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Gwiazdka * oznaczone sa podrozdzialy o nieco bardziej zaawansowanej tresci, ktore moga
byé pominiete przy lekturze.

1 Ptlaszczyzna zespolona

1.1 Cialo liczb zespolonych

Liczby zespolone definiujemy jako C := R? wyposazone w dziatanie

(x1,91) (2, ¥2) == (2122 — Y12, T1Y2 + Y122).

Jest to cialo. Wprowadzamy oznaczenie i := (0, 1). Zanurzamy R — C przez

R> 2z~ (z,0) € C.



Jest to homomorfizm cial. Kazdy element C moze by¢ zapisany jako
z=z+1iy = (z,y), z,y€R.

Wprowadzmy odwzorowanie
z=x+4+ily—z:=x—1iy.

Jest ono jest automorfizmem ciata C, tzn jest to bijekcja spelniajaca
21+ 22 =21+ 22, 2122 = 21" Z2.
Definiujemy tez

Rez ==z = 3(2 + 2), Imz ==y = 5(z — %),

2] i = Vz2z = Va2 + 2

Mamy
‘2’1 + 29| < ‘Z1| + |22‘, ‘Z‘ =0« z=0.

Ktadziemy
Ry ={zeR : z>0}, Cy:={2€C : Imz>0},
R* :=R\{0}, C* := C\{0},
K(zp,7):={2€C : |z— 20| <r}, gdzie z9o € C, r>0.

1.2 Macierze 2x2

Zbior macierzy zespolonych 2x2 oznaczamy przez M (2,C). Typowa notacja:

A:[CC‘ Z} € M(2,C)

z:{zl}e(ﬂ.

Macierze dzialaja na wektory
az1 + bz

Azz[czl—i-dzg]'

Podobng notacje stosujemy dla macierzy rzeczywistych, zastepujac C przez R.



1.3 Liczby zespolone jako podgrupa M (2,R)
Zdefinujmy

c;@+wp%¢@+wy:[i/i]eM@R)

Mamy wtedy
Y(21 + 22) = Y(21) +¥(22), Y(z122) = ¥(21)Y(22),
¥(z) = p(2)"

Czyli obraz 1 jest cialem wewnatrz M (2,R) i ¢ jest izomorfizmem. Obraz 1) jest rowny

P al Lo =[ 4o Jap =[5 2] mver)

Wprowadzmy réwniez identyfikacje y : C — R?:
x(z)=(z,y), z=z+iy.
Mamy
x(az) = (a)x(2)-

Jesli a = b+ ic = re!® to mnozenie przez a ma interpretacje obrotu o kat ¢ i skalowania o r.

1.4 Odwzorowania afiniczne

Odwzorowania C postaci
Coz—g(z)=az+beC (1.2)

gdzie a # 0 nazywamy transformacjami afinicznymi ptaszczyzny zespolone;j.

Twierdzenie 1.1 Odwzorowania afiniczne sq bijekcjami C. Jesli (z1,22) sq¢ dwoma réznymi
punktami w C i (w1, ws) s¢ dwoma réznymi punktami w C to istnieje doktadnie jedno odwzoro-
wanie afiniczne g takie, zZe

g(z1) = w1, g(22) = wa.

Transformacje afiniczne tworza grupe. Niech

AGMLcy:{[g ?}:aeC&beC},
Jesdli dla A = g ll) ha oznacza transformacje (1.2), to AGL(1,C) 5 A+ h4 jest izomor-
fizmem grupy AGL(1,C) na grupe transformacji afinicznych.
Dla z1,29,23 € C, 21 75 29, 29 75 z3 zdefiniujmy

21 — %3

(1 i) 1= T2,

Wtedy jesli g jest odwzorowaniem afinicznym, to

(9(21), 9(22); 9(23)) = (21, 22; 23).



1.5 GL(2,C)

Wyznacznik macierzy A:
det A = ad — be.

Macierze odwracalne stanowia grupe:
GL(2,C):={A e M(2,C) : det A # 0}.

Mamy izomorfizm

GL(2,C)3 A (A Ht e GL(2,C).

Dla macierzy (1.1) jest on rowny

(A = (ad — be) ! [ a e ] .

Definiujemy
SL(2,C):={A e M(2,C) : detA=1}.

Jesli A € GL(2,C) i A2 = det A, to
A1A e SL(2,0).

e [0 1 0 -1
(A)_[—10A1 0 |
Centrum SL(2,C) stanowi dwuelementowa grupa Z(SL(2,C)) = {1,—1}. Wprowadzamy
oznaczenie

Dla A € SL(2,C)

PSL(2,C) := SL(2,C) /{1, —1}.

2 Sfera Riemanna

2.1 Sfera Riemanna
Definicja 2.1 Sferg Riemanna nazywamy zbior
C:=CuU {oo}.

Mowimy, ze Q C C jest otwarty w C, gdy QNC jest otwarty w C i jesli co € Q, to istnieje R > 0
takie, ze

C\K(0,R) C Q.
Jesli w C?\{0} wprowadzimy relacje
we~v S dyeox Aw=w

Jest to relacja réwnowaznosci. (C2\{0})/ ~ jest oznaczane przez CP. CP mozna utozsami¢ z C:

(CPB(CX[U}I]HME(C.

w9 w2



2.2 Homografie

Definicja 2.2 Odwzorowanie C 3 z — h(z) € C nazywamy homografiq, jesli jest postaci

cz+d RS
hz)=4¢ oo z=-9 ; (2.3)
< z = 0.

gdzie a,b,c,d € C i ad — bec # 0. Takg homografie bedziemy tez oznaczali ha. Zbidr homografii
oznaczamy przez Homog.

Zauwazmy, ze jesli ad — be = 0, to odwzorowanie (2.3) redukuje sie do statej.

Twierdzenie 2.3 Homografie sq bijekcjami C w siebie. Tworzg grupe odwzorowarn. Odwzoro-
wansie
GL(2,C) > A~ hy € Homog

jest surjektywnym homomorfizmem grup
Innymi stowy,

hahay, =ha,a,.

Mamy
ha, = ha,

wtedy i tylko wtedy, gdy istnieje A € C\{0} takie, Ze
A1 = M\As

Dowédd. Jedli ¢ = 0, to homografia jest odwzorowaniem afinicznym, wiec jest bijekcja. Zatézmy,
ze ¢ # 0. Wtedy mozna ja przedstawié¢ jako

h= ggkgl (2.4)
gdzie
g1(z) = cz + d,
k(z) =271,
go(z) = —2d=bey 42

Wszystkie te odwzorowania sg oczywiscie bijekcjami, co dowodzi bijektywnosci h. O

: . b b . _ .
Jedli A2 = ac — bd # 0, to przez zamiane [ CCL d ] na % [ CCL d ] nie zmieniamy samej

homografii i gwarantujemy, ze jest ona sparametryzowna przez element SL(2,C). Dla kazdej

homografii istnieja wtedy doktadnie 2 macierze z SL(2,C) zadajace te homografie: { CCL b ] i

EE) d



Zamiast zatem parametryzowaé¢ homografie elementami GL(2,C), lepiej jest uzywac do tego
celu elementéw SL(2,C). Mozna tez uzywaé elementow PSL(2,C) ktadac

gdzie naduzywamy notacji uzywajac symbolu h w dwoch znaczeniach. Wtedy
PSL(2,C) > +£A +— hys € Homog

jest izomorfizmem grup. B
Mamy nastepujacy zwiazek miedzy reprezentacjami GL(2,C) w C? i C.

Twierdzenie 2.4 Niech

C\{(0,00)3 | M |sx| =2 eT
W03 | 2 | 2 ]2
Wtedy
oA = hAoTF
Dowéd.
[zl} [azl—l-bzg}
moA =7
29 cz1 + dzo
__ azi1+bzy __ a%+b
T czi+dze T C%+d
_ _ <1
~ha(2) — e [ 2],
O

2.3 Wlasnosci homografii

Lemat 2.5 Homografie zachowujgce oo to przeksztatcenia afiniczne.

Lemat 2.6 Homografia
Z— 2123 — 29

hl(z) =

Z— 2223 — 21

przeksztatea (21, z2, z3) w (0,00,1).

Twierdzenie 2.7 Jesli (21,22,23) sq trzema réznymi punktami w C i (w1, ws,w3) sq trzema
roznymi punktami w C to istnieje doktadnie jedna homografia h taka, zZe

h(z1) = w1, h(z2) =wa, h(z3) = ws. (2.5)

Dowé6d. Niech h; przeksztalca (z1, 22, 23) w (0,00,1) i hg przeksztalca (wq, we, w3) w (0, 00, 1).
Wtedy szukana homografia jest rowna h, Lhy.

Pokazemy, ze warunek (2.5) wyznacza homografie h jednoznacznie. Najpierw zauwazmy, ze
jesli z3 = w3 = oo, to jednoznacznosé wynika z Twierdzenia 1.1.



Niech teraz g, k beda homografiami takimi, ze
g(O) = Z1, g(l) = Z2, g(OO) = Z3, k(wl) = 07 k('UJQ) - 17 k(w?)) = 0.

Wtedy

Zatem
khig = khag. (2.6)

Mnozymy (2.6) z lewej przez k= a z prawej przez ¢! i dostajemy hy = hy. O

Jesli 21, 22, 23, 24 jest czworka parami réznych punktow z C, to liczbe

(21 — 23)(22 — 241)
(21 — 24)(22 — 23)

(Zla 225 23, Z4) =
nazywamy dwustosunkiem tej czworki punktow.
Twierdzenie 2.8 Jesli h jest homografig, to

(21, 22; 23, 22) = (h(21), h(22); h(23), h(z4))-

Jesli z1, z9, 23, 24 1 Wi, wa, w3, ws S¢ dwiema czworkami, to istnieje homografia przeksztatcajgca
b b b ) b ) q Y ] g
jedng w drugg < (21, 22; 23, 24) = (w1, w2; w3, wy)

2.4 Okregi uogoélnione
Definicja 2.9 Uzwarcong prostq rzeczywistq nazywamy zbidr
R:=RU {oo}.
Mowimy, ze Q2 C R jest otwarty w R, gdy QNR jest otwarty w R i jesli oo € Q, to istnieje R > 0

takie, ze

R\[-R,R] C Q.
Ogdlniej, uzwarceniem prostej L C C jest L := LU {oo} C C.

Definicja 2.10 Okregiem uogdlnionym nazywamy podzbiér C bedgcy okregiem bgd? uzwarcong
prostq.

Twierdzenie 2.11 Okrgg uogdlniony jest domknieciem w C miejsc zerowych réwnania
Q1122 + 122 + a91Z + age = 0, (27)

gdzie
arr, o2 € R, ajg =an1 € C, ajrane — ajpan < 0.



Dowdd. Okrag o $rodku zg i promieniu » € Ry ma réwnanie
|z — 20> =12 =0,

czyli
Zz— 270 — Z20 + Zoz0 — 12 = 0. (2.8)
Kazda prosta mozna zapisa¢ w postaci z = re + ite, gdzie le] = 1 i r > 0. Ma ona wtedy
roéwnanie
ze+ze —2r =0. (2.9)

Zarowno (2.8) jak i (2.9) sa postaci (2.7). O

Stwierdzenie 2.12 Homografie przeksztatcajg okregi uogdlnione w okregi uogdlnione. Punkty
21, 22, 23, 24 lezq na jednym okregu uogdlnionym wtedy i tylko wtedy, gdy (21, z2; 23, 24) € R.

Dowo6d. Na mocy (2.4) wystarczy to sprawdzi¢ dla transformacji afinicznej (co jest oczywiste)
i dla inwersji. Jesli w = %, to w zmiennej w rownanie (2.7) wyglada nastepujaco:

11 + 12w + ag1w + agsww = 0,

i jest rowniez rownaniem postaci (2.7). O

2.5 Krzywe na sferze Riemanna

Niech [0,1] 3 7+ ~(7) € C. Méwimy, ze v jest krzywa (gladka i sparametryzowana) na C, gdy
1) Jesli 79 € [0, 1], to v jest funkcja gtadka w otoczeniu 7y o nieznikajacej pochodnej;
2) Jesli g € [0,1] 1 y(79) = o0, to % jest funkcja gtadka w otoczeniu 7y o nieznikajacej pochodne;j.

Stwierdzenie 2.13 Jesli [0,1] > 7+ (1) € C jest kraywq i h jest homografig, to [0,1] > T
ho~(r) € C tez jest krzywg.

Niech [0,1] > 7 + 7;(7) € C beda krzywymi zaczynajacymi sie w tym samym punkcie
20 = 71(0) = 12(0). Wtedy kat miedzy 71 a v2 w dla 7 = 0 definiujemy jak nastepuje.
1) Gdy zp # o0, to jest to zwykly kat a € [0, 27 miedzy dwiema krzywymi. Mozna go obliczy¢
ze wzoru

sio — _71(0)%(0)
71(0)[[73(0)]°
1

2) Jesli zgp = oo, to jest to zwykly kat miedzy krzywymi ,y% a .

Twierdzenie 2.14 Niech 71,2 bedqg jak powyzej. Niech h bedzie homografig. Wtedy kgt miedzy
Y1 a ¥z dla T = 0 jest rowny kgtowi miedzy hoy, a hovys dla 7 = 0.

Dowdd. Jest to ogolna wlasnosé funkcji holomorficznych z niezerowa pochodna. Sprawdzamy,
ze
B (2) = (cz+d)72,

co jest rézne od zera dla (C\{—%}. Punkty oo, —% rozpatrujemy osobno. O

10



2.6 Grupa U(2)

W C? definiujemy iloczyn hermitowski skalarny
(z|lw) = ZTwy + Zaws.
Grupe macierzy unitarnych definiujemy

U2):={Ac M2,C) : (Az|Aw) = (z|w), z,w € C?}.

Rownowazny warunek: A*A = 1. Grupa U(2) sklada si¢ z macierzy spetiajacych warunki

lal® + e = 1,
ab+ cd = 0,
]2 + |d|? = 1.

Twierdzenie 2.15 (1) Macierze z U(2) sq postaci
a b
—Xb \a

a2+ b2 =1, ]Al=1.

gdzie

Poza tym, X\ jest wyznacznikiem macierzy (2.11).
(2) Macierze z SU(2) sq postaci
a b
EN

jaf® + [b* = 1.

gdzie

Dowo6d. Niech

=\

alle
SO

Wtedy b = —\e¢, d = Aa. Wstawiamy to do trzeciego wzoru w (2.10) i dostajemy

AP (ef® + lal*) = 1

(2.10)

(2.11)

Stad || = 1. Z tego dostajemy ¢ = —\b. Czyli macierz z U(2) jest postaci (2.11), gdzie |A| = 1.

Wyznacznik (2.11) jest réwny A(|a|? + |b]?) = A. Stad dla SU(2) mamy A = 1. O

11



2.7 Grupa U(1,1) i SL(2,R)
Niech
11’1::[(1) _01]
W C? definiujemy iloczyn hermitowski pseudoskalarny
(2|11, 1w) = Ziw) — Zaws.
Grupe macierzy pseudounitarnych definiujemy jako
U(1,1) :={A € M(2,C) : (Az|[;1Aw) = (z|[11w), z,w € C?}.

Rownowazne warunki:

AL 1A=1,,

albo
la]? = |e]* =1,

ab—cd =0, (2.12)
[bf? — Jdf? = —1.

Twierdzenie 2.16 (1) Macierze z U(1,1) sq postaci

5]

gdzie

Al=1, Ja*=p]>=1.
Poza tym X jest wyznacznikiem macierzy (2.13).
(2) Macierze z SU(1,1) sq postaci

a2 = b = 1.

> Q
Q o

gdzie

Dowd6d. Niech
=\

Ul 2
SO

Wtedy b = Ac, d = Aa. Wstawiamy to do trzeciego wzoru w (2.12) i dostajemy
AP(ef? = laf*) = =1

Stad |\ = 1. Z tego dostajemy ¢ = Ab. Czyli macierz z U(1,1) jest postaci (2.13) Wyznacznik
(2.13) jest rowny A(|a|? — [b|?) = X\. O

Definiujemy
SL(2,R) = GL(2,R)N SL(2,C).

12



Twierdzenie 2.17 Mamy izomorfizm
SL(2,R) > A~ BAB™!' € SU(1,1),

gdzie

Dowé6d. Mamy

BAB_IZE a+ib—ic+d ia+b+c—id _| @ 21
2 b1 al

—la+b+c+id a—ib+ic+d

la1|? — |b1]? = ad — be = 1

2.8 Podgrupa homografii zachowujaca punkty antypodalne
W C zdefiniujmy “sprzezenie antypodalne”

) 1

j(z) = -

Dla z = re'® mamy j(z) = r~1el(®+7). Oczywiscie, j2(2) = 2. Para punktow {z1, 2o} takich, ze
j(z1) = 2z2 (a tym samym j(z2) = z1) nazywa sie para punktéow antypodalnych.

Twierdzenie 2.18 Homografie przeksztatcajgce pary punktow antypodalnych na pary punktow
antypodalnych, czyli spetniajace

hj = jh
sq postaci hy dla A € SU(2).

Dowoéd. Niech A € GL(2,C) i h = ha.

ey =i (EE7) = EZE i - (HEEL).

cz+d cj(z)1+d

R

Zatem |\ = 11ic= —\b, d = \a. Dostajemy wiec macierz z U(2). O

Zatem
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2.9 Podgrupy homografii zachowujacych kolo uogdlnione

W tym podrozdziale opiszemy rozne podgrupy grupy homografii i ich reprezentacje przy pomocy
maciery z SL(2,C)

Twierdzenie 2.19 Waszystkie homografie przeksztatcajgce Cy w siebie sq postaci hy dla A €
SL(2,R).

Dow6d. Najpierw zauwazmy, ze h jest ciagla bijekcja i h_lijest ciagle. Zatem obraz brzegu
jest brzegiem obrazu. R jest brzegiem C,. Czyli h(R) = R. Poslugujac sie lematem 2.6 i
jednoznacznoscia widzimy, ze h = h4 dla A € GL(2,R). Mamy

ha(z) = 253

_ac|z|?+(ad+cb)Rez+bd+i(ad—cb)Imz
- |cz+d|?

Zatem h4(Cy) C Cy wtedy i tylko wtedy, gdy det A > 0. Mozemy wtedy zastapi¢ A przez
(det A)"2A € SL(2,R) O

Twierdzenie 2.20 Wszystkie homografie przeksztatcajace koto jednostkowe {z : |z| < 1} w
siebie magjq postac hy dla A € SU(1,1).

Dowé6d. Pamigtamy, ze
SL(2,R) > A BAB™' = A e SU(1,1),

jest izomorfizmem, gdzie

Zatem
hi=hpha(hg)™".
Ale )
Z—1
h =
58 =

przeksztalca C4 na {z : |z| < 1}. Mamy bowiem,

2?4 (y—1)?

T 4+iy —1i
St (y+1)?

<1l & zeC,.
1+y—ir e

To dowodzi tego, ze dla A € SU(1,1), h; przeksztatca K(0,1) na siebie.
Zalozmy teraz, ze h ; dla A € SU(1,1) przeksztatca K (0,1) na siebie. Niech

A:= B 'AB.

Wtedy h4 przeksztalca Ci na siebie. Na mocy Twierdzenia 2.19 A € SL(2,R). O
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3 Rzut stereograficzny

3.1 Geometria sfery

Przestrzen R? wyposazamy w iloczyn skalarny
(zly) = z1y2 + T2y2 + T3Y3.
Rozwazmy sfere o srednicy %

S? ={(z,y,2) € R : 2% +y* + 2% =1},

W standardowy sposob definiujemy dlugos¢ krzywej v na sferze, oznaczana przez |v|, pole po-
wierzchni podzbioru , oznaczane przez Sur(€2), kat miedzy przecinajacymi sie krzywymi. Pro-
sta sferyczna (okregiem wielkim) nazywamy zbior postaci V N 'S2?, gdzie V jest 2-wymiarowa

podprzestrzenig liniowa w R3. Zbiér prostych sferycznych oznaczamy przez L£(S?).

Grupa izometrii sfery jest O(3).

3.2 Izomorfizm PSU(2) i SO(3)

Niech su(2) oznacza macierze 2 x 2 bezsladowe antyhermitowskie. Wtedy isu(2) to zbiér macierzy

2 x 2 bezsladowych hermitowskich.
TrAB, A, B €isu(2)

zadaje iloczyn skalarny w isu(2).
Wprowadzmy macierze Pauliego

o 1 To i J1 0
Te=1 1 0" T |0l o0 -1 |

(04,0y,0;) jest bazg ortonormalng w isu(2). Odwzorowanie
R3 3 (w,y,2) = 20, + yo, + 20, € isu(2)

izometrycznie identyfikuje R? z isu(2).
Dla £A € PSU(2) definiujemy odwzorowanie liniowe na isu(2) przez

P:l:A(B) .= ABA~ ",

Twierdzenie 3.1
PSU(2) > A py € SO(3)

jest izomorfizmem.

15
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3.3 Razut stereograficzny sfery

Niech
8= {(r,9,2) € B : a2 49?422 = 1},

Definiujemy o : S — C

U(a:,y,z) =W =7

: (3.15)

o jest bijekcja:
—1 . o w o |w|271
o (w) = (v,y,2), w+iy= i) ? = 2wt

Rzut stereograficzny pozwala utozsami¢ S? z C.

Twierdzenie 3.2 Niech v bedzie krzywg na S?, Q podzbiorem w S?. Wtedy

=2 / (1 + [wf?) " |du], (3.16)
()

Sur(Q):4/ (1+ |w?)"2d%w. (3.17)
a(2)

a(L(S?)) jest réwne zbiorowi okregdw uwogélnionych w C zawierajgcy pare punktéw antypodal-
nych (i tym samym niezmienniczych ze wzgledu na j). Jesli R® utozsamimy z isu(2), to

opaot(w) = ha(w), A€ PSU(2),w e C. (3.18)

Poza tym

Dowéd. Udowodnimy (3.18).
Krok 1 Pamictamy, ze S? jako podzbiér isu(2) jest réwne

1
S* ={B ciu(2): TtB =0, TrB* = b

Zatem B ma dwie warto$ci wlasne rowne i%. Zatem % + B ma ma wartosci wlasne 0, 1, czyli
jest rzutem ortogonalnym jednowymiarowym. I na odwroét, jesli P jest rzutem ortogonalnym
jednowymiarowym, to —% +PcS%

% +z x+iy

KrokZ.MamyB—l-;:[w iy 1o
_ -

] . Zatem

i 1
Ran(;+3):¢:[f“y]:c[ 2+ 2 ]

Ran(% + pa(B)) = RanpA(% +B) = ARan(% + B).
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Krok 3. Niech 7 : CP — C badzie okreslone jako
1 1
v v
T [ 2 } =7 (3.19)
(CP mozna utozsamié¢ ze zbiorem jednowymiarowych podprzestrzeni liniowych w C2). Wtedy

mRan(3 + B) = % =w,
2

mRan(} + pa(B)) = TARan(3 + B) = ha(rRan(3 + B)) = ha(w).

Udowodnijmy (3.16). Zapiszmy w = re'®. Wtedy

rei? r?—1

iy = —— = ; 3.20
T +iy =10 kT (3.20)

igs (1 _ 2) i¢ 2

re'®i rele r
d idy = ——d ———d dz = ———=d 3.21
vhidy = et T ey dn T a2 (3:21)

Zatem
2d 2 d 2 d 2

de? +dy? +d2= 90 _dr __dw (3.22)

(1+7r2)2  (1+7r2)2 (14122

To daje metryke na sferze o promieniu % Nastepnie mnozymy przez 2 zeby dosta¢ metryke na
sferze jednostkowej. O

3.4 * Geometria plaszczyzny hiperbolicznej

Przestrzeri R? wyposazamy w iloczyn skalarny
(2I2,1y) = T1Y2 + T2y2 — T3Y3.
Rozwazmy hiperboloide
H? := {(z,y,2) eR® : —2? —y?+22=1 2>0},

W standardowy sposéb definiujemy dtugosé krzywej v na H?, oznaczang przez |y|, Pole po-
wierzchni podzbioru Q, oznaczane przez Sur(€2), kat miedzy przecinajacymi sie krzywymi. Pro-
sta hiperboliczna nazywamy zbiér postaci V N H?, gdzie V jest 2-wymiarowa podprzestrzenia
liniowa w R3. Zbior prostych hiperbolicznych oznaczamy przez L£(H?).

Grupa O'(2,1) jest grupa izometrii H2. Ma dwie sktadowe spojne. Sktadowa spojna jedynki
jest SOT(2,1).
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3.5 * Izomorfizm PSU(1,1) i SO'(2,1)

Niech su(1, 1) oznacza zbiér macierzy 2 x 2 spelniajacych I1 1A*I; 1 = A. Wyposazamy isu(1,1)
w iloczyn skalarny
trAB, A,B €isu(l,1).

(iog,i0y, 02) jest baza ortonormalng w isu(1,1). Odwzorowanie
R3 3 (2,y,2) = xioy, + yio, + 2o, € isu(1,1)
identyfikuje R? z isu(1,1) i zachowuje iloczyn skalarny.

Twierdzenie 3.3
PSU(1,1) 3 A+ pry € SOT(2,1)

jest izomorfizmem. O

3.6 * Rzut stereograficzny hiperboloidy
Definiujemy o : H? — K (1) ¢ C

olx,y,z)=w =T
(3.23)

o jest bijekcja:

_ . 24
o 1(“)):(.%'73/,2), T+1y = (‘w‘gu_l), Z:%

Rzut sterograficzny pozwala utozsami¢ geometrie H? z geometria K (0, 1).

Twierdzenie 3.4 Niech v bedzie krzywg na H?, Q podzbiorem w H?. Wtedy
o= =Py,
o(7)

Sur(Q) = / (1 |op)2 2
o () 2

o(L(H?2)) jest réwne zbiorowi przecieé okregow w C z K (0, 1), ktore sq prostopadte do S(0,1).
Jesli R3 utozsamimy z isu(1,1), to

opao t(w) = ha(w), A€ PSU(1,1),w € K(0,1). (3.24)

Cata grupa cO'(2,1)07! jest generowana przez {hy : A € PSU(1,1)} i sprzezenie zespolone.
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Dowod. Udowodnimy (3.25).
Krok 1 Pamietamy, ze H? jako podzbior isu(1,1) jest rowny

1
H? = {B ciu(2): TrB =0, TrB* = 3 Bil>0}.

Zatem B ma dwie wartosci wlasne réwne :I:%. Zatem % + B ma ma wartosci wlasne 0, 1, czyli
jest rzutem pseudoortogonalnym na jednowymiarowa podprzestrzenn dodatnia (skladajaca sie z
wektorow v takich, ze (v|I1,1v) > 0). I na odwroét, jesli P jest rzutem pseudoortogonalnym na
jednowymiarowa dodatnig podprzestrzen, to —% + P c H2

Krok 2. 1
1 _ |zt | | 2tz
Ran(2+B)_C|:%—z:|_|:—x+iy:|7
Ran(% +pa(B) = RanA(% +B)A !l = ARan(% + B).

Krok 3. Niech 7 : CP — C bedzie okreslone jak w (3.19).
Wtedy

ﬂRan(% + B) = % = w,

N

mRan(3 + pa(B)) = mARan(3 + B) = ha(rRan(} 4+ B)) = ha(w).

3.7 * Izomorfizm PSL(2,C) i SO(3,C)

Niech sl(2,C) oznacza przestrzen macierzy 2 x 2 zespolonych bezsladowych wyposazona w dwu-
liniowsa, forme

TrAB, A,Be€sl(2,C)
Dla £A4 € PSL(2,C) definiujemy odwzorowanie liniowe na si(2, C) przez
pia(B) := ABA™L,

Twierdzenie 3.5
PSL(2,C) > +Aw— piyg € SO(3,C)

jest izomorfizmem. W bazie (3.14), jesli

to
a2 —b2—c2+d?) L(—a? b2+ 2+ d? —ab + cd
2

= o=

pra=| 5(a® =+ —d?) L(-a®>—b*—c?—d?) i(ab+ cd)

N
By

bd — ac —i(bd + ac) ad + bc
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Dowé6d. Mamy
A_lz[ d —b}7 B:[ z 33+1y}

—c a r—iy —=z
Zatem
adz + bd(z — iy) — ac(x +iy) + bcz, —ab — b*(x —iy) + a®(x + iy) — abz
ABA™ = :
cdz + d*(z — iy) — ?(x +1iy) + cdz, —bcz — db(x — iy) + ca(z + iy) — daz
a

3.8 * Rzut stereograficzny zespolony

Zdefiniujmy sfere zespolong
W? = {(2,9,2) € C® : 2® +3 + 2% = 3},

Wo :={(w_,wy) eCxC : w_wy =—-1}U{(0,00), (c0,0)}.

Definiujemy o : W? — W
0'(1137y,2) = (w—’w+) = (%’ %)
f+ f+ (3.25)
s5+z 5+z
= (xg—iy’ x2+iy) €W

1
. . L. L1 o xHy - . 1 5tz
(Moze si¢ zdarzy¢, ze v +iy = 5 —2 =01 T, Jest nieoznaczone. Wtedy 5 + 2z # 0, zatem ;_iy

2
jest oznaczone).

o jest bijekcja:

—1 _ w_Fw w_ —w4 w_wy—1 2
o (w_,wy) = (2(w,w++1)> R(w_wst1)’ Q(w,w++1)> € W=

Twierdzenie 3.6 Jesli identyfikujemy W? z podzbiorem sl(2,C), to
opro Hw_,wy) = (h(A_1)t(w_),hA(w+)), Ae PSL(2,C), (w—,ws)e W.
Dowéd. Krok 1 Pamictamy, ze W? jako podzbior si(2,C) jest rowne
1
W? ={B : TtB=0, TtB? = 3t

Wiec B ma dwie wartosci wlasne réwne i%. Zatem % + B ma ma wartosci wtasne 0, 1, czyli jest
rzutem jednowymiarowym. I na odwrét, jesli P jest rzutem jednowymiarowym, to —% +Pc W2
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Krok 2. Niech P bedzie rzutem jednowymiarowym. Wtedy RanP i RanP' sg podprzestrzeniami

1 1
jednowymiarowymi takimi, ze jedna nie anihiluje drugiej, tzn jesli [ Z; ] € RanPt, [ Z'Q" } €
_l’_

RanP, to vl_v}r + v%vi # 0. Mamy

_i 1
Ran(%+Bt):(C[:f ly]:C[ 2+.Z },

53— % T +1y
i 1
Ran(§+B)=(C[91c+ly]=<C{ 2 t2 }
5—2’ r — 1y

(Patrz uwaga po (3.26)).

Na odwrét, jesli V_, V, sa jednowymiarowymi podprzestrzeniami takimi, ze jedna nie ani-
hiluje drugiej, to istnieje dokladnie jeden rzut jednowymiarowy P taki, ze RanP' = V_ i
RanP = V.

Mamy

Ran(L + pa(B)) = Ranpa (3 + B) = ARan(3 + B),
Ran(3 + pa(B)') = Ranpa(3 + B)' = (A71)'Ran(} + B").

Krok 3. Niech 7 badzie okreslone jak w (3.19). Wtedy warunek, ze podprzestrzenie V_ i V.
nie anihiluja sie wzajemnie jest rownowazny temu, ze m(V_)w(Vy) # —1. Zatem odwzorowanie
(V_, Vi) = (m(V2),m(V4)) jest bijekcja zbioru par nie anihilujacych si¢ wzajemnie jednowymia-
rowych podprzestrzeni liniowych na W.

Zatem

.
mRan(i + pa(B)) = mARan(3 + B) = hamRan(3 + B)) = ha(wy),
7Ran(3 + pa(B)") = m(A7")"(Ran(5 + B') = h(4-1y7Ran(3 + B) = ha(w-).

4 Funkcje analityczne

4.1 Definicja funkcji analitycznych

Przypomnijmy najpierw definicje zwyklej pochodnej (w sensie analizy rzeczywistej).
Niech I C R bedzie otwartym podzbiorem i I 3 z — f(z) € C funkcja. Mowimy, ze f jest
rozniczkowalna w zg € I, jesli istnieje

lim L&) = f(z0) (4.26)

T—XTQ r — X

Granice te nazywamy pochodng w sensie zespolonym funkcji f w zg. Jest ona oznaczana przez
Do f(20), f'(w0) Tub L),
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Niech U C R" bedzie otwartym podzbiorem i U > t — F(t) € C funkcja. Moéwimy, ze F jest
rozniczkowalna w £y € €, jesli istnieje odwzorowanie liniowe A

F(to + S) = F(to) + As + R(S), (4.27)

gdzie lim Is

[s|—0
Niech 2 C C bedzie otwartym podzbiorem i Q 5 z — f(z) € C funkcja. Moéwimy, ze f jest
rézniczkowalna w sensie zespolonym w zg € €, jedli istnieje

lim L) = /(20), (4.28)

Z—20 zZ— 20

R(T) = 0. A nazywamy pochodna F w punkcie tg 1 oznaczamy przez F'(tg) lub VF ().

Granice te nazywamy pochodng w sensie zespolonym funkcji f w zg. Jest ona oznaczana przez
d
0.f(z0), ['(0) lub S0,
Bedziemy pisali u = Ref, v = Imf. Przypomnijmy tez identyfikacje x : C — R?:

X(Z) = (I‘,y), z=x+1y.

Twierdzenie 4.1 Nastepujgce warunki sg rownowazne:
(1) f:C — C jest rdzniczkowalna w sensie zespolonym w zg.

(2) (Warunki Cauchy’ego—Riemanna) Funkcja xofox™! : R? — R? jest jednokrotnie ro-

zniczkowalna w sensie rzeczywistym 1 spelnione sq nastepujgce wzory:
Orpu = Oyv,

Oxv = —0yu,

(3) fox~ ! : R? — C jest jednokrotnie rozniczkowalna w sensie rzeczywistym i spetnione sq
nastepujgce wzory:

10, fox ™' = 9y fox .

Dowdéd Twierdzenia 4.1. Udowodnijmy 1) = 2). We wzorze

f(20) = lim f(z0+h) — f(20)

h—0 h

gdzie h =t + is, mozemy potozy¢ s = 0 i zbiega¢ z t — 0, wtedy dostajemy

f'(20) = %g% Iz + tt) =) = Oyu(z0) + 10;v(20) (4.29)

lub mozemy trzymaé t = 0, wtedy

s—0 18

= —i0yu(zo) + 0yv(20) (4.30)

Przez poréwnanie (4.30) i (4.31) dostajemy wzory Cauchy’ego-Riemanna.
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Rownowaznosé (2) i (3) jest oczywista.
Udowodnijmy teraz (3) = (1). Rozniczkowalnos¢é w sensie rzeczywistym oznacza, ze

f(z0+h) = f(z0) + f'(20)h + R(z0, )

gdzie f'(zg) oznacza macierz Jacobiego pochodnej

Oxu Oyu
Ozv Oyv |’
h jest wektorem
t
s
¢ R(z0,h
lim FCODL_
h—0 |h|

Korzystajac z Warunkéw Cauchy-Riemanna mozna to zapisaé jako

f(z0 +h) — f(20) = 0.f(20)(t +1is) + R(z0, h),

Z tego wynika istnienie granicy (4.29) i to, ze jest rowna 9, f(zp). O

Definicja 4.2 Funkcje f spetniajgcq jeden, a zatem i wszystkie, powyisze warunki dla z € §
nazywamy funkcjg holomorficzng na Q lub, co traktujemy jako synonim, funkcjqg analityczng na

Q.

Stwierdzenie 4.3 Jesli f, g sq holomorficzne w ), to réwniez f+g i fg. Jesli w dodatku f # 0
na €2, to % jest holomorficzna na Q. Jesli f jest holomorficzne na Q a g na f(Q), to gof jest

holomorficzne na Q. Jesli f jest bijekcjg z Q na f(Q) i f~1 jest funkcjg odwrotng do f, to f=!
jest holomorficzne na f(QQ). Zachodzg wzory

Lf+9=25Lr+Lg,

Lfg)=(L£Ho+ fiy,

d1 _ _Lif

dz f = f2dzY>

L9of(2) = {Ho(w) L f(2), gdzie f(2) = w,

(ol
g
&.}
N
g
S—
I

1 ~ _
o) gdzie f(z) = w.

Whniosek 4.4 Funkcja wymierna, czyli funkcja postaci

P(z)
Q(z)’

gdzie P, Q sq wielomianami, jest holomorficzna poza zerami Q(z).
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4.2 Krzywe

Krzywa sparametryzowang kawatkami gltadka nazywamy odwzorowanie ciagte
10,137+ ~(r) € C (4.31)

takie, ze istnieja 0 := 719 < 71 < -+ < T, := 1 1 po obcieciu v do |7, 7;11], odwzorowanie =y jest
gladkie i ma wszedzie niezerowa pochodna. Zamiast “kawatkami gtadka krzywa”, bedziemy pisaé
po prostu “krzywa’.

W zbiorze krzywych wprowadzamy relacje: 1 ~ 72, gdy istnieje ciagta bijekcja ]0,1[> 7 —
k(7) €]0, 1] taka, ze dla pewnych 0 := 79 < 71 < --- < 7, := 1 K po obcieciu do |7;, Ti+1] jest
gtadka, ma dodatnia pochodna oraz v; = yg0k. Jest to relacja rownowaznosci. Klase abstrakeji
wzgledem tej relacji nazywamy krzywa zorientowana (niesparametryzowana).

W zbiorze krzywych wprowadzamy tez innag relacje: 71 ~ 72, gdy istnieje ciagta bijekcja
10,1[> 7 — k(7) €]0,1] taka, ze dla pewnych 0 := 79 < 71 < -+ < 7, := 1 Kk po obcieciu
do |7, Ti+1] jest gltadka, ma dodatnia lub ujemna pochodna oraz 71 = 7gok. Jest to tez re-
lacja réwnowaznosci. Klase abstrakcji wzgledem tej relacji nazywamy krzywa niezorientowang
(niesparametryzowana,).

W definicji (4.32) mozna réwniez zamienié¢ ]0, 1] na [0,1], ]0,1], [0,1] badz S (okrag). W
ostatnim wypadku mamy do czynienia z krzywa zamknieta,.

Zalozmy, ze brzeg zbioru otwartego sktada sie z krzywych zamknietych. Wtedy kazda z tych
krzywych ma naturalna orientacje: posuwamy sie wzdtuz niej w dodatnim kierunku, jesli zbiér
mamy z lewej strony.

4.3 Calki wzdtuz krzywych

Niech krzywa v bedzie sparametryzowana przez [0,1] 3 7 +— (1) € Q. Zakladamy, ze parame-
tryzacja jest kawalkami C'. Zaloézmy tez, ze na ([0, 1]) okreslona jest funkcja f (niekoniecznie
holomorficzna). Zdefiniujmy catke z funkcji f po krzywej v wzorem

1
dy(7)
[0 [ )T ar (4.32)
v 0 T
Definicja ta nie zalezy od parametryzacji zachowujacej orientacje. Przy zmianie orientacji zmienia

sie znak catki,
Wprowadzamy réwniez oznaczenie na niezorientowana catke wzdtuz krzywej ~:

[ serasti= [ ot | F7

Definicja ta nie zalezy od parametryzacji, rowniez zmieniajacej orientacje.

dr.

Zauwazmy, ze

A F(2)g(2)dz

< / F@ldz] sup (2]

z€7(0,1]
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Przyklad. Niech v bedzie okregiem [0, 27] 2 ¢ + el®?a + b € C.

2m
/z"dz = / i(ae'® + b)"ac®de
y

0
n

2 n! .
= / b Mg——— (M toq g — 0
0

I(n — |
= m!(n —m)!
2m )
/Z"|dz| = / (ae'® + b)"ade
o 0
= b'a2m;
2m ) -~ )
/ zdz = / (@™ + b)ae'®id¢
o 0
= i27|al?

4.4 Twierdzenie Cauchy’ego i jego konsekwencje

Twierdzenie 4.5 (Twierdzenie (lauchy’ego), Niech f bedzie holomorficzna na otwartym 1
ograniczonym zbiorze 0 i ciggta na 2. Wiedy

f(z)dz = 0. (4.33)
o

Dowod. Udowodnijmy najpierw dla prostokata Q := {(x +iy : 0 <z < b, 0 <y < c}.
Bedziemy pisa¢ f zamiast fox ™!

b c b c
[ 1(epaz = /0 f(,0)da + /O £(b.y)idy — /0 f( ez — /0 £(0, y)idy

= i/ob/ocaxf(m,y)dxdy—/Ob/ocﬁyf(m,y)dmdy = i/ob/ocfi;f(x,y)dxdy = 0.

Dla dowolnego obszaru €2, wypelniamy go prostokacikami. O

Whniosek 4.6 (Wzér Cauchy’ego) Przy tych samych zaltozeniach, co powyzej, jesli zg € §2, to

1 (2)
= dz. 4.34
f(z0) 31 S 2 — 20 (4.34)
Dowoéd. Funkcja % jest holomorficzna w Q\ K (29, 7). Zatem
_ f(z)
0 = Jo@\K(z0,r)) =50 9%
_ f(z) f(z)
— JoQ z—=g dz — faK(zo,r) Hdz
Ale przez podstawienie z = zy + re’® dostajemy, ze
lim ) 4y omif(a).

r—0 0K (z0,r) Z— 20
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Whniosek 4.7 Kazda funkcja holomorficzna jest rézniczkowalna nieskoriczenie wiele razy w sen-
sie zespolonym. Zachodzi wzor

f(n)(ZO) _ L' /8Q (f(z)dz (4.35)

-~ 2mi z— o)t

Whiosek 4.8 (Nieré6wnosé¢ Cauchy’ego) Jesli f jest holomorficzna w K(zg,7) i ciggla na
K(zp,7), to

|
)] < 5 s 17 (4.36)

Whiosek 4.9 (Twierdzenie Liouville’a) Kazda funkcja holomorficzna na C i ograniczona jest
stata.

Dowédd. Dla dowolnego zg € C i r > 0 z nieréwnosci Cauchy’ego wynika oszacowanie

‘f/(20)| < SUP.ecC ’f(z)|

r

Zatem [/ =0. 0O

Whniosek 4.10 (Twierdzenie Gaussa) Kazdy wielomian r6zny od statej ma na C miejsce ze-
rowe.

Dowéd. Zalozmy, ze wielomian P(z) stopnia n > 1 nie ma pierwiastka. Niech

Wtedy f jest holomorficzna na C. Poza tym, wiemy, ze dla z > R, |P(z)| > |z|". Zatem,
lim,|,o f(2) = 0. Funkcja ciagta zbiezna do zera w nieskoriczonosci jest ograniczona. A wigc z
Twierdzenia Liouville’a wynika, ze f jest stala. O

4.5 Zwigzki dyspersyjne

Moéwimy, ze funkcja f na R jest Holderowska w w € R, gdy istnieje € > 0, c i 8 > 0 takie, ze dla
& z tego otoczenia
(&) — f) <clg —wl’, Eelw—ewtel (4.37)

Holderowskosé jest rodzajem ulepszonej ciaglosci.
Wartoséé gtéwnag calki z gi—% definiujemy jako

([T L) e e

Zauwazmy, ze do istnienia (4.39) wystarcza, zeby £||J11 € L'(R) i zeby f byla Hélderowska w w

dla @ > 0. Na przyktad, f(&) := @ jest ciagla, nie jest Holderowska, Pf_l1 %dé = 0.
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Twierdzenie 4.11 (Wzo6r Sochockiego) Niech € L' i f bedzie Holderowska na R. Wtedy

1+|€\

G

_ f(€)
N0 mdg = Fimrf(w) +P/5_wd5-
Dowod. . ‘ . 1

1€
i Eratare YE F 76(8). (4.39)

a

Twierdzenie 4.12 (Zwiazki dyspersyjne Kramersa-Kroniga) Niech f bedzie ciggta na {Imz >
0} i analityczna w {Imz > 0}. Zaktadamy, ze na R jest Holderowska, %ltvl € L' i na gérnej pot-
plaszczyinie mamy lim,| o f(w) = 0. Niech f = fr+if1 bedzie rozktadem na czes¢ rzeczywistq

i urojong. Wtedy dla w € R

f) = g{&) de,
Aw) = —2p [ e

Dowédd.

flw+ie) = 217ri/§—fi(e§)—wd£

Nastepnie korzystamy z tego, ze f(w + i€) — f(w) i ze wzoru Sochockiego:
li\r%/éﬁ’f)_iedg:mf(wHP/ﬁudg.
Jesli f(€) = f(=¢), cayli fr(§) = fr(=¢), fi(&) = —fi(=¢), to zwiazki Kramersa-Kroniga
przybieraja postaé
ful) = =2p [T g

T 52_0)2

aw = 2p [T 5%

Fizyczne zastosowania Twierdzenia 4.12 sg oparte na nastepujacym schemacie. Zatézmy, ze
g(t) jest “bodzcem” a h(t) “reakcja’. Zaktadamy, ze h(t) zalezy od ¢(t) liniowo i przyczynowo.
Oznacza to, ze

h(t) = /O T e(s)g(t — 5)ds. (4.40)
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Po przejsciu do transformat Fouriera dostajemy

~

h(w) = éw)g(w).

(Stosujemy konwencje é(w) = [e(t)e!™dt.) Zalézmy, ze € € L'. Wtedy funkcja é przediuza sig
analitycznie na {Imz > 0} i zatem stosuje si¢ do niej powyzsze twierdzenie. W praktyce z reguty
e(t) jest rzeczywisty, wiec

a9 = e(—9). (4.41)

Przyktadem wielkosci o takich wlasnosciach jest podatnoséé elektryczna e, zdefiniowana przez
D = €¢E. mierzona jest najlatwiej poprzez wspotczynnik zalamania, n? = eu. p jest z dobrym
przyblizeniem réwne 1. Analitycznos$é n? jest czesto wyrazana poprzez fenomenologiczne réwna-
nie Sellmeiera

B;)\2
2 _ 7
n?(\) =1+ Ei N —C (4.42)

gdzie A = £ jest dtugoscia fali w prozni. Z reguly wystarcza 3 wyrazy.

4.6 Szeregi potegowe
Twierdzenie 4.13 1) Niech (ag, a1, ...) bedzie ciggiem i

p~ ! = limsup |an|'/". (4.43)

n—0o0

Wtedy
f(z) = Z anz"
n=0

jest funkcjq holomorficzng w kole K(0,p). Poza tym

f™(0)

n!

Ay =

2) Niech f(z) bedzie holomorficzna w kole K(0,r). Wtedy jesli

(n)
G0}
n!
to
lim sup |an\1/” <yt
n—oo
i w K(0,7) mamy
o0
f(z) = Z anz"
n=0
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Dowo6d. Udowodnijmy 1). Niech p2 < p1 < p. Wtedy dla n > Ny, |an| < p;". Zatem dla
N > Ny

0y an2™ < 02y o1 "l = pr VN (1 = B

Cazyli
N
fn(z) = Zanz”
n=0
spelia dla Ny < Ny < Ny iz € K(0, p2)

vy = fl < oMoy (1= B2
P1

Czyli fy jest zbiezny jednostajnie w K (0, p2), a wiec niemal jednostajnie w K (0, p) do funkcji
f(2). Podobnie pochodne f(z) sa granica niemal jednostajna pochodnych tego ciagu. Kazdy
z elementéw tego ciggu spetnia warunki Cauchy’ego—Riemanna. Zatem i granica spelnia te
warunki.

Udowodnijmy teraz 2). Z nier6wnosci Cauchy’ego wynika, ze jesli 71 < r, to istnieje C
takie,ze

la] < O

Zatem szereg
o0
E an2"
n=0

jest zbiezny w kole K (0,71). Korzystajac z jednostajnej zbieznosci przy zamianie kolejnosci
catkowania i sumowania dla ro < ry dostajemy

. f(&
F(2) = 25 for(om) £E2dE

1 f€ 1
= 51 Jor o) £ —zd¢

= 2%1 202" fBK(O,rg) gfn(ii)ldf
=y on ()

n=0 n!

a

Whniosek 4.14 Niech Q) bedzie podzbiorem otwartym w C i f : Q — C. Witedy f jest holomor-
ficzna < dla kazdego zg € ) istnieje ciqg ag,ay,... i v > 0 takie, zZe

f(z)= Zan(z —20)", |z— 2| <
n=0

W praktyce wystarczaja prostsze kryteria:
1) (Kryterium D’Alemberta) Jesli

lim [ 1]
n—oo ’an’
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istnieje, to jest rowne (4.44);
2) (Kryterium Cauchy’ego) Jesli

lim |a,|'/"
n—oo

istnieje, to jest rowne (4.44).
Przyklady rozwinieé¢ funkcji analitycznych

o0

(1-—2)"1= Zz", |z| < 1;

n=0

o
... —1
(1—2)_’”25 m(m + 1) '(m—i—n )z”, lz| <1, m=1,2,...;
n

n=0
= /m
(1—|—z)m:E < >z", 2€eC, m=0,1,....
n
n=0

Twierdzenie 4.15 (Rozwiniecie w szereg Laurent’a) Niech funkcja f bedzie holomorficzna
W Prerscieniy
{z : r <|z| <R},

gdzie 0 < r < R < oo. Wtedy na tym pierscieniu

i bn2". (4.44)

n=—oo

Wspdtczynniki by, mozna obliczyé ze wzoru

oo L £©)

271 Jor(0,0) €

de.

gdzier < p < R.

Dowoéd. Niech r <7 < |z| < Ry < R. Wtedy

271'1 faK 0R1) E z 27r1 faK (0,r1) f ng
f(€)
- Zn 0 27r1 IBK (0,R1) 57"’"1 anf + Zn 0 27r1 IBK 0,r1) zntl fndé
:Zn:_oo 2.

Przyktad. Funkcja

ma nastepujace rozwiniecia

S 2 el <1

n=0
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oo oo
- Zz_”_l + 22_"_1z", 1<z <2
n=0 n=0

(o)
—> (@42m T 2< e,

n=0

4.7 Funkcja wykladnicza

Funkcje wyktadnicza mozna zdefiniowaé przez szereg

1
z n
e ——E —n!z, z € C.
n=0

Funkcja ta ma nastepujace wtasnosci:

e?le?2 — 122 ,

€ 267’
d 2 _ .2
@6 =e7,
e? = e~

e* = 1 wtedy i tylko wtedy gdy z = i2kw, k € Z.

Z funkcja e* zwiazane sg funkcje trygonometryczne

elZ + e*lZ . elZ _ e*lz
cosz (= ———, sing == ————
2 20
i hiperboliczne
z —Zz z —Zz
e’ +e e’ —e
chz .= —— shz:= ———
2 2

Funkcje €%, cos z, sin z, chz i shz obciete do R maja wartosci rzeczywiste. Mozemy przy ich
pomocy wyrazié¢ €® jak nastepuje:

"t = e (cosy + isiny).

Funkcje cos z, sin z, chz i shz sa w pewnym sensie przetuzeniami analitycznymi jednej funkcji,
na przyktad chz:
sht = —ich(t —iF), sint = ch(it —iF).

Oto wtasnosci funkeji chz:
chz = ch(—z2), ch(z+inr) = —chz,

i0.chz = ch(z +i%), ch?z + ch?(z + i7)=1
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4.8 Funkcja logarytm i funkcja potegowa

Funkcja e® przeksztalca bijektywnie pas {z : —7 < Imz < 7} na C\| — 00, 0]. Funkcje odwrotna
do e* okre$lona na
C\] = 0, 0] (4.45)

nazywamy galezig glowna logarytmu i oznaczamy logg) 2. (Dziedzina (4.46) zostata wybrana

dos¢ arbitralnie). Ma wtasnosci:
% logpy z = %
lOg(O) 1=0.
Dostajemy zatem wzér
dw
IOg(O) z = —_—
N w

gdzie 7y jest dowolnym konturem wewnatrz (4.46) zaczynajacym si¢ w 1 i koriczacym sie w z.
Czasami przydatna jest funkcja argument (ktora nie jest holomorficzna)

arggyz := Imlogg) 2.

Wychodzac ze wzoru

d
—logg)(1+2) =

dz 1+2
i calkujac rozwiniecie dla H% dostajemy
o0
-1 n+1
log)(1+2) = Z (T)LG’ |z| < 1.

n=0

Zauwazmy, ze dla zdefiniowanej powyzej funkcji logarytm nie dla wszystkich z1, 29 € C\] —
00, 0] zachodzi wzor

log (o) (2122) = log(g) 21 + log ) 22- (4.46)

(4.47) jest spelniony, jesli |argz; + argzs| < .
Funkcja log g « obcigta do R4 ma wartosci w R. Funkcjg log gy z mozemy nast¢pujaco wyrazic
przez funkcje rzeczywiste:

log(g) (r(cos ¢ +ising)) = logr +ip, r € Ry, ¢ €] —m, 7.
Jesli u € C, to definiujemy gataz gtéwna funkcji potegowej jako

C\| — 0,0l 2 z — zﬁ)) = oM 1080 %,

Zauwazmy, ze gdy p € Z to powyzsza definicja sprowadza sie do zwyklej potegi (ktora zdefinio-
wana jest na calym C, by¢ moze z wyjatkiem {0}). Mamy tozsamosci

b
1(0) - 17
d pn _  pu—1
dz%(0) = H*(0)
Zég)+“2 - ZEBI)ZEBQ)v largzy + argze| < .
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Zdefinujmy

<u> =1 (p—n+1)

n n!

Wtedy wychodzac ze wzoru Taylora dostajemy nastepujace rozwiniecie funkceji potegowe;j:

[e.9] ILI/ "
(1+2)fg) = Z <n>z . |zl < 1

n=0
Funkcja zé%)
przez funkcje rzeczywiste:

dla z € Ry i p € R ma wartosci w R;. Funkcje zﬁ)) mozemy nastepujaco wyrazié

(r(cos ¢ + isin ¢))?0'§i5 = e PdladtiBlog)r e R, $e] —m,m.

Niech € € R. Funkcja e* jest bijekcja rowniez jesli damy jej nastepujaca dziedzine i przeciw-
dziedzine: '
{z:0-—m<Imz<O+7}3 2z e €C\e?] - 0,0].

Odwrotna do niej funkcja tez bedzie nazywana logarytmem. Bedziemy ja oznaczaé
Qg := C\e?] — 0,0] 3 2z — logg)(2)-

Zauwazmy, ze jesli 6 < 02 < 01+27, to na jednej ze spojnych sktadowych Qy )NQ(4,) logy, (2) =
logg, (2) na drugiej zas, logy,) z + i2m = logg,) 2.
Podobnie mozna zdefiniowaé
Qydze zé‘e) = el1o8(e) (%)
Jesli 6; < 62 < 01 + 27, to na jednej ze spojnych sktadowych gy, N Qy, mamy zé‘ol) = zé‘%) na
drugiej zas, zél)eizm‘ = Zé_;ﬂ

Jesli p jest wymierne i réwne nieskracalnemu utamkowi %’, to

B
2(0) T (0+q2m)"

o
(0

i funkcji potegowej i bedziemy pomija¢ indeks (0).

W przysziosci bedziemy traktowac logg) 2 1 = ) jako standardowe odmiany funkcji logarytm

4.9 Punkty osobliwe funkcji analitycznych

Punkt zg nazywamy izolowanym punktem osobliwym funkcji f jesli istnieje » > 0 taki, ze f jest
holomorficzna na K (zo,7)\{z0} ale zo nie nalezy do dziedziny funkcji f. Rozrozniamy nastepujace
przypadki.

Definicja 4.16 (1) Funkcja f ma w zy osobliwo$é pozorna (usuwalna) gdy istnieje

lim f(z) # oc.

Z—20
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(2) Funkcja f ma w zp biegun rzedu k = 1,2,... gdy istnieje

lim f(2)(z — 20)" # 0, 0.

Z—20

(3) Jesli izolowany punkt osobliwy zy nie jest ani osobliwosciq pozorng ani biegunem, to md-
wimy, ze funkcja f ma w zp osobliwosé istotna.

W wyzej opisanej sytuacji wiemy, ze dla pewnego R > 0 mozemy rozwinaé¢ funkcje f na
K (z0, R)\{z0} w szereg Laurenta:

Mozemy wtedy rozpoznaé typ osobliwosci:

Twierdzenie 4.17 (1) Funkcja f ma w zp osobliwosé pozorng (usuwalng) < an, =0 dla n =
1,2,

(2) Funkcja f ma w zg biegun rzedu 'k =1,2,... S a_p #0ia, =0dlan=—-k—1,-k—2,...

(3) Funkcja f ma w zp osobliwos¢ istotng, < inf{n : a, # 0} = —oco.

Przyktlad.

sin z

z
ma w 0 osobliwos$é¢ usuwalna.
(1+2%)72

ma w +i bieguny drugiego rzedu.

el/z

ma w 0 osobliwos¢ istotna.

Definicja 4.18 Niech Q C C bedzie otwarty. Funkcja f jest meromorficzna na Q gdy istniejg
punkty zi1,z2,--- € Q takie, Ze f jest holomorficzna na Q\{z1,z22,...} i punkty z1,z9,... sq
biegunami funkcji f.

Przyktad. Funkcja
(sinz) ™
jest meromorficzna na C.

Definicja 4.19 Residuum funkcji f w punkcie zy jest zdefiniowane jako

Resf(z0) = — /8 e T

27

gdzie Ry jest dowolng liczbg dodatniq taka, ze K(z9, R1)\{z20} jest zawarte w dziedzinie f.
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Zauwazmy, ze definicja ta nie zalezy od wyboru R;. Mamy

d Zn+1
Tntl- 2", neZ\{-1}.
Dlatego
/ 2"dz =0, neZ\{-1}.
0K (z0,R1)
Poza tym

/ 27 ldz = 2ni.
8K(20,R1)

Stad wynika wzor

Resf(z9) = a—1. (4.47)
Jesli f ma biegun rzedu najwyzej k, to residuum mozna obliczy¢ ze wzoru
) 1 dk;—l L
R,eSf(Z()) = Z].l)l’.glo WW(Z — ZQ) f(Z) (448)
Jesli funkcja f jest holomorficzna na Q\{z1,..., z,}, to zachodzi wzor
f(z) =) 2miResf(z;). (4.49)
20 o
Przyktad. Jesli
1
e =va
to .
i
R ia) = ——
esf(ia) 50
Zatem

- 1 = : . s
/oo 21l /_OO f(2)dz = 27iResf (ia) = —.

Lemat 4.20 (Lemat Jordana) Niech a > 0. Dla R > 0 oznaczamy przez ygr gorny potokrag o
promieniu R. Niech zf(z) bedzie ograniczone dla Rez > 0, |z| > Ry. Wtedy dla & > 0

/ ¢ f(z)dz — 0.
VR

Dowodd.

’/eing(z)dz §/ r|f(rei¢)|e_rsm¢d¢ < C’/ e "SI0 dg — 0,
0 0

gdzie w ostatnim kroku skorzystaliémy z Twierdzenia Lebesgue’a. O

Przyktad. Niech
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Wtedy

efl

Resf(i) = -

Poza tym,

< C sup
Z€YR

Ly F)2] < sup [ [6 el supc [ ,

_Z _
1422

co dazy do zera gdy R — oo. Zatem

TSz ( o
/oo 112 =1 (za}fio /[R X f(Z)dZ> = Im (27iResf(i)) = me .

Przyktad.
R ei:v{ 0 5 <0,
dz = ir £€=0,
2ire=¢, £ > 0.

lim -
R—o0 _RT—1

Lemat 4.21 Niech funkcja holomorficzna f ma w zg biequn pierwszego rzedu. Zdefiniujmy
krzywq

Yr 1= {ZO + rei‘z’ : ¢0 < (b < ¢1}
Wtedy

r—0

lim L s = (01 = do)iRes ).

Dowé6d. Mamy

gdzie g jest holomorficzna w zg. Oczywiscie,

lim [ g¢(z)dz=0.

r—0

Yr
Przyktad. Jesli .
f(Z) = 77
to
Resf(0) =1
Dlatego
. R sinx ) R .
lim dz = lim Im f(2)dz = Im(wiResf(0)) =«
R—oo J_p X R—o0 R
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4.10 Funkcje analityczne a punkt w nieskoriczonosci

Przez C bedziemy oznaczaé sfere Riemanna, to znaczy C U {oo}.
Niech Q ¢ C. Méwimy, ze f jest analityczna w oo, gdy f (%) jest analityczna w 0.
Punkt oo nazywamy izolowanym punktem osobliwym funkcji f, gdy dla pewnego R funkcja
f jest holomorficzna na C\K (0, R) i oo nie nalezy do dziedziny f. Rozrozniamy nastepujace
przypadki:
1) f ma w oo osobliwo$¢ pozorna, jesli istnieje
lim f(z) # oo.

zZ—00

2) f ma w oo biegun rzedu k = 1,2,..., gdy istnieje

lim f(z)z7% # 0, 0.

Z—00

3) f ma w oo osobliwo$¢ istotna w przeciwnym razie.
W wyzej opisanej sytuacji wiemy, ze dla pewnego R > 0 mozemy rozwinaé¢ funkcje f na
C\K (20, R) w szereg Laurenta:

Mozemy wtedy rozpoznaé typ osobliwosci:
1) Funkcja f ma w oo osobliwo$¢ pozorna (usuwalna) gdy a, =0dlan=1,2,...
2) Funkcja f ma w oo biegun rzedu k =1,2,... gdy ap #0ia,=0dlan=k+1,k+2,...
3) Funkcja f ma w oo osobliwosé istotna, jesli
sup{n : a, # 0} = oco.

Przyktad. Funkcja e ma w oo istotny punkt osobliwy.
Definicja 4.22 Jesli Q C C jest otwarty to méwimy, ze funkcja f jest meromorficzna na Q gdy
istniejq punkty z1, z9, - - - € S takie, Ze f jest holomorficzna na Q\{z1, z2, ...} i ma w{z1,22,...}
osobliwosci pozorne bgdZ bieguny.

Przyktad. Punkt oo nie jest izolowanym punktem osobliwym funkcji

(sinz) L.

Zatem, funkcja ta nie jest meromorficzna na C.

Definicja 4.23 Residuum funkcji f w oo jest réowne

1 1
f(z)dz = —— f(z)dz
(2) 271 Jorcio.m) (2)

Resf(o0) :

2m Jye\k(0.8)

gdzie R1 > R.
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Zauwazmy, ze definicja ta nie zalezy od wyboru R; Mamy wzor
Resf(o00) = —a_;. (4.50)

W praktyce mozemy wyliczaé¢ residuum w nieskoiniczonosci ze wzoru

1 1
R =R 0 = — | —= 4.51
esfoc) = Resg ). gluw)i= 1 (1 ) o (451)
Jedli funkcja f jest holomorficzna na Q\{z1,...,2,}, gdzie Q C C, to zachodzi wzoér
f(z) = Z 2miResf(z;). (4.52)
o0 st

99

Przyktad. Niech f(2) := ;% 150. Wtedy
Resf(oc0) = 1.
Dlatego,

/ f(2)dz = —2rwiResf(c0) = —2i.
9K (0,2)

Twierdzenie 4.24 Kazda funkcja meromorficzna na C jest wymierna. Innymi stowy, kazda
funkcja analityczna z C w C jest wymierna.

Dowéd. Niech f bedzie meromorficzna na C. Poniewaz sfera Riemanna jest zwarta a punkty
osobliwe f sa izolowane, wiec jest ich skonczenie wiele. Niech {z1,..., 2,00} beda punktami
osobliwymi funkcji f. Niech

ki
—n
g an,i(z — 2i)
n=1
beda osobliwymi czesciami rozwinie¢ w szereg Laurent’a wokot z; oraz

koo
g Un,oo?"
n=1

niech bedzie czescia rozwiniecia w szereg Laurent’a wokoét oo z dodatnimi potegami. Wtedy

m ki koo
f(z) — Z Z ani(z —2zi) " — Z Anoo?”
n=1

i=1 n=1

jest funkcja analityczna na C. Zatem na mocy twierdzenia Liouville’a jest stata. O
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4.11 Funkcje analityczne z C w C

Definicja 4.25 Niech Q@ ¢ C i f : Q — C. Mowimy, ze f jest analityczna w zg € Q, gdy
spetnione sq nastepujgce warunki:

1) gdy zp # o0, f(20) # o0, to f jest analityczna w otoczeniu zy w zwyktym sensie;

2) gdy zo # oo, f(z0) = o0, to f( ) jest analityczna w otoczeniu zg w zwyktym sensie;

3) gdy zo = 00 i f(z0) # 00, to f(;) jest analityczna w otoczeniu 0 w zwyktym sensie;
4) gdy zo = f(z0) = 00, to ﬁ jest analityczna w otoczeniu 0 w zwyktym sensie.

Twierdzenie 4.26 Niech f bedzie meromorficzna na Q C C. Rozszerzmy funkcje f na caty §
ktadgc

w szczegolnosci w biequnach funkcji f ktadziemy f(z;) := oo. Wtedy funkcja
f:Q—=C,
jest analityczna w sensie definicji (4.25).

Twierdzenie 4.27 (1) Kazda funkcja holomorficzna z C w C jest stata.
(2) Kazda bijekcja analityczna @iu siebie jest homografig.
(3) Kazda funkcja analityczna z C w C jest wymierna.

Dowod. (1) jest preformutowaniem twierdzenia Liouville’a. (3) jest preformutowaniem Twier-
dzenia (4.24). Aby dowiesé¢ (2) korzystamy z (3). O

5 Przedluzenie analityczne

5.1 Jednoznacznos$é przedluzania funkcji analitycznych

Twierdzenie 5.1 Niech f, g bedg holomorficzne w otwartym spojnym obszarze Q0 C C. Zatozmy,
ze istnieje ciqg {zn} C Q taki, ze limy, o0 2, =: 20 € Q @ 2, # 20 dlan =1,2,.... Niech

f(zn) =9g(zn), n=0,1,2,....
Wtedy f = g na catym Q.
Dowoéd. Niech
Q={zeQ : fU)=¢"Y(), j=0,1,...}.
Zbior 21 jest domkniety w € jako przeciecie domknietych w € zbioréw
{ze : fU(z) = gD ()}
Jest on rowniez otwarty, bo dla kazdego Zy € Q; istnieje r > 0 takie, ze na K(Zg,r)

> rn)(z
=3 By —Z
n=0 )

g(n>

—Z)" = g(2).
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Jest on wreszcie niepusty, bo zp € Q1. W rzeczy samej, istnieje r > 0 takie, ze na K(zg,r)

flz) = Z an(z — 2z0)"
n=0

oo
g(z) = Z bn(z — 20)".
n=0
Niech ¢; := a; — bj i m niech bedzie najmniejszym indeksem takim, ze ¢, # 0. Wtedy

0= lim f(zn) — g(2n)

n—oo  (zp — ZO)m

:Cm#o

co jest sprzecznoscia.
Jedynym podzbiorem w €2, ktéry jest niepusty, otwarty i domkniety w €2 jest cate . Zatem
Q=0.. 0

5.2 Przedluzanie funkcji analitycznych wzdtuz drogi

Niech 2 C C bedzie otwartym spojnym zbiorem i f : @ — C funkcja analityczna. Niech
[0,1] 5 7 — 7(7) € C bedzie krzywa taka, ze y(0) € Q. Moéwimy, ze mozna przedtuzy¢ f wzdtuz
v, gdy dla kazdego T € [0, 1] istnieja r, > 0 i funkcja analityczna f; : K(y(7),r,) — C takie, ze

(1) fo = f na K(7(0),70) N
(2) Dla kazdego 19 € [0, 1] istnieje € > 0 taki, ze dla kazdego o € [0,1] N [10 — €, 70 + €] mamy

(1) € K(y(0),75) oraz fr = fo na K(7(10),7r) N K(7(0),70).

Twierdzenie 5.2 Niech o € [0,1] i zo = y(0). Wtedy fr(2:) zalezy tylko od funkcji f : Q@ — C
i krzywej v (a nie zalezy od wyboru rr, fr).

Definicja 5.3 Liczbe
f(zcr)za:'y(o') = fU(ZO)

nazywamy wartoscig w punkcie zo funkcyi f przedtuzonej wzdtuz krzywej .

Dowoéd. Niech vy, fri7r, fr sa dwiema rodzinami spelniajacymi warunki definicji przediuzenia
funkcji. Zalozmy, ze istnieje 7 € [0, 1] taki, ze fr # fr na K(y(7), min(r;,7;)). Niech

70 = inf{r €[0,1] : fr # fr na K(y(7), min(r,7,)}.

Oczywiscie, 79 > 0. Niech e > 0 spelnia warunek (2) definicji zaréwno dla rodziny z tylda jak i
bez tyldy. Niech 7— € [7 — €, 79[, 7+ € [10,T + €]. Wtedy

fo = f’mr na K(’Y(T—%T’L) N K(")/(T+),T'T+>;
fT_ = .f7+ na K(’Y(T*)ﬂﬁ?'—) N K(’Y(TJr)?fﬂ-);

fro = fﬂ'_ na K(’Y(T—)’min(r‘f'—’f‘r—))'
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Czyli fr, = fu na
K(v(r-),min(r,_,7_)) N K(y(74), min(r-_, 77, )). (5.53)

Zbior (5.54) jest niepusty, bo v(79) do niego nalezy, jest otwarty i wypukly jako przeciecie kot
otwartych. Jest wigc spojny. Zatem na mocy jednoznacznosci przedtuzania funkeji analitycznych
fry = frp na K(y(74), min(r-, , 7)), co przeczy definicji 7p. O

Przyklad. Niech krzywa [0,1] > 7 — v C C\ {0} bedzie zamknieta (czyli w := v(0) = (1)) i
okraza punkt 0 n € Z razy. Zalozmy tez, ze v(0) € C\ '] — 00,0]. Wtedy mozna przedtuzyé
funkcje logg) z 1 ZZ)) wzdtuz krzywej v 1 mamy

=€

log(g) (w)w:,y(l) = n2wi+ log(g) w, nu%iwfe)-

I
YO)w=y(1)

Przyktad. W ramach analizy rzeczywistej definiuje si¢ osobno funkcje odwrotne do trygonome-
trycznych i hiperbolicznych

archt = log(vt? —1+1t)
:_log(_th_l""t)? te[Loo[
arsht =log(Vi2+1+1)
=—log(—vt?+1—-1t), teR
arccost = 1log(ivt2 —1+t)
= —tlog(—ivVt2 —1+t), te[-1,1]

Funkcje te moga by¢ traktowane jako przedluzenia analityczne jednej z nich, na przyktad
archt. Mamy bowiem
arch(+is) = £i] +arshs, s R,

archt = tiarccost, te€]—1,1],
arch(—t) = i + archt, t € [1,00],

gdzie 4+ lub — zalezy od tego, czy przedtuzamy gora czy dotem.

Zauwazmy tez, ze okrazenie punktu 41 prowadzi do pomnozenia archt przez —1, zas okrazenie
[—1, 1] prowadzi do dodania 27i do archt.

Przyktad.

1
arctgt = o (log(1 + it) — log(1 — it)) .
Przyklad. Rozwazmy funkcje
f(z) = 2%z — 1)°.

Mozemy ja rozumie¢ jako iloczyn galezi gtownych 2 i (z — 1)?, ktory jest dobrze okreslony na
C\] — o0, 1].
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Zatozmy, ze krzywa «y zaczyna se w dowolnym punkcie C\|] — oo, 1], obiega odcinek [0, 1]
w kierunku przeciwnym do ruchu wskazéwek i wraca do punktu wyjscia, np. 0K (0, R), gdzie
R > 1. Wtedy wartos¢ funkcji f(z) po przedtuzeniu analitycznym wzdluz v mnozy sie przez
czynnik €276 W szezegolnosei, jesli

a+p e, (5.54)

to wracamy do tej samej wartosci funkeji f. Wtedy mozemy nasza funkcje zdefiniowaé na C\ [0, 1]
jako jednoznaczng funkcje analityczna.
Przyktad. Policzmy catke

I:/1 ! dx
0 Vr(l—x)(1+z)

Rozwazmy
1

z2(z—=1)(1+2)

rozumiang jako funkcje analityczng na C\[0, 1] w sposob opisany powyzej. W oo residuum jest
réwne 0. Zatem

f(z) =

/ F(2)dz = —e727] + e 72" ] = —27iResf(—1),
[1,0—,17]

Resf(—1) = zl—i>H—11f(Z)(Z +1) = o 7

z(z—1)

Zatem
I =

T
Nk
5.3 Notacja do oznaczania krzywych

Teraz opiszemy notacje, ktora bedziemy stosowaé¢ do oznaczania krzywych.
Czasami mozna stosowaé¢ tamane postaci

[wo, u, w1] = [wo, u] U [u, w1].
W
’ON\%/CM
!
)

Osobliwos¢ funkcji w u moze prowadzi¢ do ktopotéw w postaci rozbieznosci catki. Mozna
rOwniez omijaé¢ punkt v matym tukiem o promieniu r i rozwazaé¢ tamana postaci:

[wo, u + el U {u + re'® : ¢ € [¢o, p1]} U [u + re®t, w]. (5.55)
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gdzie wo := u + Re'®, wy := u+ R1e", Ry > 7, Ry > 1, ¢pg < ¢11 |¢po — é1| < 2. Oczywiscie,
catka po takim konturze nie zalezy od r, dla dostatecznie malego r. Zauwazmy, ze punkt roz-
galezienia u jest omijany tukiem w kierunku przeciwnym do ruch wskazéwek. Krzywa powyzsza
bedziemy oznaczali

[wo, ut, wy].

—

Podobnie, warto mie¢ oznaczenie na tamana
[wo, u + el U {u +7e® 1 ¢ € [p1, do]} U [u+ re, wy]. (5.56)

gdzie Ry > r, Ry > r, &1 < ¢o, |¢o — ¢1| < 2m. Rozni sie ona od (5.56) tym, ze punkt
rozgaltezienia u obiegamy zgodnie z ruchem wskazowek. Krzywa (5.57) bedziemy oznaczaé przez

[w07u7)w1]‘

W w1

°
u
[ut] bedzie oznaczato kontur obiegajacy punkt v po malym okregu w kierunku przeciwnym
do ruchu wskazowek. [u~] bedzie oznaczalo kontur obiegajacy punkt w po malym okregu w
kierunku zgodnym do ruchu wskazoéwek.

[u™], [u”].
Piszac v = [u,w1,...,w,,u"| bedziemy mieli na mysli, ze v jest konturem zamknietym i
polaczonym malym lukiem obiegajacym u w kierunku przeciwnym do ruchu wskazéwek. Po-
dobnie, jesli v = [u, wi, ..., w,,u”], to v jest konturem zamknietym poltaczonym matym tukiem

obiegajacym z w kierunku zgodnym z ruchem wskazowek.

[u7w17w27u+]7 [U,wl,wg,u_].

u
[ ]

[ 3=
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[u, e"“oo| bedzie oznaczaé polprosta {u + et

nieskoniczonosci pod katem .

t > 0} zaczynajaca sie w u i biegnaca do

[u, e ¥oc.

[(u 4 e/ - 0)*, w] oznaczaé¢ bedzie tamang
uu—i—reA U u+’reA : € |¢o, 01 Uu—H"eA w
[u, U Y g e [po, U 1w,

gdzie w = u + Re'®t, r < R, ¢1 < ¢o, |1 — ¢o| < 27 (Yamana wychodzi z punktu u pod katem
¢0, obiega punkt v matym tukiem przeciwnie do ruchu wskazowek i biegnie do w).

[(u + e“0) T, w)].
M

5.4 * Powierzchnie Riemanna i funkcje analityczne wieloznaczne

Niech = bedzie przestrzenia topologiczng Hausdorffa i ¢ odwzorowaniem z = w C. Moéwimy,
ze (2, ¢) jest powierzchnia Riemanna nad C, gdy dla kazdego v € E istnieje » > 0 oraz ciagte
odwzorowanie ¥, , : K(¢(v),r) — E takie, ze

Gy (2) =2, z€ K(p(v),r)

iy (K(p(v),r)) jest otwarty w =.

Niech (Z, ¢) bedzie powierzchnia Riemanna nad C.

Ma miejsce nastepujacy fakt: Dla kazdego v € Z, istnieje 7, €]0, 00| takie, ze odwzorowanie
y.r,, 0 WhasnoSciach opisanych powyzej istnieje, za$ dla r > r, takie 1, , nie istnieje. Dostajemy
w ten sposob funkcje 2 5 v — 7, €]0, 00]. Bedziemy pisac 1y, = 1y p, -

Niech f : 2 — C. Moéwimy, ze (2, ¢, f) jest funkcja analityczna na Z, gdy dla kazdego v to
fotby : K(¢(v),ry) — C jest funkcja analityczna w zwyklym sensie.

Niech (2, ¢, f) bedzie funkcja analityczng na Z. Dla kazdego v € Z, niech r, s oznacza
promient zbieznosci funkcji fotp, . dla pewnego r > 0. Oczywiscie, 0 < r, <1y 5.

Mowimy, ze (Z, ¢, f) jest maksymalna funkcjg analityczng, gdy dla kazdego v € Z, 1y, =1y ¢.

Mowimy, ze (E, ¢, f) jest zredukowana, gdy z tego, ze vi,va € E, ¢(v1) = ¢d(v2) = 2¢ i
0 < r < min(ry,,ry,) wynika, ze funkcje

K(Zo,’l“)BZ = f(d)’l)lﬂ'(z))7
K(ZQ,’I“)BZ = f('(/)m,?"(z))»
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sa roznymi funkcjami. Jesli (2, ¢, f) nie jest funkcja zredukowana, zawsze mozna ja w jed-
noznaczny sposob zredukowa¢. Wprowadzamy w = relacje: v ~ vy gdy é(v1) = ¢(vg) i dla
7= min(ry,, ry,)

f0¢v1 = fowvz,rw

Wtedy ~ jest relacja rownowaznosci. Definiujemy

Niech ¢d : E — Z,.q bedzie kanoniczng surjekcjg. Definiujemy rowniez

(z)red([v]) = QS(U)? fred([v]) = f(’l))

Wtedy (Ered, Ored) jest powierzchnia Riemanna nad C, (Zeq, Gred, fred) jest zredukowana funkcja
analityczng i spetnione sg warunki

(b — ¢red°¢red7 f _ fred°¢red-

Niech (21,01, f1) 1 (E, ¢, f) beda funkcjami analitycznymi. Mowimy, ze (Z1,¢1, f1) jest
przedtuzeniem (Zo, ¢o, fo), gdy Zo C Z1 i ¢1, f1 obcigte do =g pokrywaja si¢ z ¢o, fo.

Kazda zredukowana funkcje analityczng mozna w sposob jednoznaczny przedtuzyé do mak-
symalnej zredukowanej funkcji analityczne;j.

5.5 * Homotopia krzywych

Niech 2 bedzie otwartym podzbiorem C1i 21, 22 € . Oznaczmy przez K (2o, 21, 2) zbior krzywych
zaczynajacych sie w zg 1 koniczacych sie w z1, tzn (0) = 29, v(1) = 2.

Niech 9,71 € K(z0,21,Q). Mowimy, ze vy jest homotopijnie réwnowazna i i piszemy
Yo ~ 71 wtedy i tylko wtedy gdy istnieje funkcja ciagta [0,1] x [0,1] > (¢,s) — H(t, s) taka, ze
H(#,0) = 0(t) i H(t,1) = n(0)

Twierdzenie 5.4 Niech f : Q — C bedzie analityczna, 0,71 € K(z0,21,8) beda kawatkams
gtadkie i homotopijnie réwnowazne. Wiedy

(2)dz = /7 )

Yo

Twierdzenie 5.5 Homotopijna rownowaznosc jest relacjq rownowaznosci.

Dowod. Kladac H(t,s) = vo(t) dostajemy o ~ 7o.
Ktadac Hio(t, s) :== Hoi(t,1 — s) dostajemy v9 ~ 1 = 71 ~ Yo.
Ktadac

L H01 (t, 23),

HO?(t7 8) Ha { H12(t,28 _ 1)’

dostajemy 7o ~ 1, 71~ Y2 = Y0 ~ Yo
Zbior klas homotopii krzywych zaczynajacych sie w zq i koniczacych w z; oznaczany jest przez

S
S

o= O
INIA
INIA
v—\txj\.)—‘

I1(29, 21,Q2) := K(20,21,Q)/ ~ .
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Twierdzenie 5.6 Niech 2 C C bedzie otwarty i spojny. Nastepujgce warunki s¢ réownowazne:
(1) (20, 20,R2) jest jednoelementowy dla kazdego zy € ).

(2) Istnieje zo € Q taki, ze 11(zp, z0,€2) jest jednoelementowy.

Jesli spetnione sa warunki powyzszego twierdzenia, méwimy, ze zbior €2 jest jednospdjny.

5.6 * Skladanie krzywych i grupa homotopii

Niech zg, 21 € Q, v € K (20, 21, Q). Definiujemy v~! € K(z1, 20, Q).
371E) = (1= 1)
Oczywiscie, jesli v/ ~ v, to (7)1 ~~y7L.

Niech zg, z1, z9 € £, Yo € K(Zo,zl,Q), Y € K(zl,ZQ,Q). Deﬁniujemy Yooyl € K(Z(),ZQ,Q):

_ (2, 0<t<

Oczywiscie, jesli vo ~ ), 71 ~ 71, to

YooyL ~ Y9N -
Jesli vo € K (22, 23,9)
(Yoo 1) oy2 ~ 00 (71 072).

Jesli przez z oznaczamy krzywa statyg rowna z € Q, to dla zg, 21 € Q, v € K (29, 21,),
Zgoy ~ Yoz ~ .

W szezegolnosei, dla kazdego zy € Q, TI(zo, 20, Q) jest grupa. Jesli zbior Q jest spojny, to

grupa II(zo, 20, 2) jest izomorficzna dla réznych zg € 2. Nazywamy ja grupa homotopii zbioru
Q. Oznaczamy ja przez I1(Q).

Przyklady

(1) II(C) jest grupa jednoelementowa.
(2) II(C\{0}) = Z (liczba okrazen wokot zera).
(3)

II(C\{0,1}) = Fy — grupa wolna o dwoch generatorach. Jako generatory mozna wybraé 7y
— okrazenie 0, 7, — okrazenie 1. Grupa Fy sktada sie z elementéw nastepujacych typow:

Top _Mp  _Nng,_mo
7'1 7'0

Mp+1 _Mp _no_Mo

T Ty s To T T 7o s

np _Mp _mi_ng Mp+1 _Mp M1, _No
1 To To "T1 To T To "T1

(5.57)
gdzie n;, m; € Z\{0}.
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5.7 * Nakrycie uniwersalne

Niech Q2 C C bedzie otwarte i spdjne. Ustalmy zg € 2. Nakryciem uniwersalnym €2 z punktem
bazowym [zp] nazywamy (Cov(f2), ¢, [20]), gdzie

Cov(Q) == | (20, 2,9),
2€Q

¢ : Cov(§2) — Q jest zadane przez ¢([y]) := v(1). Cov(2) jest wyposazone w naturalna topologie.
Oczywiscie, (Cov(2), @) jest spojna i jednospdjna powierzchniag Riemanna nad C.

5.8 * Nakrycie wyznaczone przez podgrupe grupy homotopii

Niech G bedzie podgrupa II(zg, z9,2). W II(zg, z,) wprowadzamy relacje: Dla [y1], [y2] €
I1(zp, z,§2) piszemy [’yl]g['yg], gdy [y1 075 '] € G. Jest to relacja rownowaznosci. Bedziemy
oznaczali przez [y]g klase abstrakeji v wzgledem tej relacji. Definiujemy

e (20, 2,Q) = 1l(20, 2, )/ .
Nakryciem  zwiazanym z grupa G nazywamy (Covg(Q2), éq, [20]c), gdzie

Covg(Q) := U (20, 2,Q2),
z€eQ

dc(Mle) =~(1).
Mamy oczywiscie naturalne odwzorowanie
¢ : Cov() = Cove (), ¢“(I]) = M

spetniajace zwiazek ¢ o ¢¢ = ¢. Oczywiscie, (Covg(Q), ¢) jest spojna (lez niekoniecznie jedno-
spojna) powierzchnia Riemanna nad C.

5.9 * Funkcja pierwotna

Twierdzenie 5.7 Niech Q) C C bedzie jednospdjnym obszarem a > z — f(z) funkcjg holomor-
ficzng. Ustalmy zo € Q. Zdefiniugmy

F(z):= [ f(w)dw
Yz
gdzie 7y, jest dowolng krzywa lezacg w Q taczacq zp i z. Wtedy F(z) nie zalezy od wyboru krzywej
i
Fl(z) = f(2).
Jesli Q jest spojny i otwarty, ale niekoniecznie jednospojny, to powyzsza konstrukcje nalezy
zmodyfikowac. Jesli [v] € I1(zg, 2, 2) C Cov(Q?), to kladziemy

/f

Dostajemy funkcje analityczna F' : Cov(Q2) — C, ktora spelnia
F'([]) = f(e([h]),  F([z0]) = 0.
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5.10 * Funkcja logarytm i potegowa

Funkcje logarytm mozna zdefinowaé jako funkcje pierwotna do funkcji % z punktem bazowym
zop = 1. Dostajemy wtedy funkcje na nakryciu uniwersalnym

Cov(C\{0}) 3 v — logv := %U, v =[]

Jest ona zredukowana i maksymalna.
Niech p € C. Funkcje z# definiujemy najpierw na nakryciu uniwersalnym C\{0} jako

Cov(C\{0}) > v s eHlo8v, (5.58)

Jesli p # 0,1,2,..., jest to maksymalna funkcja analityczna. Jesli u ¢ Q, to jest ona réwniez
zredukowana.

Jesli p € Q, to (5.59) jest niezredukowana Niech p = B dla nieskracalnego utamka, gdzie
g€ {1,2,...}, Wtedy v* =1, jesli v € Z, C II(1,1,C\{0}) C Cov(C\{0}). Po zredukowaniu
dostajemy funkcje

Covz, (C\{0}) 3 v s etlo8?, (5.59)

5.11 * Funkcja z%(z — 1).

Funkcje 2%(z — 1)? mozna najpierw zdefiniowaé¢ na nakryciu uniwersalnym Cov(C\{0,1}). Jest
ona wtedy niezredukowana.

Opiszmy teraz jej zredukowane wersje w niektoérych sytuacjach. Zaldézmy najpierw, ze mamy
do czynienia z generyczna sytuacja, kiedy « i 8 sa niewymierne i niewspoétmierne, tzn. an+p8m €
Q implikuje n = m = 0. Wtedy w grupie Fo wprowadzamy podgrupe G zadana przez

an :ij :0,
J J

gdzie nj, m; sa liczbami wystepujacymi w (5.58). Wtedy 2%(z — 1)” mozna przenies¢ na nakrycie
Covg(C\{0,1}), i dostajemy wtedy zredukowana maksymalna funkcje analityczna.
Inng sytuacje mamy, gdy o+ 8 € Z, o € Q. Wprowadzamy wtedy podgrupe H zadana przez

(o) o
g nj = E m;
Jj=0 J=0

i funkcje 2%(z — 1)? przenosimy na nakrycie Covg(C\{0,1}). Dostajemy wtedy zredukowana
maksymalng funkcje analityczna.

6 Separacja zmiennych w réwnaniu Helmholtza

6.1 Rownanie Helmholtza we wspolrzednych kartezjanskich

Rownania Helmholtza w 2 wymiarach ma postaé

(07 +0; + E)g, (6.60)
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gdzie F jest parametrem. Ma ono wiele rozwigzan. Aby wyrdzni¢ interesujgce nas rozwigzania,
trzeba dodaé¢ warunki brzegowe, np. warunki brzegowe Dirichleta na brzegu obszaru 2.

We wspoélrzednych kartezjaniskich wygodnie rozwiazuje sie réwnanie Helmholtza na prosto-
kacie, np. [0, A] x [0, B]. Wtedy stosujemy ansatz

9(z,y) = p(x)q(y),

i dostajemy . .
_ 2 )= ———
o (PP = =

Lewa strona nie zalezy od y a prawa strona nie zalezy od x. Zatem (6.62) jest rowne statej C,
co prowadzi do

02q(y). (6.61)

(024 E—C)p(z) = 0,
07+ Claly) =

Warunki Dirichleta oznaczaja

co prowadzi do

2.2 2. 92
p(x) = sinnﬂ'%7 q(y) = sinmﬂ'%, E-C= nAZ , C= mB;r
W szczegblnosci, E = 772(%22 + %;)

Jesli © jest kolem, pierscieniem lub ich wycinkiem, wygodniej jest stosowaé wspodlrzedne
biegunowe. Ogolniej, we wspotrzednych u(z,y),v(x,y) wygodnie jest rozwiazywaé¢ réwnania
rozniczkowe czastkowe na obszarze typu Q = {(x,y) : up < u(x,y) < uy, vo < v(z,y) <vi}.
6.2 Zamiana zmiennych w laplasjanie
Niech € bedzie otwartym podzbiorem R? i

Q3 (z,9) — (u,v) € R? (6.62)
bedzie gtadka transformacjg. Mamy wtedy
(07 +82)g = 0u(0pudug + 02v0yg) + 0y(Oyudug + Oyvdyg)
= (0% + 6§)u Oug + (9% + 8;)1) Ovg
+(Opudpu + Oyudyu)d2g

+2(0,u05v 4+ Oyudyv)dy 0y,
+ (050050 + OyvdyV)2g.
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Zalézmy teraz, ze z = x + iy — u +iv = f jest funkcjg analityczna. Warunki Cauchy-Riemanna
Oru = Oyv, Oyu = —0d,v implikuja

OF+0)u =02+ =0,
Dpudpu + Qyudyu = 0yvdyv + 0yudyv = (O,u)* + (9pv)% = [0, |7, (6.63)
0,0,V + Oyudyv = Opu0,v — Oxv0,u = 0. (6.64)
Zatem
(02 +02)g = 0. f12(92 + 92)g. (6.65)
Zauwazmy, ze warunki (6.64) i (6.65) oznaczaja, ze wektory (Oyu,0yu) i (v, dyv) sa orto-

Oxu Oyu
Ozv Oy
jesli |0, f| # 0, to transformacja (6.63) zachowuje katy. Mowiac precyzyjniej, jesli [0,1] 5 7 +—
(zi(7),yi(1))), i = 1,2, sa dwiema krzywymi rozpoczynajacymi sie w punkcie (z1(0),y1(0))) =
(2(0),y2(0))), zas [0,1] > 7+ (u;(7),vi(7))) sa ich obrazami, to

(0-21(0), 0-y1(0)) - (9r22(0), 9ry2(0)) _ (9rua(0), 9r01(0)) - (87u2(0), 87v2(0))

(0 ) )
1(0721(0), 071 (0)) Il (9r2(0), ry2(0)) ||~ [ (9711 (0), 7v1(0)) [[]] (Oru2(0), B-v2(0)) |

gonalne i rownej dtugosci. Zatem macierz [ } jest macierza obrotu razy |0, f|. Czyli

6.3 Rownanie Helmholtza we wspolrzednych biegunowych

Zastosujmy zamiane zmiennych (6.63) do rownania Helmoholtza. Wygodniej nam bedzie skupié¢
sie na transformacji odwrotne;j

(u,v) — (z,y) (6.66)

i jej interpretacji w terminach zmiennej zespolonej
f=utiv—ax+iy==z.
Rownanie (6.66) mozna wtedy przepisa¢ jako
072|%(92 + 35) =02 4+ 02 (6.67)
Rozwazmy funkcje z = e/, czyli
x=-¢e"cosv, y=e"sinv.
Wtedy 9yz = e/, zatem |0;2|> = e**. Mamy zatem
02+ 02 =e (07 + 07). (6.68)

Aby sprowadzi¢ je do bardziej znanej postaci, podstawmy r = e* i przemianujmy v na ¢. Mamy
wtedy 0, = 10, 1 (6.69) sprowadza sie do znanej zamiany zmiennych

2 2 2 1 1 2
0+ =+ 0+ 503, (6.69)
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Zastosujmy teraz nastepujacy ansatz:
g(r,¢) = p(r)q(r). (6.70)
Witedy réwnanie Helmholtza
(7“283 + 70, + 03, + T‘QE) p(r)q(p)

po podzieleniu przez p(r)q(¢) mozna przepisaé jako

p(l,a) (r°0} + 10, +1°E) p(r) = —q(l(ﬁ)@ﬁq(cb) (6.71)

Lewa strona(6.72) nie zalezy od r za$ prawa strona nie zalezy od ¢. Dlatego (6.72) réwna sie
statej, ktora mozemy nazwaé¢ C. (6.72) rozdziela sie zatem na dwa rownania

(r?0? + 10, — C+r*E)p(r) = 0, (6.72)
(05 +C)a(9) (6.73)

(6.74) ma rozwiazanie rowne .
q(¢) =™, m?=C.
Zatem (6.73) mozna przepisa¢ jako
(r?02 + 10, — m?* + r°E) p(r) = 0. (6.74)

Sprowadza si¢ ono do rownania Bessela (standardowego lub zmodyfikowanego).

6.4 Rownanie Helmholtza we wspolrzednych parabolicznych

Rozwazmy teraz uklad wspotrzednych zadany przez analityczna transformacje z = f; Mamy
wtedy

2 ) y = uv?
Orz = f, |0¢z*> = u* + v%. Laplasjan transformuje sie zatem nastepujaco:
07 + 0y = (u* +0*) 710, + 57).

Rownanie Helmholtza we wspolrzednych parabolicznych ma zatem postaé

(85+63 + BE(u? +U2))g =0. (6.75)

Ansatz
9(u,v) = p(u)q(v). (6.76)
prowadzi do
1 1

co mozna zamienié¢ jako

(02 + Bu? — C) p(u) = 0, (6.78)

(02 + Ev? + C)q(v) = 0, (6.79)

ktore sprowadzaja sie do réwnania dla oscylatora harmonicznego, zwanego tez réwnaniem We-
bera.
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6.5 Rownanie Helmholtza we wspolrzednych eliptyczno-hiperbolicznych

Rozwazmy teraz uktad wspotrzednych zadany przez analityczng transformacje z = cosh f. Mamy
wtedy
x = coshucosv, ¢y =sinhusinwv,

Oz = sinh f = sinhucosv +icoshusinv, |9sz|> = sinh? u 4 sin?v. Laplasjan transformuje sie
zatem nastepujaco:
92 4 0; = (sinh® u + sin® v) 71 (0} + 82).

Roéwnanie Helmholtza we wspétrzednych parabolicznych ma zatem postaé

(92 + 9% + E(sinh®u + sin®v))g. (6.80)
Ansatz (6.77) prowadzi do
p(lu) (92 + E'sinh® u) p(u) = _q(lv) (92 + Esin®v) q(v) = C (6.81)

co mozna zamieni¢ na

(02 + Esinh®*u —C) p(u) = 0, (6.82)
(02 + Esin’v+C)p(u) = 0, (6.83)

ktore sprowadzaja si¢ do rownania Mathieu (standardowego lub zmodyfikowanego).

6.6 Operatory 0, i 0-

Utozsamiamy R? z C odwzorowaniem R? 3 (z,y) — z := z+iy € C. Wprowadzamy nastepujace
operatory dziatajace na C

1 1
0 = 5(0s —0,), Oz = (9: +19,).

Zauwazmy, ze

0,z =1, 0,z =0,
Ozz =0, 0:z = 1,
Op =0, + 0z, 0y =10, —105.

df = 0, fdz + 9= fdz.

Stwierdzenie 6.1 Funkcja z — f jest holomorficzna wtedy i tylko wtedy gdy Ozf = 0. Jesli to
ma miejsce, to 0, f jest zwyktq pochodng funkcji f w sensie zespolonym.

Dowéd. 0;f = 0 oznacza 0, f = —id, f, czyli warunki Cauchy-Riemanna. Przy ich spelnieniu,
0of = 50 f —10yf) = 0pf. O

Moéwimy, ze funkcja z — f jest antyholomorficzna, gdy z — f(z) jest holomorficzna. Oczy-
wiscie, jest to réwnowazne temu, ze 0, f = 0.
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6.7 Kiedy transformacja zmiennych w R? separuje réwnanie Helmohltza?

Niech
(z,y) — (u,v) € R?

bedzie transformacja taka, ze z = ¢ 4+ iy — u + iv = f jest funkcjg analityczna. Rownanie
Helmholtza
(02 + 03)9 = Eg,

zapisuje sie wtedy w nowych wspélrzednych jako
(0% +02)g = 0s2" Eg.
Roéwnanie to si¢ separuje gdy |05z|? jest postaci
1072 = a(u) + b(v).

Jest to réwnowazne warunkowi

0400|052 = 0.

Uzywamy zmiennej f = u + iv, zatem odpowiedniki operatoréw 9, i 0z maja teraz inne oznacze-
nia:

1 1

Korzystajac z dpz = 8?2 i

Oy =0f+ 07, 0y =10y — 05,
dostajemy
0= 0u0u|0s2]> = (07— a;)afza?z
= i (02057 - 0p20%z) .
Zatem \ 53
037z 22
f f
A S .84
6fz 8?5 (6 8 )

Lewa strona (6.85) jest holomorficzna a prawa antyholomorficzna. Zatem (6.85) jest rowne stalej,
ktora nazwiemy D i dostajemy réwnanie

0}z = Doyz. (6.85)

Sklasyfikujmy rowzwiazania (6.86) z doktadnoscig do translacji z +— z + a, obrotow z — €@z i
skalowania z — Az.

(1) D=0. Wtedy z = Af2 + Bf + C. Jesli A = 0, to zamiana wspotrzednych jest trywialna.
Jesli A # 0, to sprowadza sie do z = f2.

(2) D#0, z= AeVDS . Zamiana wspotrzednych sprowadza sie do z = ef .
(3) D#0, z= AeVDS 4 Be=VD!S | Zamiana wspolrzednych sprowadza sie do z = cosh f.
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7 Funkcja Gamma Eulera

7.1 Funkcja Gamma jako uogo6lnienie silni i II calka Eulera

Przy pomocy tzw. 11 calki Eulera definiujemy funkcje Gamma:

D(z) = [Te lt* 1dt
2 (7.86)
=2 [[Pe ¢ ¢*71dE, Rez >0,

Zakladamy, ze w powyzszym wzorze bierzemy galaz gtowna funkeji t*~!. Zdefiniujmy tez tzw
symbol Pochhammera

(a)p:=ala+1)...(a+n—-1), n=0,1,2,...

— 1 _
(a)n = m, n—...,—2,—1.

Oczywiscie, (1), = n!.
Twierdzenie 7.1 Zachodzq nastepujgce tozsamosci:
I(z+1) =2I'(2), (7.87)
n+1)=n!l, n=0,1,2,..., (7.88)
I'(z+n)=(2).I'(z), nezZ.
Dowoéd. (7.88) wynika z catkowania przez czesci. (7.89) wynika z (7.88) i I'(1) =1. O
Zdefiniujmy zbior
Q, :={z : Rez>-n}\{0,-1,...,—n+1}

i funkcje

o I'(z+n)
322 Tal) = oy o)

Witedy jesli n > m, to
I'n(z) =Tn(2), 2 € Q.

Wynika to z tozsamosci
F(z+n)=T(z4+m)(z+m)...(z4+n—-1),

bedacej konsekwencja wzoru (7.88). Ostatecznie, na

Ua.=c\{0,-1,-2,...}
n=1
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definiujemy
[(z) :=Tp(2), z € Q.

Tak zdefiniowana funkcja I" jest to maksymalnym przedtuzeniem analitycznym funkcji I'(z) zde-
finiowanej przy pomocy calki (7.87).
Oto inne wzory, ktére pozwalaja maksymalnie przedtuzyé funkcje Gamma:

Twierdzenie 7.2 (Rozklad Pryma)

I'(z) = 2)”'((;14);) - /100 e 't*7ldt, zeC\{0,-1,-2,...}.

Twierdzenie 7.3 (Wzor Cauchy-Saalschiitza)

I(z) = /OOO t*1 (e_t — Zn: (_kt!)k)dt, —1—-n<Rez< —n. (7.89)

k=0
Dowoéd. Niech I',,(2) bedzie prawa strona (7.90). Oczywiscie
I'_1(z) =T(2), 0<Rez.
Calkujac przez czedci dostajemy
z _ n Ay o o0 _ _ _t\k
T(z) = %(e t— % (kt!) ))0 —|—%ftz(e t_ Z:é—( kt!) )dt

k=0 0
= %anl(z + 1)

7.2 1 calka Eulera i dalsze tozsamosci

Twierdzenie 7.4 (I calka Eulera)

I'(w)l'(v 14— v—
r((73+5;)) = Jo t 1A —t)otat (7.00)

= 2f0§ cos2u—1 qﬁsin2”_1 ¢dp, Reu >0, Rev > 0.

T'(u)I'(v sin Tu I'(l—u—v)'(v o) w—140—
Ig(u)Jrg))) sinm(utv) ( F(ki)( L = fO (t + 1) Lvldt

= 2]000 ChQU_IQShQU_197 Rev > 07 Re(]. Cu— U) > 0.
(7.91)

Dowod. Stosujac podstawienie ¢ = % + 1 z (7.91) dostajemy (7.92), z wyjatkiem pierwszej
rownosci, wynikajacej z tozsamoscei (7.95), ktora dowiedziemy pédzniej. Udowodnijmy wiec (7.91)
Mamy

I'(u)I(v) = 4 /0 h /0 T e g1, 201 gegy (7.92)
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Przechodzimy do wspétrzednych biegunowych podstawiajac

E=rcosp, n=rsing

i otrzymujemy, ze (7.93) rowna sie

4fooo o7 p2ut20—1 . fofr/Q cos2u—1 quinQ”_l bdo.

(7.93)
=T(u+v) [y t* 11 —¢)°"dt,

(W ostatnim kroku podstawilismy ¢ = cos? ¢). O

Wzor (7.91) jest uzasadnieniem tego, ze czesto wprowadza sie tak zwana funkcje Beta:
I'(u)l(v)
B = .

(u,0) I'(u+v)

Twierdzenie 7.5 Zachodzq nastepujgce tozsamosci:

T(2)D(1 - 2) = —— (7.94)

sinmz’

T(1/2) = V& (7.95)

Dowo6d. Zalézmy na razie, ze 0 < Rez < 1. Rozwazmy funkcje holomorficzna C\[0,1] >
t > f(t) = t*71(t — 1)7% (Funkcje t*~1 i (t — 1)™% rozumiemy w sensie ich galezi gtéwnych
zdefiniowanych odpowiednio na C\[—o0,0[ i C\[—o00, 1[. Zatem funkcja f(t) zdefiniowana jest a
priori na C\[—o0, 1], ale przedluza sie analitycznie do funkeji na C\|0, 1].

Niech v = [0,17,0%] bedzie konturem zwanym koscia. Wtedy biorac pod uwage, ze w
nieskoniczonosci residuum funkcji f jest réwne —1, dostajemy

2ir = —2miResf(c0) = [ f(t)dt
= (el™ — e7I72) fol t*~H1 —¢t)7*dt = (2isinm2)B(2,1 — 2) = (2isin7z)(2)(1 — 2).

Stad wynika (7.95) dla 0 < Rez < 1. Rozszerzamy go na wszystkie z € C przez analitycznosc.
Podstawiajac w (7.95) z = 1/2 dostajemy

I?(1/2) = .

Wiemy, ze
I'(z) >0, z>0.
Stad wynika (7.96). O

Wnhiosek 7.6 (Caltka Gaussa) Jesli Rea > 0, to

/ e qt = \/Z (7.96)
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Dowdod. Wychodzac z (7.96) przez zamiane zmiennych dostajemy

VE=T(1/2) = fl_ e dt
= Ji-ano.vanel €
=Vaf OO[e*a‘(’zds.

a
Whiosek 7.7 (Calka Fresnela) Mamy

R
. 2 jm
lim P dr = eF 1/
R—o0 —R

Dowé6d. Caltkujemy po bokach trojkata 0, R, R +iR. Po pionowym boku mamy
f R24y? ' R2(1—2
/ e TV dy—/ e I RAt — 0,
0 0
po zastosowaniu Tw. Lebesgue’a. O
Zauwazmy, ze funkcja I'(z) ma w z = 0,—1,... bieguny 1-go rzedu z residuami

ResI'(—n) =lim,, ,I'(2)(z +n)
Gtnmr  _ (=O"

I'(1—z)sinmz —  nl!

Twierdzenie 7.8 Wzor Legendre’a o podwajaniu:
22T ()T (2 4+ 1/2) = V7l (22),

Dowodd.

!

2 1 1/2
g) = / (1 — )" ldt = 2/ 11— )7Lt
z 0 0

!

Podstawiamy s = 4t(1 — t) i otrzymujemy

gl-2z /1 Szfl(l . s)*l/st _ 2172ZF(Z)F(%)_
0 I(z+3)

Prawdziwe jest tez nastepujace uogdlnienie powyzszego wzoru, zwane wzorem Gaussa 0 mno-
zeniu, ktére udowodnimy poézniej:

_n n—1
T(nz) = (27) 2 0"~ 2 T T(z+ &) (7.97)
k=0
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7.3 Funkcja Gamma i caltki w dziedzinie zespolonej

Twierdzenie 7.9 (Wzér Hankela)

1 1 a1
- = ST ds. :
T(z+1)  2ni / es @ (7.98)
[—00,0F,—00[
Dowoéd. Zalézmy tymczasowo, ze Rez < 0.
- O{ " eSs— % 1ds = e—i7r(—z—1) ji_oom es(_s)—z—lds + eiﬂ'(—Z—l) f[
_ (e—iﬂ'(—z—l) _ eiw(—z—l)) fOoo e~ tt—2—1qt

=i2sin(—mz)I'(—2) = Féﬁil)

Ov_oo[es(—s)_z_lds

Nastepnie rozszerzamy tozsamosé na wszystkie z przez przedluzenie analityczne. O

Twierdzenie 7.10

F( + +1) _ 1 —u—1 —o—1
T = 27 Jlmoo0t, oo £ " (L= 1)Vt
- 2%“ ]oo,l_,oo[t_u_l(l - t)_v_ldta ut+v+1>0.

Dowéd. Zauwazmy, ze | — 00,07, —oo[ i Joo, 17, 00| daja te sama calke.

f t—u—l(l _ t)—v—ldt — (_e—iw(v—l-l) + ei7r(v+1)) floo t_u_l(t _ 1)—1}—1dt
]00707700[
. s s L(—v)P(1+u+tv) _ o: I'(1+u+v)
= “2Asinm=—prry— = 2Ty

a

Jesli u+v =€ Z, to petla okrazajaca 11 0 przeciwnie do ruchu wskazowek lezy na powierzchni
Riemanna funkcji t“~!(t — 1)*~! i dostajemy wzor:

Twierdzenie 7.11 Niech n € Z. Wiedy

r —1...(u— 1
(u) — (U ) (U TZ) — / tu_l(t o 1)n—udt7 (799)
Fn+ 1)T'(u—n) n! 2mi Jjo,1+ 01
Dowéd. Gdy zastosujemy homografie t = —s~! to dostaniemy

% f[071+70+] tu,l(t — 1>n7udt — ﬁ f[()wL] 8n+1(1 _ S)niuds
_ 1 (d )n (1 _ S)n7u|s:02 (u=1)...(u—n)

— n! \ds n!

(7.100)

a

Rozwazmy teraz funkcje (—t)“~!(t — 1)*~!. Jegli obie potegi rozumiemy w sensie ich gatezi
glownych, to dziedzing tej funkcji jest C\R. Jest to dziedzina sktadajaca sie z dwoch spojnych
czesci na ktérych mamy

tufl(l _ t)vflefiw(ufl)eiw(v71)7 Imt > 0;

u—1 v—1
(_t) (t - 1) - { tu_l(]. _ t)v—leiﬂ'(u—l)e—iﬂ'(v—l)’ Imt < 0. (7101)
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Rozwazmy teraz kontur "podwojna ésemka"[0,17,07,17,0%]. Kontur ten rozpoczynamy na
dolnym ptacie powierzchni Riemanna funkcji (—¢)%~1(t—1)*~!, na ktérym lezy pierwszy odcinek
[0,1] z tego konturu. Latwo sie przekonac, ze [0,17,07,17,0"] jest krzywa zamknigta na tej
powierzchni Riemanna. Nawiasem moéwiac, trzeci odcinek w tym konturze znajduje si¢ na gérnym
placie opisanym w (7.102). Calke z funkcji (—t)*~1(t—1)"~! po podwojnej 6semce mozna wyrazié
poprzez funkcje Gamma:

Twierdzenie 7.12

1 1

= _n\u—1l/  1yv—1
D(u+o)D(1—w)(1—v) (27)2 /[0,1+,0—,1—,o+]( (= 1)"de, (7.102)

Dowoéd. Zalézmy, ze Reu, Rev > 0.

(—t)¥=1(t — 1)~ tde
[0,1+,0—,1—,0t]
— (eiw(u—l)e—iw(v—l) — eim(u—1)4im(v-1) + e im(u—1)gim(v—1) _ e—iﬂ(u—l)e—iﬂ(v—1)>

X [ N1 — ) de

— _(eiwu o e—iwu)(eim; . e_im’)B(u, U)

— —(2isinv)(2isinTu) =

= (27m)? F(u+v)F(11—u)F(1—v)

Przez przedtuzenie analityczne rozszerzamy tozsamos$é na wszystkie u,v. O

7.4 Tloczyny nieskoriczone

Przypomnijmy najpierw podstawowe fakty dotyczace szeregow.

Jesli istnieje skonczona granica I := lim,_,. Z?’:l bj, to moéwimy, ze szereg Z]O';l b; jest
zbiezny warunkowo i piszemy I = > 2%, b;.

Jesli 3772 [bj| < oo, to moéwimy, ze szereg Y 72, bj jest zbiezny bezwzglednie. Mozna poka-
zaé, ze zbiezno$é¢ bezwzgledna szeregu pociaga za soba zbieznosé warunkowa, réwniez po zmianie
kolejnosci wyrazéw w szeregu i jego warto$é nie zalezy od tej kolejnosci.

Jesli istnieje skoniczona granica I := lim, H?zl(l + aj), to méwimy, ze iloczyn nieskon-
czony [[7Z,(1 + a;) jest zbiezny warunkowo i piszemy I = [[7Z, (1 + a;).

Moéwimy, ze iloczyn nieskoriczony H;il(l—l—aj) jest zbiezny bezwzglednie wtedy i tylko wtedy,
gdy

> lan| < oo (7.103)
n=1

Lemat 7.13 Iloczyn nieskoriczony H?’;l(l—i—aj) jest zbiezny bezwzglednie wtedy i tylko wtedy gdy
Jedynie skonczona liczba wyrazow a;j jest rowna —1 1

> [log(1 + an)| < oo, (7.104)

n=1
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przy czym w szeregu (7.105) usunelismy wyrazy a; = —1. (W powyzszym wzorze przez |log(1+a)|
rozumiemy warto$é bezwzgledng gatezi gtownej logarytmu rozszerzong przez ciggtosé do funkcji
na C\{—1}, ktdra jest jednoznaczna, mimo ze sam log(1l + a) jednoznaczny nie jest).

Dowdd. Niech spetlnione bedzie (7.104). Wtedy lim; oo a; = 0 i dlatego skoriczona liczba
wyrazow a; jest rowna —1. Poza tym poza skonczong liczbg indeksow

1
laj| < 5 (7.105)
C\{-1} >t~ w‘ jest funkcja ciagla i dodatnia. Zatem dla [t| < % istnieja 0 < C; <
Cy, takie, ze
log(1+t¢
C < Og(t—i_)‘ < Oy,
Zatem

[ log(1 + a,)| < Cala.

Aby dowies¢ implikacje przeciwna, wystarczy zatozy¢, ze wszystkie a; sa r6zne od —1. (7.105)
pociaga za soba lim,,_, log(a, + 1) = 0, a wiec (7.106) jest spelnione poza skoriczong liczba
indeksow 1 wtedy

lan| < Cy'log(1 + ay)|.

a

Oczywiscie, logarytmujac wyraz po wyrazie iloczyn bezwzglednie zbiezny dostajemy szereg
bezwzglednie zbiezny. Dlatego zbiezno$é bezwzgledna iloczynu nieskoriczonego pociaga za soba
zbieznos¢ warunkows, réwniez po zmianie kolejnoéci wyrazow w iloczynie i jego wartosé nie zalezy
od tej kolejnosci.

7.5 Funkcje trygonometryczne jako iloczyny nieskoriczone

Twierdzenie 7.14 Mamy nastepujgce wzory:

2

D oo ﬁ = 7 (7.106)

P2 e = e X0 o5 = AR (7.107)
x 22 sin 7z

2]1:11(1 — ) =" (7.108)

Uwaga Iloczyn nieskoriczony wystepujacy we wzorze (7.109) jest zbiezny bezwzglednie.
Dowéd.

[e.o]

1 2
Z (Z_j)Q_ 2

Pt sin” mz

jest funkcja catkowita. Jest ona okresowa z okresem 1 i dazy do zera dla [Imz| — co. Jest wiec
ograniczona. Na mocy tw. Liouville’a jest wiec réwna zero. To dowodzi (7.107).
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Na mocy (7.107) pochodna

1 > z T COSTZ

249 - , 7.109

z + ; 22— 42 sin 7z ( )

jest rowna zero. (7.110) jest funkcja nieparzysta i stala, wiec jest rowne zero. To dowodzi (7.108).
Na mocy (7.108) mamy

o0 .
bon(:fi0 - 5) - o ()

<

Zatem

‘ N

z I (1— s

1

&

[R=F

) = Oz, (7.110)

<

J

Poréwnujac pochodne obu stron w (7.111) w zerze dostajemy C' = 1. To dowodzi (7.109). O

7.6 Funkcja Gamma a iloczyny nieskoriczone

Zdefiniujmy stala Fulera-Mascheroniego
= limy o (zgzl 1_ 1ogn) =14+ 55%,( +log(1 — 1)) ~ 0,577

Twierdzenie 7.15 (Wzor Gaussa)

(Wzo6r Weierstrassa)

Uwaga lloczyn nieskonczony wystepujacy we wzorze Weierstrassa jest zbiezny bezwzglednie.

Lemat 7.16 Dia 0 <t <n mamy

Dowédd. Dla f,,(t) :=el(1 — L)* mamy f,(n) =0, f,(0) =1

folt) = —el(1 = !

IN

0.

S

Zatem 0 < f,(t) < 1. O
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Dowéd Twierdzenia 7.15. Mamy

! "o _Pn+1)I(2) n!
/0 (=B85 dp = L(z+n+1) z(z+1)---(z+n)

Zatem
n t —1 _ In®
fO (1 B ﬁ)ntz dt = z(z+?)~7-1-(z+n)'

Aledla 0 <t < o0

lim, o0 O(n — t)(1 — L) = e~ 1271,
Na mocy Lematu 7.16 mozemy zastosowaé¢ Twierdzenie Lebesgue’a o zbieznosci majoryzowalne;j
(z majoranta rowna e 'tRe*~1). Zatem

limp oo fo' (1 — L)t 1dt = [ et 1dt.

To dowodzi wzoru Gaussa dla Rez > 0.
Aby pokazaé¢ wzor Weierstrassa zauwazmy, ze
o

27 T (1 + Z)exp(—2).

n=1
n
= zlim, 0 exp2(3p_; 1 — logn) kgl(l + Z)exp(—Z)

= lim, y0on™ %2 kﬁl(l + %) = lim, 00 M

Wzory Gaussa lub Weierstrassa moga by¢ wykorzystane do udowodnienia rezultatow z po-
przednich rozdziatéw. Na przyktad, stosujac wzor Gaussa dostajemy

1n2+1
I'(z+1) = lim nn =z lim (

n—oo (z4+1)---(z+n+1) n—00

Z+1 D!(n+1)?
) lim (n+ Din+1) = z2I(2).
n+1 n—oo z(

z+1)---(z+n+1)

Stosujac za$ wzor Weierstrassa dostajemy tatwo

1 _ —1
T(z)I'(1—2) — 2I'(2)['(—=2)
— 2 OHO (1— Tsz) _ sinﬂwz‘
n=1

Dow6d wzoru Gaussa o zwielokrotnianiu (7.98). Niech

G ="T'r+ ")
Z—k:() z m.

Wtedy korzystajac ze wzoru Gaussa dostajemy

nm+m—1
I (mz+k)

n=0

1 li
= 1m
G(z) N—00 (n!)mnmz—k%(m—l)mm(,H,l)’

['(mz) = limy, 00 %
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Zatem

1
['(mz) li (mn)!mmz*m("ﬂq)n—g(m—l) mn+m—1
= lim,,_, = I (mz+k)
“ e (n!) k=mn+1
1
. mn !mmzfmn—l)ni(m—l) 1 1
= hmn_mo ( ) iy (271') (m ) mz 3,
gdzie uzyliémy najpierw
. nmtm—1lmz+k _
lim IT =mm 17
n—00 k=nm+1 n

a potem skorzystaliSmy ze wzoru Stirlinga, patrz Wniosek 7.25. O

7.7 Pewne calki z parametrem

Stwierdzenie 7.17 Niech f(t) bedzie holomorficzna dla 0 < argt < « i ciggta na domknieciu
tego zbioru. Zatozmy, ze dla pewnego € > 0

I < Cl[7 [f(z) = fO)] < Ozl

Wtedy dla 0 < argz < « . 1
| =g = ro)og=.

Dowaéd.
FEE® = 160 = (S + Joran ) SO

= (Jieon* Jomm ) SO
- f[r,zr} f(O)% = f(O) 1Og(z)a
gdzie na koncu r - 0, R — oco. O

Na marginesie wspomnijmy, ze istnieje “wariant rzeczywisty” powyzszego stwierdzenia:

Stwierdzenie 7.18 Niech f(t) bedzie funkcjg mierzalng na [0, 00[ takq, ze

Tl <o \f 0l < oo
1

|- o = oo

Wtedy dla z € [0, 00]

Whniosek 7.19 Zachodzi wzor

-t efzt)@

logz = [ (e -

Stwierdzenie 7.20 Mamy nastepujgcg reprezentacje catkowq statej Eulera-Mascheroniego:

= fooo (e%l tet)dt
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Dowé6d. Mamy

_e—nt —q
o EereTdt =300 fy et = X000 5,
S (et — YA — log(n 4 1),

hmn_>oo fooo(ﬁ — %)eit(n‘kl)dt = 0.

Stad
v = lim <1+%+---+%—log(n+1))

n—oo

= limy o0 f3O(AS e — (1 — e ™)t e t)dt

|

Stwierdzenie 7.21 (Wzér Pringsheima)
1
1,1 1 1 1 1)e 2
ytslogs =Jo (m—t —i - 5)0 pdt

1
_ [oo 1 1 1) e 2¢
—fo (et—l_?"‘i)et dt

Dowo6d. Zauwazmy najpierw, ze

1 1 1 1
- -~
l—et ¢t 2 12

Dlatego powyzsza calka jest zbiezna.

00 — 5t -t — 3t
— f ( e +11 e S e )g

0 2(1—ef§t) l1—e t t
_ oo e 2t _2e*2t>@+ oo(_ t +e*7t>@

oo (et - = ) e I (- s )
— (oo _et+1 et dt o [ ¢ e"2'\dt
= Jy (2(1—e*t) t ) ++J ( et t 1 )%

1 1 1

_ (oo ezt et 1,—t\dt _ _ oo (de 2t_e? 1 (oo e 2t t
= Jo ( i 2¢ )T— 0 (E i dt =3 Jo rdt
_ 1,1 1
=g tglogs
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7.8 Pochodna logarytmiczna funkcji Gamma
Ze wzoru Weierstrassa wynika natychmiast, ze
log['(2) = —yz —logz + 372, (f —log(1 + f)),
9:logT(2) = =7 + 232 (541 — 72) (7.111)
0?logT(z) = >0 W
Mamy tez
logI'(1) =0, logF(%) = %logw, 0, logI'(1) = —~.
Stwierdzenie 7.22

Pt 14 =nl(1+e(—y+ 57, ) +0(), n=12..., (7.112)

I'(—n+¢) = (—nl!)” (6_1 -+ %) +0(e), n=1,2,....

Dowo6d. Najpierw zauwazamy, ze
1
0,logT'(n+1) = —7+Zf, n=12 ...
=17
Ale T"(z) =T'(2)0,log'(z) i I'(n + 1) = n!l. To pokazuje pierwszy wzor.

Nastepnie
"1
D.(log T() + =Y
j=1

)

Z+n

zZ=—n

Ale
B.0(2)(z+n) = (z+n)'(2) + T(2) = (= + n)r(z)az(log T(2) + (2 + n)—1>.

7.9 Szeregi asymptotyczne

Niech funkcja f bedzie okreslona na zbiorze K(zp,r) N{a1 < arg(z — z9) < as}. Piszemy
o .
F(2) ~ Y aj(z = 2),
7=0
gdy dla kazdego n istnieje C,, takie, ze
n .
£(2) = D" a2 = 00| < Culz = 2o,

j=0

Oczywiscie, jesli f(z) = Y72 a;(z — z0)) dla z € K(zg,7), to f(z) ~ > 2o ai(z — 20).
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Przyktad. dla —F + € <argz <

ol
|
[0

[e.@]
1 .
e =~ g 0z7.
J=0
3 s s
—€el—yte<arg—z< 7 —€

% NZOZJ

Przyktad. dla —7 + e <argz <

SR

1

W szczegolnoscei, wszystkie pochodne funkcji R 3 ¢ — e =2 w zerze sa réwne zero.
Przyklad — Funkcja bledu.
z
Erf(z) := / e dt.
0

Stwierdzenie 7.23 Dla —35 + e <argz < § —€

Oczywiscie, lim,_,o Erf(2) = /7.

(+Z s (%*1)). (7.113)

222)19

1 oo
5\/7?— Erf(2) :/ et

Dowéd. Dla uproszezenia ograniczmy sie do z > 0. Caltkujemy przez czesci:

© e L[> —t2\ -1
/ e dt:—2/ (O™ )t at (7.114)
z z
1 [
= 27@*22 -3 / e 1 2dt (7.115)
z 4
1 2 1 o0 42\ ,_3
=5, tm (O™ )t7dt (7.116)
1 . 1 _ 3% o4
=5,¢ - 52,3¢ & +2—2 e "t dt. (7.117)

Nastepnie szacujemy:

&0 —t2 4 _.2 o0 —4 _21 -3
‘/ e "'t dt‘gez/ t " dt =e* —27°,
z z 4

VT But(z) = o (i + o(i)).

2 2z 23

Postepujac analogincznie dalej dostajemy rozwiniecie (7.114). O

Dlatego

66



7.10 Pierwszy wzér Bineta

Twierdzenie 7.24 (Pierwszy wzor Bineta)

logD'(2) = (2 — 3)log z — z + 4 log 27 + I (% + A5 - %)e_“%; (7.118)
0.logT'(z) =logz + fo (1 — — %)e*“dt; (7.119)
921logT(z) = [y~ ltfetjt dt. (7.120)

Uwaga Zwr6émy uwage na to, ze powyzsze caltki sg skoriczone. W szceg6lnosci funkcje podcat-
kowe sa ciaglte w zerze:

: 1,1 1)1
limg o (5 Tt z)z
- 1 1 1
lim; 0 (1_e_z - ;) =3,
~ t

lim; o 1ot — 1.

Dowo6d. Najpierw dowodzimy (7.121). Korzystajac z (7.112) dostajemy

02108T(2) = 02 G

= Ynto Jo e et (7.121)

o0 te—tz
=Jo 1oerdt.

To dowodzi (7.121). Nastepnie przeksztatcamy (7.122) dostajac

I (1 = %)te*tZdH Jo e zdt

=Jy <1 —em *%)te_tzdw“%

Zatem
d.logT(z) = d.log(1) + [ 92logI'(y)dy

= —y+ [{Ldy + [7 f° (1 L —%)te_tydtdy
=—y+logz— [;° (1 = —%)e_tydt‘z:

= IOgZ fO (m — *) 7tzdt

gdzie w ostatnim kroku wykorzystaliémy wzor catkowy na stala 7. To dowodzi (7.120). Nastepnie
przeksztatcamy (7.123) dostajac

(7.122)

logz — 3 fooo e " dt — [;© (m —i- %)e_tzdt

=logz— 31— [;° (1—e*t -1- %)e_tzdt.
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Stad

logl'(z) =logI'(3) —i—f1 Oy log I'(y)dy

zélogw+f%10gydy— f 1dy f I <1e —%—%)e_tydtdy

=jlogm+2z—logz—{logh +3 —glogz+ log g+ [;° (1—e—t —%—%)e_ty%‘

= (2~ Y)logz — 2z + Llog2m + [ (1 1 _%_%>e_tz%

gdzie w ostatnim kroku wykorzystaliSmy wzor Pringsheima. To konczy dowod (7.119). O

Whiosek 7.25 Niech € > 0 i |argz| < § —e.
(1) Zachodzi Wzoér Stirlinga

lim, 00 <logF(z) —((z— %) logz — 2z + %log 27T)> =0,

I'(z) =1
_1 .
2T 2e %27

(2) Niech

W=1—="71"7%

Wtedy f jest ograniczona wraz ze wszystkimi pochodnymi dla t € [0, 00[ i

o0
= fat", |t] <2m.
n=1

Mamy nastepujgce rozwinecie funkcji Gamma w szereg asymptotyczny:
’logf(z) —((z—3)logz — 2 + Llog2m — > =10 — 1)!z*jfj)‘ < Clz|~ L

7.11 Wzér Plany i drugi wzoér Bineta

Twierdzenie 7.26 (Wzor Plany) Niech m < n bedg catkowite, ¢(2) funkcja analityczna, |¢p(z)| <
el=almzl g15 ¢ > 0 im < Rez <n. Wtedy

so(m) +¢(m+1)+ -+ p(n—1) + $¢(n)
= [T p(e)dn — i [0 SO =6miy) g, g oo S(mtiy) —glm=iy) g

e2my—1 2Ty _1 Yy
Dowéd. Wprowadzmy kontury
= [m (m+1), . (0= 1)"n"n+ iRym + iR, m),

y-=[mT,(m+1)*,...,(n—1)",n",n—iR,m — iR, m].
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Korzystajac z tego, ze

$(2) 1
S 2 z
Res Famis —11oc = TomoR): K€L
dostajemy
0 = / %dz
v+ © -1
[ o(m +iy) / ¢(n +iy)
e T, St [ G
n—1
+P/ %d"‘ —p(m 52@1) + d) n); (7.123)
m j=m+1
0 = / 72¢(Z> dz
v e«Tz 1
L ¢(2m —iy) dy — ¢(n —iy) dy
R—o00 0 ey — 1 0 627"9 -1
+P/n¢()d + ¢ Z o(j (n). (7.124)
2mix _ ’
m _] =m+1
(7.125)
Nastepnie dodajemy (7.124) i (7.125), korzystajac z tozsamosci
(627ri:r o 1)—1 + (e—QWix o 1)—1 - 1.
O
Twierdzenie 7.27 (Drugi wzor Bineta)
logI'(z) = (2 — §)log z — z + §log 2m + 2 [ agr:zgzldt (7.126)
82 lOg F(Z) = IOgZ 2f0 Wézﬂl), (7127)
PlogT(z) = 7 + 1 + 4]0 % (7.128)

Dowéd. Aby pokazaé (7.129) stosujemy Wzér Plany do ¢(z) = (z +t)~2. Nastepnie catkujemy
dwukrotnie i dostajemy

1 © arctgl
logF(z)—A—i-Bz—i-(z—2)logz—|—2/0 e%t_z dt.
Poréwnujac z pierwszym wzorem Bineta dla z ~ 0 dostajemy A = %log 2r, B=—-1. 0O
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8 Zastosowania

8.1 Jednorodne dystrybucje i ich transformaty Fouriera
Dla A € C mozemy zdefiniowa¢ dystrybucje temperowane
(£iz 4+ 0)" == 15%(:|:1x +e).
Wzory
ay = a(z), o) = (—2)(—2)

zadaja dystrybucje tylko dla ReA > —1. Mozemy je rozszerzy¢ na wszystkie A € C procz
z=-1,- . ktadac

x) = m( —e B iz + 0)* + 2N (—ix + 0)/\),

= m( — e 712N iz + 0) + €2 M iz + 0)’\)

A
Wygodnie jest rozwazaé % Mamy wtedy
_TE (1)) =12
Tln+1) ) 32,
Spekliajg one zwiazki rekurencyjne:
A A—1

Ty T
8ZF(A +1) i1“(A) '

A oto transformaty Fouriera:

2}
—ix _
/e ()\+1)dac (&€ +0)~

a1
&1

/ e 7 (Fig + 0)NE = 2m2 =

Szczegblnie symetryczne wzory na transformaty Fouriera dostaniemy wprowadzajac

() = r(g+%)2—%\xyA: (2m)7'T(=3 + $)273 (2 + 0)* + (—iz + 0)*),

_A_
2

A (x) = F(% +1)27 |a:|’\sgnx =i(2m) I ( % % (iz 4 0)* — (—iz + O)’\).

Mamy nastepujace zwigzki:

70



8.2 Calki wielowymiarowe
W tym rozdziale rozwazamy d-wymiarowa przestrzen euklidesowa.
Twierdzenie 8.1 Pole sfery jednostkowej d — 1-wymiarowej wynosi

da
212

Si-1= =+
r(4)

Dowdd. Metoda I. Obliczamy 2 sposobami caltke gaussowska: we wspotrzednych kartezjanskich

g2 d
/e 1 Yadpy - --dxg =72,

i we wspotrzednych sferycznych
Sa-1 fy° e rd=1dr = %F(%)

Metoda II. We wspotrzednych sferycznych pole sfery jest rowne

T T 27
Su1 = / sin?2 ¢y 1dda_y -+ / sin gads / doy
0 0 0

Nastepnie stosujemy

T Fu 27
/sink_lgbkdgbk:\/w, k=2,...,d—1; / d¢y = 2.
0

0 r(%)
O

Twierdzenie 8.2 Calki wystepujace w diagramach Feynmanna W przestrzeni euklideso-

wej d-wymiarowej mamy

d T(a — &
/(:c2 +m2) ol — Wzmd—2a(r‘«“)2)7
/(x2 + 22y + m?) 0% = 1% (m? — yg)g_ar(?(;)g),
/acu(xZ + 2zy + mQ)*addx _ _ﬂgyu(mz B yQ)gaF(g(;)g),
ot s — by
48, (m? - )3 e TG

Dowdd. Stosujemy wzor na powierzchnie sfery i
L(4)l(a — )
NGO

[\CIISH

[
/ (7”2 + mz)_ard_ldr — 2—1md—2a
0

71

(8.129)

(8.130)

(8.131)

(8.132)



Twierdzenie 8.3 Niech —d < A < 0. Zdefiniujmy

1

A
= 272 |z
r(334)

Wtedy

—

= (2m)in
Dowéd. Stosujemy wspoirzedne sferyczne.
[|xPre ¢ dz =
2 dr [ dggyrtd-leirlélcosdaiphtd—lgind=2 4, g,
=T'(A+d) fog ((i|§| cos ¢a—1 + 0) % + (—i[¢] cos pg1 + 0)_A_d) sin?2 ¢q_1dgg—154—2
= L(A+ d)2cos(244m)|¢| A1 fo% cos 4 gy sin?"2 ¢y_1dgg_1Sq_2.

Nastepnie stosujemy

d—1 T
_ 2 =z 2 —X—d - d—2 _ 11X =
Sa—2 = 7;(2;1), Jo? cos Gqg—18I"" " ¢g_1dpg-1 = 5—%(_%) 2,

D(A +d) = m— 221D (A )p(A+dly

D(AEL (252 cos 244 =

i dostajemy
L)
L(-3)

/’x‘,\ei:pgddx _ |§‘—A—d2>\+d7rg

8.3 Macierze

Niech ¢ = [¢;5] bedzie macierzg. Wyznacza ona forme kwadratowa zdefiniowanag dla z = [2;] € R
jako

d
TCr = E LiCijZyj.
ij=1

Kazdg macierz przez zamiang¢ wspolrzednych y; = Zle aj;x; mozna sprowadzi¢ do postaci
diagonalnej:

d
xrer = Z ()2
i=1

Liczba dodatnich i ujemnych A; nie zalezy od wyboru przeksztalcenia i definiuje sygnature ma-
cierzy (dy,d_). Oczywiscie, d > dy + d_. Indeks macierzy ¢ definiujemy jako indc := d4 — d_.
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Mowimy, ze macierz c jest niezdegenerowana, gdy dla kazdego = € R?, z # 0, istnieje y € R?
taki, ze

d
ycx = Z yicijx; # 0.

i,j=1

Réwnowazny warunek: dy +d_ = d.
Zakladamy, ze w R? wprowadzony jest kanoniczny iloczyn skalarny x -y := Z?Zl zy;. Ma-
cierz mozna sprowadzi¢ do postaci diagonalnej odwzorowaniem ortogonalnym. Ciag Ai,...,Aq

z doktadno$cia do permutacji nie zalezy od wyboru diagonalizujacego odwzorowania ortogonal-
nego. Wyznacznik macierzy nie zmienia sie po zastosowaniu transformacji ortogonalnej. Dlatego

d
det[cij] = H )\z
i=1
Mowimy, ze macierz ¢ jest dodatnio okreslona, jesli dla z € R%, z # 0,

zex > 0.
Roéwnowazny warunek: dy = d.
8.4 Wielowymiarowe caltki Gaussa i Fresnela

Niech macierz ¢ bedzie dodatnio okreslona. Wtedy

d
2

/dx exp(—xcx) = w2 (det 0)7%. (8.133)

Zamieniamy bowiem wspoélrzedne odwzorowaniem ortogonalnym diagonalizujac macierz c. Mamy
wtedy de = dzq---dag = dy; - - -dyg = dy 1 (8.134) jest rowne

d d
/dyexp (— Z/\i(yi)2> = H/eAi(y"dei = H \/)\?
i i=1 i=1 v

Jesli ¢ jest macierza niezdegenerowana, to

/ dzq - - - dxgexp(izer) = wd/Qeigmdﬂ det c|_%. (8.134)

|z|<R

8.5 Metoda Laplace’a (punktu siodlowego)
Dla duzych A rozwazamy catke typu

I0) = / @)@ da.

Zaktadamy, ze f, ¢ rozszerzaja sie do funkcji analitycznych na 2, otoczeniu [a,b] w C, i ze
znajdziemy droge v C Q, ktora laczy a z b przechodzac przez punkt zg, w ktorym ¢'(zp) = 0.

73



Zaktadamy tez, ze w z¢ funkcja Re¢ obcieta do v ma maksimum i ¢”(29) # 0. W otoczeniu 2
mamy

1
¢(2) = ¢(z0) + §¢”(Zo)(2 — 20). (8.135)
Niech [¢] < 21 ¢"(20) = —|¢"(20)|e2¥. Wprowadzmy wspolrzedne
R? 5 (t,8) = 2 = 20 + (t +is)e™”.
(8.136) mozna przepisac jako
1 .
d(2) = P(z0) — §|¢H(Zo)| (t* — s* + 2its) .

Zatem poziomice Re¢p wokot zy przypominaja poziomice wokol przeleczy (punktu siodlowego).
Najwiekszy wktad do catka po krzywej v pochodzi z otoczenia punktu zp, gdzie v mozna
zastapi¢ czescig prostej R 2 ¢ — 29 + eVt Dostajemy

I\ = F(2)e*@)dz
v
~ f(zo)e)“z’(zf))—%\¢”(Zo)\t2ei¢dt
2
- e)‘¢(30) i
f(ZO) )\\qb”(zo)]
2T
= Ad(z0)
e —A¢"(20)

Mozna to sformutowaé $cislej.

Twierdzenie 8.4 Przy zalozeniach opisanych powyzej, mamy

I(A
lim ) = 1. (8.136)
AT f((zg)eA(z0) %
Dowo6d. Bez zmniejszenia ogolnosei, mozna zatozy¢, ze ¢”(z0) = —1, ¢(z9) = 01 29 = 0. Droge

+ mozna zdeformowac tak, zeby w otoczeniu zy = 0 zawierala odcinek [—e, €] dla pewnego € > 0.
Na reszcie odcinka catka szacuje sie przez O(e™*¢) dla ¢ > 0. Mamy tez

f(z) = f(0) +az+0(z%), ¢(z) = —% b3 1 0(Y). (8.137)
Mozemy napisaé
E F(2)eM@dz = f(0) /6 e*)‘édz (8.138)
+ / (f(z) - f(o))e_’\édz (8.139)
[ f()e (e*(WHé) ~1)dz (8.140)
=T+ 1II+III. (8.141)
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= £(0) / Z e 7 dz 4 O(e) = £(0) 27” + 0@ ), (8.142)
1= /_ie—vf (F(0)az + O(=2))dz = OA D), (8.143)
17 = / Z T ()M + AO(4)) = O ). (8.144)
Zatem
100 = 01 5+ 0,

co implikuje (8.137). O

8.6 Asymptotyka funkcji Gamma w nieskoiiczonosci metoda punktu siodto-
wego.

Twierdzenie 8.5 Niech € > 0. Dla |argz| < § — ¢ mamy
T+ _

L2 +1/2 T
ez

lim

Z—00 27-‘-

(8.145)

Dowé6d. Mamy
Nz+1)= / e tPdt = z”l/ e*(W) qy,
0 0

gdzie
d(u) = —u + log u.

Obliczamy:
1 1
L, =14 = 2 S—
dub(w) =14 Oou) =~

Zatem ¢(t) ma jedno i tyko jeden punkt stacjonarny: dla ug = 1. Mamy

d(ug) = —1, Ong(ug) = —1.

Metoda punktu siodlowego daje zatem
oo
Dz 4 1) & 25+ 20(w0) / e3R00) w0 gy — 2\ S
—0o0

Pokazmy teraz to w Scisty sposéb. Niech Rez > 0. Wtedy

1) = fyge™ 0 = Jy e
— o~ #tzlogz J‘[O’ZOO[e—z(é—l—logé)dt

— g%yl ff‘; efz(sflog(lJrs))dS’
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gdzie dokonali§my zamiany zmiennych

Zauwazmy, ze funkcja
] —1,003 s s—log(l+s)

maleje na | — 1,0] od oo do 0, w 0 zachowuje sie jak % i na [0, co[ rosnie do co. Zatem funkcja

R 3> s u(s) = /2(s — log(1 + 5))

(w ktorej bierzemy ujemny pierwiastek dla s < 0 i dodatni pierwiastek dla s > 0) jest gtadka.
Mamy

. u(s) du(s) s
}sl—rf(l)T_l’ ds  u(s)(1+s)’
O N (U

Mamy zatem
foo —z(s—log( 1+s))d

= [, e72 f(u)du
Niech
o0
2 2
I():/ 5y =4 /2L,
oo z
Wtedy
z,2
I 1‘ _ S e IS (w)—1fdu
To \/E

<CVz [T e~ 2% y|du = 01%.
To koriczy dowod (8.146) O

8.7 Asymptotyka funkcji Beta w nieskoriczonosci metoda punktu siodlowego
Asymptotyke dla B(u,v) mozna dosta¢ z asymptotyki funkcji I'(z). My jednak pokazemy ja
bezposrednio z metody punktu siodtowego.

Twierdzenie 8.6 Niech ¢ > 0. Dla |argu| < § — ¢, |argv| < § — ¢, mamy

B 1, 1
i (u+1,0+1)

U,V—00 \/711‘“‘*1/211“"'1/2
’U,+’U u+v+3/2

=1. (8.146)
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Dowé6d. Mamy
1
Blu+1,v+1) = / e¥®at,
0

gdzie
P(t) :=ulogt + vlog(l —t).
Obliczamy:
u v u v
oY(t) = — — Pt = —— — —— .
t¢() t 1—¢ t¢() 2 (1—t)2
Zatem t(t) ma jedyny punkt stacjonarny: dla to = ;5 i
B U v 9 L (u+v)3
ito) = wog () oton (2 ) oButo) =~

Jesli Reu > 0 i Rev > 0, to Rey(t) — —oo, gdy ¢ zbliza sie do 0 badz 1. tatwo wiec
uzasadni¢, ze deformujac kontur [0, 1] mozemy dostac¢ krzywa ~ zaczynajaca si¢ w 0, konczaca
sie¢ w 1 i przechodzaca przez ty tak, ze Ret(t) osiaga wzdtuz tej krzywej maksimum w to. Mamy

B(u+1,0+1) = /e¢(t)dt.
gl
Mozna oczekiwaé, ze przyczynek wokot tg w tej calce bedzie dominowaé. Zatem
B(u+1,0+1) ~ /e¢(t°)+%¢//(t°)(t_t°)2dt.
’Y
Nastepnie zastepujemy krzywa v przez prosta nachylona pod odpowiednim katem «, czyli:
Bu+1,v+1) ~e¥lto) [ ez (o) gy

e*]—00,00(

u v 1/2
_ U v 2muv _ yutl/2yv+1/2
= (a53) (a5) (&) =voriitmn

8.8 Wielowymiarowa wersja metody Laplace’a (bez przedluzenia analitycz-
nego)

Dla duzych A rozwazamy catke typu
I\) = / f(@)er@)dg,
©

gdzie © jest podzbiorem w R¢. Zaktadamy, ze ¢ posiada globalne maksimum w © w punkcie
Z nalezacym do wnetrza © i ze jest rozniczkowalne dwa razy w . Mamy wtedy Vo(z) = 0.
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Zaktadamy tez, ze Hessjan (druga pochodna) ¢ w I, oznaczany przez V2¢(Z), jest ujemnie
okreslony. Wtedy

I(\)

Q

/f i)exp | Ao(& Zvvqs xi — &)z — ;) | da

1,j=1

N[

= @M (2;’) (det(~V20()))

8.9 Metoda fazy stacjonarnej

Zaktadamy teraz, ze f i ¢ sa dostatecznie gtadkie. Dla duzych A, rozwazamy catke typu

:/ f(z)e*@)dy
©

gdzie © jest podzbiorem w R?. Zaktadamy, ze ¢ posiada globalne maksimum w © w punkcie &
nalezacym do wnetrza ©. Mamy wtedy V¢(Z) = 0. Zakladamy tez, ze Hessjan ¢ w &, oznaczany
przez V2¢(%), jest niezdegenerowany. Wtedy

I(A)

Q

/f Z)exp | iAp(Z ZVV(;S xi — ;) (x; — &) | do

,Jl

_ [(F)e TV o) () [det V2(2)|

8.10 Rownanie dyfuzji i Schrodingera
Swobodne réwnanie Schrodingera:

1

d
1@%(37) = —%Awt(ac).

Rownanie dyfuzji (ciepta):
d
&ft(x) = kA fi(z).

Wprowadzmy operator pedu

Wtedy —A = p?. Mozna uogdélni¢ réwnanie Schrédingera do dyspersyjnego réwnania Schrodin-
gera, gzie w jest dowolna funkcja pedu:

.d
1&%(%) = w(p)yr(z).

Formalne rozwiazanie:

iy = Py,

78



Transformacja Fouriera w konwencji “unitarne;j”:

d(e) = (2m)8 / blx)e"Ede,

b(x) = (2m)° / d(e)e=ede.

Transformacja Fouriera diagonalizuje ped:

po(€) = EG(€).

Ogolniej

Dlatego

W reprezentacji potozeniowej

ui(o) = [ Uite = w)n(u)dy,
gdzie “propagator” jest rowny
Up(z) = (2m) @ / e W@ HTE e
W przypadku dyfuzji dostajemy

fi(z) = /(47mt)_ge_(z4rgf>2fg(y)dy.

Zauwazmy, ze

(1) [ fi(z)dz = [ fo(z)dz;

(2) fo > 0 implikuje f, > 0;
3) [1fl?(@)de = [|fo*(z)da.

Dla swobodnego réwnania Schrédingera z m = 1 mamy

d iz—y)?

wt(m‘):/(%rti)?e 3 o(y)dy.

Mamy [ [/2(a)dz = [ |to[(x)da.
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8.11 Transformacja Legendre’a

Niech © bedzie otwartym zbiorem w R? a

N3¢~ wl@eRrR (8.147)

niech bedzie funkcja wypukla klasy C2. Sciglej rzecz biorac, zaktadamy, ze dla réznych &1, & € Q,
§17 &, 0<7 <1,
Tw(1) + (1 = Tw(&) > w (T8 + (1 - 7)&2) -
Wtedy
Q3¢ () = Vw(E) e RY (8.148)

jest funkcja roznowartosciowa. Niech Q bedzie obrazem (8.149). Mozna zdefiniowa¢ funkcje
Qov—£&w) e

odwrotna do (8.148). Transformacje Legendre’a definiujemy jako

@(v) = v§(v) = w(E(v)).
Twierdzenie 8.7 (1) Vo(v) = &(v).
(2) V20(v) = Vué(v) = <ng(§(v))>il. Zatem & jest wypukta.

(3) w(§) = w(&)-

Dowod. (1)

Vow(v) = £(v) +vV€(v) = Vew(€(v)) Vg (v) = £(v).
(2)

V20(v) = Vo&(v) = Veo(£()) ! = (VEw(E(v)
3) i

w(§) = gu(§) —v(§)&(v(§)) + w(E(v(§))) = w(v).

O
Przyktady.

(1) Q=R w(E) =L —aym™ (€ —a)+v, Q=R &(v) = 1&mé +af —v.

(2) Q=R% w(€) =+/2+m2, Q={veR?: |jv] <1}, @(€) = —mV1 -2
(3) Q=R, w(é) =€, Q=]0,00[, &(v) =vlogv —v.
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8.12 Dyspersyjne rownanie Schrodingera z parametrem #

Wprowadzmy maly parametr h. Zmienimy definicje pedu i energii:
pi = —ihVy,,, E =iho;.

Dyspersyjne réwnanie Schrodingera w postaci zawierajacej h:

.. d
1h&wt(as) = w(p)i(z). (8.149)

Ma ono rozwigzanie:
n‘u(p)

Y =e 7 .

Aby je rozwiagza¢ wygodnie jest zastosowaé semiklasyczng wersje transformacji Fouriera:

[v@re

w(z) = (2rh)” 5/¢ £t de.

[w@par = [lo©Ppa,
w(p)y

(&) = w(©v(©).

N\&L

b(E) = (2rh)”

Ma ona wlasno$ci

Propagator wynosi
—itw(§+i(z—y)¢

Ui(z) = (2mh) ¢ / e” n o dE

8.13 Granica semiklasyczna dyspersyjnej ewolucji

Zalozmy, ze v (x) ewoluuje zgodnie z réwnaniem (8.150). Chcemy wyznaczy¢ propagacje dla
malych wartosci A w zaleznosci od ¥y
Niech v(&) i @(x) beda zdefiniowane jak w podrozdziale 8.11. Wtedy

P(x) =~ exp (i%indVg}(g(x/t))

it

xt™|det |Veo(€(x/t)| Qexp< <x/t>) 0 (€(/1)). (8.150)

Czyli paczka falowa o pedzie & podrozuje z predkoscia v(€) = Vw(&) zwana “predkoscia grupowa”.
Zauwazmy przy tym, ze norma L? prawej strony (8.151) nie zalezy od czasu.
Aby otrzymacé (8.151) zapisujemy v (x) w postaci

te) = an) 4 [oxp (L) e
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gdzie
Gi(2,§) = —tw(§) + €.
Stosujemy metode fazy stacjonarnej

Veo(x,§) = —tVew(x) + .

Zatem
2/t = Vew(§) = v(§),
¢ (x,&(x/t)) = x&(x/t) —tw (§(2/1)) = tw(x/t).
Poza tym
Vid(x, &) = —tV2w(€) = —tVev(€).
Metoda fazy stacjonarnej prowadzi do

d
2

Gi(x) ~  (27h)”% (20h)% exp (i%indV@(f(x/t))

<t et [Veale(a/ 0] exp (F(a/0) ) o e(o/0).
z ktorego wynika wzor (8.151).

8.14 Rownanie Kleina-Gordona/falowe

Ponizsze réwnanie dla m # 0 nazywa sie réwnaniem Kleina-Gordona a dla m = 0 réwnaniem
falowym:

OX(t,z) = (A — m?)ap(t, x). (8.151)

Twierdzenie 8.8 Znajgc ¥(t,-) i Oup(t,-) dla t = 0 mozemy otrzymaé rozwigzanie réwnania
(8.152) w dowolnej chwili ze wzoru

¥(t) = —0,G(t)¥(0) + G(1)9(0),
gdzie funkcja Greena G(t) jest zadana przez
G) = —g(~Afm?) bt/ BT

+i(_A ) hoitV =AM
2

Dowoéd. (8.152) mozna przepisa¢ w formie
(18,5 VAT m2) (i&t +V-A+ m2) b = 0.

Dzielimy v na cze$é¢ o dodatniej i ujemnej czestotliwosci: ¢ = ¥4 + ¢¥_, gdzie

(i@t +V-AF m2) -
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Mamy

1
v o= 5 (1-i-asmd)ia)
1 o
+3 (1+1(—A+m ) aat)w
Dlatego
1 2\ —
Vg = 3 (1$1(—A+m ) 28t)¢
Stosujac
Ya(t) = VA4 (0),
dostajemy
Y(t) = VAT (0) £ VAT (0)
1, wv/mATmZ itV =AT2
_ §(e1t A+ +e tv—A+ )w(o)
+% (—(A + m2)—%eit\/T+mQ 4 (—A + m2)—%e—it\/T+mz> 8tw(0)
O

9 Renormalizacja pola kwantowego

W charakterze ilustracji metod analizy zespolonej, pokazemy ja renormalizuje si¢ kwantowe pole
skalarne w obecnosci zmiennej masy.

Niech k € S(R!3).
(~0 + m2)(z) = —()d (@) (9.152)

U (ta,t1) oznacza unitarna dynamike, {2 wektor opisujacy proznie. Chcemy policzyé
€ = lim ilog(QU (t, —t)).
t—o0

e~ 2Im& opisuje prawdopodobieristwo przejécia proznia—proznia. Re€ opisuje energie dostarczona

przez cala historie procesu.
Bedziemy pisaé¢ k? = — (k%) + (k)?,
k(k) = /m(aj)ei’mdx.
Formalne argumenty prowadza do nastepujacego wzoru

E=) &, (9.153)

n=2
i H(kﬁl — ]{32) cee /Q(]{n — k‘l) dkl dk‘n
= — e . . 154
&= o / / (2 +m2—10) - (k2 +m? —i0) 2m)1 (23 (9.154)

83



W szczegolnosci

ko —k dk; dk
& = // k'2 + m2 103(14522_'_ m21) i0) (2754 (27T§4 (9.155)
_ ! K(k)k(—k) dk  dq
4 // ((g+ k)2 +m2 —i0) ((q — $k)2 +m2 —i0) (2m)* (2m)* (9.156)
:/M(k)'%(ﬁ)(;nlf)él’ (9.157)

gdzie zastosowaliSmy podstawienie k1 := ¢ + %k, ki:=q— %k, skorzystaliSmy z k(—k) = k(k) 1
zdefiniowalismy

i 1 dgq
k) = — / : 9.158
(k) 4) ((g+ 3k)2+m?—i0)((q — 3k)% + m? —i0) (2m)* ( )
Zatosujmy obrot Wicka, czyli zastapienie kO przez k* = ik% i ¢° przez ¢* = ig":
1 1 dg
(k%) := —/ . (9.159)
4] ((g+ 3k)* +m?)((q — 3k)* +m?) (2m)*
Nastepnie uzyjemy tozsamosci Feynmana
11t d
=3 / 1 v . (9.160)
Dostajemy
/ dv / ! (9.161)
(¢% + 1k2 + m? + vgk)? '
1 1
- : 9.162
4/ / (¢? + 1K2(1 — v?) +m?)? (9-162)

W ostatnim kroku zastapilismy ¢ + £ przez q i korzystajac z symetrii v — —v zastapiliSmy

5 f—l dv przez fo dv. Pole pow1erzchn1 d — 1-wymiarowej sfery jest réwne

d
2

2w
Q=7 (9.163)
r(5)
Dzieki temu, ze funkcja podcatkowa jest sferycznie symetryczna mozemy zastosowaé regularyza-
cje wymiarowa:
dq4 ] ,LL4_de oo it
/(27T)4 zastepujemy przez ) /0 lq|“""d|ql, (9.164)

gdzie d ~ 4 i i jest dowolnym parametrem o wymiarze dtugosci. Skorzystamy tez z konsekwencji
wzoru na druga catke Eulera

/O°° m - %(AQ)_H%F@)F(Q - g) (9.165)
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Ktadziemy
1
A? = Zk2(1 —v?) +m?.

Dostajemy
L N U R TR ]
k2 _ = d .
)= =3 || ot | ey (2160
1 4-do 5 (A2 2T (T (2 — d
:_1/ a2 (A0 Qd(z) 2-3%) (9.167)
4 Jo (2m)T(5)
1/t d 245\ d
v [ pdrn
=—= rz—-). :
4/0 (471')2( e ) (2-3) (9.168)
Korzystamy z przyblizeri dla d ~ 4:
d 1
rz2—-)=~ - (9.169)
d 9
-9~
d
B2 % ~ 14 (2 . 5) log B. (9.170)
Dostajemy
1 [t dv d plam 1
k)~ —= 1+ (2—-2)1 - :
(k%) 4/0 (47r)2( +< 2> %842 )((z_g) 7)’ (9.171)
1 [t dv wlan 1
Y —— — 1 .
4/0 (47r)2( 7 +log +(2—§)) (9.172)
1 ' dv w24m k2 1 1
. —y+1 —log (1+—5(1—2v%))) - . (91
4/0 (47'()2( v + log m2 og( + 4m2( v ))) 4(47.‘.)2 (2_ g) (9 73)
Niestety, ,
1 1 woam 1
2

jest rozbiezne dla d = 4. Renormalizujemy wiec 7(k?) przez odjecie tej stalej i polozenie d = 4:

7 (k?) = 7 (k?) — 7(0) (9.175)
1 v 2
_ 1/0 (Er)210g (1+4%(1—v2)). (9.176)
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