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According to Quantum Mechanics, a physical system is described

by a Hilbert space with a distinguished self-adjoint operator called

Hamiltonian that describes the dynamics.

QED is a quantum theory, so one could expect this kind of a

description. Unfortunately, the situation seems to be problematic.

In particular, in the context of QED the word Hamiltonian can have

many meanings:



1. The QED Hamiltonian: Suppose QED existed nonperturbatively

in the sense of some reasonable axioms of Quantum Field The-

ory, such as the Wightman and the Haag-Kastler axioms. One of

“primitive concepts” of these axioms is a strongly continuous uni-

tary representation of the Poincaré group. In particular, we have

the self-adjoint generator of time translations – the Hamiltonian.

Unfortunately, one can doubt whether QED exists in the sense of

these axioms.



Even if the QED Hamiltonian existed, it would be difficult to

descibe. It would be an unbounded self-adjoint operator in a

strange Hilbert space with a strange domain. An attempt to

describe it in the 2nd quantized formalism would almost certainly

lead to ill-defined expressions and parameters that have to be

renormalized.

This is a common phenomenon. An ill-defined expression, after

an appropriate renormalization procedure may lead to a perfectly

well-defined self-adjoint operator. There are quite a number of

instructive examples in nonrelativistic quantum physics, eg. the

delta potential in dimension 2 and 3.



2. The Fundamental Hamiltonian of Theory of Everything: the self-

adjoint generator of the evolution in the “Theory of Everything”,

which is known only to the God. One can doubt whether humans

will ever learn it. Maybe it exists. Maybe not – in reality the laws

of nature may be very different from our naive ideas. In any case,

it is beyond QED, which is too narrow to describe Everything.



3. The formal QED Hamiltonian: We try to write a formal expres-

sion for the QED Hamiltonian in terms of quantum fields, which

satisfies fundamental symmetries of the theory, in particular the

Lorentz symmetry. As indicated above, we should not be sur-

prised if some parameters entering the expression are ill defined

and have to be renormalized. Besides, we should probably add

appropriate counterterms and it could be difficult to guess them.



Anyway, we do not care much about whether the formal expression

corresponds to a self-adjoint operator or not. In reality, it probably

does not.

This type of a Hamiltonian is quite common in the literature, eg.

in the old paper by Sucher and the review article of Shabaev. It

can be heuristically used to derive Feynman rules in low orders.

It is however safer to use the Lagrangian approach, where it is

easier to maintain the Poincaré covariance.



4. Cutoff Hamiltonians: We take the formal QED Hamiltonian and

apply a cutoff for large momenta. This may yield a well-defined

self-adjoint opertator. One can expect that this approximates the

true theory – however, this is only a rough approximation, which

should not be taken too seriously. There are quite a number

of mathematical works about this cutoff Hamiltonian, especially

with the matter described by a nonrelativistic expression. It is

sometimes called by the name of the Pauli-Fierz Hamiltonian,

which is historically not quite correct.



5. Effective Hamiltonians: Operators used for approximate computa-

tions of various physical and chemical quantities, especially, bound

state energies. They may have more or less convincing justifica-

tions. They are often partly based on empirical evidence. They

are suitable only for some restricted classes of problems.

Examples include

(a) the no-pair Dirac-Coulomb Hamiltonian,

(b) the no-pair Dirac-Coulomb Hamiltonian with the Breit term.



So what is the main object of Quantum Field Theory (according

to physicists, not mathematicians), if it is not a Hamiltonian? Most

textbooks are not very clear about this point.

One possible answer, stated eg. in Itzykson-Zuber, is the following:

The basic concept of QFT is the collection of (time-ordered) n-point

(Green) functions.



Another favorite object of contemporary high energy physicists,

which they often treat as the basic concept of a quantum field theory,

is the effective action. Formally, differentiating the effective action

and performing simple algebraic operations we obtain Green’s func-

tions. Therefore, the collection of Green’s functions can be treated

as an object equivalent to the effective action (unless we worry about

problems with its differentiability).



It is likely that some regularized versions of QED exist nonpertur-

batively. (Even this is an optimistic statement, at least in the case

of the usual regularization schemes such as Pauli-Villars). Obviously,

they depend on the cutoff parameter and the regularization scheme

and they probably do not converge to a nontrivial limit as the cutoff

parameter goes to infinity.



However, one can expect that for a fixed energy this dependence is

very weak for a very big range of large cutoff parameters. Therefore,

for practical purposes and bounded energies one can perhaps view

QED as defined nonperturbatively. This definition does not involve

a Hamiltonian in a Hilbert space. It gives a prescription how to

compute Green’s functions or the effective action.



Effective Hamiltonians
Let me try to describe an abstract theory of effective Hamiltonians.

I will mostly follow the analysis of V.Shabaev (who attributes it to

Fojas-Nagy and Kato).

I will describe two kinds of effective Hamiltonians, one sums up

the Brillouin-Wigner perturbation theory, the other is related to the

Raileigh-Schrödinger perturbation theory.



Suppose a physical system is described by a (huge) Hilbert space

H. The dynamics is described by a (poorly known) Hamiltonian H.

Inside H we have a (relatively small) subspace H0, which is well

understood. We will actually assume that it is finite dimensional.

We can write

H =

[
H00 H01

H10 H11

]
.



Suppose that the initial state belongs to H0 and we can measure

the final state if it falls into H0. The probability of a measurement

is the square of the absolute value of the corresponding amplitude:

(Ψ+|e−itHΨ−), Ψ+,Ψ− ∈ H0.

Measurable quantities can be described by the Laplace transform

of the expectation vales

−i

∫ ∞
0

(Ψ+|e−itHΨ−)eitEdt =
(
Ψ+|(E1l−H)−1Ψ−

)
.

where ImE > 0.



Now(
Ψ+|(E1l−H)−1Ψ−

)
=
(
Ψ+|(E1l0 −HBW(E))−1Ψ−

)
,

where

HBW(E) := H00 −H01(E1l1 −H11)−1H10

can be called the Brillouin-Wigner effective Hamiltonian and is an

energy dependent operator on the small space H0. It contains com-

plete physical information about the subsystem described byH0. We

do not need to know whether it is derived from a Hamiltonian on a

bigger space!



Assume that the spectrum of (the big) H is absolutely continuous.

Then (1) can often be extended accross the real axis in E. Singu-

larities of (1) will be called bound state energies. They are solutions

of

det
(
E1l0 −HBW(E)

)
= 0. (1)

Assume that off-diagonal elements of H are small. Then bound

state energies are close to the eigenvalues of H00 and are usually

simple poles, so that(
E1l0 −HBW(E)

)−1
=
∑
i

Pi(E − Ei)
−1.

(Ei do not have to be real and Pi do not have to be idempotents!).



Let us show an example how one computes with an effective hamil-

tonian HBW.

Suppose that

HBW(α,E) = H0 + αV eff
1 (E) + α2V eff

2 (E) + . . . ,

Let E0 be a simple eigenvalue of H0 with the eigenvaector Ψ0. Then

(1) yields the following perturbed bound state energy:

E(α) = E0 + αE1 + α2E2 + . . .



where

E1 = 〈V eff
1 (E0)〉,

E2 = 〈V eff
2 (E0)〉 + 〈V eff

1 (E0)〉∂E〈V eff
1 (E0)〉

+〈V eff
1 (E0)

(
1l− P0

)
(E0 −H0)−1V eff

1 (E0)〉.

Here

〈V eff
1 (E0)〉 := (Ψ0|AΨ0), P0 := |Ψ0)(Ψ0|.



HBW(E) depends on the energy. One can (in a unique way!)

introduce a different effective Hamiltonian, which does not depend

on the energy and gives the same energy levels {E1, E2, . . . }.
First note that

Pi :=

∮
Γi

(
E1l−HBW(E)

)−1
dE,

where Γi encircles Ei.



Choose a contour Γ that encircles {E1, E2, . . . } and set

P =

∮
Γ

(
E1l−HBW(E)

)−1
dE =

∑
i

Pi,

K =

∮
Γ

E
(
E1l−HBW(E)

)−1
dE =

∑
i

EiPi.

Remember that we assumed that the off-diagonal term in H is

small. Therefore P is close to the identity and we can define

P−
1
2 =

(
1l + (P − 1l)

)−1
2

by a power series.



We expect that the rank of Pi equals the dimension of the corre-

sponding eigenvalues of H00, say dimPi = di, where d1 + . . . dn =

dimH0. Therefore, the range of K−EP has dimension dimH0−di
whenever E = Ei. Consequently, {E1, E2, . . . } are solutions of

det
(
K − EP

)
= 0.

Introduce the Rayleigh-Schrödinger effective Hamiltonian

HRS := P−
1
2KP−

1
2 .

Then {E1, E2, . . . } are solutions of a true eigenvalue problem

det
(
E −HRS

)
= 0. (2)



Time ordered Green’s functions
Suppose that Ω is the ground state of H and

φ[f ] =

∫
φ(ξ)f (ξ)dξ

is a family of auxiliary operators called fields, which for simplicity we

assume to be self-adjoint. We will write

φ[t, f ] := eitHφ[f ]e−itH =

∫
φ(t, ξ)f (ξ)dξ

for these operators in the Heisenberg picture.



The time-ordered Green’s functions are defined as(
Ω
∣∣T(φ(tn, ξn) · · ·φ(t1, ξ1)

)
Ω
)

One can argue that Green’s functions are closely related to measur-

able quantities. Indeed, suppose the experimentalist can prepare the

state Ω in distant past, and he/she can measure Ω in distant future.

We also suppose that he/she can perturb the dynamics in a control-

lable way by adding to the Hamiltonian a field, so that the dynamics

is generated by

H [f ] := H + φ[f ].



Thus the relevant amplitudes are

lim
t+,−t−→∞

(
Ω
∣∣Texp

(
− i

∫ t+

t−
H [f (t)]dt

)
Ω

)

=

(
Ω
∣∣Texp

(
− i

∫ ∞
−∞

φ[t, f (t)]dt
)

Ω

)

=

∞∑
n=0

(−i)n

n!

∫
. . .

∫ (
Ω
∣∣T(φ(tn, ξn) · · ·φ(t1, ξ1)

)
Ω
)

×f (tn, ξn) · · · f (t1, ξn)dtndξn · · · dt1dξ1.



Two-times Green’s functions
One can also consider a slightly different picture of a realistic ex-

periment. Let us assume that the space of experimentally accessible

states H0 have the form

ΨF :=

∫ ∫
· · ·
∫
F (ξn . . . , ξ1)φ(ξn) · · ·φ(ξ1)Ωdξn · · · ξ1

for some fixed values of n and some space of functions F .



The corresponding amplitudes(
ΨF+

∣∣e−i(t+−t−)HΨF−

)
=

∫
. . .

∫
dξ+

1 · · · dξ−1 F+(ξ+
n+, . . . , ξ

+
1 )F−(ξ−n−, . . . , ξ

−
1 )

×
(

Ω
∣∣φ(t+, ξ+

1 ) · · ·φ(t+, ξ+
n+)φ(t−, ξ−n−) · · ·φ(t−, ξ−1 )Ω

)
are expressed in terms of two-times Green’s functions. Thus two-

times Green’s functions can be used to define the Brillouin-Wigner

effective Hamiltonian on H0.



Clearly, two-times Green’s functions can be obtained as limits of

the usual time-ordered Green’s functions.(
Ω
∣∣φ(t+, ξ+

1 ) · · ·φ(t+, ξ+
n+)

×φ(t−, ξ−n−) · · ·φ(t−, ξ−1 )Ω
)

= lim
ε↘0

(
Ω
∣∣T(φ(t+1,ε, ξ

+
1 ) · · ·φ(t+n+,ε, ξ

+
n+)

×φ(t−n−,ε, ξ
−
n−) · · ·φ(t−1,ε, ξ

−
1 )
)
Ω
)
,

t+j,ε := t+ + ε(n− j), t−j,ε := t− − (n− j)ε.



Second quantized Hamiltonians
Suppose that the Hamiltonian is expressed in terms of creation/annihilation

operators as

H =

∫
ε(ξ)a∗(ξ)a(ξ)dξ + W (a∗, a),

where W (a∗, a) is a certain polynomial in creation/annihilation oper-

ators. Assume that φ(ξ) are linear combinations of a(ξ′) and a∗(ξ′).



Then time ordered Green’s functions are given by the so-called

Feynman rules as formal sums of evaluations of appropriate diagrams.

This is the consequence of a series of classic facts that go under the

name of Dyson expansion, Wick’s Theorem, Gell-Mann–Low Theo-

rem, Linked Cluster Theorem.

It is natural to treat Green’s functions as the basic object of the

theory defined by the Feynman rules, and not the Hamiltonian!



Local Quantum Field Theory
Physicists want a theory that satisfies the following requirements:

1. it is Poincaré covariant;

2. the Hamiltonian (the generator os time translations) is bounded

from below;

3. it is local (satisfies the Einstein causality);

4. it depends on a finite number of parameters.

The requirements 1.-3. have a fundamental nature.

The requirement 4. is less fundamental and more practical: one

wants a theory with a predictive power.



Mathematical physicists tried to formalize 1.-3. with axioms (Wight-

man, and also Haag-Kastler axioms).

These axioms are rarely mentioned in physics textbooks. Theo-

retical physicists start from a formal path integral involving a local

Lagrangian. Then they use an appropriate propagator in Feynman

diagrams. One can argue that this is morally equivalent to adopting

the requirements 1.-3.

The requirement 4. leads to renormalizable theories and restricts

severely possible Lagrangians.



For interacting theories 1.-3. seem incompatible with Hamiltonians

expressed in terms of second quantization. This is due mainly to the

ultraviolet problem. One can try to use formal Hamiltonians that

are relativistic and local for low momenta, with the momenta larger

than Λ suppressed by a cutoff, add appropriate counterterms and

tune the bare parameters so that the Green’s functions in the limit

Λ→∞ exist and have correct symmetries. This is the Hamiltonian

approach to renormalization. This approach was tried in the early

days of Quantum Field Theory. Nowadays it seems that only some

mathematical physicists treat it seriously.



Theoretical physicists have developed a number of techniques to

compute perturbatively Green’s functions starting from the Lagrangian

(Pauli-Villars, dimensional regularization, dispersion relations). These

techniques usually cannot be interpreted in terms of a modification

of the Hamiltonian. In the end they lead to renormalizable theories.

Fortunately, renormalizable theories are very rigid, and no matter

which regularization is taken, one seems to obtain the same family

of theories.



One can imagine that some of these regularizations make sense

nonperturbatively. Thus if r denotes the regularization scheme and

Λ the cutoff parameter, for finite Λ we have obtain well defined

objects (say, Green’s functions), which are analytic in α:

Gr,Λ(α) =

∞∑
n=0

αnGr,Λ
n .

We do not know whether

lim
Λ↗∞

Gr,Λ(α)

exists (probably not).



However, the coefficients in the perturbation expansion have well-

defined limits that do not depend on the regularization scheme

lim
Λ↗∞

Gr,Λ
n = Gn.

The final theory is given by a formal power series
∞∑
n=0

αnGn.



The Lagrangian approach breaks as few symmetries of the problem

as possible and the choice of counterterms is limited. The Hamilto-

nian approach breaks manifestly the Lorentz covariance and it is not

clear how to choose counterterms. Therefore it is considered to be

inferior.



Quantum Electrodynamics
Here are typical terms that appear in the QED Lagrangian:

Le.m. := −Z3

4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)− µ2

0Z3

2
AµA

µ,

Lp := Z1,pψ̃pγµ(i∂µ − ezpAµ)ψp −mp,0Z1,pψ̃pψp,

Lq := −Z1,q

(
(∂µ − iezqAµ)ψq

)∗
(∂µ − iezqAµ)ψq

−m2
q,0Z1,qψ

∗
qψq −

λq,0Z
2
1,q

4

(
ψ∗qψq

)2
.

(We set ~ = c = 1).



L = Le.m. +
∑
p

Lp +
∑
q

Lq.

p is the name of a species of Dirac fermions. q is the name of a

species of charged scalar bosons.

The parameters Z3, Z1,p, Z1,q, µ0, mp,0, mq,0, λq,0 are bare – they

need to be renormalized. (µ0 is introduced to help with the infrared

problem). zpe, zqe are the charges of the particles.



A theory is fixed by specifying the physical masses of all particles

(which correspond to the position of the singularity of 2-point Green’s

functions) and their charges. In addition, for bosons one needs to

specify the value of 4-point functions at a certain point – this is

related to the λ term.

By Furry’s Theorem, QED amplitudes without external photon de-

pend only on even powers of e. Therefore, in practice instead of e

one uses the finestructure constant α = e2

4π~c.



Unfortunately, QED has to be treated perturbatively. The usual

approach, described in every textbook, uses e (or, equivalently, α)

as the small parameter. The theory with e = 0 corresponds to non-

interacting charged particles and photons. Its Green’s functions do

not have bound states. We will not see bound states in the per-

turbative treatment either. Fortunately, there are other approaches,

where bound states can be seen already at the zeroth approximation.



Nonrelativistic linit of QED
In the nonrelativistic limit of QED we expect to obtain the many-

body Schrödinger-Coulomb Hamiltonian of several species of parti-

cles.

For each bosonic “relativistic species”, we have two “nonrelativis-

tic species” corresponding to particles and antiparticles. For each

fermionic “relativistic species” we have four “nonrelativistic species”

corresponding to particles and antiparticles, and also to two spin

states. Each nonrelativistic species p has the mass mp and the charge

±zpe, where the sign is + for particles and − for antiparticles.



The Hamiltonian is the sum of kinetic terms and 2-body interaction

terms. For every species p the kinetic term is

1

2mp

∫
d~xa∗p(~x)(−∆)ap(~x)

For every pair of species p 6= q the interaction term is

1

2

∫
d~x

∫
d~ya∗p(~x)a∗q(~y)

αzpzqe
−µ|~x−~y|

|~x− ~y|
aq(~y)ap(~x).



Clearly, the many-body Schrödinger-Coulomb Hamiltonian is a well

defined self-adjoint operator. Its Green’s functions are well defined

nonperturbatively and one can study rigorously their singularities.

They correspond to true bound states and metastable states (reso-

nances) of N -body subsystems.



It is possible (although not easy) to treat Schrödinger-Coulomb

Green’s functions as the zeroth approximation to QED Green’s func-

tions. One can treat 1
c as the small parameter. Equivalently, one

could use α as the small parameter. e is kept constant.

The development if this approach is attributed to Lepage. It was

later applied in QED by Pachucki. This approach is applicable only

to systems with small zp’s. For practical reasons, one usually treats

only few particle systems. Typical applications include

1. positronium,

2. Hydrogen with nucleus of finite mass,

3. Helium.



QED in external potentials
Suppose that some of the particles are so heavy, that they can be

treated just as the sources of the electromagnetic field moving along

prescribed trajectories. Then we can use QED with both external and

quantized electromagnetic potentials. In the Lagrangian for charged

particles we replace eAµ with eAµ+Aext
µ , where Aext

µ is a prescribed

function on spacetime. (Note that there is no small constant e in

front of Aext
µ ).



Setting e = 0, beside independent photons, we obtain independent

charged particles in an external potential. The theory of charged

particles is quadratic, and hence well understood nonperturbatively.

In principle their Green’s functions are well defined.

If Aext
µ is stationary, then singularities of Green’s functions corre-

spond to bound states of the (one-body) Dirac/Klein-Gordon Hamil-

tonian.

Then one can again use e (or α) as the small parameter to add

radiative corrections.



One of researchers that uses this approach is Shabaev.

It is used most often to take into account the potential Zα
|~x| gen-

erated by the nucleus. In practice one splits this potential into two

parts – one part is treated perturbatively, for the other one uses the

Furry picture, which involves changing the vacuum and the propa-

gators. This splitting is to a large extent arbitrary and dictated by

practical considerations.

This approach is especially suitable in the case of heavily charged

ions such as the Uranium, for which Zα is not a small parameter.


