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być pominięte przy lekturze.

1 Płaszczyzna zespolona

1.1 Ciało liczb zespolonych

Liczby zespolone definiujemy jako C := R2 wyposażone w działanie

(x1, y1)(x2, y2) := (x1x2 − y1y2, x1y2 + y1x2).

Jest to ciało. Wprowadzamy oznaczenie i := (0, 1). Zanurzamy R→ C przez

R 3 x 7→ (x, 0) ∈ C.
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Jest to homomorfizm ciał. Każdy element C może być zapisany jako

z = x+ iy = (x, y), x, y ∈ R.

Wprowadźmy odwzorowanie
z = x+ iy 7→ z := x− iy.

Jest ono jest automorfizmem ciała C, tzn jest to bijekcja spełniająca

z1 + z2 = z1 + z2, z1z2 = z1 · z2.

Definiujemy też

Rez := x = 1
2(z + z), Imz := y = 1

2i(z − z),

|z| :=
√
zz =

√
x2 + y2.

Mamy
|z1 + z2| ≤ |z1|+ |z2|, |z| = 0 ⇔ z = 0.

Kładziemy

R+ := {x ∈ R : x > 0}, C+ := {z ∈ C : Imz > 0},

R× := R\{0}, C× := C\{0},

K(z0, r) := {z ∈ C : |z − z0| < r}, gdzie z0 ∈ C, r > 0.

1.2 Macierze 2x2

Zbiór macierzy zespolonych 2x2 oznaczamy przez M(2,C). Typowa notacja:

A =

[
a b
c d

]
∈M(2,C) (1.1)

z =

[
z1

z2

]
∈ C2.

Macierze działają na wektory

Az =

[
az1 + bz2

cz1 + dz2

]
.

Podobną notację stosujemy dla macierzy rzeczywistych, zastępując C przez R.
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1.3 Liczby zespolone jako podgrupa M(2,R)

Zdefinujmy

C 3 (x+ iy) 7→ ψ(x+ iy) :=

[
x y
−y x

]
∈M(2,R)

Mamy wtedy
ψ(z1 + z2) = ψ(z1) + ψ(z2), ψ(z1z2) = ψ(z1)ψ(z2),

ψ(z) = ψ(z)t.

Czyli obraz ψ jest ciałem wewnątrz M(2,R) i ψ jest izomorfizmem. Obraz ψ jest równy{
A ∈M2(R) : A

[
0 1
−1 0

]
=

[
0 1
−1 0

]
A

}
=

{[
x y
−y x

]
: x, y ∈ R

}
Wprowadźmy również identyfikację χ : C→ R2:

χ(z) = (x, y), z = x+ iy.

Mamy
χ(az) = ψ(a)χ(z).

Jeśli a = b+ ic = reiφ to mnożenie przez a ma interpretację obrotu o kąt φ i skalowania o r.

1.4 Odwzorowania afiniczne

Odwzorowania C postaci
C 3 z 7→ g(z) = az + b ∈ C (1.2)

gdzie a 6= 0 nazywamy transformacjami afinicznymi płaszczyzny zespolonej.

Twierdzenie 1.1 Odwzorowania afiniczne są bijekcjami C. Jeśli (z1, z2) są dwoma różnymi
punktami w C i (w1, w2) są dwoma różnymi punktami w C to istnieje dokładnie jedno odwzoro-
wanie afiniczne g takie, że

g(z1) = w1, g(z2) = w2.

Transformacje afiniczne tworzą grupę. Niech

AGL(1,C) :=

{[
a b
0 1

]
: a ∈ C×, b ∈ C

}
,

Jeśli dla A =

[
a b
0 1

]
hA oznacza transformację (1.2), to AGL(1,C) 3 A 7→ hA jest izomor-

fizmem grupy AGL(1,C) na grupę transformacji afinicznych.
Dla z1, z2, z3 ∈ C, z1 6= z2, z2 6= z3 zdefiniujmy

(z1, z2; z3) :=
z1 − z3

z2 − z3
.

Wtedy jeśli g jest odwzorowaniem afinicznym, to

(g(z1), g(z2); g(z3)) = (z1, z2; z3).
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1.5 GL(2,C)

Wyznacznik macierzy A:
detA = ad− bc.

Macierze odwracalne stanowią grupę:

GL(2,C) := {A ∈M(2,C) : detA 6= 0}.

Mamy izomorfizm
GL(2,C) 3 A 7→ (A−1)t ∈ GL(2,C).

Dla macierzy (1.1) jest on równy

(A−1)t = (ad− bc)−1

[
d −c
−b a

]
.

Definiujemy
SL(2,C) := {A ∈M(2,C) : detA = 1}.

Jeśli A ∈ GL(2,C) i λ2 = detA, to

λ−1A ∈ SL(2,C).

Dla A ∈ SL(2,C)

(A−1)t =

[
0 1
−1 0

]
A

[
0 −1
1 0

]
.

Centrum SL(2,C) stanowi dwuelementowa grupa Z(SL(2,C)) = {1,−1}. Wprowadzamy
oznaczenie

PSL(2,C) := SL(2,C)/{1,−1}.

2 Sfera Riemanna

2.1 Sfera Riemanna

Definicja 2.1 Sferą Riemanna nazywamy zbiór

C := C ∪ {∞}.

Mówimy, że Ω ⊂ C jest otwarty w C, gdy Ω∩C jest otwarty w C i jeśli ∞ ∈ Ω, to istnieje R > 0
takie, że

C\K(0, R) ⊂ Ω.

Jeśli w C2\{0} wprowadzimy relację

w ∼ v ⇔ ∃λ∈C× λw = v

Jest to relacja równoważności. (C2\{0})/ ∼ jest oznaczane przez CP. CP można utożsamić z C:

CP 3 C×
[
w1

w2

]
7→ w1

w2
∈ C.
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2.2 Homografie

Definicja 2.2 Odwzorowanie C 3 z 7→ h(z) ∈ C nazywamy homografią, jeśli jest postaci

h(z) =


az+b
cz+d z 6= −d

c ,∞,
∞ z = −d

c ,
a
c z =∞.

, (2.3)

gdzie a, b, c, d ∈ C i ad − bc 6= 0. Taką homografię będziemy też oznaczali hA. Zbiór homografii
oznaczamy przez Homog.

Zauważmy, że jeśli ad− bc = 0, to odwzorowanie (2.3) redukuje się do stałej.

Twierdzenie 2.3 Homografie są bijekcjami C w siebie. Tworzą grupę odwzorowań. Odwzoro-
wanie

GL(2,C) 3 A 7→ hA ∈ Homog

jest surjektywnym homomorfizmem grup
Innymi słowy,

hA1hA2 = hA1A2 .

Mamy
hA1 = hA2

wtedy i tylko wtedy, gdy istnieje λ ∈ C\{0} takie, że

A1 = λA2

Dowód. Jeśli c = 0, to homografia jest odwzorowaniem afinicznym, więc jest bijekcją. Załóżmy,
że c 6= 0. Wtedy można ją przedstawić jako

h = g2kg1 (2.4)

gdzie
g1(z) = cz + d,

k(z) = z−1,

g2(z) = −ad−bc
c z + a

c .

Wszystkie te odwzorowania są oczywiście bijekcjami, co dowodzi bijektywności h. 2

Jeśli λ2 = ac − bd 6= 0, to przez zamianę
[
a b
c d

]
na 1

λ

[
a b
c d

]
nie zmieniamy samej

homografii i gwarantujemy, że jest ona sparametryzowna przez element SL(2,C). Dla każdej

homografii istnieją wtedy dokładnie 2 macierze z SL(2,C) zadające tę homografię:
[
a b
c d

]
i[

−a −b
−c −d

]
.
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Zamiast zatem parametryzować homografie elementami GL(2,C), lepiej jest używać do tego
celu elementów SL(2,C). Można też używać elementów PSL(2,C) kładąc

h±A := hA

gdzie nadużywamy notacji używając symbolu h w dwóch znaczeniach. Wtedy

PSL(2,C) 3 ±A 7→ h±A ∈ Homog

jest izomorfizmem grup.
Mamy następujący związek między reprezentacjami GL(2,C) w C2 i C.

Twierdzenie 2.4 Niech

C2\{(0, 0)} 3
[
z1

z2

]
7→ π

[
z1

z2

]
:=

z1

z2
∈ C

Wtedy
π◦A = hA◦π

Dowód.

π◦A

[
z1

z2

]
= π

[
az1 + bz2

cz1 + dz2

]
= az1+bz2

cz1+dz2
=

a
z1
z2

+b

c
z1
z2

+d

= hA

(
z1
z2

)
= hA◦π

[
z1

z2

]
.

2

2.3 Własności homografii

Lemat 2.5 Homografie zachowujące ∞ to przekształcenia afiniczne.

Lemat 2.6 Homografia
h1(z) :=

z − z1

z − z2

z3 − z2

z3 − z1

przekształca (z1, z2, z3) w (0,∞, 1).

Twierdzenie 2.7 Jeśli (z1, z2, z3) są trzema różnymi punktami w C i (w1, w2, w3) są trzema
różnymi punktami w C to istnieje dokładnie jedna homografia h taka, że

h(z1) = w1, h(z2) = w2, h(z3) = w3. (2.5)

Dowód. Niech h1 przekształca (z1, z2, z3) w (0,∞, 1) i h2 przekształca (w1, w2, w3) w (0,∞, 1).
Wtedy szukana homografia jest równa h−1

2 h1.
Pokażemy, że warunek (2.5) wyznacza homografię h jednoznacznie. Najpierw zauważmy, że

jeśli z3 = w3 =∞, to jednoznaczność wynika z Twierdzenia 1.1.
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Niech teraz g, k będą homografiami takimi, że

g(0) = z1, g(1) = z2, g(∞) = z3, k(w1) = 0, k(w2) = 1, k(w3) =∞.

Wtedy
khig(0) = 0, khig(1) = 1, khig(∞) =∞, i = 1, 2.

Zatem
kh1g = kh2g. (2.6)

Mnożymy (2.6) z lewej przez k−1 a z prawej przez g−1 i dostajemy h1 = h2. 2

Jeśli z1, z2, z3, z4 jest czwórką parami różnych punktów z C, to liczbę

(z1, z2; z3, z4) :=
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

nazywamy dwustosunkiem tej czwórki punktów.

Twierdzenie 2.8 Jeśli h jest homografią, to

(z1, z2; z3, z4) = (h(z1), h(z2);h(z3), h(z4)).

Jeśli z1, z2, z3, z4 i w1, w2, w3, w4 są dwiema czwórkami, to istnieje homografia przekształcająca
jedną w drugą ⇔ (z1, z2; z3, z4) = (w1, w2;w3, w4)

2.4 Okręgi uogólnione

Definicja 2.9 Uzwarconą prostą rzeczywistą nazywamy zbiór

R := R ∪ {∞}.

Mówimy, że Ω ⊂ R jest otwarty w R, gdy Ω∩R jest otwarty w R i jeśli ∞ ∈ Ω, to istnieje R > 0
takie, że

R\[−R,R] ⊂ Ω.

Ogólniej, uzwarceniem prostej L ⊂ C jest L := L ∪ {∞} ⊂ C.

Definicja 2.10 Okręgiem uogólnionym nazywamy podzbiór C będący okręgiem bądź uzwarconą
prostą.

Twierdzenie 2.11 Okrąg uogólniony jest domknięciem w C miejsc zerowych równania

α11zz + α12z + α21z + α22 = 0, (2.7)

gdzie
α11, α22 ∈ R, α12 = α21 ∈ C, α11α22 − α12α21 < 0.
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Dowód. Okrąg o środku z0 i promieniu r ∈ R+ ma równanie

|z − z0|2 − r2 = 0,

czyli
zz − zz0 − zz0 + z0z0 − r2 = 0. (2.8)

Każdą prostą można zapisać w postaci z = re + ite, gdzie |e| = 1 i r ≥ 0. Ma ona wtedy
równanie

ze+ ze− 2r = 0. (2.9)

Zarówno (2.8) jak i (2.9) są postaci (2.7). 2

Stwierdzenie 2.12 Homografie przekształcają okręgi uogólnione w okręgi uogólnione. Punkty
z1, z2, z3, z4 leżą na jednym okręgu uogólnionym wtedy i tylko wtedy, gdy (z1, z2; z3, z4) ∈ R.

Dowód. Na mocy (2.4) wystarczy to sprawdzić dla transformacji afinicznej (co jest oczywiste)
i dla inwersji. Jeśli w = 1

z , to w zmiennej w równanie (2.7) wygląda następująco:

α11 + α12w + α21w + α22ww = 0,

i jest również równaniem postaci (2.7). 2

2.5 Krzywe na sferze Riemanna

Niech [0, 1] 3 τ 7→ γ(τ) ∈ C. Mówimy, że γ jest krzywą (gładką i sparametryzowaną) na C, gdy
1) Jeśli τ0 ∈ [0, 1], to γ jest funkcją gładką w otoczeniu τ0 o nieznikającej pochodnej;
2) Jeśli τ0 ∈ [0, 1] i γ(τ0) =∞, to 1

γ jest funkcją gładką w otoczeniu τ0 o nieznikającej pochodnej.

Stwierdzenie 2.13 Jeśli [0, 1] 3 τ 7→ γ(τ) ∈ C jest krzywą i h jest homografią, to [0, 1] 3 τ 7→
h ◦ γ(τ) ∈ C też jest krzywą.

Niech [0, 1] 3 τ 7→ γi(τ) ∈ C będą krzywymi zaczynającymi się w tym samym punkcie
z0 = γ1(0) = γ2(0). Wtedy kąt między γ1 a γ2 w dla τ = 0 definiujemy jak następuje.
1) Gdy z0 6=∞, to jest to zwykły kąt α ∈ [0, 2π[ między dwiema krzywymi. Można go obliczyć
ze wzoru

eiα =
γ′1(0)γ′2(0)

|γ′1(0)||γ′2(0)|
.

2) Jeśli z0 =∞, to jest to zwykły kąt między krzywymi 1
γ1

a 1
γ2
.

Twierdzenie 2.14 Niech γ1, γ2 będą jak powyżej. Niech h będzie homografią. Wtedy kąt między
γ1 a γ2 dla τ = 0 jest równy kątowi między h◦γ1 a h◦γ2 dla τ = 0.

Dowód. Jest to ogólna własność funkcji holomorficznych z niezerową pochodną. Sprawdzamy,
że

h′(z) = (cz + d)−2,

co jest różne od zera dla C\{−d
c}. Punkty ∞, −d

c rozpatrujemy osobno. 2
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2.6 Grupa U(2)

W C2 definiujemy iloczyn hermitowski skalarny

(z|w) = z1w1 + z2w2.

Grupę macierzy unitarnych definiujemy

U(2) := {A ∈M(2,C) : (Az|Aw) = (z|w), z, w ∈ C2}.

Równoważny warunek: A∗A = 1. Grupa U(2) składa się z macierzy spełniających warunki
|a|2 + |c|2 = 1,

ab+ cd = 0,

|b|2 + |d|2 = 1.

(2.10)

Twierdzenie 2.15 (1) Macierze z U(2) są postaci[
a b

−λb λa

]
, (2.11)

gdzie
|a|2 + |b|2 = 1, |λ| = 1.

Poza tym, λ jest wyznacznikiem macierzy (2.11).
(2) Macierze z SU(2) są postaci [

a b

−b a

]
,

gdzie
|a|2 + |b|2 = 1.

Dowód. Niech
a

d
= −c

b
= λ.

Wtedy b = −λc, d = λa. Wstawiamy to do trzeciego wzoru w (2.10) i dostajemy

|λ|2(|c|2 + |a|2) = 1

Stąd |λ| = 1. Z tego dostajemy c = −λb. Czyli macierz z U(2) jest postaci (2.11), gdzie |λ| = 1.
Wyznacznik (2.11) jest równy λ(|a|2 + |b|2) = λ. Stąd dla SU(2) mamy λ = 1. 2
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2.7 Grupa U(1, 1) i SL(2,R)

Niech

I1,1 :=

[
1 0
0 −1

]
.

W C2 definiujemy iloczyn hermitowski pseudoskalarny

(z|I1,1w) = z1w1 − z2w2.

Grupę macierzy pseudounitarnych definiujemy jako

U(1, 1) := {A ∈M(2,C) : (Az|I1,1Aw) = (z|I1,1w), z, w ∈ C2}.

Równoważne warunki:
A∗I1,1A = I1,1,

albo 
|a|2 − |c|2 = 1,

ab− cd = 0,

|b|2 − |d|2 = −1.

(2.12)

Twierdzenie 2.16 (1) Macierze z U(1, 1) są postaci[
a b

λb λa

]
, (2.13)

gdzie
|λ| = 1, |a|2 − |b|2 = 1.

Poza tym λ jest wyznacznikiem macierzy (2.13).
(2) Macierze z SU(1, 1) są postaci [

a b

b a

]
,

gdzie
|a|2 − |b|2 = 1.

Dowód. Niech
a

d
=
c

b
= λ.

Wtedy b = λc, d = λa. Wstawiamy to do trzeciego wzoru w (2.12) i dostajemy

|λ|2(|c|2 − |a|2) = −1

Stąd |λ| = 1. Z tego dostajemy c = λb. Czyli macierz z U(1, 1) jest postaci (2.13) Wyznacznik
(2.13) jest równy λ(|a|2 − |b|2) = λ. 2

Definiujemy
SL(2,R) = GL(2,R) ∩ SL(2,C).
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Twierdzenie 2.17 Mamy izomorfizm

SL(2,R) 3 A 7→ BAB−1 ∈ SU(1, 1),

gdzie

B =
1

2

[
1 −i
−i 1

]
, B−1 =

[
1 i
i 1

]
.

Dowód. Mamy

BAB−1 =
1

2

[
a+ ib− ic+ d ia+ b+ c− id
−ia+ b+ c+ id a− ib+ ic+ d

]
=

[
a1 b1
b1 a1

]
i

|a1|2 − |b1|2 = ad− bc = 1

2

2.8 Podgrupa homografii zachowująca punkty antypodalne

W C zdefiniujmy “sprzężenie antypodalne”

j(z) := −1

z
.

Dla z = reiφ mamy j(z) = r−1ei(φ+π). Oczywiście, j2(z) = z. Para punktów {z1, z2} takich, że
j(z1) = z2 (a tym samym j(z2) = z1) nazywa się parą punktów antypodalnych.

Twierdzenie 2.18 Homografie przekształcające pary punktów antypodalnych na pary punktów
antypodalnych, czyli spełniające

hj = jh

są postaci hA dla A ∈ SU(2).

Dowód. Niech A ∈ GL(2,C) i h = hA.

j(h(z)) = j

(
az + b

cz + d

)
=

dj(z)− c
−bj(z) + a

= h(j(z)) =

(
aj(z) + b

cj(z)1 + d

)
.

Zatem [
a b
c d

]
= λ

[
d −c
−b a

]
Zatem |λ| = 1 i c = −λb, d = λa. Dostajemy więc macierz z U(2). 2
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2.9 Podgrupy homografii zachowujących koło uogólnione

W tym podrozdziale opiszemy różne podgrupy grupy homografii i ich reprezentacje przy pomocy
maciery z SL(2,C)

Twierdzenie 2.19 Wszystkie homografie przekształcające C+ w siebie są postaci hA dla A ∈
SL(2,R).

Dowód. Najpierw zauważmy, że h jest ciągłą bijekcją i h−1 jest ciągłe. Zatem obraz brzegu
jest brzegiem obrazu. R jest brzegiem C+. Czyli h(R) = R. Posługując sie lematem 2.6 i
jednoznacznością widzimy, że h = hA dla A ∈ GL(2,R). Mamy

hA(z) = az+b
cz+d

= ac|z|2+(ad+cb)Rez+bd+i(ad−cb)Imz
|cz+d|2

Zatem hA(C+) ⊂ C+ wtedy i tylko wtedy, gdy detA > 0. Możemy wtedy zastąpić A przez
(detA)−

1
2A ∈ SL(2,R) 2

Twierdzenie 2.20 Wszystkie homografie przekształcające koło jednostkowe {z : |z| < 1} w
siebie mają postać hA dla A ∈ SU(1, 1).

Dowód. Pamiętamy, że

SL(2,R) 3 A 7→ BAB−1 = Ã ∈ SU(1, 1),

jest izomorfizmem, gdzie

B =
1

2

[
1 −i
−i 1

]
, B−1 =

[
1 i
i 1

]
.

Zatem
hÃ = hBhA(hB)−1.

Ale
hB(z) =

z − i

−iz + 1

przekształca C+ na {z : |z| < 1}. Mamy bowiem,∣∣∣∣ x+ iy − i

1 + y − ix

∣∣∣∣2 =
x2 + (y − 1)2

x2 + (y + 1)2
< 1 ⇔ z ∈ C+.

To dowodzi tego, że dla Ã ∈ SU(1, 1), hÃ przekształca K(0, 1) na siebie.
Załóżmy teraz, że hÃ dla Ã ∈ SU(1, 1) przekształca K(0, 1) na siebie. Niech

A := B−1ÃB.

Wtedy hA przekształca C+ na siebie. Na mocy Twierdzenia 2.19 A ∈ SL(2,R). 2
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3 Rzut stereograficzny

3.1 Geometria sfery

Przestrzeń R3 wyposażamy w iloczyn skalarny

(x|y) = x1y2 + x2y2 + x3y3.

Rozważmy sferę o średnicy 1
2

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1
4},

W standardowy sposób definiujemy długość krzywej γ na sferze, oznaczaną przez |γ|, pole po-
wierzchni podzbioru Ω, oznaczane przez Sur(Ω), kąt między przecinającymi się krzywymi. Pro-
stą sferyczną (okręgiem wielkim) nazywamy zbiór postaci V ∩ S2, gdzie V jest 2-wymiarową
podprzestrzenią liniową w R3. Zbiór prostych sferycznych oznaczamy przez L(S2).

Grupą izometrii sfery jest O(3).

3.2 Izomorfizm PSU(2) i SO(3)

Niech su(2) oznacza macierze 2×2 bezśladowe antyhermitowskie. Wtedy isu(2) to zbiór macierzy
2× 2 bezśladowych hermitowskich.

TrAB, A,B ∈ isu(2)

zadaje iloczyn skalarny w isu(2).
Wprowadźmy macierze Pauliego

σx =

[
0 1
1 0

]
, σy =

[
0 i
−i 0

]
, σz =

[
1 0
0 −1

]
. (3.14)

(σx, σy, σz) jest bazą ortonormalną w isu(2). Odwzorowanie

R3 3 (x, y, z) 7→ xσx + yσy + zσz ∈ isu(2)

izometrycznie identyfikuje R3 z isu(2).
Dla ±A ∈ PSU(2) definiujemy odwzorowanie liniowe na isu(2) przez

ρ±A(B) := ABA−1.

Twierdzenie 3.1
PSU(2) 3 A 7→ ρA ∈ SO(3)

jest izomorfizmem.
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3.3 Rzut stereograficzny sfery

Niech
S2 := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1

4},

Definiujemy σ : S2 → C
σ(x, y, z) = w = x+iy

1
2
−z

=
1
2

+z

x−iy ∈ C.
(3.15)

σ jest bijekcją:

σ−1(w) = (x, y, z), x+ iy = w
(|w|2+1)

, z = |w|2−1
2(|w|2+1)

.

Rzut stereograficzny pozwala utożsamić S2 z C.

Twierdzenie 3.2 Niech γ będzie krzywą na S2, Ω podzbiorem w S2. Wtedy

|γ| := 2

∫
σ(γ)

(1 + |w|2)−1|dw|, (3.16)

Sur(Ω) = 4

∫
σ(Ω)

(1 + |w|2)−2d2w. (3.17)

σ(L(S2)) jest równe zbiorowi okręgów uogólnionych w C zawierający parę punktów antypodal-
nych (i tym samym niezmienniczych ze względu na j). Jeśli R3 utożsamimy z isu(2), to

σρAσ
−1(w) = hA(w), A ∈ PSU(2), w ∈ C. (3.18)

Poza tym
σ(−1)σ−1(w) = j(w) = −w−1.

Dowód. Udowodnimy (3.18).
Krok 1 Pamiętamy, że S2 jako podzbiór isu(2) jest równe

S2 = {B ∈ iu(2) : TrB = 0, TrB2 =
1

2
}.

Zatem B ma dwie wartości własne równe ±1
2 . Zatem 1

2 + B ma ma wartości własne 0, 1, czyli
jest rzutem ortogonalnym jednowymiarowym. I na odwrót, jeśli P jest rzutem ortogonalnym
jednowymiarowym, to −1

2 + P ∈ S2.

Krok 2. Mamy B + 1
2 =

[
1
2 + z x+ iy
x− iy 1

2 − z

]
. Zatem

Ran(1
2 +B) = C

[
x+ iy
1
2 − z

]
= C

[
1
2 + z
x− iy

]
.

Ran(1
2 + ρA(B)) = RanρA(1

2 +B) = ARan(1
2 +B).
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Krok 3. Niech π : CP→ C bądzie określone jako

π

[
v1

v2

]
=
v1

v2
. (3.19)

(CP można utożsamić ze zbiorem jednowymiarowych podprzestrzeni liniowych w C2). Wtedy

πRan(1
2 +B) = x+iy

1
2
−z = w,

πRan(1
2 + ρA(B)) = πARan(1

2 +B) = hA(πRan(1
2 +B)) = hA(w).

Udowodnijmy (3.16). Zapiszmy w = reiφ. Wtedy

x+ iy =
reiφ

1 + r2
, z =

r2 − 1

2(1 + r2)
; (3.20)

dx+ idy =
reiφi

1 + r2
dφ+

(1− r2)eiφ

(1 + r2)2
dr, dz =

2r

(1 + r2)2
dr, (3.21)

Zatem

dx2 + dy2 + dz2 =
r2dφ2

(1 + r2)2
+

dr2

(1 + r2)2
=

dw2

(1 + r2)2
. (3.22)

To daje metrykę na sferze o promieniu 1
2 . Następnie mnożymy przez 2 żeby dostać metrykę na

sferze jednostkowej. 2

3.4 ∗ Geometria płaszczyzny hiperbolicznej

Przestrzeń R3 wyposażamy w iloczyn skalarny

(x|I2,1y) = x1y2 + x2y2 − x3y3.

Rozważmy hiperboloidę

H2 := {(x, y, z) ∈ R3 : −x2 − y2 + z2 = 1
4 , z > 0},

W standardowy sposób definiujemy długość krzywej γ na H2, oznaczaną przez |γ|, Pole po-
wierzchni podzbioru Ω, oznaczane przez Sur(Ω), kąt między przecinającymi się krzywymi. Pro-
stą hiperboliczną nazywamy zbiór postaci V ∩ H2, gdzie V jest 2-wymiarową podprzestrzenią
liniową w R3. Zbiór prostych hiperbolicznych oznaczamy przez L(H2).

Grupa O↑(2, 1) jest grupą izometrii H2. Ma dwie składowe spójne. Składową spójną jedynki
jest SO↑(2, 1).
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3.5 ∗ Izomorfizm PSU(1, 1) i SO↑(2, 1)

Niech su(1, 1) oznacza zbiór macierzy 2× 2 spełniających I1,1A
∗I1,1 = A. Wyposażamy isu(1, 1)

w iloczyn skalarny
trAB, A,B ∈ isu(1, 1).

(iσx, iσy, σz) jest bazą ortonormalną w isu(1, 1). Odwzorowanie

R3 3 (x, y, z) 7→ xiσx + yiσy + zσz ∈ isu(1, 1)

identyfikuje R3 z isu(1, 1) i zachowuje iloczyn skalarny.

Twierdzenie 3.3
PSU(1, 1) 3 ±A 7→ ρ±A ∈ SO↑(2, 1)

jest izomorfizmem. 2

3.6 ∗ Rzut stereograficzny hiperboloidy

Definiujemy σ : H2 → K(1) ⊂ C

σ(x, y, z) = w = x+iy
1
2
−z

=
1
2

+z

−x+iy ∈ K(1).
(3.23)

σ jest bijekcją:

σ−1(w) = (x, y, z), x+ iy = w
(|w|2−1)

, z = |w|2+1
2(|w|2−1)

.

Rzut sterograficzny pozwala utożsamić geometrię H2 z geometrią K(0, 1).

Twierdzenie 3.4 Niech γ będzie krzywą na H2, Ω podzbiorem w H2. Wtedy

|γ| :=
∫
σ(γ)

(1− |z|2)−1|dz|.

Sur(Ω) =

∫
σ(Ω)

(1− |z|2)−2 dzdz

2
.

σ(L(H2)) jest równe zbiorowi przecięć okręgów w C z K(0, 1), które są prostopadłe do S(0, 1).
Jeśli R3 utożsamimy z isu(1, 1), to

σρAσ
−1(w) = hA(w), A ∈ PSU(1, 1), w ∈ K(0, 1). (3.24)

Cała grupa σO↑(2, 1)σ−1 jest generowana przez {hA : A ∈ PSU(1, 1)} i sprzężenie zespolone.
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Dowód. Udowodnimy (3.25).
Krok 1 Pamiętamy, że H2 jako podzbiór isu(1, 1) jest równy

H2 = {B ∈ iu(2) : TrB = 0, TrB2 =
1

2
, B11 > 0}.

Zatem B ma dwie wartości własne równe ±1
2 . Zatem 1

2 + B ma ma wartości własne 0, 1, czyli
jest rzutem pseudoortogonalnym na jednowymiarową podprzestrzeń dodatnią (składającą się z
wektorów v takich, że (v|I1,1v) > 0). I na odwrót, jeśli P jest rzutem pseudoortogonalnym na
jednowymiarową dodatnią podprzestrzeń, to −1

2 + P ∈ H2.
Krok 2.

Ran(1
2 +B) = C

[
x+ iy
1
2 − z

]
=

[
1
2 + z
−x+ iy

]
,

Ran(1
2 + ρA(B) = RanA(1

2 +B)A−1 = ARan(1
2 +B).

Krok 3. Niech π : CP→ C będzie określone jak w (3.19).
Wtedy

πRan(1
2 +B) = x+iy

1
2
−z = w,

πRan(1
2 + ρA(B)) = πARan(1

2 +B) = hA(πRan(1
2 +B)) = hA(w).

2

3.7 ∗ Izomorfizm PSL(2,C) i SO(3,C)

Niech sl(2,C) oznacza przestrzeń macierzy 2× 2 zespolonych bezśladowych wyposażoną w dwu-
liniową formę

TrAB, A,B ∈ sl(2,C)

Dla ±A ∈ PSL(2,C) definiujemy odwzorowanie liniowe na sl(2,C) przez

ρ±A(B) := ABA−1.

Twierdzenie 3.5
PSL(2,C) 3 ±A 7→ ρ±A ∈ SO(3,C)

jest izomorfizmem. W bazie (3.14), jeśli

A =

[
a b
c d

]
,

to

ρ±A =


1
2(a2 − b2 − c2 + d2) 1

2i(−a
2 − b2 + c2 + d2) (−ab+ cd

1
2i(a

2 − b2 + c2 − d2) 1
2(−a2 − b2 − c2 − d2) i(ab+ cd)

bd− ac −i(bd+ ac) ad+ bc


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Dowód. Mamy

A−1 =

[
d −b
−c a

]
, B =

[
z x+ iy

x− iy −z

]
.

Zatem

ABA−1 =

[
adz + bd(x− iy)− ac(x+ iy) + bcz, −ab− b2(x− iy) + a2(x+ iy)− abz

cdz + d2(x− iy)− c2(x+ iy) + cdz, −bcz − db(x− iy) + ca(x+ iy)− daz

]
.

2

3.8 ∗ Rzut stereograficzny zespolony

Zdefiniujmy sferę zespoloną

W2 := {(x, y, z) ∈ C3 : x2 + y2 + z2 = 1
4},

W0 := {(w−, w+) ∈ C× C : w−w+ = −1} ∪ {(0,∞), (∞, 0)}.

W = C× C\W0.

Definiujemy σ : W2 →W

σ(x, y, z) = (w−, w+) = (x+iy
1
2
−z ,

x−iy
1
2
−z )

= (
1
2

+z

x−iy ,
1
2

+z

x+iy ) ∈W.
(3.25)

(Może się zdarzyć, że x+ iy = 1
2 − z = 0 i x+iy

1
2
−z jest nieoznaczone. Wtedy 1

2 + z 6= 0, zatem
1
2

+z

x−iy

jest oznaczone).
σ jest bijekcją:

σ−1(w−, w+) =
(

w−+w+

2(w−w++1) ,
w−−w+

2i(w−w++1) ,
w−w+−1

2(w−w++1)

)
∈W2.

Twierdzenie 3.6 Jeśli identyfikujemy W2 z podzbiorem sl(2,C), to

σρAσ
−1(w−, w+) =

(
h(A−1)t(w−), hA(w+)

)
, A ∈ PSL(2,C), (w−, w+) ∈W.

Dowód. Krok 1 Pamiętamy, że W2 jako podzbiór sl(2,C) jest równe

W2 = {B : TrB = 0, TrB2 =
1

2
}.

Więc B ma dwie wartości własne równe ±1
2 . Zatem

1
2 +B ma ma wartości własne 0, 1, czyli jest

rzutem jednowymiarowym. I na odwrót, jeśli P jest rzutem jednowymiarowym, to −1
2 +P ∈W2.
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Krok 2. Niech P będzie rzutem jednowymiarowym. Wtedy RanP i RanP t są podprzestrzeniami

jednowymiarowymi takimi, że jedna nie anihiluje drugiej, tzn jeśli
[
v1
−
v2
−

]
∈ RanP t,

[
v1

+

v2
+

]
∈

RanP , to v1
−v

1
+ + v2

−v
2
+ 6= 0. Mamy

Ran(1
2 +Bt) = C

[
x− iy
1
2 − z

]
= C

[
1
2 + z
x+ iy

]
,

Ran(1
2 +B) = C

[
x+ iy
1
2 − z

]
= C

[
1
2 + z
x− iy

]
.

(Patrz uwaga po (3.26)).
Na odwrót, jeśli V−, V+ są jednowymiarowymi podprzestrzeniami takimi, że jedna nie ani-

hiluje drugiej, to istnieje dokładnie jeden rzut jednowymiarowy P taki, że RanP t = V− i
RanP = V+.

Mamy
Ran(1

2 + ρA(B)) = RanρA(1
2 +B) = ARan(1

2 +B),

Ran(1
2 + ρA(B)t) = RanρA(1

2 +B)t = (A−1)tRan(1
2 +Bt).

Krok 3. Niech π bądzie określone jak w (3.19). Wtedy warunek, że podprzestrzenie V− i V+

nie anihilują się wzajemnie jest równoważny temu, że π(V−)π(V+) 6= −1. Zatem odwzorowanie
(V−, V+) 7→ (π(V−), π(V+)) jest bijekcją zbioru par nie anihilujących się wzajemnie jednowymia-
rowych podprzestrzeni liniowych na W .

Zatem

πRan(1
2 +Bt) = x−iy

1
2
−z = w−,

πRan(1
2 +B) = x+iy

1
2
−z = w+,

πRan(1
2 + ρA(B)) = πARan(1

2 +B) = hAπRan(1
2 +B)) = hA(w+),

πRan(1
2 + ρA(B)t) = π(A−1)t(Ran(1

2 +Bt) = h(A−1)tπRan(1
2 +B) = hA(w−).

2

4 Funkcje analityczne

4.1 Definicja funkcji analitycznych

Przypomnijmy najpierw definicję zwykłej pochodnej (w sensie analizy rzeczywistej).
Niech I ⊂ R będzie otwartym podzbiorem i I 3 x 7→ f(x) ∈ C funkcją. Mówimy, że f jest

różniczkowalna w x0 ∈ I, jeśli istnieje

lim
x→x0

f(x)− f(x0)

x− x0
. (4.26)

Granicę tę nazywamy pochodną w sensie zespolonym funkcji f w x0. Jest ona oznaczana przez
∂xf(x0), f ′(x0) lub df(x0)

dx .
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Niech U ⊂ Rn będzie otwartym podzbiorem i U 3 t 7→ F (t) ∈ C funkcją. Mówimy, że F jest
różniczkowalna w t0 ∈ Ω, jeśli istnieje odwzorowanie liniowe A

F (t0 + s) = F (t0) +As+R(s), (4.27)

gdzie lim
|s|→0

R(s)
|s| = 0. A nazywamy pochodną F w punkcie t0 i oznaczamy przez F ′(t0) lub∇F (t0).

Niech Ω ⊂ C będzie otwartym podzbiorem i Ω 3 z 7→ f(z) ∈ C funkcją. Mówimy, że f jest
różniczkowalna w sensie zespolonym w z0 ∈ Ω, jeśli istnieje

lim
z→z0

f(z)− f(z0)

z − z0
. (4.28)

Granicę tę nazywamy pochodną w sensie zespolonym funkcji f w z0. Jest ona oznaczana przez
∂zf(z0), f ′(z0) lub df(z0)

dz .
Będziemy pisali u = Ref , v = Imf . Przypomnijmy też identyfikację χ : C→ R2:

χ(z) = (x, y), z = x+ iy.

Twierdzenie 4.1 Następujące warunki są równoważne:
(1) f : C→ C jest różniczkowalna w sensie zespolonym w z0.

(2) (Warunki Cauchy’ego–Riemanna) Funkcja χ◦f◦χ−1 : R2 → R2 jest jednokrotnie ró-
zniczkowalna w sensie rzeczywistym i spełnione są następujące wzory:

∂xu = ∂yv,

∂xv = −∂yu,

(3) f◦χ−1 : R2 → C jest jednokrotnie rózniczkowalna w sensie rzeczywistym i spełnione są
następujące wzory:

i∂xf◦χ
−1 = ∂yf◦χ

−1.

Dowód Twierdzenia 4.1. Udowodnijmy 1)⇒ 2). We wzorze

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
,

gdzie h = t+ is, możemy położyć s = 0 i zbiegać z t→ 0, wtedy dostajemy

f ′(z0) = lim
t→0

f(z0 + t)− f(z)

t
= ∂xu(z0) + i∂xv(z0) (4.29)

lub możemy trzymać t = 0, wtedy

f ′(z0) = lim
s→0

f(z0 + is)− f(z)

is
= −i∂yu(z0) + ∂yv(z0) (4.30)

Przez porównanie (4.30) i (4.31) dostajemy wzory Cauchy’ego–Riemanna.
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Równoważność (2) i (3) jest oczywista.
Udowodnijmy teraz (3)⇒ (1). Różniczkowalność w sensie rzeczywistym oznacza, że

f(z0 + h) = f(z0) + f ′(z0)h+R(z0, h)

gdzie f ′(z0) oznacza macierz Jacobiego pochodnej[
∂xu ∂yu
∂xv ∂yv

]
,

h jest wektorem [
t
s

]
a

lim
h→0

|R(z0, h)|
|h|

= 0.

Korzystając z Warunków Cauchy-Riemanna można to zapisać jako

f(z0 + h)− f(z0) = ∂zf(z0)(t+ is) +R(z0, h),

Z tego wynika istnienie granicy (4.29) i to, że jest równa ∂zf(z0). 2

Definicja 4.2 Funkcję f spełniającą jeden, a zatem i wszystkie, powyższe warunki dla z ∈ Ω
nazywamy funkcją holomorficzną na Ω lub, co traktujemy jako synonim, funkcją analityczną na
Ω.

Stwierdzenie 4.3 Jeśli f , g są holomorficzne w Ω, to również f+g i fg. Jeśli w dodatku f 6= 0
na Ω, to 1

f jest holomorficzna na Ω. Jeśli f jest holomorficzne na Ω a g na f(Ω), to g◦f jest
holomorficzne na Ω. Jeśli f jest bijekcją z Ω na f(Ω) i f−1 jest funkcją odwrotną do f , to f−1

jest holomorficzne na f(Ω). Zachodzą wzory

d
dz (f + g) = d

dzf + d
dzg,

d
dz (fg) = ( d

dzf)g + f d
dzg,

d
dz

1
f = − 1

f2
d
dzf,

d
dzg◦f(z) = d

dwg(w) d
dzf(z), gdzie f(z) = w,

d
dwf

−1(w) = 1
d
dz
f(z)

, gdzie f(z) = w.

Wniosek 4.4 Funkcja wymierna, czyli funkcja postaci

P (z)

Q(z)
,

gdzie P , Q są wielomianami, jest holomorficzna poza zerami Q(z).
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4.2 Krzywe

Krzywą sparametryzowaną kawałkami gładką nazywamy odwzorowanie ciągłe

]0, 1[3 τ 7→ γ(τ) ∈ C (4.31)

takie, że istnieją 0 := τ0 < τ1 < · · · < τn := 1 i po obcięciu γ do ]τi, τi+1[, odwzorowanie γ jest
gładkie i ma wszędzie niezerową pochodną. Zamiast “kawałkami gładka krzywa”, będziemy pisać
po prostu “krzywa”.

W zbiorze krzywych wprowadzamy relację: γ1 ∼ γ2, gdy istnieje ciągła bijekcja ]0, 1[3 τ 7→
κ(τ) ∈]0, 1[ taka, że dla pewnych 0 := τ0 < τ1 < · · · < τn := 1 κ po obcięciu do ]τi, τi+1[ jest
gładka, ma dodatnią pochodną oraz γ1 = γ2◦κ. Jest to relacja równoważności. Klasę abstrakcji
względem tej relacji nazywamy krzywą zorientowaną (niesparametryzowaną).

W zbiorze krzywych wprowadzamy też inną relację: γ1 ∼ γ2, gdy istnieje ciągła bijekcja
]0, 1[3 τ 7→ κ(τ) ∈]0, 1[ taka, że dla pewnych 0 := τ0 < τ1 < · · · < τn := 1 κ po obcięciu
do ]τi, τi+1[ jest gładka, ma dodatnią lub ujemną pochodną oraz γ1 = γ2◦κ. Jest to też re-
lacja równoważności. Klasę abstrakcji względem tej relacji nazywamy krzywą niezorientowaną
(niesparametryzowaną).

W definicji (4.32) można również zamienić ]0, 1[ na [0, 1], ]0, 1], [0, 1[ bądź S1 (okrąg). W
ostatnim wypadku mamy do czynienia z krzywą zamkniętą.

Załóżmy, że brzeg zbioru otwartego składa się z krzywych zamkniętych. Wtedy każda z tych
krzywych ma naturalną orientację: posuwamy się wzdłuż niej w dodatnim kierunku, jeśli zbiór
mamy z lewej strony.

4.3 Całki wzdłuż krzywych

Niech krzywa γ będzie sparametryzowana przez [0, 1] 3 τ 7→ γ(τ) ∈ Ω. Zakładamy, że parame-
tryzacja jest kawałkami C1. Załóżmy też, że na γ([0, 1]) określona jest funkcja f (niekoniecznie
holomorficzna). Zdefiniujmy całkę z funkcji f po krzywej γ wzorem∫

γ
f(z)dz :=

∫ 1

0
f(γ(τ))

dγ(τ)

dτ
dτ. (4.32)

Definicja ta nie zależy od parametryzacji zachowującej orientację. Przy zmianie orientacji zmienia
się znak całki,

Wprowadzamy również oznaczenie na niezorientowaną całkę wzdłuż krzywej γ:∫
γ
f(z)|dz| :=

∫ 1

0
f(γ(τ))

∣∣∣∣dγ(τ)

dτ

∣∣∣∣dτ.
Definicja ta nie zależy od parametryzacji, również zmieniającej orientację.

Zauważmy, że ∣∣∣∣∫
γ
f(z)g(z)dz

∣∣∣∣ ≤ ∫
γ
|f(z)||dz| sup

z∈γ[0,1]
|g(z)|.
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Przykład. Niech γ będzie okręgiem [0, 2π] 3 φ 7→ eiφa+ b ∈ C.∫
γ
zndz =

∫ 2π

0
i(aeiφ + b)naeiφdφ

=

n∑
m=0

∫ 2π

0
ambn−mia

n!

m!(n−m)!
ei(m+1)φdφ = 0;∫

γ
zn|dz| =

∫ 2π

0
(aeiφ + b)nadφ

= bna2π;∫
γ
zdz =

∫ 2π

0
(ae−iφ + b)aeiφidφ

= i2π|a|2.

4.4 Twierdzenie Cauchy’ego i jego konsekwencje

Twierdzenie 4.5 (Twierdzenie Cauchy’ego). Niech f będzie holomorficzna na otwartym i
ograniczonym zbiorze Ω i ciągła na Ω. Wtedy∫

∂Ω
f(z)dz = 0. (4.33)

Dowód. Udowodnijmy najpierw dla prostokąta Ω := {(x + iy : 0 < x < b, 0 < y < c}.
Będziemy pisać f zamiast f◦χ−1∫

∂Ω
f(z)dz =

∫ b

0
f(x, 0)dx+

∫ c

0
f(b, y)idy −

∫ b

0
f(x, c)dx−

∫ c

0
f(0, y)idy

= i

∫ b

0

∫ c

0
∂xf(x, y)dxdy −

∫ b

0

∫ c

0
∂yf(x, y)dxdy = i

∫ b

0

∫ c

0
∂zf(x, y)dxdy = 0.

Dla dowolnego obszaru Ω, wypełniamy go prostokącikami. 2

Wniosek 4.6 (Wzór Cauchy’ego) Przy tych samych założeniach, co powyżej, jeśli z0 ∈ Ω, to

f(z0) =
1

2πi

∫
∂Ω

f(z)

z − z0
dz. (4.34)

Dowód. Funkcja f(z)
z−z0 jest holomorficzna w Ω\K(z0, r). Zatem

0 =
∫
∂(Ω\K(z0,r))

f(z)
z−z0 dz

=
∫
∂Ω

f(z)
z−z0 dz −

∫
∂K(z0,r)

f(z)
z−z0 dz

Ale przez podstawienie z = z0 + reiφ dostajemy, że

lim
r→0

∫
∂K(z0,r)

f(z)

z − z0
dz = 2πif(z0).

2
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Wniosek 4.7 Każda funkcja holomorficzna jest różniczkowalna nieskończenie wiele razy w sen-
sie zespolonym. Zachodzi wzór

f (n)(z0) =
n!

2πi

∫
∂Ω

f(z)

(z − z0)n+1
dz. (4.35)

Wniosek 4.8 (Nierówność Cauchy’ego) Jeśli f jest holomorficzna w K(z0, r) i ciągła na
K(z0, r), to ∣∣∣f (n)(z0)

∣∣∣ ≤ n!

rn
sup

z∈K(z0,r)
|f(z)| (4.36)

Wniosek 4.9 (Twierdzenie Liouville’a) Każda funkcja holomorficzna na C i ograniczona jest
stała.

Dowód. Dla dowolnego z0 ∈ C i r > 0 z nierówności Cauchy’ego wynika oszacowanie

|f ′(z0)| ≤ supz∈C |f(z)|
r

.

Zatem f ′ = 0. 2

Wniosek 4.10 (Twierdzenie Gaussa) Każdy wielomian różny od stałej ma na C miejsce ze-
rowe.

Dowód. Załóżmy, że wielomian P (z) stopnia n ≥ 1 nie ma pierwiastka. Niech

f(z) := (P (z))−1.

Wtedy f jest holomorficzna na C. Poza tym, wiemy, że dla z > R, |P (z)| ≥ |z|n. Zatem,
lim|z|→∞ f(z) = 0. Funkcja ciągła zbieżna do zera w nieskończoności jest ograniczona. A więc z
Twierdzenia Liouville’a wynika, że f jest stała. 2

4.5 Związki dyspersyjne

Mówimy, że funkcja f na R jest Hölderowska w ω ∈ R, gdy istnieje ε > 0, c i θ > 0 takie, że dla
ξ z tego otoczenia

|f(ξ)− f(ω)| ≤ c|ξ − ω|θ, ξ ∈]ω − ε, ω + ε[. (4.37)

Hölderowskość jest rodzajem ulepszonej ciągłości.
Wartość główną całki z f(ξ)

ξ−ω definiujemy jako

P

∫
f(ξ)

ξ − ω
dξ := lim

ε↘0

(∫ ω−ε

−∞
+

∫ ∞
ω+ε

)
f(ξ)

ξ − ω
dξ. (4.38)

Zauważmy, że do istnienia (4.39) wystarcza, żeby |f |
|ξ|+1 ∈ L

1(R) i żeby f była Hölderowska w ω

dla θ > 0. Na przykład, f(ξ) := 1
log |ξ| jest ciągła, nie jest Hölderowska, P

∫ 1
−1

f(ξ)
ξ dξ =∞.
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Twierdzenie 4.11 (Wzór Sochockiego) Niech f
1+|ξ| ∈ L

1 i f będzie Hölderowska na R. Wtedy

lim
ε↘0

∫
f(ξ)

(ξ − ω ± iε)
dξ = ∓iπf(ω) + P

∫
f(ξ)

ξ − ω
dξ.

Dowód.
1

ξ ± iε
=

ξ

ξ2 + ε2
∓ iε

ξ2 + ε2
→ P

1

ξ
∓ πδ(ξ). (4.39)

2

Twierdzenie 4.12 (Związki dyspersyjne Kramersa-Kroniga) Niech f będzie ciągła na {Imz ≥
0} i analityczna w {Imz > 0}. Zakładamy, że na R jest Hölderowska, f

1+|ω| ∈ L
1 i na górnej pół-

płaszczyźnie mamy lim|ω|→∞ f(ω) = 0. Niech f = fR + ifI będzie rozkładem na część rzeczywistą
i urojoną. Wtedy dla ω ∈ R

fR(ω) =
1

π
P

∫
fI(ξ)

ξ − ω
dξ,

fI(ω) = − 1

π
P

∫
fR(ξ)

ξ − ω
dξ.

Dowód.

f(ω + iε) =
1

2πi

∫
f(ξ)

ξ − iε− ω
dξ

Następnie korzystamy z tego, że f(ω + iε)→ f(ω) i ze wzoru Sochockiego:

lim
ε↘0

∫
f(ξ)

ξ − ω − iε
dξ = iπf(ω) + P

∫
f(ξ)

ξ − ω
dξ.

2

Jeśli f(ξ) = f(−ξ), czyli fR(ξ) = fR(−ξ), fI(ξ) = −fI(−ξ), to związki Kramersa-Kroniga
przybierają postać

fR(ω) = − 2

π
P

∫ ∞
0

fI(ξ)ξ

ξ2 − ω2
dξ,

fI(ω) =
2

π
P

∫ ∞
0

fR(ξ)ω

ξ2 − ω2
dξ.

Fizyczne zastosowania Twierdzenia 4.12 są oparte na następującym schemacie. Załóżmy, że
g(t) jest “bodźcem” a h(t) “reakcją”. Zakładamy, że h(t) zależy od g(t) liniowo i przyczynowo.
Oznacza to, że

h(t) =

∫ ∞
0

ε(s)g(t− s)ds. (4.40)

27



Po przejściu do transformat Fouriera dostajemy

ĥ(ω) = ε̂(ω)ĝ(ω).

(Stosujemy konwencję ε̂(ω) =
∫
ε(t)eitωdt.) Załóżmy, że ε ∈ L1. Wtedy funkcja ε̂ przedłuża się

analitycznie na {Imz ≥ 0} i zatem stosuje się do niej powyższe twierdzenie. W praktyce z reguły
ε(t) jest rzeczywisty, więc

ε̂(ξ) = ε̂(−ξ). (4.41)

Przykładem wielkości o takich własnościach jest podatność elektryczna ε, zdefiniowana przez
D = εE. mierzona jest najłatwiej poprzez współczynnik załamania, n2 = εµ. µ jest z dobrym
przybliżeniem równe 1. Analityczność n2 jest często wyrażana poprzez fenomenologiczne równa-
nie Sellmeiera

n2(λ) = 1 +
∑
i

Biλ
2

λ2 − Ci
, (4.42)

gdzie λ = c
ω jest długością fali w próżni. Z reguły wystarczą 3 wyrazy.

4.6 Szeregi potęgowe

Twierdzenie 4.13 1) Niech (a0, a1, . . . ) będzie ciągiem i

ρ−1 = lim sup
n→∞

|an|1/n. (4.43)

Wtedy

f(z) =
∞∑
n=0

anz
n

jest funkcją holomorficzną w kole K(0, ρ). Poza tym

an =
f (n)(0)

n!
.

2) Niech f(z) będzie holomorficzna w kole K(0, r). Wtedy jeśli

an =
f (n)(0)

n!
,

to
lim sup
n→∞

|an|1/n ≤ r−1

i w K(0, r) mamy

f(z) =

∞∑
n=0

anz
n.

28



Dowód. Udowodnijmy 1). Niech ρ2 < ρ1 < ρ. Wtedy dla n > N0, |an| < ρ−n1 . Zatem dla
N > N0

|
∑∞

n=N anz
n| ≤

∑∞
n=N ρ

−n
1 |z|n = ρ−N1 |z|N (1− |z|ρ1 )−1.

Czyli

fN (z) :=

N∑
n=0

anz
n

spełnia dla N0 ≤ N1 ≤ N2 i z ∈ K(0, ρ2)

|fN1 − fN2 | ≤ ρ
−N1
1 ρN1

2 (1− ρ2

ρ1
)−1.

Czyli fN jest zbieżny jednostajnie w K(0, ρ2), a więc niemal jednostajnie w K(0, ρ) do funkcji
f(z). Podobnie pochodne f(z) są granicą niemal jednostajną pochodnych tego ciągu. Każdy
z elementów tego ciągu spełnia warunki Cauchy’ego–Riemanna. Zatem i granica spełnia te
warunki.

Udowodnijmy teraz 2). Z nierówności Cauchy’ego wynika, że jeśli r1 ≤ r, to istnieje C
takie,że

|an| ≤ Cr−n1

Zatem szereg
∞∑
n=0

anz
n

jest zbieżny w kole K(0, r1). Korzystając z jednostajnej zbieżności przy zamianie kolejności
całkowania i sumowania dla r2 < r1 dostajemy

f(z) = 1
2πi

∫
∂K(0,r2)

f(ξ)
ξ−z dξ

= 1
2πi

∫
∂K(0,r2)

f(ξ)
ξ

1
1− z

ξ
dξ

= 1
2πi

∑∞
n=0 z

n
∫
∂K(0,r2)

f(ξ)
ξn+1 dξ

=
∑∞

n=0 z
n f

(n)(0)
n!

2

Wniosek 4.14 Niech Ω będzie podzbiorem otwartym w C i f : Ω → C. Wtedy f jest holomor-
ficzna ⇔ dla każdego z0 ∈ Ω istnieje ciąg a0, a1, . . . i r > 0 takie, że

f(z) =
∞∑
n=0

an(z − z0)n, |z − z0| < r.

W praktyce wystarczają prostsze kryteria:
1) (Kryterium D’Alemberta) Jeśli

lim
n→∞

|an+1|
|an|
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istnieje, to jest równe (4.44);
2) (Kryterium Cauchy’ego) Jeśli

lim
n→∞

|an|1/n

istnieje, to jest równe (4.44).
Przykłady rozwinięć funkcji analitycznych

(1− z)−1 =
∞∑
n=0

zn, |z| < 1;

(1− z)−m =

∞∑
n=0

m(m+ 1) . . . (m+ n− 1)

n!
zn, |z| < 1, m = 1, 2, . . . ;

(1 + z)m =
m∑
n=0

(
m

n

)
zn, z ∈ C, m = 0, 1, . . . .

Twierdzenie 4.15 (Rozwinięcie w szereg Laurent’a) Niech funkcja f będzie holomorficzna
w pierścieniu

{z : r < |z| < R},

gdzie 0 ≤ r < R ≤ ∞. Wtedy na tym pierścieniu

f(z) =
∞∑

n=−∞
bnz

n. (4.44)

Współczynniki bn można obliczyć ze wzoru

bn =
1

2πi

∫
∂K(0,ρ)

f(ξ)

ξn+1
dξ.

gdzie r < ρ < R.

Dowód. Niech r < r1 < |z| < R1 < R. Wtedy

f(z) = 1
2πi

∫
∂K(0,R1)

f(ξ)
ξ−z dξ − 1

2πi

∫
∂K(0,r1)

f(ξ)
ξ−z dξ

=
∑∞

n=0
1

2πi

∫
∂K(0,R1)

f(ξ)
ξn+1 z

ndξ +
∑∞

n=0
1

2πi

∫
∂K(0,r1)

f(ξ)
zn+1 ξ

ndξ

=
∑∞

n=−∞ bnz
n.

2

Przykład. Funkcja
3− 2z

2− 3z + z2
=

1

1− z
+

1

2− z
ma następujące rozwinięcia

∞∑
n=0

(1 + 2−n−1)zn, |z| < 1;
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−
∞∑
n=0

z−n−1 +

∞∑
n=0

2−n−1zn, 1 < |z| < 2;

−
∞∑
n=0

(1 + 2n)z−n−1, 2 < |z|.

4.7 Funkcja wykładnicza

Funkcję wykładniczą można zdefiniować przez szereg

ez =
∞∑
n=0

1

n!
zn, z ∈ C.

Funkcja ta ma następujące własności:

ez1ez2 = ez1+z2 ,

e−z = 1
ez ,

d
dz ez = ez,

ez = ez,

ez = 1 wtedy i tylko wtedy gdy z = i2kπ, k ∈ Z.

Z funkcją ez związane są funkcje trygonometryczne

cos z :=
eiz + e−iz

2
, sin z :=

eiz − e−iz

2i
,

i hiperboliczne

chz :=
ez + e−z

2
, shz :=

ez − e−z

2

Funkcje ez, cos z, sin z, chz i shz obcięte do R mają wartości rzeczywiste. Możemy przy ich
pomocy wyrazić ez jak następuje:

ex+iy = ex(cos y + i sin y).

Funkcje cos z, sin z, chz i shz są w pewnym sensie przełużeniami analitycznymi jednej funkcji,
na przykład chz:

sht = −ich(t− iπ2 ), sin t = ch(it− iπ2 ).

Oto własności funkcji chz:

chz = ch(−z), ch(z + iπ) = −chz,

i∂zchz = ch(z + iπ2 ), ch2z + ch2(z + iπ2 ) = 1.
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4.8 Funkcja logarytm i funkcja potęgowa

Funkcja ez przekształca bijektywnie pas {z : −π < Imz < π} na C\]−∞, 0]. Funkcję odwrotną
do ez określoną na

C\]−∞, 0] (4.45)

nazywamy gałęzią główną logarytmu i oznaczamy log(0) z. (Dziedzina (4.46) została wybrana
dość arbitralnie). Ma własności:

d
dz log(0) z = 1

z

log(0) 1 = 0.

Dostajemy zatem wzór

log(0) z =

∫
γ

dw

w

gdzie γ jest dowolnym konturem wewnątrz (4.46) zaczynającym się w 1 i kończącym się w z.
Czasami przydatna jest funkcja argument (która nie jest holomorficzna)

arg(0)z := Im log(0) z.

Wychodząc ze wzoru
d

dz
log(0)(1 + z) =

1

1 + z

i całkując rozwinięcie dla 1
1+z dostajemy

log(0)(1 + z) =
∞∑
n=0

(−1)n+1

n
zn, |z| < 1.

Zauważmy, że dla zdefiniowanej powyżej funkcji logarytm nie dla wszystkich z1, z2 ∈ C\] −
∞, 0] zachodzi wzór

log(0)(z1z2) = log(0) z1 + log(0) z2. (4.46)

(4.47) jest spełniony, jeśli |argz1 + argz2| < π.
Funkcja log(0) x obcięta do R+ ma wartości w R. Funkcję log(0) z możemy następująco wyrazić

przez funkcje rzeczywiste:

log(0) (r(cosφ+ i sinφ)) = log r + iφ, r ∈ R+, φ ∈]− π, π[.

Jeśli µ ∈ C, to definiujemy gałąź główną funkcji potęgowej jako

C\]−∞, 0] 3 z 7→ zµ(0) := eµ log(0) z.

Zauważmy, że gdy µ ∈ Z to powyższa definicja sprowadza się do zwykłej potęgi (która zdefinio-
wana jest na całym C, być może z wyjątkiem {0}). Mamy tożsamości

1µ(0) = 1,

d
dz z

µ
(0) = µzµ−1

(0) ,

zµ1+µ2
(0) = zµ1(0)z

µ2
(0), |argz1 + argz2| < π.
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Zdefinujmy (
µ

n

)
:=

µ(µ− 1) . . . (µ− n+ 1)

n!
.

Wtedy wychodząc ze wzoru Taylora dostajemy następujące rozwinięcie funkcji potęgowej:

(1 + z)µ(0) =

∞∑
n=0

(
µ

n

)
zn, |z| < 1.

Funkcja zµ(0) dla z ∈ R+ i µ ∈ R ma wartości w R+. Funkcję zµ(0) możemy następująco wyrazić
przez funkcje rzeczywiste:

(r(cosφ+ i sinφ))α+iβ
(0) = rαe−βφeiαφ+iβ log(0) r, r ∈ R+, φ ∈]− π, π[.

Niech θ ∈ R. Funkcja ez jest bijekcją również jeśli damy jej następującą dziedzinę i przeciw-
dziedzinę:

{z : θ − π < Imz < θ + π} 3 z 7→ ez ∈ C\eiθ]−∞, 0].

Odwrotna do niej funkcja też będzie nazywana logarytmem. Będziemy ją oznaczać

Ωθ := C\eiθ]−∞, 0] 3 z 7→ log(θ)(z).

Zauważmy, ze jeśli θ1 < θ2 < θ1+2π, to na jednej ze spójnych składowych Ω(θ1)∩Ω(θ2) logθ1(z) =
logθ2(z) na drugiej zaś, log(θ1) z + i2π = log(θ2) z.

Podobnie można zdefiniować

Ωθ 3 z 7→ zµ(θ) := eµ log(θ)(z).

Jeśli θ1 < θ2 < θ1 + 2π, to na jednej ze spójnych składowych Ωθ1 ∩ Ωθ2 mamy zµ(θ1) = zµ(θ2) na
drugiej zaś, zµ(θ1)e

i2πµ = zµ(θ2)

Jeśli µ jest wymierne i równe nieskracalnemu ułamkowi pq , to

zµ(θ) = zµ(θ+q2π).

W przyszłości będziemy traktować log(0) z i zµ(0) jako standardowe odmiany funkcji logarytm
i funkcji potęgowej i będziemy pomijać indeks (0).

4.9 Punkty osobliwe funkcji analitycznych

Punkt z0 nazywamy izolowanym punktem osobliwym funkcji f jeśli istnieje r > 0 taki, że f jest
holomorficzna naK(z0, r)\{z0} ale z0 nie należy do dziedziny funkcji f . Rozróżniamy następujące
przypadki.

Definicja 4.16 (1) Funkcja f ma w z0 osobliwość pozorną (usuwalną) gdy istnieje

lim
z→z0

f(z) 6=∞.
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(2) Funkcja f ma w z0 biegun rzędu k = 1, 2, . . . gdy istnieje

lim
z→z0

f(z)(z − z0)k 6= 0,∞.

(3) Jeśli izolowany punkt osobliwy z0 nie jest ani osobliwością pozorną ani biegunem, to mó-
wimy, że funkcja f ma w z0 osobliwość istotną.

W wyżej opisanej sytuacji wiemy, że dla pewnego R > 0 możemy rozwinąć funkcję f na
K(z0, R)\{z0} w szereg Laurenta:

f(z) =

∞∑
n=−∞

an(z − z0)n.

Możemy wtedy rozpoznać typ osobliwości:

Twierdzenie 4.17 (1) Funkcja f ma w z0 osobliwość pozorną (usuwalną) ⇔ an = 0 dla n =
−1,−2, . . .

(2) Funkcja f ma w z0 biegun rzędu k = 1, 2, . . . ⇔ a−k 6= 0 i an = 0 dla n = −k−1,−k−2, . . .

(3) Funkcja f ma w z0 osobliwość istotną, ⇔ inf{n : an 6= 0} = −∞.

Przykład.
sin z

z

ma w 0 osobliwość usuwalną.
(1 + z2)−2

ma w ±i bieguny drugiego rzędu.
e1/z

ma w 0 osobliwość istotną.

Definicja 4.18 Niech Ω ⊂ C będzie otwarty. Funkcja f jest meromorficzna na Ω gdy istnieją
punkty z1, z2, · · · ∈ Ω takie, że f jest holomorficzna na Ω\{z1, z2, . . . } i punkty z1, z2, . . . są
biegunami funkcji f .

Przykład. Funkcja
(sin z)−1

jest meromorficzna na C.

Definicja 4.19 Residuum funkcji f w punkcie z0 jest zdefiniowane jako

Resf(z0) :=
1

2πi

∫
∂K(z0,R1)

f(z)dz,

gdzie R1 jest dowolną liczbą dodatnią taką, że K(z0, R1)\{z0} jest zawarte w dziedzinie f .
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Zauważmy, że definicja ta nie zależy od wyboru R1. Mamy

d

dz

zn+1

n+ 1
= zn, n ∈ Z\{−1}.

Dlatego ∫
∂K(z0,R1)

zndz = 0, n ∈ Z\{−1}.

Poza tym ∫
∂K(z0,R1)

z−1dz = 2πi.

Stąd wynika wzór
Resf(z0) = a−1. (4.47)

Jeśli f ma biegun rzędu najwyżej k, to residuum można obliczyć ze wzoru

Resf(z0) = lim
z→z0

1

(k − 1)!

dk−1

dzk−1
(z − z0)kf(z). (4.48)

Jeśli funkcja f jest holomorficzna na Ω\{z1, . . . , zn}, to zachodzi wzór∫
∂Ω
f(z) =

n∑
j=1

2πiResf(zj). (4.49)

Przykład. Jeśli

f(z) =
1

z2 + a2
,

to
Resf(ia) = − i

2a

Zatem ∫ ∞
−∞

1

x2 + a2
dx =

∫ ∞
−∞

f(z)dz = 2πiResf(ia) =
π

a
.

Lemat 4.20 (Lemat Jordana) Niech a > 0. Dla R > 0 oznaczamy przez γR górny półokrąg o
promieniu R. Niech zf(z) będzie ograniczone dla Rez > 0, |z| > R0. Wtedy dla ξ > 0∫

γR

eizξf(z)dz → 0.

Dowód. ∣∣∣∣∫ eiξzf(z)dz

∣∣∣∣ ≤ ∫ π

0
r|f(reiφ)|e−r sinφdφ ≤ C

∫ π

0
e−r sinφdφ→ 0,

gdzie w ostatnim kroku skorzystaliśmy z Twierdzenia Lebesgue’a. 2

Przykład. Niech

f(z) :=
zeiz

1 + z2
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Wtedy

Resf(i) =
e−1

2
.

Poza tym, ∣∣∣∫γR f(z)dz
∣∣∣ ≤ sup

R>0

∫
γR

∣∣eiaz∣∣ |dz| supz∈γR

∣∣∣ z
1+z2

∣∣∣ ≤ C sup
z∈γR

∣∣∣ z
1+z2

∣∣∣ ,
co dąży do zera gdy R→∞. Zatem∫ ∞

−∞

x sinx

1 + x2
dx = Im

(
lim
R→∞

∫
[−R,R]

f(z)dz

)
= Im (2πiResf(i)) = πe−1.

Przykład.

lim
R→∞

∫ R

−R

eixξ

x− i
dx =


0 ξ < 0,

iπ ξ = 0,
2iπe−ξ, ξ > 0.

Lemat 4.21 Niech funkcja holomorficzna f ma w z0 biegun pierwszego rzędu. Zdefiniujmy
krzywą

γr := {z0 + reiφ : φ0 < φ < φ1}.

Wtedy

lim
r→0

∫
γr

f(z)dz = (φ1 − φ0)iResf(z0).

Dowód. Mamy
f(z) =

a−1

z
+ g(z),

gdzie g jest holomorficzna w z0. Oczywiście,

lim
r→0

∫
γr

g(z)dz = 0.

Przykład. Jeśli

f(z) :=
eiz

z
,

to
Resf(0) = 1

Dlatego

lim
R→∞

∫ R

−R

sinx

x
dx = lim

R→∞
Im

∫ R

−R
f(z)dz = Im(πiResf(0)) = π.
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4.10 Funkcje analityczne a punkt w nieskończoności

Przez C będziemy oznaczać sferę Riemanna, to znaczy C ∪ {∞}.
Niech Ω ⊂ C. Mówimy, że f jest analityczna w ∞, gdy f(1

z ) jest analityczna w 0.
Punkt ∞ nazywamy izolowanym punktem osobliwym funkcji f , gdy dla pewnego R funkcja

f jest holomorficzna na C\K(0, R) i ∞ nie należy do dziedziny f . Rozróżniamy następujące
przypadki:
1) f ma w ∞ osobliwość pozorną, jeśli istnieje

lim
z→∞

f(z) 6=∞.

2) f ma w ∞ biegun rzędu k = 1, 2, . . . , gdy istnieje

lim
z→∞

f(z)z−k 6= 0,∞.

3) f ma w ∞ osobliwość istotną w przeciwnym razie.
W wyżej opisanej sytuacji wiemy, że dla pewnego R > 0 możemy rozwinąć funkcję f na

C\K(z0, R) w szereg Laurenta:

f(z) =
∞∑

n=−∞
anz

n.

Możemy wtedy rozpoznać typ osobliwości:
1) Funkcja f ma w ∞ osobliwość pozorną (usuwalną) gdy an = 0 dla n = 1, 2, . . .
2) Funkcja f ma w ∞ biegun rzędu k = 1, 2, . . . gdy ak 6= 0 i an = 0 dla n = k + 1, k + 2, . . .
3) Funkcja f ma w ∞ osobliwość istotną, jeśli

sup{n : an 6= 0} =∞.

Przykład. Funkcja ez ma w ∞ istotny punkt osobliwy.

Definicja 4.22 Jeśli Ω ⊂ C jest otwarty to mówimy, że funkcja f jest meromorficzna na Ω gdy
istnieją punkty z1, z2, · · · ∈ Ω takie, że f jest holomorficzna na Ω\{z1, z2, . . . } i ma w {z1, z2, . . . }
osobliwości pozorne bądź bieguny.

Przykład. Punkt ∞ nie jest izolowanym punktem osobliwym funkcji

(sin z)−1.

Zatem, funkcja ta nie jest meromorficzna na C.

Definicja 4.23 Residuum funkcji f w ∞ jest równe

Resf(∞) :=
1

2πi

∫
∂(C\K(0,R1))

f(z)dz = − 1

2πi

∫
∂K(0,R1)

f(z)dz

gdzie R1 > R.
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Zauważmy, że definicja ta nie zależy od wyboru R1 Mamy wzór

Resf(∞) = −a−1. (4.50)

W praktyce możemy wyliczać residuum w nieskończoności ze wzoru

Resf(∞) = Resg(0), g(w) := −f
(

1

w

)
1

w2
(4.51)

Jeśli funkcja f jest holomorficzna na Ω\{z1, . . . , zn}, gdzie Ω ⊂ C, to zachodzi wzór∫
∂Ω
f(z) =

n∑
j=1

2πiResf(zi). (4.52)

Przykład. Niech f(z) := z99

1−z100 . Wtedy

Resf(∞) = 1.

Dlatego, ∫
∂K(0,2)

f(z)dz = −2πiResf(∞) = −2πi.

Twierdzenie 4.24 Każda funkcja meromorficzna na C jest wymierna. Innymi słowy, każda
funkcja analityczna z C w C jest wymierna.

Dowód. Niech f będzie meromorficzna na C. Ponieważ sfera Riemanna jest zwarta a punkty
osobliwe f są izolowane, więc jest ich skończenie wiele. Niech {z1, . . . , zm,∞} będą punktami
osobliwymi funkcji f . Niech

ki∑
n=1

an,i(z − zi)−n

będą osobliwymi częsciami rozwinięć w szereg Laurent’a wokół zi oraz

k∞∑
n=1

an,∞z
n

niech będzie częścią rozwinięcia w szereg Laurent’a wokół ∞ z dodatnimi potęgami. Wtedy

f(z)−
m∑
i=1

ki∑
n=1

an,i(z − zi)−n −
k∞∑
n=1

an,∞z
n

jest funkcją analityczną na C. Zatem na mocy twierdzenia Liouville’a jest stała. 2
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4.11 Funkcje analityczne z C w C

Definicja 4.25 Niech Ω ⊂ C i f : Ω → C. Mówimy, że f jest analityczna w z0 ∈ Ω, gdy
spełnione są następujące warunki:
1) gdy z0 6=∞, f(z0) 6=∞, to f jest analityczna w otoczeniu z0 w zwykłym sensie;
2) gdy z0 6=∞, f(z0) =∞, to 1

f(z) jest analityczna w otoczeniu z0 w zwykłym sensie;
3) gdy z0 =∞ i f(z0) 6=∞, to f(1

z ) jest analityczna w otoczeniu 0 w zwykłym sensie;
4) gdy z0 = f(z0) =∞, to 1

f( 1
z

)
jest analityczna w otoczeniu 0 w zwykłym sensie.

Twierdzenie 4.26 Niech f będzie meromorficzna na Ω ⊂ C. Rozszerzmy funkcję f na cały Ω
kładąc

f(zj) := lim
z→zj

f(z),

w szczególności w biegunach funkcji f kładziemy f(zj) :=∞. Wtedy funkcja

f : Ω→ C,

jest analityczna w sensie definicji (4.25).

Twierdzenie 4.27 (1) Każda funkcja holomorficzna z C w C jest stała.
(2) Każda bijekcja analityczna C w siebie jest homografią.
(3) Każda funkcja analityczna z C w C jest wymierna.

Dowód. (1) jest preformułowaniem twierdzenia Liouville’a. (3) jest preformułowaniem Twier-
dzenia (4.24). Aby dowieść (2) korzystamy z (3). 2

5 Przedłużenie analityczne

5.1 Jednoznaczność przedłużania funkcji analitycznych

Twierdzenie 5.1 Niech f , g będą holomorficzne w otwartym spójnym obszarze Ω ⊂ C. Załóżmy,
że istnieje ciąg {zn} ⊂ Ω taki, że limn→∞ zn =: z0 ∈ Ω i zn 6= z0 dla n = 1, 2, . . . . Niech

f(zn) = g(zn), n = 0, 1, 2, . . . .

Wtedy f = g na całym Ω.

Dowód. Niech
Ω1 := {z ∈ Ω : f (j)(z) = g(j)(z), j = 0, 1, . . . }.

Zbiór Ω1 jest domknięty w Ω jako przecięcie domkniętych w Ω zbiorów

{z ∈ Ω : f (j)(z) = g(j)(z)}.

Jest on również otwarty, bo dla każdego z̃0 ∈ Ω1 istnieje r > 0 takie, że na K(z̃0, r)

f(z) =
∞∑
n=0

f (n)(z̃0)

n!
(z − z̃0)n =

∞∑
n=0

g(n)(z̃0)

n!
(z − z̃0)n = g(z).
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Jest on wreszcie niepusty, bo z0 ∈ Ω1. W rzeczy samej, istnieje r > 0 takie, że na K(z0, r)

f(z) =
∞∑
n=0

an(z − z0)n

i

g(z) =
∞∑
n=0

bn(z − z0)n.

Niech cj := aj − bj i m niech będzie najmniejszym indeksem takim, że cm 6= 0. Wtedy

0 = lim
n→∞

f(zn)− g(zn)

(zn − z0)m
= cm 6= 0

co jest sprzecznością.
Jedynym podzbiorem w Ω, który jest niepusty, otwarty i domknięty w Ω jest całe Ω. Zatem

Ω = Ω1. 2

5.2 Przedłużanie funkcji analitycznych wzdłuż drogi

Niech Ω ⊂ C będzie otwartym spójnym zbiorem i f : Ω → C funkcją analityczną. Niech
[0, 1] 3 τ 7→ γ(τ) ∈ C będzie krzywą taką, że γ(0) ∈ Ω. Mówimy, że można przedłużyć f wzdłuż
γ, gdy dla każdego τ ∈ [0, 1] istnieją rτ > 0 i funkcja analityczna fτ : K(γ(τ), rτ )→ C takie, że
(1) f0 = f na K(γ(0), r0) ∩ Ω;
(2) Dla każdego τ0 ∈ [0, 1] istnieje ε > 0 taki, że dla każdego σ ∈ [0, 1] ∩ [τ0 − ε, τ0 + ε] mamy
γ(τ0) ∈ K(γ(σ), rσ) oraz fτ = fσ na K(γ(τ0), rτ0) ∩K(γ(σ), rσ).

Twierdzenie 5.2 Niech σ ∈ [0, 1] i zσ = γ(σ). Wtedy fτ (zτ ) zależy tylko od funkcji f : Ω→ C
i krzywej γ (a nie zależy od wyboru rτ , fτ ).

Definicja 5.3 Liczbę
f(zσ)zσ=γ(σ) := fσ(zσ)

nazywamy wartością w punkcie zσ funkcji f przedłużonej wzdłuż krzywej γ.

Dowód. Niech rτ , fτ i r̃τ , f̃τ są dwiema rodzinami spełniającymi warunki definicji przedłużenia
funkcji. Załóżmy, że istnieje τ ∈ [0, 1] taki, że fτ 6= f̃τ na K(γ(τ),min(rτ , r̃τ )). Niech

τ0 = inf{τ ∈ [0, 1] : fτ 6= f̃τ na K(γ(τ),min(rτ , r̃τ )}.

Oczywiście, τ0 > 0. Niech ε > 0 spełnia warunek (2) definicji zarówno dla rodziny z tyldą jak i
bez tyldy. Niech τ− ∈ [τ − ε, τ0[, τ+ ∈ [τ0, τ + ε]. Wtedy

fτ− = fτ+ na K(γ(τ−), rτ−) ∩K(γ(τ+), rτ+);

f̃τ− = f̃τ+ na K(γ(τ−), r̃τ−) ∩K(γ(τ+), r̃τ+);

fτ− = f̃τ− na K(γ(τ−),min(rτ− , r̃τ−)).
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Czyli fτ+ = f̃τ+ na

K(γ(τ−),min(rτ− , r̃τ−)) ∩K(γ(τ+),min(rτ+ , r̃τ+)). (5.53)

Zbiór (5.54) jest niepusty, bo γ(τ0) do niego należy, jest otwarty i wypukły jako przecięcie kół
otwartych. Jest więc spójny. Zatem na mocy jednoznaczności przedłużania funkcji analitycznych
fτ+ = f̃τ+ na K(γ(τ+),min(rτ+ , r̃τ+)), co przeczy definicji τ0. 2

Przykład. Niech krzywa [0, 1] 3 τ 7→ γ ⊂ C \ {0} będzie zamknięta (czyli w := γ(0) = γ(1)) i
okrąża punkt 0 n ∈ Z razy. Załóżmy też, że γ(0) ∈ C \ eiθ] −∞, 0]. Wtedy można przedłużyć
funkcje log(θ) z i zµ(θ) wzdłuż krzywej γ i mamy

log(θ)(w)w=γ(1) = n2πi + log(θ)w, wµ(θ)w=γ(1)
= enµ2πiwµ(θ).

Przykład. W ramach analizy rzeczywistej definiuje się osobno funkcje odwrotne do trygonome-
trycznych i hiperbolicznych

archt = log(
√
t2 − 1 + t)

= − log(−
√
t2 − 1 + t), t ∈ [1,∞[

arsht = log(
√
t2 + 1 + t)

= − log(−
√
t2 + 1− t), t ∈ R

arccos t = 1
i log(i

√
t2 − 1 + t)

= −1
i log(−i

√
t2 − 1 + t), t ∈ [−1, 1[.

Funkcje te mogą być traktowane jako przedłużenia analityczne jednej z nich, na przykład
archt. Mamy bowiem

arch(±is) = ±iπ4 + arshs, s ∈ R,

archt = ±i arccos t, t ∈]− 1, 1[,

arch(−t) = ±iπ + archt, t ∈ [1,∞[,

gdzie + lub − zależy od tego, czy przedłużamy górą czy dołem.
Zauważmy też, że okrążenie punktu±1 prowadzi do pomnożenia archt przez−1, zaś okrążenie

[−1, 1] prowadzi do dodania 2πi do archt.
Przykład.

arctgt =
1

2i
(log(1 + it)− log(1− it)) .

Przykład. Rozważmy funkcję

f(z) = zα(z − 1)β.

Możemy ją rozumieć jako iloczyn gałęzi głównych zα i (z − 1)β , który jest dobrze określony na
C\]−∞, 1].
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Załóżmy, że krzywa γ zaczyna sę w dowolnym punkcie C\] − ∞, 1], obiega odcinek [0, 1]
w kierunku przeciwnym do ruchu wskazówek i wraca do punktu wyjścia, np. ∂K(0, R), gdzie
R > 1. Wtedy wartość funkcji f(z) po przedłużeniu analitycznym wzdłuż γ mnoży się przez
czynnik ei2π(α+β). W szczególności, jeśli

α+ β ∈ Z, (5.54)

to wracamy do tej samej wartości funkcji f . Wtedy możemy naszą funkcję zdefiniować na C\[0, 1]
jako jednoznaczną funkcję analityczną.

Przykład. Policzmy całkę

I =

∫ 1

0

1√
x(1− x)(1 + x)

dx

Rozważmy

f(z) =
1√

z(z − 1)(1 + z)

rozumianą jako funkcję analityczną na C\[0, 1] w sposób opisany powyżej. W ∞ residuum jest
równe 0. Zatem ∫

[1,0−,1−]
f(z)dz = −e−i

1
2
πI + e−i

3
2
πI = −2πiResf(−1),

Resf(−1) = lim
z→−1

f(z)(z + 1) =
1√

z(z − 1)

∣∣∣
z=−1

= − 1√
2
.

Zatem
I =

π√
2
.

5.3 Notacja do oznaczania krzywych

Teraz opiszemy notację, którą będziemy stosować do oznaczania krzywych.
Czasami można stosować łamane postaci

[w0, u, w1] := [w0, u] ∪ [u,w1].

0w w1

u

Osobliwość funkcji w u może prowadzić do kłopotów w postaci rozbieżności całki. Można
również omijać punkt u małym łukiem o promieniu r i rozważać łamaną postaci:

[w0, u+ reiφ0 ] ∪ {u+ reiφ : φ ∈ [φ0, φ1]} ∪ [u+ reiφ1 , w1]. (5.55)
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gdzie w0 := u+Reiφ0 , w1 := u+R1eiφ1 , R0 > r, R1 > r, φ0 < φ1 i |φ0 − φ1| < 2π. Oczywiście,
całka po takim konturze nie zależy od r, dla dostatecznie małego r. Zauważmy, że punkt roz-
gałęzienia u jest omijany łukiem w kierunku przeciwnym do ruch wskazówek. Krzywą powyższą
będziemy oznaczali

[w0, u
+, w1].

u

w1w0

Podobnie, warto mieć oznaczenie na łamaną

[w0, u+ reiφ0 ] ∪ {u+ reiφ : φ ∈ [φ1, φ0]} ∪ [u+ reiφ1 , w1]. (5.56)

gdzie R0 > r, R1 > r, φ1 < φ0, |φ0 − φ1| < 2π. Różni się ona od (5.56) tym, że punkt
rozgałęzienia u obiegamy zgodnie z ruchem wskazówek. Krzywą (5.57) będziemy oznaczać przez

[w0, u
−, w1].

w1w0

u

[u+] będzie oznaczało kontur obiegający punkt u po małym okręgu w kierunku przeciwnym
do ruchu wskazówek. [u−] będzie oznaczało kontur obiegający punkt u po małym okręgu w
kierunku zgodnym do ruchu wskazówek.

[u+], [u−].

u u

Pisząc γ = [u,w1, . . . , wn, u
+] będziemy mieli na myśli, że γ jest konturem zamkniętym i

połączonym małym łukiem obiegającym u w kierunku przeciwnym do ruchu wskazówek. Po-
dobnie, jeśli γ = [u,w1, . . . , wn, u

−], to γ jest konturem zamkniętym połączonym małym łukiem
obiegającym z w kierunku zgodnym z ruchem wskazówek.

[u,w1, w2, u
+], [u,w1, w2, u

−].

u u

w1

w
2

w1

w2
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[u, eiα∞[ będzie oznaczać półprostą {u + eiαt : t > 0} zaczynającą się w u i biegnącą do
nieskończoności pod kątem α.

[u, eiα∞[.

u

[(u+ eiφ0 · 0)+, w] oznaczać będzie łamaną

[u, u+ reiφ0 ] ∪ {u+ reiφ : φ ∈ [φ0, φ1]} ∪ [u+ reiφ1 , w],

gdzie w = u+ Reiφ1 , r < R, φ1 < φ0, |φ1 − φ0| < 2π (łamana wychodzi z punktu u pod kątem
φ0, obiega punkt u małym łukiem przeciwnie do ruchu wskazówek i biegnie do w).

[(u+ eiα0)+, w].

uw

5.4 ∗ Powierzchnie Riemanna i funkcje analityczne wieloznaczne

Niech Ξ będzie przestrzenią topologiczną Hausdorffa i φ odwzorowaniem z Ξ w C. Mówimy,
że (Ξ, φ) jest powierzchnią Riemanna nad C, gdy dla każdego v ∈ Ξ istnieje r > 0 oraz ciągłe
odwzorowanie ψv,r : K(φ(v), r)→ Ξ takie, że

φ◦ψv,r(z) = z, z ∈ K(φ(v), r)

i ψv,r (K(φ(v), r)) jest otwarty w Ξ.
Niech (Ξ, φ) będzie powierzchnią Riemanna nad C.
Ma miejsce następujący fakt: Dla każdego v ∈ Ξ, istnieje rv ∈]0,∞] takie, że odwzorowanie

ψv,rv o własnościach opisanych powyżej istnieje, zaś dla r > rv takie ψr,v nie istnieje. Dostajemy
w ten sposób funkcję Ξ 3 v 7→ rv ∈]0,∞]. Będziemy pisać ψv := ψv,rv .

Niech f : Ξ → C. Mówimy, że (Ξ, φ, f) jest funkcją analityczną na Ξ, gdy dla każdego v to
f◦ψv : K(φ(v), rv)→ C jest funkcją analityczną w zwykłym sensie.

Niech (Ξ, φ, f) będzie funkcją analityczną na Ξ. Dla każdego v ∈ Ξ, niech rv,f oznacza
promień zbieżności funkcji f◦ψv,r dla pewnego r > 0. Oczywiście, 0 < rv < rv,f .

Mówimy, że (Ξ, φ, f) jest maksymalna funkcją analityczną, gdy dla każdego v ∈ Ξ, rv = rv,f .
Mówimy, że (Ξ, φ, f) jest zredukowana, gdy z tego, że v1, v2 ∈ Ξ, φ(v1) = φ(v2) = z0 i

0 < r < min(rv1 , rv2) wynika, że funkcje

K(z0, r) 3 z 7→ f(ψv1,r(z)),

K(z0, r) 3 z 7→ f(ψv2,r(z)),
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są różnymi funkcjami. Jeśli (Ξ, φ, f) nie jest funkcją zredukowaną, zawsze można ją w jed-
noznaczny sposób zredukować. Wprowadzamy w Ξ relację: v1 ∼ v2 gdy φ(v1) = φ(v2) i dla
r := min(rv1 , rv2)

f◦ψv1,r = f◦ψv2,r.

Wtedy ∼ jest relacją równoważności. Definiujemy

Ξred := Ξ/ ∼,

Niech φred : Ξ→ Ξred będzie kanoniczną surjekcją. Definiujemy również

φred([v]) := φ(v), fred([v]) := f(v).

Wtedy (Ξred, φred) jest powierzchnią Riemanna nad C, (Ξred, φred, fred) jest zredukowaną funkcją
analityczną i spełnione są warunki

φ = φred◦φ
red, f = fred◦φ

red.

Niech (Ξ1, φ1, f1) i (Ξ, φ, f) będą funkcjami analitycznymi. Mówimy, że (Ξ1, φ1, f1) jest
przedłużeniem (Ξ0, φ0, f0), gdy Ξ0 ⊂ Ξ1 i φ1, f1 obcięte do Ξ0 pokrywają się z φ0, f0.

Każdą zredukowaną funkcję analityczną można w sposób jednoznaczny przedłużyć do mak-
symalnej zredukowanej funkcji analitycznej.

5.5 ∗ Homotopia krzywych

Niech Ω będzie otwartym podzbiorem C i z1, z2 ∈ Ω. Oznaczmy przezK(z0, z1,Ω) zbiór krzywych
zaczynających się w z0 i kończących się w z1, tzn γ(0) = z0, γ(1) = z1.

Niech γ0, γ1 ∈ K(z0, z1,Ω). Mówimy, że γ0 jest homotopijnie równoważna γ1 i piszemy
γ0 ∼ γ1 wtedy i tylko wtedy gdy istnieje funkcja ciągła [0, 1] × [0, 1] 3 (t, s) 7→ H(t, s) taka, że
H(t, 0) = γ0(t) i H(t, 1) = γ1(t).

Twierdzenie 5.4 Niech f : Ω → C będzie analityczna, γ0, γ1 ∈ K(z0, z1,Ω) będą kawałkami
gładkie i homotopijnie równoważne. Wtedy∫

γ0

f(z)dz =

∫
γ1

f(z)dz.

Twierdzenie 5.5 Homotopijna równoważność jest relacją równoważności.

Dowód. Kładąc H(t, s) = γ0(t) dostajemy γ0 ∼ γ0.
Kładąc H10(t, s) := H01(t, 1− s) dostajemy γ0 ∼ γ1 ⇒ γ1 ∼ γ0.
Kładąc

H02(t, s) :=

{
H01(t, 2s), 0 ≤ s ≤ 1

2 ;
H12(t, 2s− 1), 1

2 ≤ s ≤ 1,

dostajemy γ0 ∼ γ1, γ1 ∼ γ2 ⇒ γ0 ∼ γ2.
Zbiór klas homotopii krzywych zaczynających się w z0 i kończących w z1 oznaczany jest przez

Π(z0, z1,Ω) := K(z0, z1,Ω)/ ∼ .
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Twierdzenie 5.6 Niech Ω ⊂ C będzie otwarty i spójny. Następujące warunki są równoważne:
(1) Π(z0, z0,Ω) jest jednoelementowy dla każdego z0 ∈ Ω.

(2) Istnieje z0 ∈ Ω taki, że Π(z0, z0,Ω) jest jednoelementowy.

Jeśli spełnione są warunki powyższego twierdzenia, mówimy, że zbiór Ω jest jednospójny.

5.6 ∗ Składanie krzywych i grupa homotopii

Niech z0, z1 ∈ Ω, γ ∈ K(z0, z1,Ω). Definiujemy γ−1 ∈ K(z1, z0,Ω).

γ−1(t) := γ(1− t).

Oczywiście, jeśli γ′ ∼ γ, to (γ′)−1 ∼ γ−1.
Niech z0, z1, z2 ∈ Ω, γ0 ∈ K(z0, z1,Ω), γ1 ∈ K(z1, z2,Ω). Definiujemy γ0◦γ1 ∈ K(z0, z2,Ω):

γ0◦γ1(t) :=

{
γ0(2t), 0 ≤ t ≤ 1

2 ;
γ1(2t− 1), 1

2 ≤ t ≤ 1.

Oczywiście, jeśli γ0 ∼ γ′0, γ1 ∼ γ′1, to

γ0◦γ1 ∼ γ′0◦γ′1.

Jeśli γ2 ∈ K(z2, z3,Ω)
(γ0 ◦ γ1) ◦ γ2 ∼ γ0 ◦ (γ1 ◦ γ2).

Jeśli przez z oznaczamy krzywą stałą równą z ∈ Ω, to dla z0, z1 ∈ Ω, γ ∈ K(z0, z1,Ω),

z0 ◦ γ ∼ γ ◦ z1 ∼ γ.

W szczególności, dla każdego z0 ∈ Ω, Π(z0, z0,Ω) jest grupą. Jeśli zbiór Ω jest spójny, to
grupa Π(z0, z0,Ω) jest izomorficzna dla różnych z0 ∈ Ω. Nazywamy ją grupą homotopii zbioru
Ω. Oznaczamy ją przez Π(Ω).
Przykłady
(1) Π(C) jest grupą jednoelementową.

(2) Π(C\{0}) = Z (liczba okrążeń wokół zera).

(3) Π(C\{0, 1}) = F2 – grupa wolna o dwóch generatorach. Jako generatory można wybrać τ0

– okrążenie 0, τ1 – okrążenie 1. Grupa F2 składa się z elementów następujących typów:

τ
np
1 τ

mp
0 · · · τn0

1 τm0
0 , τ

mp+1

0 τ
np
1 · · · τ

n0
1 τm0

0 ,

τ
np
1 τ

mp
0 · · · τm1

0 τn0
1 , τ

mp+1

0 τ
np
1 · · · τ

m1
0 τn0

1 , (5.57)

gdzie ni,mi ∈ Z\{0}.
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5.7 ∗ Nakrycie uniwersalne

Niech Ω ⊂ C będzie otwarte i spójne. Ustalmy z0 ∈ Ω. Nakryciem uniwersalnym Ω z punktem
bazowym [z0] nazywamy (Cov(Ω), φ, [z0]), gdzie

Cov(Ω) :=
⋃
z∈Ω

Π(z0, z,Ω),

φ : Cov(Ω)→ Ω jest zadane przez φ([γ]) := γ(1). Cov(Ω) jest wyposażone w naturalną topologię.
Oczywiście, (Cov(Ω), φ) jest spójną i jednospójną powierzchnią Riemanna nad C.

5.8 ∗ Nakrycie wyznaczone przez podgrupę grupy homotopii

Niech G będzie podgrupą Π(z0, z0,Ω). W Π(z0, z,Ω) wprowadzamy relację: Dla [γ1], [γ2] ∈
Π(z0, z,Ω) piszemy [γ1]∼

G
[γ2], gdy [γ1 ◦ γ−1

2 ] ∈ G. Jest to relacja równoważności. Będziemy

oznaczali przez [γ]G klasę abstrakcji γ względem tej relacji. Definiujemy

ΠG(z0, z,Ω) := Π(z0, z,Ω)/∼
G
.

Nakryciem Ω związanym z grupą G nazywamy (CovG(Ω), φG, [z0]G), gdzie

CovG(Ω) :=
⋃
z∈Ω

ΠG(z0, z,Ω),

φG([γ]G) = γ(1).

Mamy oczywiście naturalne odwzorowanie

φG : Cov(Ω)→ CovG(Ω), φG([γ]) = [γ]G,

spełniające związek φG ◦φG = φ. Oczywiście, (CovG(Ω), φ) jest spójną (lez niekoniecznie jedno-
spójną) powierzchnią Riemanna nad C.

5.9 ∗ Funkcja pierwotna

Twierdzenie 5.7 Niech Ω ⊂ C będzie jednospójnym obszarem a Ω 3 z 7→ f(z) funkcją holomor-
ficzną. Ustalmy z0 ∈ Ω. Zdefiniujmy

F (z) :=

∫
γz

f(w)dw,

gdzie γz jest dowolną krzywą leżącą w Ω łączącą z0 i z. Wtedy F (z) nie zależy od wyboru krzywej
i

F ′(z) = f(z).

Jeśli Ω jest spójny i otwarty, ale niekoniecznie jednospójny, to powyższą konstrukcję należy
zmodyfikować. Jeśli [γ] ∈ Π(z0, z,Ω) ⊂ Cov(Ω), to kładziemy

F ([γ]) :=

∫
γ
f(w)dw.

Dostajemy funkcję analityczną F : Cov(Ω)→ C, która spełnia

F ′([γ]) = f(φ([γ])), F ([z0]) = 0.
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5.10 ∗ Funkcja logarytm i potęgowa

Funkcję logarytm można zdefinować jako funkcję pierwotną do funkcji 1
z z punktem bazowym

z0 = 1. Dostajemy wtedy funkcję na nakryciu uniwersalnym

Cov(C\{0}) 3 v 7→ log v :=

∫
γ

dw

w
, v = [γ].

Jest ona zredukowana i maksymalna.
Niech µ ∈ C. Funkcję zµ definiujemy najpierw na nakryciu uniwersalnym C\{0} jako

Cov(C\{0}) 3 v 7→ eµ log v. (5.58)

Jeśli µ 6= 0, 1, 2, . . . , jest to maksymalna funkcja analityczna. Jeśli µ 6∈ Q, to jest ona również
zredukowana.

Jeśli µ ∈ Q, to (5.59) jest niezredukowana Niech µ = p
q dla nieskracalnego ułamka, gdzie

q ∈ {1, 2, . . . }, Wtedy vµ = 1, jeśli v ∈ Zq ⊂ Π(1, 1,C\{0}) ⊂ Cov(C\{0}). Po zredukowaniu
dostajemy funkcję

CovZq(C\{0}) 3 v 7→ eµ log v. (5.59)

5.11 ∗ Funkcja zα(z − 1)β.

Funkcję zα(z − 1)β można najpierw zdefiniować na nakryciu uniwersalnym Cov(C\{0, 1}). Jest
ona wtedy niezredukowana.

Opiszmy teraz jej zredukowane wersje w niektórych sytuacjach. Załóżmy najpierw, że mamy
do czynienia z generyczną sytuacją, kiedy α i β są niewymierne i niewspółmierne, tzn. αn+βm ∈
Q implikuje n = m = 0. Wtedy w grupie F2 wprowadzamy podgrupę G zadaną przez∑

j

nj =
∑
j

mj = 0,

gdzie nj ,mi są liczbami występującymi w (5.58). Wtedy zα(z−1)β można przenieść na nakrycie
CovG(C\{0, 1}), i dostajemy wtedy zredukowaną maksymalną funkcję analityczną.

Inną sytuację mamy, gdy α+β ∈ Z, α 6∈ Q. Wprowadzamy wtedy podgrupę H zadaną przez
∞∑
j=0

nj =

∞∑
j=0

mj

i funkcję zα(z − 1)β przenosimy na nakrycie CovH(C\{0, 1}). Dostajemy wtedy zredukowaną
maksymalną funkcję analityczną.

6 Separacja zmiennych w równaniu Helmholtza

6.1 Równanie Helmholtza we współrzędnych kartezjańskich

Równania Helmholtza w 2 wymiarach ma postać

(∂2
x + ∂2

y + E)g, (6.60)
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gdzie E jest parametrem. Ma ono wiele rozwiązań. Aby wyróżnić interesujące nas rozwiązania,
trzeba dodać warunki brzegowe, np. warunki brzegowe Dirichleta na brzegu obszaru Ω.

We współrzędnych kartezjańskich wygodnie rozwiązuje się równanie Helmholtza na prosto-
kącie, np. [0, A]× [0, B]. Wtedy stosujemy ansatz

g(x, y) = p(x)q(y),

i dostajemy
1

p(x)

(
∂2
x + E

)
p(x) = − 1

q(y)
∂2
yq(y). (6.61)

Lewa strona nie zależy od y a prawa strona nie zależy od x. Zatem (6.62) jest równe stałej C,
co prowadzi do

(∂2
x + E − C)p(x) = 0,

(∂2
y + C)q(y) = 0.

Warunki Dirichleta oznaczają

p(0) = p(A) = 0, q(0) = q(B) = 0,

co prowadzi do

p(x) = sinnπ
x

A
, q(y) = sinmπ

y

B
, E − C =

n2π2

A2
, C =

m2π2

B2
.

W szczególności, E = π2( n
2

A2 + m2

B2 ).
Jeśli Ω jest kołem, pierścieniem lub ich wycinkiem, wygodniej jest stosować współrzędne

biegunowe. Ogólniej, we współrzędnych u(x, y), v(x, y) wygodnie jest rozwiązywać równania
różniczkowe cząstkowe na obszarze typu Ω = {(x, y) : u0 < u(x, y) < u1, v0 < v(x, y) < v1}.

6.2 Zamiana zmiennych w laplasjanie

Niech Ω będzie otwartym podzbiorem R2 i

Ω 3 (x, y) 7→ (u, v) ∈ R2 (6.62)

będzie gładką transformacją. Mamy wtedy

(∂2
x + ∂2

y)g = ∂x(∂xu∂ug + ∂xv∂vg) + ∂y(∂yu∂ug + ∂yv∂vg)

= (∂2
x + ∂2

y)u ∂ug + (∂2
x + ∂2

y)v ∂vg

+(∂xu∂xu+ ∂yu∂yu)∂2
ug

+2(∂xu∂xv + ∂yu∂yv)∂u∂vg,

+(∂xv∂xv + ∂yv∂yv)∂2
vg.
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Załóżmy teraz, że z = x+ iy 7→ u+ iv = f jest funkcją analityczną. Warunki Cauchy-Riemanna
∂xu = ∂yv, ∂yu = −∂xv implikują

(∂2
x + ∂2

y)u = (∂2
x + ∂2

y)v = 0,

∂xu∂xu+ ∂yu∂yu = ∂xv∂xv + ∂yv∂yv = (∂xu)2 + (∂xv)2 = |∂zf |2, (6.63)
∂xu∂xv + ∂yu∂yv = ∂xu∂xv − ∂xv∂xu = 0. (6.64)

Zatem
(∂2
x + ∂2

y)g = |∂zf |2(∂2
u + ∂2

v)g. (6.65)

Zauważmy, że warunki (6.64) i (6.65) oznaczają, że wektory (∂xu, ∂yu) i (∂xv, ∂yv) są orto-

gonalne i równej długości. Zatem macierz
[
∂xu ∂yu
∂xv ∂yv

]
jest macierzą obrotu razy |∂zf |. Czyli

jeśli |∂zf | 6= 0, to transformacja (6.63) zachowuje kąty. Mówiąc precyzyjniej, jeśli [0, 1] 3 τ 7→
(xi(τ), yi(τ))), i = 1, 2, są dwiema krzywymi rozpoczynającymi się w punkcie (x1(0), y1(0))) =
(x2(0), y2(0))), zaś [0, 1] 3 τ 7→ (ui(τ), vi(τ))) są ich obrazami, to

(∂τx1(0), ∂τy1(0)) · (∂τx2(0), ∂τy2(0))

‖ (∂τx1(0), ∂τy1(0)) ‖‖ (∂τx2(0), ∂τy2(0)) ‖
=

(∂τu1(0), ∂τv1(0)) · (∂τu2(0), ∂τv2(0))

‖ (∂τu1(0), ∂τv1(0)) ‖‖ (∂τu2(0), ∂τv2(0)) ‖

6.3 Równanie Helmholtza we współrzędnych biegunowych

Zastosujmy zamianę zmiennych (6.63) do równania Helmoholtza. Wygodniej nam będzie skupić
się na transformacji odwrotnej

(u, v) 7→ (x, y) (6.66)

i jej interpretacji w terminach zmiennej zespolonej

f = u+ iv 7→ x+ iy = z.

Równanie (6.66) można wtedy przepisać jako

|∂fz|2(∂2
x + ∂2

y) = ∂2
u + ∂2

v . (6.67)

Rozważmy funkcję z = ef , czyli

x = eu cos v, y = eu sin v.

Wtedy ∂fz = ef , zatem |∂fz|2 = e2u. Mamy zatem

∂2
x + ∂2

y = e−2u(∂2
u + ∂2

v). (6.68)

Aby sprowadzić je do bardziej znanej postaci, podstawmy r = eu i przemianujmy v na φ. Mamy
wtedy ∂u = r∂r i (6.69) sprowadza się do znanej zamiany zmiennych

∂2
x + ∂2

y = ∂2
r +

1

r
∂r +

1

r2
∂2
φ. (6.69)
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Zastosujmy teraz następujący ansatz:

g(r, φ) = p(r)q(r). (6.70)

Wtedy równanie Helmholtza (
r2∂2

r + r∂r + ∂2
φ + r2E

)
p(r)q(φ)

po podzieleniu przez p(r)q(φ) można przepisać jako
1

p(r)

(
r2∂2

r + r∂r + r2E
)
p(r) = − 1

q(φ)
∂2
φq(φ) (6.71)

Lewa strona(6.72) nie zależy od r zaś prawa strona nie zależy od φ. Dlatego (6.72) równa się
stałej, którą możemy nazwać C. (6.72) rozdziela się zatem na dwa równania(

r2∂2
r + r∂r − C + r2E

)
p(r) = 0, (6.72)(

∂2
φ + C

)
q(φ) (6.73)

(6.74) ma rozwiązanie równe
q(φ) = eimφ, m2 = C.

Zatem (6.73) można przepisać jako(
r2∂2

r + r∂r −m2 + r2E
)
p(r) = 0. (6.74)

Sprowadza się ono do równania Bessela (standardowego lub zmodyfikowanego).

6.4 Równanie Helmholtza we współrzędnych parabolicznych

Rozważmy teraz układ współrzędnych zadany przez analityczną transformację z = f2

2 . Mamy
wtedy

x =
u2 − v2

2
, y = uv,

∂fz = f , |∂fz|2 = u2 + v2. Laplasjan transformuje się zatem następująco:

∂2
x + ∂2

y = (u2 + v2)−1(∂2
u + ∂2

v).

Równanie Helmholtza we współrzędnych parabolicznych ma zatem postać(
∂2
u + ∂2

v + E(u2 + v2)
)
g = 0. (6.75)

Ansatz
g(u, v) = p(u)q(v). (6.76)

prowadzi do
1

p(u)

(
∂2
u + Eu2

)
p(u) = − 1

q(v)

(
∂2
v + Ev2

)
q(v) = C (6.77)

co można zamienić jako (
∂2
u + Eu2 − C

)
p(u) = 0, (6.78)(

∂2
v + Ev2 + C

)
q(v) = 0, (6.79)

które sprowadzają się do równania dla oscylatora harmonicznego, zwanego też równaniem We-
bera.
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6.5 Równanie Helmholtza we współrzędnych eliptyczno-hiperbolicznych

Rozważmy teraz układ współrzędnych zadany przez analityczną transformację z = cosh f . Mamy
wtedy

x = coshu cos v, y = sinhu sin v,

∂fz = sinh f = sinhu cos v + i coshu sin v, |∂fz|2 = sinh2 u + sin2 v. Laplasjan transformuje się
zatem następująco:

∂2
x + ∂2

y = (sinh2 u+ sin2 v)−1(∂2
u + ∂2

v).

Równanie Helmholtza we współrzędnych parabolicznych ma zatem postać

(∂2
u + ∂2

v + E(sinh2 u+ sin2 v))g. (6.80)

Ansatz (6.77) prowadzi do

1

p(u)

(
∂2
u + E sinh2 u

)
p(u) = − 1

q(v)

(
∂2
v + E sin2 v

)
q(v) = C (6.81)

co można zamienić na (
∂2
u + E sinh2 u− C

)
p(u) = 0, (6.82)(

∂2
u + E sin2 v + C

)
p(u) = 0, (6.83)

które sprowadzają się do równania Mathieu (standardowego lub zmodyfikowanego).

6.6 Operatory ∂z i ∂z

Utożsamiamy R2 z C odwzorowaniem R2 3 (x, y) 7→ z := x+iy ∈ C. Wprowadzamy następujące
operatory działające na C

∂z :=
1

2
(∂x − i∂y), ∂z :=

1

2
(∂x + i∂y).

Zauważmy, że

∂zz = 1, ∂zz = 0,

∂zz = 0, ∂zz = 1,

∂x = ∂z + ∂z, ∂y = i∂z − i∂z.

df = ∂zfdz + ∂zfdz.

Stwierdzenie 6.1 Funkcja z 7→ f jest holomorficzna wtedy i tylko wtedy gdy ∂zf = 0. Jeśli to
ma miejsce, to ∂zf jest zwykłą pochodną funkcji f w sensie zespolonym.

Dowód. ∂zf = 0 oznacza ∂xf = −i∂yf , czyli warunki Cauchy-Riemanna. Przy ich spełnieniu,
∂zf = 1

2(∂xf − i∂yf) = ∂xf . 2

Mówimy, że funkcja z 7→ f jest antyholomorficzna, gdy z 7→ f(z) jest holomorficzna. Oczy-
wiście, jest to równoważne temu, że ∂zf = 0.
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6.7 Kiedy transformacja zmiennych w R2 separuje równanie Helmohltza?

Niech
(x, y) 7→ (u, v) ∈ R2

będzie transformacją taką, że z = x + iy 7→ u + iv = f jest funkcją analityczną. Równanie
Helmholtza

(∂2
x + ∂2

y)g = Eg,

zapisuje się wtedy w nowych współrzędnych jako

(∂2
u + ∂2

v)g = |∂fz|2Eg.

Równanie to się separuje gdy |∂fz|2 jest postaci

|∂fz|2 = a(u) + b(v).

Jest to równoważne warunkowi
∂u∂v|∂fz|2 = 0.

Używamy zmiennej f = u+ iv, zatem odpowiedniki operatorów ∂z i ∂z mają teraz inne oznacze-
nia:

∂f :=
1

2
(∂u − i∂v), ∂f :=

1

2
(∂u + i∂v).

Korzystając z ∂fz = ∂fz i
∂u = ∂f + ∂f , ∂v = i∂f − i∂f ,

dostajemy

0 = ∂u∂v|∂fz|2 = i(∂2
f − ∂2

f
)∂fz∂fz

= i
(
∂3
fz∂fz − ∂fz∂

3
f
z
)
.

Zatem
∂3
fz

∂fz
=
∂3
f
z

∂fz
. (6.84)

Lewa strona (6.85) jest holomorficzna a prawa antyholomorficzna. Zatem (6.85) jest równe stałej,
którą nazwiemy D i dostajemy równanie

∂3
fz = D∂fz. (6.85)

Sklasyfikujmy rowzwiązania (6.86) z dokładnością do translacji z 7→ z + a, obrotów z 7→ eiαz i
skalowania z 7→ λz.
(1) D = 0. Wtedy z = Af2 + Bf + C. Jeśli A = 0, to zamiana współrzędnych jest trywialna.

Jeśli A 6= 0, to sprowadza się do z = f2.

(2) D 6= 0, z = Ae
√
Df . Zamiana współrzędnych sprowadza się do z = ef .

(3) D 6= 0, z = Ae
√
Df +Be−

√
Df . Zamiana współrzędnych sprowadza się do z = cosh f .
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7 Funkcja Gamma Eulera

7.1 Funkcja Gamma jako uogólnienie silni i II całka Eulera

Przy pomocy tzw. II całki Eulera definiujemy funkcję Gamma:

Γ(z) :=
∫∞

0 e−ttz−1dt

= 2
∫∞

0 e−ξ
2
ξ2z−1dξ, Rez > 0,

(7.86)

Zakładamy, że w powyższym wzorze bierzemy gałąź główną funkcji tz−1. Zdefiniujmy też tzw
symbol Pochhammera

(a)0 := 1,

(a)n := a(a+ 1) . . . (a+ n− 1), n = 0, 1, 2, . . .

(a)n := 1
(a+n)...(a−1) , n = . . . ,−2,−1.

Oczywiście, (1)n = n!.

Twierdzenie 7.1 Zachodzą następujące tożsamości:

Γ(z + 1) = zΓ(z), (7.87)

Γ(n+ 1) = n!, n = 0, 1, 2, . . . , (7.88)

Γ(z + n) = (z)nΓ(z), n ∈ Z.

Dowód. (7.88) wynika z całkowania przez części. (7.89) wynika z (7.88) i Γ(1) = 1. 2

Zdefiniujmy zbiór

Ωn := {z : Rez > −n}\{0,−1, . . . ,−n+ 1}

i funkcję

Ωn 3 z 7→ Γn(z) :=
Γ(z + n)

z(z + 1) . . . (z + n− 1)
.

Wtedy jeśli n > m, to
Γn(z) = Γm(z), z ∈ Ωm.

Wynika to z tożsamości

Γ(z + n) = Γ(z +m)(z +m) . . . (z + n− 1),

będącej konsekwencją wzoru (7.88). Ostatecznie, na

∞⋃
n=1

Ωn = C\{0,−1,−2, . . . }
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definiujemy
Γ(z) := Γn(z), z ∈ Ωn.

Tak zdefiniowana funkcja Γ jest to maksymalnym przedłużeniem analitycznym funkcji Γ(z) zde-
finiowanej przy pomocy całki (7.87).

Oto inne wzory, które pozwalają maksymalnie przedłużyć funkcję Gamma:

Twierdzenie 7.2 (Rozkład Pryma)

Γ(z) =

∞∑
n=0

(−1)n

n!(n+ z)
+

∫ ∞
1

e−ttz−1dt, z ∈ C\{0,−1,−2, . . . }.

Twierdzenie 7.3 (Wzór Cauchy-Saalschütza)

Γ(z) =

∫ ∞
0

tz−1
(

e−t −
n∑
k=0

(−t)k

k!

)
dt, −1− n < Rez < −n. (7.89)

Dowód. Niech Γn(z) będzie prawą stroną (7.90). Oczywiście

Γ−1(z) = Γ(z), 0 < Rez.

Całkując przez części dostajemy

Γn(z) = tz

z

(
e−t −

n∑
k=0

(−t)k
k!

)∣∣∣∞
0

+ 1
z

∞∫
0

tz
(

e−t −
∑n−1

k=0
(−t)k
k!

)
dt

= 1
zΓn−1(z + 1).

2

7.2 I całka Eulera i dalsze tożsamości

Twierdzenie 7.4 (I całka Eulera)

Γ(u)Γ(v)
Γ(u+v) =

∫ 1
0 t

u−1(1− t)v−1dt

= 2
∫ π

2
0 cos2u−1 φ sin2v−1 φdφ, Reu > 0, Rev > 0.

(7.90)

Γ(u)Γ(v)
Γ(u+v)

sinπu
sinπ(u+v) = Γ(1−u−v)Γ(v)

Γ(1−u) =
∫∞

0 (t+ 1)u−1tv−1dt

= 2
∫∞

0 ch2u−1θsh2v−1θ, Rev > 0, Re(1− u− v) > 0.
(7.91)

Dowód. Stosując podstawienie t = 1
s + 1 z (7.91) dostajemy (7.92), z wyjątkiem pierwszej

równości, wynikającej z tożsamości (7.95), którą dowiedziemy później. Udowodnijmy więc (7.91)
Mamy

Γ(u)Γ(v) = 4

∫ ∞
0

∫ ∞
0

e−ξ
2−η2ξ2u−1η2v−1dξdη. (7.92)
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Przechodzimy do współrzędnych biegunowych podstawiając

ξ = r cosφ, η = r sinφ

i otrzymujemy, że (7.93) równa się

4
∫∞

0 e−r
2
r2u+2v−1dr

∫ π/2
0 cos2u−1 φ sin2v−1 φdφ.

= Γ(u+ v)
∫ 1

0 t
u−1(1− t)v−1dt,

(7.93)

(W ostatnim kroku podstawiliśmy t = cos2 φ). 2

Wzór (7.91) jest uzasadnieniem tego, że często wprowadza się tak zwaną funkcję Beta:

B(u, v) :=
Γ(u)Γ(v)

Γ(u+ v)
.

Twierdzenie 7.5 Zachodzą następujące tożsamości:

Γ(z)Γ(1− z) =
π

sinπz
, (7.94)

Γ(1/2) =
√
π (7.95)

Dowód. Załóżmy na razie, że 0 < Rez < 1. Rozważmy funkcję holomorficzną C\[0, 1] 3
t 7→ f(t) = tz−1(t − 1)−z (Funkcje tz−1 i (t − 1)−z rozumiemy w sensie ich gałęzi głównych
zdefiniowanych odpowiednio na C\[−∞, 0[ i C\[−∞, 1[. Zatem funkcja f(t) zdefiniowana jest a
priori na C\[−∞, 1[, ale przedłuża się analitycznie do funkcji na C\[0, 1].

Niech γ = [0, 1+, 0+] będzie konturem zwanym kością. Wtedy biorąc pod uwagę, że w
nieskończoności residuum funkcji f jest równe −1, dostajemy

2iπ = −2πiResf(∞) =
∫
γ f(t)dt

= (eiπz − e−iπz)
∫ 1

0 t
z−1(1− t)−zdt = (2i sinπz)B(z, 1− z) = (2i sinπz)Γ(z)Γ(1− z).

Stąd wynika (7.95) dla 0 < Rez < 1. Rozszerzamy go na wszystkie z ∈ C przez analityczność.
Podstawiając w (7.95) z = 1/2 dostajemy

Γ2(1/2) = π.

Wiemy, że
Γ(z) > 0, z > 0.

Stąd wynika (7.96). 2

Wniosek 7.6 (Całka Gaussa) Jeśli Rea > 0, to∫ ∞
−∞

e−at
2
dt =

√
π

a
. (7.96)
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Dowód. Wychodząc z (7.96) przez zamianę zmiennych dostajemy

√
π = Γ(1/2) =

∫
]−∞,∞[ e−t

2
dt

=
∫

]−
√
a∞,
√
a∞[ e−t

2
dt

=
√
a
∫

]−∞,∞[ e−as
2
ds.

2

Wniosek 7.7 (Całka Fresnela) Mamy

lim
R→∞

∫ R

−R
e±ix2dx = e±iπ

4
√
π.

Dowód. Całkujemy po bokach trójkąta 0, R,R+ iR. Po pionowym boku mamy∫ R

0
e−R

2+y2dy =

∫ 1

0
e−R

2(1−t2)Rdt→ 0,

po zastosowaniu Tw. Lebesgue’a. 2

Zauważmy, że funkcja Γ(z) ma w z = 0,−1, . . . bieguny 1-go rzędu z residuami

ResΓ(−n) = limz→−n Γ(z)(z + n)

= (z+n)π
Γ(1−z) sinπz = (−1)n

n! .

Twierdzenie 7.8 Wzór Legendre’a o podwajaniu:

22z−1Γ(z)Γ (z + 1/2) =
√
πΓ(2z),

Dowód.
Γ(z)2

Γ(2z)
=

∫ 1

0
tz−1(1− t)z−1dt = 2

∫ 1/2

0
tz−1(1− t)z−1dt.

Podstawiamy s = 4t(1− t) i otrzymujemy

21−2z

∫ 1

0
sz−1(1− s)−1/2ds = 21−2zΓ(z)Γ(1

2)

Γ(z + 1
2)
.

2

Prawdziwe jest też następujące uogólnienie powyższego wzoru, zwane wzorem Gaussa o mno-
żeniu, które udowodnimy później:

Γ(nz) = (2π)
1−n
2 nnz−

1
2
n−1
Π
k=0

Γ(z + k
n) (7.97)
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7.3 Funkcja Gamma i całki w dziedzinie zespolonej

Twierdzenie 7.9 (Wzór Hankela)

1

Γ(z + 1)
=

1

2πi

∫
[−∞,0+,−∞[

ess−z−1ds. (7.98)

Dowód. Załóżmy tymczasowo, że Rez < 0.∫
[−∞,0+,−∞[

ess−z−1ds = e−iπ(−z−1)
∫

]−∞,0] es(−s)−z−1ds+ eiπ(−z−1)
∫

[0,−∞[ es(−s)−z−1ds

=
(
e−iπ(−z−1) − eiπ(−z−1)

) ∫∞
0 e−tt−z−1dt

= i2 sin(−πz)Γ(−z) = 2πi
Γ(z+1)

Następnie rozszerzamy tożsamość na wszystkie z przez przedłużenie analityczne. 2

Twierdzenie 7.10
Γ(u+v+1)

Γ(u+1)Γ(v+1) = 1
2πi

∫
]−∞,0+,−∞[ t

−u−1(1− t)−v−1dt

= 1
2πi

∫
]∞,1−,∞[ t

−u−1(1− t)−v−1dt, u+ v + 1 > 0.

Dowód. Zauważmy, że ]−∞, 0+,−∞[ i ]∞, 1−,∞[ dają tę samą całkę.∫
]∞,0−,∞[

t−u−1(1− t)−v−1dt = (−e−iπ(v+1) + eiπ(v+1))
∫∞

1 t−u−1(t− 1)−v−1dt

= −2i sinπvΓ(−v)Γ(1+u+v)
Γ(1+u) = 2iπ Γ(1+u+v)

Γ(1+u)Γ(1+v) .

2

Jeśli u+v =∈ Z, to pętla okrążająca 1 i 0 przeciwnie do ruchu wskazówek leży na powierzchni
Riemanna funkcji tu−1(t− 1)v−1 i dostajemy wzór:

Twierdzenie 7.11 Niech n ∈ Z. Wtedy

Γ(u)

Γ(n+ 1)Γ(u− n)
=

(u− 1) . . . (u− n)

n!
=

1

2πi

∫
[0,1+,0+]

tu−1(t− 1)n−udt, (7.99)

Dowód. Gdy zastosujemy homografię t = −s−1 to dostaniemy
1

2πi

∫
[0,1+,0+] t

u−1(t− 1)n−udt = 1
2πi

∫
[0+] s

n+1(1− s)n−uds

= 1
n!

(
d
ds

)n
(1− s)n−u

∣∣
s=0

= (u−1)...(u−n)
n! .

(7.100)

2

Rozważmy teraz funkcję (−t)u−1(t − 1)v−1. Jeśli obie potęgi rozumiemy w sensie ich gałęzi
głównych, to dziedziną tej funkcji jest C\R. Jest to dziedzina składająca się z dwóch spójnych
części na których mamy

(−t)u−1(t− 1)v−1 =

{
tu−1(1− t)v−1e−iπ(u−1)eiπ(v−1), Imt > 0;

tu−1(1− t)v−1eiπ(u−1)e−iπ(v−1), Imt < 0.
(7.101)
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Rozważmy teraz kontur "podwójna ósemka"[0, 1+, 0−, 1−, 0+]. Kontur ten rozpoczynamy na
dolnym płacie powierzchni Riemanna funkcji (−t)u−1(t−1)v−1, na którym leży pierwszy odcinek
[0, 1] z tego konturu. Latwo się przekonać, że [0, 1+, 0−, 1−, 0+] jest krzywą zamkniętą na tej
powierzchni Riemanna. Nawiasem mówiąc, trzeci odcinek w tym konturze znajduje się na górnym
płacie opisanym w (7.102). Całkę z funkcji (−t)u−1(t−1)v−1 po podwójnej ósemce można wyrazić
poprzez funkcję Gamma:

Twierdzenie 7.12

1

Γ(u+ v)Γ(1− u)Γ(1− v)
=

1

(2π)2

∫
[0,1+,0−,1−,0+]

(−t)u−1(t− 1)v−1dt, (7.102)

Dowód. Załóżmy, że Reu,Rev > 0.∫
[0,1+,0−,1−,0+]

(−t)u−1(t− 1)v−1dt

=
(
eiπ(u−1)e−iπ(v−1) − eiπ(u−1)eiπ(v−1) + e−iπ(u−1)eiπ(v−1) − e−iπ(u−1)e−iπ(v−1)

)
×
∫ 1

0 t
u−1(1− t)v−1dt

= −(eiπu − e−iπu)(eiπv − e−iπv)B(u, v)

= −(2i sinπv)(2i sinπu)Γ(u)Γ(v)
Γ(u+v)

= (2π)2 1
Γ(u+v)Γ(1−u)Γ(1−v)

Przez przedłużenie analityczne rozszerzamy tożsamość na wszystkie u, v. 2

7.4 Iloczyny nieskończone

Przypomnijmy najpierw podstawowe fakty dotyczące szeregów.
Jeśli istnieje skończona granica I := limn→∞

∑n
j=1 bj , to mówimy, że szereg

∑∞
j=1 bj jest

zbieżny warunkowo i piszemy I =
∑∞

j=1 bj .
Jeśli

∑∞
j=1 |bj | <∞, to mówimy, że szereg

∑∞
j=1 bj jest zbieżny bezwzględnie. Można poka-

zać, że zbieżność bezwzględna szeregu pociąga za sobą zbieżność warunkową, również po zmianie
kolejności wyrazów w szeregu i jego wartość nie zależy od tej kolejności.

Jeśli istnieje skończona granica I := limn→∞
∏n
j=1(1 + aj), to mówimy, że iloczyn nieskoń-

czony
∏∞
j=1(1 + aj) jest zbieżny warunkowo i piszemy I =

∏∞
j=1(1 + aj).

Mówimy, że iloczyn nieskończony
∏∞
j=1(1+aj) jest zbieżny bezwzględnie wtedy i tylko wtedy,

gdy
∞∑
n=1

|an| <∞. (7.103)

Lemat 7.13 Iloczyn nieskończony
∏∞
j=1(1+aj) jest zbieżny bezwzględnie wtedy i tylko wtedy gdy

jedynie skończona liczba wyrazów aj jest równa −1 i

∞∑
n=1

| log(1 + an)| <∞, (7.104)
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przy czym w szeregu (7.105) usunęliśmy wyrazy aj = −1. (W powyższym wzorze przez | log(1+a)|
rozumiemy wartość bezwzględną gałęzi głównej logarytmu rozszerzoną przez ciągłość do funkcji
na C\{−1}, która jest jednoznaczna, mimo że sam log(1 + a) jednoznaczny nie jest).

Dowód. Niech spełnione będzie (7.104). Wtedy limj→∞ aj = 0 i dlatego skończona liczba
wyrazów aj jest równa −1. Poza tym poza skończoną liczbą indeksów

|aj | ≤
1

2
. (7.105)

C\{−1} 3 t 7→
∣∣∣ log(1+t)

t

∣∣∣ jest funkcją ciągłą i dodatnią. Zatem dla |t| ≤ 1
2 istnieją 0 < C1 ≤

C2, takie, że

C1 ≤
∣∣∣∣ log(1 + t)

t

∣∣∣∣ ≤ C2.

Zatem
| log(1 + an)| ≤ C2|an|.

Aby dowieść implikację przeciwną, wystarczy założyć, że wszystkie aj są różne od −1. (7.105)
pociąga za sobą limn→∞ log(an + 1) = 0, a więc (7.106) jest spełnione poza skończoną liczbą
indeksów i wtedy

|an| ≤ C−1
1 | log(1 + an)|.

2

Oczywiście, logarytmując wyraz po wyrazie iloczyn bezwzględnie zbieżny dostajemy szereg
bezwzględnie zbieżny. Dlatego zbieżność bezwzględna iloczynu nieskończonego pociąga za sobą
zbieżność warunkową, również po zmianie kolejności wyrazów w iloczynie i jego wartość nie zależy
od tej kolejności.

7.5 Funkcje trygonometryczne jako iloczyny nieskończone

Twierdzenie 7.14 Mamy następujące wzory:∑∞
j=−∞

1
(z−j)2 = π2

sin2 πz
, (7.106)

1
z + 2

∑∞
j=1

z
z2−j2 = limn→∞

∑n
j=−n

1
z+j = π cosπz

sinπz , (7.107)

z
∞
Π
j=1

(1− z2

j2
) = sinπz

π . (7.108)

Uwaga Iloczyn nieskończony występujący we wzorze (7.109) jest zbieżny bezwzględnie.
Dowód.

∞∑
j=−∞

1

(z − j)2
− π2

sin2 πz

jest funkcją całkowitą. Jest ona okresowa z okresem 1 i dąży do zera dla |Imz| → ∞. Jest więc
ograniczona. Na mocy tw. Liouville’a jest więc równa zero. To dowodzi (7.107).

60



Na mocy (7.107) pochodna

1

z
+ 2

∞∑
j=1

z

z2 − j2
− π cosπz

sinπz
, (7.109)

jest równa zero. (7.110) jest funkcją nieparzystą i stałą, więc jest równe zero. To dowodzi (7.108).
Na mocy (7.108) mamy

d
dz log

(
z
∞
Π
j=1

(1− z2

j2
)
)

= d
dz log

(
sinπz
π

)
Zatem

z
∞
Π
j=1

(1− z2

j2
) = C sinπz

π . (7.110)

Porównując pochodne obu stron w (7.111) w zerze dostajemy C = 1. To dowodzi (7.109). 2

7.6 Funkcja Gamma a iloczyny nieskończone

Zdefiniujmy stałą Eulera-Mascheroniego

γ = limn→∞

(∑n
k=1

1
k − log n

)
= 1 +

∑∞
j=2(1

j + log(1− 1
j )) ∼ 0, 577 . . . .

Twierdzenie 7.15 (Wzór Gaussa)

Γ(z) = lim
n→∞

n!nz

z(z + 1) · · · (z + n)

(Wzór Weierstrassa)
1

Γ(z) = zeγz
∞
Π
n=1

(1 + z
n) exp(− z

n).

Uwaga Iloczyn nieskończony występujący we wzorze Weierstrassa jest zbieżny bezwzględnie.

Lemat 7.16 Dla 0 ≤ t ≤ n mamy

0 ≤ (1− t
n)n ≤ e−t, limn→∞(1− t

n)n = e−t.

Dowód. Dla fn(t) := et(1− t
n)n mamy fn(n) = 0, fn(0) = 1

f ′n(t) = −et(1− t
n)n−1 t

n ≤ 0.

Zatem 0 ≤ fn(t) ≤ 1. 2
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Dowód Twierdzenia 7.15. Mamy∫ 1

0
(1− β)nβz−1dβ =

Γ(n+ 1)Γ(z)

Γ(z + n+ 1)
=

n!

z(z + 1) · · · (z + n)
.

Zatem ∫ n
0 (1− t

n)ntz−1dt = n!nz

z(z+1)···(z+n) .

Ale dla 0 ≤ t ≤ ∞
limn→∞ θ(n− t)(1− t

n)ntz−1 = e−ttz−1.

Na mocy Lematu 7.16 możemy zastosować Twierdzenie Lebesgue’a o zbieżności majoryzowalnej
(z majorantą równą e−ttRez−1). Zatem

limn→∞
∫ n

0 (1− t
n)ntz−1dt =

∫∞
0 e−ttz−1dt.

To dowodzi wzoru Gaussa dla Rez > 0.
Aby pokazać wzór Weierstrassa zauważmy, że

zeγz
∞
Π
n=1

(1 + z
n) exp(− z

n).

= z limn→∞ exp z(
∑n

k=1
1
k − log n)

n
Π
k=1

(1 + z
k ) exp(− z

k )

= limn→∞ n
−zz

n
Π
k=1

(1 + z
k ) = limn→∞

n−zz(z+1)···(z+n)
n! .

2

Wzory Gaussa lub Weierstrassa mogą być wykorzystane do udowodnienia rezultatów z po-
przednich rozdziałów. Na przykład, stosując wzór Gaussa dostajemy

Γ(z+1) = lim
n→∞

n!nz+1

(z + 1) · · · (z + n+ 1)
= z lim

n→∞

( n

n+ 1

)z+1
lim
n→∞

(n+ 1)!(n+ 1)z

z(z + 1) · · · (z + n+ 1)
= zΓ(z).

Stosując zaś wzór Weierstrassa dostajemy łatwo

1
Γ(z)Γ(1−z) = −1

zΓ(z)Γ(−z)

= z
∞
Π
n=1

(1− z2

n2 ) = sinπz
π .

Dowód wzoru Gaussa o zwielokrotnianiu (7.98). Niech

G(z) =
m−1
Π
k=0

Γ(z +
k

m
).

Wtedy korzystając ze wzoru Gaussa dostajemy

1
G(z) = lim

n→∞

nm+m−1
Π
n=0

(mz+k)

(n!)mnmz+
1
2 (m−1)mm(n+1)

,

Γ(mz) = limn→∞
(mn)!(mn)mz
mn
Π
k=0

(mz+k)
.
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Zatem
Γ(mz)
G(z) = limn→∞

(mn)!mmz−m(n+1)n−
1
2 (m−1)

(n!)m

mn+m−1
Π

k=mn+1
(mz + k)

= limn→∞
(mn)!mmz−mn−1)n

1
2 (m−1)

(n!)m = (2π)
1
2

(m−1)mmz− 1
2 ,

gdzie użyliśmy najpierw

lim
n→∞

nm+m−1
Π

k=nm+1

mz + k

n
= mm−1,

a potem skorzystaliśmy ze wzoru Stirlinga, patrz Wniosek 7.25. 2

7.7 Pewne całki z parametrem

Stwierdzenie 7.17 Niech f(t) będzie holomorficzna dla 0 ≤ argt ≤ α i ciągła na domknięciu
tego zbioru. Załóżmy, że dla pewnego ε > 0

|f(z)| ≤ C|z|−ε, |f(z)− f(0)| ≤ C|z|ε.

Wtedy dla 0 ≤ argz ≤ α ∫ ∞
0

(f(t)− f(zt))
dt

t
= f(0) log z.

Dowód. ∫ R
r (f(t)− f(zt))dt

t =
( ∫

[r,R] +
∫

[zR,zr]

)
f(t)dt

t

=
( ∫

[r,zr] +
∫

[zR,R]

)
f(t)dt

t

→
∫

[r,zr] f(0)dt
t = f(0) log(z),

gdzie na końcu r → 0, R→∞. 2

Na marginesie wspomnijmy, że istnieje “wariant rzeczywisty” powyższego stwierdzenia:

Stwierdzenie 7.18 Niech f(t) będzie funkcją mierzalną na [0,∞[ taką, że∫ ∞
1
|f(t)|dt

t
<∞,

∫ 1

0
|f(t)− f(0)|dt

t
<∞.

Wtedy dla z ∈ [0,∞[ ∫ ∞
0

(f(t)− f(zt))
dt

t
= f(0) log z.

Wniosek 7.19 Zachodzi wzór

log z =
∫∞

0 (e−t − e−zt)dt
t .

Stwierdzenie 7.20 Mamy następującą reprezentację całkową stałej Eulera-Mascheroniego:

γ =
∫∞

0

(
1

et−1 −
1
tet

)
dt.
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Dowód. Mamy ∫∞
0

1−e−nt

1−e−t e−tdt =
∑n

j=1

∫∞
0 e−jtdt =

∑n
j=1

1
j ,∫∞

0 (e−t − e−(n+1)t)dt
t = log(n+ 1),

limn→∞
∫∞

0 ( 1
1−e−t −

1
t )e
−t(n+1)dt = 0.

Stąd
γ = lim

n→∞

(
1 + 1

2 + · · ·+ 1
n − log(n+ 1)

)
= limn→∞

∫∞
0 (1−e−nt

1−e−t e−t − (1− e−nt)t−1e−t)dt

=
∫∞

0

(
1

et−1 −
1
tet

)
dt.

2

Stwierdzenie 7.21 (Wzór Pringsheima)

1
2 + 1

2 log 1
2 =

∫∞
0

(
1

1−e−t −
1
t −

1
2

)
e−

1
2 t

t dt

=
∫∞

0

(
1

et−1 −
1
t + 1

2

)
e−

1
2 t

t dt

.

Dowód. Zauważmy najpierw, że

1

1− e−t
− 1

t
− 1

2
∼ 1

12
t.

Dlatego powyższa całka jest zbieżna.∫∞
0

(
1

1−e−t −
1
t −

1
2

)
e−

1
2 t

t dt

=
∫∞

0

(
e−

1
2 t+1

2(1−e−
1
2 t)
− e−t

1−e−t −
e−

1
2 t

t

)
dt
t

=
∫∞

0

(
e−

1
2 t+1

2(1−e−
1
2 t)
− 2e−

1
2 t

t

)
dt
t +

∫∞
0

(
− e−t

1−e−t + e−
1
2 t

t

)
dt
t

=
∫∞

0

(
e−t+1

2(1−e−t) −
e−t

t

)
dt
t +

∫∞
0

(
− e−t

1−e−t + e−
1
2 t

t

)
dt
t

=
∫∞

0

(
e−

1
2 t−e−t

t − 1
2e−t

)
dt
t = −

∫∞
0

(
d
dt

e−
1
2 t−e−t

t

)
dt− 1

2

∫∞
0

e−
1
2 t−e−t

t dt

= 1
2 + 1

2 log 1
2 .

2
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7.8 Pochodna logarytmiczna funkcji Gamma

Ze wzoru Weierstrassa wynika natychmiast, że

log Γ(z) = −γz − log z +
∑∞

j=1

(
z
j − log(1 + z

j )
)
,

∂z log Γ(z) = −γ +
∑∞

j=0

(
1
j+1 −

1
j+z

)
,

∂2
z log Γ(z) =

∑∞
j=0

1
(j+z)2

.

(7.111)

Mamy też

log Γ(1) = 0, log Γ(
1

2
) =

1

2
log π, ∂z log Γ(1) = −γ.

Stwierdzenie 7.22

Γ(n+ 1 + ε) = n!
(

1 + ε(−γ +
∑n

j=1
1
j )
)

+O(ε2), n = 1, 2, . . . ,

Γ(−n+ ε) = (−1)n

n!

(
ε−1 − γ +

∑n
j=1

1
j

)
+O(ε), n = 1, 2, . . . .

(7.112)

Dowód. Najpierw zauważamy, że

∂z log Γ(n+ 1) = −γ +
n∑
j=1

1

j
, n = 1, 2, . . .

Ale Γ′(z) = Γ(z)∂z log Γ(z) i Γ(n+ 1) = n!. To pokazuje pierwszy wzór.
Następnie

∂z(log Γ(z) +
1

z + n
)
∣∣∣
z=−n

= −γ +

n∑
j=1

1

j
.

Ale
∂zΓ(z)(z + n) = (z + n)Γ′(z) + Γ(z) = (z + n)Γ(z)∂z

(
log Γ(z) + (z + n)−1

)
.

2

7.9 Szeregi asymptotyczne

Niech funkcja f będzie określona na zbiorze K(z0, r) ∩ {α1 < arg(z − z0) < α2}. Piszemy

f(z) ∼
∞∑
j=0

aj(z − z0)j ,

gdy dla każdego n istnieje Cn takie, że∣∣∣f(z)−
n∑
j=0

aj(z − z0)j
∣∣∣ ≤ Cn|z − z0|n+1.

Oczywiście, jeśli f(z) =
∑∞

j=0 aj(z − z0)j dla z ∈ K(z0, r), to f(z) ∼
∑∞

j=0 aj(z − z0)j .
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Przykład. dla −π
2 + ε < argz < π

2 − ε

e−
1
z ∼

∞∑
j=0

0zj .

Przykład. dla −π
4 + ε < argz < π

4 − ε i −
π
4 + ε < arg − z < π

4 − ε

e−
1
z2 ∼

∞∑
j=0

0zj .

W szczególności, wszystkie pochodne funkcji R 3 x→ e−
1
x2 w zerze są równe zero.

Przykład – Funkcja błędu.

Erf(z) :=

∫ z

0
e−t

2
dt.

Oczywiście, limz→∞ Erf(z) = 1
2

√
π.

Stwierdzenie 7.23 Dla −π
2 + ε < argz < π

2 − ε

1

2

√
π − Erf(z) =

∫ ∞
z

e−t
2
dt ∼ e−z

2

2z

(
1 +

∞∑
k=1

(−1)k
1 · 3 · · · (2k − 1)

(2z2)k

)
. (7.113)

Dowód. Dla uproszczenia ograniczmy się do z > 0. Całkujemy przez części:∫ ∞
z

e−t
2
dt = −1

2

∫ ∞
z

(
∂te
−t2)t−1dt (7.114)

=
1

2z
e−z

2 − 1

2

∫ ∞
z

e−t
2
t−2dt (7.115)

=
1

2z
e−z

2
+

1

22

∫ ∞
z

(
∂te
−t2)t−3dt (7.116)

=
1

2z
e−z

2 − 1

22z3
e−z

2
+

3

22

∫ ∞
z

e−t
2
t−4dt. (7.117)

Następnie szacujemy: ∣∣∣ ∫ ∞
z

e−t
2
t−4dt

∣∣∣ ≤ e−z
2

∫ ∞
z

t−4dt = e−z
2 1

4
z−3.

Dlatego √
π

2
− Erf(z) = e−z

2
( 1

2z
+O

( 1

z3

))
.

Postępując analogincznie dalej dostajemy rozwinięcie (7.114). 2
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7.10 Pierwszy wzór Bineta

Twierdzenie 7.24 (Pierwszy wzór Bineta)

log Γ(z) = (z − 1
2) log z − z + 1

2 log 2π +
∫∞

0

(
1
2 + 1

et−1 −
1
t

)
e−zt dt

t ; (7.118)

∂z log Γ(z) = log z +
∫∞

0

(
1

1−e−t −
1
t

)
e−ztdt; (7.119)

∂2
z log Γ(z) =

∫∞
0

te−tz

1−e−tdt. (7.120)

Uwaga Zwróćmy uwagę na to, że powyższe całki są skończone. W szcególności funkcje podcał-
kowe są ciągłe w zerze:

limt→0

(
1
2 + 1

et−1 −
1
t

)
1
t = 1

12 ,

limt→0

(
1

1−e−t −
1
t

)
= 1

2 ,

limt→0
t

1−e−t = 1.

Dowód. Najpierw dowodzimy (7.121). Korzystając z (7.112) dostajemy

∂2
z log Γ(z) =

∑∞
n=0

1
(n+z)2

=
∑∞

n=0

∫∞
0 e−t(z+n)tdt

=
∫∞

0
te−tz

1−e−tdt.

(7.121)

To dowodzi (7.121). Następnie przekształcamy (7.122) dostając∫∞
0

(
1

1−e−t −
1
t

)
te−tzdt+

∫∞
0 e−tzdt

=
∫∞

0

(
1

1−e−t −
1
t

)
te−tzdt+ 1

z .

Zatem
∂z log Γ(z) = ∂z log Γ(1) +

∫ z
1 ∂

2
y log Γ(y)dy

= −γ +
∫ z

1
1
ydy +

∫ z
1

∫∞
0

(
1

1−e−t −
1
t

)
te−tydtdy

= −γ + log z −
∫∞

0

(
1

1−e−t −
1
t

)
e−tydt

∣∣∣y=z

y=1

= log z −
∫∞

0

(
1

1−e−t −
1
t

)
e−tzdt,

(7.122)

gdzie w ostatnim kroku wykorzystaliśmy wzór całkowy na stałą γ. To dowodzi (7.120). Następnie
przekształcamy (7.123) dostając

log z − 1
2

∫∞
0 e−tzdt−

∫∞
0

(
1

1−e−t −
1
t −

1
2

)
e−tzdt

= log z − 1
2

1
z −

∫∞
0

(
1

1−e−t −
1
t −

1
2

)
e−tzdt.
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Stąd

log Γ(z) = log Γ(1
2) +

∫ z
1
2
∂y log Γ(y)dy

= 1
2 log π +

∫ z
1
2

log ydy − 1
2

∫ z
1
2

1
ydy −

∫ z
1
2

∫∞
0

(
1

1−e−t −
1
t −

1
2

)
e−tydtdy

= 1
2 log π + z − log z − 1

2 log 1
2 + 1

2 −
1
2 log z + 1

2 log 1
2 +

∫∞
0

(
1

1−e−t −
1
t −

1
2

)
e−ty dt

t

∣∣∣y=z

y= 1
2

= (z − 1
2) log z − z + 1

2 log 2π +
∫∞

0

(
1

1−e−t −
1
t −

1
2

)
e−tz dt

t ,

gdzie w ostatnim kroku wykorzystaliśmy wzór Pringsheima. To kończy dowód (7.119). 2

Wniosek 7.25 Niech ε > 0 i |argz| < π
2 − ε.

(1) Zachodzi Wzór Stirlinga

limz→∞

(
log Γ(z)−

(
(z − 1

2) log z − z + 1
2 log 2π

))
= 0,

limz→∞
Γ(z)

zz−
1
2 e−z

√
2π

= 1.

(2) Niech

f(t) =
1

1− e−t
− 1

t
− 1

2
.

Wtedy f jest ograniczona wraz ze wszystkimi pochodnymi dla t ∈ [0,∞[ i

f(t) =
∞∑
n=1

fnt
n, |t| < 2π.

Mamy następujące rozwinęcie funkcji Gamma w szereg asymptotyczny:∣∣∣ log Γ(z)−
(
(z − 1

2) log z − z + 1
2 log 2π −

∑n
j=1(j − 1)!z−jfj

)∣∣∣ ≤ C|z|−n−1.

7.11 Wzór Plany i drugi wzór Bineta

Twierdzenie 7.26 (Wzór Plany) Niechm ≤ n będą całkowite, φ(z) funkcja analityczna, |φ(z)| ≤
e(1−ε)|Imz| dla ε > 0 i m ≤ Rez ≤ n. Wtedy

1
2φ(m) + φ(m+ 1) + · · ·+ φ(n− 1) + 1

2φ(n)

=
∫ n
m φ(z)dz − i

∫∞
0

φ(n+iy)−φ(n−iy)
e2πy−1

dy + i
∫∞

0
φ(m+iy)−φ(m−iy)

e2πy−1
dy

Dowód. Wprowadźmy kontury

γ+ = [m−, (m+ 1)−, . . . , (n− 1)−, n−, n+ iR,m+ iR,m],

γ− = [m+, (m+ 1)+, . . . , (n− 1)+, n+, n− iR,m− iR,m].
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Korzystając z tego, że

Res
φ(z)

e±2πiz − 1

∣∣∣
z=k

= ∓ 1

2πi
φ(k), k ∈ Z,

dostajemy

0 =

∫
γ+

φ(z)

e−2πiz − 1
dz

→
R→∞

−i

∫ ∞
0

φ(m+ iy)

e2πy − 1
dy + i

∫ ∞
0

φ(n+ iy)

e2πy − 1
dy

+P

∫ n

m

φ(x)

e−2πix − 1
dx+

1

4
φ(m) +

1

2

n−1∑
j=m+1

φ(j) +
1

4
φ(n); (7.123)

0 =

∫
γ−

φ(z)

e2πiz − 1
dz

→
R→∞

i

∫ ∞
0

φ(m− iy)

e2πy − 1
dy − i

∫ ∞
0

φ(n− iy)

e2πy − 1
dy

+P

∫ n

m

φ(x)

e2πix − 1
dx+

1

4
φ(m) +

1

2

n−1∑
j=m+1

φ(j) +
1

4
φ(n). (7.124)

(7.125)

Następnie dodajemy (7.124) i (7.125), korzystając z tożsamości

(e2πix − 1)−1 + (e−2πix − 1)−1 = −1.

2

Twierdzenie 7.27 (Drugi wzór Bineta)

log Γ(z) = (z − 1
2) log z − z + 1

2 log 2π + 2
∫∞

0

arctg t
z

e2πt−1
dt, , (7.126)

∂z log Γ(z) = log z − 1
2z − 2

∫∞
0

tdt
(z2+t2)(e2πt−1)

, (7.127)

∂2
z log Γ(z) = 1

2z2
+ 1

z + 4
∫∞

0
ztdt

(z2+t2)2(e2πt−1)
. (7.128)

Dowód. Aby pokazać (7.129) stosujemy Wzór Plany do φ(z) = (z+ t)−2. Następnie całkujemy
dwukrotnie i dostajemy

log Γ(z) = A+Bz + (z − 1

2
) log z + 2

∫ ∞
0

arctg tz
e2πt − 1

dt.

Porównując z pierwszym wzorem Bineta dla z ∼ 0 dostajemy A = 1
2 log 2π, B = −1. 2
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8 Zastosowania

8.1 Jednorodne dystrybucje i ich transformaty Fouriera

Dla λ ∈ C możemy zdefiniować dystrybucje temperowane

(±ix+ 0)λ := lim
ε→0

(±ix+ ε)λ.

Wzory
xλ+ := xλθ(x), xλ− := (−x)λθ(−x)

zadają dystrybucje tylko dla Reλ > −1. Możemy je rozszerzyć na wszystkie λ ∈ C prócz
z = −1,−2, . . . kładąc

xλ+ := 1
2i sin π

2
λ

(
− e−iπ

2
λ(ix+ 0)λ + eiπ

2
λ(−ix+ 0)λ

)
,

xλ− := 1
2i sin π

2
λ

(
− e−iπ

2
λ(−ix+ 0)λ + eiπ

2
λ(ix+ 0)λ

)
Wygodnie jest rozważać xλ±

Γ(λ+1) . Mamy wtedy

x−n±
Γ(n+ 1)

= (±1)nδ(n−1), n = 1, 2, . . . .

Spełniają one związki rekurencyjne:

∂z
xλ±

Γ(λ+ 1)
= ±

xλ−1
±

Γ(λ)
.

A oto transformaty Fouriera:∫
e−iξx xλ±

Γ(λ+ 1)
dx = (±iξ + 0)−λ−1,

∫
e−iξx(∓iξ + 0)λdξ = 2π

ξ−λ−1
±

Γ(−λ)
.

Szczególnie symetryczne wzory na transformaty Fouriera dostaniemy wprowadzając

ηλ(x) := Γ(λ2 + 1
2)2−

λ
2 |x|λ = (2π)−1Γ(−λ

2 + 1
2)2−

λ
2

(
(ix+ 0)λ + (−ix+ 0)λ

)
,

νλ(x) := Γ(λ2 + 1)2−
λ
2
− 1

2 |x|λsgnx = i(2π)−1Γ(−λ
2 )2−

λ
2
− 1

2

(
(ix+ 0)λ − (−ix+ 0)λ

)
.

Mamy następujące związki:

∂xη
λ = λνλ−1, ∂xν

λ = ηλ−1,

η̂λ =
√

2πη−λ−1, ν̂λ =
√

2πν−λ−1.
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8.2 Całki wielowymiarowe

W tym rozdziale rozważamy d-wymiarową przestrzeń euklidesową.

Twierdzenie 8.1 Pole sfery jednostkowej d− 1-wymiarowej wynosi

Sd−1 =
2π

d
2

Γ(d2)
.

Dowód. Metoda I. Obliczamy 2 sposobami całkę gaussowską: we współrzędnych kartezjańskich∫
e−x

2
1−···−x2ddx1 · · · dxd = π

d
2 ,

i we współrzędnych sferycznych

Sd−1

∫∞
0 e−r

2
rd−1dr = 1

2Γ(d2).

Metoda II. We współrzędnych sferycznych pole sfery jest równe

Sd−1 =

∫ π

0
sind−2 φd−1dφd−1 · · ·

∫ π

0
sinφ2dφ2

∫ 2π

0
dφ1

Następnie stosujemy∫ π

0
sink−1 φkdφk =

√
πΓ(k−1

2 )

Γ(k2 )
, k = 2, . . . , d− 1;

∫ 2π

0
dφ1 = 2π.

2

Twierdzenie 8.2 Całki występujące w diagramach Feynmanna W przestrzeni euklideso-
wej d-wymiarowej mamy ∫

(x2 +m2)−αddx = π
d
2md−2αΓ(α− d

2)

Γ(α)
, (8.129)

∫
(x2 + 2xy +m2)−αddx = π

d
2 (m2 − y2)

d
2
−αΓ(α− d

2)

Γ(α)
, (8.130)∫

xµ(x2 + 2xy +m2)−αddx = −π
d
2 yµ(m2 − y2)

d
2
−αΓ(α− d

2)

Γ(α)
, (8.131)

∫
xµxν(x2 + 2xy +m2)−αddx = π

d
2 yµyν(m2 − y2)

d
2
−α Γ(α− d

2
)

Γ(α)

−π
d
2 δµν(m2 − y2)

d−1
2
−α Γ(α− d

2
−1)

Γ(α) .
(8.132)

Dowód. Stosujemy wzór na powierzchnię sfery i∫ ∞
0

(r2 +m2)−αrd−1dr = 2−1md−2αΓ(d2)Γ(α− d
2)

Γ(α)
.

2
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Twierdzenie 8.3 Niech −d < λ < 0. Zdefiniujmy

ηλ(x) :=
1

Γ(λ+d
2 )

2−
λ
2 |x|λ.

Wtedy
η̂λ = (2π)

d
2 η−λ−d.

Dowód. Stosujemy współrzędne sferyczne.∫
|x|λe−ixξdx =∫∞

0 dr
∫ π

0 dφd−1r
λ+d−1e−ir|ξ| cosφd−1rλ+d−1 sind−2 φd−1Sd−2

= Γ(λ+ d)
∫ π

2
0

(
(i|ξ| cosφd−1 + 0)−λ−d + (−i|ξ| cosφd−1 + 0)−λ−d

)
sind−2 φd−1dφd−1Sd−2

= Γ(λ+ d)2 cos(λ+d
2 π)|ξ|−λ−d

∫ π
2

0 cos−λ−d φd−1 sind−2 φd−1dφd−1Sd−2.

Następnie stosujemy

Sd−2 = 2π
d−1
2

Γ( d−1
2

)
,

∫ π
2

0 cos−λ−d φd−1 sind−2 φd−1dφd−1 = 1
2

Γ(−λ−d+1
2

)Γ( d−1
2

)

Γ(−λ
2

)
,

Γ(λ+ d) = π−
1
2 2λ+d−1Γ(λ+d

2 )Γ(λ+d+1
2 )

Γ(λ+d+1
2 )Γ(−λ−d+1

2 ) cos λ+d
2 π = π,

i dostajemy ∫
|x|λe−ixξddx = |ξ|−λ−d2λ+dπ

d
2

Γ(λ+d
2 )

Γ(−λ
2 )
.

2

8.3 Macierze

Niech c = [cij ] będzie macierzą. Wyznacza ona formę kwadratową zdefiniowaną dla x = [xi] ∈ Rd
jako

xcx =

d∑
i,j=1

xicijxj .

Każdą macierz przez zamianę współrzędnych yj =
∑d

i=1 ajixi można sprowadzić do postaci
diagonalnej:

xcx =

d∑
i=1

λi(yi)
2.

Liczba dodatnich i ujemnych λi nie zależy od wyboru przekształcenia i definiuje sygnaturę ma-
cierzy (d+, d−). Oczywiście, d ≥ d+ + d−. Indeks macierzy c definiujemy jako indc := d+ − d−.
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Mówimy, że macierz c jest niezdegenerowana, gdy dla każdego x ∈ Rd, x 6= 0, istnieje y ∈ Rd
taki, że

ycx =
d∑

i,j=1

yicijxj 6= 0.

Równoważny warunek: d+ + d− = d.
Zakładamy, że w Rd wprowadzony jest kanoniczny iloczyn skalarny x · y :=

∑d
j=1 xiyi. Ma-

cierz można sprowadzić do postaci diagonalnej odwzorowaniem ortogonalnym. Ciąg λ1, . . . , λd
z dokładnością do permutacji nie zależy od wyboru diagonalizującego odwzorowania ortogonal-
nego. Wyznacznik macierzy nie zmienia się po zastosowaniu transformacji ortogonalnej. Dlatego

det[cij ] =

d∏
i=1

λi.

Mówimy, że macierz c jest dodatnio określona, jeśli dla x ∈ Rd, x 6= 0,

xcx > 0.

Równoważny warunek: d+ = d.

8.4 Wielowymiarowe całki Gaussa i Fresnela

Niech macierz c będzie dodatnio określona. Wtedy∫
dx exp(−xcx) = π

d
2 (det c)−

1
2 . (8.133)

Zamieniamy bowiem współrzędne odwzorowaniem ortogonalnym diagonalizując macierz c. Mamy
wtedy dx = dx1 · · · dxd = dy1 · · · dyd = dy i (8.134) jest równe∫

dy exp

(
−
∑
i

λi(yi)
2

)
=

d∏
i=1

∫
e−λi(yi)

2
dyi =

d∏
i=1

√
π

λi
.

Jeśli c jest macierzą niezdegenerowaną, to∫
|x|<R

dx1 · · · dxd exp(ixcx) = πd/2eiπ
4

indc| det c|−
1
2 . (8.134)

8.5 Metoda Laplace’a (punktu siodłowego)

Dla dużych λ rozważamy całkę typu

I(λ) =

∫ b

a
f(x)eλφ(x)dx.

Zakładamy, że f , φ rozszerzają się do funkcji analitycznych na Ω, otoczeniu [a, b] w C, i że
znajdziemy drogę γ ⊂ Ω, która łączy a z b przechodząc przez punkt z0, w którym φ′(z0) = 0.

73



Zakładamy też, że w z0 funkcja Reφ obcięta do γ ma maksimum i φ′′(z0) 6= 0. W otoczeniu z0

mamy

φ(z) ≈ φ(z0) +
1

2
φ′′(z0)(z − z0)2. (8.135)

Niech |ψ| ≤ π
2 i φ′′(z0) = −|φ′′(z0)|e−i2ψ. Wprowadźmy współrzędne

R2 3 (t, s) 7→ z = z0 + (t+ is)eiψ.

(8.136) można przepisać jako

φ(z) ≈ φ(z0)− 1

2
|φ′′(z0)|

(
t2 − s2 + 2its

)
.

Zatem poziomice Reφ wokół z0 przypominają poziomice wokół przełęczy (punktu siodłowego).
Największy wkład do całka po krzywej γ pochodzi z otoczenia punktu z0, gdzie γ można

zastąpić częścią prostej R 3 t 7→ z0 + eiψt. Dostajemy

I(λ) =

∫
γ
f(z)eλφ(z)dz

≈
∫ ∞
−∞

f(z0)eλφ(z0)−λ
2
|φ′′(z0)|t2eiψdt

= f(z0)eλφ(z0)

√
2π

λ|φ′′(z0)|
eiψ

= f(z0)eλφ(z0)

√
2π

−λφ′′(z0)
.

Można to sformułować ściślej.

Twierdzenie 8.4 Przy założeniach opisanych powyżej, mamy

lim
λ→∞

I(λ)

f(z0)eλφ(z0)
√

2π
−λφ′′(z0)

= 1. (8.136)

Dowód. Bez zmniejszenia ogólności, można założyć, że φ′′(z0) = −1, φ(z0) = 0 i z0 = 0. Drogę
γ można zdeformować tak, żeby w otoczeniu z0 = 0 zawierała odcinek [−ε, ε] dla pewnego ε > 0.
Na reszcie odcinka całka szacuje się przez O(e−λc) dla c > 0. Mamy też

f(z) = f(0) + az +O(z2), φ(z) = −z
2

2
+ bz3 +O(z4). (8.137)

Możemy napisać ∫ ε

−ε
f(z)eλφ(z)dz = f(0)

∫ ε

−ε
e−λ

z2

2 dz (8.138)

+

∫ ε

−ε

(
f(z)− f(0)

)
e−λ

z2

2 dz (8.139)

+

∫ ε

−ε
f(z)e−λ

z2

2
(
eλ(φ(z)+ z2

2
) − 1

)
dz (8.140)

= I + II + III. (8.141)
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I = f(0)

∫ ∞
−∞

e−λ
z2

2 dz +O(e−λc) = f(0)

√
2π

λ
+O(e−λc), (8.142)

II =

∫ ε

−ε
e−λ

z2

2
(
f(0)az +O(z2)

)
dz = O(λ−

3
2 ), (8.143)

III =

∫ ε

−ε
e−λ

z2

2
(
f(0)λbz3 + λO(z4)

)
= O(λ−

3
2 ). (8.144)

Zatem

I(λ) = f(0)

√
2π

λ
+O(λ−3/2),

co implikuje (8.137). 2

8.6 Asymptotyka funkcji Gamma w nieskończoności metodą punktu siodło-
wego.

Twierdzenie 8.5 Niech ε > 0. Dla |argz| < π
2 − ε mamy

lim
z→∞

Γ(z + 1)
√

2π z
z+1/2

ez

= 1. (8.145)

Dowód. Mamy

Γ(z + 1) =

∫ ∞
0

e−ttzdt = zz+1

∫ ∞
0

ezφ(u)du,

gdzie
φ(u) = −u+ log u.

Obliczamy:

∂uφ(u) = −1 +
1

u
, ∂2

uφ(u) = − 1

u2
.

Zatem φ(t) ma jedno i tyko jeden punkt stacjonarny: dla u0 = 1. Mamy

φ(u0) = −1, ∂2
uφ(u0) = −1.

Metoda punktu siodłowego daje zatem

Γ(z + 1) ' zz+1ezφ(u0)

∫ ∞
−∞

e
z
2
∂2uφ(u0)(u−u0)2du =

zz

ez

√
2πz.

Pokażmy teraz to w ścisły sposób. Niech Rez > 0. Wtedy

Γ(z + 1) =
∫

[0,∞[ e−ttzdt =
∫

[0,z∞[ e−ttzdt

= e−z+z log z
∫

[0,z∞[ e−z(
t
z
−1−log t

z )dt

= e−zzz+1
∫∞
−1 e−z(s−log(1+s))ds,
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gdzie dokonaliśmy zamiany zmiennych

s =
t

z
− 1.

Zauważmy, że funkcja
]− 1,∞[3 s 7→ s− log(1 + s)

maleje na ]− 1, 0] od ∞ do 0, w 0 zachowuje się jak s2

2 i na [0,∞[ rośnie do ∞. Zatem funkcja

R 3 s 7→ u(s) =
√

2(s− log(1 + s))

(w której bierzemy ujemny pierwiastek dla s < 0 i dodatni pierwiastek dla s > 0) jest gładka.
Mamy

lim
s→0

u(s)

s
= 1,

du(s)

ds
=

s

u(s)(1 + s)
,

oraz
f(u) :=

ds

du
(u) =

(1 + s(u))u

s(u)
, f(0) = 1.

Mamy zatem
I =

∫∞
−1 e−z(s−log(1+s))ds

=
∫∞
−∞ e−

z
2
u2f(u)du.

Niech

I0 =

∫ ∞
−∞

e−
z
2
u2du =

√
2π

z
.

Wtedy ∣∣∣ II0 − 1
∣∣∣ =

∫∞
−∞ e−

z
2u

2
|f(u)−1|du√
2π
z

≤ C
√
z
∫∞
−∞ e−

z
2
u2 |u|du = C1

1√
z
.

To kończy dowód (8.146) 2

8.7 Asymptotyka funkcji Beta w nieskończoności metodą punktu siodłowego

Asymptotykę dla B(u, v) można dostać z asymptotyki funkcji Γ(z). My jednak pokażemy ją
bezpośrednio z metody punktu siodłowego.

Twierdzenie 8.6 Niech ε > 0. Dla |argu| < π
2 − ε, |argv| < π

2 − ε, mamy

lim
u,v→∞

B(u+ 1, v + 1)
√

2π u
u+1/2vv+1/2

(u+v)u+v+3/2

= 1. (8.146)
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Dowód. Mamy

B(u+ 1, v + 1) =

∫ 1

0
eψ(t)dt,

gdzie
ψ(t) := u log t+ v log(1− t).

Obliczamy:
∂tψ(t) =

u

t
− v

1− t
, ∂2

t ψ(t) = − u
t2
− v

(1− t)2
.

Zatem ψ(t) ma jedyny punkt stacjonarny: dla t0 = u
u+v i

ψ(t0) = u log

(
u

u+ v

)
+ v log

(
v

u+ v

)
, ∂2

t ψ(t0) = −(u+ v)3

uv
.

Jeśli Reu > 0 i Rev > 0, to Reψ(t) → −∞, gdy t zbliża się do 0 bądz 1. łatwo więc
uzasadnić, że deformując kontur [0, 1] możemy dostać krzywą γ zaczynającą się w 0, kończącą
się w 1 i przechodzącą przez t0 tak, że Reψ(t) osiąga wzdłuż tej krzywej maksimum w t0. Mamy

B(u+ 1, v + 1) =

∫
γ

eψ(t)dt.

Można oczekiwać, że przyczynek wokół t0 w tej całce będzie dominować. Zatem

B(u+ 1, v + 1) ∼
∫
γ

eψ(t0)+ 1
2
ψ′′(t0)(t−t0)2dt.

Następnie zastępujemy krzywą γ przez prostą nachyloną pod odpowiednim kątem α, czyli:

B(u+ 1, v + 1) ∼ eψ(t0)
∫

eα]−∞,∞[

e
1
2
∂2t ψ(t0)t2dt

=
(

u
u+v

)u (
v

u+v

)v (
2πuv

(u+v)3

)1/2
=
√

2π u
u+1/2vv+1/2

(u+v)u+v+3/2 .

2

8.8 Wielowymiarowa wersja metody Laplace’a (bez przedłużenia analitycz-
nego)

Dla dużych λ rozważamy całkę typu

I(λ) =

∫
Θ
f(x)eλφ(x)dx,

gdzie Θ jest podzbiorem w Rd. Zakładamy, że φ posiada globalne maksimum w Θ w punkcie
x̃ należącym do wnętrza Θ i że jest różniczkowalne dwa razy w x̃. Mamy wtedy ∇φ(x̃) = 0.
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Zakładamy też, że Hessjan (druga pochodna) φ w x̃, oznaczany przez ∇2φ(x̃), jest ujemnie
określony. Wtedy

I(λ) ≈
∫
Rd
f(x̃) exp

λφ(x̃) +
λ

2

d∑
i,j=1

∇i∇jφ(x̃)(xi − x̃i)(xj − x̃j)

 dx

= f(x̃)eλφ(x̃)

(
2π

λ

) d
2 (

det(−∇2φ(x̃))
)− 1

2 .

8.9 Metoda fazy stacjonarnej

Zakładamy teraz, że f i φ są dostatecznie gładkie. Dla dużych λ, rozważamy całkę typu

I(λ) =

∫
Θ
f(x)eiλφ(x)dx,

gdzie Θ jest podzbiorem w Rd. Zakładamy, że φ posiada globalne maksimum w Θ w punkcie x̃
należącym do wnętrza Θ. Mamy wtedy ∇φ(x̃) = 0. Zakładamy też, że Hessjan φ w x̃, oznaczany
przez ∇2φ(x̃), jest niezdegenerowany. Wtedy

I(λ) ≈
∫
Rd
f(x̃) exp

iλφ(x̃) +
iλ

2

d∑
i,j=1

∇i∇jφ(x̃)(xi − x̃i)(xj − x̃j)

dx

= f(x̃)eiπ
4

ind∇2φ(x̃)eiλφ(x̃)

(
2π

λ

) d
2 ∣∣det∇2φ(x̃))

∣∣− 1
2 .

8.10 Równanie dyfuzji i Schrödingera

Swobodne równanie Schrödingera:

i
d

dt
ψt(x) = − 1

2m
∆ψt(x).

Równanie dyfuzji (ciepła):
d

dt
ft(x) = κ∆ft(x).

Wprowadźmy operator pędu
pi = −i∇xi .

Wtedy −∆ = p2. Można uogólnić równanie Schrödingera do dyspersyjnego równania Schrödin-
gera, gzie ω jest dowolną funkcją pędu:

i
d

dt
ψt(x) = ω(p)ψt(x).

Formalne rozwiązanie:
ψt = eitω(p)ψ0.
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Transformacja Fouriera w konwencji “unitarnej”:

ψ̂(ξ) = (2π)−
d
2

∫
ψ(x)e−ixξdx,

ψ(x) = (2π)−
d
2

∫
ψ̂(ξ)eixξdξ.

Transformacja Fouriera diagonalizuje pęd:

p̂ψ(ξ) = ξψ̂(ξ).

Ogólniej
ω̂(p)ψ(ξ) = ω(ξ)ψ̂(ξ).

Dlatego

i
d

dt
ψ̂t(ξ) = ω(ξ)ψ̂t(ξ),

ψ̂t(ξ) = e−itω(ξ)ψ̂0(ξ).

W reprezentacji położeniowej

ψt(x) =

∫
Ut(x− y)ψ0(y)dy,

gdzie “propagator” jest równy

Ut(x) = (2π)−d
∫

e−itω(ξ)+ixξdξ.

W przypadku dyfuzji dostajemy

ft(x) =

∫
(4πκt)−

d
2 e−

(x−y)2
4κt f0(y)dy.

Zauważmy, że
(1)

∫
ft(x)dx =

∫
f0(x)dx;

(2) f0 ≥ 0 implikuje ft ≥ 0;

(3)
∫
|ft|2(x)dx =

∫
|f0|2(x)dx.

Dla swobodnego równania Schrödingera z m = 1 mamy

ψt(x) =

∫
(2πti)−

d
2 e

i(x−y)2
2t ψ0(y)dy.

Mamy
∫
|ψt|2(x)dx =

∫
|ψ0|2(x)dx.
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8.11 Transformacja Legendre’a

Niech Ω będzie otwartym zbiorem w Rd a

Ω 3 ξ 7→ ω(ξ) ∈ R (8.147)

niech będzie funkcją wypukłą klasy C2. Sciślej rzecz biorąc, zakładamy, że dla różnych ξ1, ξ2 ∈ Ω,
ξ1 6= ξ2, 0 < τ < 1,

τω(ξ1) + (1− τ)ω(ξ2) > ω (τξ1 + (1− τ)ξ2) .

Wtedy
Ω 3 ξ 7→ v(ξ) := ∇ω(ξ) ∈ Rd (8.148)

jest funkcją różnowartościową. Niech Ω̃ będzie obrazem (8.149). Można zdefiniować funkcję

Ω̃ 3 v 7→ ξ(v) ∈ Ω

odwrotną do (8.148). Transformację Legendre’a definiujemy jako

ω̃(v) := vξ(v)− ω(ξ(v)).

Twierdzenie 8.7 (1) ∇ω̃(v) = ξ(v).

(2) ∇2ω̃(v) = ∇vξ(v) =
(
∇2
ξω(ξ(v))

)−1
. Zatem ω̃ jest wypukła.

(3) ˜̃ω(ξ) = ω(ξ).

Dowód. (1)
∇vω̃(v) = ξ(v) + v∇vξ(v)−∇ξω(ξ(v))∇vξ(v) = ξ(v).

(2)
∇2
vω̃(v) = ∇vξ(v) = ∇ξv(ξ(v))−1 =

(
∇2
ξω(ξ(v))

)−1
.

(3)
˜̃ω(ξ) = ξv(ξ)− v(ξ)ξ(v(ξ)) + ω(ξ(v(ξ))) = ω(v).

2

Przykłady.
(1) Ω = Rd, ω(ξ) = 1

2(ξ − a)m−1(ξ − a) + v, Ω̃ = Rd, ω̃(v) = 1
2ξmξ + aξ − v.

(2) Ω = Rd, ω(ξ) =
√
ξ2 +m2, Ω̃ = {v ∈ Rd : |v| < 1}, ω̃(ξ) = −m

√
1− v2.

(3) Ω = R, ω(ξ) = eξ, Ω̃ =]0,∞[, ω̃(v) = v log v − v.
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8.12 Dyspersyjne równanie Schrödingera z parametrem ~

Wprowadźmy mały parametr ~. Zmieńmy definicję pędu i energii:

pi = −i~∇xi , E = i~∂t.

Dyspersyjne równanie Schrödingera w postaci zawierającej ~:

i~
d

dt
ψt(x) = ω(p)ψt(x). (8.149)

Ma ono rozwiązanie:
ψt = e

itω(p)
~ ψ0.

Aby je rozwiązać wygodnie jest zastosować semiklasyczną wersję transformacji Fouriera:

ψ̂(ξ) = (2π~)−
d
2

∫
ψ(x)e−

ixξ
~ dx,

ψ(x) = (2π~)−
d
2

∫
ψ̂(ξ)e

ixξ
~ dξ.

Ma ona własności ∫
|ψ(x)|2dx =

∫
|ψ(ξ)|2dξ,

ω̂(p)ψ(ξ) = ω(ξ)ψ̂(ξ).

Propagator wynosi

Ut(x) = (2π~)−d
∫

e
−itω(ξ)+i(x−y)ξ

~ dξ.

8.13 Granica semiklasyczna dyspersyjnej ewolucji

Załóżmy, że ψt(x) ewoluuje zgodnie z równaniem (8.150). Chcemy wyznaczyć propagację dla
małych wartości ~ w zależności od ψ̂0

Niech v(ξ) i ω̃(x) będą zdefiniowane jak w podrozdziale 8.11. Wtedy

ψt(x) ≈ exp
(

i
π

4
ind∇ξv(ξ(x/t)

)
×t−

d
2 |det |∇ξv(ξ(x/t)|−

1
2 exp

(
it

~
ω̃(x/t)

)
ψ̂0 ((ξ(x/t)) . (8.150)

Czyli paczka falowa o pędzie ξ podróżuje z prędkością v(ξ) = ∇ω(ξ) zwaną “prędkością grupową”.
Zauważmy przy tym, że norma L2 prawej strony (8.151) nie zależy od czasu.

Aby otrzymać (8.151) zapisujemy ψt(x) w postaci

ψt(x) = (2π~)−
d
2

∫
exp

(
iφt(x, ξ)

~

)
ψ̂0(ξ)dξ,
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gdzie
φt(x, ξ) = −tω(ξ) + xξ.

Stosujemy metodę fazy stacjonarnej

∇ξφ(x, ξ) = −t∇ξω(x) + x.

Zatem
x/t = ∇ξω(ξ) = v(ξ),

φ (x, ξ(x/t)) = xξ(x/t)− tω (ξ(x/t)) = tω̃(x/t).

Poza tym
∇2
ξφ(x, ξ) = −t∇2ω(ξ) = −t∇ξv(ξ).

Metoda fazy stacjonarnej prowadzi do

ψt(x) ≈ (2π~)−
d
2 (2π~)

d
2 exp

(
i
π

4
ind∇ξv(ξ(x/t)

)
×t−

d
2 |det |∇ξv(ξ(x/t)|−

1
2 exp

(
it

~
ω̃(x/t)

)
ψ̂0 (ξ(x/t)) ,

z którego wynika wzór (8.151).

8.14 Równanie Kleina-Gordona/falowe

Poniższe równanie dla m 6= 0 nazywa się równaniem Kleina-Gordona a dla m = 0 równaniem
falowym:

∂2
t ψ(t, x) = (∆−m2)ψ(t, x). (8.151)

Twierdzenie 8.8 Znając ψ(t, ·) i ∂tψ(t, ·) dla t = 0 możemy otrzymać rozwiązanie równania
(8.152) w dowolnej chwili ze wzoru

ψ(t) = −∂tG(t)ψ(0) +G(t)∂tψ(0),

gdzie funkcja Greena G(t) jest zadana przez

G(t) = − i

2
(−∆ +m2)−

1
2 eit
√
−∆+m2

+
i

2
(−∆ +m2)−

1
2 e−it

√
−∆+m2

.

Dowód. (8.152) można przepisać w formie(
i∂t −

√
−∆ +m2

)(
i∂t +

√
−∆ +m2

)
ψ = 0.

Dzielimy ψ na część o dodatniej i ujemnej częstotliwości: ψ = ψ+ + ψ−, gdzie(
i∂t ±

√
−∆ +m2

)
ψ± = 0.
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Mamy

ψ =
1

2

(
1− i(−∆ +m2)−

1
2∂t

)
ψ

+
1

2

(
1 + i(−∆ +m2)−

1
2∂t

)
ψ.

Dlatego

ψ± =
1

2

(
1∓ i(−∆ +m2)−

1
2∂t

)
ψ.

Stosując
ψ±(t) = e±i

√
−∆+m2

ψ±(0),

dostajemy

ψ(t) = ei
√
−∆+m2

ψ+(0) + e−i
√
−∆+m2

ψ−(0)

=
1

2
(eit
√
−∆+m2

+ e−it
√
−∆+m2

)ψ(0)

+
i

2

(
−(∆ +m2)−

1
2 eit
√
−∆+m2

+ (−∆ +m2)−
1
2 e−it

√
−∆+m2

)
∂tψ(0).

2

9 Renormalizacja pola kwantowego

W charakterze ilustracji metod analizy zespolonej, pokażemy ja renormalizuje się kwantowe pole
skalarne w obecności zmiennej masy.

Niech κ ∈ S(R1,3).
(−2 +m2)φ(x) = −κ(x)φ(x). (9.152)

U(t2, t1) oznacza unitarną dynamikę, Ω wektor opisujący próżnię. Chcemy policzyć

E := lim
t→∞

i log(Ω|U(t,−t)Ω).

e−2ImE opisuje prawdopodobieństwo przejścia próżnia—próżnia. ReE opisuje energię dostarczoną
przez całą historię procesu.

Będziemy pisać k2 = −(k0)2 + (~k)2,

κ(k) =

∫
κ(x)e−ikxdx.

Formalne argumenty prowadzą do następującego wzoru

E =

∞∑
n=2

En, (9.153)

En =
i

2n

∫
· · ·
∫

κ(k1 − k2) · · ·κ(kn − k1)

(k2
1 +m2 − i0) · · · (k2

n +m2 − i0)

dk1

(2π)4
· · · dkn

(2π)4
. (9.154)
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W szczególności

E2 =
i

4

∫ ∫
κ(k1 − k2)κ(k2 − k1)

(k2
1 +m2 − i0)(k2

2 +m2 − i0)

dk1

(2π)4

dk2

(2π)4
(9.155)

=
i

4

∫ ∫
κ(k)κ(−k)(

(q + 1
2k)2 +m2 − i0

)(
(q − 1

2k)2 +m2 − i0
) dk

(2π)4

dq

(2π)4
(9.156)

=

∫
|κ(k)|2π(k2)

dk

(2π)4
, (9.157)

gdzie zastosowaliśmy podstawienie k1 := q + 1
2k, k1 := q − 1

2k, skorzystaliśmy z κ(−k) = κ(k) i
zdefiniowaliśmy

π(k2) :=
i

4

∫
1(

(q + 1
2k)2 +m2 − i0

)(
(q − 1

2k)2 +m2 − i0
) dq

(2π)4
. (9.158)

Zatosujmy obrót Wicka, czyli zastąpienie k0 przez k4 = ik0 i q0 przez q4 = iq0:

π(k2) := −1

4

∫
1(

(q + 1
2k)2 +m2

)(
(q − 1

2k)2 +m2
) dq

(2π)4
. (9.159)

Następnie użyjemy tożsamości Feynmana

1

AB
=

1

2

∫ 1

−1

dv(
1
2(A+B) + 1

2(A−B)v
)2 . (9.160)

Dostajemy

π(k2) := −1

8

∫ 1

−1
dv

∫
dq

(2π)4

1

(q2 + 1
4k

2 +m2 + vqk)2
(9.161)

= −1

4

∫ 1

0
dv

∫
dq

(2π)4

1

(q2 + 1
4k

2(1− v2) +m2)2
. (9.162)

W ostatnim kroku zastąpiliśmy q + vk
2 przez q i korzystając z symetrii v → −v zastąpiliśmy

1
2

∫ 1
−1 dv przez

∫ 1
0 dv. Pole powierzchni d− 1-wymiarowej sfery jest równe

Ωd =
2π

d
2

Γ(d2)
. (9.163)

Dzięki temu, że funkcja podcałkowa jest sferycznie symetryczna możemy zastosować regularyza-
cję wymiarową: ∫

dq4

(2π)4
zastępujemy przez

µ4−dΩd

(2π)d

∫ ∞
0
|q|d−1d|q|, (9.164)

gdzie d ≈ 4 i µ jest dowolnym parametrem o wymiarze długości. Skorzystamy też z konsekwencji
wzoru na drugą całkę Eulera∫ ∞

0

td−1dt

(t2 +A2)2
=

1

2
(A2)−2+ d

2 Γ
(d

2

)
Γ
(

2− d

2

)
. (9.165)
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Kładziemy

A2 :=
1

4
k2(1− v2) +m2.

Dostajemy

π(k2) = −1

4

∫ 1

0
dv
µ4−dΩd

(2π)d

∫
|q|d−1d|q|
(q2 +A2)2

(9.166)

= −1

4

∫ 1

0
dv
µ4−d2π

d
2 (A2)−2+ d

2 Γ(d2)Γ(2− d
2)

(2π)dΓ(d2)
(9.167)

= −1

4

∫ 1

0

dv

(4π)2

(
µ24π

A2

)2− d
2

Γ
(

2− d

2

)
. (9.168)

Korzystamy z przybliżeń dla d ≈ 4:

Γ
(

2− d

2

)
≈ 1

2− d
2

− γ, (9.169)

B2− d
2 ≈ 1 +

(
2− d

2

)
logB. (9.170)

Dostajemy

π(k2) ≈ −1

4

∫ 1

0

dv

(4π)2

(
1 +

(
2− d

2

)
log

µ24π

A2

)( 1

(2− d
2)
− γ
)
, (9.171)

≈ −1

4

∫ 1

0

dv

(4π)2

(
− γ + log

µ24π

A2
+

1

(2− d
2)

)
(9.172)

= −1

4

∫ 1

0

dv

(4π)2

(
− γ + log

µ24π

m2
− log

(
1 +

k2

4m2
(1− v2)

))
− 1

4(4π)2

1

(2− d
2)
. (9.173)

Niestety,

π(0) =
1

4

1

(4π)2

(
γ − log

µ24π

m2
+

1

(2− d
2)

)
(9.174)

jest rozbieżne dla d = 4. Renormalizujemy więc π(k2) przez odjęcie tej stałej i położenie d = 4:

πren(k2) = π(k2)− π(0) (9.175)

=
1

4

∫ 1

0

dv

(4π)2
log
(

1 +
k2

4m2
(1− v2)

)
. (9.176)
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