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ABSTRACT

The Bessel operator, that is, the Schrödinger operator on the half-line with a potential proportional to 1/x2, is analyzed in the momentum
representation. Many features of this analysis are parallel to the approach according to Wilson on quantum field theory: one needs to impose
a cutoff, add counterterms, and study the renormalization group flow with its fixed points and limit cycles.
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I. INTRODUCTION
Our paper is devoted to one of the most curious families of operators in mathematical physics,

Lα ∶= −
d2

dx2 + (α −
1
4
) 1

x2 , (1.1)

where α ∈ R and Lα are often called Bessel operators. We will use the symbol Lα for expression (1.1) without specifying its domain. Operators
that are given by this expression and have a concrete domain will be called realizations of Lα. Let us briefly list their most important properties.

Bessel operators are Hermitian (symmetric) on C∞c (R+). [By R+, we always denote the open positive half-line ]0,∞[. Thus, functions in
C∞c (R+) are supported away from 0.] However, they are essentially self-adjoint only for α ≥ 1. For α < 1, they possess a one-parameter family
of self-adjoint realizations. In the terminology of Weyl,1 0 is the limit point for α > 1 and the limit circle for α ≤ 1.

For α ≠ 0, their self-adjoint realizations can be described by specifying boundary conditions at zero as appropriate mixtures of x
1
2+m and

x
1
2−m, where m ∶= √α. For α = 0, one needs to take mixtures of x

1
2 and x

1
2 ln x and there is a curious “phase transition”: m is real for α ≥ 0 and

imaginary for α < 0. Moreover, all self-adjoint realizations of Lα are bounded from below for α ≥ 0 and unbounded from below for α < 0.
Many quantities related to Lα can be computed explicitly. For instance, the eigenfunction expansion of Lα can be given in terms of Bessel

functions; see, e.g., the classic book by Titchmarsh.2 This allows us to explicitly describe all self-adjoint realizations of Lα, as discussed by many
authors, e.g., Refs. 3–13.

It is useful to note that d-dimensional Schrödinger operators with the inverse square potential

Lα,d ∶= −Δd +
g
r2 (1.2)

can be reduced to one-dimensional ones (1.1). In fact, if we restrict (1.2) to spherical harmonics of degree l and make a simple transformation,
then the radial operator coincides with Lα, where

α = (d
2
− 1 + l)

2

. (1.3)
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In our paper, for simplicity, we always stick to dimension 1, except for a short resume of the reduction of the three- to one-dimensional case.
One of the most striking properties of Bessel operators is their homogeneity of degree −2. In other words, if Uτ denotes the scaling

transformation [see (2.11)], then

UτLαU−1
τ = e−2τLα. (1.4)

This suggests us to introduce the transformation

Rτ(B) ∶= e2τUτBU−1
τ , (1.5)

acting on, say, self-adjoint operators. R ∋ τ ↦ Rτ is a representation of the group R and preserves the set of self-adjoint realizations of Lα.
Some of these realizations are “fixed points” of Rτ . There is an interesting analogy between the action of Rτ (1.5) on self-adjoint extensions of
Bessel operators and the renormalization group acting on models of Quantum Field Theory (QFT).

The most obvious approach to Bessel operators is to study them in the position representation, as it is usually done in the literature. Our
paper is devoted to an analysis of Bessel operators in the momentum representation. We believe that this is interesting in itself—in fact, many
things look very different on the momentum side. Our main motivation, however, comes from the physics literature, where some authors try
to explain the renormalization group approach to QFT by using Bessel operators as a toy model.

In QFT, one can work both in the position and in the momentum space. The position representation is used in the so-called
Epstein–Glaser approach. In practice, however, physicists prefer to work in the momentum representation, which is usually more convenient
for computations. In order to compute various useful quantities, one typically needs to impose a cutoff at momentum Λ and to add appropri-
ate Λ-dependent counterterms. The desired quantities are obtained in the limit Λ→∞, provided that various parameters are appropriately
adjusted.

This procedure was greatly clarified by the Nobel Prize winner Wilson, who stressed the role of scaling transformations in the process
of renormalization. He also pointed out that it is not so important whether QFT has a well-defined limit for Λ→∞: what matters is a weak
dependence of low energy quantities on the high energy cutoff.

A number of authors,14–18 mostly with a high energy physics background, noted that Bessel operators have a great pedagogical potential
to illustrate the concept of renormalization group and Wilson’s ideas. In particular, we would like to draw the reader’s attention to a recent
paper,16 which is the main inspiration for our work. Reference 16 looks at operator (1.2) in dimension 3 in the momentum representation.
Its naive formulation is ill-defined due to diverging integrals at large momenta and does not select a self-adjoint realization. To cure these
problems, Ref. 16 applies the following steps, parallel to the usual approach to QFT:

Cut off the formal Hamiltonian with a momentum cutoff ∣p∣ < Λ. (1.6a)
Add an appropriate counterterm multiplied by a running coupling constant. (1.6b)
Determine the differential equation for the coupling constant. (1.6c)
Take the limitΛ→∞. (1.6d)

The exposition contained in Ref. 16 stays all the time on the momentum side, and the reader may find it difficult to connect it to the standard
theory of self-adjoint realizations of Bessel operators, more transparent in the position representation.

After describing the main source of motivation of our paper, let us outline its content. We start with Sec. II containing a brief resumé of
the theory of self-adjoint realizations of Bessel operators in the position representation. We follow the terminology and conventions of Refs.
4 and 7.

In Sec. III, we recapitulate the content of Ref. 16. On purpose, we stick to the original terminology and line of reasoning. In particular,
we use the three-dimensional setting, which can clearly be reduced to one dimension by the use of spherical coordinates.

Section IV is the main part of our work. We start with a brief analysis of the momentum approach to general Schrödinger operators. We
are mostly interested in operators on the half-line R+ and not on the whole line R. This is consistent with the many-dimensional analysis in
spherical coordinates, where the radius is always positive. We encounter the following issue: the usual Fourier transformation is adapted to
the line, whereas on the half-line, we have two natural cousins of the Fourier transformation: the sine and the cosine transformation [see (4.6)
and (4.7), respectively]. The former diagonalizes the Dirichlet Laplacian −ΔD, and the latter diagonalizes the Neumann Laplacian −ΔN. Which
approach we should choose? One can argue that from the one-dimensional point of view, both are equally natural. Therefore, we discuss both
approaches. Actually, from the three-dimensional point of view, the sine transformation should be preferred because the three-dimensional
Laplacian in the s-wave sector reduces to the Dirichlet Laplacian on the half-line.

Let us briefly describe the momentum approach to Schrödinger operators on R+ for sufficiently nice potentials. There are two basic
Schrödinger operators with the potential V on the half-line: −ΔD + V(x) and −ΔN + V(x). By applying the sine transformation to the former
and the cosine transformation to the latter, we obtain the following operators:

H̃Dψ(p) = p2ψ(p) + 1
2π∫

∞

0
(Ṽ(p − q) − Ṽ(p + q))ψ(q)dq, (1.7)
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H̃Nψ(p) = p2ψ(p) + 1
2π∫

∞

0
(Ṽ(p − q) + Ṽ(p + q))ψ(q)dq. (1.8)

Here, Ṽ(p) is the Fourier transform of the even extension of V from R+ to R.
If the potential is singular at 0, say, non-integrable, we have several problems:

1. We cannot use the standard Dirichlet/Neumann boundary conditions.
2. We need to interpret V as an irregular distribution.
3. The Fourier transform of V will grow at infinity, making formulas (1.7) and (1.8) problematic.

All these problems are present for Bessel operators, where V is proportional to 1
x2 . In particular, 1

x2 does not define a regular distribution.
There exists, however, a well-known one-parameter family of even distributions that outside of 0 coincide with 1

x2 . Their Fourier transforms
are

− π∣p∣ + a, (1.9)

where a is a constant.
A priori it is not obvious which transformation is more appropriate for Bessel operators: the sine or the cosine transformation. Let us

consider both, setting
L̃α,D ∶= FDLαFD, (1.10)

L̃α,N ∶= FNLαFN, (1.11)

where Lα is treated as a formal expression and FD/N is the sine/cosine transformation.
Let us use −π∣p∣ as the Fourier transform of 1

x2 . [We set a = 0 in (1.9). This constant will reappear in disguise of a counterterm anyway
later.] (1.7) and (1.8) yield the following formal expressions:

L̃α,Dψ(p) = p2ψ(p) + (α − 1
4
)∫

∞

0
(θ(p − q)q + θ(q − p)p)ψ(q)dq, (1.12)

L̃α,Nψ(p) = p2ψ(p) − (α − 1
4
)∫

∞

0
(θ(p − q)p + θ(q − p)q)ψ(q)dq, (1.13)

where θ is the Heaviside function. Both expressions are problematic for large momenta. In what follows, we give two constructions of self-
adjoint realizations of (1.12) and (1.13). The first construction will be called “mathematicians’ style,” and the second construction will be
called “physicists’ style.”

The construction in “mathematicians’ style” directly describes the domains and actions of the operators. It starts with a construction of
the minimal Bessel operators, denoted as L̃min

α,D and L̃min
α,N . They are defined in (1.12) and (1.13) on appropriate domains consisting of rapidly

decaying functions. In addition, for (1.12), we need to assume that ∫ ∞0 ψ(p)pdp = 0, and for (1.13), ∫ ∞0 ψ(p)dp = 0.
The adjoints of the minimal Bessel operators are called the maximal Bessel operators and denoted as L̃max

α,D and L̃max
α,N . If α ≥ 1, they coincide

with the minimal Bessel operators and also with their unique self-adjoint realizations. This is not the case for α < 1. The construction of
maximal operators in the momentum representation is somewhat tricky. To obtain the maximal domains, D(L̃min

α,D ) and D(L̃min
α,N ) have to be

extended by adjoining appropriate two-dimensional subspaces. We cannot directly use expressions (1.12) and (1.13) since now they usually
contain divergent integrals. If α ≠ 1

4 (that is, when there is a non-trivial potential), this additional subspace is spanned by certain vectors that
behave for large p as p−

3
2+m and p−

3
2−m. Curiously, the case α = 1

4 is more problematic and has to be treated separately.
Finally, we define self-adjoint realizations of Bessel operators by selecting appropriate domains larger than the minimal but smaller than

the maximal domain.
The above construction of self-adjoint Bessel operators is mathematically correct, but it sounds rather artificial. In the remaining part of

Sec. IV, we describe “physicists’ style” construction, directly inspired from Ref. 16 and by the literature on QFT, in general. This construction
involves the four steps indicated in (1.6). Let us describe them more precisely.

The counterterms will be constructed out of (unbounded and non-closable) operators KD and KN,

KDψ(p) ∶= p∫
∞

0
qψ(q)dq, (1.14)

KNψ(p) ∶= ∫
∞

0
ψ(q)dq. (1.15)

Suppose that fΛ and gΛ are solutions of the differential equations,

Λ
d

dΛ
fΛ = ( fΛ +

1
4
+ α)

2
− α, (1.16)
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Λ
d

dΛ
gΛ = −(gΛ +

1
4
+ α)

2
+ α. (1.17)

Let p denote the momentum operator. Consider the operators

θ(Λ − p)(L̃α,D +
fΛ
Λ

KD)θ(Λ − p), (1.18)

θ(Λ − p)(L̃α,N +ΛgΛKN)θ(Λ − p). (1.19)

Note that (1.18) and (1.19) are well-defined bounded self-adjoint operators. We prove that for α < 1, they, then, converge in the strong
resolvent sense to self-adjoint realizations of the Bessel operator in the momentum representation. This can be viewed as the main result of
our paper.

According to “physicists’ style construction,” self-adjoint realizations of Bessel operators are parameterized by real solutions to Eqs.
(1.16) and (1.17). Not surprisingly, these equations look very similar to various equations for running coupling constants used in QFT. Note
also that the right-hand sides of (1.16) and (1.17) also analytically depend on α at the “phase transition” α = 0. This phase transition is visible
when we consider real solutions to these equations.

What is the take-home message of our paper? We do not insist that Schrödinger operators should be always studied in the momentum
representation. However, we think that it is useful to know how the world looks “on the momentum side of the Fourier transform.” In
addition, it does look quite different from the position representation.

To our knowledge, mathematicians rarely use the momentum representation to study Schrödinger operators. In particular, we have
never seen formulas (1.7) and (1.8) in mathematics papers. In physics papers, the momentum representation seems to be more common. For
instance, formula (1.7) can be found in Ref. 16 (in the three-dimensional context).

The original purpose of our paper was to present the ideas of Ref. 16 in clear and rigorous terms. We think that these ideas are important
and instructive. One can try to formulate them as follows. In renormalizable quantum field theories, most terms in the Lagrangian have the
same homogeneity with respect to the scaling. For example, in the Standard Model, only the Higgs mass term has a different scaling dimen-
sion. Bessel operators are also almost homogeneous, with scaling invariance broken only by the boundary condition at 0. This homogeneity
is related to the fact that the naive formulations of both QFT and Bessel operators in the momentum representation are highly singular.
Computations in QFT usually involve the four steps described in (1.6): imposing a momentum cutoff Λ, adding counterterms, solving the
differential equation for the coupling constant, and taking the limit Λ→∞. Our paper shows that the same steps have to be followed in a
much simpler context of Bessel operators. These steps are not restricted to the difficult and complicated formalism of QFT. They are typical
of the momentum approach.

Equations (1.16) and (1.17) have a one-parameter family of solutions for any α ∈ R. However, Bessel operators have a one-parameter
family of self-adjoint realizations only for α < 1. In the language of QFT, “nontrivial renormalized theories” exist only for α < 1. For α ≥ 1,
the “flows of operators” [(1.18) and (1.19)] do not have limits in the sense of the Hilbert space L2(R+), apart from the unique self-adjoint
realizalion of Lα. Hence, for α ≥ 1, as Wilson suggested, “one can never remove the cutoff completely in a nontrivial theory.”

In particular, this is the case for the borderline value α = 1. The Bessel operator L1 is the radial part of the Laplacian in four dimensions;
see (1.3). We believe that it is not a coincidence that our spacetime also has four dimensions.

II. POSITION APPROACH
A. Extensions of Hermitian operators

Let us recall basic concepts of the theory of self-adjoint extensions of Hermitian operators (often called symmetric operators). A
comprehensive treatment of this topic can be found in Ref. 19.

Let A and B be operators with domains D(A) and D(B), respectively. We say that A is contained in B if D(A) ⊆ D(B) and A = B on
D(A). We, then, write A ⊆ B.

An operator A is Hermitian if for all x, y ∈ D(A),
(Ax∣y) = (x∣Ay), (2.1)

where (⋅∣⋅) is the scalar product. An operator A is self-adjoint if A∗ = A, where the star denotes the Hermitian adjoint.

B. Self-adjoint realizations of Lα
Recall that operators given in (1.1) with specified domains are called realizations of Lα. Following Ref. 4 (see Sec. IV and the Appendix

therein for details), we first introduce the maximal and minimal realizations of Lα. The maximal realization, denoted as Lmax
α , has the domain

D(Lmax
α ) = { f ∈ L2(R+) ∣ Lα f ∈ L2(R+)}, (2.2)

and the minimal realization of Lα, denoted as Lmin
α , is the closure of the restriction of Lα to C∞c (R+). Obviously, Lmin

α ⊂ Lmax
α . Moreover, one

can show that
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(Lmin
α )

∗ = Lmax
α . (2.3)

Hence, Lmin
α is Hermitian.

One can show that for α ≥ 1, Łmax
α = Lmin

α is self-adjoint.4 In what follows, it will be denoted as Hm, where m ∶= √α is the positive square
root of α.

For α < 1, the domain of Lmin
α is strictly smaller than that of Lmax

α and neither operator is self-adjoint. Therefore, both operators are of
little use in physical applications: for example, eigenvalues of Lmax

α cover almost the whole complex plane and corresponding eigenvectors are
not mutually orthogonal.

Self-adjoint realizations of Lα are self-adjoint operators H such that

Lmin
α ⊂ H = H∗ ⊂ Lmax

α . (2.4)

They are constructed as follows. First, one finds solutions of Lαψ = 0. These are of the form

ψ(x) =
⎧⎪⎪⎨⎪⎪⎩

a ⋅ x1/2+m + b ⋅ x1/2−m, m ≠ 0,

a ⋅
√

x + b ⋅
√

x ln x, m = 0.
(2.5)

Here, m ∶= √α. Note that m ∈ R or m ∈ iR is defined up to a sign.
For α ≥ 1, only x1/2+m with m being positive is square integrable near zero. This is the key element of the proof of the essential self-

adjointness of Hm on C∞c (R+).
For α < 1, all the solutions (2.5) are square integrable on ]0, ε[ for any ε > 0. Let κ, ν be complex numbers. Let ξ ∈ C∞c [0,∞[ and ξ = 1

near 0. The following spaces lie between D(Lmin
α ) and D(Lmax

α ) and do not depend on the choice of ξ:

D(Hm,κ) = { f ∈ D(Lmax
α ) ∣ for some c ∈ C f (x) − cξ(x)(κx1/2−m + x1/2+m) ∈ D(Lmin

α )},

D(Hm,∞) = { f ∈ D(Lmax
α ) ∣ for some c ∈ C f (x) − cξ(x)x1/2−m ∈ D(Lmin

α )},

D(Hν
0) = { f ∈ D(Lmax

0 ) ∣ for some c ∈ C f (x) − cξ(x)(x1/2 ln x + νx1/2) ∈ D(Lmin
0 )},

D(H∞0 ) = { f ∈ D(Lmax
0 ) ∣ for some c ∈ C f (x) − cξ(x)x1/2 ∈ D(Lmin

0 )}.

(2.6)

They define realizations of Lα denoted as Hm,κ and Hν
0 . The above definition immediately implies that Hm,κ = H−m,κ−1 . Moreover, Hermitian

adjoints of these operators are (Hm,κ)∗ = Hm̄,κ̄ and (Hν
0)∗ = Hν̄

0 (with the convention ∞̄ = ∞).
To prove it, let us consider functions f ∈ D(Hm,κ) and g ∈ D(Hm̄,κ̄). One has

(Hm,κ f ∣g) − ( f ∣Hm̄,κ̄g) = lim
x→0
(f̄ (x)∂xg(x) − g(x)∂x f̄ (x)).

By analysis of behavior of f and g near x = 0, we conclude that the Wronskian at 0 vanishes. Calculations for Hν
0 are analogous.

Thus, self-adjoint extensions of Lmin
m2 with m2 < 1 fall into the following three categories:

● Hm,κ with m ∈ ]0, 1[ and κ ∈ R ∪ {∞},
● Hm,κ with m ∈ iR+ and ∣κ∣ = 1, and
● Hν

0 with ν ∈ R ∪ {∞}.

In the second line, ∣κ∣ = 1 is a consequence of Hm,κ = H−m,κ−1 and (Hm,κ)∗ = Hm̄,κ̄.
Note that H 1

2 ,0 = H
−

1
2 ,∞ and H

−
1
2 ,0 = H 1

2 ,∞ are the Laplacians with the Dirichlet and Neumann boundary condition at 0, respectively.
They will be often denoted as HD and HN, respectively.

C. Point spectra
After this discussion, we are able to identify the point spectra of the above Hamiltonians, following, e.g., Ref. 7.

● For m ∈ ]0, 1[ and κ ∈ R ∪ {∞},

σp(Hm,κ) =
⎧⎪⎪⎨⎪⎪⎩
−4(κΓ(−m)

Γ(m) )
−1/m⎫⎪⎪⎬⎪⎪⎭

for κ ∈] −∞, 0[ ,

σp(Hm,κ) = ∅ for κ ∈ [0,∞].
(2.7)

● For m = imI ∈ iR+ and ∣κ∣ = 1,

σp(HimI ,κ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
−4 exp

⎛
⎜
⎝

arg( κΓ(−imI)

Γ(imI)
) + 2πn

mI

⎞
⎟
⎠
∣ n ∈ Z

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (2.8)
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It implies that for α < 0, the point spectrum of self-adjoint extensions of Lmin
α has infinitely many elements with accumulation points

at 0 and −∞.
● For ν ∈ R ∪ {∞},

σp(Hν
0) = {−4e2(ν−γ)}, ν ∈ R,

σp(H∞0 ) = ∅.
(2.9)

γ denotes the Euler constant. In all cases, bound-state solutions to the eigenvalue problem Hm,κψ = −k2ψ or Hν
0ψ = −k2ψ are of the

form

ψ(x) =
√

kxKm(kx) or
√

kxK0(kx), (2.10)

where k > 0 and Km(z) is the MacDonald function of order m.20 The proof can be found, e.g., in Sec. 5.2 of Ref. 7.

D. Renormalization group
Let us introduce the dilation (scaling) operator Uτ . It is a unitary transformation on L2(R+) acting on functions in the following way:

Uτ f (x) = eτ/2 f (eτx). (2.11)

We say that an operator B is homogeneous of degree n if

UτBU−τ = enτB.

Lmax
m and Lmin

m are homogeneous of degree −2. However, the realizations Hm,κ are homogeneous only for κ = 0 or κ = ∞. Realizations Hν
0 are

homogeneous only for ν = ∞. Moreover,7

UτHm,κU−τ = e−2τHm,e−2mτκ,

UτHν
0U−τ = e−2τHν+τ

0 .
(2.12)

Indeed, if f ∈ D(Hm,κ), then Uτ f ∈ D(Hm,e−2mτκ), and if f ∈ D(Hν
0), then Uτ f ∈ D(Hν+τ

0 ).
For the purpose of this article, the action of R ∋ τ ↦ Rτ defined in (1.5) can be called the renormalization group. In the set of self-adjoint

realizations of Lα, we have the following behaviors of the renormalization group flow:

● For α ≥ 1, the set is one point.
● For 0 < α < 1, there are two fixed points: attractive Hm,0 and repulsive Hm,∞. The former is the Friedrichs extension of Lmin

m2 , and the
latter is its Krein extension; see Refs. 7 and 21. (We choose m as the positive square root of α.)

● For α = 0, there is only one fixed point: H∞0 .
● For α < 0, there are no fixed points and the renormalization group generates a cyclic flow.

The names of the various phases can be treated as jokes. One can also try to justify them as follows. For α > 1, the space of realizations is
trivial. This is the simplest phase—hence the name “gas.” For α < 0, the continuous scaling symmetry is broken to a discrete subgroup, as in
crystals—this justifies the name “solid.” The intermediate situation 0 < α < 1 is, consequently, called the “liquid phase.”

III. “WILSONIAN APPROACH” TO INVERSE SQUARE POTENTIAL
In this section, we give a partly heuristic theory of Bessel operators in the spirit of the Wilsonian renormalization. We will mostly follow

the presentation of Ref. 16, preserving to a large extent its style and language. In Sec. IV, we give a rigorous description of all steps of this
section.

For a description of the Wilsonian renormalization procedure applied to quantum field theory, the reader can consult Refs. 23–25.
The main object of the analysis of Ref. 16 is the formal expression

L̃α,3ψ(p⃗) = ∣p⃗∣2ψ(p⃗) +
1

4π
(α − 1

4
)∫ d3q⃗

1
∣p⃗ − q⃗∣ψ(q⃗). (3.1)

Formally, it is the momentum representation of

Lα,3 ∶= −Δ3 + (α −
1
4
) 1

r2 , (3.2)

where Δ3 is the three-dimensional Laplacian and r is the radial coordinate.
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More precisely, if F f (p⃗) is the Fourier transform of f (x⃗), then

L̃α,3 ∶= FLα,3F −1. (3.3)

Let us note that the three-dimensional formulation is equivalent to the one-dimensional one. Indeed, every ψ ∈ L2(R3) can be written in
spherical coordinates r, ϑ,ϕ as

ψ =
∞

∑
l=0

l

∑
m=−l

Yl,m(ϑ,ϕ)1
r

f l,m(r),

where Y l,m are spherical harmonics. It follows that on l degree spherical harmonics, Lα,3 is equivalent to

−∂2
r + ((l + 1/2)2 + α − 1

2
) 1

r2 .

For further convenience, let us denote p ∶= ∣p⃗∣. We will restrict our attention to the s-wave sector, that is, to spherically symmetric
functions. In the s-wave sector, we can write ψ(p⃗) = ψ(p) with p ∶= ∣p⃗∣ and the operator [Eq. (3.1)] can be written in the following way [see
Eqs. (3) and (4) of Ref. 16]:

L̃αψ(p) = p2ψ(p) + (α − 1
4
)∫

∞

0
dq q2(θ(p − q)p−1 + θ(q − p)q−1)ψ(q), (3.4)

where θ(x) denotes the Heaviside step function and we dropped 3 from the subscript.
Unfortunately, (3.4) does not define a Hermitian operator. To find a self-adjoint realization, we introduce an ultraviolet cutoff Λ and a

counterterm fΛ
Λ . Thus, we consider a family of cutoff Hamiltonians,

H̃α(Λ, fΛ)ψ(p) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p2ψ(p) + ∫
Λ

0
dq q2(V(p, q) + fΛ

Λ
)ψ(q) for p ≤ Λ,

0 for p > Λ,
(3.5)

where

V(p, q) = (α − 1
4
)(θ(p − q)p−1 + θ(q − p)q−1). (3.6)

Let Ũ denote the dilation in the momentum representation, that is,

Ũ(τ)F = FU(τ). (3.7)

Note that in the momentum representation, the dilation acts in the opposite way than in the position representation,

Ũ(τ)ψ(p) = e−
3
2 τψ(e−τp). (3.8)

It is easy to see that

Ũ(τ)H̃α(Λ, fΛ)Ũ(−τ) = e−2τH̃α(eτΛ, fΛ). (3.9)

Thus, changing Λ can be interpreted as the change of a scale.
We would like to find out for what kind of dependence of fΛ on Λ we can expect the existence of a limit Hα(Λ, fΛ) for Λ→∞ as a

self-adjoint operator. To this end, we assume that we have a fixed eigenfunction ψ satisfying

Hα(Λ, fΛ)ψ(p) = Eψ(p), p < Λ. (3.10)

Following the terminology of Ref. 16, we will say that two Hamiltonians H̃m(Λ, fΛ) and H̃α(Λ′, fΛ′) are equivalent if

H̃α(Λ, fΛ)ψ(p) = H̃α(Λ′, fΛ′)ψ(p) for p < min(Λ,Λ′).

Two Hamiltonians are equivalent if the function γ(Λ) ≡ fΛ/Λ satisfies the following equation:

dγ(Λ)
dΛ

= [γ(Λ) − 1/4 − α
Λ
]

2

. (3.11)
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To prove it, we consider an infinitesimal reduction of the cutoff Λ→ Λ − dΛ. Let ψ be a solution of

H̃α(Λ, fΛ)ψ(p) = −k2ψ(p). (3.12)

By splitting the integral

∫
Λ

0
dq q2(V(p, q) + γ(Λ))ψ(q) ≈ ∫

Λ−dΛ

0
dq q2(V(p, q) + γ(Λ))ψ(q) + dΛ(V(p,Λ) + γ(Λ))ψ(Λ)

and using the relation resulting from Eqs. (3.5) and (3.12),

ψ(Λ) = − 1
k2 +Λ2∫

Λ

0
dq q2((α − 1

4
)Λ−1 + γ(Λ))ψ(q),

assuming the large cutoff k2 ≪ Λ2, we conclude that the Hamiltonian H̃α(Λ, fΛ) is equivalent to H̃α(Λ − dΛ, fΛ−dΛ) such that

H̃α(Λ − dΛ, fΛ−dΛ)ψ(p) ∶= p2ψ(p) + ∫
Λ−dΛ

0
dq q2(V(p, q) + γ(Λ − dΛ))ψ(q),

where

γ(Λ − dΛ) = γ(Λ) − dΛ[γ(Λ) − 1/4 − α
Λ
]

2

. (3.13)

Taking the limit dΛ→ 0, we obtain differential equation (3.11). Its solutions are of the form γ(Λ) = Λ−1 fΛ. Let us analyze the flow Λ→ fΛ.

● For α < 0, we set mI ∶=
√
−α,

fΛ = mI tan(arctan( fΛ0 −m2
I + 1/4

mI
) +mI log

Λ
Λ0
) +m2

I −
1
4

. (3.14)

There are no fixed points. Moreover, there is a discrete scaling symmetry: for any n ∈ Z, Hamiltonians H̃(Λ, fΛ) and
H̃(Λ ⋅ exp(πn/mI), fΛ) are equivalent.

● For α = 0,

fΛ =
fΛ0 + 1/4

1 − ( fΛ0 + 1/4) log Λ
Λ0

− 1
4

. (3.15)

There is one fixed point corresponding to fΛ0 = −1/4, for which Hamiltonians H̃m(Λ, fΛ0) are equivalent for all values of Λ.
● For α > 0, we set m ∶= √α > 0,

fΛ = −m tanh(−atanh( fΛ0 +m2 + 1/4
m

) +m log
Λ
Λ0
) −m2 − 1

4
. (3.16)

There are two fixed points: an attractive one f +Λ0
= −(m + 1

2)
2 and a repulsive one f −Λ0

= (m − 1
2)

2, for which Hamiltonians
H̃m(Λ, f ±Λ0

) are equivalent for all values of Λ.

We, thus, reproduce the three first pictures from Fig. 1.

IV. MOMENTUM APPROACH
A. Momentum approach to Schrödinger operators on Rd

Self-adjoint operators on L2(Rd) of the form
H = −Δ + V(x) (4.1)

are usually called Schrödinger operators. They are typically studied by methods of the configuration space. However, they can also be
approached from the momentum point of view.

We will typically use x ∈ Rd for the generic variable in the position representation and p ∈ Rd in the momentum representation. Let us
recall the two most common conventions for the Fourier transformation,

f̃ (p) ∶= ∫ e−ixp f (x)dx, (4.2)
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FIG. 1. Schematic illustration of the renormalization group flow on the spaces of self-adjoint realizations of Bessel operators. It is borrowed from Ref. 22. The heavy dots
represent fixed points. Letters K and F correspond to the Krein and Friedrichs extensions of Lmin

α . The dashed lines represent realizations with a single bound state. The
dotted line represents an infinite number of bound states. The arrow indicates the direction of the flow.

F f (p) ∶= (2π)−
d
2 ∫ e−ixp f (x)dx = (2π)−

d
2 f̃ (p). (4.3)

Note that F is unitary. Let H̃ denote the operator H in the momentum representation, that is,

H̃ ∶= FHF −1. (4.4)

If the potential V is well-behaved, then H̃ can be written as

H̃ψ(p) = p2ψ(p) + (2π)−d ∫ Ṽ(p − q)ψ(q)dq. (4.5)

B. Momentum approach to Schrödinger operators on R+
Often, we consider Schrödinger operators on a subset of Rd. Then, representation (4.5) becomes problematic because it needs to take

into account the boundary conditions. In addition, it is not obvious what should replace the Fourier transformation.
A case of particular interest is R+. In this case, we have two distinguished realizations of the one-dimensional Laplacian: the Dirichlet

Laplacian ΔD and the Neumann Laplacian ΔN. Instead of the Fourier transformation, it is natural to use the sine transformation FD or the
cosine transformation FN,

(FD f )(p) ∶=
√

2
π∫

∞

0
sin(px) f (x)dx, (4.6)

(FN f )(p) ∶=
√

2
π∫

∞

0
cos(px) f (x)dx. (4.7)

Both are involutions, that is,
F2

Dψ = F2
Nψ = ψ, (4.8)

and they are unitary and diagonalize the Dirichlet/Neumann Laplacian,

FD(−ΔD)FDψ(p) = p2ψ(p), (4.9)

FN(−ΔN)FNψ(p) = p2ψ(p). (4.10)

Consider now a Schrödinger operator on the half-line with a potential V . Let us first assume that V is sufficiently regular, say, V ∈ L1(R+).
Then, one can impose the Dirichlet or Neumann boundary conditions at 0 so that one has two Schrödinger operators,

HD ∶= −ΔD + V(x), (4.11)
HN ∶= −ΔN + V(x). (4.12)

As suggested in Eqs. (4.9) and (4.10), to obtain their momentum versions, it is natural to apply the sine transform to the first and the cosine
transform to the second Hamiltonian,

H̃D ∶= FDHDFD, (4.13)
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H̃N ∶= FNHNFN. (4.14)

Let us extend the potential V to an even function on the whole R so that V(−x) = V(x). Let Ṽ(p) be the Fourier transform of V , as in
(4.2). Then, (4.13) and (4.14) are given by the following expressions, which easily follow from (4.5) and (A7):

H̃Dψ(p) = p2ψ(p) + 1
2π∫

∞

0
(Ṽ(p − q) − Ṽ(p + q))ψ(q)dq, (4.15)

H̃Nψ(p) = p2ψ(p) + 1
2π∫

∞

0
(Ṽ(p − q) + Ṽ(p + q))ψ(q)dq. (4.16)

C. Minimal realization in the momentum approach
A priori it is not obvious which transformation is more appropriate for the Bessel operator: the sine or the cosine transformation. Let us

consider both, setting

L̃α,D ∶= FDLαFD, (4.17)

L̃α,N ∶= FNLαFN (4.18)

(where, as before, Lα is treated as a formal expression).
Then, using −π∣p∣ as the Fourier transform of 1

x2 , (4.15) and (4.16) yield

L̃α,Dψ(p) = p2ψ(p) + (α − 1
4
)∫

∞

0
(θ(p − q)q + θ(q − p)p)ψ(q)dq, (4.19)

L̃α,Nψ(p) = p2ψ(p) − (α − 1
4
)∫

∞

0
(θ(p − q)p + θ(q − p)q)ψ(q)dq. (4.20)

So far, we have treated L̃α,D and L̃α,N as formal expressions. We would like to make them well defined, first in the “minimal sense.”
In the position representation, an easy way to make the expression Lα well defined was to restrict its domain to C∞c (R+), which after the

closure led to the minimal realization. Of course, it was not necessary to demand that the support is away from zero; however, functions in the
domain should have vanished of an appropriate order at zero. In the momentum representation, it is useful to restrict the domain to rapidly
decaying functions—in the position representation, this guarantees the smoothness. On the position side, this also guarantees that even/odd
derivatives at zero vanish in the Dirichlet and Neumann case, respectively; see (A14). This does not suffice—in addition, we need to impose
conditions that on the position side yield vanishing first/zeroth derivatives. Thus, we introduce the following spaces (see the Appendix):

L2,∞
j (R+) ∶= {ψ ∈ L2,∞(R+) ∣ ∫

∞

0
∣ψ(p)∣2pndp < ∞, n = 0, 1, . . . ; ∫

∞

0
ψ(p)p jdp = 0}, j = 0, 1. (4.21)

Theorem 4.1. 1. The operator L̃α,D given by formula (4.19) restricted to L2,∞
1 (R+) is well defined and closable. Let us denote its closure by

L̃min
α,D . We, then, have

L̃min
α,D ∶= FDLmin

α FD. (4.22)

2. The operator L̃α,N given by formula (4.20) restricted to L2,∞
0 (R+) is well defined and closable. Let us denote its closure by L̃min

α,N . Then, we
have

L̃min
α,N ∶= FNLmin

α FN. (4.23)

Proof. Consider first the Dirichlet case. Let ψ ∈ L2,∞
1 (R+) and x > 0. Consider

ϕ(p) ∶= ∫
∞

0
(θ(p − q)q + θ(q − p)p)ψ(q)dq = ∫

∞

p
(p − q)ψ(q)dq, (4.24)

where in the last transition, we used the property of Eq. (4.21). Clearly, ϕ(0) = 0 and lim
p→∞

ϕ(p) = 0. Moreover,
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ϕ′(p) = ∫
∞

p
ψ(q)dq (4.25)

and lim
p→∞

ϕ′(p) = 0. We can integrate twice obtaining

∫
∞

0
sin(px)ϕ(p)dp = 1

x∫
∞

0
cos(px)ϕ′(p)dp (4.26)

= 1
x2∫

∞

0
sin(px)ψ(p)dp. (4.27)

By (A15),

∫
∞

0
sin(px)p2ϕ(p)dp = −∂2

x∫
∞

0
sin(px)ϕ(p)dp. (4.28)

Therefore,
FDL̃α,Dψ = LαFDψ. (4.29)

Thus, FDL̃α,DFD coincides with Lα on FDL2,∞
1 (R+).

Suppose now that ϕ = FDψ with ψ ∈ L2,∞
1 (R+). We have ϕ(n)(0) = 0, n = 0, 2, . . . [by (A14) because ψ ∈ L2,∞(R+)]. Moreover, ϕ′(0) = 0

[by (A16) because
∞

∫
0

pψ(p)dp = 0]. Hence, ϕ(x) = O(x3).

Let χ, ξ ∈ C∞(R+), χ = 1, ξ = 0 near 0 and χ = 0, ξ = 1 near∞. Set ϕϵ(x) ∶= χ(x/ϵ)ξ(xϵ)ψ(x). Then, we easily show that ∥Lα(ϕ − ϕϵ)∥2

+ ∥ϕ − ϕϵ∥2 → 0 as ϵ→ 0. Clearly, ϕϵ ∈ C∞c (R+). Therefore, FDL2,∞
1 (R+) ⊂ D(Lmin

α ).
Clearly, C∞c (R+) ⊂ FDL2,∞

1 (R+). Therefore, FDL2,∞
1 (R+) is dense in D(Lmin

α ).
This proves that the closure of FDL̃α,DFD restricted to FDL2,∞

1 (R+) coincides with Lmin
α .

Consider next the Neumann case. Let ψ ∈ L2,∞
0 (R+). Consider

ϕ(p) ∶= ∫
∞

0
dq(θ(p − q)p + θ(q − p)q)ψ(q) = ∫

∞

p
(q − p)ψ(q)dq. (4.30)

Clearly, lim
p→∞

ϕ(p) = 0. Moreover,

ϕ′(p) = ∫
p

0
ψ(q)dq (4.31)

and ϕ′(p) = 0, lim
p→∞

ϕ′(p) = 0. We can integrate twice obtaining

∫
∞

0
cos(px)ϕ(p)dp = −1

x∫
∞

0
sin(px)ϕ′(p)dp (4.32)

= − 1
x2∫

∞

0
cos(px)ψ(p)dp. (4.33)

Clearly,

∫
∞

0
cos(px)p2ϕ(p)dp = −∂2

x∫
∞

0
cos(px)ϕ(p)dp. (4.34)

Therefore,
FNL̃α,Nψ = LαFNψ. (4.35)

Thus, FNL̃α,NFN coincides with Lα on FNL2,∞
0 (R+).

Suppose now that ϕ = FNψ with ψ ∈ L2,∞
0 (R+). We have ϕ(n)(0) = 0, n = 1, 3, . . . [because ψ ∈ L2,∞(R+)]. Moreover, ϕ(0) = 0 [because

∞

∫
0
ψ(p)dp = 0]. Hence, ϕ(x) = O(x2).

The remaining arguments are the same as in the Dirichlet case. ◻

D. Maximal realization in the momentum approach
In this subsection, we present a construction of the maximal operator Lmax

α for α < 1. The construction involves two steps:

1. the choice of two vectors that together with D(Lmin
α ) spans D(Lmax

α );
2. the action of Lmax

α on these two vectors.
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We will first describe the construction for the generic case α ≠ 1
4 . Let α < 1 and α = m2. As we remember, if α ≠ 0, elements of D(Lmax

α )
behave like c+x1/2+m + c−x1/2−m as x → 0. By (A18) and (A19), the sine and cosine transforms of x

1
2±m are proportional to p−

3
2∓m. This suggests

to enlarge the domain of the minimal operators by functions that behave like p−
3
2∓m as p→∞. However, we cannot simply take p−

3
2∓m

because they are not square integrable near zero. This complicates the whole story. (For α = 0, additionally, we need to modify all this using
the logarithm.)

More precisely, let us fix ψ±m,D, ψ±m,N, ψlog,D, and ψlog,N as functions in L2(R+) satisfying the following condition: there exists Λ0 > 0
such that

p > Λ0 ⇒ ψ±m,D(p) = p−
3
2∓m, ∫

Λ0

0
ψ±m,D(q)qdq = Λ

1
2∓m
0

1
2 ∓m

, m ≠ ±1
2

, (4.36)

p > Λ0 ⇒ ψlog,D(p) = p−
3
2 log(p), ∫

Λ0

0
ψlog,D(q)qdq = −4Λ

1
2
0 + 2Λ

1
2
0 logΛ0, (4.37)

p > Λ0 ⇒ ψ±m,N(p) = p−
3
2∓m, ∫

Λ0

0
ψ±m,N(q)dq = Λ−

1
2∓m

0

− 1
2 ∓m

, m ≠ ∓1
2

, (4.38)

p > Λ0 ⇒ ψlog,N(p) = p−
3
2 log(p), ∫

Λ0

0
ψlog,N(q)dq = −4Λ−

1
2

0 − 2Λ−
1
2

0 logΛ0. (4.39)

Note that (4.36) and (4.38) imply

Λ > Λ0 ⇒∫
Λ

0
ψ±m,D(q)qdq = Λ

1
2∓m

1
2 ∓m

, m ≠ ±1
2

, (4.40)

Λ > Λ0 ⇒∫
Λ

0
ψlog,D(q)qdq = −4Λ

1
2 + 2Λ

1
2 logΛ, (4.41)

Λ > Λ0 ⇒∫
Λ

0
ψ±m,N(q)dq = Λ−

1
2∓m

− 1
2 ∓m

, m ≠ ∓1
2

, (4.42)

Λ > Λ0 ⇒∫
Λ

0
ψlog,N(q)dq = −4Λ−

1
2 − 2Λ−

1
2 logΛ. (4.43)

We set

D(L̃max
α,D ) ∶= D(L̃min

α,D ) +Cψm,D +Cψ−m,D, α ≠ 1
4

, (4.44)

D(L̃max
0,D ) ∶= D(L̃min

0,D ) +Cψ0,D +Cψlog,D, (4.45)

D(L̃max
α,N ) ∶= D(L̃min

α,N ) +Cψm,N +Cψ−m,N, α ≠ 1
4

, (4.46)

D(L̃max
0,N ) ∶= D(L̃min

0,N ) +Cψ0,N +Cψlog,N. (4.47)

Clearly, the difference of two functions satisfying (4.36), (4.37), (4.38), or (4.39) belongs to L2,∞
1 (R+) and L2,∞

0 (R+), respectively. Therefore,
(4.44), (4.46), (4.45), and (4.47) do not depend on the choices of ψ±m,D and ψ±m,N.

Formulas (4.19) and (4.20) are, in general, ill-defined on (4.44), (4.46), (4.45), and (4.47) because the integrals can be divergent at∞. In
order to define the maximal operators in the momentum representation, we note that every ψ in D(L̃max

α,D ) or in D(L̃max
α,N ) behaves like

ψ(p) ∼ c̃+p−
3
2−m + c̃−p−

3
2+m, p→∞, (4.48)

and ψ(p) ∼ c̃+p−
3
2 log(p) + c̃−p−

3
2 , p→∞, (4.49)

respectively, for some uniquely defined c̃+, c̃−. Then, for α ≠ 1
4 , we set

L̃max
α,D ψ(p) = p2ψ(p) + (α − 1

4
) lim
Λ→∞

⎛
⎝∫

Λ

0
dq(θ(p − q)q + θ(q − p)p)ψ(q) + c̃+pΛ−

1
2−m

1
2 +m

+ c̃−pΛ−
1
2+m

1
2 −m

⎞
⎠

, (4.50)

L̃max
0,D ψ(p) = p2ψ(p) − 1

4
lim
Λ→∞
(∫

Λ

0
dq(θ(p − q)q + θ(q − p)p)ψ(q) + c̃+p(4Λ−

1
2 + 2Λ−

1
2 logΛ) + 2c̃−pΛ−

1
2 ), (4.51)
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L̃max
α,N ψ(p) = p2ψ(p) − (α − 1

4
) lim
Λ→∞

⎛
⎝∫

Λ

0
dq(θ(p − q)p + θ(q − p)q)ψ(q) − c̃+Λ

1
2−m

1
2 −m

− c̃−Λ
1
2+m

1
2 +m

⎞
⎠

, (4.52)

L̃max
0,N ψ(p) = p2ψ(p) + 1

4
lim
Λ→∞
(∫

Λ

0
dq(θ(p − q)p + θ(q − p)q)ψ(q) + c̃+(4Λ

1
2 − 2Λ

1
2 logΛ) − 2c̃−Λ

1
2 ). (4.53)

Note that in the Dirichlet case with α < 1
4 [and hence ∣Re(m)∣ < 1

2 ], both counterterms in (4.50) are not necessary—they go to zero and
the integrals are convergent. However, in all other cases, at least one counterterm is needed.

Theorem 4.2. Let α < 1 and α ≠ 1
4 . The operators L̃max

α,D and L̃max
α,N are well-defined closed operators. We have

L̃max
α,D ∶= FDLmax

α FD, (4.54)

L̃max
α,N ∶= FNLmax

α FN. (4.55)

Proof. Consider first the Dirichlet case. It is enough to consider ψ = ψ±m,D,

p2ψ(p) + (α − 1
4
) lim
Λ→∞

⎛
⎝∫

Λ

0
dq(θ(p − q)q + θ(q − p)p)ψ(q) + pΛ−

1
2∓m

1
2 ±m

⎞
⎠

(4.56)

= p2ψ(p) + (α − 1
4
) lim
Λ→∞

⎛
⎝∫

Λ

p
dq(p − q)ψ(q) + pΛ−

1
2∓m

1
2 ±m

+ Λ
1
2∓m

1
2 ∓m

⎞
⎠

(4.57)

= p2(ψ(p) − p−
3
2∓m) + (α − 1

4
)∫

∞

p
dq(p − q)(ψ(q) − q−

3
2∓m). (4.58)

Thus, L̃max
α,D ψ(p) is well defined.

Using Lemma A.2 1 and (4.57), we show that for x > 0, possibly in the sense of an oscillatory integral,

√
2
π∫

∞

0
sin(px)(L̃max

α,D ψ)(p)dp (4.59)

=(−∂2
x + (α −

1
4
) 1

x2 )
√

2
π∫

∞

0
sin(px)ψ(p)dp, (4.60)

which proves (4.75).
The Neumann case is analogous. It is enough to consider ψ = ψ±m,N,

p2ψ(p) − (α − 1
4
) lim
Λ→∞

⎛
⎝∫

Λ

0
dq(θ(p − q)p + θ(q − p)q)ψ(q) − Λ

1
2∓m

1
2 ∓m

⎞
⎠

(4.61)

= p2ψ(p) + (α − 1
4
) lim
Λ→∞

⎛
⎝∫

Λ

p
dq(p − q)ψ(q) + pΛ−

1
2∓m

1
2 ±m

+ Λ
1
2∓m

1
2 ∓m

⎞
⎠

(4.62)

= p2(ψ(p) − p−
3
2∓m) + (α − 1

4
)∫

∞

p
dq(p − q)(ψ(q) − q−

3
2∓m). (4.63)

Thus, L̃max
α,N ψ(p) is well defined.

Using Lemma A.2 2 and (4.62), we show that for x > 0,

√
2
π∫

∞

0
cos(px)(L̃max

α,N ψ)(p)dp (4.64)

=(−∂2
x + (α −

1
4
) 1

x2 )
√

2
π∫

∞

0
cos(px)ψ(p)dp, (4.65)

which proves (4.76). The special case m = 0 is proven in an analogous way. ◻
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Let us remark that the “kinetic terms” for p−
3
2±m, that is, p2p−

3
2±m, are never square integrable for ∣m∣ < 1. Therefore, to obtain an element

of L2, one needs to balance them with the integral terms.
Consider now α = 1

4 and m = 1
2 . In the position space, this corresponds to the free Schrödinger operator on the half-line and the descrip-

tion of the maximal operator is straightforward. In the momentum space, the situation is more problematic. The previous construction does
not work.

Introduce the space

L2,2(R+) ∶= {ψ ∈ L2(R+) ∣ ∫
∞

0
∣ψ(p)∣2p4dp < ∞}. (4.66)

Let us choose ψD,ψN ∈ L2(R+) satisfying the following condition: there exists Λ0 > 0 such that

p > Λ0 ⇒ ψD(p) = p−1, (4.67)

p > Λ0 ⇒ ψN(p) = p−2. (4.68)

We set

D(L̃max
1
4 ,D) ∶= L2,2(R+) +CψD, (4.69)

D(L̃max
1
4 ,N) ∶= L2,2(R+) +CψN. (4.70)

Thus, every ψ in D(L̃max
1
4 ,D) or in D(L̃max

1
4 ,N) behaves like

ψ(p) ∼ c̃p−1, p→∞, (4.71)

and ψ(p) ∼ c̃p−2, p→∞, (4.72)

respectively, for some uniquely defined c̃. Then, we set

L̃max
1
4 ,Dψ(p) = p2(ψ(p) − c̃p−1) (4.73)

and L̃max
1
4 ,Nψ(p) = p2(ψ(p) − c̃p−2), (4.74)

respectively. Now, we can extend Theorem 4.2 to α = 1
4 .

Theorem 4.3. The operators L̃max
1
4 ,D and L̃max

1
4 ,D are well defined and closed. We have

L̃max
1
4 ,D ∶= FDLmax

1
4

FD, (4.75)

L̃max
1
4 ,N ∶= FNLmax

1
4

FN. (4.76)

Proof. First, we note that

L̃max
1
4 ,D ∣L2,2(R+)

= L̃max
1
4 ,N ∣L2,2(R+)

(4.77)

coincides with the multiplication by p2 and also with FDHDFD and FNHNFN.
Let ϵ > 0. We set

ϕϵ(x) = e−ϵx, (4.78)

which belongs to D(Lmax
1
4
) but does not belong to D(HD) or D(HN). We have

√π
2
FDϕϵ(p) =

p
p2 + ϵ2 =: ψD,ϵ(p) ∈ p−1 + L2,2(R+), (4.79)

1
ϵ

√π
2
FNϕϵ(p) =

1
p2 + ϵ2 =: ψN,ϵ(p) ∈ p−2 + L2,2(R+). (4.80)

Clearly, Lmax
1
4
ϕϵ = −ϵ2ϕϵ, and hence,

J. Math. Phys. 63, 013504 (2022); doi: 10.1063/5.0057088 63, 013504-14

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

FDLmax
1
4

FDψD,ϵ(p) = −ϵ2ψD,ϵ(p) = −p + p2ψD,ϵ(p), (4.81)

FNLmax
1
4

FNψN,ϵ(p) = −ϵ2ψN,ϵ(p) = −1 + p2ψN,ϵ(p). (4.82)

Therefore, ψD,ϵ(p) and ψN,ϵ(p) satisfy (4.73) and (4.74), respectively. ◻

E. Self-adjoint realizations in the momentum approach I
As announced in the Introduction, we will now describe two constructions of self-adjoint realizations of Bessel operators in the momen-

tum approach. In this subsection, we describe the first, which we called “mathematicians’ approach.” It involves selecting an appropriate
domain inside the maximal domain.

We will first discuss the case α ≠ 1
4 . Assume that α < 1 and m2 = α. Let ξ̃ ∈ C∞(R+) such that ξ̃ = 1 near ∞. Let κ̃, ν̃ ∈ C. Clearly, the

following subspaces do not depend on the choice of ξ̃:

D(H̃m,κ̃,D/N) ∶= {g ∈ D(L̃max
m2 ,D/N) ∣ for some c ∈ C g(p) − cξ̃(p)(p−3/2−m + κ̃p−3/2+m) ∈ D(L̃min

m2 ,D/N)},

D(H̃m,∞,D/N) := {g ∈ D(L̃max
m2 ,D/N) ∣ for some c ∈ C g(p) − cξ̃(p)p−3/2+m ∈ D(L̃min

m2 ,D/N)},

D(H̃ν̃
0,D/N) ∶= {g ∈ D(L̃max

0,D/N) ∣ for some c ∈ C g(p) − cξ̃(p)(p−3/2 ln p + ν̃p−3/2) ∈ D(L̃min
0,D/N)},

D(H̃∞0,D/N) ∶= {g ∈ D(L̃max
0,D/N) ∣ for some c ∈ C g(p) − cξ̃(p)p−3/2 ∈ D(L̃min

0,D/N)}.

We define the operators H̃m,κ̃,D, H̃m,κ̃,N, H̃ν̃
m,D, and H̃ν̃

m,N to be the operators L̃max
m2 ,D and L̃max

m2 ,N restricted to the domains described above.

Theorem 4.4. Let m2 < 1 and m ≠ ± 1
2 . The above defined operators are self-adjoint in the following situations:

● H̃m,κ̃,D, H̃m,κ̃,N for m ∈ ]−1, 1[/{0} and κ̃ ∈ R ∪ {∞},
● H̃m,κ̃,D, H̃m,κ̃,N for m ∈ iR/{0} and ∣κ̃∣ = 1, and
● H̃ν̃

0,D, H̃ν̃
0,N for ν ∈ R ∪ {∞}.

In addition, denoting by γ the Euler constant, we have

FDHm,κFD = H̃m,κ̃D ,D, κ̃D =
sin( π4 +

πm
2 )Γ(−

1
2 −m)

sin( π4 −
πm
2 )Γ(−

1
2 +m)

κ, (4.83)

FNHm,κFN = H̃m,κ̃N ,N, κ̃N =
cos( π4 +

πm
2 )Γ(−

1
2 −m)

cos( π4 −
πm
2 )Γ(−

1
2 +m)

κ, (4.84)

FDHν
0FD = H̃ν̃D

0,D, ν̃D = −ν − 2 + γ + π
2
+ log 4, (4.85)

FNHν
0FN = H̃ν̃N

0,N, ν̃N = −ν − 2 + γ − π
2
+ log 4. (4.86)

Proof. The equalities above follow from sine and cosine transforms (A18) and (A19) and definition (2.6). The limiting case m = 0 is
obtained by considering the limit m→ 0 with κ = −1 + 2mν and κ̃D/N = −1 − 2mν̃D/N. [Note that for m→ 0, one has (−1 + 2mν)x−m + xm

∼ −2m(ν + log x).] Integration by parts shows that on considered domains, the discussed operators are, indeed, self-adjoint. ◻

The case α = 1
4 needs a separate treatment. Let κ ∈ R ∪ {0}, κ ≠ 0. Choose functions ψD,κ ,ψD,κ ∈ L2(R+) satisfying the following

conditions:

p > Λ0 ⇒ ψD,κ(p) = p−1, ∫
∞

0
p(ψD,κ(p) − p−1)dp = π

2κ
, (4.87)

p > Λ0 ⇒ ψN,κ(p) = p−2, ∫
∞

0
ψN,κ(p)dp = − π

2κ
. (4.88)

(The underline below κ is meant to stress a different role of κ in the case α = 1
4 than that of κ̃ for α ≠ 1

4 .) We set

D(H̃ 1
2 ,0,D) ∶= L2,2(R+), (4.89)

D(H̃ 1
2 ,κ ,D) ∶= D(L̃

min
1
4 ,D) +CψD,κ , κ ≠ 0, (4.90)
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D(H̃
−

1
2 ,κ ,D) ∶= D(H̃± 1

2 ,κ−1 ,D), (4.91)

D(H̃
−

1
2 ,0,N) ∶= L2,2(R+), (4.92)

D(H̃
−

1
2 ,κ ,N) ∶= D(L̃

min
1
4 ,N) +CψN,κ , κ ≠ 0, (4.93)

D(H̃ 1
2 ,κ ,N) ∶= D(H̃− 1

2 ,κ−1 ,N). (4.94)

We define H̃
±

1
2 ,κ ,D and H̃

±
1
2 ,κ ,N to be the restrictions of L̃

±
1
4 ,D and L̃

±
1
4 ,N, respectively, to the corresponding domains specified above.

Theorem 4.5. For κ ∈ R ∪ {∞}, the above operators are self-adjoint and

FDH
±

1
2 ,κFD = H̃

±
1
2 ,κ ,D, (4.95)

FNH
±

1
2 ,κFN = H̃

±
1
2 ,κ ,N. (4.96)

Proof. It is enough to show

FDH 1
2 ,κFD = H̃ 1

2 ,κ ,D, (4.97)

FNH
−

1
2 ,κFN = H̃

−
1
2 ,κ ,N (4.98)

for κ ≠ 0.
Let us first consider the case κ < 0, which is simpler. Every function in D(H 1

2 ,κ) = D(H− 1
2 ,1/κ) can be unambiguously written as a sum of

an element of the minimal domain and ce−ϵx, where ϵ = −1/κ > 0 and c ∈ C. The sine transform of e−ϵx is proportional to p
p2+ϵ2 . Now,

∫
∞

0
(p

p
p2 + ϵ2 − 1)dp = −ϵπ

2
= π

2κ
. (4.99)

Hence, p
p2+ϵ2 belongs to D(H̃ 1

2 ,κ ,D).
The cosine transform of e−ϵx is proportional to 1

p2+ϵ2 , and

∫
1

p2 + ϵ2 dp = π
2ϵ
= − π

2κ
. (4.100)

Hence, 1
p2+ϵ2 belongs to D(H̃

−
1
2 ,κ ,N).

To obtain the analogous decomposition of vectors from D(H 1
2 ,κ) = D(H− 1

2 ,1/κ) for κ > 0 and κ = ∞, we consider a function 2e−x − e−δx

for δ ≥ 2. Near x = 0, it behaves like 1 + (δ − 2)x so that it is an element ofD(H 1
2 ,κ) = D(H− 1

2 ,1/κ) for κ = 1
δ−2 . Its sine transform is proportional

to 2 p
p2+1 −

p
p2+δ2 , and

∫
∞

0
(2

p
p2 + 1

− p
p2 + δ2 − 1) = π

2
(δ − 2) = π

2κ
. (4.101)

Its cosine transform is proportional to 2 1
p2+1 −

1
p2+δ2 , and

∫
∞

0
(2

1
p2 + 1

− 1
p2 + δ2 ) =

π
2
(2 − δ) = − π

2κ
. (4.102)

The case κ = 0 is treated in the same way by taking, e.g., e−x − e−2x. ◻
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F. Self-adjoint realizations in the momentum approach II
We will now present what we called “physicists’ style construction” of self-adjoint Bessel operators. As discussed in the Introduction, this

construction can be viewed as a “toy illustration” of the Wilsonian renormalization group. It will be valid for all α < 1, including α = 1
4 .

The first step of “physicists’ construction” is imposing a cutoff on (4.19) and (4.20),

L̃α,D(Λ)ψ(p) ∶= θ(Λ − p)(p2ψ(p) + (α − 1
4
)∫

Λ

0
(θ(p − q)q + θ(q − p)p)ψ(q)dq), (4.103)

L̃α,N(Λ)ψ(p) ∶= θ(Λ − p)(p2ψ(p) − (α − 1
4
)∫

Λ

0
(θ(p − q)p + θ(q − p)q)ψ(q)dq). (4.104)

Note that (4.103) and (4.104) are bounded and self-adjoint. We also need counterterms, which will be proportional to the following rank-one
operators:

KD(Λ)ψ(p) ∶= θ(Λ − p)∫
Λ

0
pqψ(q)dq, (4.105)

KN(Λ)ψ(p) ∶= θ(Λ − p)∫
Λ

0
ψ(q)dq. (4.106)

To gain the intuition about the above operators, let us note that for a large class of functions ψ,

lim
Λ→∞
(FDψ∣KD(Λ)FDψ) =

1
2π
∣ψ′(0)∣2, (4.107)

lim
Λ→∞
(FNψ∣KN(Λ)FNψ) =

1
2π
∣ψ(0)∣2. (4.108)

We have already noted an important role played by the dilation in the position representation. In principle, we have two kinds of momen-
tum representations—obtained by the sine and cosine transformation. The dilation coincides for both kinds of the momentum representation,
and it will be denoted by Ũ(τ),

Ũ(τ) = FDU(τ)F −1
D = FNU(τ)F −1

N . (4.109)

Note that it acts in the opposite way than in the position representation,

Ũ(τ)ψ(p) = e−
1
2 τψ(e−τp). (4.110)

It is easy to see that

Ũ(τ)L̃α,D(Λ)Ũ(−τ) = e−2τL̃α,D(eτΛ), Ũ(τ)KD(Λ)Ũ(−τ) = e−3τKD(eτΛ), (4.111)

Ũ(τ)L̃α,N(Λ)Ũ(−τ) = e−2τ L̃α,N(eτΛ), Ũ(τ)KN(Λ)Ũ(−τ) = e−τKN(eτΛ). (4.112)

We still need to multiply KD and KN by cutoff-dependent (“running”) coupling constants. (4.111) and (4.112) suggest to write these
coupling constants as fΛ

Λ and ΛgΛ, respectively. Thus, we expect that for suitably chosen functions Λ↦ fΛ, gΛ, the following operators
approximate our Hamiltonians:

L̃α,D(Λ) +
fΛ
Λ

KD(Λ), (4.113)

L̃α,N(Λ) +ΛgΛKN(Λ). (4.114)

Let us guess the dependence of fΛ and gΛ on the cut-off Λ. Assume that for large momenta, ψ(p) ∼ p−
3
2−m + κ̃p−

3
2+m. Acting with (4.113)

and (4.114) on ψ for large p < Λ, we obtain the following leading-order dependence on the cutoff:

(L̃α,D(Λ) +
fΛ
Λ

KD(Λ))ψ(p) (4.115)

∼p(m2 − 1
4
)
⎛
⎝

Λ−
1
2−m

(− 1
2 −m)

+ κ̃ Λ−
1
2+m

(− 1
2 +m)

⎞
⎠
+ p fΛ

⎛
⎝
Λ−

1
2−m

( 1
2 −m)

+ κ̃ Λ−
1
2+m

( 1
2 +m)

⎞
⎠

, (4.116)

(L̃α,N(Λ) +ΛgΛKN(Λ))ψ(p) (4.117)

∼ − (m2 − 1
4
)
⎛
⎝

Λ
1
2−m

( 1
2 −m)

+ κ̃ Λ
1
2+m

( 1
2 +m)

⎞
⎠
+ gΛ
⎛
⎝

Λ
1
2−m

( 1
2 +m)

+ κ̃ Λ
1
2+m

( 1
2 −m)

⎞
⎠

. (4.118)
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Demanding that (4.116) and (4.118) vanish yields

fm,κ̃,Λ = −
(( 1

2 −m)Λ−m + κ̃( 1
2 +m)Λm)

(( 1
2 −m)−1Λ−m + κ̃( 1

2 +m)−1Λm)
(4.119)

= −1
4
−m2 −m tanh(m log(Λ/λD)), λ−2m

D =
( 1

2 −m)
( 1

2 +m)
κ̃, (4.120)

gm,κ̃,Λ = −
(( 1

2 +m)Λ−m + κ̃( 1
2 −m)Λm)

(( 1
2 +m)−1Λ−m + κ̃( 1

2 −m)−1Λm)
(4.121)

= −1
4
−m2 +m tanh(m log(Λ/λN)), λ−2m

N =
( 1

2 +m)
( 1

2 −m)
κ̃. (4.122)

It is easy to check that gm,κ̃,Λ can be obtained from fm,κ̃,Λ by changing m→ −m and Λ→ Λ−1. In terms of an initial value at the scale Λ0, we
can write

fm,κ̃,Λ = −
1
4
−m2 −m

(( 1
2 −m)2 + fΛ0)Λ2m + (( 1

2 +m)2 + fΛ0)Λ2m
0

−(( 1
2 −m)2 + fΛ0)Λ2m + (( 1

2 +m)2 + fΛ0)Λ2m
0

, (4.123)

gm,κ̃,Λ = −
1
4
−m2 +m

(( 1
2 +m)2 + gΛ0)Λ2m + (( 1

2 −m)2 + gΛ0)Λ2m
0

−(( 1
2 +m)2 + gΛ0)Λ2m + (( 1

2 −m)2 + gΛ0)Λ2m
0

. (4.124)

For m = 0, the parameter κ̃ does not work. Applying the de l’Hôpital rule with κ̃ = −1 − 2mν̃, we obtain

f ν̃0,Λ = −
(logΛ + ν̃ + 2)

4(logΛ + ν̃ − 2) , (4.125)

g ν̃0,Λ = −
(logΛ + ν̃ − 2)

4(logΛ + ν̃ + 2) . (4.126)

Note that (for both m ≠ 0 and m = 0) fΛ and gΛ satisfy the differential equations

Λ
d

dΛ
fΛ = ( fΛ +

1
4
+m2)

2
−m2, (4.127)

Λ
d

dΛ
gΛ = −(gΛ +

1
4
+m2)

2
+m2. (4.128)

The above heuristic analysis can be transformed into the following rigorous statement:

Theorem 4.6. Let m2 < 1. Let fΛ and gΛ be solutions of equations (4.127) and (4.128), respectively. Then, the bounded self-adjoint
operators

L̃m2 ,D(Λ) +
fΛ
Λ

KD(Λ), (4.129)

L̃m2 ,N(Λ) +ΛgΛKN(Λ) (4.130)

converge as Λ→∞ to one of the self-adjoint realizations of Bessel operators L̃m2 in the strong resolvent sense.
In particular, for m2 ≠ 1

4 , take fΛ = fm,κ̃,D and gΛ = gm,κ̃,N as in (4.123) and (4.125), and (4.124) and (4.126), respectively. Then, these limits
are H̃m,κ̃,D and H̃m,κ̃,N, respectively.

Proof. The proof will be based on Theorem VIII.25 (a) from Ref. 26. Let {An}∞n=1 and A be self-adjoint operators, and suppose that D is
a common core for all An and A. If Anϕ→ Aϕ for each ϕ ∈ D, then An → A in the strong resolvent sense.

We start with the case m2 ≠ 1
4 so that we can assume that fΛ = fm,κ̃,D and gΛ = gm,κ̃,N. We can also use the description of maximal operators

and self-adjoint realizations of Theorem 4.4.
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Consider first the Dirichlet case. Fix vectors ψ±m,D, as in (4.36). We will use the space

D = L2,∞
1 (R+) +C(ψm,D + κ̃ψ−m,D), (4.131)

which is a core of H̃m,κ̃,D. If ψmin ∈ L2,∞
1 (R+), then clearly

L̃m2 ,D(Λ)ψmin Ð→
Λ→∞

L̃min
m2 ,Dψmin = H̃m,κ̃,Dψmin. (4.132)

Moreover,
KD(Λ)ψmin(p) = −θ(Λ − p)p∫

∞

Λ
qψmin(q)dq. (4.133)

Now, fm,κ̃,Λ is uniformly bounded,

∫
∞

Λ
qψmin(q)dq = O(Λ−∞), (∫

∞

0
θ(Λ − p)p2dp)

1
2
= O(Λ

3
2 ). (4.134)

Therefore,
fm,κ̃,Λ

Λ
KD(Λ)ψmin Ð→

Λ→∞
0. (4.135)

Now, consider ψ ∶= ψm,D + κ̃ψ−m,D. Remember that fΛ is chosen such that (4.116) is 0. Therefore, for large enough Λ,

fΛ
Λ

KD(Λ)ψ(p) = θ(Λ − p) fΛ
Λ

p
⎛
⎝

Λ
1
2−m

( 1
2 −m)

+ κ̃ Λ
1
2+m

( 1
2 +m)

⎞
⎠

(4.136)

= θ(Λ − p)(m2 − 1
4
)p
⎛
⎝

Λ−
1
2−m

(− 1
2 −m)

+ κ̃ Λ−
1
2+m

(− 1
2 +m)

⎞
⎠

. (4.137)

Hence,

(L̃m2 ,D(Λ) +
fm,κ̃,Λ

Λ
)ψ(p) (4.138)

= θ(Λ − p)
⎛
⎝

p2ψ(p) + (m2 − 1
4
)
⎛
⎝∫

Λ

0
dq(θ(p − q)q + θ(q − p)p)ψ(q) + pΛ−

1
2−m

1
2 +m

+ κ̃pΛ−
1
2+m

1
2 −m

⎞
⎠
⎞
⎠

(4.139)

= θ(Λ − p)((p2(ψ(p) − p−
3
2−m − κ̃p−

3
2+m ) + (m2 − 1

4
)∫

∞

p
dq(p − q)(ψ(q) − q

3
2−m − κ̃q−

3
2+m)). (4.140)

We can drop θ(Λ − p) from the expression above (remember that Λ is large enough), and we obtain

(L̃m2 ,D(Λ) +
fm,κ̃,Λ

Λ
KD(Λ))ψÐ→

Λ→∞
L̃max
α,D ψ = H̃m,κ̃,Dψ. (4.141)

The Neumann case is analogous. Fix vectors ψ±m,N, as in (4.38). We will use the space

D = L2,∞
0 (R+) +C(ψm,N + κ̃ψ−m,N), (4.142)

which is a core of H̃m,κ̃,N. If ψmin ∈ L2,∞
0 (R+), then clearly

L̃m2 ,N(Λ)ψmin Ð→
Λ→∞

L̃min
m2 ,Nψmin = H̃m,κ̃,Nψmin. (4.143)

Moreover,
KN(Λ)ψmin(p) = −θ(Λ − p)∫

∞

Λ
ψmin(q)dq. (4.144)

Now, gm,κ̃,Λ is uniformly bounded,

∫
∞

Λ
ψmin(q)dq = O(Λ−∞), (∫

∞

0
θ(Λ − p)dp)

1
2
= O(Λ

1
2 ). (4.145)
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Therefore,
Λgm,κ̃,ΛKN(Λ)ψmin Ð→

Λ→∞
0. (4.146)

Now, consider ψ ∶= ψm,N + κ̃ψ−m,N. Remember that gΛ is chosen such that (4.118) is 0. Therefore,

ΛgΛKN(Λ)ψ(p) = θ(Λ − p)ΛgΛ
⎛
⎝

Λ−
1
2−m

(− 1
2 −m)

+ κ̃ Λ−
1
2+m

(− 1
2 +m)

⎞
⎠

(4.147)

= θ(Λ − p)(m2 − 1
4
)
⎛
⎝

Λ
1
2−m

( 1
2 −m)

+ κ̃ Λ
1
2+m

( 1
2 +m)

⎞
⎠

. (4.148)

Hence,

(L̃m2 ,N(Λ) +Λgm,κ̃,Λ)ψ(p) (4.149)

= θ(Λ − p)
⎛
⎝

p2ψ(p) − (m2 − 1
4
)
⎛
⎝∫

Λ

0
dq(θ(p − q)p + θ(q − p)q)ψ(q) − Λ

1
2−m

1
2 −m

− κ̃Λ
1
2+m

1
2 +m

⎞
⎠
⎞
⎠

. (4.150)

Taking into account (4.52), we obtain
(L̃m2 ,N(Λ) +Λgm,κ̃,ΛKN(Λ))ψÐ→

Λ→∞
L̃max
α,N ψ = H̃m,κ̃,Nψ. (4.151)

Consider now the case α = 1
4 . In this case, κ takes a different role than in the previous part: taking λD = π

2κ and λN = 2κ
π in formulas (4.120)

and (4.122), we get

f 1
2 ,κ ,Λ

Λ
= − 1

Λ + π
2κ

, (4.152)

Λg 1
2 ,κ ,Λ =

1
π
2κ +Λ

−1 . (4.153)

Take D(H̃
±

1
2 ,κ ,D) ∋ ψD = ψmin

D + c̃ψD,κ and D(H̃
±

1
2 ,κ ,N) ∋ ψN = ψmin

N + c̃ψN,κ , where ψmin
D/N is in the minimal domain and c̃ ∈ C. Using

definitions (4.87) and (4.88), one checks that for large enough Λ,

KD(Λ)ψD(p) = θ(Λ − p)c̃(Λ + π
2κ
)p +O(Λ−∞), (4.154)

KN(Λ)ψN(p) = −θ(Λ − p)c̃( π
2κ
+Λ−1) +O(Λ−∞). (4.155)

Hence, from formulas (4.73) and (4.74), we obtain

(L̃ 1
4 ,D(Λ) +

f 1
2 ,κ ,Λ

Λ
KD(Λ))ψÐ→

Λ→∞
L̃max

1
4 ,Dψ = H̃ 1

4 ,κ ,Dψ, (4.156)

(L̃ 1
4 ,N(Λ) +Λg 1

2 ,κKN(Λ))ψÐ→
Λ→∞

L̃max
1
4 ,Nψ = H̃ 1

4 ,κ ,Nψ. (4.157)

The case m = − 1
2 is treated in the analogous way by taking f

−
1
2 ,κ = f 1

2 ,κ−1 and g
−

1
2 ,κ = g 1

2 ,κ−1 . ◻

Let us observe that the norm of the counterterms converges to infinity in both the Dirichlet and Neumann cases. In particular, we cannot
neglect the counterterms even in the Dirichlet case with ∣Re(m)∣ < 1

2 [when one can omit the counterterms in Eq. (4.50)].
Note also that the above analysis of H̃m,κ̃,D is essentially an expanded version of the Wilsonian approach of Ref. 16, which we described

in Sec. III, translated from three dimensions to one dimension.

V. CONCLUSION
Treatment of the Schrödinger equation with potential 1/r2 requires an appropriate definition of the domain. This can be achieved directly

in the position representation, as presented in Sec. II. It can also be equivalently done in the momentum representation, essentially following
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the Wilsonian renormalization scheme. Despite having been devised as an approximate method, this scheme when rigorously implemented
yields a construction of self-adjoint realizations of the Schrödinger operator with potential 1/r2.
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APPENDIX: FOURIER ANALYSIS ON A HALF-LINE

Fourier analysis on the line is well-known. Somewhat less known is Fourier analysis on the half-line, where the role of the Fourier
transformation is played by two transformations: the cosine and sine transformation, which are the main subject of this appendix.

1. Cosine and sine transformation
Let us start with recalling some aspects of Fourier analysis on the line. Let

H2,∞(R) ∶= {ϕ ∈ C∞(R) ∣ ∫
∞

−∞

∣ϕ(n)(x)∣2dx < ∞, n = 0, 1, . . .}, (A1)

L2,∞(R) ∶= {ψ ∈ L2(R) ∣∫
∞

−∞

∣ψ(p)∣2∣p∣ndp < ∞, n = 0, 1, . . .} (A2)

be the Sobolev space and the weighted space of the infinite order—two examples of Frechet spaces. The Fourier transformation swaps these
spaces,

FL2,∞(R) = H2,∞(R). (A3)

Functions on the line can be decomposed into even and odd functions,

L2
±(R) ∶= {ψ ∈ L2(R) ∣ ψ(−x) = ±ψ(x)}, L2(R) = L2

+(R) ⊕ L2
−(R). (A4)

Even and odd functions are preserved by the Fourier transformation,

FL2
±(R) = L2

±(R). (A5)

Every function on the half-line can be extended to an even or odd function,

J±ψ(p) ∶=
⎧⎪⎪⎨⎪⎪⎩

ψ(p), p ≥ 0,

±ψ(−p), p < 0.
(A6)

J± maps L2(R+) onto L2
±(R). The restriction to the positive half-line is the left inverse of J±,

(J±ψ)∣R+ = ψ, ψ ∈ L2(R+). (A7)

The sine and cosine transformations can be defined as the composition of the Fourier transformation with the above extension and the
restriction, more precisely,

FDψ = i(FJ−ψ)∣R+ , FNψ = (FJ+ψ)∣R+ . (A8)
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Introduce also the Frechet spaces analogous to (A1) and (A2) corresponding to the half-line,

H2,∞(R+) ∶= {ϕ ∈ C∞(R+) ∣ ∫
∞

0
∣ϕ(n)(x)∣2dx < ∞, n = 0, 1, . . .}, (A9)

L2,∞(R+) ∶= {ψ ∈ L2(R+) ∣∫
∞

0
∣ψ(p)∣2pndp < ∞, n = 0, 1, . . .}. (A10)

We will also need the following closed subspaces of H2,∞(R+):

H2,∞
+ (R+) ∶= {ϕ ∈ H2,∞(R+) ∣ ϕ(n) = 0, n = 1, 3, 5, . . . }, (A11)

H2,∞
− (R+) ∶= {ϕ ∈ H2,∞(R+) ∣ ϕ(n) = 0, n = 0, 2, 4, . . . }. (A12)

The following proposition is straightforward.

Proposition A.1.

J+H2,∞
+ (R+) = H2,∞(R) ∩ L2

+(R), J−H2,∞
− (R+) = H2,∞(R) ∩ L2

−(R), (A13)

FNL2,∞(R+) = H2,∞
+ (R+), FDL2,∞(R+) = H2,∞

− (R+). (A14)

For ψ ∈ L2,∞(R+), we have

∂2n
x FDψ = (−1)nFDp2nψ, ∂2n

x FNψ = (−1)nFNp2nψ, (A15)

∂2n+1
x FDψ = (−1)n+1FNp2n+1ψ, ∂2n+1

x FNψ = (−1)nFDp2n+1ψ. (A16)

2. Homogeneous functions on the half-line
Let f ∈ L1

loc(R+). We say that f possesses an oscillatory integral if for any ϕ ∈ C∞c ([0,∞[) such that ϕ = 1 near 0,

lim
Λ→∞∫

∞

0
f (p)ϕ(p/Λ)dp (A17)

exists and does not depend on the choice of ϕ. Value (A17) is, then, called the oscillatory integral of f .
Note that the integrals that appear in the definitions of the cosine and sine transforms (4.6), (4.7) for functions, say, from L2(R+) can

always be understood as oscillatory (but not always in the usual Lebesgue sense).
In the following formulas, valid for x > 0, one needs to use oscillatory integrals for λ > −1:

√
2
π∫

∞

0
sin(px)xλdx = −

√π
2

p−λ−1

sin( π2 λ)Γ(−λ)
, λ > −2, (A18)

√
2
π∫

∞

0
cos(px)xλdx =

√π
2

p−λ−1

cos( π2 λ)Γ(−λ)
, λ > −1. (A19)

Lemma A.2. Suppose that ψ ∈ L1
loc(R+) such that for large p, we have ψ(p) = pλ. Set

ψ1(p) ∶= lim
Λ→∞
(−∫

Λ

p
ψ(q)dq + Λ

λ+1

λ + 1
), (A20)

ψ2(p) ∶= lim
Λ→∞
(∫

Λ

p
(p − q)ψ(q)dq − pΛλ+1

λ + 1
+ Λ

λ+2

λ + 2
). (A21)

(The above limits exist because the functions after the limit sign are constant for large Λ.) Clearly,

ψ′2(p) = ψ1(p), ψ′1(p) = ψ(p), (A22)

for large p, ψ1(p) =
pλ+1

λ + 1
, ψ2(p) =

pλ+2

(λ + 1)(λ + 2) . (A23)

Moreover, the following holds:
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1. Suppose that

lim
Λ→∞
(−∫

Λ

0
qψ(q)dq + Λ

λ+2

λ + 2
) = 0. (A24)

Then,

∫
∞

0
sin(px)ψ(p)dp = −x∫

∞

0
cos(px)ψ1(p)dp = −x2∫

∞

0
sin(px)ψ2(p)dp. (A25)

2. Suppose that

lim
Λ→∞
(∫

Λ

0
ψ(q)dq − Λ

λ+1

λ + 1
) = 0. (A26)

Then,

∫
∞

0
cos(px)ψ(p)dp = x∫

∞

0
sin(px)ψ1(p)dp = −x2∫

∞

0
cos(px)ψ2(p)dp. (A27)

(The above integrals are not always defined as Lebesgue integrals—they are always defined as oscillatory integrals.)

Proof. 1. Let ϕ be as in the definition of the oscillatory integral. We integrate by parts,

∫
∞

0
ϕ(p/Λ) sin(px)ψ(p)dp (A28)

= − x∫
∞

0
ϕ(p/Λ) cos(px)ψ1(p)dp −Λ−1∫

∞

0
ϕ′(p/Λ) sin(px)ψ1(p)dp (A29)

= − x2∫
∞

0
ϕ(p/Λ) sin(px)ψ2(p)dp −Λ−1∫

∞

0
ϕ′(p/Λ) sin(px)ψ1(p)dp (A30)

− xψ2(0) + xΛ−1∫
∞

0
ϕ′(p/Λ) cos(px)ψ2(p)dp. (A31)

Now, ψ2(0) = 0 because of (A24). Terms involving ϕ′ are O(Λ−∞), what can be checked by integration by parts.

2. The proof is similar,

∫
∞

0
ϕ(p/Λ) cos(px)ψ(p)dp (A32)

= x∫
∞

0
ϕ(p/Λ) sin(px)ψ1(p)dp − ψ1(0) +Λ−1∫

∞

0
ϕ′(p/Λ) cos(px)ψ1(p)dp (A33)

= − x2∫
∞

0
ϕ(p/Λ) cos(px)ψ2(p)dp − ψ1(0) +Λ−1∫

∞

0
ϕ′(p/Λ) cos(px)ψ1(p)dp (A34)

+ xΛ−1∫
∞

0
ϕ′(p/Λ) sin(px)ψ2(p)dp. (A35)

We use (A26) to get ψ1(0) = 0. Again, the terms involving ϕ′ are O(Λ−∞). ◻
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