., z1 fi(z1,-) € L ().
Of course, the same is true for f_. O

Loosely speaking, the above theorem says that for f € £!(u1 ® u2)

/fd(m ® p2) :/ /f wl,xz)dM(fz))dMl(fﬂl / /f wlaxz)dﬂl(xl))dﬂz(@)

Theorem 5.8 If ® denotes the tensor product in the sense of Hilbert spaces, then L?(u1) ® L?(uo) =
L2 (1 @ pa).
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5.4 Layer-cake representation

Let (X, F, 1) be a measure. Let v be a Borel measure on [0,00[ and f € M (X). For a,t > 0, set

o) = [ avls). uta) == lf > a).

[ ot = / " u(a)du(a).
Proof.

S u@adv(a) = [ (f1psa@)du(z) ) dv(a)
= (S 1psay@dv(@))du() = [ ([ av(a))du(@) = [ 6(f(2))dpu(a).

Proposition 5.9

d

Corollary 5.10 (1) [|f(z)[Pdu(z) =p [y~ u(a)aP~'da.
(2) f(z) = [15q)(z)da

Proof. For (1) we set ¢(t)
For (2) we put ¢(t) :=t,

=17, dv(t) = pt'~'dt.
dv ( ) dt, and p is the Dirac delta at . O

6 Measures in R"

6.1 Regular contents

Suppose that X is a topological space. Let R be a ring over X and v a content on R. We say that v is
regular iff for F' € R the following two conditions hold:

v(F) =sup{v(G) : G* C F, G* € Compact(X)}
=inf{v(H) : F C H°}.
Theorem 6.1 FEwvery regular content is a premeasure.

Let Fy, F5,--- € R be disjoint and F := U F; € R. We know by Theorem 2.1 that
j=1

ZZV(FJ)

Let us show the converse inequality. Let ¢ > 0. For any j = 1,...,n we can find H; € R such that
Fy C HY and v(H;\F;) < €27971. Likewise, we can find G € R such that G! C F, G is compact and

v(F\G) < €¢/2. Thus {H¢ : j =1,2,...} is an open cover of the compact set G'. We can choose a
finite subcover {H¢ : k=1,...,m}, so that

cl m )
¢lc U Hy.
k=1 Jk
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Consequently,

Thus

6.2 Borel sets in R
Let T :={]a,b] : a,beR, a <b}.

Theorem 6.2 T is a semiring. Moreover, let Ay,..., A, € T be disjoint, A € T and U A; = A.

Then, after a possible renumbering of A;, A; =]a;—1,a;], where ag < ay < -+ < a,. c—Fie

the o-field of Borel subsets of R and will be denoted by Borel(R).

6.3 Borel premeasures on R

Let f: R — R be an increasing function. Define v : T — [0, 00| as

v(la,b]) := f(b) — f(a).

Theorem 6.3 v is a content on T. Hence it extends uniquely to a content on Ring(T).

Assume now in addition that f : R — R is continuous from the right, that means

lim f(t) = f(to), to € R.

tlto
Lemma 6.4 Let F € Ring(T) and € > 0. Then there exist H,G € Ring(T) such that
Glc FcH v(F\G)<e v(H\F)<e.
In other words, v is a reqular content.

Proof. We can assume that F = U ]agZ 1,02i) and 0 < 6 < min{aj41 —a; : j=0,.

decreasing 6 we can demand in addltlon that f(a; +0) — f(a;) < €/n. Then we can set

G:=

<.
Cs
—

](IQ] 1+ 6, (J,QJ] H =

<.
HC3

]a2j 1,az2; + 9].

By Theorem 6.1, we get:

Theorem 6.5 v is a premeasure on Ring(T).
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6.4 Borel measures on R

Theorem 6.6 (1) Let f : R — R be an increasing function continuous from the right. Then there
exists a unique measure py on (R, Borel(R)) such that

py(Ja,b]) = f(b) = f(a).
This measure is o-finite.
(2) Let (R,Borel(R), 1) be a measure such that u(A) < oo for compact A C R. Set

| —u(]z,0], <0
fw) = { /ffl(L]va])a x> 0.

Then = py.

Proof. The premeasure v; can be extended by the Caratheodory construction to a o-field containing
Borel(R). O

Definition 6.7 The measure on Borel(R) with the distribution function f(x) = x is called the Borel-
Lebesgue measure, and denoted \. Its complete extension is called the Lebesgue measure. In integrals, if
the generic variable in R will be denoted by x, then instead of dA(x) we will usually write dzx.

Theorem 6.8 The Borel-Lebesgue measure is the only measure on Borel(R) invariant wrt translations
such that p(]0,1]) = 1.

Proof. Let (R, Borel(R), i) be translation invariant. This means u(]a,b]) = p(Ja + x,b+ z]). Using this
and p(]0,1]) we get u(Jk/n, (k +1)/n]) = 1/n. This easily implies u(]a,b]) = b — a for any a <b. O

Theorem 6.9 (1) Let i be a measure on 2% invariant wrt translations (that means if 7(x) = © —t,
then Tyt = p). Suppose that p is finite on compact sets. Then p = 0.

(2) Let T := R/Z denote the 1-dimensional torus. Let p be a finite measure on 2T invariant wrt
translations. Then p = 0.

Proof. (2) Introduce in T the equivalence relation
r~y&sr—yeQ.
Let Z be the set of equivalence classes. Choose from every class a representant x;. We have
0,1= | 4,
yeQ

for
Ay ={x;+y : i1}

But 7,4, Ay, = Ay, . Hence

p(T) = pu(Ay) = p(Ag) = oop(Ao).
yeQ yeQ
Thus u(T) =0 or u(T) = oco.
(1) Let p be a translation invariant measure on (R,2®). Consider the canonical projection R — T
restricted to [0, 1] it is a bijection. Denote it by 7 : [0, 1[— T. Define ji(A) := u(r—1(A)), A C T.
Let us check that fi is translation invariant and i(T) = 1. By (2) it is zero. O
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6.5 The Cantor set and devil’s staircase

Definition 6.10 Let ¢ € N. To every sequence of numbers (p;);en with values in {0,1,...,¢ — 1} we
assign a number from the interval [0, 1]:

0.pip2--- = L =z
— q’
Jj=1
We say that 0.p1p2 ... denotes the number x in the system based on q

Note that every = € [0,1] has such a representation. It is ambiguous only if for some n we have
q"x € N. Then
0.p1 ... Pp—1Pn00--- =0.p1p2 .. . pr—1(Pn — 1)(¢g—1)(g—1)....

Definition 6.11 The Cantor set C, is the subset of [0,1] consisting of the numbers that in the tri-
nary system have only 0 and 2. It can be defined also as follows: Co = [0,1], C1 = Co\l3, 2],

Cy = C1\]§, 2[U]%, 81, ete. We set C =(2; Ch.

It is a closed set with an empty interior, uncountable and has zero Lebesgue measure (because A(C,,) =
2n
)

Definition 6.12 Define the transformation, called devil’s staircase, F : [0,1] — [0,1] as follows. If
x = 0.p1p2 - -- € C in the trinary system, where p; € {0,2}, then F(x) = 0.8-22 ... in the binary system.
If x € [0,1\C, then x €|x_, x| where x_ = 0.p1...p,022... and x4 = 0.p1...p,200.... We see that

F(z_)=F(zy) and we set F(z) = F(z_) = F(z4)

The function F is increasing, continuous, locally constant beyond C, and F(1) — F'(0) = 1. It defines
a Borel measure p, which is continuous and singular wrt the Lebesgue measure, since ([0, 1]\C) = 0.

6.6 Transport of the Lebesgue measure in R

Let g : [a,b] — R be an increasing function. Then there exists a unique increasing function f :
[9(a),g(b)] — [a,b], which is continuous from the right and g o f(z) = z, z € [g(a),g(b)]. Tt is easy
to see that g*\ = uy. n fact,

g Me, B)) = Mg~ (o, B]) = A f (@), f(B)]) = F(B) = f(e).

6.7 The Lebesgue measure in R"

Let Borel(R™) denote the o-field of Borel sets in R™.
In R™ we can define the n-dimensional Borel-Lebesgue measure as the measure on Borel(R™) equal
AT=A® - QA

Theorem 6.13 (1) The n-dimensional Borel-Lebesque measure A" is the unique measure on Borel(R™)
such that N N
)\n( x]ai,bi]) = II |bi—ai|.
i =1

(2) It is also the unique translation invariant measure on Borel(R™) such that

)\"( »;1]0’ 1]) =1

1=
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We can also consider its completion, called the n-dimensional Lebesgue measure. There are several
equivalent ways to construct the Lebesgue measure, described in the following theorem.

Theorem 6.14 The following measures coincide:

(1) (A™)P (the completion of the n-dimensional Borel-Lebesgue measure).
(2) AP @ @ AP)P,
(3) Let T™ be the semiring of sets X ]aZ7 b;]. Set

=

Vn<i;1]ai7 bl]) - il;n[l ‘bz B ai|.

Then v™ is a premeasure. We consider the measure obtained by the Caratheodory construction.

6.8 Transport of the Lebesgue measure in R"

Theorem 6.15 Let U be an open subset of R™ and ¢ : U — R™ a C* bijection with det ¢'(x) # 0,
x € U. Let \ be the Lebesgue measure. Then

dd)*

= |det ¢'|. (6.31)

Thus if f € My (o(U)), then
/ FdA :/ o d|det ¢'|dA.
(V) U

We will also write the transformation as

)
W'y S 2™,

[ 1wz = [ s 252

Proof. We will say that the transformation ¢ satisfies the change of variables formula iff it satisfies
(6.31).

Step 1. If the transformations ¢, ¥ satisfy the change of variables formula, then the transformation
¢ o 9 satisfies it as well.

Step 2. Transformations of the form (y',...,y") — (y™™,...,y™™)), where 7 is a permutation,
satisfy the change of variables formula.

Step 3. If a transformation ¢ has the form

Then we can write

|dy.

then it satisfies the change of variables formula. In fact,
[F(t ... ,2™)dat - da” = [da"--- [da' F(z!, ... 2™)
= T T 7F RS 1 I R L
fd fd 2fdy|3f(yx | 22 ), 22 )
= [dy"- fdy fdy|3f(y ,y, y")

= [ F(z(y))|det 252 |dy.

F(f(ylﬁy27 A 7xn)7y27 A ')yn)
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Step 4. We proceed by induction wrt n. We assume that the theorem is true for n — 1.

If F € M, (U), then we can find a sequence of functions F,, € M (U) of compact support with
F, "F.

Therefore, it is sufficient to assume that the support of F' is compact.

Let a = (a,...,a") € suppF. There exist i, j such that 22-(a) # 0. We can find § > 0 such that for

_ : 9y
y —af| <6, i=1,..n, 2t 5 0 op 280t < 0. Set W, 1= [a' — 8,a' 4] x - x [a" —
d,a™ + §]. Clearly, we can find a finite family of ay,...,a, € R™ such that W,,,..., W, covers suppF.

Then we can write F =Y " | F; with suppF; C W;.

In what follows we assume that on the support of F Oz

‘Yt
Oy
1 =7 = 1. Define

: v 5 0. By Step 2, we can assume that

(ylﬁ""yn) ’g(zl""’zn)7

where
zl(yl,...7y”) :xl(yl,...,y”), 22 =92 2 =y
The map % is injective. Define p := ¢!, that is
(Zlv azn)'i(xlv 7xn)

Note that z! = 2!,
The map ® is of the type considered in Step 3. Hence it satisfies the change of variables formula. We

have ¢ = py. By Step 1, it is thus sufficient to prove that p satisfies the change of variables formula.
We have

1 0o ... 0
9z? x> x>
p’ — |:8Jf — 0z1 022 e ozm ,
0z e
oz oz™ oz™
Ozt 922 t Dz
and hence
5 oz oa®
T 022 t Oz™
det — = det .
0z oz oz
022 te ozn
Thus

Jdat-- [da"F (2!, ... 2™)
= [da! [da?--- [da"F (2t 2?. .. 2"™)

oz oz
9:2 c ban
= [da! [dz?-- [dz"F (2!, 2% (2!, 22, ..., 2"), .. 2" (2!, 22, ..., 2")) |det
8%’” 8z7l
dz? 6%2362 o="
922 Oz
= [dz! [dz?--- [de"F(zt (2t .27, 2 (2h, . 2™)) |det
oz" oz"
922 "¢ oz

— [ F(z(2))|det 222) |45,
[ F(z(2))] RE
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7 Charges and the Radon-Nikodym theorem

7.1 Extension of a measure from a o-ring

Let F,Z be o-rings over X and let Z be an ideal in F. Let (X,Z, u) be a space with a measure. We can
then extend the measure p from Z to F. We can do this in many ways.

Theorem 7.1 (1) Define u™** : F — [0, 00] by
P (A) .= inf{uw(B) : AC B, BeZI}.

Then ™ is a measure. We have p™**(A) = u(A), A € Z, and p™**(A) =00, A € F\Z. u™>* is
the largest measure on F extending p onto F. o-finite and null sets coincide for p and pimax.

(2) Define ™ : F — [0, 00] by
™ (A) ;= sup{u(B) : BC A, BT}

Then p™® 4s a measure. We have p™n(A) = u(A), A € Z. p™n is the smallest measure extending

W onto F.

Proof. (1) is obvious.
(2) Let us prove that y™" is g-additive. Let A, Ay, --- € F be disjoint, A = _Ole Aj.
j=

Let B€Z, B C A. Then using A; N B € Z we get

oo

W(B) =D u(A;NB) <3 un(4y).

Hence

P (A) < 30 i (ay).
j=1

Let Bj C Aj, B; € Z. Then By, By, ... are disjoint and U2, B; C A, hence
= e min
> u(B)) = M(J.L:Jl Bj) < p™"(A).
=1

Thus

7.2 Measures singular and continuous wrt an ideal

Let F be a o-ring over X and let Z be a o-ring—an ideal in F. Let (X, F,v) be a space with a measure.
We say that v is Z-singular if

v(A)=sup{v(B) : BC A, BeI}, AcF.

We say that v is Z-continuous if
AeTI = v(A)=0. (7.32)
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(More generally, if v is a charge, we say it is Z-continuous if (7.32) is true).
In particular, if (X, F, u) is also a space with a measure, then

fO::{Ae]: : u(A) =0}

is an ideal in F. We say that v is p-singular if it is F), O_singular. We say that v is u-continuous if it is
Fu U_continuous.

Theorem 7.2 Let (X, F,v) be a measure. Let T be a o-ring, an ideal in F.

(1) There exists a decomposition
V= vzs + Vrc, (7.33)

where vz is a T-singular measure and vz, is a Z-continuous measure. The L-singular part is uniquely
given by
vis(A) :=sup{v(B) : BC A, BeT}.

The Z-continuous part does not have to be unique, but there is a canonical choice given by
vic(A) :=inf{v(A\B) : BC A, BeZI}.
(2) If v is o-finite, then the decomposition of v into a Z-singular and a Z-continuous measure is unique.
(3) If X is v — o-finite, then there exists a set N € T such that

vrs(A) =v(ANN), vz.(A) =v(A\N).

Proof. The fact that vzs is a measure follows from Theorem 7.1 applied to v
z

We need to show that vz. is a measure. Let Ay, As, -+ € F be disjoint and A = _Ole Aj. Let us prove
j:
that

vre(A) <3 vre(4;)). (7.34)

It is sufficient to assume that vz.(4;) < oo, j = 1,2.... Let € > 0. We will find B; € Z, B; C A; with
vze(Aj) > v(A;\Bj) — 2 7¢. Then

vre(A) S v(A\UZ, B)) = Y w(A;\B)) < Y vre(4)) + €.

This proves (7.34).
Let us prove that

Z vre(A;) < vre(A). (7.35)

It is sufficient to assume that vz.(A) < co. Let € > 0. We will find B € Z, B C A with vz.(4) >
v(A\B) — €. Then

> vre(A;) £ v(Aj\B) = v(A\B) < vzc(A) + €.

This proves (7.35)
(3) Let us prove the existence of the set N. Assume that X is v-finite. Let

a:=sup{v(4) : AeI}.
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Then a < co. We can find a sequence (N;) ey in Z such that lim;_, . ¥(N;) = a. We can assume that
the sequence N; ' N. Then N € 7 and v(N) = a.
It is obvious that (AN N) < vz4(A). Suppose that for some A € F,

v(ANN) < vzs(4).
Then there exists B € Z with B C A and
v(ANN) <v(B).
Then BUN €7 and
v(NUB)=v(N\B)+v(B) >v(ANN)+v(N\A) = v(N),

which is a contradiction

If X is v — o-finite, then we can find a sequence X,, X such that v(X,) < co. We will also find
sets N,, C X,, constructed as above. We easily check that v(A N N) = vzs(A).

The decomposition of v is uniquely determined on o-finite sets. Hence it is unique. O

7.3 Pure point and continuous measures
Definition 7.3 Suppose that (X, F,v) is a space with measure and
{{z} : ze X} CF. (7.36)

We say that v is a point (atomic) measure if

v(4) =) v({z}).

z€A

v is continuous (diffuse) if
v({z}) =0, z € X.

Theorem 7.4 Let (X,F,v) be a measure. Assume (7.36).

(1) There exists a decomposition
V=1vp+ Vg,

where vy, is a point measure and v, is a continuous measure. The point part is uniquely given by
vp(A) :==sup{v(B) : B C A, B is finite},
The Z-continuous part does not have to be unique, but there is a canonical choice given by

v.(A) :=inf{v(A\B) : B C A, B is finite}.

(2) If v is o-finite, then the decomposition of v into a point and a continuous measure is unique.

(3) If X is v — o-finite, there exists a countable set N € F such that

vp(A) =v(ANN), v.(A) =v(A\N).
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Corollary 7.5 Let (X, F) be a set with a o-field Let
{{z} r ze X} CF
Let v, p be measures on (X, F) and let u be continuous. Then there exists a decomposition
V = Vp + Vsc + Vac

such that
vp 18 pure point

Vse 18 p-stngular and continuous,

Vac 18 [-continuous.

If v is o-finite, then the decomposition is unique.

7.4 Charges (signed measures)

Let (X, F) be a space with a o-ring. A function p : F —] — 00, o0] is called a bounded from below charge
(or signed measure) if

(1) u(®) =0,
(2) A, Ay-r € F, A ﬁAj = () for i 7&] = .U(UvozozlAn) = Zle :U(An)-

Proposition 7.6 (1) If A C B, and u(B) < oo, then u(A) < co.

(2) A1, Ay~ € F, AiNA; =0,1# 4, and pn (U521 A,) < 00, then >~ | i(Ay) is absolutely convergent.
(4) If A1, Ay, € F, Ay Ny A and for some n, p(Ay) < 0o, then u(Ay) — n(A).

Proof. (1) u(B) = pu(A) + u(B\A) and pu(B\A) > —oo. Hence u(A) = u(B) — u(B\A) with both

summands less than oo.
(2) We group the sets A; into two subfamilies: those with a positive charge and a nonpositive charge.

After renumbering we can call the former By, Bo, ... and the latter Cq,Co,.... We have
- Z W(Bp) = —p(UpZy By) < o0
n=1
and

Z 1(Cn) = 1 (UpZyCn) = 1 (UpZy An) — 1 (UpZy By) < 0.
n=1

7.5 Hahn and Jordan decompositions of a charge

Let (X, F, 1) be a space with a bounded from below charge.
We say that A € F is positive iff B € F, B C A implies u(B) > 0. We say that A € F is negative iff
B e F, B C Aimplies u(B) <0. Let ]—"f denote the family of positive/negative sets.

Theorem 7.7 ]-'jt are o-rings and ideals of F. tu restricted to fff are measures.
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For A € F, we set
py(A) :=sup{u(B) : BCA, BeFl},

p—(A) :==sup{—u(B) : BCA, BeF,}.

Theorem 7.8 (1) p—_, us+ are measures.
(2) On ]-'/jt, wu coincides with £y .

(3) u— is finite.

(4) There exists E € F,; with p_(E) = p—(X). In what follows we fix such a set E.
(5) If n(A) < oo, then uy(A) is finite.

(6) X\E € Ff.

(7) (Jordan decomposition) p = 4y — p—.

(8) (Hahn decomposition) For A € F,

p—(A) = —(ANE), py(A) = p(A\E).

8

(9)
pi(A) :==sup{u(B) : BC A, Be F},

p—(A) :=sup{—u(B) : BC A, Be F}.

Proof. (1) and (2) follow immediately from Theorem 7.1 (2).
Let 8 := p_(X). Then there exist negative Fy, Fs,... such that u_(F,) — 8. Since negative sets

form a o-ring, £ = 461 Ej € F. Clearly, p_(E) < p(E,). Hence B = p_(£). This implies (4) and
J:
(3). A similar argument yields (5).
We interrupt the proof. O
Lemma 7.9 Suppose that 1(X) < puy(X). Then there exists B € F,; with u(B) < 0.

Proof. If y (X) =0, then X € F and pu(X) < 0. We can thus set B := X
The condition u(X) < oo implies that pi(X) < co.
Let p4(X) > 0. We can find g < 1 such that

(X)) = qu4(X) <0.
We can find E € F;/ such that (E) > quy(X). Set X; := X\E. Then
pa(X1) = pg (X) = pg(B) < (1 = @)pus (X)),
p(X1) = p(X) = p(E) < p(X) — quq (X) <0.

-1
By induction, we can find a sequence of disjoint sets Eq,--- € ]-',f such that for X,, := Xl\rful E;,
j=

then
() > qpy (Xn)-
(Note that E; C X;). Then

i (Xng1) = pg(Xn) — pg(En)
= pt(Xn) = p(En) < (1= @)y (Xn).
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Hence,
pa (Xn) < (1= q)" 4 (Xo).

Moreover,
(Xn1) = p(X)\ 20 w(Ej) < p(Xq) <O0.

Set B :=NX;. Then
J
py(B) = lim pq(X;) =0,

Jj—oo
and hence B € F, and
p(B) = lim p(X;) < p(Xq) <O0.

a

Continuation of the proof of Theorem 7.8. Suppose that X\E is not positive. This means that
there exists Xo C X\F and p(Xy) < 0. Then X satisfies the conditions of Lemma 7.9. Hence X
contains B € F,; wih p(B) < 0. Hence EU B € F,; with u(£ U B) < 3, which is a contradiction. This
proves (6).

Now note that for B € F,I we have u(B) = uy (B\E). Hence for A € F,

p(A) =sup{u(B\E) : BCA, BeFf}=p.(A\E)=pu(A\E).
This proves (8) and (7).
p+(A)  <sup{u(B) : BC A, BeF},
<sup{u+(B) : BC A, BeF}=ps(A).

This proves (9). O

7.6 Banach space of finite charges

Let (X, F) be a set with a o-field. We define Ch(X, F) (or Ch(X)) as the ordered linear space of finite
charges on (X, F). We set

[[l] == [l (X).

Theorem 7.10 (1) Ch(X,F) is a Banach space.
(2) Ch(X,F) is a complete lattice.
(3) 0< < v implies |u] < |v]]

7.7 Measures with a density
Theorem 7.11 Let (X, F,u) be a space with a measure. Let f € M (X) Then

Fo3A—v(A) = /1Afd,u (7.37)

is a measure. If f € M(X) and f— € LY(u), then (7.37) is a bounded from below charge.

Definition 7.12 The measure v is called the measure with the density f wrt the measure v and is denoted

v = fu. We will also write f := ng:‘
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Theorem 7.13 (1) For f,g € M (X) we have
f=gp-ae= fu=gu
(2) If fu is sum-finite, then the converse implication is also true.

Proof. The implication = is obvious. Let us show the converse statement.
First assume that fu is finite, or in other words f € £(u). Let N := {f < g} and

h:= glN *f]-N~

Clearly, fly < f and gly < g. Hence, fly € LY(u), gln € L' (u). Therefore, h € L£1(u). Besides,
J hdp=0and h > 0. Thus h =0 p-a.e. But N = {h > 0}. Hence pu(N) = 0.

Assume now that p is sum-finite. Let X; be a localizing family. Then fu = gu restricted to X;. Hence
fi = g; on X; almost everywhere wrt the measure p restricted to X;. This implies that f = g p-a.e. O

Recall that the charge v is called continuous wrt p (or p-continuous), if
wWN)=0=v(N)=0, NeclF.

Theorem 7.14 (Radon-Nikodym) Let pv be a sum-finite measure on (X,F) and let v be a charge.
Then the following conditions are equivalent:

(1) there exists f € M(X) such that v = fu and f_ € LY (u);

(2) v is p-continuous.

Proof. The implication = is obvious. Let us show the converse statement.
Step 0. If © =0, then v = 0, and the theorem is obviously true.
Step 1. Assume that 0 < u(X) < oo, v(X) < oo. Let

G:={ge M (F) : gn<v}.

Clearly, G is non-empty, since 0 € G.
We have
g,h € G=sup(g,h) €G.

In fact, if A; :={g < h}, Ay :={g > h} and A € F, then

/ sup(g, h)dp = / gdp + / hdpy <v(AN A1) +v(ANAy) =v(A4).
A ANA, ANA,
Let
v :=sup{[gdu : g€ G} (7.38)
Then v < v(X) < co. We can find g, € G such that

Let
f = sup(gy,)nen.
We claim that
f €Gand /gdu =. (7.39)
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In fact, we have
gn =sup(gy,---,9,) €G, gn |,
which immediately implies (7.39).
Suppose now that
(f1)(X) < v(X). (7.40)

Using p(X) < oo, we can find § > 0 such that

Bu(X) <v(X) = (fu)(X).

Set

p(A) :=v(A) = (fu)(A) = Bu(A), AeF.
p is a bounded p-continuous charge satisfying p(X) > 0. By Lemma 7.9, we can find a p-positive set
E € F such that p(F) > 0. Recall that p-positivity of F means that

Ac2PnF = p(A) >0.

Hence fo = f+ Blg € G.
Note that the p-continuity of the charge p and p(E) > 0 implies u(E) > 0. Hence

/fodu:/fdu+ﬁu(E) =7+ Bu(E) >,

which is a contradiction with (7.38).

Step 2. v is o-finite, p is finite. We decompose X into a disjoint union of sets of finite measure v
and use Step 1.

Step 3. v is arbitrary, u is finite. Let . :={A € F : v(A) < co} and a :=sup{u(A) : A€ F}.
We can find A,, € Ff such that lim, ;. it(A,) = a. We can assume that A,,  Xy. Then v on Xy is

v

o-finite and on X; := X\ X, it has the property
or u(A) = v(4) = 0,
or u(A) >0, v(A) = .

In fact, if A C Xy, u(A) > 0 and v(A) < oo, then A, UA € FL and u(A, UA) 7 a+ u(A), which means
1(A) = 0. We apply Step 2. to Xy and on X; we put v = oop.

Step 4. v is arbitrary and p sum-finite. We decompose X into a union of disjoint sets with a finite
measure p and use Step 3. O

7.8 Dual of L”(u)

Theorem 7.15 Let (X, F,u) be a space with a measure, 1 < p < oo and % + % =1. For g € L(u) set
wolf)i= [ afdu. £ e, (7.41)
Then
(1) vy € (LP()* and |lvg| = llgllq- Thus
Li(p) 3 g = vy € LP(u)* (7.42)

18 an isometry.
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F=TIrr 2 / TR (7.43)

Vi is a functional tangent to f.

(3) Let 1 < p < oo and let p be sum-finite. Then for v, a bounded functional on LP(u), there exists a
unique g € L7 such that (7.41) holds. Thus, the map (7.42) is bijective.

Proof. (1) Using the Holder inequality we check that if g € L9(u), then vy € LP(u)# and |lug < ||g]l4-
Setting

5= glgl"/( / g9V, (7.44)

we see that(vg|g) = |[gllq and [|g]l, = 1. Hence [jv | = [|g]lq-
(3) To prove the existence first assume that the measure is finite and v € LP(u)#. Then

F3Aes (v]14)

is a p-continuous finite charge. By the Radon-Nikodym Theorem, there exists g € M(X) such that

(0[1,) = / gLadp,

Assume that g € L9(u) Clearly, g+ & L%(u) or g— ¢ L%(u). Hence it is sufficient to assume that g > 0.
We can find g, € E4(X) such that g, ~ g. Clearly, ||gnllq — 00. Set Gy, := g7 1/([ |gn|?)'/P. Clearly,
Gn € LP(p), [|gn|l = 1 and

(vlGa) = / 998~ dp/( / a7 > lgally = 0.

Hence v is not bounded.

Thus g € L(p). We already know that v, is bounded and it coincides with v on £(X), which is dense
in LP(u). Hence (7.41) is true for all f € LP(u)

The uniqueness follows from Theorem (7.13) (2). O

Theorem 7.16 Let u be sum-finite. Then L (u) is a complete lattice.

8 Measures on topological spaces

8.1 J-open and o-closed sets

If X is a topological space, we will write Open(X), Open,(X), Closed(X) and Compact(X) for the family
of open, open pre-compact, closed and compact subsets of X.

Definition 8.1 §-open sets are countable intersection of open sets.
o-closed sets are countable unions of closed sets.

The complement of a o-closed set is a d-open set and vice versa.

Theorem 8.2 Let X be a metrizable space. Then every closed set is d-open.
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Proof. Let C be closed. Define
Cpi={reX : d(z,C) < 1/n}.

Then C,, are open and

Hence C' is a §-open set. O

8.2 Baire and Borel sets of 1st kind

Theorem 8.3 (1) Let f € C(X,R). Then f~!(Ja,0[) € Open N o—Closed(X).

(2) Let X be normal and A € Open N oc—Closed(X). Then there exists f € C(X,R) such that A =
F~ (e, o)

Proof. We have

a4+ 1/n, 00]) (8.45)

(@

f'(a,00]) =

n=1

Clearly, (8.45) are o-closed.
Let

A= G A,
n=1

be open o-closed and A,, let be closed. We can then find f,, € C'(X) such that 0 < f <1, f, =1 on A,
and f,, = 0 outside A. We define

fi=Y 27" fn
n=1
Then
A= fﬁl(]ov OOD
O

Definition 8.4 Let X be a topological space. Then the o—field of Baire sets of 1st kind, denoted
Bairey (X)), is the smallest o—field such that all elements of C(X,R) are measurable.

Theorem 8.5 Let X be normal, A C B C X, A be closed and B open. Then there exist Ay €
Closed N Bairey (X) and By € Open N Bairey (X) such that A C By C Ay C B.

Proof. We can find f € C(X,R) such that f =0 on A and f =1 on X\B. Then f~1(] — o0, 1[) €
Open N Baire; (X) and f~!(] — o0, 3]) € Closed N Baire; (X). O

Theorem 8.6 (1) In any topological space, Baire,(X) is generated e.g. by
() : U< Open(R). f € C(X,R)},
{f~YC) : C € Closed(R), f € C(X,R)},
{f'Ja,[, a€R, feC(X,R).
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(2) If X is normal, then Baire; (X) is generated by
Open N o—Closed(X),
Closed N §—Open(X).
Theorem 8.7 Let X be compact Hausdorff. Then
(1) Open N Baire;(X) = Open N o—Closed(X),
(2) Closed N Baire; (X) = Closed N §—Open(X).
Proof. It is sufficient to prove (2) C.

Let C be closed Baire. By Theorem 1.8, there exists a countable family Cy,Cs,... of o-closed sets
such that C' € o0 —Ring(C4,Cs,...). We can find functions f,, € C(X) such that {f, =0} = C,,. Then

d(xay) = Z 2in‘fn(z) - fn(y)|

is a semimetric on X. R
Let (X, d) be the reduced metric space and T : X — X the corresponding reduction. Clearly, = € C,,,
d(z,y) = 0 imply y € C,,. Therefore, T*2X contains C, Cs, . . ..
72X is a o-ring. Hence i
T7*2% 5> o —Ring(Cy, Cs,...).

Thus there exists C € 2% with C = T-1C. But C'is compact and T continuous. Therefore, C' is compact
as well. Thus C is a closed subset of a metric space, and hence it is o-open. Hence there exist open
Uy,Us,... in X with U, \, C. Now T~'U, are open in X and T-'U, \,C. O

Definition 8.8 o-field of Borel sets of 1st kind, denoted Borel;(X), is the o—field generated by open
sets.

Clearly, Baire; (X) C Borel; (X).
Theorem 8.9 If X is metrizable, then Baire; (X) = Borel; (X).

Proof. In a metrizable space every open set is o-closed. O

Example 8.10 Let I be uncountable and X; be sets of at least two elements. Let X = [[ X;. Then
i€l

one-element sets in X are closed (hence Borel) but not §-open (hence not Baire). In fact, letx € Y C X

andY be d-open. ThenY contains a subset of the form [] Y: with Y; = X; for all but a countable number

icl
ofiel.

8.3 Baire and Borel sets of 2nd kind

Theorem 8.11 (1) Let f € Co(X,R) and o > 0. Then f~1(]0,00]) € Open N o—Compact(X).

(2) Let X be Tikhonov and A € Open N o—Compact(X). Then there exists f € C.(X,R) such that
A= f7(]0,00)

Definition 8.12 Let X be a topological space. Then the o-ring of Baire sets of 2nd kind, denoted
Bairey (X)), is the smallest o—ring such that all elements of C.(X) are measurable.
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Lemma 8.13 Let X be Tikhonov, A C B C X, A be compact and B open.

Compact N Bairea(X) and By € Open N Baireo(X) such that A C By C Ag C B.

Theorem 8.14 (1) Baires(X) is is generated by

{f7HU) : U € Open(R\{0}), f € Ce(X)};
{f~4C) : K € Closed(R\{0}), f € C.(X)},

{fil(]avoo[)v fﬁl(] - oo,—a[), 0< avf € CC(X)}

(2) The closures of all elements of Baires(X) are o-compact.

(3) If X is Tikhonov, then Baires(X) is generated by
Open N o—Compact(X),
Compact N §—Open(X).

Theorem 8.15 Let X be Tikhonov. Then
(1) Compact N Baireg(X) = Compact N d—Open(X).
(2) Open N Bairez(X) = Open N o—Compact(X)

Then there ewist Ay €

Definition 8.16 o-ring of Borel sets of 2nd kind, denoted Borely(X), is the o—ring generated by compact

sets.
Clearly, Bairep(X) C Borely(X).

Theorem 8.17 If X is metrizable, then Baires(X) = Borela(X).

Theorem 8.18 For o-compact spaces Baire; (X) = Baires(X) and Borel; (X) =

Borelp(X).

In what follows, we will consider o-rings of sets only on locally compact Hausdorff spaces. We will
use the o-rings Bairep(X) and Borelz(X). We will call them simply Baire and Borel o-rings and denote
by Baire(X) and Borel(X) respectively. For o-compact spaces they are in fact o-fields and coincide with

Baire; (X) and Borel; (X)) respectively.

8.4 Baire measures on compact spaces

Let X be a compact Hausdorff space. A finite measure on Baire(X) is called a Baire measure on X.
A linear functional A : C(X) — R is called a positive functional (or a Radon measure) if

fec(X), f=0= A(f)>0.
Theorem 8.19 Let v be a Baire measure. Then

O(X)afH/fdyeR

is a positive linear functional.
(1) If C € Closed N Baire(X), then

(8.46)

v(C)=if{[fdv : feC(X), f=1on C, 0< <1}
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(2) If U € Open N Baire(X), then
v(U)=sup{[ fdv : feC(X), suppf CU, 0<f<1}.

Proof. The positivity is obvious.

Let us prove (1). The inequality < is obvious.

There exists a sequence Uy, Us -+ € Open(X) such that U, \, C. Let f,, € C(X), suppf, C Uy,
0< f,<1,and f, = 1 on C. Then f, — 1¢ pointwise, f,, <1 € £!(u). Hence by the Lebesgue theorem

lim [ f,dv =v(C).

n—oo

This shows the inequality >. O

Theorem 8.20 (Riesz-Markov) Let A be a positive linear functional on C(X). Then there exists a
unique Baire measure v satisfying

= / fdv, feC(X). (8.47)

The proof of Theorem 8.20 will be split into a number of steps. Let us assume that we are given a
positive functional .

Lemma 8.21 A Baire measure satisfying (8.47) is uniquely determined.

Proof. By Theorem 8.19 (1), v is uniquely determined by A on Closed N Baire(X). This is a N-stable
family that generates Baire(X). Hence v is uniquely determined. O

For U € Open N Baire(X) we set
vi(U) :=sup{A(f) : f e C(X), suppf CU, 0< f<1} (8.48)
For any A € 2% we set
v*(A) :=inf{r*(U) : ACU, U e Openn Baire(X)}. (8.49)
(For U € Open N Baire(X), (8.48) agrees with (8.49)).
Lemma 8.22 v* is an external measure.

Proof. We need to show that

t—)é
C8

If the sum on the right is infinite, the inequality is obvious. Assume it is finite. We will find U; €
Open N Baire(X) with A; C U; and

v (U;) < v (4) + 27

Let f € C(X) satisfy 0 < f <1,

supprfjAjiu* UA < Mf

j=1
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By the compactness of suppf, for some n,
suppf C U Uj.
j=1
We will find hq,...,h, € C(X) such that h; > 0, supph; C U; and Z?Zl hj =1 on suppf. Hence,
v (UVOLO=1 Ap) <v* (UZO=1 Un)
SAf) +e=21_ 1 A(fhy) +e
< Zzozl v*(Un) + €
S ot Vi (An) + e300 27 e =300 v (An) + 26
O

Lemma 8.23 All Baire sets on X are v*-measurable.

Proof. It suffices to show that open Baire sets are v*-measurable. Let U be open and Q € 2%.
Let A € Open N Baire(X) such that @ C A and v*(A4) < v*(Q) + €. Consider the set A; :=ANU €
Open N Baire(X). Let fi € C(A) such that 0 < f; <1, suppf; C 4; and

I/*(Al) S A(fl) + €.

Next consider set As := A\suppf; € Open. We will find fo € C(X) such that 0 < fo <1, suppfs C A
and

v(Az2) < A(f2) e
We have 0 < f1 + f» < 1 and supp(fi + fo) C A. Besides, QN U C A; and Q\U C A,. Hence
v (QNU) + v (Q\U)
< v*(A41) +v*(Ag)
S A1) + A(f2) + 26 = A(f1 + f2) + 2¢
< v*(A) + 2¢ < v*(Q) + 3e.

Hence,

vI(QNU) + v (Q\U) <v*(A).
Hence U is v*-measurable. O

Set v to be equal to v* restricted to Baire(X). By Lemmas 8.22 and 8.23 it is a Baire measure.

Lemma 8.24 Let f € C(X). Then
A = [ ran

Proof. We can assume that 0 < f < 1. Set

Unuj = {f > j/ﬂ}, On,j = {f Z ]/n}
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Let gn,; € C(X) with suppg,,; C Uy, ; and 0 < g, ; < 1. Set

1 n—1
9n ‘= ﬁ Zgn,j-
j=1
Then g, < f. Hence
n—1
1
Af) = Mgn) = " Z A(gn.j)
j=1
Thus
1 n—1
A(Sf) > " v(Uy,j) = /fndu,

where f, ==+ Z;l;ll ly, - But f, = fand 0 < f, < 1. Hence [ fodv — [ fdv. Thus

n

A= [ san
We will find a sequence of open sets W,, such that W, \, suppf. Choose functions g, ; such that
Suppgn,O C Wh, gn,O = 1 on suppf; Suppgn,j - Un,j, gn,j =1on Cn,j+1~ Set g = %Z;L;ol gn,j- Then
f < gn. Thus
M) < AGn) = £ 350 Mdnj)
< 2v(Wa) + 5 2520 vUng) = (W) + [ fadv,

where fn = %Z?;ll 1y, ;- We have fn — fand 0 < fn < 1. Hence, by the Lebesgue theorem,
[ fudv — [ fdv. Hence

() < / fdv.
O

Proof of Theorem 8.20. We define the Baire measure v as described before Lemma 8.24. By Lemma
8.24, A(f) = [ fdv. By Lemma 8.21, v is uniquely defined. O

Theorem 8.25 Let v be a Baire measure on X. Then it satisfies the following reqularity properties:
(1) v(A) =inf{v(U) : ACU, U € OpennBaire(X)}, A € Baire(X);

(2) v(A) =sup{v(C) : C C A, C € Closed NBaire(X)} A € Baire(X).

Proof. We define A\ by the formula (8.46). We construct the corresponding v*. By construction, it

satisfies
v*(A) =inf{v*(U) : ACU, U € Openn Baire(X)}.

But on Baire(X) v* coincides with v. Hence it satisfies the property (1). O
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8.5 Borel measures on compact spaces

Let X be a compact Hausdorff space. A finite measure on Borel(X) is called a Borel measure on X.

Theorem 8.26 Let i be a Borel measure on X. The following condtions are equivalent:
(1) w(A) =inf{u(U) : AcCU, U € Open(X)}, A € Borel(X).
(2) u(A) =sup{u(C) : C C A, C € Closed(X)}, A € Borel(X)..

If the above conditions are satisfied then p is called a regular Borel (or Radon) measure on X.
Proof of Theorem 8.26 Using u(X) < oo, we get

p(A) = p(X) — p(X\A),
inf{u(U) : U € Open(X)} = u(X) —sup{u(C) : C € Closed(X)}.
a

Theorem 8.27 Let v be a Baire measure on X. Then there exists a unique regular Borel measure p
extending v. It has the following properties:

(1) If U € Open(X), then
pu(U) =sup{r(C) : C cU, C € BaireN Closed(X)};

(2) If C € Closed(X), then

w(C) =inf{v(U) : C CU, U € BaireN Open(X)}.

Theorems 8.19 and8.27 imply the following version of the Riesz-Markov theorem:

Theorem 8.28 Let A\ be a positive linear functional on C(X). Then there exists a unique regular Borel
measure p satisfying

() = / fdu, feC(X). (8.50)

Proof of Theorem 8.27 Let us prove (2).
The inequality < is obvious.
For any U € Open(X) such that C C U, There exists an open Baire U; such that C Cc U; C U.

Therefore,
w(C) =if{v(U) : CCU, U € Open(X)}

> inf{v(U) : C C Uy, Uy € Open N Baire(X)}.

This proves the > inequality.

It follows from (2) that p is uniquely determined on the family of closed sets. But this family is
N-stable and generates Borel(X). Hence y is uniquely determined.

Let us now describe the proof of the existence of p. Define A as in (). Then for U € Open(X) we set

w*(U) :=sup{A(f) : feC(X), suppf CcU, 0< f<1.} (8.51)

For any A € 2% we set
w*(A) :=inf{r*(U) : ACU, U € Open(X)}. (8.52)
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(For U € Open(X), (8.51) agrees with (8.52)).

Exactly as in the previous subsection, we show that u* is an external measure and Borel sets are
p*-measurable. We define p to be the restriction of p* to Borel(X). By (8.52), it is a regular Borel
measure.

Clearly, if U € Open N Baire(X), then

Thus v coincides with g on Open N Baire(X). But this is a N-closed family generating Baire(X). Hence
v coincides with p on Baire(X). O

8.6 Baire measures on locally compact spaces

Let X be a locally compact space. A measure on Baire(X) finite on compact sets is called a Baire measure
on X.
A linear functional A : C.(X) — R is called a positive functional if

FeCU(X), £>0 = AFf)>0.

Theorem 8.29 Let v be a Baire measure. Then
Co(X) 3 fros / fdv €R (8.53)

is a positive linear functional.
(1) If C € Compact N Baire(X), then

v(C)=inf{[ fdv : feCuX), f=1o0on C, 0< f<1}.
(2) If U € Openy N Baire(X), then

v(U)=sup{[ fdv : f e C.(X), suppf CU, 0<f<1}.

The following theorem is called the Riesz-Markov Theorem.

Theorem 8.30 Let A be a positive linear functional on C.(X). Then there exists a unique Baire measure
v satisfying

Af) = / fdv, feCu(X). (8.54)

Theorem 8.31 Let v be a Baire measure on X. Then it satisfies the following reqularity properties:
(1) v(A) =inf{v(U) : ACU, U € Open,NBaire(X)}, A € Baire(X);
(2) v(A) =sup{r(C) : C C A, C € Compact NBaire(X)} A € Baire(X).
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8.7 Borel measures on locally compact spaces

A measure on Borel(X) finite on compact sets is called a Borel measure on X.

Theorem 8.32 Let i be a Borel measure on X. The following condtions are equivalent:
(1) p(A) =inf{uw(U) : ACU, U € Openy(X)}, A € Borel(X).
(2) p(A) =sup{p(C) : C C A, C € Compact(X)}, A € Borel(X).

If the above conditions are satisfied then p is called a regular Borel (or Radon) measure on X.

Theorem 8.33 Let v be a Baire measure on X. Then there exists a unique regular Borel measure p
extending v. It has the following properties:

(1) If U € Openy(X), then

w(U) =sup{v(C) : C CU, C € Baire N Compact(X)};

(2) If C € Compact(X), then

w(C) =inf{v(U) : C cU, U € Bairen Open(X)}.

Theorems 8.29 and8.33 imply the following version of the Riesz-Markov theorem:

Theorem 8.34 Let \ be a positive linear functional on Co(X). Then there exists a unique reqular Borel
measure p satisfying

NH = [ £ fecn. (8.55)

9 Measures on infinite Cartesian products

9.1 Infinite Cartesian products
Let X;, i € I be a family of sets. For any K C J C I we can define the map

™ X< Xy = x Xy,
jer KEK

KJ

where for ;5 = (xj)jes € x X;, 772y is (xk)kex. Clearly, M C K C J implies
jeJ

MK _KJ _ _MJ

If (X;,F;), i € I is a family of sets with o-fields, then for J C I we set ‘;J F; to be the family of
j

subsets of x X of the form x A; with 4; € F; and A; = X; for all but a finite number of j € J. We
JjeJ jeJ
set ® F; :=oc—Field( * F;).
jedJ jeJ

Clearly, the maps 7% for K C J C I are measurable.
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9.2 Compatible measures

Let (X;, F;), i € I is a family of sets with o-fields. Let K C J C I and py, ux are probabilistic measures
on( x X;, ® Fj)and ( x Xj, ® Fy)respectively. We say that they are compatible iff 7 7. 17 = pg,
jeJ jeJ keK keK

that means

/ Flax)dus () = / Fx) s Exe 20 5)-

Theorem 9.1 If u; is a measure on ( X X;, ® F;), then for any K C J C I, the measures Ty «ji1
iel i€l
and Ty« pip are compatible.

9.3 Infinite tensor product of measures

Theorem 9.2 (X;, F;, 1), i € I, be a family of spaces with probabilistic measures. Then there exists

a unique measure @ p; on ( X X;, & F;) such that for any A; € F;, where all but a finite number of
i€l iel el

Ai = Xi7

@ i X Ai) = I0 pi(Aq).
i€l i€l el
K c JC1, the measures @ p; and ® py are compatible.
JeJ kEK

9.4 The Kolmogorov theorem

Suppose that X;, ¢ € I, is a family of compact sets.

Theorem 9.3 Suppose that for any finite set J € 2! we are given a Baire measure vy on x Xj.

jeJ
Assume that for any finite K, J € 21 with K C J, vk is compatible with vy. Then there exists a unique
Baire measure vy on x X; compatible with all vy for finite J.

iel

Proof. It is easy to see that the family of measures ;1 defines a regular content on Ring(}*l Baire(Xi)).
1€

By Theorem 6.1, it is a premeasure. Hence it admits a unique extension to

o—Ring (Ring (lgl Baire(Xi))) = Baire(iél Xi).

a

Theorem 9.4 Let X;, i € I be a family of topological spaces. Then Baire; (][] X;) = ® Baire; (X;).

icl iel
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