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1 Observables in quantum systems

1.1 States and observables

Let us describe basic framework of quantum mechanics. To avoid technical
complications, in the first part of this section we will assume that the Hilbert
space ‘H describing a quantum system is finite dimensional, so that it can be
identified with CV, for some N.

In basic courses on Quantum Mechanics we learn that a quantum state
is described by a density matriz p and a yes/no experiment by an orthogonal
projection P. The probability of the affirmative outcome of such an experiment

equals
Tr(pP).

Two orthogonal projections P, and P, are simultaneously measurable iff they
commute.

We say that a family of orthogonal projections Py, ..., P, is an orthogonal
partition of unity on H iff

ZB:]I, P1PJ:5ZJP], Z,j:].,n

Clearly, all elements of an orthogonal partition of unity commute with one
another. Therefore, in principle, one can design an experiment that measures
simultaneously all of them.
If Py,..., P, is an orthogonal partition of unity, then setting H; := RanP;,
n

i = 1,...,n, we obtain an orthogonal direct sum decomposition H = H;.
=1
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Thus specifying an ortogonal partition of unity is equivalnt to specifying an
orthogonal direct sum decomposition.

Let aq,...,a, be a sequence of distinct real numbers, which we interpret as
the outcomes of the experiment. We introduce a self-adjoint operator A by

i=1

Clearly, the average outcome of the experiment is
Z a;TrpP; = TrpA. (1.2)
i=1

We call (1.2) the expectation value of the observable A in the state p. Clearly,
P; = 14,1 (A) are the spectral spectral projections of A onto its eigenvalues.

Conversely, to any self-adjoint operator we can associate an orthogonal par-
tition of unity given by its spectral projections of A:

Iy (A), a€o(A). (1.3)

By measuring the observable A we mean measuring the partition of unity (1.3).

1.2 Superselection sectors

Let us start with a simple example of H = C? with basis | 1), | /). Introduce
the Pauli matrices:

0 1 0 —i 1 0
012{10}, UQ:{i 0}, 03:[0 _1}. (1.4)
Pure states can be parametrized by @, ¢:
0, ¢) := cos | 1) + e sinb] |). (1.5)

Measuring the Pauli matrices we obtain

(0, p|lo1]6, ) = sin 26 cos ¢, (1.6)
(0, p|o2|0, ) = sin 20 sin ¢, .
(0, los|0, p) = cos 26. (1.8)

Suppose now that we cannot measure ¢. This means we cannot measure o
and o9, and only o5. Thus the observables consist of Span(1,03).

Note also that on these observables the pure state |6, ¢) yields the same
measurement as the density matrix

po = cos? O] 1)(1 | +sin? 0] 1) |. (1.9)

Let us generalize this to any finite dimension. In the previous subsection we
assumed that all orthogonal projections on #, hence all self-adjoint operators



on H, correspond to possible experiments. We say that all self-adjoint elements
of B(H) are observable.

Sometimes this is not the case. We are going to describe several situations
where only a part of self-adjoint operators are observable.

It may happen that the Hilbert space H has a distinguished direct sum
decomposition

H = él H, (1.10)

such that only self-adjoint operators that preserve each subspace H; are mea-
surable. We say then that H;, i = 1,...,n, are superselection sectors.

Let @; denote the orthogonal projection onto H;. Then linear combinations
of Q; can be measured simultaneously with all other observables. We say that
they are classical observables.

If we choose an o.n. basis of H compatible with (1.10), then only block
diagonal self-adjoint matrices are observable. States are also described by block
diagonal matrices.

Superselection sectors arise typically when we have a strictly conserved quan-
tity, this means a self-adjoint operator ) that commutes with all possible dy-
namics. For instance, the total charge of the system usually determines a su-
perselection sector. Another example of a superselection sector is the fermionic
parity: states of an even and odd number of fermions form two superselection
sectors.

1.3 Composite quantum systems

Suppose that two quantum systems are described by Hilbert spaces Hi, Ho.
Then the composite system is described by the tensor product H; ® Ho. Ob-
servables of the first system are described by self-adjoint elemens of B(H1)®1y,,,
whereas observables of the second system are described by self-adjoint elements
of 1, ® B(H2). Note that they commute, so that one can simultaneously
measure them. From the point of view of the first system only self-adjoint ele-
ments of B(H1) ® 1y, are observable. Again, we have a situation where not all
self-adjoint elements of B(H) are observable.

Let H; = CP with an o.n. basis e1,...,e, and Hy = C? with an o.n. basis
fisoo oy fq- Thene;® f;i=1,...,p,j =1,...,q is an o.n. basis of H; ® Ho,.
Matrices in B(CP) ® l¢s have the form

A 0
04 . AeB(@),
A
and matrices in 1y, ® B(H2) have the form
biil b2l
bo1 1 booll

’ [bij} € B(Cq)»
bgqll



According to what we described above, the most general structure of the
set of observables in finite dimension is as follows. Consider the Hilbert space

n
H= (CN7 N = Zpi(h,
i=1
H = gé CPi ®(qu,
i=1

and the set "
A= @1 B(CP) ® 1.
i=
Note that 2 is a vector space closed wrt the multiplication and the Her-
mitian conjugation. It is an example of what mathematicians call a *-algebra
represented on a Hilbert space.
As discussed before, in the finite dimensional case, observables of a quantum
system are described by the self-adjoint part of a certain *-subalgebra of B(H).

2 Algebras

2.1 Algebras

Let K be a field. We will consider only K = C, and sometimes K = R. Let 2
be a vector space over K. We say that 2 is an algebra if it is equipped with an

operation
AxA> (A,B)— AB e

satisfying

A(B+C)=AB+ AC, (B+C)A=BA+CA,
(aB)(AB) = (aA)(8B),  AB.CER, a.BeK.

If in addition
A(BC) = (AB)C,

we say that it is an associative algebra. In practice by an algebra we will usually
mean an associative algebra.

B C A is called a subalgebra if it is a linear subspace of % and A, B € 8 =
AB € B. Clearly, a subalgebra is also an algebra.

Let V be a vector space. Clearly, the set of linear maps in V, denoted by
L(V), is an algebra. A subalgebra of L(V) is called a a concrete algebra.

2 is called a commutative algebra iff A, B € 2 implies AB = BA.

If A4, A5 are algebras, then their direct sum 2A; @ s is also an algebra.

2.2 Identity and idempotents
An identity of an algebra 2l is an element 1 € 2 such that

A=1A=A1 Ae



Any algebra has at most one identity. In fact, if 1y, ll; are identities, then
1, =115 = 1o,

We say that 2 is unital if it possesses an identity. In what follows, for A € C we
will often simply write A instead of A1.

We can always adjoin identity to an algebra 2A. We set 2y := AP C as a
vector space with the multiplication

(A, N) (B, 1) := (AB+ AB + pA, \p). (2.1)

Then 2 is embedded in 3 and (0,1) is the identity of Aj.

Note that the above construction is usuful mostly if 2( does not have its own
identity. However, it can be always performed.

P € A is called an idempotent (or sometimes a projection) iff P2 = P. PP
is a subalgebra called a reduced algebra.

If A C L(V) is a concrete algebra and E € 2 is its identity, then E is an
idempotent in L(V). We can then restrict 2 to RanFE.

An idempotent P is called finite discrete iff PP is finite dimensional. It is
called abelian iff PP is commutative.

2.3 Commutant

Fix an algebra 2. Let B be a subset of 2. Consider the family {%(;, | j € J}
of all subalgebras of 20 containing 8. This set is non-empty, because 2 is one

of its elements. Then
Alg(B) := (2 (2.2)
jeJ
is the smallest subalgebra of 2( containing B. Alg(B) will be called the algebra

generated by *B.
For instance, if A € 2, then Alg{A} is spanned by

A A% A3 (2.3)
More generally, Alg{A;,..., A,} is spanned by monomials
Ail"'Aika il,...,ikE{l,...,n}. (24)

Example 2.1. Consider the algebra B(C?) (of 212 matrices). Then Alg(os) is
the algebra of diagonal matrices and Alg(os, o) = B(C?).

The relative commutant of B in A is defined as
B NA:={AeA : AB=BA, Be B}

If there is no risk of confusion (it is clear which 2 we have in mind), we will
write B’ instead of B’ N2A and call it the commutant. (Typically it is clear from
the context that A = B(H)).



Theorem 2.2. (1) A commutant is always a subalgebra containing the iden-
tity of .

(2) B’ = Alg(B)".
(3) B” D Alg(B).
(4) B'=B" =....
(5) % C %// — %//N —
Proof. The following inclusions are easy:
B, C By = %/1 D 83’27 (25)
B C B (2.6)

(2.5) together with (2.6) imply B’ > B"". But (2.6) applied to B’ yields B’ C
B . Thus B’ = B"”". Now (4) and (5) follow. O

The center of an algebra 9 equals
3(B)={Ae®B : AB=BA, BeB}.

Clearly, 3(8) =B NP
If 2 is an algebra and P € 3(A) is an idempotent, then clearly P = PAP
is a subalgebra. 2 is naturally isomorphic to PA® (1 — P)2.

2.4 Homomorphisms

Let 2, 95 be algebras. A map ¢ : A — *B is called a homomorphism if it is linear
and preserves the multiplication, that means it satisfies

(1) ¢(AA) = Ap(A);
(2) ¢(A+ B) = ¢(A) + ¢(B);
(3) ¢(AB) = ¢(A)d(B).
If V is a vector space, then a homomorphism of 2 into L(V) is called a
representation of 2 in V.

If 2 is a unital algebra and ¢ : 2 — 9B is a homomorphism, then ¢(1) is an
idempotent in B. ¢ is called unital iff

B(1) = 1.

2.5 Ideals

B is a left ideal of an algebra 2A iff it is a linear subspace of 2l and A € 2,
B €8 = AB € 5. Similarly we define a right ideal.

If A€, then 2AA is a left ideal.

B is called a two-sided ideal if it is a left and right ideal. In what follows we
will write an ideal instead of a two-sided ideal.

We say that an ideal J is properiff J # 2A. We say that an ideal J is nontrivial
iff 3# A and J # {0}.



Theorem 2.3. The zero set (kernel) of a homomorphism is an ideal. If J is
an ideal of A, then A/T has a natural structure of an algebra. The map

A>5A—A+TeA/T

is a homomorphism whose kernel equals J.

J is a maximal ideal if it is a proper ideal such that if R is a proper ideal
containing J, then J = K. Let I(), MI(2() and MI; () denote the set of ideals,
maximal ideals and ideals of codimesion 1 in 2(. Clearly,

MI; (1) € MI(2() C I(2).

Theorem 2.4. If A is unital and I C A is a proper ideal, then there exists a
mazximal ideal containing J.

Proof. Let {J; | j € J} be the family of proper ideals containing J. 1 ¢ J;
for all of them. By Kuratowski-Zorn lemma this family possesses maximal
elements. O

Theorem 2.5. Let 2 be a commutative unital algebra. Let A € 2 be non-
invertible. Then

(1) 3:={AB : B €} is a proper ideal;

(2) There exists a maximal ideal containing A;

Proof. Clearly, J is an ideal and 1 ¢ J. This shows (1). (2) follows from
Theorem 2.4. O

We say that an algebra is simple if it has no nontrivial ideals.

Theorem 2.6. Let 2 be an algebra with a maximal ideal 3. Then A/T is
simple.

Theorem 2.7. Let 7 :2A — B be a homomorphism. Then

(1) If 3 is an ideal in B, then 7=1(J) is an ideal in A containing Kerm. Thus
we obtain a map

I(B)2T =713 e{TcI®) : Kerr C J}. (2.7)

(2) If 7 is surjective, then (2.7) is bijective.
(3) (2.7) maps MI(®B) into MI(2).
(4) (2.7) maps MI;(B) into MI;(2A).
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2.6 Left regular representation
The so-called left regular representation
A>3 A= AA) € L(A)
is defined by
MA)B := AB, A,Beql.

If 20 is unital, then A is injective. If 2 is not unital, then A can be extended to
a representation

A5 A M(A) € L(2y)
in the obvious way, which is injective.
In any case, we see that every algebra is isomorphic to a concrete algebra.
2.7 Banach algebras

Recall that if V is a Banach space with norm || - ||, and A is a linear operator
on V, then one defines

[A]l = sup{[|Av[| v €V, o]l =1} (2.8)

If [JA|| < oo, we say that A is bounded. The set of bounded operators on V is
denoted B(V). It is a Banach space with the norm || - || satisfying

[AB| < [|A[[[|B]]- (2.9)

This motivates the following definition. We say that 2( is a Banach algebra if
it is an algebra over C or R equipped with a norm || - || such that 2 is complete
in this norm (in other words, (2, | - ||) is a Banach space) and

IAB| < [|AIB]l, A,B e (2.10)

If V is a Banach space, then B(V) equipped with the operator norm is a Banach
algebra. More generally, every closed subalgebra of B(V) is a Banach algebra.

If A is a Banach algebra and € C 2, then Ban(¢) denotes the smallest
Banach algebra generated by C.

2.8 Invertible elements

Let 2 be an algebra. A € U is left invertible in 2 iff there exists an element
B € U, called a left inverse of A, such that BA = 1. It is called right invertible
iff there exists C' € 2 such that AC' = 1.

Theorem 2.8. IfJ C 2 is a proper left, resp. right ideal, then no elements of
J are left, resp. right invertible.

Theorem 2.9. Let A € 2. TFAE:
(1) A is left and right invertible.
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(2) There exists a unique B € 2 such that AB=BA=1
Proof. Let B, C be a left and right inverse of A. Then
B=Bl=BAC=1C=C.
O

If the above conditions are satisfied, then we say that A is invertible, (in 2A)
and the element B, called the inverse of A, is denoted A1

Theorem 2.10. 1. If A is invertible and B is a left or right inverse of A,
then B = A™L.

2. If A, B are invertible, then
(AB)'=B7'A7', A'-Bl'=A"YB-A)B.

Theorem 2.11. Let 2 be a Banach algebra and A, B € 2 be invertible such
that

|BA7Y| < 1.
Then A + B is invertible and
(A+B)7' =) (-1)/A7 (BAT!Y.
§=0

Moreover,
[(A+B)~ M < [[A7H(A — [ BATH),
[A™" = (A+ B) M| < JAT'BATY|(1 — [BATH)~L.

In particular, invertible elements form an open subset of A on which the inverse
18 a continuous function.

2.9 Spectrum
We assume that K = C. Let 2 be a unital algebra. Let A € 2(. We define the

resolvent set of A as

p(A):={z€C : z1 - A is invertible }.

We define the spectrum of A as o(A) := C\p(A4). (Or pu(A), resp. oy (A) if we
want to stress the dependence on the algebra).

Theorem 2.12. Let 2 be a unital Banach algebra and A € . Then
(1) If (M= A =c, then {z: |z =N <} C p(A).

(2) (=0 = A)~* > (dist(z,0(4)) "

(3) {l|z] > ||All} is contained in pA.

12



o(A) is a compact subset of C.
A

— A)~1 is analytic on p(A).
21— A)~! cannot be analytically extended beyond p(A).
0

Proof. (1) For |z — Al < ¢!, we have ||(z = A\)(A1— A)"Y =]z = Ne< 1
Hence we can apply Theorem 2.11. This implies (2)

(3) We check that Y o2 27" 1A"™ is convergent for |z| > ||A] and equals
(21— A)~L.

(4) follows from (1) and (3).

(5) We check that the resolvent is differentiable in the complex sense:

W (+h—A) " == A) ) =—(+h—A) (2= A) 5 —(z— A%

(6) follows from (2).
(7) (21 — A)~! is an analytic function tending to zero at infinity. Hence it
cannot be analytic everywhere, unless it is zero, which is impossible. O

Theorem 2.13. Let B be a closed subalgebra of a Banach algebra A and
1,A 5.

(1) ps(A) is an open and closed subset of po(A) containing a neighborhood of
0.

(2) The connected components of py(A) and of ps(A) containing a neighbor-
hood of infinity coincide.

(3) If pa(A) is connected, then py(A) = ps(A).
Proof. px(A) is open in C. Hence also in pg(A).
Let 29 € pa(A) and z, € pas(A), 2, — z0. Then (2, — A)~t — (20 — A)~?
in 2, hence also in 8. Therefore, 2y € pxs(A). Hence py(A) is closed in py(A).

This proves 1.
(2) and (3) follow immediately from (1). O

Theorem 2.14 (Gelfand-Mazur). Let 2 be a unital Banach algebra such that
all non-zero elements are invertible. Then 2A = C.

Proof. Let A € 2. We know that o(A) # 0. Hence, there exists A € o(A4).
Thus A1 — A is not invertible. Hence A1 — A =0. Hence A = A1. O

2.10 Spectral radius
Spectral radius of A € 2 is defined as

srA = sup |\l
A€EcA

13



Lemma 2.15. Let a sequence of reals (cy,) satisfy
Cn + Cm Z Cn+4m-
Then

. Cn . Cn
lim — = inf —.
n—oo N n

Proof. Fix m € N. Let n = mq + r, r < m. We have

cn < qem + .

So Cn 4dCm Cr
n n
Hence . .
limsup — < =,
n—oco N m
Thus,
. c . .c
limsup — < inf —.
n—o00 m
O

Theorem 2.16. Let 2 be a Banach algebra and A € 2. Then
lim ||A"]"
n—oo

exists and equals stA. Besides, stA < ||A]|.

Proof. Let
Cp = IOg HAn”

Then

Hence there exists

Consequently, there exists
r:= lim HA"||1/”.
n—oo

By the Cauchy criterion, the series

oo

> oArgT (2.11)

n=0

is absolutely convergent for |z| > r, and divergent for |z| < r. We easily check
that (2.11) equals (z — A)~!. O
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2.11 Characters on an algebra

Let 2 be an algebra. A nonzero homomorphism of 2l into C is called a character.
We define Char(2() to be the set of characters of 2. If ¢ € Char(2(), then Ker¢
is clearly an ideal of codimension 1. Thus we obtain a map

Char(2() > ¢ — Ker¢ € MI; (). (2.12)

Theorem 2.17. (1) If 2 is unital and T is an ideal of codimension 1, then
there exists a unique character ¢ such that 3 = Ker¢. Therefore, (2.12) is
then a bijection.

(2) For a general A, for any ¢ € Char(21) there exists a unique extension of ¢
to a character ¢1 on Aq. It is given by ¢3(A1+ A) = XA+ ¢(A).

(3) There exists a unique ¢, € Char(2g) such that Kergo, = 2.

Proof. (1) If A is unital then every character maps 1 to 1. Hence, for
A €T and X € C, seting ¢(A + A1) := X we obtain the unique character with
Kerp =7. O

For any A € 2 let A be the function
Char(2) 3 ¢ — A(¢) := ¢(A) € C. (2.13)

Char(2() is endowed with the weakest topology such that (2.13) is continuous
for any A € 2. Thus a net (¢,) in Char(2() converges to ¢ € Char(2) iff for
any A € 2, 6a(A) > 6(A)

Theorem 2.18. .
A> A A e C(Char(2)) (2.14)

is a homomorphism. Moreover, the range of (2.14) separates points and for
every element of Char(2) there exists A such that A(¢) # 0. Thus Char(2() is
a Tikhonov space. Moreover, the map

Char(2l) 3 ¢ — ¢1 € Char(21)\{¢oo}
18 a homeomorphism.

Proof. Let A,B €2, ¢ € Char(). Then

A(6)B(¢) = (A)¢(B) = $(AB) = AB(9).

If ¢ # 9 are characters, then there exists A € 2 such that ¢(A) # ¥(A), or
A(¢) # A(Y). .
If ¢ is a character, then there exists A € 2 such that ¢(A) # 0, or A(¢) # 0.

Theorem 2.19. Let 7 : 2 — B be a homomorphism. Then
Char(B) 3 ¢ +— 77 (¢) € Char(), (2.15)
defined for 1 € Char(B) by (77 )(A) := ¢(n(A)), is continuous.
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Proof. Let (1;) be a net in Char(B) converging to ¢» € Char(B). Let
A €. Then

T () (A) = ¢i(n(A)) = (r(A)) = 77 () (A).
Hence 7 (¢;) — 77 (¢). O

2.12 Characters on a Banach algebra

Theorem 2.20. Let 2 be a unital Banach algebra.

(1) Let T be a mazimal ideal in A. Then T is closed.

(2) Let ¢ be a character on . Then it is continuous and ||¢|| = 1.
(3) Char(2) is a compact Hausdorff space.

(4) The Gelfand transform

A5 A A e C(Char(A))
is a norm decreasing unital homomorphism of Banach algebras.

Proof. (1) Invertible elements do not belong to any proper ideal. But
a neighborhood of 1 consists of invertible elements. Hence the closure of any
proper ideal does not contain 1.

By the continuity of operations, the closure of an ideal is an ideal. Hence if
J is any proper ideal, then J is also a proper ideal.

(2) Ker¢ is a maximal ideal. Hence it is closed. Hence ¢ is continuous.

Suppose that ||¢]| > 1. Then for some A € 2, ||A]| < 1 we have |¢p(A)| >
1. Now A™ — 0 and |¢(A")| = |¢p(A)|™ — oo, which means that ¢ is not
continuous.

(3) and (4) follow easily from (2). O

Theorem 2.21. Let 2 be a Banach algebra.
(1) Let ¢ be a character on . Then it is continuous and ||¢|| < 1.

(2) Char(2) is a locally compact Hausdorff space.
(3) The Gelfand transform

A3 A A e Cop(Char(A))
is a norm decreasing homomorphism of Banach algebras.
Theorem 2.22. Let A be a commutative unital Banach algebra. Then every
mazximal ideal in A has codimension 1. Hence MI; (1) = MI(2().

Proof. Let J be an ideal of 2 of codimension > 1. Then 2A/J s a com-
mutative Banach algebra of dimension > 1. In particular, 2(/7J is not C. By
the Gelfand-Mazur theorem, that is Thm 2.14, 2/J contains non-invertible el-
ements. Every such an element is contained in a proper ideal K.

Let 7 : A — 24/J be the canonical homomorphism. By theorem 3.1, 771(8)
is a proper ideal of 2 containing J. Hence J is not maximal. O

16



Theorem 2.23. Let 2 be an algebra and A € A. Then
(1) oa(4) D {6(A) : ¢ € Char()}.
(2) Char(A) > ¢ — ¢(A) € o (A) is a continuous map.

(3) If in addition U is a commutative unital Banach algebra, then

oa(A) = {¢(4) : ¢ € Char()},

and hence

st(A) = sup{|A(¢)| : ¢ € Char()} = || Al

Proof. If 2 is non-unital, then we adjoin the identity and extend all the
characters to 2j.

Let ¢ € Char(21) and ¢(A) = A. Then ¢(A— A1) = 0. Hence A — Al belongs
to a proper ideal. Hence it is not invertible. Hence A € o(A), which proves (1).

Let z € 0(A) and 2 be a Banach commutative algebra. Then z1 — A is not
invertible. Hence, by Thm 2.5, there exists a maximal ideal containing z1 — A.
Therefore, by Thm 2.22, this ideal has codimension 1. By Thm 2.17, there
exists ¢ € Char(2() that vanishes on this ideal. Thus it satisfies ¢(z1 — A) = 0.
Hence z = ¢(A) = A(¢). This proves (3). O

Theorem 2.24. Let 2 be a commutative unital Banach algebra. Let A € 2.
The following conditions are equivalent:

(1) A belongs to the intersection of all mazimal ideals;
(2) For all ¢ € Char(2() we have ¢p(A) =0

(3) A

(@) s )

(5) limsup ||A”H1/” =0.

The set of A € 2 satisfying the conditions of Theorem 2.24 is called the
radical of 2. It is a closed ideal of 2.

2.13 Problems

Problem 2.25. We say that 2 is a division algebra if all its nonzero elements
are invertible. Prove that all division algebras over R are isomorphic to R, C
or H (the quaternions).

Problem 2.26. Prove that L(R™), L(C™) and L(H™) are simple algebras over
R.

Problem 2.27. Prove that the algebra of upper-triangular matrices is isomor-
phic to that of lower-triagular ones.

Problem 2.28. Describe all ideals in the algebra of upper triangular 2x 2 ma-
trices.
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3 (*-algebras

3.1 Operators on Hilbert spaces

From now on we assume that K = C.
Let H be a Hilbert space with scalar product (:|-). Bounded operators on H
are equipped with the Hermitian conjugation

B(H) > A A* € B(H). (3.1)

It is defined by
(v|Aw) = (A*v|w), v,w € H. (3.2)

(3.1) is an antilinear map satisfying

A™ = A, (AB)* = B*A*, ||A*A| = ||A]>. (3.3)

3.2 x-algebras

In what follows we will try to incorporate the Hermitian conjugation into the
theory of algebras. We will introduce the concept of a C*-algebra, which are
special kinds of Banach algebras possessing the %-operation. Among C*-algebras
especially important are von Neumann algebras and their abstract versions,
which go under the name of W*-algebras.

Let us start, however, with a concept of a x-algebra that does not use a
norm. Such an approach should suffice in finite dimension.

We say that an algebra 2 is a x-algebra if it is equipped with an antilinear
map A > A+ A* € A such that (AB)* = B*A*, A** = A and

A # 0 implies A* A # 0. (3.4)

Note that the condition (3.4) removes an “unwanted” trivial examples.

Let 2 be a x-algebra. We say that a subset B of 2 is x-invariant (or self-
adjoint) if A € 2 implies A* € 2. Every x-invariant subalgebra of 2 is a
x-algebra.

Theorem 3.1. If 1€, then 1" = 1.

If H is a Hilbert space, then B(H) equipped with the hermitian conjugation
is a x-algebra.

If 2, B are *-algebras, then a homomorphism 7 : 2 — B satisfying w(A*) =
m(A)* is called a x-homomorphism.

The following theorem is a version of the Wederburn-Artin Theorem:

Theorem 3.2. (1) Ewvery finite dimensional x-algebra 2L is x-isomorphic to
& B(C™),

=1

for some py,...,pn
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(2) If in addition 2 is a subalgebra of B(CN) and contains the identity on C¥,
then there exist qi,...,q, with N = Y p;q;, and a basis of CN such that
i=1

A= & BCP) @1, (3.5)

i=1

3.3 Von Neumann algebras

Recall from Subsect. 2.3 that if B C B(#), then the commutant of B is defined
as
B :={Ae B(H) : AB=BA, BecB}.

Theorem 3.3. If B is x-invariant, then so is B’.

Proof. Let A € ®B’. Then for any B € 9B, we have AB = BA. Hence
B*A* = A*B*. But ‘B is x-invariant. Hence CA* = A*C for any C' € B. O.

We say that 2 C B(H) is a von Neumann algebra if it is *-invariant and
2A = A”. Clearly, von Neumann algebras are *-algebras.

It is easy to see that all *-subalgebras of B(C") containing Iy are von
Neumann algebras. Indeed, if 2 is given by (3.5), then 2l is obviously *-invariant
and "

A = @ 1,, ® B(C%).
=

So, A" = 2.

Theorem 3.4. Let B be a x-invariant subset of B(H). Then B" is the smallest
von Neuman algebra containing B.

Proof. By Thm 2.5, 8” = ®B”” and is #-invariant, hence 8" is a von
Neumann algebra.

If B C 2, then clearly again using Thm 2.5, B” C A”. But if 2 is a von
Neumann algebra, then 2 = 2[. So B” C . O

We will say that 8" is the von Neumann algebra generated by 8.

3.4 Normal states on a von Neumann algebra

Let 2 be a von Neumann algebra in B(H). Let p be a positive operator on
‘H with Trp = 1. In physics such operators are called density matrices. In the
theory operator algebras, one introduces a linear map

A>3 A— w(A) :=TrpA e C. (3.6)
Note that w is a linear functional on 2l satisfying

A>0 = w(A)>0, (3.7)
w(l) = 1. (3.8)
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Such functionals will be called normal states.
Note that the density matrix is not uniquely defined for anda given functional
w.

Example 3.5. Let V and W be Hilbert spaces with an o.n. bases {e; | i € I},
resp. {fi | i € I}. Set
pi= Y Ailes)(eil, (3.9)
pri=Y  Ailei @ fi)(e; @ fil, (3.10)

Q=) Ve ® fi. (3.11)
Then for A € B(V),
Trdp=TrAe 1p = (QA®1Q). (3.12)

In particular, for the algebra B(V) represented on V @ W, every normal state
can be purified.

3.5 (*-algebras

(3.3) motivates the following definition:
We say that a Banach algebra is a C*-algebra if it is equipped with an
antilinear map A > A — A* € A such that (AB)* = B*A*, A** = A and

A=Al = [|Al*, Ae. (3.13)

Note that in a C*-algebra the condition (3.4) is always automatically satisfied,
so every C'*-algebra is a x-algebra in the sense of the definition from Subsection
3.2.

Theorem 3.6. In a C*-algebra we have ||A| = ||A*||

Proof. |A|? = ||A*A| < ||A*||||A]l, hence || A < ||A*||. Replacing A with
A* we obtrain ||A*|| < ||A]|. O

Theorem 3.7. If 1€, then |1 = 1.

Proof. We know that 1= 1" by Thm 3.1. Hence ||1]|? = [|[1*1|| = ||1]|. O

If H is a Hilbert space, then every closed #-subalgebra of B(H) is a C*-
algebra. They are called concrete C*-algebras.

A concrete C*-algebra is called nondegenerate if for & € ‘H, AP = 0 for all
A € 2 implies = 0.

If 2 is not necessarily non-degenerate, and H; :={® € H : Az =0, A€
2}, then A restricted to Hi is nondegenerate.

In particular, all von Neumann algebras are concrete nondegenerate unital
C*-algebras.
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3.6 Examples of infinite dimensional x-algebras

Here are a few examples of infinite dimensional *-algebras:
(1) (i) Finite rank operators on a Hilbert space H.
) Compact operators on H.
(iii) Bounded operators on H, that is, B(H).
i)

Compactly supported multiplication operators on [%(N); algebra iso-
morphic to ¢.(N).
(i) Vanishing at infinity multiplication operators on [?(N); algebra iso-
morphic to ¢ (N).
(iii) Bounded multiplication operators on [?(N). This algebra is isomorphic
to I*°(N).
(3) (i) Multiplication operators by continuous compactly supported functions
on L?(R), algebra isomorphic to C..(R).
(ii) Multiplication operators by continuous vanishing at infinity functions
on L?(R), algebra isomorphic to C (R).
(iii) Bounded multiplication operators on L?(R). This algebra is isomor-
phic to L*=(R).

(i)’s are *-algebras, but not C*-algebras. (ii)’s are C*-algebras but not von
Neumann algebra. They are the closures of (i)’s. (iii)’s are von Neumann
algebras—they are the double commutants of (ii)’s.

For instance, the von Neumann algebra generated by finite rank or compact
operators is the whole B(H).

Physically, if we know that self-adjoint operators Ay, ..., A, are observables,
then as the observable algebra it is natural to take

A={A,.... A}

Observables are often described by unbounded self-adjoint operators. This
is not a serious problem. What is relevant for quantum measurements are
spectral projections, which are bounded. Thus by saying that an algebra A C
B(H) is generated by (possibly unbounded) self-adjoitn operators Aq,..., A,
we will mean that it is generated by spectral projections of these operators (or,
equivalently, by their bounded Borel function).

1. Consider the operators qgi, i=1,2,3 on L?(R?). They are self-adjoint and
commute. They have simple joint spectrum. The von Neumann algebra
generated by q@i, 1 = 1,2,3 is equal to the operators of multiplication by
functions in L>°(R3).

2. Consider in addition the operators #; := i719,,, i = 1,2,3 on L?(R3).
The von Neumann algebra generated by ¢;, 7;, i = 1,2, 3, coincides with
B(L*(R?)).
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3.7 Special elements of a x-algebra

A € 2 is called normal if AA* = A*A. Tt is called self-adjoint if A* = A. A,
denotes the set of self-adjoint elements of A

P € 2 is called an orthoprojector if it is a self-adjoint idempotent. Proj(2l)
denotes the set of projectors of 2.

Theorem 3.8. Let P* = P and P? = P3. Then P is an orthoprojector.

U € 2 is called a partial isometry iff U*U is an orthoprojector. If this is the
case, then UU™* is also an orthoprojector. U*U is called the right support of U
and UU™ is called the left support of U.

U is called an isometry if U*U = 1.

U is called a unitary if U*U = UU* = 1. U(2A) denotes the set of unitary
elements of 2.

U is called a partial isometry iff U*U and UU™* are orthoprojectors.

We can actually weaken the above condition:

Theorem 3.9. Let either U*U or UU* be an orthoprojector. Then U is a
partial 1sometry.

3.8 Spectrum of elements of C*-algebras

Theorem 3.10. Let A € 2 be normal. Then

sr(A) = [|A]l.
Proof.
IA%]? = (| A% 42| = [[(A*A)?|| = | A*A|* = [|A]I*.
Thus ||A?"|| = ||A||*". Hence, using the formula for the spectral radius of A we

get [A%"[* " = ||4]. D

Theorem 3.11. (1) Let V € A be isometric. Then o(V) C {|z| < 1}.
(2) U € A is unitary = U is normal and o(U) C {z : |z| =1}.
(3) A €U is self-adjoint = A is normal and o(A) C R.

Proof. (1) We have |[V||? = |[V*V]| = ||1|| = 1. Hence, o(V) C {|z| < 1}.

(2) Clearly, U is normal.

U is an isometry, hence o(U) C {|z]| < 1}.

U~ is also an isometry, hence o(U~!) C {|z| < 1}. This implies o(U) C
{21 > 1},

(3) For A7 > || A, 1+iAA is invertible. We check that U := (1 —i\A)(1+
iAA)~1 is unitary. Hence, by (2).=, o(U) C {|z| = 1}. By the spectral mapping
theorem, o(4) C R. O

Note that in (2) and (3) we can actually replace = <, which will be proven
later.
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3.9 Invariance of spectrum in C*-algebras

Lemma 3.12. Let A be invertible in 2. Then A~! belongs to C*(1, A).

Proof. First assume that A is self-adjoint. Then og(A) C R. Hence pg(A)
is connected. But € := C*(1, A) = Ban(1, A). Hence, by Theorem 2.13,

pe(A) = pa(A) (3.14)

A is invertible iff 0 € pg(A4). By (3.14), this means that 0 € pg(A) and
hence A~1 € €.

Next assume that A be an arbitrary invertible element of 2. Clearly, A*
is invertible in 2 and (A*)~! = (A7!)*. Likewise, A*A is invertible in A
and (A*A)~1 = (A*)71A~!. But A*A is self-adjoint and hence (A*A)~! €
C*(1, A*A) C C*(1, A). Next we check that A=1 = (A*A)~1A4*. O

Theorem 3.13. Let B C A be C*-algebras and A, 1 € B. Then op(A) =
UQ[(A).

Proof. By Lemma 3.12, o9 (A4) = o¢(A), where € := C*(1, A). But € C
BCA O

Motivated by the above theorem, when speaking about C*-algebras, we will
write o(A) instead of oy (A).

3.10 Spectral theorem for self-adjoint operators

Theorem 3.14. Let 2 be a unital C*-algebra and A € 2 be self-adjoint. Then
there exists a unique continuous isomorphism

Clo(A)> f— f(A) eC*(1,A) C ¥,

such that
(1) id(A) = A ifid(z) = .
Moreover, we have

(2) If f is a polynomial, then f(A) coincides with f(A) defined by the holo-
morphic calculus.

3) o(f(A)) = f(a(A)).
(4) g € C(f(0(A))) = go f(A) = g(f(A)).
) [f(A)]] = sup[f].

3.11 Gelfand theory for commutative C*-algebras

Theorem 3.15. Let 2 be a C*-algebra and ¢ a character on A. Then ¢ is a
x-homomorphism and ||¢| = 1.
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Proof. Adjoin the unit if needed. Let A = A*. Let ¢ := ¢ o) Then ¢ is
a character on the commutative C*-algebra C*(1, A). Hence ¢(A) € o(A) C R.
Thus ¢(A) € R.

Let A € 2 be arbitrary. Then ReA := (A + A*) and ImA = 2.(A4%) are
self-adjoint. Hence, ¢(ReA), #(ImA) € R. By linearity, this implies

P(A7) = o(A). (3.15)

O

Theorem 3.16. Let 2 be a unital commutative C*-algebra. Then the Gelfand
transform A
A> A~ Ae C(Char())

18 a *-isomorphism.

Proof. Step 1 We already know that it is a norm-decreasing homomor-
phism by Theorem 2.20.

Step 2 Using (3.15) we see that the Gelfand transform is a *-homomorphism.

Step 3 Every A € 2 is normal. Hence ||A|| = sr(A) by Theorem 3.10. But
we know that ||A| = sr(A). This show that the Gelfand transform is isometric.

Step 4 We know that the image of the Gelfand transform is dense in
C(Char(2()) and 2 is complete. We proved also that it is isometric. Hence
it is bijective. O

Theorem 3.17. (1) U € 2 is unitary < U is normal and o(U) C {z : |z] =
1}.
(2) A e is self-adjoint < A is normal and o(A) C R.

Proof. = was proven before.

(1)<. Consider the algebra € := C*(1,U). By the normality of U, it is
commutative. Let ¢ € Char(€). Then ¢(U*)p(U) = ¢(U)p(U) = 1. Hence
o(U) C {|z| = 1}. Hence U*U = 1.

(2)<. Consider the algebra € := C*(1, A). By the normality of A, it is
commutative. Let ¢ € Char(€), Then ¢(A) € o(A) C R. Hence ¢(A*) = ¢(A).
Hence A* = A. O

Theorem 3.18. Let A be a commutative C*-algebra. Then the Gelfand trans-
form R
A5 A A€ Cyx(Char(A))

18 a *-isomorphism.
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3.12 Fuglede’s theorem
Theorem 3.19. Let A, B € 2 and let B be normal. Then AB = BA implies
AB* = B*A.

Proof. For A € C, the operator U()) := ABTAB — o=ABAB” g unitary.
Moreover, A = e*Z Ae=*B. Hence

e M AN = U(=NAU(N) (3.16)

is a uniformly bounded analytic function. Hence is constant. Differentiating it
wrt A we get [4, B*] =0. O

3.13 Functional calculus for normal operators

Theorem 3.20. Let A be a unital C*-algebra. Let A € A be normal. Then
there exists a unique continuous unital x-isomorphism

C(o(A) > f—fA) e C"(1,A) C,

such that
(1) id(A) = A ifid(z) = =.
Moreover, we have

(2) If f € Hol(o(A)), then f(A) coincides with f(A) defined by the holomorphic
functional calculus.

3) o(f(A)) = fa(A)).
(4) g€ C(f(0(A))) = go f(A) = g(f(A).
) [[F(A)] = sup|f].

Proof. If f is a polynomial, that is f(z) = > anmz"2™, we set
FA) =) anmATA™™.

C*(1, A) is a commutative algebra. Let ¢ be a character on C*(1, A). Then
we easily check that ¢(f(A)) = f(¢(A)). Hence o(f(A)) = f(o(A)).
Clearly, f(A) is normal. Hence

1 (A = st(f(A)) = sup | f].

Therefore, on polynomials the map f — f(A) is isometric. Since polynomials
are dense in a complete metric space C(c(A)) and polynomials in A, A* are
dense in a complete metric space C*(1, A), there is exactly one continuous
extension of this map to the whole C'(c(A)), which is an isometric bijection of

C(a(A)) to C*(1, A).
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Clearly, on polynomials, the map f — f(A) is a x-homomorphism. Since
the multiplication, and involution are continuous both in C(c(A)) and C*(1, A),
this map is a homomorphism on C(o(4)). O

If 2 is not unital, either we can adjoin the identity and consider the algebra
2y, or we can use the following version of the above theorem:

Theorem 3.21. Let A be a C*-algebra. Let A € 2 be normal. Then there
exists a unique continuous x-isomorphism

Coo(a(AN{0}) 3 f = f(A) € C7(A) C ¥,
such that id(A) = A if id(z) = z.

3.14 Positive elements

If A € B(H) then we say that A > 0 iff
(v|Av) >0, veH. (3.17)

In a C*-algebra we do not have a Hilbert space at our disposal, therefore we
need to define the postivity differently.

Let A € 2A. We say that A is positive iff A is self-adjoint and o(A4) C [0, oo].
A, will denote the set of positive elements in A. We will write A > B iff
A—BeU;. We will write A > Biff A> B and A # B.

Lemma 3.22. Let A be self-adjoint and || Al < 2X. Then |A1— A|| < X iff
A>0.

Theorem 3.23. (1) A€, and A > 0 implies NA € 2.

(2) A, B e, implies A+ B e Uy

(3) A,—A €A, implies A= 0.

(4) A4 is closed.

In other words, 2 is a closed pointed cone.

Proof. (2) We use by Lemma 3.22 with A := ||A|| + || B||:
1Al + 1Bl = A = B|| < [[IIAll = Al + 1Bl = BIl|| < Al + 1IB]-

Hence, A+ B > 0.

(3) 0(A),0(—A) C [0,00] implies o(A) = {0}. But A is self-adjoint. Hence
A=0.

(4) Let A, — A. Then |[|[A,| — ||4]. An € A4 iff [|A, — [|4An|lll < [ 44l
By taking the limit, [|[A — [|A[||| < [|Al|. Hence A € A;. O

Theorem 3.24. Let A € Ay and n € N\{0}. Then there exists a unique
B e Ay such that B" = A.
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Proof. [0,00[> A = A" is a continuous function. Hence B := A" is well

defined by spectral theorem and satisfies the requirements of the theorem.
Let B €2,, B" = A. Clearly,

BA=B""' = AB. (3.18)

Let € := C*(1,B,A). By (3.18), € is commutative. If ¢ € Char(C), then
#(A) = ¢(B™) = ¢(B)". Moreover, ¢(B) > 0. Hence ¢(B) = ¢(A)Y/". Hence
B is uniquely determined, and equals AY/™. O

Theorem 3.25 (Jordan decomposition of a self-adjoint operator.). Let A €
A be self-adjoint. Then there exist unique Ay, A_ € A, such that AL A_ =
A_A+ =0 andA:A+ —A_.

Proof. The functions |z|4 := max(z,0) and |z|—- := max(—z,0) are con-
tinuous. Hence Ay and A_ can be defined as |A|+ and |A|_ by the functional
calculus.

Assume that A_ and A, satisfy the conditions of the theorem. Then

A2 =A% + A% = (A4 + A2
By the uniqueness of the positive square root, |A| = Ay + A_. Hence Ay =
1(JA|+A) and A_ = 1(JA| - 4). O

Theorem 3.26. Let A € A. The following conditions are equivalent
(1) A>0.
(2) There exists B € A such that A= B*B.

Proof. (1) = (2) is contained in Theorem 3.24. In fact, A = (v/A)2.

Let us prove (1) < (2). Clearly, B*B is self-adjoint. Let B*B = A, — A_
be its Jordan decomposition.

Clearly

(BAL)*(BA_)=A_(A; —A)A_ = —-A% e —a,.
Let BA_ =S +iT. Then
(BA_)(BA_)* =5%+T?+i(TS — ST)
—(BA_)*(BA_) +2(S* +T?) € Ay,
using the fact that 20, is a convex cone.
But
o((BA_)*(BAL)) U{0} = o((BA_)(BA_)") U {0}.

Hence o((BA_)*(BA_)) = {0}. Consequently, (BA_)*(BA_) = 0. Conse-
quently, A> = 0. By the uniqueness of the positive third root, A_ = 0. O
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Theorem 3.27. (1) Let A be self-adjoint, then —||A|| < A < ||A]|.
In what follows, let 0 < B < A. Then

2) 1Bl < lIAll,

3) If D*D < 1, then DD* < 1.
4) 0 < C*BC < C*AC.

5 0<(A+A) < (A+B)7L 0< A
6) BA+B) ™' <AA+A)~ L
7N0<BY<A% 0<H<I,

~ o~ o~ o~ o~ o~

Proof. (1) o(A) C [—||All,||All]]- Hence ||A|| — A >0 and ||A|| + A > 0.

(2) By (1), A < ||4]|. Hence, B < ||A||. Hence o(B) C [0, ||Al|]. Therefore,
1Bl < [|All

(3) Clearly, ||D*D|| < 1. Hence || DD*|| < 1. Hence, by (1), DD* < 1.

(4) C*(A—B)C = ((A— B):C)"(A—B):C > 0.
(5) Clearly, A+ A > A+ B > \. Hence A+ A and A+ B are positive invertible.
By (4), applied with ¢ = (A + A)~z, for D := (A+ B)2(A+ A)"2 we have
1> D*D. Hence 1 > DD*.
(6) follows immediately from (5).
(7). We use (6) and

AY = c@/ ATTAN+ A) 7t
0

3.15 Linear functionals

Let w be a linear functional on 2. The adjoint functional w* is defined by

w*(A) == w(A*).

We say that w is self-adjoint iff w* = w, or equivalently, if w(A) € R for A
self-adjoint.
We say that w is positive iff

w(A) >0, AeA,.

The set of continuous functionals over 2 will be denoted 2#. The set of con-
tinuous positive functionals over 2 will be denoted Qlf

Theorem 3.28. If w is a positive functional, then it is self-adjoint and

w(A*B)|? < w(A* A)w(B*B). (3.19)
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Proof. If A is self-adjoint, then we can decompose A as A = —A_ + A,
with A_, AL positive. Now w(Ay) > 0. Hence w(A) = w(A4) —w(A_) € R.
To prove (3.19), we note that for any A € C,

w((A+ AB)*(A+ AB)) > 0.

O

Theorem 3.29. Let w be a linear functional on a unital C*-algebra 2A. The
following conditions are equivalent:
(1) w is positive

(2) w is continuous and ||w| = w(1)
Proof. (1)=(2). Step 1 Let A € ;. Then A < ||A||. Hence |w(A)| =
w(A) < [|Aflw (D).
Step 2 Let B € 2. Then, by (3.19), using the positivity of B*B and Step
1, we get

lw(B)|* < w(Dw(B*B) < w(1)?||B*B|| = w(1)*|| B

Hence ||wl|? < w(T)2.

(1)< (2). Tt is enough to assume that ||w|| = 1.
Step 1 Let A be self-adjoint. Let o, 8,7 € R and w(A4) = a + if. It is enough
to assume that w(1l) = ||w|| = 1. Clearly,

V=14l = v7? + [ A2 w1l —i4) =7+ 5 —ia.

But
w(yl —i4)* < [ly1 —i4]%

Hence
(Y +B8)* +a® <2+ || Al

For large ||, this is possible only if 5 = 0. Hence w is self-adjoint.
Step 2 Let A € 2. Then H||A|| — AH < ||A]]. Therefore,

[ Allw(D) — w(A)| < [JA]l

But w(l) =1, and w(A) is real. Hence w(A4) > 0. O

Theorem 3.30. Let w be a linear functional on a non-unital C*-algebra. The
following conditions are equivalent:

(1) w is positive

(2) w is continuous and for some positive approzimate identity {FEq} of A

]l = limw(E2).
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(3) w is continuous and if the functional wy : Aq — C is given by wy(A+ A) :
Mw|| + w(A), then wy is a positive functional on Ay

Moreover, wy is the unique functional on 2y that extends w and satisfies ||w||
lwn]-

Proof. (1)=-(2). Step 1. We want to show that
c:=sup{w(4) : 0<A<L1}

is finite. Suppose that it is not true, 0 < A,, < 1 and w(A4,,) — co. Then we
will find A, > 0 such that > A, < oo and > A\,w(4,) = 0. But A:=> N\, A,
is convergent and, for any n,

i/\jw(Aj) < w(4) < oo,

which is a contradiction.
Step 2. If A € % then A = Y] #/A; with 4; € 2y and ||A;] < [|A]|.
Hence

3
w(A)] < w(A)) < 4cl|A].
j=0

Hence w is continuous.
Step 3. Let E, be a positive approximate unit. w(E,) is an increasing
bounded net, so ¢ := lim, w(F,) exists. Since ||Eq| < 1, we have ¢ < |lw]|.
Step 4 Let A € 2. Then

w(Ead)|* < w(Bq)w(A"A) < w(E)|lwl|A*All < cllw][ Al

Moreover, F,A — A and w is continuous, hence the left hand side goes to
lw(A)|2. Hence |w(A)|? < cf|w]|||A]|?>. Therefore, ||w]|| < e.
(2)=(3). It is obvious that |Jwy|| > ||w]||. Let us prove the converse inequality.
Let E, be a positive approximative unit. We have

wiA+ A) =limw(\E, + E,A).

Hence
wi(A+ A)| =lim, |[w(AE. + EoA)| < limg, [|w||||AEs + Eo Al
< |lwllimsup,, [| Ea|l[|A + All = [lw[[[[A + A].

Hence, [lwi ] < [l

Thus we proved that ||w|| = ||wy|]. Therefore, wy(1) = |jwy||. Therefore, w is
positive by the previous theorem.

(3)=(1) is obvious. O

A positive functional over 2 satisfying ||w|| = 1 will be called a state. For
a unital algebra it is equivalent to w(l) = 1. For a non-unital algebra it is
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equivalent to 1 = sup{w(A) : A < 1}. The set of states on a C*-algebra 2 will
be denoted E(2).
If w is a positive functional on 2, then

wi(A4+A) i =w()+ A\|w|]] A€, AeC,

defines a state on 20y extending w with ||w|| = ||w1]|.
If ¢ is a positive functional on 20y, then

P(A+ X)) =0w(A)+ Alo|l, AeA, XAeC,

where 0 < 0 < ||¢||, and w is a state on 2.

3.16 The GNS representation

Recall that (H, ) is a *-representation of a C*-algebra 2 iff 7 : A — B(H) is
a homomorphism and 7(A*) = w(A)*. Let (H,n) be a xrepresentation of 2,
QeHandwe Qlf We say that € is a vector representative of w iff

w(A) = (Qm(A)Q).

We say that Q is cyclic iff 7(2)2 is dense in H. (H,w, ) is called a cyclic
x-representation iff (7, H) is a *-representation and (Q is a cyclic vector.

Theorem 3.31. Letw be a state onA. Then there exists a cyclic *-representation
(Hy, Ty Q) such that U, is a vector representative of w. Such a representation
18 unique up to a unitary equivalence.

Proof. We adjoin the unit if needed.
For A, B € 2, w(A*B) is a pre-Hilbert scalar product on 2, that means, it
is a sesquillinear form satisfying w(A*A) > 0 for all A € 2[. Define

Ny:={Aed : w(A"A) =0} (3.20)
The scalar product on 2/M,, is well defined:
(A+ My |B+MNy,) == w(A*|B). (3.21)

Let H,, be the completion of 2A/,,.
Let B € M, A € 2. Clearly,

B*A*AB < | A*A|B*B. (3.22)

Therefore,
w((AB)*AB) =w(B*A*AB < ||[A"A||w(B*B). (3.23)

Hence, M, is a left ideal. It is clearly closed.
The left regular representation

A> Ars MA) € L(A), MA)B:= AB,
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preserves I,. Hence we can define the representation m, on 24/, by
Tw(A) (B +MNy,) := AB+N,,.
We have

|17 (A)(B + N> = |AB + N, ||* = w(B*A*AB) (3.24)
< A" Al|w(B*B) = || AI]*[|B + 2N,|*. (3.25)
Hence ||m,(A)|| < ||A|| and 7, extends to a bounded linear map on H,,.
We set Q, := 14+ MN,,. Clearly, m,(A)Q, = A+ N, hence Q, is cyclic. O

Note that 7, (2() is a C*-algebra inside B(H,,). It generates the von Neu-
mann algebra 7, ()" C B(H,).

Below C" for n € N will have the usual meaning, and for n = oo, C" = [2(N).
We write e;, j=1,2,... for its canonical o.n. basis.

Example 3.32. Consider the C*-algebra of compact operators K(H) with an
o.n. basis {fj}jen. Consider the state w, which on A € K(H) acts as

n

W(A) = Zn: )\](fJ|AfJ), Z )\j =1, /\j >0, neNU {OO} (326)

Jj=1 Jj=1

Then the GNS Hilbert space can be identified with H ® C", and the GNS vector

8
n

Q=3 VNfi®e (3.27)

j=1
The GNS representation is
m(A):=Ax 1. (3.28)

The corresponding von Neumann algebra is B(H) ® 1.

Example 3.33. Consider the C*-algebra C[0,1]. Let x1,x2,... be a sequence
of distinct numbers from [0,1]. Consider the state w, which on F € C[0,1] acts
as

wF) =Y NF(z;), Y A=1 >0, neNU{c}. (3.29)
j=1
Then the GNS Hilbert space can be identified with C™, and the GNS vector is
Q=" Nej. (3.30)
j=1

The GNS representation is

n

m(F) =Y F(z))e;. (3.31)

Jj=1

The corresponding von Neumann algebra is isomorphic to 1*°(N).
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Example 3.34. Consider the C*-algebra C[0,1]. Let A be a continuous function
on [0, 1] with support [a,b] C [0,1]. Consider the state w, which on F € C0,1]
acts as

W(F) = /0 A@)F(z)de /0 MNa)dz =1, A>0. (3.32)

Then the GNS Hilbert space can be identified with the space L*[a,b], and the

GNS vector is
Q(x) := A(x). (3.33)

The GNS representation is

w(F) := F(z) o (3.34)

The corresponding von Neumann algebra is L™ [a,b], acting as multiplication
operators on L*[a,b].

4 Wr-algebras

4.1 Introduction

Let V be a Hilbert space and v,, be a sequence of vectors in V.
(1) We say that v, is norm convergent to v if lim;_, [lv; — v|| = 0.
(2) We say that vy, is weakly convergent to v if lim;_, o (w|v; —v) = 0 for every
we V.
Let (A;) be a sequence of operators in B(V, W).
(1) We say that (A;) is norm convergent to A iff lim [|4; — Al = 0. In this
j—o0
case we write
hm Aj = A.
j—oo
(2) We say that (A;) is strongly convergent to A iff lim ||A;jv — Av|| = 0,
Jj—o0
v € V. In this case we write

S— hIIl Aj = A.

J—00

(3) We say that (A;) is weakly convergent to A iff lim |(w|A4;v)—(w|Av)| =0,
J

—00
v eV, weW. In this case we write

w— lim A; = A.

j—o0

The above definitions are related to three distinct topologies on B(V, W): the
norm topology, the strong operator topology and the weak operator topology.
The first is generated by the operator norm. The other two are examples of
locally convex topologies, and they are not given by any norm.
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The famous Von Neumann’s Density Theorem says that von Neumann al-
gebras are precisely weakly (or strongly) closed #-algebras in B(H) containing
the identity.

In order to state and prove this theorem we need to recall the concept of a
topology.

4.2 Topological spaces

If X is a set, then 2% will denote the family of all subsets of X.
(X,T) is a topological space iff X is a set and T C 2% satisfies

1) 0,XeT;
(2) AieT,ieI,:»LGJIAieT;

(3) A1,..., A4, €T = EwlAieT.

Elements of T are called sets open in X. We will call T “a topology”.

A set A C X is called closed in X iff X\ A is open.

If 7, S are topologies on X, then we say that 7 is weaker than S iff T C S.

If 7 = 2%, then we say that 7T is discrete.

If 7= {0, X}, then we say that 7T is antidiscrete.

If B C 2%, then there exists the weakest topology containing B.

If A C X, then the closure of A, denoted A°, is the smallest closed set
containing A.

Let d : X x X — [0,00[ be a metric. For any z € X and r > 0 define the
open ball of radius r and center x:

B(z,r):={y € X | d(z,y) <r}. (4.35)
Then the weakest topology containing the set of all open balls
{B(z,r) |z e X, r>0} (4.36)

is called the topology generated by the metric d.

4.3 Locally convex vector spaces

Let V be a vector space over C. A function p: V — [0, 00| is called a seminorm
if

p(Av) = |Alp(v), pv+w) < p)+plw), v,welV, IeC. (4.37)

If in addition
pv)=0 = wv=0, (4.38)

then it is called a norm. Every norm p defines a metric on X by

d(v,w) :=p(v — w). (4.39)
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Suppose that we have a family of seminorms {p;};cs on a vector space V.
For each v € V, » > 0 and each seminorm p; of them we define a “generalized
ball”

Bj(v,r) ={w eV | p;jlv,w) <r}. (4.40)

Then the wekest topology containing the set of all open balls
{Bj(v,r) |lveX, r>0, jelJ} (4.41)

is called the topology generated by the family of seminorms {p;};c.

We say that V is a locally convex vector space if there exists a family of
seminorms {p;};cs that generates its topology and such that for each v € V
there exists j € J and p;(v) >0

Example 4.1. Let V be a Hilbert space. For any v € V define the seminorm
Dy (w) = |(v]w)]. (4.42)

Then the topology generated by these seminorms is called the weak topology on
V.

For instance, if {e nen is an orthonormal sequence in'V (that means (e;le;) =
0i;), then w—1lim, o e, = 0, but in the norm topology the sequence (e,) has
no limit.

Example 4.2. Here is a more general example. Suppose that V is a vector
space. Let V#8 denote its algebraic dual, that is, the psace of linear functional
on V. Let W be a subspace of V#¥8. Then o(V, W) topology is defined by the
seminorms

P (V) = [{w|v)], wE W. (4.43)

Then a linear functional w is o(V, W) continuous iff w € W.

If V is a Banach space, let V# denote the space of continuous linear func-
tionals on V. Clearly, ¥V can be identified as a subspace of V##.

Then the topology o(V,V#) is called weak. The topology o(V#,V) is called
#-weak.

4.4 Topologies on B(H)

Let H be a Hilbert space. We define a number of locally convex topologies on
B(H) by specifying families of seminorms for a given operator A € B(H):
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weak op. topology: [(T]|AD)|, O,V e H;

o-weak topology: [>(D,]|AT,)], S®L]IZ Y 1P, ]2 < oo
strong topology: |A®||, d e H;

o-strong topology: (3 |A®,)]12)2, P2 < oo;

x-strong op. topology: ||A®| + ||A*P||, b cH;

o*-strong topology: C(|AT)|12 + AT, |22, S|P, 1% < oo;.

Below we give different, equivalent families of seminorms. All the families
below are partially ordered:

weak op. topology: [TrpA|, p € Bin(1);
o-weak topology: [TrpAl, p € BL(H);
strong op. topology: (TrA*Ap)/2, p € BI(H);

o-strong topology: TrA*Ap)t/2, p € BL(H);

(
x-strong op. topology: (Tr(A*A+ A*A)p)'/2, pe Bin(H);
(

o*-strong topology: Tr(A*A+ AA*)p)Y/2,  pe BL(H).
All these topologies coincide on projections and on unitary operators. The
following relations are immediate:

Theorem 4.3. (1) We have the following relations:

weak < strong <  x—strong
A A N

o—weak < o—strong < ox* —strong < norm

(2) On B(H)1 (the unit ball in B(H))

(i) the weak and the o-weak topologies coincide;
(i) the strong and the o-strong topologies coincide;
(iii) the x-strong and the ox-strong topologies coincide,

Clearly, the o-weak topology coincides with the weak” topology in the ter-
minology of Banach spaces.

The weak topology defined above does not coincide with the weak topology
in the terminology of Banach spaces.

Theorem 4.4. Let 1) € B(H)%.
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(1) TFAE

(i) v is weakly continuous;
(il) v is strongly continuous
(iil) o is *x-strongly continuous;
(iv) v is given by (A) = TryA with v € B (H).
(2) TFAE

(i) v is o-weakly continuous;
(ii) ¢ is o-strongly continuous
(iii) v is o*-strongly continuous;
(iv) v is given by Y(A) = TryA with v € BY(H).

Proof. The following implications are obvious: (4)<(1)=(2)=(3). Let us
prove (3)=(4).
Thus let 1) be a o*-s continuous functional. Then there exists p € B}_(H)
such that
[W(A)| < (Y TrA*Ap+ A Ap)'/2.

Diagonalizing p we obtain an orthogonal sequence ®,, with " ||®,||* < oo such
that
A < QA R + [|AD,]*)/2.

Set H := Zn;ﬁo’;’-{n,where?—[ =H,H_n=H, forn=1,2,.

Moreover, set ® = (®,), where o, = ®,, d_, = (IDn, n =1,2,.... For
A€ B(H), let A=dA,, with A, =A, A_, = =A" forn=1,2,.... Clearly,

[¥(A)] < || AD]. (4.44)

Let K be the subspace of H defined as the closure of {A® : A € B(H)}.
Now for = := A® we set

B(E) = p(A). (4.45)
Using (4.44), we easily see that ¥ is well-defined on K and bounded by 1.
Hence, there exists ¥ = (¥,,) € K such that ¢(Z) = (¥|Z), so that

Y(A4) = (¥[AD) (4.46)
= Z A+ Y (W] AR,) (4.47)
i O, |AV_,) + i(‘ﬂnlfkbn). (4.48)

=

n=

Linear functionals satisfying the conditions of Theorem 4.4 are often called
normal functionals. The space of normal functionals on 9t will be denoted 27..
The set of normal states on 9 will be denoted E(9).
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Theorem 4.5. Let K C B(H) be a convex set. Consider the following state-
ments:

(1) K is closed (a) o-weakly, (b) o-strongly (c) ox-strongly;
(2) for anyr >0, KNB(H), is (a) weakly, (b) strongly, (c) *-strongly.
(3) K is closed (a) o-weakly, (b) o-strongly (c) ox-strongly;
(4) for any r > 0, KN B(H), is closed; (a) o-weakly, (b) o-strongly (c) ox*-
strongly;
Then within each group, (a)&(b)&(c). Moreover, (1)< (2)<(3)<(4).
Proof. Within each group the equivalence is obvious, because the set of
continuous linear functionals is the same.
(2)<(4) is obvious, because the respective topologies coincide for (a), (b)
and (c).
(3a)<(4a) follows by the Krein-Shmulian Theorem. O

Theorem 4.6. We have:

B(H)> A— AB,BA are weakly and o-weakly continuous,
B(H), x B(H) 3 (A,B) — AB s strongly and o-strongly continuous,
B(H), x B(H)r 2 (A,B) — AB s %-strongly and ox*-strongly continuous.

Theorem 4.7. x is weakly, o-weakly, *-strongly and o*-strongly continuous.

4.5 Monotone convergence

Theorem 4.8. Let {Ay : X € A} be a uniformly bounded family of self-adjoint
operators in B(H). . Then there exists the smallest self-adjoint operator A such
that Ay < A. We will denote it lubAy (the least upper bound).

Proof. Let ||Ax|| < c. For each v € V, (v|A,v) is an increasing net bounded
by c|[v||?. Hence it is convergent. Using the polarization identity we obtain the
convergence of (v|Ayw). Thus we obtain a sesquilinear form

1i§n(v|A)\w) (4.49)
It is bounded by ¢, hence it is given by a bounded operator, which we denote by

A, so that (4.49) equals (v|Aw). It is evident that A is the smallest self-adjoint
operator greater than Ay. O

Theorem 4.9. Let (Ay : A € A) be an increasing net of self-adjoint operators,
which is uniformly bounded. Then

lubyA = s— li/r\n Ay.

Proof. Since A — Ay > 0, we have

(A—A))? = (A— A2 (A— A)(A— A4))? <[|A— Ay)(A - 4y).
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Besides, ||[A — A,|| < 2¢. Now
1(A = An)v]? = (v](A = Ax)?v) < [|A = Ax[|(v](A = Ax)v) = 0.

O

Theorem 4.10. (1) Let (Ay) be a net weakly convergent to zero such that
0< A, <C. Then (A)) is strongly convergent to 0.

(2) Let (Ay) be a net weakly convergent to A such that Ay > A > C > 0. Then
(A1) is strongly convergent to A1,

(3) Let (Ax) and (By) be nets weakly convergent to A and B. Let ||Ax| be
bounded. Then (Ax\B)) is strongly convergent to AB.

4.6 Commutant
Let 9t C B(H). We define the commutant of 9i:

N :={A e B(H) : AB=BA, BeMn.
Theorem 4.11. (1) 9 C Ny implies NG O N5;
2) (M NNp)" =N UMNG;
(‘ﬁl @] ‘)“(2)’ = ‘ﬁ’l N ‘31’2,
NcN =ntv) =...-

?

N is a weakly closed algebra;
if M is x-invariant, then so is MN'.
Proof. (3) 91 C 91” is obvious. By the same argument, 9 C 91"”. :t ¢ N
together with (1) implies 91 D M. Hence N’ = N,
(4) Let A, be a net in M weakly convergent to A € B(H). Let B € 9.
Then A,B = BA,, and

(P|ABV) = lim(®|A,BY) = lim(®|BA, V) = (®|BAD).

Let I be another Hilbert space.
NRT ={Ax1 : AecN},
N® B(IC) = {B € B(H X IC) : ]l®(111| B ]1®|U2) eEN, vivg € ’C}

Theorem 4.12. (1) M ® 1) =N ® B(K);
(2) M@ BK)) =N1;
(3) Me 1) =N B(K).
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Proof. The inclusions D are clear. Let us show the converse inclusions.
(1) Let Be (M® 1) and A € 91. Then

A l®(v1| B I®lvy) = 1®(v1| AQL B 1®|vs)
= 1®(v1| B A®1 1®|vs) = 1 (vi| B 1®|vs) A.

Hence 1®(v1| B 1®|ve) € 9. Therefore, B € W @ B(K).
(2) Let B € B(H® K). Let e;, i € I, be an orthonormal basis of K. Set
B;; = 1R(e;| B 1®|e;) and E;; := |e;)(ej]. We have

ﬂ®(61| [B, Eij] ]l®|ej) = B;; — Bjj. (450)

Thus B € (1®B(K))"iff B;; =0, B;; = Bjj, i # j. Hence there exists A € B(H)
such that B =A® 1.

Now B=A®@ 1 WLiff AN

(3) follows immediately from (1) and (2). O

4.7 Von Neumann’s Density Theorem

Recall that we say that a concrete algebra 2 C B(H) is nondegenerate if ® € H
and AP =0 for all A € 2 implies = 0.
The aim of this subsection is to prove the following theorem:

Theorem 4.13. Let A be a nondegenerate x-algebra in B(H). Then A is o-s
dense in A" .

If K is a subspace of H, then [K] will denote the orthogonal projection onto
K.
Lemma 4.14. Let A be a *-algebra in B(X) and ¥ € X. Then
(1) [Av] e’
(2) If 2 is nondegenerate, then ¥ € (AW)°;
(3) If A is nondegenerate, then (AV) = (A" W)el,

Proof. (1) Let A € 2. Then A(2A¥) € (AV)<. Therefore
AAT] = AT]A[AT]

By conjugation,
[AT]A* = [ATV]A*[AT].

Since 2l is #-invariant, we can replace A with A* in the last equality. Thus
ARIT] = [AT]A.
(2) Let A € 2. Using (1) in the second step, we obtain

AT = [AT]AV = A[AV]T.
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Thus A(1 — [2A%])¥ = 0. By the nondegeneracy of 2,
U = [AT]T.
(3) Let A € ”. Using first (2), and then (1), we obtain
AT = ARAV]T = [AT]AV € (AD). (4.51)

Hence, AW C (AV)!. Taking the closure, we obtain (A”¥)! C (A¥)!. The
converse inclusion is obvious. O

Proof of Theorem 4.13. Let K be a separable Hilbert space with an or-
thonormal basis (e;);en.

Let p € BL(H). Then p = Z;‘;l |®,;)(®;| for some orthogonal family (®;)
with 3202 [ @] < oo, Let W:=3"7 ®;®@e; € HRK.

2 is nondegenerate, hence so is A ® 1. Therefore, we can apply Lemma 4.14
with 2 replaced with A ® 1 and X replaced with H ® K. It implies that

QA1 V) = Mo 1 ¥)*.
Hence, for any € > 0 and A € 9 we can find B € 2 such that

€ > ||BRIV — A1V|> = > " ||(B — A)®;||*> = Tx(B — A)*(B — A)p.
j=0

Hence A € Ao, O

4.8 Concrete IW*-algebras

Theorem 4.15. Let M be a x-subalgebra of B(H). Then TFAE:
(1) M is (a) weakly closed; (b) strongly closed; (c) x-strongly closed;
(2)

(3) M is (a) o-weakly closed; (b) o-strongly closed; (c) ox-strongly closed;
(4)

(M) is (a) weakly closed; (b) strongly closed; (c) x-strongly closed;

(M), is (a) o-weakly closed; (b) o-strongly closed; (c) ox-strongly closed;

If 9 satisfies the above conditions, then we say that 91 is a concrete W*-
algebra.

Theorem 4.16. Let M C B(H). TFAE:

(1) 9M is a von Neumann algebra, that is, it is *-invariant and M’ = M;
(2) M is a concrete W*-algebra and 1y € M;

(3) M is a nondegenerate concrete W*-algebra in B(H).

Proof of Theorem 4.15 and 4.16. In Theorem 4.15, the equivalence within
each group is clear, also the implications (1)<=(2)<(3)<(4).

If 91 ¢ B(H), then W*(91) will denote the smallest concrete W*-algebra
containing M. Note that for any x-invariant 9 C B(H) containing 1, W*(N) =
N".
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Theorem 4.17. Let 3 be the center of the von Neumann algebra 9. Then
W*(omun') = 3.

4.9 Kaplansky’s density theorem
We say that f € C(R) is strongly continuous iff
Bn(H) 2 A f(A) € B(H)
is strongly continuous.
Theorem 4.18. If f € C(R), |f(¥)| < alt| + b, then f is strongly continuous.

Proof. Step 1. t — t is strongly continuous.
Step 2. ¢t~ (t — z)~! with Imz # 0 is strongly continuous. In fact, If 4; — A
strongly, then

(A —2)7'0 — (A—2)"'d = (A, —2) (A - A)(A—2)'d —0.

Step 3. Functions in Co(R) are strongly continuous. In fact, the uniformly
closed algebra generated by (t — 2)71 is Co (R).

Step 4. If h, g are strongly continuous and h is bounded, then hg is strongly
continuous. In fact,

h(Ai)g(Ai)® —h(A)g(A)® = h(Ai)(g(Ai) — g(A))® + (h(A;) — h(A))g(A)® — 0

Step 5. Let f € C(R) and |f(t)| < alt| + b. Then fﬁ =: g € C(R), and

hence is strongly continuous. Using Step 1 and Step 4, gt is strongly continuous.
It is clearly bounded. Thus (gt)t = gt? is strongly continuous. Hence f = gt*>+g¢

is strongly continuous. O

Theorem 4.19 (Kaplansky’s density theorem). Let 2 be a *-algebra in a
W*-algebra and A is o-weakly dense in M. Then

(1) ()1 is ox-strongly dense in (D).
(2) (An)1 is o-strongly dense in (My)1.
(3) (24)1 is o-strongly dense in (M )1.

Proof. Let A € (M, );. Then there exists a net (A4;) in 2 convergent to A.
Replacing A; with %(Al + A¥) we can assume that A; are self-adjoint. Let

0 t<0
f)=<¢ t 0<t<1
1 1<t

Then f is strongly continuous. Hence

f(A) = f(A)=A
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strongly. This proves (3). The proof of (2) is similar.
To prove (1), note that the unit ball of B(C?) ® 2 is strongly dense in
B(C?) @M. Let A € (9M);. Then

0 A
s[4 4]

is contained in the unit ball of B(C?) @ 9M;,. Hence there exists a sequence

Bll BlQ
B; = [321 B:22 }

in the unit ball B(C?) ® 2y, strongly convergent to B. Then B}? belongs to the
unit ball of 2l and is *-strongly convergent to A. O

4.10 Functional calculus

Theorem 4.20. Let M be a von Neumann algebra. Let A € M be self-adjoint.
Then there exists a unique o*-strongly continuous unital x-homomorphism

Ll%oorel(a(A)) > f = f(A) € ma (452)
which on C(o(A)) coincides with the previously defined f(A). It satisfies

(1) If fa € Ly ,a(0(A)) is uniformly bounded sequence converging pointwise
to f then fo(A) = f(A) o*-strongly.

2) IF (AN < sup|f;

3) a(f(A)) C f(a(A));

4) g € Ly (f(a(A)) = go f(A) = g(f(A)).

5)

o~ o~ o~ o~

The image of (4.52) equals W*(1, A).
Note that we constructed a homomorphism of L ,(c(A)) onto W*(1, A).

Theorem 4.21. M is generated by its projectors.
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5 Tensor product

In this chapter we describe the terminology and notation of multilinear algebra.
We will concentrate on the infinite dimensional case, where it is often natural
to use the structure of Hilbert spaces.

We will consider two setups: that of vector spaces and that of Hilbert spaces.
If X, are vector spaces, then L(X,)) will denote the set of linear operators
from X to Y. If X, are Hilbert spaces, then B(X,)) will denote the set of
bounded operators from X to ).

5.1 Vector and Hilbert spaces

Let V be a vector space. A set {e; : ¢ € I} CV is called linearly independent
if for any finite subset {e;,,...,¢e;, } C{e; : i € I}

Cl€i1+"'+cnein:0 = 61:"':Cn20~ (51)

{e; : i € I} is a Hamel basis (or simply a basis) of V if it is a maximal linearly
independent set. It means that it is linearly independent and if we add any
veVto{e : i€lI}CV then it is not linearly independent any more. Note
that every v € V can be written as a finite linear combination v =Y., M\;e; in
a unique way.

Let V be a vector space over C or R equipped with a scalar product (v|w)
(positive, nondegenerate, sesquilinear form). It defines a metric on V by

iel

[lv —w| = /(v —w|v —w). (5.2)

We say that V, (-|-) is a Hilbert space if V is complete.

If V, (+]-) is not necessarily complete, then we can always complete it, that
is find a larger complete space VP! (-|) in which V is embedded as a dense
subspace. V°P! is uniquely defined and is called the completion of V.

For instance, if we take C.(R), C2°(R) or S(R) with the usual scalar product
(flg) = [ f(z)g(z)dx, then its completion is L*(R).

If V is a Hilbert space, then {e; : @ € I} is called an orthonormal basis
(o.n.b.) if it is a maximal orthonormal set. Note that every v € V can be written
as a linear combination v = )_,.; Ae;, where Y. [Ai]? < oo, in a unique way

Note that in a finite dimensional Hilbert space every orthonormal basis is a
basis. This is not true in infinite dimensional Hilbert spaces.

5.2 Direct sum

Let (V;)icr be a family of vector spaces. The algebraic direct sum of V; will be
denoted
b Vi, (5.3)

It consists of sequences (v;);es, which are zero for all but a finite number of
elements.
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If (V;)ier is a family of Hilbert spaces, then B V; has a natural scalar prod-
iel

uct.

((yi)iel‘(vi)iel) = Z(yzlvz) (5.4)

i€l

The direct sum of V; in the sense of Hilbert spaces is defined as

cpl
®V; = (@ V) .
el el

If I is finite, then 69 V; = EB Vi
Let (Vi), W), i E I be famlhes of vector spaces. If a; € L(V;, W,), i € I,
then their direct sum is denoted 69 a; and belongs to L (69 Vi, S Wi ) It is

el el
defined as

(iEeBI ai) (vi)ier = (aivi)ier (5.5)

Let V;, W;, @ € I be families of Hilbert spaces, and a; € B(V;,W;) with
sup;cy ||a;i|| < co. Then the operator @ a; is bounded. Its extension in B <@ Vi, & W>

el el
will be denoted by the same symbol

5.3 Tensor product

Let V, W ble vector spaces. The algebraic tensor product of V and VW will be
denoted V® W. Here is one of its definitions
Let Z be the space of finite linear combinations of vectors (v,w), v € V,
w € W. In Z we define the subspace Z; spanned by
()\U,’LU) - A(’va)a (U7)\U}) - )\(’U,’LU),

(Ul + Uva) - (Ulvw) - (UQ,IU), (U7w1 + U}2) - (anl) - (’vaQ)'
We set VEW = Z/2Zy. v eV, weW, we define v @ w := (v,w) + Zo.

Remark 5.1. Note that (v,w) above is just a symbol and not an element of
YV ®W. Elements of the space Z have the form

n

> An(vn, wy). (5.6)

j=1
In particular, in general
(v1,w1) + (v2,w2) 2 (v1 + v2, w1 + w2), (5.7)
Av, w) £ (Av, Aw). (5.8)
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VEW is a vector space and ® is an operation satisfying

(W)@ w =M w, v® (Aw) = A ® w,
(11 4+v2)@W=v1 W+ vy W, VR (W +wa) = v w + v ws.

Vectors of the form v ® w are called'isimple tensors. Not all elements of V @ W
are simple tensors, but they span V& W.

If {ei}icr and {f;};cs are bases of V, resp. W, then {e; ® f;}(; jjerxs is a
basis of V& w,

Suppose that V, W, X are vector spaces. Then it is easy to see that

(YVe@W)® X is naturally isomorphic to V& (W ® X). (5.9)

This can be seen by comparing the bases. We will use this identification without
a comment, and thus we will drop the parentheses in (5.9).

If YV, W are Hilbert spaces, then VW has a unique scalar product such
that

(v1 @ wi|vy @ wa) := (vi|ve)(wr|ws), wvi,v2 €V, wi,wy € W.

To see this it is enough to choose o.n.b’s {e;}icr and {f;}jes in V, resp. W.

Then every element of V& W can be written as an (infinite) linear combination
of e;® f; and we can use them as an orthonormal set defining this scalar product.

We set

VaWw = (VEwW)®P,

and call it the tensor product of V and W in the sense of Hilbert spaces. If
{eitier and {f;}jcs are o.n.b’s of V, resp. W, then {e; ® f;}q jyerxs is an
on.b. of VR W,

If one of the Hilbert spaces V or W is finite dimensional, then VEW =
Vo Ww.

5.4 Tensor product of operators

Let Vi, Vo, Wi, Wy be vector spaces. If a € L(V1,Vs) and b € L(W;, Ws), then
there exists a unique operator a®b € L(V; (% Wi, Vo (% W) such that on simple
tensors we have

(a®b)(y @w) = (ay) @ (bw). (5.10)
To see this it is enough to choose bases (e;)icr in Vi and (f;)jes in Wy and to
define @ ® b on the basis (e; ® fj)(,j)erxs by

(CL (%9 b)61 & fj = (aei) X (bfj) (511)

Then we check that thus defined operator satisfies (5.10) and is unique. It is
called the tensor product of a and b.

If V1, Vo, Wi, W, are Hilbert spaces and a € B(V1, Va), b € B(Wy, Ws), then
a ® b is bounded. It extends uniquely to an operator in B(V; @ Wi, Vo @ Wh),
denoted by the same symbol.
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To prove the boundednesslof a®b= la® 1 1®b, it is sufficient to consider
the operator a @ 1 from V; ®W to Va®W. Let eq,es,... and fi, fo... be
orthonormal bases in V;, W resp. Consider a vector > ¢;je; @ f;.

2 2
HCL@HZCUGZ‘@fjH = ZHZcijaei
7 J 7
2
< Sl > cien > lal? > fel?
7 i 7 %
2
lall?|[ > cies @ £
9

IN

5.5 Infinite tensor product of grounded Hilbert spaces

A pair (H,Q) consisting of a Hilbert space and a vector Q € H of norm 1 is
called a grounded Hilbert space. Let (Hi1,1), (Ha,€2),... be a sequence of
grounded Hilbert spaces. We introduce an isometric identification

n n+1
®H19\IJ|—>\IJ®QTL+1€ ®1HZ
=1 i=
We define

i=

cpl
g H“Q (U ® 7—[) . (5.12)
The image of ¥ € H,, will be denoted by

¥ ® ® Q.
Jj=n-+1

Choose an o.n. basis {e;;};c7, in each H; such that e;; = ;. Then the
vectors
€1; ® €25, Q- .71 S u7i7 (513)

where only for a finite number of i € N we have j; # 1, form an o.n. basis of
(5.12).

Theorem 5.2. Let ®; € H;, i =1,2,.... Suppose that for some N
n
im. I1 (le:) (5.14)
i=N

exists and is nonzero. Then in (5.12) there exists the limit of

Ty= & &0 & (5.15)

i=1 j=n+1
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Proof. First note that

sup ] (@) - 1’ ~0. (5.16)

n>M G il

lim
m— 00

Then we compute that for m < n

[0y = Up|> =2—2Re [] (@;19).
i=m-+1

By (5.16), ¥,, is Cauchy. Besides, it belongs to ®]* ;. Hence it possesses a
limit in (5.12). O

lim,_,~ ¥, will be denoted by

& @,

i=1

5.6 UHF algebras

Let nq,n2,... be positive integers. Set H,; := C"/. We introduce the identifi-
cations

BH1® - @Hp) 2 A~ A y,,, € B(H1® - @ Hpy1)-

Define
[ee]
UHF, = UHFo(n1,na,...) = | B(H1 @ -+ @ Hy), (5.17)
k=1
UHF = UHF(ny,no,...) := UHFy(n1,ng, ... )P\ (5.18)

The image of A € B(H1®- - -®H};,) in UHF will be denoted A® ® 1;. Note
j=k+1
that B(H;) can be considered to be commuting subalgebras of UHF (nq,ng, - - - ):

k—1 o]
B(Hj))>B— ©® ;@ B® & 1;¢c UHF. (5.19)
Jj=1 j=k+1
Let p1,p2,... be prime numbers in the ascending order. Let aq,as,--- €

{0,1,2,...,00}. The expression of the form
p?lpgz P

will be called a supernatural number. Note that the usual natural numbers are
contained in the set of supernatural numbers. We can multiply supernatural
numbers in the obvious way.

Let p{'p5? -+ be a supernatural number. We define Q,, to be the set of

rational numbers of the form ﬁ where k; < a;. Note that Q, is an
pripte
abelian subgroup of Q.

We say that a positive linear functional on a C*-algebra 2 is a trace iff
7(AB) = 7(BA).
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Theorem 5.3. (1) Let (ny,na,...) and (n},nj,...) be two sequences of inte-
gers. Then UHF(ny,na,...) is isomorphic to UHF(nf,nh,...) iff we have
the equality of supernatural numbers

n1n2:n/1n/2

Therefore, we will write UHF(n) withn := ning - - - instead of UHF(nq,ng, -+ ).

(2) On UHF(n) there exists a unique tracial state 7.

(3) {r(P) : P € Proj(UHF(n))} =Q,N][0,1].

(4) Py, P, € UHF(n) are unitarily equivalent iff 7(Py) = 7(P2).
(5) UHF(n) is a simple C*algebra.

Lemma 5.4. Let A be a C*-algebra and A = A* € A and |[A — A% < e< 1.
Then there exists a function f continuous on o(A) such that f(A) is a projection

and
1—+1—4e
e
Proof. [z(1— )| = | — (3 — x)?| < ¢ implies, for e < % LoVt < g <
1
1_V21_4€ < % or % < & 21_46 < g < HEVItde V;‘ME. Hence f(z) := { (1)’ ii 2’ is
continuous on o(A). Clearly, |z — f(2)| < 5= on o(4). O
Proof of Thm 5.3. (1) We inductively define a *-homomorphism of
pn:BH1)®--- @ B(M,) = B(H})®--- @ B(Hy,) (5.20)

for N,, big enough, such that p,y; extends p,. Thus we construct a *isomor-
phism p : UHFy(ni,ne,...) — UHFy(n},nb,...). Clearly, it extends to a
s-isomorphism p : UHF(ny,ne,...) = UHF(n},nj,...).

(2) On B(H; ® - - - ® Hy,) there exists a unique tracial state 7(-) =
It can be extended to a tracial state on UHF(ny,ng,...).

(3) Tt is easy to see that {7(P) : P € Proj(UHFy(n))} = Q, N[0,1].

1
ni-Ng

Let P € Proj(UHF (ny,ng,...)) and + > € > 0. There exists A € UHF(nq,ns, ...

such that ||P — A|| < e. We have
—1 * 1 1 *
1P =27 (A+ AN < SIIP - Al + 5P - A7 <e.

Hence, we can assume that A is self-adjoint. By Lemma 5.4, there exists Q) =
f(A) — a projection in UHF((ny,ng,...) — such that ||[A — Q| < @.
Hence, |P — Q| < e+ @ < 1. Therefore, there exists a unitary U such
that @ = UPU*. Therefore, 7(Q) = 7(P).

(4)= is obvious. < is obvious on UHFy(n). Using (3) this extends to
UHF(n). O

49

)



5.7 States and representation on UHF(n)
If w; is a state on C™, then on UHF(ning---) we can define the state
wi= ® w;. (5.21)
j=1
Theorem 5.5. (1) (5.21) is a pure state iff w; is pure.

(2) Suppose w; are pure and given by |Q;)(;| for normalized vectors §; €
H;. Then the GNS representation for w is is unitarily equivalent to the

representation in ® (H;,9Q;) such that A, € B(H,) C UHF(ning---) is
j=1

represented as
n—1 oo
7Tw(An) = _®1 Iy, ® A, ® _®1 :ﬂq.[j.
1= 1=

(3) Let ®1,Ps,..., define a state ¢p. Then w is unitarily equivalent to ¢ iff the
product H;’;l(Qj@j) is convergent.
Theorem 5.6. (1) (5.21) is always factorial.

(2) Let v1,72,... be nondegenerate density matrices on H,; and let w; be the

corresponding states on B(H;). Letw be the corresponding state on UHF(ning - - -

Then the GNS representation for w is unitarily equivalent to the represen-
tation in the space

& (BX(Hy), v7)

Jj=1

such that A, € B(H,) C UHF(ning ---) is represented as the multiplica-
tion on the left by

n—1 o]
7T<An) = igl Iy, ® A ® - ® ll’Hj-

j=n+1
(3) Let and 71,75, ... be another sequence of density matrices with wi,ws, . ..
the corresponding states on B(H1), B(Hz),.... Let ' be the corresponding

state on UHF(nyng---). Then the corresponding GNS representations are

quasiequivalent iff H;’il Tr, /7; 'y; 18 convergent.

5.8 Hyperfinite factors
Let w be a state as in (5.21). Introduce the hyperfinite W*-algebra
HF(w) := 7, (UHF(n))".

Clearly, the state (] - Q) on HF(w) is a normal state on HF(w) such that
(Qm, (A)Q) = w(A). We will denote it also by w.

Clearly, é B2(H;) ~ B? ( <§> ’Hj> sits inside HF (w). On B2 < (% Hj> the
j=1 j=1 Jj=1

modular conjugation is just the hermitian conjugation and the natural cone is
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Theorem 5.7. Let 7, be the modular dynamics corresponding to w. Then T},
1s inner iff

H Tr(w;w') (5.22)

is convergent. If this is the case, then 7. is implemented by % w;-t.
j=1

For example, consider n = 2°° and

h;
wj = (e —|—ehﬂ')[eo 0 }
Then (5.22) equals

H(e—hj _"_ehj)—l(e—h]‘—ihjt _’_ehj""ihjt).

00
Jj=1
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6 Second quantization

6.1 Fock spaces

Let Y be a vector space. Let S, denote the permutation group of n elements
al v

and o € S,,. ©(0) is defined as the unique operator in L(® ) such that
()1 @ @ yn =Yo-1(1) @ Q@ Yo—1(n)- (6.1)

To see that O(o) is well defined we first choose a basis {e;};c; of Y. Then
we define ©(0) on the corresponding basis of B V.

(“)(O’)eil ®- - €, = eigfl(l) ®- Q& 67;071(").
Then we extend by linearity ©(o) to the whole 8" Y. It is easy to see that the
operator defined in this way satisfies (6.1).

We can check that

S, 30 O(0) € LB Y) (6.2)

is a group representation.
al . . . Y
We say that a tensor ¥ € ® Y is symmetric, resp. antisymmetric if

O(0)¥ = U, (6.3)
resp. O(0)¥ = sgn(o) V. (6.4)

We define the symmetrization/antisymmetrization projections

o = o Z O(0), oy = ] Z sgno©(o).

’ oceS, €Sy

They project onto symmetric/antisymmetric tensors.

We will often write s/a to denote either s or a.

If Y is a Hilbert space, then ©(c) is unitary and ©¢, are orthogonal pro-
jections.

Let Y be a vector space. The algebraic n-particle bosonic/fermionic space is
defined as

al n alm
®s/ay = @S/a® V.
The algebraic bosonic/fermionic Fock space or the symmetric/antisymmetric

tensor algebra is
o0

al al alT
Is/a = </aY-

The vacuum vectoris Q:=1¢€ ®§/ay =C.

If Y is a Hilbert space, then the n-particle bosonic/fermionic space is defined
as

®g/ay = Gg/a Q" Y.

The bosonic/fermionic Fock space is

r = & QY.
s/alY) = & @5,
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6.2 Creation/annihilation operators

For z € Y we define the creation operator
it ()0 =0 Vit 0¥, Weal,,

and the annihilation operator a(z) := (a*(2))*. (We often omit the hat).
We will sometimes write (z] and |z) for the following operators

V3ve (z|v:=(z[v) € C, (6.5)
CoA= Az) =Xz eV

Then on ®g/ay we have

a*(z) = @:/‘;1\/71 +12) @ 1%, (6.7)
a(z) = Vn(z| @ 1m7V2, (6.8)

Above we used the compact notation for creation/annihilation operators pop-
ular among mathematicians. Physicists commonly prefer the traditional nota-
tion, which is longer and less canonical.

One version of the traditional notation uses a fixed basis {e;};c; of Z and
set af 1= a*(e;), a; := a(e;). Then if z =", z;e;, we have

a*(z) = Zziaf, a(z) = Z?iai, (6.9)

[ai, a;}:‘: = 6ij, [ai, aj]¢ =0. (610)

Alternatively, one often identifies Z with, say, L?(R%,d¢). If z equals a
function = 3 £ — 2(), then

a*(z) = /z({)agdf, a(z) = /E(ﬁ)agdg.
Note that formally

[a(§),a"(€)]F = 6(§ =€), [a(§),a(¢)]F =0. (6.11)

The space ®g/aZ can then be identified with the space of symmetric/antisymmetric

square integrable functions L?(R"), and then

(a(g)q)) (5/17 ce >§7/1—1) = \/’E(I)(f,fll, R ’5;—1)' (612)

6.3 Integral kernel of an operator

Every linear operator A on C™ can be represented by a matrix [Ai ]

One would like to generalize this concept to infinite dimensional spaces (say,
Hilbert spaces) and continuous variables instead of a discrete variables i, j. Sup-
pose that a given vector space is represented, say, as L?(R¢), or more generally,
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L?(X) where X is a certain space with a measure. One often uses the represen-
tation of an operator A in terms of its integral kernel RExR? > (x,7) — A(z,y),
so that

AV (z) = / Al y)¥ (y)dy.

Note that strictly speaking A(-,-) does not have to be a function. E.g. in the
case X = R? it could be a distribution, hence one often says the distributional
kernel instead of the integral kernel. Sometimes A(-,-) is ill-defined anyway. At
least formally, we have

AB(z,y) = /A(m,z)B(z,y)dz,

A (z,y) = Ay, ).
Here is a situation where there is a good mathematical theory of inte-
gral/distributional kernels:
Theorem 6.1 (The Schwartz kernel theorem). B is a continuous linear trans-
formation from S(RY) to S'(R?) iff there exists a distribution B(-,-) € S'(R% @
R?) such that

(MBQZ/EGB@wm@mm% T, ® c S(RY).

Note that < is obvious. The distribution B(,-) € S'(R? @ R?) is called the
distributional kernel of the transformation B. All bounded operators on L?(R%)
satisfy the Schwartz kernel theorem.

Examples:

(1) e~'*¥ is the kernel of the Fourier transformation
(2) 0(z —y) is the kernel of identity.
(3) 0:6(x — y) is the kernel of 9.

6.4 Second quantization of operators

For a contraction g on Z the operator ¢®" commutes with O(c), 0 € S,.
Therefore, it preserves ®;’/a2. We define the operator I'(q) on I'y/,(Z) by

I'(q) =q® - ®q :
R .2 R . Z
s/a s/a
I'(q) is called the second quantization of q.
Similarly, for an operator h on Z the operator h@1(»=D® 4... 4 1(n=D® g p
preserves ®(,, Z. We define the operator dI'(h) by

S

dr'(h) =hel1V® 4. 17O g :
®:/az ®:/az

o4



dT'(h) is called the (infinitesimal) second quantization of h.
Note the identities

L) =™, T(q)T(r) =T(gr), [dT(h),dT(k)] = dT([h, k]),
L(g)dl(h)T (¢! = dT'(ghq ™). (6.13)

Let {e; | ¢ € I} be an orthonormal basis of Z. Write d; := da(e;). Let h be
an operator on Z given by the matrix [h;;]. Then

Z hijasa;. (6.14)
Let us prove it in the bosonic case. Let ® € T'7(Z).
ara;® =nO’e;) @ 1" V(e @ 1" V99 (6.15)
= n®n|6i)(ej| ® 1"~ H2p (616)
= o L OEees] @ 10000 (6.17)
o€ESy

= 15 Ve (es| @ 1 H 90, (6.18)

k=1

More generally, if the integral kernel of an operator h is h(z,y), then
dI'(h) = /h(x,y)&;dydmdy. (6.19)

For instance, if h is the multiplication operator by h(¢), then dI'(h) = [ h(& )agagds.

6.5 Symmetric/antisymmetric tensor product

Let ¥ € ®§/HZ, dc ®Z/aZ. We set

U @70 @ =001V ® Q. (6.20)
Note that

2R ®2=2Qs P52 (6.21)

If there are n terms, it is often written as z"®. In the antisymmetric case one
usually prefers

|
wno— PEOy o g (6.22)
plq!
The operations ®g, ®a., A are associative. We have

VI ANYp = Z Sgn(g)ya(l) @ ® Yo(n)s (623)

O'Esn

1

Y1 ®a Batn = — D 50(0)Ya(1) ® 1 @ Yl (6.24)

T oES,
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Let {e;}icr be a linearly ordered orthonormal basis in Z. Then
\/Heil Ra - Rati,, 1< - <lp, (625)

forms an o.n.b of ®(Z).

Val
T @ Gl Bt hn=n, (620)

forms an o.n.b of R (Z2).
If dim Z = d, then

d+n—1)! d!
@rn=D! Ggrz—— % (6.27)

dimerz = St
m e d—D! a® = Lld—n)

6.6 Exponential law

Let Z,W be Hilbert spaces. We can treat them as subspaces of Z & W. Let
e 5/a Z, Ve ®S/aW. We can identify & ® ¥ with

(n+m)!

UdRVU .=
nlm!

D@y TR (ZOW). (6.28)

Theorem 6.2. The map (6.28) extends to a unitary map
U:Tya(2) @ Ty /u(W) = To/u(Z@W). (6.29)
It satisfies

UQeQ=AQ, (6.30)
dl(h® g)U = U (dI'(h) @ 1+ 1 ® dI'(g)), (6.31)
I'(p®qU =UT(p) @ UT'(q), (6.32)
a*(z@w)U =U(a*(z) @ 1+ 1® a*(w)), (6.33)
a(z@w)U =U(a(z) @ 14+ 1@ a(w)), in the bosonic case, (6.34)
a*(z@w)U =U(a*(z) @ 1+ ()N @ a*(z)), (6.35)
a(zew)U =U(a(z) @ 1+ (-1)Y ®a(z)), in the fermionic case. (6.36)

Proof. Let us prove the unitarity of this map in the symmetric case:

d = E .
®Rs U = " [CE m) O(0)PR T (6.37)
O’ESv;+m
nlm!
_ — @ W. .
(- m)] E O(0)? ® (6.38)

[U]ESTH»m/S X Sm
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The terms in the sum on the right are mutually orthogonal. The maps O(o)

are unitary. The number of cosets in Sy 4., /Sn X Sy 18 (?:f:;)!. Therefore
'm‘ 2
b @, U|d’ S\I//:(in' : ) 0(c)® © U|6(0)d' © W’
(@@ 0|0 0. ) = (== Y. (B ve@e e
[U]Esn+7n/snxsnz
nlm!

= —— (P U|d' T 6.39
(n—i—m)!( 2 Y|P e V) (6.39)

6.7 Wick quantization

In this subsection we introduce the Wick quantization and Wick symbol. We
will do this using a fixed orthonormal basis of the one-particle Hilbert space
Z. (We could also use a continuus variable representation, e.g. L2?(R%), the
reader can easily figure it out). Later, at (6.47), we will give an equivalent,
more elegant but maybe less intuitive, basis-independent definition.

Let e;, i=1,2,... be an o.n. basis of Z. Let b € B(®*Z,@™Z). It can
be written as

b= Zbimgw~7i1§jk7~~‘1jl|eim @ ® eil)(ejk @ ® ej1|» (6'40)

where b;, . ii:p,....;a are complex numbers-matrix elements of the operator b.
We define the Wick quantization of b as an operator on Fg}‘a(Z ) defined by

B(G*,0) =Y b vy QL g, (6.41)

Note that the notation b(a*,a) suggests the the Wick quantization is “function
of a*,a”, which in some sense is true. However, b(a*,a) should be understood
as an “indivisible symbol”.

Note also that we inverted the order for creation operators in (6.41). This
is irrelevant for bosons, where the order does not matter—it is convenient for
fermions.

Note that a part of the information contained in b is irrelevant for b(a*,a). In
fact, by the (anti-)commutation relations, b(a*,a) depends only on @;’}ab@f/a.

Thus we have an alternative definition: if b € B(®k, Z, ®g7aZ) such that

b= biiviipris|€in, @ @ €i) (e, @ @6, (6.42)

then
a* ) — ~4 .. . q¥ AF oA -
b(a*,a) = E Oipprewsivsisnsjn Gy " Qg g+ gy (6.43)

Note that now the matrix elements of b are automatically symmetric/antisymmetric
in the first m/last k indices
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With the operator b(a*,a) we can associate the multilinear map

* - —_ . . . . * ... * . DR .
b(a aa) i E blmv“'ﬂl?]kv'“v]lajil aima]k Ajy s (6'44)

where a}, a; are treated as commuting/anticommuting (classical) variables. This
multilinear map b(a*, a) is called the Wick symbol of the operator b(a*,a). It
depends only on @;’;ab@f/a. In the bosonic case it is a usual polynomial in
the variables a*,a. In the anticomuting case one also uses the term “polyno-
mial” (in anticommuting variables) for such multilinear maps and their linear
combinations.

It is not difficult to see that given an operator B, or actually a quadratic
form on Ff/“a(Z), there exist unique l;m,k € B(®§/a2,®;’}a2), m,k = 0,...00
such that

B= Y bnx(a* a). (6.45)
m,k=0

The polynomial

> bma(a*,a). (6.46)
m,k=0

is called the Wick symbol of B.
Here is an equivalent definition of b(a*,a) for b € B(®*Z,@™Z). Its only
nonzero matrix elements are between ® € ®f /ZmZ, e ®§ /:kZ, and equal

@b, a)w) = VAMEPMEEDY @y o 187). (6.47)

— ;.

To see this we compute:
- i A N
((I)|ai1 TGy, gy "'ajl‘I’)

(6.48)
=(a,, - ai, Plag, -~ a5 ) (6.49)
(6.50)
(6.51)

=V(m+p) -+ )k+p) - (p+1)
x ((6i1|®"'®(eim|®]1®p¢)’(6j1|®"'®(€jk|®]1®p\11).

6.8 Wick symbol and coherent states

In the bosonic case, we have the identities

I
Q>

e~ @ (WHaw) g )t (W)=alw) — 4(y) 4 (v|w), (6.52)
e~ @ (wFa(w) gx (4))ed” (W)=a(w) — 4(y) 4 (v|w). (6.53)
We also introduce the coherent state corresponding to w € Z:

Q= e (w—alw) ) (6.54)
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Note that G(v)Q, = (v|w)Qy,. If b € B(Z%k, Z¥™)  then we have the identity
(Qu|b(a*, a)$2.) =(w®™|b2®). (6.55)

Using the polynomial interpretation of b and treating w = )", wie;, 2 = ), z;ie;,
as classical variables and writing w; for the complex conjugate of w;, we can
rewrite (6.55) as

b(w*, z). (6.56)

6.9 Particle number preserving operators

If m = k, then the operator b(a*, a) preserves the number of particles and (6.47).
For @ € ®;L/aZ, v e ®'f/aZ it can be rewritten as

S

n! ®(n—m)
(®|b(a*,a)¥) = m(@b@lz o). (6.57)

But ﬁ'),m, is the number of m-element subsets of {1,2,...,n}. Therefore in
the obvious notation, we can rewrite (6.57) as

|
—b@a) = Y bi (6.58)
1<iy < <im<n
In particular, for m = 2 we can write
1 .., .
b(a*,a) = Z bij. (6.59)
1<i<j<n

Finally, for m =1, on ®g/aZ we have

b(a*,a) = Y by =dl(b). (6.60)

1<i<n
Set )
bi=— > e()e(e ). (6.61)
g€Sm
We have o
O(o)b = b0(0). (6.62)

In fact, (6.62) equals sgn(o)b. Moreover,

m.beT, = O ber (6.63)

s/a s/a*

Therefore, when considering Wick polynomials in the number preserving case
we can always assume (6.62).
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6.10 Examples

Consider the Schrodinger Hamiltonian of n identical particles on L?(R4Y)

Ho=-S0+ Y Viwi—a),
=1

1<i<j<n

Pn :zn:%amia

i=1

In the momentum representation

+@2m)™ > 6+ — pi — p)V (D) — pi)-

1<i<j<N
n

Pn = § Di-
=1

(6.64)

(6.65)

Consider the 2nd quantization of L?(R?). We have the position representa-
tion, with the generic variables x,y and the momentum representation with the
generic variables k, k’. We can pass from one representation to the other by

[SII-H
vl

a*(k) = (2m)~ /a*(:z:)efikmdz, a*(x) = (2m)~

In the 2nd quantized notation we can rewrite all this as

H = % H, = —/a;Axamdz
0

n=

1 * ok
+§//dzdyV(xfy)axayayax
_ / pa%aydp

1 .
+§(27r)_d / / / dpdqdkV (k)ay , wai_aqap

oo 1
P:=9 P, :/a;fawawda:
n=0 1

= /pa;apdp.

/ a*(k)e'**dk,
a(k) = (27?)*% /a(x)eikzdx, a(z) = (271—)*% /a(k)e*i’”dk_

(6.66)

(6.67)

(6.68)

(6.69)

(6.70)

(6.71)

Consider L3([0, L]¢) ~ Lz(%”Zd) and its 2nd quantization. Again we use

x,y in the position representation with periodic boundary conditions and k, &’
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in the momentum representation. We can pass from one representation to the
other by

a*(k) = L% /a(x)e_”””dx, a*(z) = —% a(k)e*, (6.72)

a(k) = L% / a(z)e* dz, a(x) =L %Y a(k)e . (6.73)
k

Here are the analogs of (6.69) and (6.71):

H = Zan;ap
p
1 3 * *

+ 3L Z Z Z V(k)ayay 1 aqap,
P q k

pP= Zpa;ap.

P

6.11 Problems

hi O

Problem 6.3. On C? consider h =
0 he

] Find the spectrum of dT'(h)

1. in the bosonic case, that is, on T's(C?);
2. in the fermionic case, that is, on I'y(C?).
Problem 6.4. Find the spectrum of H = a*a + gaQ + %a*Q.

Hint: For |A| < 1 set

,J:%a_m—v), b= %(a—&-ua*), (6.74)
—
Then [b,b*] =1 and
1 * * N2 *2 1
H:§(a a+ aa® + Xa” + Aa™?) — B
@) L
=y U+~ 5
AP I
Tl T
Problem 6.5. Compute
L(g)a*(z)T(¢™ "), T(g)a(=)T(g™"); (6.75)
[dl'(h),a"(2)], [dI'(h),a(z)] (6.76)



Answers

a*(gz),  alg*"'2), (6.77)
a*(hz), —a(h*z2). (6.78)

In the next two problem we consider the Fock space T's(C).

Problem 6.6. Compute

etd*&d*eftd*&, eta*daeftd*d, (679)
e%(’i*_&z)a*e%(_&ﬁr&?), e3(@" =) et (-a"+a%) (6.80)

Answers
ela*, e 'a, (6.81)
—asinht 4 a* cosht acosht — a*sinht. (6.82)

Problem 6.7. Find the Wick symbols of
1. (a* +a)3;

2. &2&*2’.

o
@
—
o~
<3
*
|
-
Q
=

4. etd’a = P(et);

5. e%(&*z_dz)-

Answers:

L. " +3a"2a + 30"a% + a° + 3a* + 34;
2. a*2a® + 4a%a + 2;

4. ed*(et—l)d

~ —tanht ~2
—5 a

tanh t ~*2 1 _
2 @ Cosht 1)ae

—Incosht Ax
2 e? (

5. e e

7 Slater determinants and the Hartree-Fock method

7.1 Fermionic Fock space

Let W be a Hilbert space. We consider the fermionic Fock space 'y (W). Sup-
pose that e;, ez, ... is an o.n. basis of WW. We use two conventions:

a; = ale;), a; :=a"(e;).
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Then
[ai, aj]+ = O, [CLZ‘, a;]+ = 5i7j7 aiQ =0. (783)

Alternatively, we use creation/annihilation operators parametrized with w =
> wie; € W writing

a(w) = Zwiai, a*(w) = Zwiaf,

We can write

[a(w), a(w)]+ =0, [a(w), aj(w)]; = (wlw'), a(w)2=0. (7.84)

7.2 Slater determinants

Let Z be a finite dimensional subspace of W. Without loss of generality we can

assume that it is spanned by ey, ..., e,. Then
1
a*(en) - a*(e)) = — E SENTEH(m) @+ R €y 7.85
(em) (e1) Vml s S (m) (1) ( )
1
= vVm! L@, e = —— .
mlem, Q- Q€1 mem A Nep (7.86)
is a normalized vector. Such vectors are called Slater determinants. If f1,..., fm

is another basis of Z, so that e; = >, ¢;; f;, then
a*(em) - - a”(e1)Q = detley;a”(fm) - - a”(f1)S2
Let 7 denote the orthogonal projection on the space Z. Note that the state
wr(A) := (a*(em) - a*(e1)QAa* (&) - - - a* (1)) (7.87)

depends only on the space Z (or equivalently on 7).
Suppose now that e;, j=1,2,... is an o.n. basis of W. Then the vectors
a; §2,ip < -+ <y form an orthonormal basis of @7"W.

a*

’Lm,.'.

7.3 Changing the vacuum

Let us introduce a new notation for the old creation/annihilation operators. Set

5 af 1<m, _, a; ©1<m,
a; == a; = )
’ aj j>m; ' a* j>m.

J

Then a;,a},i=1,... satisfy the usual anticommutation relations
[@i,a;]+ =0, [a;, a4 =0;5, @aiQ2=0. (7.88)
with the vacuum Q := a*, - - - a}Q:

a;Q = 0. (7.89)



Let us introduce the complex conjugation on the space Z:
Zow= anen W = Zmei €Z.

Then we can set

= aw; + Z w;dyj, (7.90)
i=1 j=n-+1
2

oo

AW+ Yy wjal. (7.91)
i=1 Jj=n+1

Written more compactly, and denoting the complex conjugation by Cw = w, we
can write this as

a(w) = a*(Crw) + a((1 - mw), a*(w) = a(Crw)+a*((1—mw). (7.92)
Then a(w), a*(w) satisfy the usual commutation relations with vacuum

[a(w), a(w')]+ =0,  [a(w),a;(w")]+ = (wlw'),  a(w)2=0. (7.93)
Thus in the new representation the 1-particle space is CmW @ (1 — )W and
not W.
We can implement this change (up to the sign for odd dim Z) by the unitary
transformation U : Ty (W) — I (C7W & (1 — m)W) defined by

U= ]](~ai+a)). (7.94)
i=1
In fact,
Ua;U* = (-1)"a,, (7.95)
Ua;U* = (-1)"a], (7.96)
UQ = Q. (7.97)
In fact
(—a+a")a(—a+a™)* = —a*aa™ = —a*(aa™ + a*a) = —a”, (7.98)
(—a+a")a*(—a+a*)" = —aa*a = —a(aa™ + a*a) = —a. (7.99)
In this construction Z is often called the space of antiparticles.
The operators a;, a; for i = 1,...,m are often denoted by a different letter,
say, b;, b7
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7.4 Free fermionic Hamiltonians

Consider H = dI'(h), where h is a self-adjoint operator on W. For simplicity,
assume that H has discrete spectrum and is bounded from below. We can

diagonalize h in an o. n. basis e, es, ..., so that
h=>"\lei)(eil,
i
where \; i = 1,2,... is an increasing sequence.
It is easy to see that dI'(h) possesses a unique ground state iff 0 & o(h).
Indeed, let A1 < Ay < -+- < Ay <0 < Apy1 < .... Then the ground state of

dI'(h) is given by
b :=ay, ---ajQ,

so that
HP=FE®, E=X+ -+ An.

Setting b; := a}, b := a; for ¢ < m, the Hamiltonian H can be rewritten as
H = Z)\ia;‘ai = Z |>\z|b:<bz + Z /\ia;‘ai + E.
% i<m i>m
The constant F is usually dropped and we use the renormalized Hamiltonian
Hien = Z p‘z‘brbz + Z /\ia;‘ai.
i<m i>m
Example 7.1. Consider the free Fermi gas with the chemical potential u in
volume L.
H = Z (k* — p)ajag.
ke2rzd
The ground state is called the “Fermi sea”: Hk2<u a;Q). It has the energy
E= Y (k- p).
k2<p
The renormalized Hamiltonian is

Hie, = Z |k? — p|biby + Z |k? — plajag.
k2<p k2>p

7.5 CAR algebra

Consider symbols a;,a;, ¢ = 1,...,n. We can form the %-algebra spanned by
monomials
? ?

aj, cc-ag, (7.100)

J1

where ? is either empty or . The product is the concatenation, the involution
is putting *, where a}* = a;, and reversing the order.
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Next we impose the relations

[aiaaj]-i- =0, [aiaa;]-i- :52']'7 ih,j=1,...,n (7101)

)

We obtain a x-algebra, which we denote CAR(C").
Theorem 7.2. The *-algebra CAR(C") is *-isomorphic to B(®2C?). More
precisely, if we identify

[.(C") ~ ® T,(Cej) ~ ®@"C?, (7.102)

1

E!

j
then aj,a; are given by the usual annihilation/creation operators.

Note that the above s-isomorphism endows CAR(C™) with a norm which
satisfies all axioms of a C*-algebra. Therefore, CAR(C™) becomes a C*-algebra.
We have the embedding

CAR(C™) ~ B(®"C?) 3 A+ A® 2 € B(®"T1C?) ~ CAR(C™™). (7.103)

Consider a Hilbert space W, possibly infinite dimensional. Let a(w), a*(w)
be symbols satisfying

la(w),a(w)ly =0, [a(w), @@ = (wla!). (7.104)

Let CARo(W) denote the x-algebra generated by these symbols, as above.
Clearly, for any finite dimensional Z C W of dimension n, CAR(Z) is iso-
morphic to B(®"C?). Thus CARg(W) is endowed by a unique norm. Let
CAR(W) := CARg(W)°PL.

If we fix an o.n. basis ey, e, ... of W, and we identify C™ with Span(ey, ... e,),
then -
U CAR(C") ~ U ®"C?) (7.105)
Jj=1 Jj=1

is dense in CARo(W). Now (7.105) is UHF((2°°), whose completion is UHF(2°°).
Hence
CAR(W) ~ UHF(2%). (7.106)

The x-algebra CAR(W) has an obvious representation on I'y(W). We will
denote this representation by p, so that

pla(w)) = a(w),  pla”(w)) = a™(w), (7.107)

where on the left we have “abstract symbols”, and on the right “concrete opera-
tors in B(T',(W))”. We will see that often other representations are preferable.

66



7.6 Antiparticles of any dimension

Now let Z is a closed subspace of W of any dimension. Let 7 be the projection
onto Z. We choose an antiunitary involution Z 3 z +— Cz € Z called “charge
conjugation”. Then we set

pla(w)) : = a*(Crw) + a(1 — m)w) € BT (CZ & zZh, (7.108)
pla*(w)) : = a(Crw) + a* (1 - mw) € BT.(CZ® Z) (7.109)

satisfy the usual anticommutation relations. Therefore, they extend to a *-

representation
p: CAR(W) — B(T.(CZ @ 2) (7.110)

If Z is infinite dimensional, there is no unitary operator U that intertwines
the two kinds of representations of CAR. More precisely, if U : T,(W) —
[.(CZ® 2+) and

Up(A) = p(A)U, Ae CAR(W), (7.111)

then U = 0.
In particular, there exists no vector killed by p(a(w)).
7.7 Fermionic positive energy quantization

Seppose now that h is a self-adjoint operator on WW. Then on CAR(W) we have
a l-parameter *-automorphism group given by

ai(a(w)) :== ale ™ ™w), ai(a*(w)) = a* (e w), weW. (7.112)
In the basic representation
p: CAROW) — T.(W) (7.113)
we have for H := dT'(h)
p(ai(A)) = e p(A)eH. (7.114)
Unfortunately, if A is not positive, then neither isH and one can argue that H
is not physical.
Assume for simplicity that lo(h) = 0. Set Ay := T [(+h). Choose a

conjugation C on A_W. Then we can change the representation to I',(CA_-W @
A+ W). The new renormalized Hamiltonian is

H :=dI'(—CA_hC ® Ath), (7.115)
which is positive. We have

plan(A)) = e HH(A)eH (7.116)
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Example 7.3. In infinite volume the Hamiltonian of free Fermi gas is

H = /(k2 — p)atapdk.

E is infinite and the Slater determinant is ill defined. However, we can change
the representation of CAR replacing H with

Hyen = / |k? — p|bibpdk +/ k? — plajapdk.
k2<p k2>p
Example 7.4. Consider the Dirac Hamiltonian

h:=dap+ fm+ V(x).

It is a self-adjoint operator on L?(R? @ C*) The naive quantization of h, that is
dI'(h), acts on the space T, (LQ(R3®(C4)), It is however physically meaningless—
it yields an operator unbounded from below. Formally, the ground state of dT'(h)
1s the Slater determinant with all negative energy states present. This state is
called the Dirac sea.

In practice, we change the representation of CAR. Set

Ai = B[Ow[(ih)
The physical one particle space is
CALA(R*@CY @ ATL*(R3 @ CY),

where C is an antilinear map, usually the charge conjugation.

7.8 Expectation values of Slater determinants

Theorem 7.5. Let b be an operator on ™W. Let m be an orthogonal projection
onto a subspace of W and w, the corresponding Slater determinant state. Then

wr(b(a*,a)) = Z Trb7®™ O(0)sgn(o).

oESH

Proof. It is enough to check this assuming that
b=lei, ® - ®ei,)(ej; @ Dej,l,
corresponding to
bla®,a) = af, a7, a5, .
Now
wr (b(a*, a)) (7.117)

=(ai---a,Qlaj, ---a;i aj, ---a; aj---a,Q) (7.118)



is nonzero only if iq,...,14,, are distinct,

{il,...,i7n}:{j1,...,jm}C{l,...,n}.

Then it is sgno, where o is the unique permutation that maps {ji, ..., jm} onto
{i1,...,im}. Clearly,

O(o)ej, ® -+ ®ej, =€, @+ De,. (7.119)
Thus (7.118) is

sgn(o)Trr®™e;, @ - ®e;, )(ej, @ ®e;,|0(0). (7.120)

In particular, we have the cases n =1, 2:

wr (dL(h)) = Trrh, (7.121)
wr(b(a*,a)) = Trbr@n(l— 1), (7.122)

where 7 : W@ W — W ® W is the transposition of the factors in the tensor
product.

7.9 The Hartree-Fock method

Let h be a self-adjoint operator on W and b on W®W. We assume that 77 = b.
Consider the particle number preserving operator

1
H =dI'(h) + §b(a*7a) (7.123)
* 1 * *
= Z hija;a; + 9 Z biyirjogi @i, Ay Q32 Ajy 5 (7.124)

where in the second line we recall the standard definitions of Wick quantizations
using an arbitrary o.n. basis. We would like to find the ground state energy of
H in the n-body sector.

The Hartree-Fock functional is the expectation value of H in a Slater deter-
minant:

1
Eur () := wy(H) = Trhr + 5Trb7r®7r (1-7) (7.125)
1
D higmi + 3 D (Biaivjoss TijaTir sy = Yizinjais Tingi Tinjs) - (7.126)

The ground state energy of H is clearly estimated from above by its Hartree-
Fock energy

Eyr := inf{€ur(n) : 7 is an n-dimensional orthogonal projection}.
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If a minimizer of Exp exists, we denote it by wyr. We define the Hartree-Fock
Hamiltonian (called also the Fock Hamiltonian) by its expectation value in a
trace class matrix :

Trhppy := Trhy + Trbrr®y (1 — 7).
Notice the absence of %

Theorem 7.6. 7wyr is a projection onto n lowest lying levels of hyp

Proof. Every orthogonal projection has the kernel

m(w,y) = Z@(ar)aﬁi(y),

where ¢1, ..., ¢, is an orthonormal basis of Ranw. The Hartree-Fock functional
can be written as

Eur () = E(b1,- - dn) = >_(6ilhe)

2

+ % D (0 @ ¢l ® 65) — % > (61 @ ¢lb s @ ¢y).
ij

ij
Using the method of Lagrange multipliers, Fyy is given as the infimum of

Eur(d1,- .., 0n) — Zeij((¢i|¢j) —ij),
iJ

where we may assume that the matrix ¢;; is Hermitian. Writing ¢;+0¢;, €;;+0d¢€;;
for the variations, we find

0€ur = Z <¢z|hHF6¢z) + (5§bi|hHF¢i) (7.127)

)

_ Zem(@lédy) ) (7.128)
+ Zéﬁij((¢i|¢j) - 5ij). (7.129)

Comparing the coefficients at d¢; on the right of the scalar product and on the
left of the scalar product independently, we obtain

hur¢; = Z €ijPj-
J

We can diagonalize the matrix [e;;] with a unitary transformation, so that €;; =
dij€;, and we obtain

hup @i = €;0;.
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Thus the minimizing sequence ¢1, . .., ¢, can consist of normalized eigenvectors
of hHF

Now assume that there is an eigenvector of hyr, say 1 orthogonal to ¢1,. .. ¢,
and with an eigenvalue [ lower than one of the eigenvalues €1, ..., ¢€,. For in-
stance,

hury = By, B <e.

Then we can consider a variation ¢ + d¢1 := /1 — t2¢1 + t1p. This variation is
tangent to the constraints. Besides,

0&ur(P1 + 01, ¢2, ..., dn)

2 2 2

1) ) —
—Eard 101 + —Eurdd, 00, + ———Eurdd,0¢1.
=5gfur $10¢1 67? HFOP10¢, + 53,30, HFOQ1 061

The first two terms are zero because of the operator 1 — 7. The second equals

—t*(¢1|hurdr) + (Y hure) = t*(—e1 + B),
hence is negative. O

Note that the Hartree-Fock energy is in general not equal to the sum of the
lowest n eigenvalues of Hyp.

7.10 Hartree-Fock method for atomic systems

Suppose now that V(z) = V(—z) and
H:f/a;AmaIder/aIW(z)amdx (7.130)

//a*a*V Y)aga,dzdy. (7.131)

Let m be an n-dimensional projection. We set

p(x) :=7(x,z), pur(z):=mar(x,x).

Then
Epp(m) = — /5(x —y)Apm(z,y)dady + /5(93 —y)W(x)n(z,y)dady

[ V=08~ 280 o) (Y0 ') = 7oy (") dodyda’dy’

:/amayw(x,y) _ydx—&—/W(x)p(w)dx (7.132)
// (x—y dxdy—f// (x —y)|7(z,y)Pdedy,
Hup = =8+ W()+ [ pu(@)V (@ - y)dy - Tox (7.133)
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where Ty is a nonlocal operator with the kernel

Tex(z,y) = V(z — y)mur(z,y).

Above we used the following identities involving integral kernels of operators
A, B on L?(R?%) and C, D on L?(R?%) ® L?(R?) ~ L?(R? x R?):

TrAB = /A(x,y)B(y,x)dxdy, (7.134)
TrCD = /C’(x,y;x’y’)D(xﬂy’;x,y)dxdydx’dy’. (7.135)

A semiclassical argument implies that the first term in (7.132), that is the
kinetic energy, can be approximated by

d 9/ [ at2
(2m)~ d+2d/'/pd(@®; (7.136)

where ¢4 is the volume of a unit ball in d dimensions. We also expect that

the last term, that is the exchange energy is relatively small. This leads to the
so-called Thomas-Fermi functional, which depends only on the density:

d — d+2
Ervlp) i=em) 0 e [0 )

+/W(x) z)dz + - // z — y)p(a)ply)dady.

8 Squeezed states

8.1 1-mode squeezed vector
Consider I's(C).
Theorem 8.1. Let |c| < 1. Then

18 a normalized vector satisfying
(a —ca™)$2. = 0. (8.137)

Proof. Expanding in power series and using the Lie identity we obtain

c 2 c 02”2n
(efa Q\eéa ) Z|7|1' i
© (Y2 (LY~ ). (2L g, 1
:Z( )|| ( 2)( 2 1) ( 2 ) (1—|C|2) D)




The first identity shows that €. is normalized. The second implies e_%aw(a —
ca*)e%” = a, which yields (8.137). O

Theorem 8.2. Set
Uy, := e (-0 +a%),

Then
UiaU; = acosht 4 a* sinht, (8.138)
Uia*U; = a* cosht + asinht, (8.139)
1 tanht *2 1 tanht 2
U, — —tanht 2 a 8.140
¢ w/coshte ’ (cosht)e ’ ’ ( )
Qtanht - UtQ (8141)
Proof. We have
1 1

[fia*2 +d?,a] = a*, [fia*2 +a?a*] = a. (8.142)

Hence d d
&Utanl =Ua*U_y, aUtaUt’l = U,;a*U_,. (8.143)

This shows (8.138) and (8.139).
Using the identity concerning the derivative of I'(e?) = ¢"*"® contained in
(8.146), we next differentiate in ¢ the right hand side of (8.140) obtaining

sinh¢ 1 9 sinh ¢ 9
— - a**U; — a*Uia + ———Uia 8.144
2cosht ' 2cosh®t b ocosh®t " 2cosh®t ( )
1 1
:( - ma” + m(cosh ta + sinh ta*)?
cos cos
sinh ¢ sinh ¢
_ ST (coshta + sinhta®) — 7)
Y (coshta + sinhta™) 5eoshiz) Ut
—1(—a*2 +a*)U; = 4y (8.145)
T2 Tar '

This shows (8.140). O

Lemma 8.3. Let t — h(t) be a complex function. Then

%eh(t)a*“ = h(t)eh'(t)a*eh(t)a*aa. (8.146)
Proof.
ieha*a — heha*aa*a
dt
= hehv agremhaaha’ay — fehgrehaag, (8.147)
where we used el @g*e—ha’a — ghg* O
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8.2 Many-mode squeezed vector

Suppose ¢ is a symmetric complex matrix on C". One can show that then
there exists an orthonormal basis such that c is diagonal where all terms on the
diagonal are nonnegative. Therefore, we have the many-mode generalizations
of the results of the previous subsection to I'y(C™):

Theorem 8.4. Let ¢ be a symmetric n x n matriz such that ||c|| < 1. Then
Qe 1= det(1 — [cf?)Tezeuaiea Q)
s a mormalized vector satisfying
(a; — cija;)Qe = 0. (8.148)
where we write |c| := v/ c*c.
Theorem 8.5. Let 6 be a symmetric n X n matriz. Set

Uy = e3(=0ijajaj+0ia5a:)

Then
el sinh |0 .
Upa;U; " = (cosh [0])ija; + (9 - )Zj i (8.149)
_sinh [6)]
Ugangl = (COSh |0|)”(L; + (GSHL| |> aj, (8150)
6] /s
1 7(07tanh|6‘) aa’t 1 (Eita"hfm) aja;
Uy = e 210] ij LI e 210] ij 7 ,
’ \/det cosh |6] (cosh\9|)

(8.151)
Uy) = Qtar‘lh\e\e. (8.152)

0]

8.3 Single-mode gauge-invariant squeezed vector

Consider T's(C?). The creation/annihilation of first mode are denoted a*,a, of

the second b*, b.
We assume that in our space there is a “charge operator”

Q:=a"a—b*D,
and we are interested mostly in gauge invariant states, that is satisfying @ = 0.
Theorem 8.6. Let || < 1. Then
Q= (1— [e2) b
18 a normalized vector satisfying

(a — cb*)Q° =0, (8.153)
(b — ca™)2° = 0. (8.154)
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Proof.

ca*b* ca*b* _ . |C‘2n(n!)2
(e Qle Q) = nz:% ez
= (1)~

Using
e—ca*b*aeca*b* —a — c[a*b*,a] —a+ Cb*,
we obtain (8.154). O

Remark 8.7. Clearly,

*b* C, & * C, & *
eca’? :exp<1(a +b)2—1(a —b)2).

Hence a single mode gauge-invariant squeezed vector can be also understood as
a 2-mode squeezed state. However, it is often simple to deal with it directly.

Theorem 8.8. Set
Ut — et(fa*b*jtab).

Then
UlaU™" = acosht + b*sinht, (8.155)
Ula*U™" = a* cosht + bsinht, (8.156)
U'bU ™" = bcosht + a* sinht, (8.157)
Ub*U~" = b* cosht + asinht, (8.158)
1 - 1
t —tanh ta™d tanh tba
- F<7) , 1
(3oshte cosht ¢ (8.159)
Q- tanht — rtQ. (8.160)
Proof. We compute
iUt = (—a*b* + ba)U"
dt
1 1 sinh ¢ sinh t
=_ a*bU" + Utba — ('Ua+v'Up) - t
cosh? t cosh? ¢ cosh? ¢ ) cosht

9 Bose gas and superfluidity

n identical bosonic particles are described by the Hilbert space

M, = L2 ((Rd)”> — @L2(RY),
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the Schrodinger Hamiltonian

n
i=1 1<i<j<n
n
and the momentum P, := — ) i0,,. We have P, H,, = H,, P,, which expresses
the translational invariance olf olur system.
The potential V is a real function on R? that decays at infinity and satisfies
V(z) = V(—x).
We enclose these particles in a box of size L with fixed density p := ;% and
n large. Instead of the more physical Dirichlet boundary conditions, to keep
translational invariance we impose the periodic boundary conditions, replacing
the original V' by the periodized potential

VE(z) = ZV(x—I—Ln):% S i),

nezd pe(2n/L)Z4

well defined on the torus [~L/2,L/2[¢. (Note that above we used the Poisson
summation formula).
The original Hilbert space is replaced by

= L2((=L/2, L/21)") = @ (L= L/2, L/2[%).

We have a new Hamiltonian

HE = —iAfﬂ > Vi@ —ay)
i=1

1<i<j<n

n

L ._ ‘aL

and a new momentum P, := — § ) 1(9:81,
i=

Because of the periodic boun&ary conditions we still have
PLtglt — gL pL,

In the sequel we drop the superscript L.
We use the second quantized formalism

H = Eo H, =T (L2[o, L]d)

~T, (zz(%ﬂzd)).
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The Hamiltonian and the momentum in second quantized notation are

00 A
H = QBOHn = —/a;AIaxdx—i— 5//dxdya;aZV(m — y)ayay

A N
— Zp2a;ap + SLd Z V(k)ay,ag_aqap,
P

p,q,k

00 1
P:=9 P, :/a;fﬁxaggdx
i

— *
= E Payap.
2

9.1 Bogoliubov’s approximation in the canonical formal-
ism

We assume that the potential is repulsive, more precisely,
V>0, V>o.

The Hamiltonian H commutes with N. We are interested in its low energy part
for large eigenvalues n of the number of particle operator N.

We expect that for low energies most particles will be spread evenly over
the whole box staying in the zeroth mode, so that N ~ Ny := ajjag. (The Bose
statistics does not prohibit to occupy the same state). Following the arguments
of N. N. Bogoliubov from 1947, we drop all terms in the Hamiltonian involving
more than two creation/annihilation operators of a nonzero mode. We obtain

AV(0) , . R Qs - .
T(d)aoaoaoao + Z (kQ T agto g (V(k) + V(O)))akak
k#0

Ao * % * ok
+ Z ﬁV(k) (aoaoaka_k + aka_kaoao)

H

Q

= W(N—l)-ﬁ-Hbg-l-R,

where we set

N
P = 7
Hbg = Z (]fQ + /\pf/(k‘))a’éak
k£0
1 N
5 2 AV (k) (afa’ s + aa—s),
k0
AV(0
R = - 2L(d)(N—NQ)(N—N0—1)
A v * sk * %
+ Z ﬁv(k) ((aoao — N)aga_i + aja” (apag — N))
k+#0
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We used

agagaoag = No(No — 1)
= N(N —1) —2No(N — Ng) — (N — No)(N — Ny — 1).

We argue that R is small because
agagy ~ apag ~ No ~ N.

A Bogoliubov transformation, is a linear transformation of creation/annihilation
operators preserving the commutation relations. If we demand in addition that
it should commute with translations, it should have the form

ap = cpap + spa’ (9.161)
ay, i= Cpay, + Spa—p, pF0, (9.162)

where

012)—5129:1, p #£0.

We are looking for a Bogoliubov transformation that diagonalizes the quadratic
Hamiltonian Hyg:

Hyy = Epg+ Y w(p)aip,
p#0
Pog = Zpd;apv
p#0

This is realized by
VP12 + 220V (p) + |p|
Cp = ,
' 2/w(p)

L VPP 22V () — o
. 2y/w(p) ’

w(p) : = [p]\/|p|% + 220V (p),

1 N N
B = —5 3 (10 + 207 0) — bl + 2007 0)).
p#0

w(p) is called the Bogoliubov dispersion relation and Eyg the Bogoliubov energy.
Let us show some computations:

Alapar, + a* pa_y) + B(aja® . + a_rag)
=(Ca} + Sa_y)(Cay + Sa* ;) + (Ca} + Sa_i)(Cay, + Sa* ;) — 252,

where C:= %(\/A—i—B—l— VA - B),

S = %(\/AJrB—\/A—B).
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To obtain ¢, s we divide C, S by the square root of

C? - 8% = /A2 - B2,

Note that ¢, = cosh 3,, s, = sinh f3,, where

1ol 2V (p) — Iply/ [P + 200V (p)

tanh(8,) 1= - ,
' ApV (p)
Set 5
U = exp (Z 7;; (—aya*, +apa_p) )
p#0
Then U is unitary and
iy = Ua,U*,
a, = Ua,U",
Hyy = FEpg+ UZw(p)a;apU*,
p#0
P = UZpa;apU*.
p#0

The ground state of the Bogoliubov Hamiltonian is a squeezed state in the
non-zero mode sector:
ay™

Vn!

The Bogoliubov dispersion relation depends on A and p only through A\p =
An

UuQ.

n.
N The Bogoliubov Hamiltonian depends on L only through the choice of the
lattice spacing 27”

We expect that the low energy part of the excitation spectra of H,, and Hy,
are close to one another for large n, hoping that then n—ng is small. We expect
some kind of uniformity wrt L.

Note that formally we can even take the limit L — oo obtaining

Hyg — Eny = (2m)" / w(p)adp,

P (2m) ¢ /p&;dpdp.

9.2 Bogoliubov’s approximation in the grand-canonical ap-
proach

For a chemical potential p > 0, we define the grand-canonical Hamiltonian

H,:=H-puN = > (p*—payap
p

A 9 * *
+@ Z V(k)ay, ray_aqap.
P,q;k

79



We will mostly set A = 1.
If E, is the ground state energy of H,,, then it is realized in the sector n
satisfying

In what follows we drop the subscript u.

For a € C, we define the displacement or Weyl operator of the zeroth mode:
W, := e~ %1300 Let Q, := W, be the corresponding coherent vector. Note
that PQ, = 0. The expectation of the Hamiltonian in €, is

V(0)
_ 2 4
(QQ‘HQQ) = —/14|O[‘ + W|O€| .

L

It is minimized for o = el” where 7 is an arbitrary phase.
V()

We apply the Bogoliubov translation to the zero mode of H by W(«). This
means making the substitution

)
[e=]

!
)
[e=]
+
L
)
O *

I
Q
O *
+
B

ar = ag, ay = aj, k #0.
Note that
&k = W;‘akWa, dz = W;aZWa,

and thus the operators with and without tildes satisfy the same commutation
relations. We drop the tildes.
Here is the translated Hamiltonian:

H o= gl
217(0)

1 2 > ,LL a*a

+Zk:<2k +V(kz)—‘7(0)) Ly

+ZV(I€) o (e ®Taga_y, + e aja’ )

- 2V(0)
k .
Z (A )\/ﬁ Tay wakay + e agal apir)
Kk V(O)Ld
V(ky — k)

* %
+ Taklak2ak3ak4.
k1+ko=kz+ky

If we (temporarily) replace the potential V(x) with AV (x), where A is a
(small) positive constant, the translated Hamiltonian can be rewritten as

H* = \"'H_y + Ho + VAH, + \H;.
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Thus the 3rd and 4th terms are in some sense small, which suggests dropping
them. Thus )
[ i * —i 2
H%—LdAi—i—,uea—i—e "ao)” + Hypg,
S T e+ Hog

where

Hy = 3 (5K + V0 ata

70 2 V(0)
9 H —i27 127 % %
+§ V(k)——— (e T aga_p + “Taga’ )
poors 2V(0)

Then we proceed as before obtaining the Bogoliubov dispersion relation

<

(p
G

w(p) = [ply/Ip* +2p

<

and the Bogoliubov energy

1
Epg := _52 <|p|2 +p

p#0

<>

<>

(p) 5 Vip)
) = Iply/Ipl +2MV(O)>

Thus, as compared with the canonical approach, we have p in place of Ap.
Note that the grand-canonical Hamiltonian H,, is invariant wrt the U(1)
symmetry ™. The parameter a has an arbitrary phase. Thus we broke the
symmetry when translating the Hamiltonian.
The zero mode is not a harmonic oscillator — it has continuous spectrum and
it can be interpreted as a kind of a Goldstone mode.

9.3 Landau’s argument for superfluidity

A translation invariant system such as homogeneous Bose gas is described by
a family of commuting self-adjoint operators (H, P), where P = (Pi,..., Py)
is the momentum. If the translation invariance is on R?, then the momentum
spectrum is R%. If it is in a box with periodic boundary conditions then elfi =
1, therefore the momentum spectrum is %Zd.

We can define its energy-momentum spectrum o(H, P).

d _
o(H,P) C {RXH§ iy L=co,
R x FZ¢, L <oo.

By general arguments the momentum of the ground state of a Bose gas is
zero. Let E denote the ground state energy of H. We define the critical velocity
by

Cerit *=sup{c : H > E + ¢|P|}.
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Suppose that our n-body system is described with (H, P) with critical ve-
locity ceris. We add to H a perturbation u travelling at a speed w:

.d -
la\l/t = (H + )\;u(a@l - wt))\Ilt.
We go to the moving frame:

UV (21, xn) = U(a) — Wi, ..., 2 — WE).

We obtain a Schrodinger equation with a time-independent Hamiltonian

d n
iSwy = (H—wP+AS ue)) oy,
T ( W ;uw ) ¢

Let Uy, be the ground state of H. Is it stable against a travelling perturba-
tion? We need to consider the tilted Hamiltonian H — wP.

If |W| < Cerit, then H —wP > E and Wy, is still a ground state of H — wP.
So W, is stable.

If |w| > cerit, then H — wP is unbounded from below. So ¥, is not stable
any more.

10 Fermionic Gaussian states

10.1 1-mode particle-antiparticle vector

Consider I',(C?). The creation/annihilation of first mode are denoted a*, a, of
the second b*, b.
We assume that in our space there is a “charge operator”

Q:=a"a—0b"b,
and we are interested mostly in states with @ = 0.
Theorem 10.1. Let ¢ € C. Then
0= (1+ |C|2)_%eca*b*Q —(1+ \c|2)_%(Q+ca*b*Q)
s a mormalized vector satisfying

(a — ™) =0,
(b+ ca™)Q2° = 0.

Theorem 10.2. Set
Ut — et(—a*b*-ﬁ—ba).
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Then

UtaU ™" = acost + b* sint,

Uta*U™t = a* cost + bsint,
UhU ¢ = bcost — a*sint,

Ulb*U~" = b* cost — asint,

.- 1
Ut — coste™ tanta™b F( )etantba’
cost
O tant __ UtQ
Proof. First we derive (10.163)-(10.166). Then we compute

d
aUt = (—G/*b* +ba)Ut
1 1 sint
S YU U ( Tt b*Utb) -
cos? ta + cos?t @t cos?t atrat

10.2 Fermionic oscillator

Let
H=(a"+a)(b" +0b).
Theorem 10.3. We have H? = -1, H* = —H
el = costll + sintH,
e ™ = cos2t(a* + a) — sin 2t(b* +b),
e ™ = cos 2t(b* + b) + sin 2t(a* + a),

)
)

tH( * ) —tH *
)

a® —a)e =a* —a,

In particular,

EEH — 1p,
Ha*H ' = —a, HaH™ ' = —a*,
Hy*H ' = —b, HbH ™' = —b*.

11 Fermi gas and superconductivity

11.1 Fermi gas

We consider fermions with spin % described by the Hilbert space

H, = @ (L*(RY,C?)).
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We use the chemical potential from the beginning and we do not to assume the
locality of interaction, so that the Hamiltonian is

Hn:_Z(Al_M)+>‘ Z Vij -
i=1 1<i<j<n

The interaction will be given by a 2-body operator on ®? (L%(R%, C?)) given by

(D), 45 (x1,22) = //U(Cﬁ,xz,$37$4)@i1,i2($3,334)d$3d354.

We will assume that v is invariant wrt the exchange of particles, Hermitian, real
and translation invariant:
'U(SC17 Z2,I3, 'I4) = 'U(I27 L1, T4, 'I3)
= IU(I y L2, T3, I4)

1
T4,T3,T2, Il)

v
(@ +y, 22+ Y, 23+ Y, T4 + ).

By the invariance wrt the exchange of particles v preserves @2 (L?(R%,C?)). By
translation invariance, v can be written as

v(1, 22,23, 24) = (27T)74d/eiklmlﬁkﬂrikgmg7“64“‘1%1,k27k3,k4)
X 0(k1 + ko — ks — kq)dky1dkadksdky,

where ¢ is a function defined on the subspace ki + ko = k3 + k4. An example
of such interaction is a local 2-body potential V' (z) such that V(z) = V(—z),
which corresponds to

v(xy, e, 23,24) = V(1 —x2)d(x1 — 24)0(22 — 3),
albashekoke) = [ dpV()O( ks = p)Slhe — b+ ).
Similarly, as before, we periodize the interaction

UL(3717$279637334)

E v(z1 + 1L, x0 + 0oL, 23 + n3L, x4)
nj,ng,nz €zl

2 ki- koxo—iksxs—ik
= 7,3d ethrwtikeramikars = 4$4q(kla k27 k37 k4)a
k1+ko=ks+ky

where k; € %’TZd. The Hamiltonian

HAm = 3 (—Ab—p)+ D0 of

1<i<n 1<i<j<n
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acts on H™F := @ (L*([-L/2,L/2]?,C?)). We drop the superscript L.
We will denote the spins by ¢ =1, /. It is convenient to put all the n-particle
spaces into a single Fock space

31?0 M =Ta(L%([L/2,L/2)%,C?))

n=

and rewrite the Hamiltonian and momentum in the language of 2nd quantiza-
tion:

H .= nE:BO H" = Z/a;k;,z(Aa: - M)am,ide

1
+ = ay . ar  U(T1, T2, T3, Ta)Agy iy Qay iy dz1drodzsday,
2 1,21 2,12

11,72
oo n . .
P=¢ P'"=-— E if a;;Vyayde.
n=0 - ’
K3
In the momentum representation,

H = ) % (K —uajan
ik

1
* *
+72Ld E E q(ky, ko, k3, ka)ag, i Gk, Qs inQky iy »
i1,i2 k1+ko=ks+ka

P = Z Z kaj, ;ar.i-
e

We also have the generators of the spin su(2).

1

Se =15 > (akrany + agyaxt), (11.169)
k
i * *
Sy = 5 Z(amam - akiaka), (11170)
k
1
=3 > (akrart — agyaxy). (11.171)
k

The Hamiltonian is invariant with respect to the spin su(2).

11.2 Hartree-Fock-Bogoliubov approximation with BCS
ansatz

We try to compute the excitation spectrum of the Fermi gas by approximate
methods. We look for a minimum of the energy among Gaussian states. We
assume that a minimizer is invariant wrt translations and the spin su(2). We use
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the Hartree-Fock-Bogoliubov approximation with the Bardeen-Cooper-Schrieffer
ansatz.
For a sequence %Zd 5 k — 0y such that 0, = 0_, set

1
Up := I | e20k(—agaly tapiapr—alqag +ag a_ir)
k

(Note the double counting for & # 0). We are looking for a minimizer of the
form Upy{d.

Note that Uy commutes with P and the spin su(2). Therefore, UpQ) is
translation and su(2) invariant.

We want to compute

(UgQHUHQ) = (QUG HUp Q).
To do this we can use the fact that Uy implements Bogoliubov rotations:

UgagsUp = cos Oapy +sinfra_yy,

UgakTUg = COS Hkam + sin Gka’iki,
Ugay, Up = cos Oray, — sinfra_y,
Ugar Up = cos Oayy — sinfra” 4,

Afteer inserting this into Uy HUy be can Wick order the obtained expression.
In practice, this is usually presented differently. One makes the substitution

agr = cos Opbyy + sin Oxb_,
Qa4 = COS kam + sin 0kbik¢,
azi = COSs Gkbzi — sin 9kb_kT,
af| = COS ekbki — sin Hkbik'h
in the Hamiltonian. Note that
UGGZTU; = sz,
Upai Uy = by,
UGCLZJ,Ug = be
Ugak¢U5‘ = bk¢~

Then one Wick orders wrt the operators B*,b. Our Hamiltonian becomes

H =B+ D(k)(bgsbrr + by, bry)

N =

k
1 * 1%k * * a)
+ B Z O(k‘) (bk'rbfkl« + bfkaki) + Z O(k) (b*kika + bkib*kT)
k k

+ terms higher order in b’s.

86



Note that
(Q|HQy) = B.

By the Beliaev Theorem, minimizing B is equivalent to O(k) = 0.
If we choose the Bogoliubov transformation according to the minimization
procedure, the Hamiltonian equals

H =B+ Y D(k)(bgsber + by, br,) + terms higher order in bs

k
with
B = Z(k2 — 1)(1 — cos 20;)
k
1
o2 D alk, ) sin 20, sin 20,
Kk’
1
TiLd Zﬁ(k‘, E') (1 — cos 260, ) (1 — cos 20y ).
k!
Here,
1
Oé(k,k‘/) = 5((](/€,—k,—k/,k/) +Q<_k,k,—k/,k/))7
Bk, k) = 2q(k,K K k) —qk' kK k).

In particular, in the case of local potentials we have

alk, k) = %(V(k —K)+V(E+E)),

Bk, k) = 2V(0)—V(k—kK).

The condition 9y, B = 0, or equivalently O(k) = 0, has many solutions. We
can have

sin 260, = 0, cos 20, = +1,

They correspond to Slater determinants and have a fixed number of particles.
The solution of this kind minimizing B, is called the normal or Hartree-Fock
solution.

Under some conditions the global minimum of B is reached by a non-normal
configuration satisfying

in26, — ——— (k) _ @ik
sin 26y, = 20 1 e , cos 20, = 52(k)+§2(k)’
where
ik) = % ;a(k‘,k’) sin 20/,
Ek) = k27u+$25(k‘,k’)(1700529k/),
k/
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and at least some of sin 20y, are different from 0. It is sometimes called a super-
conducting solution.
For a superconducting solution we get

D(k) = V& (k) + 62(k).

Thus we obtain a positive dispersion relation. One can expect that it is strictly
positive, since otherwise the two functions § and & would have a coinciding zero,
which seems unlikely. Thus we expect that the dispersion relation D(k) has a
positive energy gap.

Conditions guaranteeing that a superconducting solution minimizes the en-
ergy should involve some kind of negative definiteness of the quadratic form o
— this is what we vaguely indicated by saying that the interaction is attractive.
Indeed, multiply the definition of 6(k) with sin 26; and sum it up over k. We
then obtain

> " sin® 260,1/6% (k) + €2 (k)
k

1
= ~37a > sin 20ka(k, k') sin 20, .
k,k’

The left hand side is positive. This means that the quadratic form given by the
kernel a(k, k') has to be negative at least at the vector given by sin 26y.
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12 Quantum lattice systems

12.1 Equivalence of representations

Let A be a C*-algebra. Recall that a #-homomorphism 7 : 2 — B(#H) is also
called a x-representation of A on H.

Let (71,H1) and (72, Ha) be two #-representation of 2(. We say that they
are unitarily equivalent iff there exists a unitary U : H1 — Ho such that

m(A) = Un (A)U*, Ael (12.172)
We say that they are quasiequivalent if there exists a *-isomorphism
prm () — m(A)’ (12.173)

such that
mo(A) = p(m(A)), Ael (12.174)

Clearly, unitary equivalence implies quasiequivalence. The converse in gen-
eral is not true. E.g. the x-representations

B(H)5> A A® 1, € B(H®C") (12.175)

are quasiequivalent but not unitarily equivalent for distinct n € N.

In the algebraic approach to Quantum Physics we start from a C*-algebra
of observables 2{, which may have many inequivalent representations 7; : 2l —
B(H;). The choice of the representation is dictated by the physical situa-
tion: the temperature of the system, its chemical potential, its phase. In
many cases, e.g. in Quantum Field Theory, one usually chooses a ground state
representation—a representation with a positive Hamiltonian.

12.2 Basic algebraic framework of quantum physics

Let us describe the basic steps of the algebraic description of a quantum system.

(1) We start with a C*-algebra 2, whose self-adjoint elements describe ob-
servables of our quantum system. We will denote by Aut(2l) the group of
x-automorphisms of 2. They describe symmetries of the system.

(2) The Heisenberg dynamics is described by a 1-parameter group of x-automorphisms,
that is

RSt pr € Aut(A), po=1id, pips = pris- (12.176)
We usually assume that p is strongly continuous, that is,
R >t pt(A) is norm continuous, A € 2. (12.177)

we then say that (2, p) is a C*-dynamical system.
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(3) We choose a state w on 2. Then we pass to the GNS representation gen-
erated by w on the Hilbert space H,, with the cyclic vector £2,:

Tw 1 A = B(Hy), w(A) = (Qu|mu(A),). (12.178)

(4) Assume that w is time-invariant, that is
w(A) =w(p(4)), teR. (12.179)

Then on the GNS Hilbert space we can define a unitary implementation of
pt. In fact, we set

Uit (A) Qe = (pe(A)) Q. (12.180)
We have (dropping the subscript w for legibility)
(U (A)QUUR(B)Q) = (x(pu(4)) (00 B))2)
— (U4 B)) = w(p(4"B))
= w(4*B) = (7(A)Qr(B)Q). (12.181)
Thus U,,; preserves the scalar product on m,(2)Q2. But 7, (2)$2 is dense
in H. Hence, U, + is unitary. Clearly,
Ro>t—=U,, (12.182)

is a one-parameter unitary group.
(5) Assume that the dynamics (12.177) is strongly continuous. Then (12.182)
is strongly continuous as well, that is,

Rat—=U,:®ecH, PcH, (12.183)

is norm continuous. By the Stone Theorem, there exists a self-adjoint
operator H,, such that U, ; = e~ tHe  Note that H,Q, = 0.

(6) We say that w is a ground state of the system (2, p) if H > 0.

Example 12.1. Let 2 = K(H) (the C*-algebra of compact operators on H).
Consider the dynamics py(A) := ™ Ae 7 | Let w(A) = (e|Ae), where |le]| = 1,
e € H. Then H, ~ H. w is time-invariant if He = Fe (e is an eigenvector of
H). Then H, = H — E. w is a ground state of (A, p) iff E = inf o(H).

Example 12.2. Let ey,eq € H be an orthonormal sequence, A1, Ao, ... satisfy
Ai >0, Ay + Ao+ ---=1. Consider

w(A) = Ai(e1]Aer) + Aa(ea|Aeg) + -+ . (12.184)
Then
Ho, = ?”H@(Cei. (12.185)
If e1,es are eigenvectors of H, so that He; = E;e;, then w is time invariant.
We have
H, =®(H - E;). (12.186)

7

w is a ground state if By = Ey = --- =inf o(H).
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12.3 Lattice systems

Choose n,d € N. To every j = (j1,...,ja) € Z¢ we associate a space H; ~ C"
describing the “spin” at site j. Let 2%2 denote the family of finite subsets of Z?.
To every A € 2%;11 we associate the Hilbert space and the algebra of observables

Hy = © Hj, (12.187)
JEA
Ap = B(Hy). (12.188)

If A C A € 2% then we have the identification
Ay 3 A~ AR ]lA'\A € Anpr. (12.189)

The *-algebra of local observables is defined as

Woe = J An- (12.190)

Ae2zt

fin
It is equipped with a norm satisfying the C*-property. Its completion is called
the C*-algebra of quasilocal observables

9 = AP

loc*

(12.191)

Note that 2 ~ UHF(n®>).

All spaces H;, j € Z% can be identified with C". Therefore, for any k € Z¢,
there exists an obvious unitary map Uy : H; — H,;1x. By tensoring, we obtain
the unitary map Uy : Hao — Hatr (which we denote by the same symbol). We
also have the corresponding automorphism

Tkm/\ *)Q[A_;,_k, Tk(A) = UkAU]:, (12192)
which extends to the automorphism of 2(. Thus we obtain an action of the group

7% 5 k7, € Aut(A). (12.193)

Suppose h is a self-adjoint operator on C™. If A € 2%;11, let us write h; for h
acting on #H;, multiplied by the identity. Set

ha =Y hj. (12.194)
JEA
It defines the automorphism
pai(A) = ethr Ae7lha A € Ay (12.195)
It is easy to see that
pe(A) := Ah/nzld pas(A), Aed (12.196)
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exists. We obtain the dynamics
R >t p € Aut(A), (12.197)

which commutes with (12.193).
Suppose that v is a density matrix on C". Let us write 7; for - acting on
H; and

VA= @ Y. (12.198)
jEA
It defines a state
wA(A) = TryAA, AeAp. (12.199)
The following limit exists:
A) = li A), Aeq 12.200
w(d) = | i, wa(A) ( )

The state w is invariant wrt (12.193). If v commutes with h, it is also invariant
wrt (12.197).
Note that different choices of v lead to inequivalent GNS representations.

12.4 KMS condition on lattice systems

Consider now a lattice quantum system on Z¢ with the algebra 2 and the
Hamiltonian given by a self-adjoint operator A on C", as in (12.194). For each
A€ 2%;11 we can define the Gibbs state

Tre PHA A

wa,g(A) == Tve—BHA "

(12.201)
Hence, this state satisfies the S-KMS condition wrt the dynamics py. There
exists the limit
A):= 1 A). 12.202
wp(A) = lim wap(4) ( )
wg satisfies the 8-KMS condition wrt the dynamics p. Note that this state is
not given by a density matrix. In fact,

e~ PBHA e Bh;
— = S — 12.203
Tre—FHa j?/x Tre—Phs ( )
does not have a limit in any sense and limp sz Tre—PHA typically converges to
infinity.
This suggests that for lattice systems the S-KMS condition is a reasonable
generalization of the 5-Gibbs state.
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13 KMS condition

13.1 Gibbs states

Let us go back to the basic setup of Quantum Physics: H is a Hilbert space, H
is a self-adjoint operator called Hamiltonian, and the Heisenberg dynamics is

pi(A) = e Ae7H A € B(H). (13.204)

Let 8 € R. The -Gibbs state is defined as

e PH

wg(A) :==TrygA, = Tro—FH"

(13.205)
This is possible iff
Tre PH < 00 (13.206)

Note that e.g. if H is finite dimensional, then this is satisfied for all § € R. If
the operator H is bounded from below but unbounded, then (13.206) can be
true only for 8 >0

The 5-Gibbs state describes the system at temperature T = ﬁ Note that
this state is unique (if exists)—hence we cannot describe multiple phases at a
given temperature using this setup.

Let Ey = info(H). Note that

Trl H)A

. 13.207
B—00 TI"]l{EO}(H) ( )

If dim 1g, (H) = 1, we obtain the pure state. Otherwise, we obtain the uniform
combination of all ground states.

Gibbs states can be

Let B2(H) denote the set of Hilbert-Schmidt operators on H, that is

B*(H) :={A € B(H) | TrA*A < co}. (13.208)
It can be treated as a Hilbert space equipped with the scalar product
(A|B) := TrA*B, A,B € B*(H). (13.209)

Consider the GNS representation w3 wrt wg, with the corresponding Hilbert
space Hg and cyclic vector Q5. Note that we can identify Hg with B*(H) and
Qg = ,/73. The representation acts as multiplication from the left:

m3(A)B:= AB, A€ B(H), B¢ B*H). (13.210)
On the GNS space we have a distinguished generator of the dynamics called the

Liouvillean
LB:= HB - BH, B ¢c B*(H). (13.211)
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We have

pi(mg(A)) = elmg(A)e ) A € B(H); (13.212)
LQs = 0. (13.213)

Thus the GNS representation for various 8 can be viewed in the same Hilbert
space, with the same Liouvillean, and only the cyclic vector is varied.

13.2 From a state to the dynamics

In physics a dynamics is typically more fundamental than a state. Therefore,
we started from the Hamiltonian. One can proceed in the reverse direction.
Let v be a density matrix which is nondegenerate (Kery = {0}), and w is the
corresponding state. Such states satisfy

A>0 = w(d) >0 (13.214)

and are called faithful.
Define
H:=—p"1ny (13.215)

Then H is a self-adjoint operator. If we define the dynamics p; by (13.204),
then w is the [-Gibbs state condition for p. Thus every faithful state is the
B-Gibbs state for a certain unique dynamics.

13.3 KMS condition for Gibbs states
Suppose that A, B € B(H). In addition, assume that
R >t pi(B) (13.216)
extends to an analytic function
C 3z p.(B) = e Be™1#H (13.217)
Such B are weakly dense in B(H): e.g. we can assume that B is “localized in
the energy”, that is B = g, g)(H)Blg, g (H) for some E. If dimension H is
finite, this applies to all B € B(H).
Then
wp(Apip(B)) = wa(BA). (13.218)

In fact,

wg(Apig(B)) = Tre #H Ael"PH Be="AH — Ty Ae PP B
= Tre ""BA = ws(BA). (13.219)
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13.4 KMS condition on C*-algebras

Suppose now that 2 is a C*-algebra equipped with a strongly continuous dy-
namics

R >t p € Aut(). (13.220)

Lemma 13.1. There exists a norm-dense x-subalgebra A, C A such that for
every B € Aan

R >t~ p:(B) (13.221)
extends to an analytic function
C >z p.(B). (13.222)
Proof. For z € C and B € U set
B.. = /_:o po(B)e— 5 \/C;‘%. (13.223)
Then we check that
pt(B) = B,y 21\% By = B. (13.224)

In particular, p;(Bo,) = B, extends to an analytic function C 3 z — B, . € 2.
O

We say that a state w on 2 satisfies the 5-KMS condition if
w(Apig(B)) =w(BA), A€, BeEUy,. (13.225)

One can show that the KMS condition implies that the state is stationary.

13.5 KMS condition on UHF algebras

Recall that if nq,n9, ... are positive integers, H; := C™, with the identifications

BHi® - @Hi) 3 A A® Iy, € BHA® - ® His),

we define
UHF, = UHFo(n1,na,...) == | B(H1 @ -~ @ Hy), (13.226)
k=1
UHF = UHF(ny,ng,...) := UHF(n1,na, ... )P (13.227)

Let h; be a self-adjoint operator on H;. Then we have a dynamics on UH F',
which for A € B(H; ® - -- ® Hy,) is given by

k. k.
pi(A) = @ e A @ elths (13.228)

Jj=1 Jj=1

— exp (itj{@l hj)Aexp ( - ité hj). (13.229)
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Let 8 € R and set
e Pl

On UHF we define the state wg, which for A € B(H1 ® - -+ ® Hy) is given by
k
wg (A) =Tr '®1 YB,j A. (13.231)
J:

It is easy to see that wg satisfies the 3-KMS condition for p. It is stationary
and faithful.

Conversely, let v; be nondegenerate density matrices on H;, j = 1,2,....
On UHF we define the state w, which for A € B(H; ® - - ® Hy,) is given by

k
wg(A) = Trj(i@l v A. (13.232)

Set hj := —lnﬂw and defines the dynamics p as above. The w is a 8-KMS state
for p.

13.6 Gibbs states for multiple observables

Suppose a quantum system is described by a Hilbert space H and a Hamilto-
nian H. Suppose that 0= (Og, ..., 0y) is a sequence of commuting self-adjoint
oparators left invariant by the dynamics (equivalently, commuting with H) de-
scribing “easy to control observables”. One can argue that the following density
matrix can be used to describe such a quantum system:

e_gé
05 = —— (13.233)
Tre—#
where 5 = (Bo,---,Bn) € R* ! are the “inverse temperatures of various observ-

ables”. The above density matrix is clearly time-invariant. But there are many
more time-invariant matrices: in fact, for any function of n variables

f(O)
Trf(O)

is also time-invariant. Nevertheless, the exponential function is in some sense
distinguished, and one can argue that one can limit oneself to density matrices
of the form 13.233. Here is an argument which indicates good properties of
(13.233).

Suppose we have two systems described by H?®, H* and H°, H®. Suppose
that we ““put them in contact” obtaining a composite system H® @ H® with
the Hamiltonian H* ® 1+ 1® H®. Introduce the observables for the composite
system O; := Of ® 1+ 1® O?. Then,

(13.234)

f0 — ¢=F0" g o—FO" (13.235)
Tre®0 = Tre=#0" Tre~ qéb, (13.236)
and hence 07 = 9% ® 9%. (13.237)
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Thus the ansatz (13.233) is stable with respect putting together non-interacting
systems.
One introduuces the partition function

Z(F) := Tre 70, (13.238)

One can use the partition function to compute the expectation values of the
observables:

Note that (O;) 5 can often be used to parametrize 0 5 instead of §;. In particular,
if O; is positive then (0;) 7 is decreasing.

13.7 Chemical potential

The most common choice of the observables is Oy = H, the Hamiltonian, and
O; = N; the number operators of various species of particles. Then By = 3 is
called the inverse temperature, and 8; = —Bu;, i = 1,...n, where u; is called
the chemical potential of the ith species. One introduces the “grand-canonical
Hamiltonian”

Hyy oo = H — pu N1 — -+ — i Ny (13.240)

The grand-canonical Gibbs state is the usual Gibbs state of the grand-canonical
Hamiltonian:

06,111, n = Tro—BHyy o ” (13.241)

14 Lattice models

14.1 Nearest neighbor’s interactions

Let us consider d = 2 (H; ~ C?). Denote the canonical basis of C? by ey, €.
Introduce the Pauli matrices:

. [o1 , [0 —i . [1 0
a—[10}7 O’—|:i O]’ O’—|:O _1]. (14.242)

When they act on H;, they will be denoted o7, 0}’,0;. Here are some of the
most popular models in statistical physics:

(1) Ising Model. For A € 2%:1 we set

Hy:=J > oioi+hy oi (14.243)
|.7 - k‘ = 17 Jen
jkeA
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(2) XX Model. For A € 22 we set

Hy:=J Z (J;-”a,f + O’?O’}Z) + hZU;. (14.244)
|.] - kl = 17 geA
jkeA

(3) (Isotropic) Quantum Heisenberg Model or XXX Model. For A €
22" we set
fin

Hp:=J Z (0jof +ofo) +aio) +h Z o5 (14.245)
|] - k| = la jeA
jkeA

In all these models the local Hamiltonian defines the local dynamics
pai(A) = et AN A € 9y (14.246)
Then one shows the existence of the dynamics in thermodynamic limit

pr(A) = Ah/‘nzld pea(4), Aeq (14.247)

The parameter J is sometimes called hopping. If J > 0, we say that the
model is antiferromagnetic, if J < 0 it is ferromagnetic. h is called the external
magnetc field.

Let Q((}\g denote the algebra of diagonal elements of A, (those commuting
with 0]2?). It is a commutative subalgebra of 205. The operators o5, J € A

belong to Ql?\g. By taking

WE = | AP, A= (AP (14.248)
Ae2z!

fin
we obtain a commutative subalgebra of 2. The dynamics of the Ising model
preserves the commutative C*-algebra 292, (It is actually trivial on 2A98) .
Therefore, the Ising model is in reality a classical model, and putting it among
genuinely quantum models may be considered artificial. Nevertheless, it can be
studied by similar methods as quantum models.

14.2 Ground states of Ising model

Here are pure ground states of the Ising model for h =0 and d = 1:

W= <<§>ej‘ - ‘(?ej) (14.249)

Wt = ((%)ejf : <§>ej> (14.250)

<= t - + T) 14.251

“n (j?ﬂ, ej ®j§n e] j?n 6] ®j(§n 6] ’ ( )

wyy 'z( Rel® el |®el® @ ei.). (14.252)
j<n 7 g>n Ml lj<n 7 T jon Y




Of course, we can also take convex combinations of these states, obtaining mixed
ground states. The GNS representations generated by wy for distinct n are all
equivalent. The same is true for w,, .

However, the representations generated by w', w¥ w and w;” are inequiva-
lent. Thus we have 4 inequivalent irreducible ground state represetnations.

14.3 Phases of models with nearest neighbor’s interac-
tions

One can show that for 5 € [0, +oc] all the models described in Subsect. 14.1
have S-KMS states. For high temperatures they are unique: that means, there
exists 0 < B. < +oo such that for 0 < 8 < [, there exists a unique S-KMS
state.

For instance, consider the ferromagnetic Ising model (with J < 0). For h # 0
and for all § € [0,00] we have a unique 5-KMS state with most spins aligned
with the magnetic field. Denote it by w, g.

For h =0, 8 < f3; the state wy g can be extended by continuity to h = 0. For
d =1 we have 8. = +00. For d > 2 we have . < 400, and for 8. < 8 < 4+
the limits

W40,8 = :tlflLIQO Wh,3 (14253)

are different.

15 Thermal states of Fermi gases

15.1 Fermions at positive temperature

Consider first 1 degree of freedom. For A € R let the Hamiltonian be H =
dI'(A) = Aa*a on I'y(C). It is easy to compute the Gibbs density matrix 63, the
partition function Z(8), the average number (N)z and average energy (H)za:

e BAC)  P(emhA)

05 = Trepar) ~ Ty o mn’ (15.254)
Z(B) =1+ efl”‘, (15.255)
1
Nlo =17 15.2
N5 = T ex (15.256)
A
s = T (15.257)

If we have many degrees of freedom, so that h is a self-adjoint operator on
the space Z with A; on the diagonal and

H=dl'(h) =) \a;ja;, (15.258)
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then using I'y(Z) = @ I'4(C) we obtain
(e PN) ['(e=Fh)
0 = ® B —Bh\’
i 1+e BN Trl(e Ph)
mZ(B)=> In(l+e ) =Trin(l+e "),

1 1
<N>ﬂzzl+em1 =Ty

A h
(H)s =D 15 o = DT o

15.2 Fermi gas

(15.259)

(15.260)
(15.261)

(15.262)

Consider now the Fermi gas in a box of sidelength L, that is on L2([0, L[?) with

periodic boundary conditions:

Then

5o e

B> 0.

ke 2z 74

g 1+ eB(
L

Taking the limit L — oo we obtain

H:— dF(%A - un)
= /a};ak<%k2 - ,u)dk.

2

(n)p, = lim % /dk&(—%Jru)), B = oo;

L—o0

:/dk%, 0< 8 < co.

]_ + eﬁ(%_ﬂ‘)
Note that

0,003+ (n)g,, B =—+00;
Rop— (ngu, 0<8<4o00.

are bijections.
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(15.266)

(15.267)

(15.268)

(15.269)
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(15.272)



15.3 CAR algebra

Consider space Z and symbols a(z), a*(z), z € Z. We can form the x-algebra
spanned by monomials

a’(z1)---a’ (zn) (15.273)

where ? is either empty or . The product is the concatenation, the involution
is putting *, where a**(z) = a(z), and reversing the order.
Next we impose the relations

a(Mz1 + A2z2) = Ma(z1) + Aqa(zz), (15.274)

a*(M1z1 + Aaza) = Aa(z1) + Aaa™(22), (15.275)

[a(z1), a(2)]s = [a" (1), a* ()] = O (15.276)
[a(z1), 0" (22)]+ = (21]22)- (15.277)

We obtain a *-algebra, which we denote CARy(Z). Note that this algebra is
spanned by “Wick-ordered” (or “normally ordered”) monomials:

a*(z1) -+ a* (zn)a(wp,) - - - alwy). (15.278)
It has an obvious representation on the Fock space I'y(Z)
7m: CARy(Z) = B(T.(2)) (15.279)

which endows CAR((Z) with a norm satisfying the C*-property. We define the
C*-algebra
CAR(Z) := CARy(2)°P, (15.280)
Actually, 7 extends to an isometric representation 7 : CAR(Z) — W(CAR(Z))CI.
Thus CAR(Z) is isomorphic to a subalgebra of B(I',(Z)). But we prefer to view
it as an abstract C*-algebra, which may have many representations.
Let h be a self-adjoint operator on Z. Then

pe(a*(2) = a*("z2), p, (a*(2)) = a*(ez) (15.281)

extends uniquely to a continuous * automorphism. We obtain a l-parameter

group
RSt p, € Aut(CAR(Z)). (15.282)

In the representation (15.279) it is generated by the Hamiltonian dI'(h):
m(pi(A)) = et (A)e=itdl(R), (15.283)

If Z is finite dimensional, then the Gibbs state for dI'(h) is given by the
density matrix

o= L) o, (15.284)
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15.4 Fermionic quasifree states
Let w be a state on CAR(Z). We say that it is gauge-invariant quasifree if
w(a*(z1) - a*(zn)a(wy) - - alwr)) (15.285)
is nonzero only if n = m and then it is
Z ﬁw(a*(zi)a(wﬂ(i))sgna (15.286)
oES, i=1
Clearly the state is uniquely defined by the quadratic form
w(a*(2)a(w)) = (w|pz), (15.287)
w(a(w)a*(2)) = (w|(1 - p)2). (15.288)

Hencengg]landwecansetfy:ﬁ,p:]li

+°
We will denote this state by w, and rewrite this as

wy (a*(2)a(w)) = (w\#z) (15.289)

w, (a(w)a*(2)) = <w|]1j_ﬁyz). (15.290)

If v = e A" then wy is B-KMS for the dynamics p;. Let us check it on an
example:

Wy (a(z)pig (a*(w))) = w, (a(z)a* (e*ﬁhw)) (15.201)

= (z\ﬁe_ﬁhw) = (z|ﬁw) = wy(a*(w)a(z)) (15.292)

If Z is finite dimensional, then the state with the density matrix 6 = TEI(,W(,)H

is quasifree with the covariance as above. In particular, the 5-Gibbs state for
d'(h) is quasifree with v = e#". To see this, we diagonalize h. Then we have
an orthonormal basis of Z, and expand everything in this basis.

15.5 Araki-Wyss representation

Let us fix a conjugation C on Z and consider the Fock space I',(Z & CZ). Let
~ be a positive operator on Z. Define

@y (2) =t (1477 742,0) +a(0,001+9)

ay(z) := a((l + fy_l)—%z,O) +a* (O,C(l +9)”

N
N
——
—~
—_
ot
N
el
w
=

[N
N
N———
—
—
ot
[\
Nej
=~
=
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We check that (] - ) is quasifree and

0 (1), @y (22))4 = [ (21), @5 (22)]4 = O (15.295)
[a7(21)7a§(22)]+ = (z1]22), (15.296)
(Qay (w)as (2)Q) = <w|]l+17_12), (15.297)
(Qa (2)ay (w)Q) = (w| . i 7,z). (15.298)
We can define a representation

my : CAR(Z) - BTo(Z2 8 CZ2) (15.299)

by setting
™ (a(2) = ay(2), 7 (a*(2)) = a3 (2). (15.300)

Note that
wy (14 (4)) = (Qfmy (4)Q). (15.301)

The representation 7., is the GNS representation for the state w, and 2 is the
corresponding cyclic vector.

16 Thermal states of Bose gases

16.1 Bosons at positive temperature

Consider first 1 degree of freedom. For A € R let the Hamiltonian be H =
dI'(A) = Xa*a on I's(C). It is easy to compute the Gibbs density matrix 63, the
partition function Z(3), the average number (N)g and average energy (H)g:

JRZINGY
bs = freparpy = L€ 7)(A—e™), (16.302)
26) = ﬁ (16.303)
(N)s = ﬁ’ (16.304)
(Hp = eﬁ)‘%l (16.305)

If we have many degrees of freedom, so that h is a self-adjoint operator on
the space Z with A; on the diagonal and

H=dl'(h) = \a;ja;, (16.306)
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then using I's(Z) = ® I';(C) we obtain

_ T

-~ TxD(e=Fh)’
nZ(8) =—Y In(e " —1) = Trin(e " — 1),

By = @T(e ) (e 1)

1 1
<N>5:Zeﬁ)\7_1 :T‘reﬁh_]lv

i

16.2 Bose gas

(16.307)

(16.308)

(16.309)

(16.310)

Consider now the Bose gas in a box of sidelength L, that is on L?([0, L[?) with

periodic boundary conditions and p < 0:
1
HE = dF( - 5AF - un)
1
= Z aZak(ikz — ,u).
ke2rzd

Then for g > 0,

1
Nop= > —m——
< >67H ﬁ(%_ﬂ)_l

ke2rzd €

Taking the limit L — oo we obtain

H = dF(%A — ,u]l)

= /aZak(%k2 - /L)dk.

Then
. <N>,3 © / 1
=1 —r = | dk———..
<n>ﬁ»ﬂ LL)H;O Id eﬁ(%_“) 1
Set
o \Sd_1|2g_1 © g5-1ds
M it S T
Note that

| —00,0[3p — (n)s,, €]0,+00[, d=1,2;
| — 00, 035 — (W €0, aal, 23

(16.311)

(16.312)

(16.313)

(16.314)

(16.315)

(16.316)

(16.317)

(16.318)
(16.319)

are bijections. We see that at d > 3 we have a phase transition at a positive

temperature.
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16.3 CCR algebra

Consider space Z and symbols a(z), a*(z), z € Z. We can form the x-algebra
spanned by monomials
a’(z1)---a’ (zn) (16.320)

where ? is either empty or . The product is the concatenation, the involution
is putting *, where a**(z) = a(z), and reversing the order.
Next we impose the relations

a(M1z1 + Aazo) = Ma(z1) + Aqa(zz), (16.321)

a*(A121 + Aaze) = Ara(z1) + Aaa™(22), (16.322)

[a(z1), a(z2)] = [a"(21), a" (22)] = 0 (16.323)
[a(z1),a"(22)] = (21]22). (16.324)

We obtain a *-algebra, which we denote CCRo(Z). Note that this algebra is
spanned by “Wick-ordered” (or “normally ordered”) monomials:

a*(z1) -+ a* (zn)a(wpy,) - - - alwy). (16.325)

It has an obvious representation on the finite-particle bosonic Fock space
rin(z)
7 : CCRy(Z2) — L(I'in(2)) (16.326)

Unfortunately, the image of this representation consists typically of unbounded
operators and we do not obtain a C*-algebra.
Let h be a self-adjoint operator on Z. Then

pe(a*(z) = a*(e"2), pi(a*(2)) = a*(""2) (16.327)

extends uniquely to a continuous * automorphism. We obtain a 1-parameter

group
R 3t~ p: € Aut(CCRy(2)). (16.328)

In the representation (16.326) it is generated by the Hamiltonian dI'(h):
m(pe(A)) = T (4)e~itdl(h) (16.329)

If Z is finite dimensional, then the Gibbs state for dI'(h) is given by the
density matrix

N ) )
0=y . (16.330)

16.4 Bosonic quasifree states

Let w be a state on CAR(Z). We say that it is gauge-invariant quasifree if

w(a*(z1) - a*(zn)a(wy) - - alwr)) (16.331)
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is nonzero only if n = m and then it is

Z Hw(a*(zi)a(wﬂ(i)) (16.332)

g€eS, i=1

Clearly the state is uniquely defined by the quadratic form

w(a*(2)a(w)) = (w|pz), (16.333)
w(a(w)a*(2)) = (w|(1+ p)2). (16.334)
Hence 0 < p and we can set v = ﬁ, p= ﬁ.

We will denote this state by w, and rewrite this as

wy (a*(2)a(w)) = (w\v_ll_ ]12)7 (16.335)

wy (a(w)a*(2)) = <w|ﬂi’yz). (16.336)

If v = e A" then wy is B-KMS for the dynamics p;. Let us check it on an
example:

Wey (a(z)pig (a* (w))) =Wy (a(z)a* (e*ﬁhw)) (16.337)
= (z\ﬁe_ﬁhw) = (z|ﬁw) = w,(a*(w)a(z)) (16.338)
NG

If Z is finite dimensional, then the state with the density matrix § = TTG)
is quasifree with the covariance as above. In particular, the 5-Gibbs state for
dI'(h) is quasifree with v = e™#". To see this, we diagonalize h. Then we have
an orthonormal basis of Z, and expand everything in this basis.

16.5 Araki-Woods representation

Let us fix a conjugation C on Z and consider the Fock space I'y(Z @& CZ). Let
~ be a positive operator on Z. Define

ay(z) = a*((v’1 - ﬂ)’%z,O) + a(O,C(l — )"
ay (2) = a((v‘1 — 1)~ %z, 0) +a (0,6(11 - 7)—%z). (16.340)

We check that (] - §2) is quasifree and

Nl

z) (16.339)

[0 (1), @y (224 = [ (21), @5 (22)]4 = O (16.341)
[a’y(zl)vaf,(zé)]-&- = (z1]72), (16.342)
. B 1
(Qay (w)as (2)0) = <w|7_1 - ]lz), (16.343)
(Qa (2)ay (w)Q) = (w| . i 7,z). (16.344)
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We can define a representation

7y : CCRo(Z) = LIs(Z&CZ) (16.345)

by setting
m(a(2) = a,(2), m(a*(2)) = a3 (2). (16.346)

Note that
wy (7,(A)) = (U, (A)0). (16.347)

The representation 7., is the GNS representation for the state w, and 2 is the
corresponding cyclic vector.
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