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In my opinion, scattering theory for N -body Schrödinger opera-

tors is one of the greatest successes of 20th century mathematical

physics.

On the physical side, we have a rigorous framework that explaines

why nonrelativistic matter is built out of well defined clusters of

nuclei and electrons, such as atoms, ions, molecules.

On the mathematical side, we have a deep analysis of a large

family of nontrivial operators with continuous spectrum, combining

ideas from classical and quantum mechanics.



A single quantum particle in an external potential is described by

the Hilbert space L2(Rd) and the Schrödinger Hamiltonian

H = H0 + V (x),

where

H0 =
p2

2m
, p =

1

i
∂x.

A typical example of a potential is

V (x) =
c

|x|
.



THEOREM. Assume that V (x) is short range, that is,

|V (x)| ≤ c〈x〉−µs, µs > 1.

Then there exist wave (Møller) operators

Ω± := s− lim
t→±∞

eitHe−itH0,

they are isometric, they intertwine the free and full Hamiltonian:

Ω±H0 = HΩ±,

and they are complete:

Ω±Ω±∗ = 1lc(H).



THEOREM. Assume that V (x) is long range, that is,

V (x) = Vl(x) + Vs(x),

where Vs(x) is short range and

|∂αxVl(x)| ≤ cα〈x〉−|α|−µl, µl > 0, α ∈ Nd.

Then there exists a function (t, ξ) 7→ St(ξ) and modified Møller

operators

Ω± := s− lim
t→±∞

eitHe−iSt(p),

which satisfy the same properties as those stated for the short-range

case.



Thus the Hilbert space is the direct sum of bound states and of

scattering states – states which evolve for large times as free waves.

One can define the scattering operator,

S := Ω+Ω−∗,

which is unitary. The integral kernel of S defines scattering ampli-

tudes. The square of the absolute value of a scattering amplitude is

the scattering cross-section describing the probability of a scatteting

process.

The most difficult part of the above theorems is to prove that

the range of (modified) wave operators fills the whole continuous

spectral space of H. This is called asymptotic completeness (AC).



2 interacting quantum particles are described by the Hilbert space

L2(Rd)⊗ L2(Rd) ' L2(R2d) and the Hamiltonian

H =
p2

1

2m1
+

p2
2

2m2
+ V (x1 − x2).

Introduce the center-of-mass coordinate x12 := m1x1+m2x2
m1+m2

and the

relative coordinate x12 := x2 − x1. The Hilbert space factorizes

L2(R2d) = L2(X12)⊗ L2(X12).



Let m12 := m1+m2 be the total mass and m12 := (m−1
1 +m−1

2 )−1

be the reduced mass. Then we can write

H =
p2

12

2m12
+ H12,

where

H12 :=
(p12)2

2m12
+ V (x12).

Thus the problem of two interacting particles is reduced to a single

particle in an external potential.



N interacting quantum particles are described by the Hilbert

space
N
⊗
i=1
L2(Rd) ' L2(X),

where X := RNd, and the Hamiltonian is

H :=

N∑
j=1

p2
j

2mj
+

∑
1≤i<j≤N

Vij(xi − xj).

A typical potential is

Vij(xi − xj) =
ZiZje

2

4π|xi − xj|
.



A cluster decomposition is a partition of {1, . . . , N} into clusters:

a = {c1, . . . , ck}.

The Hamiltonian of a cluster c is

Hc :=
∑
j∈c

p2
j

2mj
+
∑
i,j∈c

Vij(xi − xj).

The Hamiltonian of a cluster decomposition a is

Ha = Hc1 + · · · + Hck.



Note that cluster decompositions have a natural order. In partic-

ular, there is a minimal cluster decompostion, where all clusters are

1-element. Every pair determines a cluster decomposition.

Define the collision plane of a as

Xa := {(x1, . . . , xN) ∈ RNd : (ij) ≤ a ⇒ xi = xj}.

Consider the quadratic form on X∑mi

2
x2
i .

Let Xa denote the internal plane of a, defined as the orthogonal

complement of Xa wrt this form. We will write x 7→ xa and x 7→ xa

for the orthogonal projections onto Xa and Xa.



We have

X = Xa ⊕Xa, Xa = Xc1 ⊕ · · · ⊕Xck.

Therefore,

L2(X) = L2(Xa)⊗ L2(Xa), L2(Xa) = L2(Xc1)⊗ · · · ⊗ L2(Xck),

∆ = ∆a + ∆a, ∆a = ∆c1 + · · · + ∆ck.



For a cluster decomposition a = {c1, . . . , ck} set

V a(x) =
∑

(ij)≤a

Vij(xi−xj) =
∑
i,j∈c1

Vij(xi−xj)+· · ·+
∑
i,j∈ck

Vij(xi−xj).

The cluster Hamiltonian decomposes:

Ha = ∆a + Ha, Ha = ∆a + V a(xa),

Ha = Hc1 + · · · + Hck.



Introduce

Ha := Ran1lp(Ha) ' Ran1lp(Hc1)⊗ · · · ⊗ Ran1lp(Hck).

Let

Ea := Ha
∣∣∣
Ha

= Hc1

∣∣∣
Hc1

+ · · · + Hck

∣∣∣
Hck

be the operator describing the bound state energies of clusters. Let

Ja : L2(Xa)⊗Ha → L2(X)

be the embedding of bound states of clusters into the full Hilbert

space.



THEOREM. Assume that the potentials Vij are short range. Then

for any cluster decompostion a there exists the corresponding partial

wave operator

Ω±a := s− lim
t→±∞

eitHJae
−it(∆a+E

a).

Ω±a are isometric, they intertwine the cluster and the full Hamilto-

nian:

Ω±a (∆a + Ea) = HΩ±a

and are complete:

⊕
a

RanΩ±a = L2(X).



THEOREM. Assume that the potentials Vij are long range with

µl >
√

3− 1.

Then for any cluster decompostion a there exists a function (t, ξa) 7→
Sa,t(ξa), the corresponding partial modified wave operator

Ω±a := s− lim
t→±∞

eitHJae
−i(Sa,t(pa)+tE

a),

which satisfy the same properties as those stated in the short range

case.



AC means that all states in L2(X) can be decomposed into states

with a clear physical/chemical interpretation such as atoms, ions

and molecules.

We can introduce partial scattering operators

Sab := Ω+∗
a Ω−b

describing various processes, such as elastic and inelastic scattering,

ionization, capture of an electron, chemical reactions.

The partial wave operators Ω±a can be organized into

⊕
a
L2(Xa)⊗Ha 3 (ψa) 7→

∑
a

Ω±a ψa ∈ L2(X),

which is unitary. The partial scattering operators Sab arranged in

the matrix [Sab] also describe a unitary operator.



2-body scattering theory, including AC in both short- and long-

range case, was understood already in the 60’s.

Existence of N -body wave operators and the orthogonality of their

ranges was established about the same time. What was missing for

a long time was Asymptotic Completeness – the fact that the ranges

of wave operators span the whole Hilbert space.

Below I review the various methods that were used, more or less

successfully, to prove this.



The stationary approach to scattering theory is based on resolvent

identities. For example, if H = H0 + V , then the identity

(z −H)−1 = (z −H0)−1

+(z −H0)−1V 1/2
(

1− |V |1/2(z −H0)−1V 1/2
)−1

|V |1/2(z −H0)−1

can be used to prove AC in the 2-body case.



L.Faddeev found a resolvent identity that can be used to study

3-body scattering. A number of other resolvent identities were used

(eg. G.Hagedorn’s for 4 bodies). The results about AC with N ≥ 3

proven using the stationary approach involve implicit assumptions

on invertibility of certain complicated operators and on properties

of bound and almost-bound states. They also require a very fast

decay of potentials and d ≥ 3.

However, in principle, the stationary approach leads to explicit

formulas for scattering amplitudes.



V.Enss introduced time-dependent methods into proofs of AC. In

his approach an important tool was the RAGE Theorem saying that

for K compact and ψ ∈ Ran1lc(H)

lim
T→∞

1

T

∫ T

0

‖KeitHψ‖2dt = 0.

Enss started with proving the 2-body AC (late 70’s), and managed

to prove 3-body AC including the long-range case with µl >
√

3−1

(late 80’s).



Let us describe an idea that turned out to be important: One

needs to look for observables A such that i[H,A] is in some sense

positive. Here is an important example of this idea:

E.Mourre (1981). Suppose that E is not a threshold (it is not an

eigenvalue of Ha for any a). Then there exists an interval I around

E and c0 > 0 such that

1lI(H)i[H,A]1lI(H) ≥ c01lI(H),

where A =
∑
i

1
2(pixi + xipi) is the generator of dilations.

The Mourre estimate has important implications both in the sta-

tionary and time-dependent approach.



I.M.Sigal devoted a large part of his research carreer to N -body

AC. After working with the stationary approach he switched to the

time-dependent approach. Together with A.Soffer he obtained the

first proof of the N -body AC in the short range case (announced

1985, published 1987). They first used heavily propagation esti-

mates. Below we summarize abstractly the time-dependent version

of this technique:

If Φ(t) is a uniformly bounded observable on a Hilbert space H and

d

dt
Φ(t) + i[H,Φ(t)] ≥ Ψ∗(t)Ψ(t),

then ∫ ∞
1

‖Ψ(t)e−itHv‖2dt <∞, v ∈ H.



A new and elegant proof of the N -body AC in the short range

case was given by G.M.Graf (1989). Just as Sigal-Soffer’s, it was

also time-dependent, used propagation estimates and Mourre esti-

mate. It introduced a clever observable, the Graf vector field, whose

commutator with H is positive.



First proof of AC in the long range case for any N with µl >
√

3−
1 (which includes the physical Coulomb potentials) was given by J.D

(announced 1991, published 1993). There exists a monograph J.D

and C.Gérard in Springer Tracts and Monographs in Physics, 19971

about this subject.

In what follows I describe the main steps of the proof. My pre-

sentation will stress some additional features of N -body scattering,

which I find interesting.

1http://www.fuw.edu.pl/ derezins/bookn.pdf



First assume the long-range condition on the potentials with

µl > 0.

Following the ideas of the proof of Graf for the short-range case

one can show the existence of the so-called asymptotic velocity:

THEOREM For any function f ∈ C∞c (X) there exists limits

s− lim
t→±∞

eitHf
(x
t

)
e−itH. (∗)

There exists a family of commuting self-adjoint operators P± such

that (∗) equals f (P±).



Of course, we can replace H with Ha obtaining P a+, the asymp-

totic velocity corresponding to a. The following fact follows by

arguments involving the Mourre estimate, and is also essentially

due to Graf:

THEOREM For any a

1l{0}(P
a+) = 1lp(Ha).



For any a introduce

Za := Xa\
⋃
b6≤a

Xb.

Then the family Za is a partition of X . In particular,

1l =
∑
a

1lZa(P
+).

Now in the short-range case AC follows easily by proving that

lim
t→±∞

eitHae−itH1lZa(P
+)

exists and coincides with Ω±∗a .



In the long-range case one needs an additional step.

THEOREM Let φ = 1lZa(P
±)φ and δ = 2

2+µ. Then there exists c

such that

lim
t→±∞

1l
(
t−δ|xa| > c

)
e∓itHφ = 0.

To see that this bound is natural note that Newton’s equation in

the potential V (x) = −|x|−µ at zero energy has trajectories of the

form

x(t) = ct
2

2+µ .



To prove the existence of the modified wave operator we need to

show that the variation of the potential that comes from outside of

the given cluster decomposition within a wave packet is integrable

in time. The variation of the potential can be estimated by

(spread of wave packet)× (derivative of potential)

∼ t
2

2+µ × t−1−µ.

The integrability condition gives

2

2 + µ
− 1− µ < −1,

which is solved by µ >
√

3− 1.


