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1 Observables in quantum systems

1.1 States and observables

Let us describe basic framework of quantum mechanics. To avoid technical
complications, in the first part of this section we will assume that the Hilbert
space H describing a quantum system is finite dimensional, so that it can be
identified with CN , for some N .

In basic courses on Quantum Mechanics we learn that a quantum state
is described by a density matrix ρ and a yes/no experiment by an orthogonal
projection P . The probability of the affirmative outcome of such an experiment
equals

Tr(ρP ).

Two orthogonal projections P1 and P2 are simultaneously measurable iff they
commute.

We say that a family of orthogonal projections P1, . . . , Pn is an orthogonal
partition of unity on H iff

n∑
i=1

Pi = 1l, PiPj = δijPj , i, j = 1, . . . n.

Clearly, all elements of an orthogonal partition of unity commute with one
another. Therefore, in principle, one can design an experiment that measures
simultaneously all of them.

If P1, . . . , Pn is an orthogonal partition of unity, then setting Hi := RanPi,

i = 1, . . . , n, we obtain an orthogonal direct sum decomposition H =
n
⊕
i=1
Hi.
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Thus specifying an ortogonal partition of unity is equivalnt to specifying an
orthogonal direct sum decomposition.

Let a1, . . . , an be a sequence of distinct real numbers, which we interpret as
the outcomes of the experiment. We introduce a self-adjoint operator A by

A :=

n∑
i=1

aiPi. (1.1)

Clearly, the average outcome of the experiment is

n∑
i=1

aiTrρPi = TrρA. (1.2)

We call (1.2) the expectation value of the observable A in the state ρ. Clearly,
Pi = 1l{ai}(A) are the spectral spectral projections of A onto its eigenvalues.

Conversely, to any self-adjoint operator we can associate an orthogonal par-
tition of unity given by its spectral projections of A:

1l{a}(A), a ∈ σ(A). (1.3)

By measuring the observable A we mean measuring the partition of unity (1.3).

1.2 Superselection sectors

Let us start with a simple example of H = C2 with basis | ↑), | ↓). Introduce
the Pauli matrices:

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (1.4)

Pure states can be parametrized by θ, φ:

|θ, φ) := cos θ| ↑) + eiφ sin θ| ↓). (1.5)

Measuring the Pauli matrices we obtain

(θ, φ|σ1|θ, φ) = sin 2θ cosφ, (1.6)

(θ, φ|σ2|θ, φ) = sin 2θ sinφ, (1.7)

(θ, φ|σ3|θ, φ) = cos 2θ. (1.8)

Suppose now that we cannot measure φ. This means we cannot measure σ1

and σ2, and only σ3. Thus the observables consist of Span(1l, σ3).
Note also that on these observables the pure state |θ, φ) yields the same

measurement as the density matrix

ρθ := cos2 θ| ↑)(↑ |+ sin2 θ| ↓)(↓ |. (1.9)

Let us generalize this to any finite dimension. In the previous subsection we
assumed that all orthogonal projections on H, hence all self-adjoint operators
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on H, correspond to possible experiments. We say that all self-adjoint elements
of B(H) are observable.

Sometimes this is not the case. We are going to describe several situations
where only a part of self-adjoint operators are observable.

It may happen that the Hilbert space H has a distinguished direct sum
decomposition

H =
n
⊕
i=1
Hn (1.10)

such that only self-adjoint operators that preserve each subspace Hi are mea-
surable. We say then that Hi, i = 1, . . . , n, are superselection sectors.

Let Qi denote the orthogonal projection onto Hi. Then linear combinations
of Qi can be measured simultaneously with all other observables. We say that
they are classical observables.

If we choose an o.n. basis of H compatible with (1.10), then only block
diagonal self-adjoint matrices are observable. States are also described by block
diagonal matrices.

Superselection sectors arise typically when we have a strictly conserved quan-
tity, this means a self-adjoint operator Q that commutes with all possible dy-
namics. For instance, the total charge of the system usually determines a su-
perselection sector. Another example of a superselection sector is the fermionic
parity: states of an even and odd number of fermions form two superselection
sectors.

1.3 Composite quantum systems

Suppose that two quantum systems are described by Hilbert spaces H1, H2.
Then the composite system is described by the tensor product H1 ⊗ H2. Ob-
servables of the first system are described by self-adjoint elemens of B(H1)⊗1lH2 ,
whereas observables of the second system are described by self-adjoint elements
of 1lH1

⊗ B(H2). Note that they commute, so that one can simultaneously
measure them. From the point of view of the first system only self-adjoint ele-
ments of B(H1)⊗ 1lH2

are observable. Again, we have a situation where not all
self-adjoint elements of B(H) are observable.

Let H1 = Cp with an o.n. basis e1, . . . , ep and H2 = Cq with an o.n. basis
f1, . . . , fq. Then ei ⊗ fj i = 1, . . . , p, j = 1, . . . , q is an o.n. basis of H1 ⊗ H2.
Matrices in B(Cp)⊗ 1lCq have the form

A 0
0 A

A

 , A ∈ B(Cp),

and matrices in 1lH1
⊗B(H2) have the form
b111l b121l
b211l b221l

bqq1l

 , [bij ] ∈ B(Cq),
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According to what we described above, the most general structure of the
set of observables in finite dimension is as follows. Consider the Hilbert space

H = CN , N =
n∑
i=1

piqi,

H =
n
⊕
i=1

Cpi ⊗ Cqi ,

and the set
A :=

n
⊕
i=1

B(Cpi)⊗ 1lqi .

Note that A is a vector space closed wrt the multiplication and the Her-
mitian conjugation. It is an example of what mathematicians call a ∗-algebra
represented on a Hilbert space.

As discussed before, in the finite dimensional case, observables of a quantum
system are described by the self-adjoint part of a certain ∗-subalgebra of B(H).

2 Algebras

2.1 Algebras

Let K be a field. We will consider only K = C, and sometimes K = R. Let A
be a vector space over K. We say that A is an algebra if it is equipped with an
operation

A× A 3 (A,B) 7→ AB ∈ A

satisfying

A(B + C) = AB +AC, (B + C)A = BA+ CA,
(αβ)(AB) = (αA)(βB), A,B,C ∈ A, α, β ∈ K.

If in addition
A(BC) = (AB)C,

we say that it is an associative algebra. In practice by an algebra we will usually
mean an associative algebra.

B ⊂ A is called a subalgebra if it is a linear subspace of A and A,B ∈ B⇒
AB ∈ B. Clearly, a subalgebra is also an algebra.

Let V be a vector space. Clearly, the set of linear maps in V, denoted by
L(V), is an algebra. A subalgebra of L(V) is called a a concrete algebra.

A is called a commutative algebra iff A,B ∈ A implies AB = BA.
If A1, A2 are algebras, then their direct sum A1 ⊕ A2 is also an algebra.

2.2 Identity and idempotents

An identity of an algebra A is an element 1l ∈ A such that

A = 1lA = A1l, A ∈ A.
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Any algebra has at most one identity. In fact, if 1l1, 1l2 are identities, then

1l1 = 1l11l2 = 1l2.

We say that A is unital if it possesses an identity. In what follows, for λ ∈ C we
will often simply write λ instead of λ1l.

We can always adjoin identity to an algebra A. We set A1l := A ⊕ C as a
vector space with the multiplication

(A, λ)(B,µ) := (AB + λB + µA, λµ). (2.1)

Then A is embedded in A1l and (0, 1) is the identity of A1l.
Note that the above construction is usuful mostly if A does not have its own

identity. However, it can be always performed.
P ∈ A is called an idempotent (or sometimes a projection) iff P 2 = P . PAP

is a subalgebra called a reduced algebra.
If A ⊂ L(V) is a concrete algebra and E ∈ A is its identity, then E is an

idempotent in L(V). We can then restrict A to RanE.
An idempotent P is called finite discrete iff PAP is finite dimensional. It is

called abelian iff PAP is commutative.

2.3 Commutant

Fix an algebra A. Let B be a subset of A. Consider the family {Aj , | j ∈ J}
of all subalgebras of A containing B. This set is non-empty, because A is one
of its elements. Then

Alg(B) :=
⋂
j∈J

Aj (2.2)

is the smallest subalgebra of A containing B. Alg(B) will be called the algebra
generated by B.

For instance, if A ∈ A, then Alg{A} is spanned by

A,A2, A3, . . . . (2.3)

More generally, Alg{A1, . . . , An} is spanned by monomials

Ai1 · · ·Aik , i1, . . . , ik ∈ {1, . . . , n}. (2.4)

Example 2.1. Consider the algebra B(C2) (of 2x2 matrices). Then Alg(σ3) is
the algebra of diagonal matrices and Alg(σ3, σ1) = B(C2).

The relative commutant of B in A is defined as

B′ ∩ A := {A ∈ A : AB = BA, B ∈ B}

If there is no risk of confusion (it is clear which A we have in mind), we will
write B′ instead of B′∩A and call it the commutant. (Typically it is clear from
the context that A = B(H)).
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Theorem 2.2. (1) A commutant is always a subalgebra containing the iden-
tity of A.

(2) B′ = Alg(B)′.

(3) B′′ ⊃ Alg(B).

(4) B′ = B′′′ = . . . .

(5) B ⊂ B′′ = B′′′′ = . . . .

Proof. The following inclusions are easy:

B1 ⊂ B2 ⇒ B′1 ⊃ B′2, (2.5)

B ⊂ B′′. (2.6)

(2.5) together with (2.6) imply B′ ⊃ B
′′′

. But (2.6) applied to B′ yields B′ ⊂
B
′′′

. Thus B′ = B′′′. Now (4) and (5) follow. 2

The center of an algebra B equals

Z(B) = {A ∈ B : AB = BA, B ∈ B}.

Clearly, Z(B) = B ∩B′.
If A is an algebra and P ∈ Z(A) is an idempotent, then clearly PA = PAP

is a subalgebra. A is naturally isomorphic to PA⊕ (1− P )A.

2.4 Homomorphisms

Let A, B be algebras. A map φ : A→ B is called a homomorphism if it is linear
and preserves the multiplication, that means it satisfies

(1) φ(λA) = λφ(A);

(2) φ(A+B) = φ(A) + φ(B);

(3) φ(AB) = φ(A)φ(B).

If V is a vector space, then a homomorphism of A into L(V) is called a
representation of A in V.

If A is a unital algebra and φ : A→ B is a homomorphism, then φ(1l) is an
idempotent in B. φ is called unital iff

φ(1l) = 1l.

2.5 Ideals

B is a left ideal of an algebra A iff it is a linear subspace of A and A ∈ A,
B ∈ B⇒ AB ∈ B. Similarly we define a right ideal.

If A ∈ A, then AA is a left ideal.
B is called a two-sided ideal if it is a left and right ideal. In what follows we

will write an ideal instead of a two-sided ideal.
We say that an ideal I is proper iff I 6= A. We say that an ideal I is nontrivial

iff I 6= A and I 6= {0}.
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Theorem 2.3. The zero set (kernel) of a homomorphism is an ideal. If I is
an ideal of A, then A/I has a natural structure of an algebra. The map

A 3 A 7→ A+ I ∈ A/I

is a homomorphism whose kernel equals I.

I is a maximal ideal if it is a proper ideal such that if K is a proper ideal
containing I, then I = K. Let I(A), MI(A) and MI1(A) denote the set of ideals,
maximal ideals and ideals of codimesion 1 in A. Clearly,

MI1(A) ⊂ MI(A) ⊂ I(A).

Theorem 2.4. If A is unital and I ⊂ A is a proper ideal, then there exists a
maximal ideal containing I.

Proof. Let {Ij | j ∈ J} be the family of proper ideals containing I. 1l 6∈ Ij
for all of them. By Kuratowski-Zorn lemma this family possesses maximal
elements. 2

Theorem 2.5. Let A be a commutative unital algebra. Let A ∈ A be non-
invertible. Then

(1) I := {AB : B ∈ A} is a proper ideal;

(2) There exists a maximal ideal containing A;

Proof. Clearly, I is an ideal and 1l 6∈ I. This shows (1). (2) follows from
Theorem 2.4. 2

We say that an algebra is simple if it has no nontrivial ideals.

Theorem 2.6. Let A be an algebra with a maximal ideal I. Then A/I is
simple.

Theorem 2.7. Let π : A→ B be a homomorphism. Then

(1) If I is an ideal in B, then π−1(I) is an ideal in A containing Kerπ. Thus
we obtain a map

I(B) 3 I 7→ π−1(I) ∈ {I ∈ I(A) : Kerπ ⊂ I}. (2.7)

(2) If π is surjective, then (2.7) is bijective.

(3) (2.7) maps MI(B) into MI(A).

(4) (2.7) maps MI1(B) into MI1(A).
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2.6 Left regular representation

The so-called left regular representation

A 3 A 7→ λ(A) ∈ L(A)

is defined by
λ(A)B := AB, A,B ∈ A.

If A is unital, then λ is injective. If A is not unital, then λ can be extended to
a representation

A 3 A 7→ λ1l(A) ∈ L(A1l)

in the obvious way, which is injective.
In any case, we see that every algebra is isomorphic to a concrete algebra.

2.7 Banach algebras

Recall that if V is a Banach space with norm ‖ · ‖, and A is a linear operator
on V, then one defines

‖A‖ := sup{‖Av‖ | v ∈ V, ‖v‖ = 1} (2.8)

If ‖A‖ < ∞, we say that A is bounded. The set of bounded operators on V is
denoted B(V). It is a Banach space with the norm || · ‖ satisfying

‖AB‖ ≤ ‖A‖‖B‖. (2.9)

This motivates the following definition. We say that A is a Banach algebra if
it is an algebra over C or R equipped with a norm ‖ · ‖ such that A is complete
in this norm (in other words, (A, ‖ · ‖) is a Banach space) and

‖AB‖ ≤ ‖A‖‖B‖, A,B ∈ A. (2.10)

If V is a Banach space, then B(V) equipped with the operator norm is a Banach
algebra. More generally, every closed subalgebra of B(V) is a Banach algebra.

If A is a Banach algebra and C ⊂ A, then Ban(C) denotes the smallest
Banach algebra generated by C.

2.8 Invertible elements

Let A be an algebra. A ∈ A is left invertible in A iff there exists an element
B ∈ A, called a left inverse of A, such that BA = 1. It is called right invertible
iff there exists C ∈ A such that AC = 1.

Theorem 2.8. If I ⊂ A is a proper left, resp. right ideal, then no elements of
I are left, resp. right invertible.

Theorem 2.9. Let A ∈ A. TFAE:

(1) A is left and right invertible.

11



(2) There exists a unique B ∈ A such that AB = BA = 1l

Proof. Let B, C be a left and right inverse of A. Then

B = B1l = BAC = 1lC = C.

2

If the above conditions are satisfied, then we say that A is invertible, (in A)
and the element B, called the inverse of A, is denoted A−1

Theorem 2.10. 1. If A is invertible and B is a left or right inverse of A,
then B = A−1.

2. If A,B are invertible, then

(AB)−1 = B−1A−1, A−1 −B−1 = A−1(B −A)B−1.

Theorem 2.11. Let A be a Banach algebra and A,B ∈ A be invertible such
that

‖BA−1‖ < 1.

Then A+B is invertible and

(A+B)−1 =

∞∑
j=0

(−1)jA−1(BA−1)j .

Moreover,

‖(A+B)−1‖ ≤ ‖A−1‖(1− ‖BA−1‖)−1,

‖A−1 − (A+B)−1‖ ≤ ‖A−1BA−1‖(1− ‖BA−1‖)−1.

In particular, invertible elements form an open subset of A on which the inverse
is a continuous function.

2.9 Spectrum

We assume that K = C. Let A be a unital algebra. Let A ∈ A. We define the
resolvent set of A as

ρ(A) := {z ∈ C : z1l−A is invertible }.

We define the spectrum of A as σ(A) := C\ρ(A). (Or ρA(A), resp. σA(A) if we
want to stress the dependence on the algebra).

Theorem 2.12. Let A be a unital Banach algebra and A ∈ A. Then

(1) If ‖(λ1l−A)−1‖ = c, then {z : |z − λ| < c−1} ⊂ ρ(A).

(2) ‖(z1l−A)−1‖ ≥ (dist(z, σ(A)))
−1

.

(3) {|z| > ‖A‖} is contained in ρA.

12



(4) σ(A) is a compact subset of C.

(5) (z1l−A)−1 is analytic on ρ(A).

(6) (z1l−A)−1 cannot be analytically extended beyond ρ(A).

(7) σ(A) 6= ∅

Proof. (1) For |z − λ| < c−1, we have ‖(z − λ)(λ1l− A)−1‖ = |z − λ|c < 1
Hence we can apply Theorem 2.11. This implies (2)

(3) We check that
∑∞
n=0 z

−n−1An is convergent for |z| > ‖A‖ and equals
(z1l−A)−1.

(4) follows from (1) and (3).
(5) We check that the resolvent is differentiable in the complex sense:

h−1
(
(z + h−A)−1 − (z −A)−1

)
= −(z + h−A)−1(z −A)−1 → −(z −A)−2.

(6) follows from (2).
(7) (z1l − A)−1 is an analytic function tending to zero at infinity. Hence it

cannot be analytic everywhere, unless it is zero, which is impossible. 2

Theorem 2.13. Let B be a closed subalgebra of a Banach algebra A and
1l, A ∈ B.

(1) ρB(A) is an open and closed subset of ρA(A) containing a neighborhood of
∞.

(2) The connected components of ρA(A) and of ρB(A) containing a neighbor-
hood of infinity coincide.

(3) If ρA(A) is connected, then ρA(A) = ρB(A).

Proof. ρB(A) is open in C. Hence also in ρA(A).
Let z0 ∈ ρA(A) and zn ∈ ρB(A), zn → z0. Then (zn − A)−1 → (z0 − A)−1

in A, hence also in B. Therefore, z0 ∈ ρB(A). Hence ρB(A) is closed in ρA(A).
This proves 1.

(2) and (3) follow immediately from (1). 2

Theorem 2.14 (Gelfand-Mazur). Let A be a unital Banach algebra such that
all non-zero elements are invertible. Then A = C.

Proof. Let A ∈ A. We know that σ(A) 6= ∅. Hence, there exists λ ∈ σ(A).
Thus λ1l−A is not invertible. Hence λ1l−A = 0. Hence A = λ1l. 2

2.10 Spectral radius

Spectral radius of A ∈ A is defined as

srA := sup
λ∈σA

|λ|.

13



Lemma 2.15. Let a sequence of reals (cn) satisfy

cn + cm ≥ cn+m.

Then
lim
n→∞

cn
n

= inf
cn
n
.

Proof. Fix m ∈ N. Let n = mq + r, r < m. We have

cn ≤ qcm + cr.

So
cn
n
≤ qcm

n
+
cr
n
.

Hence
lim sup
n→∞

cn
n
≤ cm

m
.

Thus,

lim sup
n→∞

cn
n
≤ inf

cm
m
.

2

Theorem 2.16. Let A be a Banach algebra and A ∈ A. Then

lim
n→∞

‖An‖ 1
n

exists and equals srA. Besides, srA ≤ ‖A‖.

Proof. Let
cn := log ‖An‖.

Then
cn + cm ≥ cn+m

Hence there exists
lim
n→∞

cn
n
.

Consequently, there exists

r := lim
n→∞

‖An‖1/n.

By the Cauchy criterion, the series

∞∑
n=0

Anz−1−n. (2.11)

is absolutely convergent for |z| > r, and divergent for |z| < r. We easily check
that (2.11) equals (z −A)−1. 2
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2.11 Characters on an algebra

Let A be an algebra. A nonzero homomorphism of A into C is called a character.
We define Char(A) to be the set of characters of A. If φ ∈ Char(A), then Kerφ
is clearly an ideal of codimension 1. Thus we obtain a map

Char(A) 3 φ 7→ Kerφ ∈ MI1(A). (2.12)

Theorem 2.17. (1) If A is unital and I is an ideal of codimension 1, then
there exists a unique character φ such that I = Kerφ. Therefore, (2.12) is
then a bijection.

(2) For a general A, for any φ ∈ Char(A) there exists a unique extension of φ
to a character φ1l on A1l. It is given by φ1l(λ1l +A) = λ+ φ(A).

(3) There exists a unique φ∞ ∈ Char(A1l) such that Kerφ∞ = A.

Proof. (1) If A is unital then every character maps 1l to 1. Hence, for
A ∈ I and λ ∈ C, seting φ(A + λ1l) := λ we obtain the unique character with
Kerφ = I. 2

For any A ∈ A let Â be the function

Char(A) 3 φ 7→ Â(φ) := φ(A) ∈ C. (2.13)

Char(A) is endowed with the weakest topology such that (2.13) is continuous
for any A ∈ A. Thus a net (φα) in Char(A) converges to φ ∈ Char(A) iff for
any A ∈ A, φα(A)→ φ(A).

Theorem 2.18.
A 3 A 7→ Â ∈ C(Char(A)) (2.14)

is a homomorphism. Moreover, the range of (2.14) separates points and for
every element of Char(A) there exists A such that Â(φ) 6= 0. Thus Char(A) is
a Tikhonov space. Moreover, the map

Char(A) 3 φ 7→ φ1l ∈ Char(A1l)\{φ∞}

is a homeomorphism.

Proof. Let A,B ∈ A, φ ∈ Char(A). Then

Â(φ)B̂(φ) = φ(A)φ(B) = φ(AB) = ÂB(φ).

If φ 6= ψ are characters, then there exists A ∈ A such that φ(A) 6= ψ(A), or
Â(φ) 6= Â(ψ).

If φ is a character, then there exists A ∈ A such that φ(A) 6= 0, or Â(φ) 6= 0.
2

Theorem 2.19. Let π : A→ B be a homomorphism. Then

Char(B) 3 φ 7→ π#(φ) ∈ Char(A), (2.15)

defined for ψ ∈ Char(B) by (π#ψ)(A) := ψ(π(A)), is continuous.

15



Proof. Let (ψi) be a net in Char(B) converging to ψ ∈ Char(B). Let
A ∈ A. Then

π#(ψi)(A) = ψi(π(A))→ ψ(π(A)) = π#(ψ)(A).

Hence π#(ψi)→ π#(ψ). 2

2.12 Characters on a Banach algebra

Theorem 2.20. Let A be a unital Banach algebra.

(1) Let I be a maximal ideal in A. Then I is closed.

(2) Let φ be a character on A. Then it is continuous and ‖φ‖ = 1.

(3) Char(A) is a compact Hausdorff space.

(4) The Gelfand transform

A 3 A 7→ Â ∈ C(Char(A))

is a norm decreasing unital homomorphism of Banach algebras.

Proof. (1) Invertible elements do not belong to any proper ideal. But
a neighborhood of 1 consists of invertible elements. Hence the closure of any
proper ideal does not contain 1.

By the continuity of operations, the closure of an ideal is an ideal. Hence if
I is any proper ideal, then Icl is also a proper ideal.

(2) Kerφ is a maximal ideal. Hence it is closed. Hence φ is continuous.
Suppose that ‖φ‖ > 1. Then for some A ∈ A, ‖A‖ < 1 we have |φ(A)| >

1. Now An → 0 and |φ(An)| = |φ(A)|n → ∞, which means that φ is not
continuous.

(3) and (4) follow easily from (2). 2

Theorem 2.21. Let A be a Banach algebra.

(1) Let φ be a character on A. Then it is continuous and ‖φ‖ ≤ 1.

(2) Char(A) is a locally compact Hausdorff space.

(3) The Gelfand transform

A 3 A 7→ Â ∈ C∞(Char(A))

is a norm decreasing homomorphism of Banach algebras.

Theorem 2.22. Let A be a commutative unital Banach algebra. Then every
maximal ideal in A has codimension 1. Hence MI1(A) = MI(A).

Proof. Let I be an ideal of A of codimension > 1. Then A/I s a com-
mutative Banach algebra of dimension > 1. In particular, A/I is not C. By
the Gelfand-Mazur theorem, that is Thm 2.14, A/I contains non-invertible el-
ements. Every such an element is contained in a proper ideal K.

Let π : A→ A/I be the canonical homomorphism. By theorem 3.1, π−1(K)
is a proper ideal of A containing I. Hence I is not maximal. 2
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Theorem 2.23. Let A be an algebra and A ∈ A. Then

(1) σA(A) ⊃ {φ(A) : φ ∈ Char(A)}.
(2) Char(A) 3 φ 7→ φ(A) ∈ σA(A) is a continuous map.

(3) If in addition A is a commutative unital Banach algebra, then

σA(A) = {φ(A) : φ ∈ Char(A)},

and hence
sr(A) = sup{|Â(φ)| : φ ∈ Char(A)} = ‖Â‖.

Proof. If A is non-unital, then we adjoin the identity and extend all the
characters to A1l.

Let φ ∈ Char(A) and φ(A) = λ. Then φ(A−λ1l) = 0. Hence A−λ1l belongs
to a proper ideal. Hence it is not invertible. Hence λ ∈ σ(A), which proves (1).

Let z ∈ σ(A) and A be a Banach commutative algebra. Then z1l−A is not
invertible. Hence, by Thm 2.5, there exists a maximal ideal containing z1l−A.
Therefore, by Thm 2.22, this ideal has codimension 1. By Thm 2.17, there
exists φ ∈ Char(A) that vanishes on this ideal. Thus it satisfies φ(z1l−A) = 0.
Hence z = φ(A) = Â(φ). This proves (3). 2

Theorem 2.24. Let A be a commutative unital Banach algebra. Let A ∈ A.
The following conditions are equivalent:

(1) A belongs to the intersection of all maximal ideals;

(2) For all φ ∈ Char(A) we have φ(A) = 0

(3) Â = 0;

(4) sr(A) = 0;

(5) lim sup ‖An‖1/n = 0.

The set of A ∈ A satisfying the conditions of Theorem 2.24 is called the
radical of A. It is a closed ideal of A.

2.13 Problems

Problem 2.25. We say that A is a division algebra if all its nonzero elements
are invertible. Prove that all division algebras over R are isomorphic to R, C
or H (the quaternions).

Problem 2.26. Prove that L(Rn), L(Cn) and L(Hn) are simple algebras over
R.

Problem 2.27. Prove that the algebra of upper-triangular matrices is isomor-
phic to that of lower-triagular ones.

Problem 2.28. Describe all ideals in the algebra of upper triangular 2×2 ma-
trices.
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3 C∗-algebras

3.1 Operators on Hilbert spaces

From now on we assume that K = C.
Let H be a Hilbert space with scalar product (·|·). Bounded operators on H

are equipped with the Hermitian conjugation

B(H) 3 A 7→ A∗ ∈ B(H). (3.1)

It is defined by
(v|Aw) = (A∗v|w), v, w ∈ H. (3.2)

(3.1) is an antilinear map satisfying

A∗∗ = A, (AB)∗ = B∗A∗, ‖A∗A‖ = ‖A‖2. (3.3)

3.2 ∗-algebras

In what follows we will try to incorporate the Hermitian conjugation into the
theory of algebras. We will introduce the concept of a C∗-algebra, which are
special kinds of Banach algebras possessing the ∗-operation. Among C∗-algebras
especially important are von Neumann algebras and their abstract versions,
which go under the name of W ∗-algebras.

Let us start, however, with a concept of a ∗-algebra that does not use a
norm. Such an approach should suffice in finite dimension.

We say that an algebra A is a ∗-algebra if it is equipped with an antilinear
map A 3 A 7→ A∗ ∈ A such that (AB)∗ = B∗A∗, A∗∗ = A and

A 6= 0 implies A∗A 6= 0. (3.4)

Note that the condition (3.4) removes an “unwanted” trivial examples.
Let A be a ∗-algebra. We say that a subset B of A is ∗-invariant (or self-

adjoint) if A ∈ A implies A∗ ∈ A. Every ∗-invariant subalgebra of A is a
∗-algebra.

Theorem 3.1. If 1l ∈ A, then 1l∗ = 1l.

If H is a Hilbert space, then B(H) equipped with the hermitian conjugation
is a ∗-algebra.

If A, B are ∗-algebras, then a homomorphism π : A→ B satisfying π(A∗) =
π(A)∗ is called a ∗-homomorphism.

The following theorem is a version of the Wederburn-Artin Theorem:

Theorem 3.2. (1) Every finite dimensional ∗-algebra A is ∗-isomorphic to

n
⊕
i=1

B(Cpi),

for some p1, . . . , pn
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(2) If in addition A is a subalgebra of B(CN ) and contains the identity on CN ,

then there exist q1, . . . , qn with N =
n∑
i=1

piqi, and a basis of CN such that

A =
n
⊕
i=1

B(Cpi)⊗ 1lqi . (3.5)

3.3 Von Neumann algebras

Recall from Subsect. 2.3 that if B ⊂ B(H), then the commutant of B is defined
as

B′ := {A ∈ B(H) : AB = BA, B ∈ B}.

Theorem 3.3. If B is ∗-invariant, then so is B′.

Proof. Let A ∈ B′. Then for any B ∈ B, we have AB = BA. Hence
B∗A∗ = A∗B∗. But B is ∗-invariant. Hence CA∗ = A∗C for any C ∈ B. 2.

We say that A ⊂ B(H) is a von Neumann algebra if it is ∗-invariant and
A = A′′. Clearly, von Neumann algebras are ∗-algebras.

It is easy to see that all ∗-subalgebras of B(CN ) containing 1lN are von
Neumann algebras. Indeed, if A is given by (3.5), then A is obviously ∗-invariant
and

A′ =
n
⊕
i=1

1lpi ⊗B(Cqi).

So, A′′ = A.

Theorem 3.4. Let B be a ∗-invariant subset of B(H). Then B′′ is the smallest
von Neuman algebra containing B.

Proof. By Thm 2.5, B′′ = B′′′′ and is ∗-invariant, hence B′′ is a von
Neumann algebra.

If B ⊂ A, then clearly again using Thm 2.5, B′′ ⊂ A′′. But if A is a von
Neumann algebra, then A′′ = A. So B′′ ⊂ A. 2

We will say that B′′ is the von Neumann algebra generated by B.

3.4 Normal states on a von Neumann algebra

Let A be a von Neumann algebra in B(H). Let ρ be a positive operator on
H with Trρ = 1. In physics such operators are called density matrices. In the
theory operator algebras, one introduces a linear map

A 3 A 7→ ω(A) := TrρA ∈ C. (3.6)

Note that ω is a linear functional on A satisfying

A ≥ 0 ⇒ ω(A) ≥ 0, (3.7)

ω(1l) = 1. (3.8)
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Such functionals will be called normal states.
Note that the density matrix is not uniquely defined for anda given functional

ω.

Example 3.5. Let V and W be Hilbert spaces with an o.n. bases {ei | i ∈ I},
resp. {fi | i ∈ I}. Set

ρ :=
∑
i

λi|ei)(ei|, (3.9)

ρ1 :=
∑
i

λi|ei ⊗ f1)(ei ⊗ f1|, (3.10)

Ω :=
∑√

λiei ⊗ fi. (3.11)

Then for A ∈ B(V),

TrAρ = TrA⊗ 1l ρ1 = (Ω|A⊗ 1l Ω). (3.12)

In particular, for the algebra B(V) represented on V ⊗ W, every normal state
can be purified.

3.5 C∗-algebras

(3.3) motivates the following definition:
We say that a Banach algebra is a C∗-algebra if it is equipped with an

antilinear map A 3 A 7→ A∗ ∈ A such that (AB)∗ = B∗A∗, A∗∗ = A and

‖A∗A‖ = ‖A‖2, A ∈ A. (3.13)

Note that in a C∗-algebra the condition (3.4) is always automatically satisfied,
so every C∗-algebra is a ∗-algebra in the sense of the definition from Subsection
3.2.

Theorem 3.6. In a C∗-algebra we have ‖A‖ = ‖A∗‖

Proof. ‖A‖2 = ‖A∗A‖ ≤ ‖A∗‖‖A‖, hence ‖A‖ ≤ ‖A∗‖. Replacing A with
A∗ we obtrain ‖A∗‖ ≤ ‖A‖. 2

Theorem 3.7. If 1l ∈ A, then ‖1l‖ = 1.

Proof. We know that 1l = 1l∗ by Thm 3.1. Hence ‖1l‖2 = ‖1l∗1l‖ = ‖1l‖. 2

If H is a Hilbert space, then every closed ∗-subalgebra of B(H) is a C∗-
algebra. They are called concrete C∗-algebras.

A concrete C∗-algebra is called nondegenerate if for Φ ∈ H, AΦ = 0 for all
A ∈ A implies Φ = 0.

If A is not necessarily non-degenerate, and H1 := {Φ ∈ H : Ax = 0, A ∈
A}, then A restricted to H⊥1 is nondegenerate.

In particular, all von Neumann algebras are concrete nondegenerate unital
C∗-algebras.
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3.6 Examples of infinite dimensional ∗-algebras

Here are a few examples of infinite dimensional ∗-algebras:

(1) (i) Finite rank operators on a Hilbert space H.

(ii) Compact operators on H.

(iii) Bounded operators on H, that is, B(H).

(2) (i) Compactly supported multiplication operators on l2(N); algebra iso-
morphic to cc(N).

(ii) Vanishing at infinity multiplication operators on l2(N); algebra iso-
morphic to c∞(N).

(iii) Bounded multiplication operators on l2(N). This algebra is isomorphic
to l∞(N).

(3) (i) Multiplication operators by continuous compactly supported functions
on L2(R), algebra isomorphic to Cc(R).

(ii) Multiplication operators by continuous vanishing at infinity functions
on L2(R), algebra isomorphic to C∞(R).

(iii) Bounded multiplication operators on L2(R). This algebra is isomor-
phic to L∞(R).

(i)’s are ∗-algebras, but not C∗-algebras. (ii)’s are C∗-algebras but not von
Neumann algebra. They are the closures of (i)’s. (iii)’s are von Neumann
algebras–they are the double commutants of (ii)’s.

For instance, the von Neumann algebra generated by finite rank or compact
operators is the whole B(H).

Physically, if we know that self-adjoint operators A1, . . . , An are observables,
then as the observable algebra it is natural to take

A = {A1, . . . , An}′′.

Observables are often described by unbounded self-adjoint operators. This
is not a serious problem. What is relevant for quantum measurements are
spectral projections, which are bounded. Thus by saying that an algebra A ⊂
B(H) is generated by (possibly unbounded) self-adjoitn operators A1, . . . , An
we will mean that it is generated by spectral projections of these operators (or,
equivalently, by their bounded Borel function).

1. Consider the operators φ̂i, i = 1, 2, 3 on L2(R3). They are self-adjoint and
commute. They have simple joint spectrum. The von Neumann algebra
generated by φ̂i, i = 1, 2, 3 is equal to the operators of multiplication by
functions in L∞(R3).

2. Consider in addition the operators π̂i := i−1∂xi , i = 1, 2, 3 on L2(R3).

The von Neumann algebra generated by φ̂i, π̂i, i = 1, 2, 3, coincides with
B(L2(R3)).

21



3.7 Special elements of a ∗-algebra

A ∈ A is called normal if AA∗ = A∗A. It is called self-adjoint if A∗ = A. Asa

denotes the set of self-adjoint elements of A
P ∈ A is called an orthoprojector if it is a self-adjoint idempotent. Proj(A)

denotes the set of projectors of A.

Theorem 3.8. Let P ∗ = P and P 2 = P 3. Then P is an orthoprojector.

U ∈ A is called a partial isometry iff U∗U is an orthoprojector. If this is the
case, then UU∗ is also an orthoprojector. U∗U is called the right support of U
and UU∗ is called the left support of U .

U is called an isometry if U∗U = 1.
U is called a unitary if U∗U = UU∗ = 1. U(A) denotes the set of unitary

elements of A.
U is called a partial isometry iff U∗U and UU∗ are orthoprojectors.
We can actually weaken the above condition:

Theorem 3.9. Let either U∗U or UU∗ be an orthoprojector. Then U is a
partial isometry.

3.8 Spectrum of elements of C∗-algebras

Theorem 3.10. Let A ∈ A be normal. Then

sr(A) = ‖A‖.

Proof.

‖A2‖2 = ‖A2∗A2‖ = ‖(A∗A)2‖ = ‖A∗A‖2 = ‖A‖4.

Thus ‖A2n‖ = ‖A‖2n . Hence, using the formula for the spectral radius of A we

get ‖A2n‖2−n = ‖A‖. 2

Theorem 3.11. (1) Let V ∈ A be isometric. Then σ(V ) ⊂ {|z| ≤ 1}.
(2) U ∈ A is unitary ⇒ U is normal and σ(U) ⊂ {z : |z| = 1}.
(3) A ∈ A is self-adjoint ⇒ A is normal and σ(A) ⊂ R.

Proof. (1) We have ‖V ‖2 = ‖V ∗V ‖ = ‖1‖ = 1. Hence, σ(V ) ⊂ {|z| ≤ 1}.
(2) Clearly, U is normal.
U is an isometry, hence σ(U) ⊂ {|z| ≤ 1}.
U−1 is also an isometry, hence σ(U−1) ⊂ {|z| ≤ 1}. This implies σ(U) ⊂

{|z| ≥ 1}.
(3) For |λ−1| > ‖A‖, 1+ iλA is invertible. We check that U := (1− iλA)(1+

iλA)−1 is unitary. Hence, by (2).⇒, σ(U) ⊂ {|z| = 1}. By the spectral mapping
theorem, σ(A) ⊂ R. 2

Note that in (2) and (3) we can actually replace ⇒ ⇔, which will be proven
later.
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3.9 Invariance of spectrum in C∗-algebras

Lemma 3.12. Let A be invertible in A. Then A−1 belongs to C∗(1, A).

Proof. First assume that A is self-adjoint. Then σA(A) ⊂ R. Hence ρA(A)
is connected. But C := C∗(1l, A) = Ban(1l, A). Hence, by Theorem 2.13,

ρC(A) = ρA(A) (3.14)

A is invertible iff 0 ∈ ρA(A). By (3.14), this means that 0 ∈ ρC(A) and
hence A−1 ∈ C.

Next assume that A be an arbitrary invertible element of A. Clearly, A∗

is invertible in A and (A∗)−1 = (A−1)∗. Likewise, A∗A is invertible in A
and (A∗A)−1 = (A∗)−1A−1. But A∗A is self-adjoint and hence (A∗A)−1 ∈
C∗(1l, A∗A) ⊂ C∗(1l, A). Next we check that A−1 = (A∗A)−1A∗. 2

Theorem 3.13. Let B ⊂ A be C∗-algebras and A, 1l ∈ B. Then σB(A) =
σA(A).

Proof. By Lemma 3.12, σA(A) = σC(A), where C := C∗(1l, A). But C ⊂
B ⊂ A. 2

Motivated by the above theorem, when speaking about C∗-algebras, we will
write σ(A) instead of σA(A).

3.10 Spectral theorem for self-adjoint operators

Theorem 3.14. Let A be a unital C∗-algebra and A ∈ A be self-adjoint. Then
there exists a unique continuous isomorphism

C(σ(A)) 3 f 7→ f(A) ∈ C∗(1l, A) ⊂ A,

such that

(1) id(A) = A if id(z) = z.
Moreover, we have

(2) If f is a polynomial, then f(A) coincides with f(A) defined by the holo-
morphic calculus.

(3) σ(f(A)) = f(σ(A)).

(4) g ∈ C(f(σ(A)))⇒ g ◦ f(A) = g(f(A)).

(5) ‖f(A)‖ = sup |f |.

3.11 Gelfand theory for commutative C∗-algebras

Theorem 3.15. Let A be a C∗-algebra and φ a character on A. Then φ is a
∗-homomorphism and ‖φ‖ = 1.
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Proof. Adjoin the unit if needed. Let A = A∗. Let φ̃ := φ
∣∣∣
C∗(1l,A)

. Then φ̃ is

a character on the commutative C∗-algebra C∗(1l, A). Hence φ̃(A) ∈ σ(A) ⊂ R.
Thus φ(A) ∈ R.

Let A ∈ A be arbitrary. Then ReA := 1
2 (A + A∗) and ImA := 1

2i (A
∗
A) are

self-adjoint. Hence, φ(ReA), φ(ImA) ∈ R. By linearity, this implies

φ(A∗) = φ(A). (3.15)

2

Theorem 3.16. Let A be a unital commutative C∗-algebra. Then the Gelfand
transform

A 3 A 7→ Â ∈ C(Char(A))

is a ∗-isomorphism.

Proof. Step 1 We already know that it is a norm-decreasing homomor-
phism by Theorem 2.20.

Step 2 Using (3.15) we see that the Gelfand transform is a ∗-homomorphism.
Step 3 Every A ∈ A is normal. Hence ‖A‖ = sr(A) by Theorem 3.10. But

we know that ‖Â‖ = sr(A). This show that the Gelfand transform is isometric.
Step 4 We know that the image of the Gelfand transform is dense in

C(Char(A)) and A is complete. We proved also that it is isometric. Hence
it is bijective. 2

Theorem 3.17. (1) U ∈ A is unitary⇔ U is normal and σ(U) ⊂ {z : |z| =
1}.

(2) A ∈ A is self-adjoint ⇔ A is normal and σ(A) ⊂ R.

Proof. ⇒ was proven before.
(1)⇐. Consider the algebra C := C∗(1l, U). By the normality of U , it is

commutative. Let φ ∈ Char(C). Then φ(U∗)φ(U) = φ(U)φ(U) = 1. Hence
σ(U) ⊂ {|z| = 1}. Hence U∗U = 1.

(2)⇐. Consider the algebra C := C∗(1l, A). By the normality of A, it is
commutative. Let φ ∈ Char(C), Then φ(A) ∈ σ(A) ⊂ R. Hence φ(A∗) = φ(A).
Hence A∗ = A. 2

Theorem 3.18. Let A be a commutative C∗-algebra. Then the Gelfand trans-
form

A 3 A 7→ Â ∈ C∞(Char(A))

is a ∗-isomorphism.
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3.12 Fuglede’s theorem

Theorem 3.19. Let A,B ∈ A and let B be normal. Then AB = BA implies
AB∗ = B∗A.

Proof. For λ ∈ C, the operator U(λ) := eλB
∗−λB = e−λBeλB

∗
is unitary.

Moreover, A = eλBAe−λB . Hence

e−λB
∗
AeλB

∗
= U(−λ)AU(λ) (3.16)

is a uniformly bounded analytic function. Hence is constant. Differentiating it
wrt λ we get [A,B∗] = 0. 2

3.13 Functional calculus for normal operators

Theorem 3.20. Let A be a unital C∗-algebra. Let A ∈ A be normal. Then
there exists a unique continuous unital ∗-isomorphism

C(σ(A)) 3 f 7→ f(A) ∈ C∗(1l, A) ⊂ A,

such that

(1) id(A) = A if id(z) = z.

Moreover, we have

(2) If f ∈ Hol(σ(A)), then f(A) coincides with f(A) defined by the holomorphic
functional calculus.

(3) σ(f(A)) = f(σ(A)).

(4) g ∈ C(f(σ(A)))⇒ g ◦ f(A) = g(f(A).

(5) ‖f(A)‖ = sup |f |.

Proof. If f is a polynomial, that is f(z) =
∑
anmz

nzm, we set

f(A) :=
∑

anmA
nA∗m.

C∗(1l, A) is a commutative algebra. Let φ be a character on C∗(1l, A). Then
we easily check that φ(f(A)) = f(φ(A)). Hence σ(f(A)) = f(σ(A)).

Clearly, f(A) is normal. Hence

‖f(A)‖ = sr(f(A)) = sup |f |.

Therefore, on polynomials the map f → f(A) is isometric. Since polynomials
are dense in a complete metric space C(σ(A)) and polynomials in A, A∗ are
dense in a complete metric space C∗(1l, A), there is exactly one continuous
extension of this map to the whole C(σ(A)), which is an isometric bijection of
C(σ(A)) to C∗(1l, A).
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Clearly, on polynomials, the map f 7→ f(A) is a ∗-homomorphism. Since
the multiplication, and involution are continuous both in C(σ(A)) and C∗(1l, A),
this map is a homomorphism on C(σ(A)). 2

If A is not unital, either we can adjoin the identity and consider the algebra
A1l, or we can use the following version of the above theorem:

Theorem 3.21. Let A be a C∗-algebra. Let A ∈ A be normal. Then there
exists a unique continuous ∗-isomorphism

C∞(σ(A)\{0}) 3 f 7→ f(A) ∈ C∗(A) ⊂ A,

such that id(A) = A if id(z) = z.

3.14 Positive elements

If A ∈ B(H) then we say that A ≥ 0 iff

(v|Av) ≥ 0, v ∈ H. (3.17)

In a C∗-algebra we do not have a Hilbert space at our disposal, therefore we
need to define the postivity differently.

Let A ∈ A. We say that A is positive iff A is self-adjoint and σ(A) ⊂ [0,∞[.
A+ will denote the set of positive elements in A. We will write A ≥ B iff
A−B ∈ A+. We will write A > B iff A ≥ B and A 6= B.

Lemma 3.22. Let A be self-adjoint and ‖A‖ ≤ 2λ. Then ‖λ1l − A‖ ≤ λ iff
A ≥ 0.

Theorem 3.23. (1) A ∈ A+ and λ ≥ 0 implies λA ∈ A+.

(2) A,B ∈ A+ implies A+B ∈ A+.

(3) A,−A ∈ A+ implies A = 0.

(4) A+ is closed.
In other words, A+ is a closed pointed cone.

Proof. (2) We use by Lemma 3.22 with λ := ‖A‖+ ‖B‖:∥∥‖A‖+ ‖B‖ −A−B
∥∥ ≤ ∥∥‖A‖ −A∥∥+

∥∥‖B‖ −B‖∥∥ ≤ ‖A‖+ ‖B‖.

Hence, A+B ≥ 0.
(3) σ(A), σ(−A) ⊂ [0,∞[ implies σ(A) = {0}. But A is self-adjoint. Hence

A = 0.
(4) Let An → A. Then ‖An‖ → ‖A‖. An ∈ A+ iff ‖An − ‖An‖‖ ≤ ‖An‖.

By taking the limit, ‖A− ‖A‖‖ ≤ ‖A‖. Hence A ∈ A+. 2

Theorem 3.24. Let A ∈ A+ and n ∈ N\{0}. Then there exists a unique
B ∈ A+ such that Bn = A.
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Proof. [0,∞[3 λ 7→ λ1/n is a continuous function. Hence B := A1/n is well
defined by spectral theorem and satisfies the requirements of the theorem.

Let B ∈ A+, Bn = A. Clearly,

BA = Bn+1 = AB. (3.18)

Let C := C∗(1l, B,A). By (3.18), C is commutative. If φ ∈ Char(C), then
φ(A) = φ(Bn) = φ(B)n. Moreover, φ(B) > 0. Hence φ(B) = φ(A)1/n. Hence
B is uniquely determined, and equals A1/n. 2

Theorem 3.25 (Jordan decomposition of a self-adjoint operator.). Let A ∈
A be self-adjoint. Then there exist unique A+, A− ∈ A+ such that A+A− =
A−A+ = 0 and A = A+ −A−.

Proof. The functions |x|+ := max(x, 0) and |x|− := max(−x, 0) are con-
tinuous. Hence A+ and A− can be defined as |A|+ and |A|− by the functional
calculus.

Assume that A− and A+ satisfy the conditions of the theorem. Then

A2 = A2
− +A2

+ = (A+ +A−)2.

By the uniqueness of the positive square root, |A| = A+ + A−. Hence A+ =
1
2 (|A|+A) and A− = 1

2 (|A| −A). 2

Theorem 3.26. Let A ∈ A. The following conditions are equivalent

(1) A ≥ 0.

(2) There exists B ∈ A such that A = B∗B.

Proof. (1)⇒ (2) is contained in Theorem 3.24. In fact, A = (
√
A)2.

Let us prove (1) ⇐ (2). Clearly, B∗B is self-adjoint. Let B∗B = A+ − A−
be its Jordan decomposition.

Clearly

(BA−)∗(BA−) = A−(A+ −A−)A− = −A3
− ∈ −A+.

Let BA− = S + iT . Then

(BA−)(BA−)∗ = S2 + T 2 + i(TS − ST )

= −(BA−)∗(BA−) + 2(S2 + T 2) ∈ A+,

using the fact that A+ is a convex cone.
But

σ
(
(BA−)∗(BA−)

)
∪ {0} = σ

(
(BA−)(BA−)∗

)
∪ {0}.

Hence σ
(
(BA−)∗(BA−)

)
= {0}. Consequently, (BA−)∗(BA−) = 0. Conse-

quently, A3
− = 0. By the uniqueness of the positive third root, A− = 0. 2
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Theorem 3.27. (1) Let A be self-adjoint, then −‖A‖ ≤ A ≤ ‖A‖.
In what follows, let 0 ≤ B ≤ A. Then

(2) ‖B‖ ≤ ‖A‖,
(3) If D∗D ≤ 1, then DD∗ ≤ 1.

(4) 0 ≤ C∗BC ≤ C∗AC.
(5) 0 ≤ (λ+A)−1 ≤ (λ+B)−1, 0 < λ.

(6) B(λ+B)−1 ≤ A(λ+A)−1.

(7) 0 ≤ Bθ ≤ Aθ, 0 ≤ θ ≤ 1,

Proof. (1) σ(A) ⊂ [−‖A‖, ‖A‖]. Hence ‖A‖ −A ≥ 0 and ‖A‖+A ≥ 0.
(2) By (1), A ≤ ‖A‖. Hence, B ≤ ‖A‖. Hence σ(B) ⊂ [0, ‖A‖]. Therefore,

‖B‖ ≤ ‖A‖.
(3) Clearly, ‖D∗D‖ ≤ 1. Hence ‖DD∗‖ ≤ 1. Hence, by (1), DD∗ ≤ 1.

(4) C∗(A−B)C =
(
(A−B)

1
2C
)∗

(A−B)
1
2C ≥ 0.

(5) Clearly, λ+A ≥ λ+B ≥ λ. Hence λ+A and λ+B are positive invertible.

By (4), applied with C = (λ + A)−
1
2 , for D := (λ + B)

1
2 (λ + A)−

1
2 we have

1 ≥ D∗D. Hence 1 ≥ DD∗.
(6) follows immediately from (5).
(7). We use (6) and

Aθ = cθ

∫ ∞
0

λθ−1A(λ+A)−1dλ.

2

3.15 Linear functionals

Let ω be a linear functional on A. The adjoint functional ω∗ is defined by

ω∗(A) := ω(A∗).

We say that ω is self-adjoint iff ω∗ = ω, or equivalently, if ω(A) ∈ R for A
self-adjoint.

We say that ω is positive iff

ω(A) ≥ 0, A ∈ A+.

The set of continuous functionals over A will be denoted A#. The set of con-
tinuous positive functionals over A will be denoted A#

+ .

Theorem 3.28. If ω is a positive functional, then it is self-adjoint and

|ω(A∗B)|2 ≤ ω(A∗A)ω(B∗B). (3.19)
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Proof. If A is self-adjoint, then we can decompose A as A = −A− + A+

with A−, A+ positive. Now ω(A±) ≥ 0. Hence ω(A) = ω(A+)− ω(A−) ∈ R.
To prove (3.19), we note that for any λ ∈ C,

ω
(
(A+ λB)∗(A+ λB)

)
≥ 0.

2

Theorem 3.29. Let ω be a linear functional on a unital C∗-algebra A. The
following conditions are equivalent:

(1) ω is positive

(2) ω is continuous and ‖ω‖ = ω(1l)

Proof. (1)⇒(2). Step 1 Let A ∈ A+. Then A ≤ ‖A‖. Hence |ω(A)| =
ω(A) ≤ ‖A‖ω(1l).

Step 2 Let B ∈ A. Then, by (3.19), using the positivity of B∗B and Step
1, we get

|ω(B)|2 ≤ ω(1l)ω(B∗B) ≤ ω(1l)2‖B∗B‖ = ω(1l)2‖B‖2.

Hence ‖ω‖2 ≤ ω(1l)2.
(1)⇐ (2). It is enough to assume that ‖ω‖ = 1.

Step 1 Let A be self-adjoint. Let α, β, γ ∈ R and ω(A) = α + iβ. It is enough
to assume that ω(1l) = ‖ω‖ = 1. Clearly,

‖γ1l− iA‖ =
√
γ2 + ‖A‖2, ω(γ1l− iA) = γ + β − iα.

But
|ω(γ1l− iA)|2 ≤ ‖γ1l− iA‖2.

Hence
(γ + β)2 + α2 ≤ γ2 + ‖A‖2.

For large |γ|, this is possible only if β = 0. Hence ω is self-adjoint.
Step 2 Let A ∈ A+. Then

∥∥‖A‖ −A∥∥ ≤ ‖A‖. Therefore,∣∣‖A‖ω(1l)− ω(A)
∣∣ ≤ ‖A‖.

But ω(1l) = 1, and ω(A) is real. Hence ω(A) ≥ 0. 2

Theorem 3.30. Let ω be a linear functional on a non-unital C∗-algebra. The
following conditions are equivalent:

(1) ω is positive

(2) ω is continuous and for some positive approximate identity {Eα} of A

‖ω‖ = lim
α
ω(E2

α).
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(3) ω is continuous and if the functional ω1l : A1l → C is given by ω1l(λ+A) :=
λ‖ω‖+ ω(A), then ω1l is a positive functional on A1l

Moreover, ω1l is the unique functional on A1l that extends ω and satisfies ‖ω‖ =
‖ω1l‖.

Proof. (1)⇒(2). Step 1. We want to show that

c := sup{ω(A) : 0 ≤ A ≤ 1}

is finite. Suppose that it is not true, 0 ≤ An ≤ 1 and ω(An) → ∞. Then we
will find λn ≥ 0 such that

∑
λn <∞ and

∑
λnω(An) =∞. But A :=

∑
λnAn

is convergent and, for any n,

n∑
j=1

λjω(Aj) ≤ ω(A) <∞,

which is a contradiction.
Step 2. If A ∈ A, then A =

∑3
j=0 ijAj with Aj ∈ A+ and ‖Aj‖ ≤ ‖A‖.

Hence

|ω(A)| ≤
3∑
j=0

ω(Aj) ≤ 4c‖A‖.

Hence ω is continuous.
Step 3. Let Eα be a positive approximate unit. ω(Eα) is an increasing

bounded net, so c := limα ω(Eα) exists. Since ‖Eα‖ ≤ 1, we have c ≤ ‖ω‖.
Step 4 Let A ∈ A. Then

|ω(EαA)|2 ≤ ω(E2
α)ω(A∗A) ≤ ω(E2

α)‖ω‖‖A∗A‖ ≤ c‖ω‖‖A‖2.

Moreover, EαA → A and ω is continuous, hence the left hand side goes to
|ω(A)|2. Hence |ω(A)|2 ≤ c‖ω‖‖A‖2. Therefore, ‖ω‖ ≤ c.

(2)⇒(3). It is obvious that ‖ω1l‖ ≥ ‖ω‖. Let us prove the converse inequality.
Let Eα be a positive approximative unit. We have

ω1l(λ+A) = lim
α
ω(λEα + EαA).

Hence

|ω1l(λ+A)| = limα |ω(λEα + EαA)| ≤ limα ‖ω‖‖λEα + EαA‖

≤ ‖ω‖ lim supα ‖Eα‖‖λ+A‖ = ‖ω‖‖λ+A‖.

Hence, ‖ω1l‖ ≤ ‖ω‖.
Thus we proved that ‖ω‖ = ‖ω1l‖. Therefore, ω1l(1) = ‖ω1l‖. Therefore, ω is

positive by the previous theorem.
(3)⇒(1) is obvious. 2

A positive functional over A satisfying ‖ω‖ = 1 will be called a state. For
a unital algebra it is equivalent to ω(1l) = 1. For a non-unital algebra it is
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equivalent to 1 = sup{ω(A) : A ≤ 1}. The set of states on a C∗-algebra A will
be denoted E(A).

If ω is a positive functional on A, then

ω1l(A+ λ) := ω(A) + λ‖ω‖ A ∈ A, λ ∈ C,

defines a state on A1l extending ω with ‖ω‖ = ‖ω1l‖.
If φ is a positive functional on A1l, then

φ(A+ λ) = θω(A) + λ‖φ‖, A ∈ A, λ ∈ C,

where 0 ≤ θ ≤ ‖φ‖, and ω is a state on A.

3.16 The GNS representation

Recall that (H, π) is a ∗-representation of a C∗-algebra A iff π : A → B(H) is
a homomorphism and π(A∗) = π(A)∗. Let (H, π) be a ∗-representation of A,

Ω ∈ H and ω ∈ A#
+ . We say that Ω is a vector representative of ω iff

ω(A) = (Ω|π(A)Ω).

We say that Ω is cyclic iff π(A)Ω is dense in H. (H, π,Ω) is called a cyclic
∗-representation iff (π,H) is a ∗-representation and Ω is a cyclic vector.

Theorem 3.31. Let ω be a state on A. Then there exists a cyclic ∗-representation
(Hω, πω,Ωω) such that Ωω is a vector representative of ω. Such a representation
is unique up to a unitary equivalence.

Proof. We adjoin the unit if needed.
For A,B ∈ A, ω(A∗B) is a pre-Hilbert scalar product on A, that means, it

is a sesquillinear form satisfying ω(A∗A) ≥ 0 for all A ∈ A. Define

Nω := {A ∈ A : ω(A∗A) = 0}. (3.20)

The scalar product on A/Nω is well defined:(
A+ Nω|B + Nω

)
:= ω(A∗|B). (3.21)

Let Hω be the completion of A/Nω.
Let B ∈ Nω, A ∈ A. Clearly,

B∗A∗AB ≤ ‖A∗A‖B∗B. (3.22)

Therefore,
ω
(
(AB)∗AB

)
= ω(B∗A∗AB ≤ ‖A∗A‖ω(B∗B). (3.23)

Hence, Nω is a left ideal. It is clearly closed.
The left regular representation

A 3 A 7→ λ(A) ∈ L(A), λ(A)B := AB,
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preserves Nω. Hence we can define the representation πω on A/Nω by

πω(A)(B + Nω) := AB + Nω.

We have

‖πω(A)(B + Nω)‖2 = ‖AB + Nω‖2 = ω(B∗A∗AB) (3.24)

≤ ‖A∗A‖ω(B∗B) = ‖A‖2‖B + Nω‖2. (3.25)

Hence ‖πω(A)‖ ≤ ‖A‖ and πω extends to a bounded linear map on Hω.
We set Ωω := 1l + Nω. Clearly, πω(A)Ωω = A+ Nω, hence Ωω is cyclic. 2

Note that πω(A) is a C∗-algebra inside B(Hω). It generates the von Neu-
mann algebra πω(A)′′ ⊂ B(Hω).

Below Cn for n ∈ N will have the usual meaning, and for n =∞, Cn = l2(N).
We write ej , j = 1, 2, . . . for its canonical o.n. basis.

Example 3.32. Consider the C∗-algebra of compact operators K(H) with an
o.n. basis {fj}j∈N. Consider the state ω, which on A ∈ K(H) acts as

ω(A) :=

n∑
j=1

λj(fj |Afj),
n∑
j=1

λj = 1, λj > 0, n ∈ N ∪ {∞}. (3.26)

Then the GNS Hilbert space can be identified with H⊗Cn, and the GNS vector
is

Ω :=

n∑
j=1

√
λjfj ⊗ ej . (3.27)

The GNS representation is
π(A) := A⊗ 1l. (3.28)

The corresponding von Neumann algebra is B(H)⊗ 1l.

Example 3.33. Consider the C∗-algebra C[0, 1]. Let x1, x2, . . . be a sequence
of distinct numbers from [0, 1]. Consider the state ω, which on F ∈ C[0, 1] acts
as

ω(F ) :=

n∑
j=1

λjF (xj),

n∑
j=1

λj = 1, λj > 0, n ∈ N ∪ {∞}. (3.29)

Then the GNS Hilbert space can be identified with Cn, and the GNS vector is

Ω :=

n∑
j=1

√
λjej . (3.30)

The GNS representation is

π(F ) :=

n∑
j=1

F (xj)ej . (3.31)

The corresponding von Neumann algebra is isomorphic to l∞(N).
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Example 3.34. Consider the C∗-algebra C[0, 1]. Let λ be a continuous function
on [0, 1] with support [a, b] ⊂ [0, 1]. Consider the state ω, which on F ∈ C[0, 1]
acts as

ω(F ) :=

∫ 1

0

λ(x)F (x)dx

∫ 1

0

λ(x)dx = 1, λ ≥ 0. (3.32)

Then the GNS Hilbert space can be identified with the space L2[a, b], and the
GNS vector is

Ω(x) := λ(x). (3.33)

The GNS representation is

π(F ) := F (x)
∣∣∣
x∈[a,b]

. (3.34)

The corresponding von Neumann algebra is L∞[a, b], acting as multiplication
operators on L2[a, b].

4 W ∗-algebras

4.1 Introduction

Let V be a Hilbert space and vn be a sequence of vectors in V.

(1) We say that vn is norm convergent to v if limj→∞ ‖vj − v‖ = 0.

(2) We say that vn is weakly convergent to v if limj→∞(w|vj−v) = 0 for every
w ∈ V.

Let (Aj) be a sequence of operators in B(V,W).

(1) We say that (Aj) is norm convergent to A iff lim
j→∞

‖Aj − A‖ = 0. In this

case we write
lim
j→∞

Aj = A.

(2) We say that (Aj) is strongly convergent to A iff lim
j→∞

‖Ajv − Av‖ = 0,

v ∈ V. In this case we write

s− lim
j→∞

Aj = A.

(3) We say that (Aj) is weakly convergent to A iff lim
j→∞

|(w|Ajv)−(w|Av)| = 0,

v ∈ V, w ∈ W. In this case we write

w− lim
j→∞

Aj = A.

The above definitions are related to three distinct topologies on B(V,W): the
norm topology, the strong operator topology and the weak operator topology.
The first is generated by the operator norm. The other two are examples of
locally convex topologies, and they are not given by any norm.
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The famous Von Neumann’s Density Theorem says that von Neumann al-
gebras are precisely weakly (or strongly) closed ∗-algebras in B(H) containing
the identity.

In order to state and prove this theorem we need to recall the concept of a
topology.

4.2 Topological spaces

If X is a set, then 2X will denote the family of all subsets of X.
(X, T ) is a topological space iff X is a set and T ⊂ 2X satisfies

(1) ∅, X ∈ T ;

(2) Ai ∈ T , i ∈ I, ⇒ ∪
i∈I

Ai ∈ T ;

(3) A1, . . . , An ∈ T ⇒
n
∩
i=1

Ai ∈ T .

Elements of T are called sets open in X. We will call T “a topology”.
A set A ⊂ X is called closed in X iff X\A is open.
If T , S are topologies on X, then we say that T is weaker than S iff T ⊂ S.
If T = 2X , then we say that T is discrete.
If T = {∅, X}, then we say that T is antidiscrete.
If B ⊂ 2X , then there exists the weakest topology containing B.
If A ⊂ X, then the closure of A, denoted Acl, is the smallest closed set

containing A.
Let d : X × X → [0,∞[ be a metric. For any x ∈ X and r > 0 define the

open ball of radius r and center x:

B(x, r) := {y ∈ X | d(x, y) < r}. (4.35)

Then the weakest topology containing the set of all open balls

{B(x, r) | x ∈ X, r > 0} (4.36)

is called the topology generated by the metric d.

4.3 Locally convex vector spaces

Let V be a vector space over C. A function p : V → [0,∞[ is called a seminorm
if

p(λv) = |λ|p(v), p(v + w) ≤ p(v) + p(w), v, w ∈ V, λ ∈ C. (4.37)

If in addition
p(v) = 0 ⇒ v = 0, (4.38)

then it is called a norm. Every norm p defines a metric on X by

d(v, w) := p(v − w). (4.39)
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Suppose that we have a family of seminorms {pj}j∈J on a vector space V.
For each v ∈ V, r > 0 and each seminorm pj of them we define a “generalized
ball”

Bj(v, r) := {w ∈ V | pj(v, w) < r}. (4.40)

Then the wekest topology containing the set of all open balls

{Bj(v, r) | v ∈ X, r > 0, j ∈ J} (4.41)

is called the topology generated by the family of seminorms {pj}j∈J .
We say that V is a locally convex vector space if there exists a family of

seminorms {pj}j∈J that generates its topology and such that for each v ∈ V
there exists j ∈ J and pj(v) > 0

Example 4.1. Let V be a Hilbert space. For any v ∈ V define the seminorm

pv(w) := |(v|w)|. (4.42)

Then the topology generated by these seminorms is called the weak topology on
V.

For instance, if {en}n∈N is an orthonormal sequence in V (that means (ei|ej) =
δij), then w− limn→∞ en = 0, but in the norm topology the sequence (en) has
no limit.

Example 4.2. Here is a more general example. Suppose that V is a vector
space. Let V#alg denote its algebraic dual, that is, the psace of linear functional
on V. Let W be a subspace of V#alg. Then σ(V,W) topology is defined by the
seminorms

pw(v) := |〈w|v〉|, w ∈ W. (4.43)

Then a linear functional w is σ(V,W) continuous iff w ∈ W.
If V is a Banach space, let V# denote the space of continuous linear func-

tionals on V. Clearly, V can be identified as a subspace of V##.
Then the topology σ(V,V#) is called weak. The topology σ(V#,V) is called

#-weak.

4.4 Topologies on B(H)

Let H be a Hilbert space. We define a number of locally convex topologies on
B(H) by specifying families of seminorms for a given operator A ∈ B(H):
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weak op. topology: |(Ψ|AΦ)|, Φ,Ψ ∈ H;

σ-weak topology: |
∑

(Φn|AΨn)|,
∑
‖Φn‖2,

∑
‖Ψn‖2 <∞;

strong topology: ‖AΦ‖, Φ ∈ H;

σ-strong topology: (
∑
‖AΨn)‖2)1/2,

∑
‖Ψn‖2 <∞;

∗-strong op. topology: ‖AΦ‖+ ‖A∗Φ‖, Φ ∈ H;

σ∗-strong topology: (
∑

(‖AΨn)‖2 + ‖A∗Ψn‖2)1/2,
∑
‖Ψn‖2 <∞;.

Below we give different, equivalent families of seminorms. All the families
below are partially ordered:

weak op. topology: |TrρA|, ρ ∈ Bfin
+ (H);

σ-weak topology: |TrρA|, ρ ∈ B1
+(H);

strong op. topology: (TrA∗Aρ)1/2, ρ ∈ Bfin
+ (H);

σ-strong topology: (TrA∗Aρ)1/2, ρ ∈ B1
+(H);

∗-strong op. topology: (Tr(A∗A+A∗A)ρ)1/2, ρ ∈ Bfin
+ (H);

σ∗-strong topology: (Tr(A∗A+AA∗)ρ)1/2, ρ ∈ B1
+(H).

All these topologies coincide on projections and on unitary operators. The
following relations are immediate:

Theorem 4.3. (1) We have the following relations:

weak < strong < ∗−strong

∧ ∧ ∧

σ−weak < σ−strong < σ ∗ −strong < norm

(2) On B(H)1 (the unit ball in B(H))

(i) the weak and the σ-weak topologies coincide;

(ii) the strong and the σ-strong topologies coincide;

(iii) the ∗-strong and the σ∗-strong topologies coincide,

Clearly, the σ-weak topology coincides with the weak# topology in the ter-
minology of Banach spaces.

The weak topology defined above does not coincide with the weak topology
in the terminology of Banach spaces.

Theorem 4.4. Let ψ ∈ B(H)#.
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(1) TFAE

(i) ψ is weakly continuous;

(ii) ψ is strongly continuous

(iii) ψ is ∗-strongly continuous;

(iv) ψ is given by ψ(A) = TrγA with γ ∈ Bfin(H).

(2) TFAE

(i) ψ is σ-weakly continuous;

(ii) ψ is σ-strongly continuous

(iii) ψ is σ∗-strongly continuous;

(iv) ψ is given by ψ(A) = TrγA with γ ∈ B1(H).

Proof. The following implications are obvious: (4)⇔(1)⇒(2)⇒(3). Let us
prove (3)⇒(4).

Thus let ψ be a σ*-s continuous functional. Then there exists ρ ∈ B1
+(H)

such that
|ψ(A)| ≤ (

∑
TrA∗Aρ+A∗Aρ)1/2.

Diagonalizing ρ we obtain an orthogonal sequence Φn with
∑
‖Φn‖2 <∞ such

that
|ψ(A)| ≤ (

∑
‖A∗Φn‖2 + ‖AΦn‖2)1/2.

Set H̃ :=
∑
n 6=0Hn, where Hn = H, H−n = H, for n = 1, 2, . . . .

Moreover, set Φ̃ = (Φ̃n), where Φ̃n = Φn, Φ̃−n = Φn, n = 1, 2, . . . . For

A ∈ B(H), let Ã = ⊕Ãn, with Ãn = A, Ã−n = A
∗
, for n = 1, 2, . . . . Clearly,

|ψ(A)| ≤ ‖ÃΦ̃‖. (4.44)

Let K be the subspace of H̃ defined as the closure of {ÃΦ̃ : A ∈ B(H)}.
Now for Ξ := ÃΦ̃ we set

ψ̃(Ξ) := ψ(A). (4.45)

Using (4.44), we easily see that ψ̃ is well-defined on K and bounded by 1.
Hence, there exists Ψ = (Ψn) ∈ K such that ψ̃(Ξ) = (Ψ|Ξ), so that

ψ(A) = (Ψ|ÃΦ̃) (4.46)

=

∞∑
n=1

(Ψ−n|A
∗
Φn) +

∞∑
n=1

(Ψn|AΦn) (4.47)

=

∞∑
n=1

(Φn|AΨ−n) +

∞∑
n=1

(Ψn|AΦn). (4.48)

2

Linear functionals satisfying the conditions of Theorem 4.4 are often called
normal functionals. The space of normal functionals on M will be denoted M#.
The set of normal states on M will be denoted E(M).

37



Theorem 4.5. Let K ⊂ B(H) be a convex set. Consider the following state-
ments:

(1) K is closed (a) σ-weakly, (b) σ-strongly (c) σ∗-strongly;

(2) for any r > 0, K ∩B(H)r is (a) weakly, (b) strongly, (c) ∗-strongly.

(3) K is closed (a) σ-weakly, (b) σ-strongly (c) σ∗-strongly;

(4) for any r > 0, K ∩ B(H)r is closed; (a) σ-weakly, (b) σ-strongly (c) σ∗-
strongly;

Then within each group, (a)⇔(b)⇔(c). Moreover, (1)⇐(2)⇔(3)⇔(4).

Proof. Within each group the equivalence is obvious, because the set of
continuous linear functionals is the same.

(2)⇔(4) is obvious, because the respective topologies coincide for (a), (b)
and (c).

(3a)⇔(4a) follows by the Krein-Shmulian Theorem. 2

Theorem 4.6. We have:

B(H) 3 A 7→ AB,BA are weakly and σ-weakly continuous,
B(H)r ×B(H) 3 (A,B) 7→ AB is strongly and σ-strongly continuous,
B(H)r ×B(H)r 3 (A,B) 7→ AB is ∗-strongly and σ∗-strongly continuous.

Theorem 4.7. ∗ is weakly, σ-weakly, ∗-strongly and σ∗-strongly continuous.

4.5 Monotone convergence

Theorem 4.8. Let {Aλ : λ ∈ Λ} be a uniformly bounded family of self-adjoint
operators in B(H). . Then there exists the smallest self-adjoint operator A such
that Aλ ≤ A. We will denote it lubAλ (the least upper bound).

Proof. Let ‖Aλ‖ ≤ c. For each v ∈ V, (v|Aλv) is an increasing net bounded
by c‖v‖2. Hence it is convergent. Using the polarization identity we obtain the
convergence of (v|Aλw). Thus we obtain a sesquilinear form

lim
λ

(v|Aλw) (4.49)

It is bounded by c, hence it is given by a bounded operator, which we denote by
A, so that (4.49) equals (v|Aw). It is evident that A is the smallest self-adjoint
operator greater than Aλ. 2

Theorem 4.9. Let (Aλ : λ ∈ Λ) be an increasing net of self-adjoint operators,
which is uniformly bounded. Then

lubλA = s− lim
λ
Aλ.

Proof. Since A−Aλ ≥ 0, we have

(A−Aλ)2 = (A−Aλ)
1
2 (A−Aλ)(A−Aλ)

1
2 ≤ ‖A−Aλ‖(A−Aλ).
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Besides, ‖A−Aλ‖ ≤ 2c. Now

‖(A−Aλ)v‖2 = (v|(A−Aλ)2v) ≤ ‖A−Aλ‖(v|(A−Aλ)v)→ 0.

2

Theorem 4.10. (1) Let (Aλ) be a net weakly convergent to zero such that
0 ≤ Aλ ≤ C. Then (Aλ) is strongly convergent to 0.

(2) Let (Aλ) be a net weakly convergent to A such that Aλ ≥ A ≥ C > 0. Then
(A−1

λ ) is strongly convergent to A−1.

(3) Let (Aλ) and (Bλ) be nets weakly convergent to A and B. Let ‖Aλ‖ be
bounded. Then (AλBλ) is strongly convergent to AB.

4.6 Commutant

Let N ⊂ B(H). We define the commutant of N:

N′ := {A ∈ B(H) : AB = BA, B ∈ N}.

Theorem 4.11. (1) N1 ⊂ N2 implies N′1 ⊃ N′2;

(2) (N1 ∩N2)′ = N′1 ∪N′2;

(3) (N1 ∪N2)′ = N′1 ∩N′2;

(4) N ⊂ N′′ = N(iv) = · · · ;
(5) N′ = N′′′ = · · · ;
(6) N is a weakly closed algebra;

(7) if N is ∗-invariant, then so is N′.

Proof. (3) N ⊂ N′′ is obvious. By the same argument, N′ ⊂ N′′′. N ⊂ N′′

together with (1) implies N′ ⊃ N′′′. Hence N′ = N′′′.
(4) Let Aα be a net in N′ weakly convergent to A ∈ B(H). Let B ∈ N.

Then AαB = BAα and

(Φ|ABΨ) = lim
α

(Φ|AαBΨ) = lim
α

(Φ|BAαΨ) = (Φ|BAΨ).

2

Let K be another Hilbert space.

N⊗ 1l := {A⊗ 1l : A ∈ N},

N⊗B(K) := {B ∈ B(H⊗K) : 1l⊗(v1| B 1l⊗|v2) ∈ N, v1v2 ∈ K}.

Theorem 4.12. (1) (N⊗ 1l)′ = N′ ⊗B(K);

(2) (N⊗B(K))′ = N′ ⊗ 1l;

(3) (N⊗ 1l)′′ = N′′ ⊗B(K).
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Proof. The inclusions ⊃ are clear. Let us show the converse inclusions.
(1) Let B ∈ (N⊗ 1l)′ and A ∈ N. Then

A 1l⊗(v1| B 1l⊗|v2) = 1l⊗(v1| A⊗1l B 1l⊗|v2)

= 1l⊗(v1| B A⊗1l 1l⊗|v2) = 1l⊗(v1| B 1l⊗|v2)A.

Hence 1l⊗(v1| B 1l⊗|v2) ∈ N′. Therefore, B ∈ N′ ⊗B(K).
(2) Let B ∈ B(H ⊗ K). Let ei, i ∈ I, be an orthonormal basis of K. Set

Bij := 1l⊗(ei| B 1l⊗|ej) and Eij := |ei)(ej |. We have

1l⊗(ei| [B,Eij ] 1l⊗|ej) = Bii −Bjj . (4.50)

Thus B ∈ (1l⊗B(K))′ iff Bij = 0, Bii = Bjj , i 6= j. Hence there exists A ∈ B(H)
such that B = A⊗ 1l.

Now B = A⊗ 1l ∈ N′⊗1l iff A ∈ N′.
(3) follows immediately from (1) and (2). 2

4.7 Von Neumann’s Density Theorem

Recall that we say that a concrete algebra A ⊂ B(H) is nondegenerate if Φ ∈ H
and AΦ = 0 for all A ∈ A implies Φ = 0.

The aim of this subsection is to prove the following theorem:

Theorem 4.13. Let A be a nondegenerate ∗-algebra in B(H). Then A is σ-s
dense in A′′.

If K is a subspace of H, then [K] will denote the orthogonal projection onto
Kcl.

Lemma 4.14. Let A be a ∗-algebra in B(X ) and Ψ ∈ X . Then

(1) [AΨ] ∈ A′;

(2) If A is nondegenerate, then Ψ ∈ (AΨ)cl;

(3) If A is nondegenerate, then (AΨ)cl = (A′′Ψ)cl.

Proof. (1) Let A ∈ A. Then A(AΨ)cl ∈ (AΨ)cl. Therefore

A[AΨ] = [AΨ]A[AΨ]

By conjugation,
[AΨ]A∗ = [AΨ]A∗[AΨ].

Since A is ∗-invariant, we can replace A with A∗ in the last equality. Thus

A[AΨ] = [AΨ]A.

(2) Let A ∈ A. Using (1) in the second step, we obtain

AΨ = [AΨ]AΨ = A[AΨ]Ψ.
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Thus A(1l− [AΨ])Ψ = 0. By the nondegeneracy of A,

Ψ = [AΨ]Ψ.

(3) Let A ∈ A′′. Using first (2), and then (1), we obtain

AΨ = A[AΨ]Ψ = [AΨ]AΨ ∈ (AΨ)cl. (4.51)

Hence, A′′Ψ ⊂ (AΨ)cl. Taking the closure, we obtain (A′′Ψ)cl ⊂ (AΨ)cl. The
converse inclusion is obvious. 2

Proof of Theorem 4.13. Let K be a separable Hilbert space with an or-
thonormal basis (ej)j∈N.

Let ρ ∈ B1
+(H). Then ρ =

∑∞
j=1 |Φj)(Φj | for some orthogonal family (Φj)

with
∑∞
j=1 ‖Φj‖2 <∞. Let Ψ :=

∑∞
j=1 Φj ⊗ ej ∈ H ⊗K.

A is nondegenerate, hence so is A⊗ 1l. Therefore, we can apply Lemma 4.14
with A replaced with A⊗ 1l and X replaced with H⊗K. It implies that

(A⊗1l Ψ)
cl

= (M⊗ 1l Ψ)
cl
.

Hence, for any ε > 0 and A ∈M we can find B ∈ A such that

ε > ‖B⊗1lΨ−A⊗1lΨ‖2 =

∞∑
j=0

‖(B −A)Φj‖2 = Tr(B −A)∗(B −A)ρ.

Hence A ∈ Aσscl. 2

4.8 Concrete W ∗-algebras

Theorem 4.15. Let M be a ∗-subalgebra of B(H). Then TFAE:

(1) M is (a) weakly closed; (b) strongly closed; (c) ∗-strongly closed;

(2) (M)1 is (a) weakly closed; (b) strongly closed; (c) ∗-strongly closed;

(3) M is (a) σ-weakly closed; (b) σ-strongly closed; (c) σ∗-strongly closed;

(4) (M)1 is (a) σ-weakly closed; (b) σ-strongly closed; (c) σ∗-strongly closed;

If M satisfies the above conditions, then we say that M is a concrete W ∗-
algebra.

Theorem 4.16. Let M ⊂ B(H). TFAE:

(1) M is a von Neumann algebra, that is, it is ∗-invariant and M′′ = M;

(2) M is a concrete W ∗-algebra and 1lH ∈M;

(3) M is a nondegenerate concrete W ∗-algebra in B(H).

Proof of Theorem 4.15 and 4.16. In Theorem 4.15, the equivalence within
each group is clear, also the implications (1)⇐(2)⇔(3)⇔(4).

If N ⊂ B(H), then W ∗(N) will denote the smallest concrete W ∗-algebra
containing N. Note that for any ∗-invariant N ⊂ B(H) containing 1l, W ∗(N) =
N′′.
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Theorem 4.17. Let Z be the center of the von Neumann algebra M. Then
W ∗(M ∪M′) = Z′.

4.9 Kaplansky’s density theorem

We say that f ∈ C(R) is strongly continuous iff

Bh(H) 3 A 7→ f(A) ∈ B(H)

is strongly continuous.

Theorem 4.18. If f ∈ C(R), |f(t)| ≤ a|t|+ b, then f is strongly continuous.

Proof. Step 1. t 7→ t is strongly continuous.
Step 2. t 7→ (t− z)−1 with Imz 6= 0 is strongly continuous. In fact, If Ai → A
strongly, then

(Ai − z)−1Φ− (A− z)−1Φ = (Ai − z)−1(A−Ai)(A− z)1Φ→ 0.

Step 3. Functions in C∞(R) are strongly continuous. In fact, the uniformly
closed algebra generated by (t− z)−1 is C∞(R).
Step 4. If h, g are strongly continuous and h is bounded, then hg is strongly
continuous. In fact,

h(Ai)g(Ai)Φ−h(A)g(A)Φ = h(Ai)(g(Ai)− g(A))Φ + (h(Ai)−h(A))g(A)Φ→ 0

Step 5. Let f ∈ C(R) and |f(t)| ≤ a|t| + b. Then f 1
(t2+1) =: g ∈ C∞(R), and

hence is strongly continuous. Using Step 1 and Step 4, gt is strongly continuous.
It is clearly bounded. Thus (gt)t = gt2 is strongly continuous. Hence f = gt2+g
is strongly continuous. 2

Theorem 4.19 (Kaplansky’s density theorem). Let A be a ∗-algebra in a
W ∗-algebra and A is σ-weakly dense in M. Then

(1) (A)1 is σ∗-strongly dense in (M)1.

(2) (Ah)1 is σ-strongly dense in (Mh)1.

(3) (A+)1 is σ-strongly dense in (M+)1.

Proof. Let A ∈ (M+)1. Then there exists a net (Ai) in A convergent to A.
Replacing Ai with 1

2 (Ai +A∗i ) we can assume that Ai are self-adjoint. Let

f(t) =

 0 t < 0
t 0 ≤ t ≤ 1
1 1 < t.

Then f is strongly continuous. Hence

f(Ai)→ f(A) = A
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strongly. This proves (3). The proof of (2) is similar.
To prove (1), note that the unit ball of B(C2) ⊗ A is strongly dense in

B(C2)⊗M. Let A ∈ (M)1. Then

B :=

[
0 A
A∗ 0

]
is contained in the unit ball of B(C2)⊗Mh. Hence there exists a sequence

Bi :=

[
B11
i B12

i

B21
i B22

i

]
in the unit ball B(C2)⊗Ah strongly convergent to B. Then B12

i belongs to the
unit ball of A and is ∗-strongly convergent to A. 2

4.10 Functional calculus

Theorem 4.20. Let M be a von Neumann algebra. Let A ∈M be self-adjoint.
Then there exists a unique σ∗-strongly continuous unital ∗-homomorphism

L∞Borel(σ(A)) 3 f 7→ f(A) ∈M, (4.52)

which on C(σ(A)) coincides with the previously defined f(A). It satisfies

(1) If fα ∈ L∞Borel(σ(A)) is uniformly bounded sequence converging pointwise
to f then fα(A)→ f(A) σ∗-strongly.

(2) ‖f(A)‖ ≤ sup |f |;
(3) σ(f(A)) ⊂ f(σ(A));

(4) g ∈ L∞Borel(f(σ(A))⇒ g ◦ f(A) = g(f(A)).

(5) The image of (4.52) equals W ∗(1, A).

Note that we constructed a homomorphism of L∞Borel(σ(A)) onto W ∗(1, A).

Theorem 4.21. M is generated by its projectors.
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5 Tensor product

In this chapter we describe the terminology and notation of multilinear algebra.
We will concentrate on the infinite dimensional case, where it is often natural
to use the structure of Hilbert spaces.

We will consider two setups: that of vector spaces and that of Hilbert spaces.
If X ,Y are vector spaces, then L(X ,Y) will denote the set of linear operators
from X to Y. If X ,Y are Hilbert spaces, then B(X ,Y) will denote the set of
bounded operators from X to Y.

5.1 Vector and Hilbert spaces

Let V be a vector space. A set {ei : i ∈ I} ⊂ V is called linearly independent
if for any finite subset {ei1 , . . . , ein} ⊂ {ei : i ∈ I}

c1ei1 + · · ·+ cnein = 0 ⇒ c1 = · · · = cn = 0. (5.1)

{ei : i ∈ I} is a Hamel basis (or simply a basis) of V if it is a maximal linearly
independent set. It means that it is linearly independent and if we add any
v ∈ V to {ei : i ∈ I} ⊂ V then it is not linearly independent any more. Note
that every v ∈ V can be written as a finite linear combination v =

∑
i∈I λiei in

a unique way.
Let V be a vector space over C or R equipped with a scalar product (v|w)

(positive, nondegenerate, sesquilinear form). It defines a metric on V by

‖v − w‖ :=
√

(v − w|v − w). (5.2)

We say that V, (·|·) is a Hilbert space if V is complete.
If V, (·|·) is not necessarily complete, then we can always complete it, that

is find a larger complete space Vcpl, (·|·) in which V is embedded as a dense
subspace. Vcpl is uniquely defined and is called the completion of V.

For instance, if we take Cc(R), C∞c (R) or S(R) with the usual scalar product
(f |g) =

∫
f(x)g(x)dx, then its completion is L2(R).

If V is a Hilbert space, then {ei : i ∈ I} is called an orthonormal basis
(o.n.b.) if it is a maximal orthonormal set. Note that every v ∈ V can be written
as a linear combination v =

∑
i∈I λiei, where

∑
i∈I |λi|2 <∞, in a unique way

Note that in a finite dimensional Hilbert space every orthonormal basis is a
basis. This is not true in infinite dimensional Hilbert spaces.

5.2 Direct sum

Let (Vi)i∈I be a family of vector spaces. The algebraic direct sum of Vi will be
denoted

al⊕
i∈I
Vi, (5.3)

It consists of sequences (vi)i∈I , which are zero for all but a finite number of
elements.
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If (Vi)i∈I is a family of Hilbert spaces, then
al⊕
i∈I
Vi has a natural scalar prod-

uct. (
(yi)i∈I

∣∣∣(vi)i∈I) =
∑
i∈I

(yi|vi). (5.4)

The direct sum of Vi in the sense of Hilbert spaces is defined as

⊕
i∈I
Vi :=

(
al⊕
i∈I
Vi
)cpl

.

If I is finite, then
al⊕
i∈I
Vi = ⊕

i∈I
Vi

Let (Vi), (Wi), i ∈ I, be families of vector spaces. If ai ∈ L(Vi,Wi), i ∈ I,

then their direct sum is denoted ⊕
i∈I

ai and belongs to L

(
al⊕
i∈I
Vi,

al⊕
i∈I
Wi

)
. It is

defined as (
⊕
i∈I

ai

)
(vi)i∈I = (aivi)i∈I (5.5)

Let Vi, Wi, i ∈ I be families of Hilbert spaces, and ai ∈ B(Vi,Wi) with

supi∈I ‖ai‖ <∞. Then the operator ⊕
i∈I

ai is bounded. Its extension inB

(
⊕
i∈I
Vi, ⊕

i∈I
Wi

)
will be denoted by the same symbol.

5.3 Tensor product

Let V,W be vector spaces. The algebraic tensor product of V and W will be
denoted V al⊗W. Here is one of its definitions

Let Z be the space of finite linear combinations of vectors (v, w), v ∈ V,
w ∈ W. In Z we define the subspace Z0 spanned by

(λv,w)− λ(v, w), (v, λw)− λ(v, w),

(v1 + v2, w)− (v1, w)− (v2, w), (v, w1 + w2)− (v, w1)− (v, w2).

We set V al⊗W := Z/Z0. If v ∈ V, w ∈ W, we define v ⊗ w := (v, w) + Z0.

Remark 5.1. Note that (v, w) above is just a symbol and not an element of
V ⊕W. Elements of the space Z have the form

n∑
j=1

λn(vn, wn). (5.6)

In particular, in general

(v1, w1) + (v2, w2) 6∼ (v1 + v2, w1 + w2), (5.7)

λ(v, w) 6∼ (λv, λw). (5.8)
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V al⊗W is a vector space and ⊗ is an operation satisfying

(λv)⊗ w = λv ⊗ w, v ⊗ (λw) = λv ⊗ w,
(v1 + v2)⊗ w = v1 ⊗ w + v2 ⊗ w, v ⊗ (w1 + w2) = v ⊗ w1 + v ⊗ w2.

Vectors of the form v ⊗w are called simple tensors. Not all elements of V ⊗W
are simple tensors, but they span V al⊗W.

If {ei}i∈I and {fj}j∈J are bases of V, resp. W, then {ei ⊗ fj}(i,j)∈I×J is a

basis of V al⊗W,
Suppose that V,W,X are vector spaces. Then it is easy to see that

(V ⊗W)⊗X is naturally isomorphic to V ⊗ (W ⊗X ). (5.9)

This can be seen by comparing the bases. We will use this identification without
a comment, and thus we will drop the parentheses in (5.9).

If V, W are Hilbert spaces, then V al⊗W has a unique scalar product such
that

(v1 ⊗ w1|v2 ⊗ w2) := (v1|v2)(w1|w2), v1, v2 ∈ V, w1, w2 ∈ W.

To see this it is enough to choose o.n.b’s {ei}i∈I and {fj}j∈J in V, resp. W.

Then every element of V al⊗W can be written as an (infinite) linear combination
of ei⊗fj and we can use them as an orthonormal set defining this scalar product.

We set
V ⊗W := (V al⊗W)cpl,

and call it the tensor product of V and W in the sense of Hilbert spaces. If
{ei}i∈I and {fj}j∈J are o.n.b’s of V, resp. W, then {ei ⊗ fj}(i,j)∈I×J is an
o.n.b. of V ⊗W,

If one of the Hilbert spaces V or W is finite dimensional, then V al⊗W =
V ⊗W.

5.4 Tensor product of operators

Let V1,V2,W1,W2 be vector spaces. If a ∈ L(V1,V2) and b ∈ L(W1,W2), then

there exists a unique operator a⊗ b ∈ L(V1
al⊗W1,V2

al⊗W2) such that on simple
tensors we have

(a⊗ b)(y ⊗ w) = (ay)⊗ (bw). (5.10)

To see this it is enough to choose bases (ei)i∈I in V1 and (fj)j∈J in W1 and to
define a⊗ b on the basis (ei ⊗ fj)(i,j)∈I×J by

(a⊗ b)ei ⊗ fj := (aei)⊗ (bfj). (5.11)

Then we check that thus defined operator satisfies (5.10) and is unique. It is
called the tensor product of a and b.

If V1,V2,W1,W2 are Hilbert spaces and a ∈ B(V1,V2), b ∈ B(W1,W2), then
a⊗ b is bounded. It extends uniquely to an operator in B(V1 ⊗W1,V2 ⊗W2),
denoted by the same symbol.
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To prove the boundedness of a⊗ b = a⊗ 1l 1l⊗ b, it is sufficient to consider
the operator a ⊗ 1l from V1

al⊗W to V2
al⊗W. Let e1, e2, . . . and f1, f2 . . . be

orthonormal bases in V1, W resp. Consider a vector
∑
cijei ⊗ fj .∥∥∥a⊗ 1l

∑
i

cijei ⊗ fj
∥∥∥2

=
∑
j

∥∥∥∑
i

cijaei

∥∥∥2

≤
∑
j

‖a‖2
∥∥∥∑

i

cijei

∥∥∥2

≤
∑
j

‖a‖2
∑
i

|cij |2

= ‖a‖2
∥∥∥∑

ij

cijei ⊗ fj
∥∥∥2

.

5.5 Infinite tensor product of grounded Hilbert spaces

A pair (H,Ω) consisting of a Hilbert space and a vector Ω ∈ H of norm 1 is
called a grounded Hilbert space. Let (H1,Ω1), (H2,Ω2), . . . be a sequence of
grounded Hilbert spaces. We introduce an isometric identification

n
⊗
i=1
Hi 3 Ψ 7→ Ψ⊗ Ωn+1 ∈

n+1
⊗
i=1
Hi.

We define

∞
⊗
i=1

(Hi,Ωi) :=

( ∞⋃
n=1

n
⊗
i=1
Hi

)cpl

. (5.12)

The image of Ψ ∈ Hn will be denoted by

Ψ⊗
∞
⊗

j=n+1
Ωj .

Choose an o.n. basis {eij}j∈Ji in each Hi such that ei1 = Ωi. Then the
vectors

e1j1 ⊗ e2j2 ⊗ · · · , ji ∈ Ji, (5.13)

where only for a finite number of i ∈ N we have ji 6= 1, form an o.n. basis of
(5.12).

Theorem 5.2. Let Φi ∈ Hi, i = 1, 2, . . . . Suppose that for some N

lim
n→∞

n∏
i=N

(Ωi|Φi) (5.14)

exists and is nonzero. Then in (5.12) there exists the limit of

Ψn :=
n
⊗
i=1

Φi ⊗
∞
⊗

j=n+1
Ωj (5.15)
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Proof. First note that

lim
m→∞

∣∣∣ sup
n>m

n∏
i=m+1

(Ωi|Φi)− 1
∣∣∣ = 0. (5.16)

Then we compute that for m < n

‖Ψn −Ψm‖2 = 2− 2Re

n∏
i=m+1

(Φj |Ω).

By (5.16), Ψn is Cauchy. Besides, it belongs to ⊗ni=1Hi. Hence it possesses a
limit in (5.12). 2

limn→∞Ψn will be denoted by

∞
⊗
i=1

Φi.

5.6 UHF algebras

Let n1, n2, . . . be positive integers. Set Hj := Cnj . We introduce the identifi-
cations

B(H1 ⊗ · · · ⊗ Hk) 3 A 7→ A⊗ 1lHk+1
∈ B(H1 ⊗ · · · ⊗ Hk+1).

Define

UHF0 = UHF0(n1, n2, . . . ) :=

∞⋃
k=1

B(H1 ⊗ · · · ⊗ Hk), (5.17)

UHF = UHF(n1, n2, . . . ) := UHF0(n1, n2, . . . )
cpl. (5.18)

The image of A ∈ B(H1⊗· · ·⊗Hk) in UHF will be denoted A⊗
∞
⊗

j=k+1
1lj . Note

that B(Hj) can be considered to be commuting subalgebras of UHF(n1, n2, · · · ):

B(Hj) 3 B 7→
k−1
⊗
j=1

1lj ⊗B ⊗
∞
⊗

j=k+1
1lj ∈ UHF. (5.19)

Let p1, p2, . . . be prime numbers in the ascending order. Let α1, α2, · · · ∈
{0, 1, 2, . . . ,∞}. The expression of the form

pα1
1 pα2

2 · · ·

will be called a supernatural number. Note that the usual natural numbers are
contained in the set of supernatural numbers. We can multiply supernatural
numbers in the obvious way.

Let pα1
1 pα2

2 · · · be a supernatural number. We define Qn to be the set of
rational numbers of the form q

p
k1
1 p

k2
2 ···

where kj ≤ αj . Note that Qn is an

abelian subgroup of Q.
We say that a positive linear functional on a C∗-algebra A is a trace iff

τ(AB) = τ(BA).
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Theorem 5.3. (1) Let (n1, n2, . . . ) and (n′1, n
′
2, . . . ) be two sequences of inte-

gers. Then UHF(n1, n2, . . . ) is isomorphic to UHF(n′1, n
′
2, . . . ) iff we have

the equality of supernatural numbers

n1n2 · · · = n′1n
′
2 · · ·

Therefore, we will write UHF(n) with n := n1n2 · · · instead of UHF(n1, n2, · · · ).

(2) On UHF(n) there exists a unique tracial state τ .

(3) {τ(P ) : P ∈ Proj(UHF(n))} = Qn ∩ [0, 1].

(4) P1, P2 ∈ UHF(n) are unitarily equivalent iff τ(P1) = τ(P2).

(5) UHF(n) is a simple C∗algebra.

Lemma 5.4. Let A be a C∗-algebra and A = A∗ ∈ A and ‖A − A2‖ ≤ ε < 1
4 .

Then there exists a function f continuous on σ(A) such that f(A) is a projection
and

‖A− f(A)‖ ≤ 1−
√

1− 4ε

2
.

Proof. |x(1 − x)| =
∣∣ 1

4 − ( 1
2 − x)2

∣∣ ≤ ε implies, for ε < 1
4

1−
√

1+4ε
2 ≤ x ≤

1−
√

1−4ε
2 < 1

2 or 1
2 <

1+
√

1−4ε
2 ≤ x ≤ 1+

√
1+4ε
2 . Hence f(x) :=

{
0, x < 1

2 ,
1, x > 1

2 .
is

continuous on σ(A). Clearly, |x− f(z)| < 1−
√

1−4ε
2 on σ(A). 2

Proof of Thm 5.3. (1) We inductively define a ∗-homomorphism of

ρn : B(H1)⊗ · · · ⊗B(Hn)→ B(H′1)⊗ · · · ⊗B(H′Nn) (5.20)

for Nn big enough, such that ρn+1 extends ρn. Thus we construct a *isomor-
phism ρ : UHF0(n1, n2, . . . ) → UHF0(n′1, n

′
2, . . . ). Clearly, it extends to a

∗-isomorphism ρ : UHF (n1, n2, . . . )→ UHF (n′1, n
′
2, . . . ).

(2) On B(Hi ⊗ · · · ⊗Hk) there exists a unique tracial state τ(·) = 1
n1···nkTr.

It can be extended to a tracial state on UHF(n1, n2, . . . ).
(3) It is easy to see that {τ(P ) : P ∈ Proj(UHF0(n))} = Qn ∩ [0, 1].
Let P ∈ Proj(UHF(n1, n2, . . . )) and 1

4 > ε > 0. There existsA ∈ UHF0(n1, n2, . . . )
such that ‖P −A‖ < ε. We have

‖P − 2−1(A+A∗)‖ ≤ 1

2
‖P −A‖+

1

2
‖P −A∗‖ < ε.

Hence, we can assume that A is self-adjoint. By Lemma 5.4, there exists Q =

f(A) – a projection in UHF0(n1, n2, . . . ) – such that ‖A − Q‖ < (1−
√

1−4ε)
2 .

Hence, ‖P −Q‖ < ε+ (1−
√

1−4ε)
2 < 1. Therefore, there exists a unitary U such

that Q = UPU∗. Therefore, τ(Q) = τ(P ).
(4)⇒ is obvious. ⇐ is obvious on UHF0(n). Using (3) this extends to

UHF (n). 2
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5.7 States and representation on UHF(n)

If ωi is a state on Cni , then on UHF(n1n2 · · · ) we can define the state

ω :=
∞
⊗
j=1

ωj . (5.21)

Theorem 5.5. (1) (5.21) is a pure state iff ωj is pure.

(2) Suppose ωj are pure and given by |Ωj)(Ωj | for normalized vectors Ωj ∈
Hj. Then the GNS representation for ω is is unitarily equivalent to the

representation in
∞
⊗
j=1

(Hj ,Ωj) such that An ∈ B(Hn) ⊂ UHF(n1n2 · · · ) is

represented as

πω(An) =
n−1
⊗
i=1

1lHi ⊗An ⊗
∞
⊗
j=1

1lHj .

(3) Let Φ1,Φ2, . . . , define a state φ. Then ω is unitarily equivalent to φ iff the
product

∏∞
j=1(Ωj |Φj) is convergent.

Theorem 5.6. (1) (5.21) is always factorial.

(2) Let γ1, γ2, . . . be nondegenerate density matrices on Hj and let ωi be the
corresponding states on B(Hj). Let ω be the corresponding state on UHF(n1n2 · · · ).
Then the GNS representation for ω is unitarily equivalent to the represen-
tation in the space

∞
⊗
j=1

(B2(Hj),
√
γj)

such that An ∈ B(Hn) ⊂ UHF(n1n2 · · · ) is represented as the multiplica-
tion on the left by

π(An) =
n−1
⊗
i=1

1lHi ⊗An ⊗
∞
⊗

j=n+1
1lHj .

(3) Let and γ′1, γ
′
2, . . . be another sequence of density matrices with ω′1, ω

′
2, . . .

the corresponding states on B(H1), B(H2), . . . . Let ω′ be the corresponding
state on UHF(n1n2 · · · ). Then the corresponding GNS representations are

quasiequivalent iff
∏∞
j=1 Tr

√
γj
√
γ′j is convergent.

5.8 Hyperfinite factors

Let ω be a state as in (5.21). Introduce the hyperfinite W ∗-algebra

HF(ω) := πω(UHF(n))′′.

Clearly, the state (Ω| · Ω) on HF(ω) is a normal state on HF(ω) such that
(Ω|πω(A)Ω) = ω(A). We will denote it also by ω.

Clearly,
n
⊗
j=1

B2(Hj) ' B2

(
n
⊗
j=1
Hj
)

sits inside HF(ω). On B2

(
n
⊗
j=1
Hj
)

the

modular conjugation is just the hermitian conjugation and the natural cone is
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Theorem 5.7. Let τω be the modular dynamics corresponding to ω. Then τ tω
is inner iff

∞∏
j=1

Tr(ωj |ωit) (5.22)

is convergent. If this is the case, then τ tω is implemented by
∞
⊗
j=1

ωit
j .

For example, consider n = 2∞ and

ωj = (ehj + e−hj )

[
ehj 0
0 e−hj

]
.

Then (5.22) equals

∞∏
j=1

(e−hj + ehj )−1(e−hj−ihjt + ehj+ihjt).
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6 Second quantization

6.1 Fock spaces

Let Y be a vector space. Let Sn denote the permutation group of n elements

and σ ∈ Sn. Θ(σ) is defined as the unique operator in L(
al⊗
n
Y) such that

Θ(σ)y1 ⊗ · · · ⊗ yn = yσ−1(1) ⊗ · · · ⊗ yσ−1(n). (6.1)

To see that Θ(σ) is well defined we first choose a basis {ei}i∈I of Y. Then

we define Θ(σ) on the corresponding basis of
al⊗
n
Y:

Θ(σ)ei1 ⊗ · · · ⊗ ein = eiσ−1(1)
⊗ · · · ⊗ eiσ−1(n)

.

Then we extend by linearity Θ(σ) to the whole
al⊗
n
Y. It is easy to see that the

operator defined in this way satisfies (6.1).
We can check that

Sn 3 σ 7→ Θ(σ) ∈ L(
al⊗
n
Y) (6.2)

is a group representation.

We say that a tensor Ψ ∈ al⊗
n
Y is symmetric, resp. antisymmetric if

Θ(σ)Ψ = Ψ, (6.3)

resp. Θ(σ)Ψ = sgn(σ)Ψ. (6.4)

We define the symmetrization/antisymmetrization projections

Θn
s :=

1

n!

∑
σ∈Sn

Θ(σ), Θn
a :=

1

n!

∑
σ∈Sn

sgnσΘ(σ).

They project onto symmetric/antisymmetric tensors.
We will often write s/a to denote either s or a.
If Y is a Hilbert space, then Θ(σ) is unitary and Θn

s/a are orthogonal pro-
jections.

Let Y be a vector space. The algebraic n-particle bosonic/fermionic space is
defined as

al⊗
n

s/aY := Θn
s/a

al⊗
n
Y.

The algebraic bosonic/fermionic Fock space or the symmetric/antisymmetric
tensor algebra is

al

Γs/a(Y) :=
∞
al⊕
n=0

al⊗
n

s/aY.

The vacuum vector is Ω := 1 ∈ ⊗0
s/aY = C.

If Y is a Hilbert space, then the n-particle bosonic/fermionic space is defined
as

⊗ns/aY := Θn
s/a ⊗

n Y.
The bosonic/fermionic Fock space is

Γs/a(Y) :=
∞
⊕
n=0
⊗ns/aY.
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6.2 Creation/annihilation operators

For z ∈ Y we define the creation operator

â∗(z)Ψ := Θn+1
s/a

√
n+ 1z ⊗Ψ, Ψ ∈ ⊗ns/aY,

and the annihilation operator â(z) := (â∗(z))
∗
. (We often omit the hat).

We will sometimes write (z| and |z) for the following operators

V 3 v 7→ (z|v := (z|v) ∈ C, (6.5)

C 3 λ 7→ λ|z) := λz ∈ V. (6.6)

Then on ⊗ns/aY we have

a∗(z) = Θn+1
s/a

√
n+ 1|z)⊗ 1ln⊗, (6.7)

a(z) =
√
n(z| ⊗ 1l(n−1)⊗. (6.8)

Above we used the compact notation for creation/annihilation operators pop-
ular among mathematicians. Physicists commonly prefer the traditional nota-
tion, which is longer and less canonical.

One version of the traditional notation uses a fixed basis {ei}i∈I of Z and
set a∗i := a∗(ei), ai := a(ei). Then if z =

∑
i ziei, we have

a∗(z) =
∑
i

zia
∗
i , a(z) =

∑
i

ziai, (6.9)

[ai, a
∗
j ]∓ = δij , [ai, aj ]∓ = 0. (6.10)

Alternatively, one often identifies Z with, say, L2(Rd,dξ). If z equals a
function Ξ 3 ξ 7→ z(ξ), then

a∗(z) =

∫
z(ξ)a∗ξdξ, a(z) =

∫
z(ξ)aξdξ.

Note that formally

[a(ξ), a∗(ξ′)]∓ = δ(ξ − ξ′), [a(ξ), a(ξ′)]∓ = 0. (6.11)

The space⊗ns/aZ can then be identified with the space of symmetric/antisymmetric

square integrable functions L2(Rnd), and then(
a(ξ)Φ

)
(ξ′1, . . . , ξ

′
n−1) =

√
nΦ(ξ, ξ′1, . . . , ξ

′
n−1). (6.12)

6.3 Integral kernel of an operator

Every linear operator A on Cn can be represented by a matrix [Aji ].
One would like to generalize this concept to infinite dimensional spaces (say,

Hilbert spaces) and continuous variables instead of a discrete variables i, j. Sup-
pose that a given vector space is represented, say, as L2(Rd), or more generally,
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L2(X) where X is a certain space with a measure. One often uses the represen-
tation of an operator A in terms of its integral kernel Rd×Rd 3 (x, y) 7→ A(x, y),
so that

AΨ(x) =

∫
A(x, y)Ψ(y)dy.

Note that strictly speaking A(·, ·) does not have to be a function. E.g. in the
case X = Rd it could be a distribution, hence one often says the distributional
kernel instead of the integral kernel. Sometimes A(·, ·) is ill-defined anyway. At
least formally, we have

AB(x, y) =

∫
A(x, z)B(z, y)dz,

A∗(x, y) = A(y, x).

Here is a situation where there is a good mathematical theory of inte-
gral/distributional kernels:

Theorem 6.1 (The Schwartz kernel theorem). B is a continuous linear trans-
formation from S(Rd) to S ′(Rd) iff there exists a distribution B(·, ·) ∈ S ′(Rd ⊕
Rd) such that

(Ψ|BΦ) =

∫
Ψ(x)B(x, y)Φ(y)dxdy, Ψ,Φ ∈ S(Rd).

Note that ⇐ is obvious. The distribution B(·, ·) ∈ S ′(Rd ⊕Rd) is called the
distributional kernel of the transformation B. All bounded operators on L2(Rd)
satisfy the Schwartz kernel theorem.

Examples:

(1) e−ixy is the kernel of the Fourier transformation

(2) δ(x− y) is the kernel of identity.

(3) ∂xδ(x− y) is the kernel of ∂x.

6.4 Second quantization of operators

For a contraction q on Z the operator q⊗n commutes with Θ(σ), σ ∈ Sn.
Therefore, it preserves ⊗ns/aZ. We define the operator Γ(q) on Γs/a(Z) by

Γ(q)
∣∣∣
⊗n

s/a
Z

= q ⊗ · · · ⊗ q
∣∣∣
⊗n

s/a
Z
.

Γ(q) is called the second quantization of q.
Similarly, for an operator h on Z the operator h⊗1(n−1)⊗+ · · ·+1(n−1)⊗⊗h

preserves ⊗ns/aZ. We define the operator dΓ(h) by

dΓ(h)
∣∣∣
⊗n

s/a
Z

= h⊗ 1(n−1)⊗ + · · ·+ 1(n−1)⊗ ⊗ h
∣∣∣
⊗n

s/a
Z
.
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dΓ(h) is called the (infinitesimal) second quantization of h.
Note the identities

Γ(eith) = eitdΓ(h), Γ(q)Γ(r) = Γ(qr), [dΓ(h),dΓ(k)] = dΓ([h, k]),

Γ(q)dΓ(h)Γ(q−1 = dΓ(qhq−1). (6.13)

Let {ei | i ∈ I} be an orthonormal basis of Z. Write âi := â(ei). Let h be
an operator on Z given by the matrix [hij ]. Then

dΓ(h) =
∑
ij

hij â
∗
i âj . (6.14)

Let us prove it in the bosonic case. Let Φ ∈ Γns (Z).

â∗i âjΦ = nΘn
s |ei)⊗ 1l(n−1)⊗(ej | ⊗ 1l(n−1)⊗Φ (6.15)

= nΘn
s |ei)(ej | ⊗ 1l(n−1)⊗Φ (6.16)

=
1

(n− 1)!

∑
σ∈Sn

Θ(σ)|ei)(ej | ⊗ 1l(n−1)⊗Θ(σ)−1Φ (6.17)

=

n∑
k=1

1l(k−1)⊗|ei)(ej | ⊗ 1l(n−k)⊗Φ. (6.18)

More generally, if the integral kernel of an operator h is h(x, y), then

dΓ(h) =

∫
h(x, y)â∗xâydxdy. (6.19)

For instance, if h is the multiplication operator by h(ξ), then dΓ(h) =
∫
h(ξ)â∗ξ âξdξ.

6.5 Symmetric/antisymmetric tensor product

Let Ψ ∈ ⊗ps/aZ, Φ ∈ ⊗qs/aZ. We set

Ψ⊗s/a Φ := Θp+q
s/a Ψ⊗ Φ. (6.20)

Note that
z ⊗ · · · ⊗ z = z ⊗s · · · ⊗s z. (6.21)

If there are n terms, it is often written as zn⊗. In the antisymmetric case one
usually prefers

Ψ ∧ Φ :=
(p+ q)!

p!q!
Ψ⊗a Φ. (6.22)

The operations ⊗s, ⊗a, ∧ are associative. We have

y1 ∧ · · · ∧ yn =
∑
σ∈Sn

sgn(σ)yσ(1) ⊗ · · · ⊗ yσ(n), (6.23)

y1 ⊗a · · · ⊗a yn =
1

n!

∑
σ∈Sn

sgn(σ)yσ(1) ⊗ · · · ⊗ yσ(n). (6.24)

55



Let {ei}i∈I be a linearly ordered orthonormal basis in Z. Then

√
n!ei1 ⊗a · · · ⊗a ein , i1 < · · · < in, (6.25)

forms an o.n.b of ⊗na (Z).

√
n!√

k1! · · · kn!
e⊗k1
i1
⊗s · · · ⊗s e

⊗km
im

, k1 + · · ·+ km = n, (6.26)

forms an o.n.b of ⊗ms (Z).
If dimZ = d, then

dim⊗ns Z =
(d+ n− 1)!

(d− 1)!n!
, dim⊗naZ =

d!

n!(d− n)!
. (6.27)

6.6 Exponential law

Let Z,W be Hilbert spaces. We can treat them as subspaces of Z ⊕W. Let
Φ ∈ ⊗ns/aZ, Ψ ∈ ⊗ms/aW. We can identify Φ⊗Ψ with

UΦ⊗Ψ :=

√
(n+m)!

n!m!
Φ⊗s/a Ψ ∈ ⊗n+m

s/a (Z ⊕W). (6.28)

Theorem 6.2. The map (6.28) extends to a unitary map

U : Γs/a(Z)⊗ Γs/a(W)→ Γs/a(Z ⊕W). (6.29)

It satisfies

UΩ⊗ Ω = Ω, (6.30)

dΓ(h⊕ g)U = U
(
dΓ(h)⊗ 1l + 1l⊗ dΓ(g)

)
, (6.31)

Γ(p⊕ q)U = UΓ(p)⊗ UΓ(q), (6.32)

a∗(z ⊕ w)U = U
(
a∗(z)⊗ 1l + 1l⊗ a∗(w)

)
, (6.33)

a(z ⊕ w)U = U
(
a(z)⊗ 1l + 1l⊗ a(w)

)
, in the bosonic case, (6.34)

a∗(z ⊕ w)U = U
(
a∗(z)⊗ 1l + (−1)N ⊗ a∗(z)

)
, (6.35)

a(z ⊕ w)U = U
(
a(z)⊗ 1l + (−1)N ⊗ a(z)

)
, in the fermionic case. (6.36)

Proof. Let us prove the unitarity of this map in the symmetric case:

Φ⊗s Ψ =
1

(n+m)!

∑
σ∈Sn+m

Θ(σ)Φ⊗Ψ (6.37)

=
n!m!

(n+m)!

∑
[σ]∈Sn+m/Sn×Sm

Θ(σ)Φ⊗Ψ. (6.38)
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The terms in the sum on the right are mutually orthogonal. The maps Θ(σ)

are unitary. The number of cosets in Sn+m/Sn × Sm is (n+m)!
n!m! . Therefore

(Φ⊗s Ψ|Φ′ ⊗s Ψ′) =
( n!m!

(n+m)!

)2 ∑
[σ]∈Sn+m/Sn×Sm

(
Θ(σ)Φ⊗Ψ|Θ(σ)Φ′ ⊗Ψ′

)
=

n!m!

(n+m)!
(Φ⊗Ψ|Φ′ ⊗Ψ′). (6.39)

2

6.7 Wick quantization

In this subsection we introduce the Wick quantization and Wick symbol. We
will do this using a fixed orthonormal basis of the one-particle Hilbert space
Z. (We could also use a continuus variable representation, e.g. L2(Rd), the
reader can easily figure it out). Later, at (6.47), we will give an equivalent,
more elegant but maybe less intuitive, basis-independent definition.

Let ei, i = 1, 2, . . . be an o.n. basis of Z. Let b ∈ B(⊗kZ,⊗mZ). It can
be written as

b =
∑

bim,...,i1;jk,...,j1 |eim ⊗ · · · ⊗ ei1)(ejk ⊗ · · · ⊗ ej1 |, (6.40)

where bim,...,i1;jk,...,j1 are complex numbers–matrix elements of the operator b.
We define the Wick quantization of b as an operator on Γfin

s/a(Z) defined by

b(â∗, â) :=
∑

bim,...,i1;jk,...,j1 â
∗
i1 · · · â

∗
im âjk · · · âj1 . (6.41)

Note that the notation b(â∗, â) suggests the the Wick quantization is “function
of â∗, â”, which in some sense is true. However, b(â∗, â) should be understood
as an “indivisible symbol”.

Note also that we inverted the order for creation operators in (6.41). This
is irrelevant for bosons, where the order does not matter—it is convenient for
fermions.

Note that a part of the information contained in b is irrelevant for b(â∗, â). In
fact, by the (anti-)commutation relations, b(â∗, â) depends only on Θm

s/abΘ
k
s/a.

Thus we have an alternative definition: if b̃ ∈ B(⊗ks/aZ,⊗
m
s/aZ) such that

b̃ =
∑

b̃im,...,i1;jk,...,j1 |eim ⊗ · · · ⊗ ei1)(ejk ⊗ · · · ⊗ ej1 |, (6.42)

then
b̃(â∗, â) :=

∑
b̃im,...,i1;jk,...,j1 â

∗
i1 · · · â

∗
im âjk · · · âj1 . (6.43)

Note that now the matrix elements of b̃ are automatically symmetric/antisymmetric
in the first m/last k indices
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With the operator b(â∗, â) we can associate the multilinear map

b(a∗, a) :=
∑

bim,...,i1;jk,...,j1a
∗
i1 · · · a

∗
imajk · · · aj1 , (6.44)

where a∗i , aj are treated as commuting/anticommuting (classical) variables. This
multilinear map b(a∗, a) is called the Wick symbol of the operator b(â∗, â). It
depends only on Θm

s/abΘ
k
s/a. In the bosonic case it is a usual polynomial in

the variables a∗, a. In the anticomuting case one also uses the term “polyno-
mial” (in anticommuting variables) for such multilinear maps and their linear
combinations.

It is not difficult to see that given an operator B, or actually a quadratic
form on Γfin

s/a(Z), there exist unique b̃m,k ∈ B(⊗ks/aZ,⊗
m
s/aZ), m, k = 0, ...∞

such that

B =

∞∑
m,k=0

b̃m,k(â∗, â). (6.45)

The polynomial
∞∑

m,k=0

b̃m,k(a∗, a). (6.46)

is called the Wick symbol of B.
Here is an equivalent definition of b(â∗, â) for b ∈ B(⊗kZ,⊗mZ). Its only

nonzero matrix elements are between Φ ∈ ⊗p+ms/a Z, Ψ ∈ ⊗p+ks/a Z, and equal

(Φ|b(â∗, â)Ψ) =

√
(m+ p)!(k + p)!

p!
(Φ|b⊗ 1⊗pZ Ψ). (6.47)

To see this we compute:(
Φ|â∗i1 · · · â

∗
im âjk · · · âj1Ψ

)
(6.48)

=
(
âim · · · âi1Φ|âjk · · · âj1Ψ

)
(6.49)

=
√

(m+ p) · · · (p+ 1)(k + p) · · · (p+ 1) (6.50)

×
(

(ei1 | ⊗ · · · ⊗ (eim | ⊗ 1l⊗pΦ
∣∣∣(ej1 | ⊗ · · · ⊗ (ejk | ⊗ 1l⊗pΨ

)
. (6.51)

6.8 Wick symbol and coherent states

In the bosonic case, we have the identities

e−â
∗(w)+â(w)â(v)eâ

∗(w)−â(w) = â(v) + (v|w), (6.52)

e−â
∗(w)+â(w)â∗(v)eâ

∗(w)−â(w) = â(v) + (v|w). (6.53)

We also introduce the coherent state corresponding to w ∈ Z:

Ωw := eâ
∗(w)−â(w)Ω. (6.54)
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Note that â(v)Ωw = (v|w)Ωw. If b ∈ B(Z⊗k,Z⊗m), then we have the identity

(Ωw|b(â∗, â)Ωz) =
(
w⊗m|bz⊗k

)
. (6.55)

Using the polynomial interpretation of b and treating w =
∑
i wiei, z =

∑
i ziei,

as classical variables and writing w∗i for the complex conjugate of wi, we can
rewrite (6.55) as

b(w∗, z). (6.56)

6.9 Particle number preserving operators

If m = k, then the operator b(â∗, â) preserves the number of particles and (6.47).
For Φ ∈ ⊗ns/aZ, Ψ ∈ ⊗ns/aZ it can be rewritten as

(Φ|b(â∗, â)Ψ) =
n!

(n−m)!
(Φ|b⊗ 1

⊗(n−m)
Z Ψ). (6.57)

But n!
(n−m)!m! is the number of m-element subsets of {1, 2, . . . , n}. Therefore in

the obvious notation, we can rewrite (6.57) as

1

m!
b(â∗, â) =

∑
1≤i1<···<im≤n

bi1,...,im . (6.58)

In particular, for m = 2 we can write

1

2
b(â∗, â) =

∑
1≤i<j≤n

bij . (6.59)

Finally, for m = 1, on ⊗ns/aZ we have

b(â∗, â) =
∑

1≤i≤n

bi = dΓ(b). (6.60)

Set

b̃ :=
1

m!

∑
σ∈Sm

Θ(σ)bΘ(σ−1). (6.61)

We have
Θ(σ)b̃ = b̃Θ(σ). (6.62)

In fact, (6.62) equals sgn(σ)b̃. Moreover,

Θm
s/ab̃Θ

m
s/a = Θm

s/abΘ
m
s/a. (6.63)

Therefore, when considering Wick polynomials in the number preserving case
we can always assume (6.62).
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6.10 Examples

Consider the Schrödinger Hamiltonian of n identical particles on L2(RdN )

Hn = −
n∑
i=1

∆i +
∑

1≤i<j≤n

V (xi − xj), (6.64)

Pn =

n∑
i=1

1

i
∂xi , (6.65)

In the momentum representation

Hn =

n∑
i=1

p2
i

+(2π)−d
∑

1≤i<j≤N

δ(p′i + p′j − pj − pi)V̂ (p′i − pi).

Pn =

n∑
i=1

pi.

Consider the 2nd quantization of L2(Rd). We have the position representa-
tion, with the generic variables x, y and the momentum representation with the
generic variables k, k′. We can pass from one representation to the other by

a∗(k) = (2π)−
d
2

∫
a∗(x)e−ikxdx, a∗(x) = (2π)−

d
2

∫
a∗(k)eikxdk, (6.66)

a(k) = (2π)−
d
2

∫
a(x)eikxdx, a(x) = (2π)−

d
2

∫
a(k)e−ikxdk. (6.67)

In the 2nd quantized notation we can rewrite all this as

H :=
∞
⊕
n=0

Hn = −
∫
a∗x∆xaxdx (6.68)

+
1

2

∫ ∫
dxdyV (x− y)a∗xa

∗
yayax

=

∫
p2a∗papdp (6.69)

+
1

2
(2π)−d

∫ ∫ ∫
dpdqdkV̂ (k)a∗p+ka

∗
q−kaqap

P :=
∞
⊕
n=0

Pn =

∫
a∗x

1

i
∂xaxdx (6.70)

=

∫
pa∗papdp. (6.71)

Consider L2([0, L]d) ' L2
(

2π
L Zd

)
and its 2nd quantization. Again we use

x, y in the position representation with periodic boundary conditions and k, k′
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in the momentum representation. We can pass from one representation to the
other by

a∗(k) = L−
d
2

∫
a(x)e−ikxdx, a∗(x) = L−

d
2

∑
k

a(k)eikx, (6.72)

a(k) = L−
d
2

∫
a(x)eikxdx, a(x) = L−

d
2

∑
k

a(k)e−ikx. (6.73)

Here are the analogs of (6.69) and (6.71):

H =
∑
p

p2a∗pap

+
1

2Ld

∑
p

∑
q

∑
k

V̂ (k)a∗p+ka
∗
q−kaqap,

P =
∑
p

pa∗pap.

6.11 Problems

Problem 6.3. On C2 consider h =

[
h1 0
0 h2

]
Find the spectrum of dΓ(h)

1. in the bosonic case, that is, on Γs(C2);

2. in the fermionic case, that is, on Γa(C2).

Problem 6.4. Find the spectrum of H = a∗a+ λ
2a

2 + λ
2a
∗2.

Hint: For |λ| < 1 set

µ =
1

λ
(1−

√
1− λ2), b =

1√
1− µ2

(a+ µa∗), (6.74)

Then [b, b∗] = 1 and

H =
1

2
(a∗a+ aa∗ + λa2 + λa∗2)− 1

2

=
(1 + µ2)

2(1− µ2)
(b∗b+ bb∗)− 1

2

=
(1 + µ2)

(1− µ2)
b∗b+

µ2

1− µ2
.

Problem 6.5. Compute

Γ(q)a∗(z)Γ(q−1), Γ(q)a(z)Γ(q−1); (6.75)

[dΓ(h), a∗(z)], [dΓ(h), a(z)]. (6.76)

61



Answers

a∗(qz), a(q∗−1z), (6.77)

a∗(hz), − a(h∗z). (6.78)

In the next two problem we consider the Fock space Γs(C).

Problem 6.6. Compute

etâ
∗ââ∗e−tâ

∗â, etâ
∗âae−tâ

∗â, (6.79)

e
t
2 (â∗−â2)a∗e

t
2 (−â∗+â2), e

t
2 (â∗−â2)ae

t
2 (−â∗+â2). (6.80)

Answers

etâ∗, e−tâ, (6.81)

−â sinh t+ â∗ cosh t â cosh t− a∗ sinh t. (6.82)

Problem 6.7. Find the Wick symbols of

1. (â∗ + â)3;

2. â2â∗2;

3. e(tâ∗−tâ);

4. etâ
∗â = Γ(et);

5. e
t
2 (â∗2−â2).

Answers:

1. â∗3 + 3â∗2â+ 3â∗â2 + â3 + 3â∗ + 3â;

2. â∗2a2 + 4â∗â+ 2;

3. etâ
∗
e−
|t|2
2 e−tâ,

4. eâ
∗(et−1)â,

5. e
tanh t

2 â∗2e
− ln cosh t

2 eâ
∗( 1

cosh t−1)âe
− tanh t

2 â2

7 Slater determinants and the Hartree-Fock method

7.1 Fermionic Fock space

Let W be a Hilbert space. We consider the fermionic Fock space Γa(W). Sup-
pose that e1, e2, . . . is an o.n. basis of W. We use two conventions:

ai := a(ei), a∗i := a∗(ei).
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Then
[ai, aj ]+ = 0, [ai, a

∗
j ]+ = δi,j , aiΩ = 0. (7.83)

Alternatively, we use creation/annihilation operators parametrized with w =∑
wiei ∈ W writing

a(w) =
∑

wiai, a∗(w) =
∑

wia
∗
i ,

We can write

[a(w), a(w′)]+ = 0, [a(w), a∗j (w
′)]+ = (w|w′), a(w)Ω = 0. (7.84)

7.2 Slater determinants

Let Z be a finite dimensional subspace of W. Without loss of generality we can
assume that it is spanned by e1, . . . , em. Then

a∗(em) · · · a∗(e1)Ω =
1√
m!

∑
σ∈Sm

sgnσeσ(m) ⊗ · · · ⊗ eσ(1) (7.85)

=
√
m!em ⊗a · · · ⊗a e1 =

1√
m!
em ∧ · · · ∧ e1 (7.86)

is a normalized vector. Such vectors are called Slater determinants. If f1, . . . , fm
is another basis of Z, so that ei =

∑
j cijfj , then

a∗(em) · · · a∗(e1)Ω = det[cij ]a
∗(fm) · · · a∗(f1)Ω.

Let π denote the orthogonal projection on the space Z. Note that the state

ωπ(A) :=
(
a∗(em) · · · a∗(e1)Ω|Aa∗(em) · · · a∗(e1)Ω

)
(7.87)

depends only on the space Z (or equivalently on π).
Suppose now that ej , j = 1, 2, . . . is an o.n. basis of W. Then the vectors

a∗im · · · a
∗
i1

Ω, i1 < · · · < im form an orthonormal basis of ⊗ma W.

7.3 Changing the vacuum

Let us introduce a new notation for the old creation/annihilation operators. Set

ãi :=

{
a∗i i ≤ m,
aj j > m;

ã∗i :=

{
ai i ≤ m,
a∗j j > m.

.

Then ãi, ã
∗
i , i = 1, . . . satisfy the usual anticommutation relations

[ãi, ãj ]+ = 0, [ãi, ã
∗
j ]+ = δi,j , ãiΩ = 0. (7.88)

with the vacuum Ω̃ := a∗m · · · a∗1Ω:

ãiΩ̃ = 0. (7.89)
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Let us introduce the complex conjugation on the space Z:

Z 3 w =
∑

wnen 7→ w :=
∑

wiei ∈ Z.

Then we can set

ã(w) :=

n∑
i=1

ãiwi +

∞∑
j=n+1

wj ãj , (7.90)

ã∗(w) :=

n∑
i=1

ã∗iwi +

∞∑
j=n+1

wj ã
∗
j . (7.91)

Written more compactly, and denoting the complex conjugation by Cw = w, we
can write this as

ã(w) = a∗(Cπw) + a
(
(1l− π)w

)
, ã∗(w) = a(Cπw) + a∗

(
(1l− π)w

)
. (7.92)

Then ã(w), ã∗(w) satisfy the usual commutation relations with vacuum Ω̃

[ã(w), ã(w′)]+ = 0, [ã(w), ã∗j (w
′)]+ = (w|w′), ã(w)Ω̃ = 0. (7.93)

Thus in the new representation the 1-particle space is CπW⊕ (1l−π)W and
not W.

We can implement this change (up to the sign for odd dimZ) by the unitary
transformation U : Γa(W)→ Γa

(
CπW ⊕ (1l− π)W

)
defined by

U :=

m∏
i=1

(−ai + a∗i ). (7.94)

In fact,

Ua∗iU
∗ = (−1)mãi, (7.95)

Ua∗iU
∗ = (−1)mã∗i , (7.96)

UΩ = Ω̃. (7.97)

In fact

(−a+ a∗)a(−a+ a∗)∗ = −a∗aa∗ = −a∗(aa∗ + a∗a) = −a∗, (7.98)

(−a+ a∗)a∗(−a+ a∗)∗ = −aa∗a = −a(aa∗ + a∗a) = −a. (7.99)

In this construction Z is often called the space of antiparticles.
The operators ãi, ã

∗
i for i = 1, . . . ,m are often denoted by a different letter,

say, bi, b
∗
i .
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7.4 Free fermionic Hamiltonians

Consider H = dΓ(h), where h is a self-adjoint operator on W. For simplicity,
assume that H has discrete spectrum and is bounded from below. We can
diagonalize h in an o. n. basis e1, e2, . . . , so that

h =
∑
i

λi|ei)(ei|,

where λi i = 1, 2, . . . is an increasing sequence.
It is easy to see that dΓ(h) possesses a unique ground state iff 0 6∈ σ(h).

Indeed, let λ1 ≤ λ2 ≤ · · · ≤ λm < 0 < λm+1 ≤ . . . . Then the ground state of
dΓ(h) is given by

Φ := a∗m · · · a∗1Ω,

so that
HΦ = EΦ, E = λ1 + · · ·+ λm.

Setting bi := a∗i , b
∗
i := ai for i ≤ m, the Hamiltonian H can be rewritten as

H =
∑
i

λia
∗
i ai =

∑
i≤m

|λi|b∗i bi +
∑
i>m

λia
∗
i ai + E.

The constant E is usually dropped and we use the renormalized Hamiltonian

Hren =
∑
i≤m

|λi|b∗i bi +
∑
i>m

λia
∗
i ai.

Example 7.1. Consider the free Fermi gas with the chemical potential µ in
volume L.

H =
∑

k∈ 2π
L Zd

(k2 − µ)a∗kak.

The ground state is called the “Fermi sea”:
∏
k2<µ a

∗
kΩ. It has the energy

E =
∑
k2<µ

(k2 − µ).

The renormalized Hamiltonian is

Hren =
∑
k2<µ

|k2 − µ|b∗kbk +
∑
k2≥µ

|k2 − µ|a∗kak.

7.5 CAR algebra

Consider symbols ai, a
∗
i , i = 1, . . . , n. We can form the ∗-algebra spanned by

monomials
a?
j1 · · · a

?
jk

(7.100)

where ? is either empty or ∗. The product is the concatenation, the involution
is putting ∗, where a∗∗i = ai, and reversing the order.
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Next we impose the relations

[ai, aj ]+ = 0, [ai, a
∗
j ]+ = δi,j , i, j = 1, . . . , n. (7.101)

We obtain a ∗-algebra, which we denote CAR(Cn).

Theorem 7.2. The ∗-algebra CAR(Cn) is ∗-isomorphic to B(⊗2C2). More
precisely, if we identify

Γa(Cn) '
n
⊗
j=1

Γa(Cej) ' ⊗nC2, (7.102)

then aj , a
∗
j are given by the usual annihilation/creation operators.

Note that the above ∗-isomorphism endows CAR(Cn) with a norm which
satisfies all axioms of a C∗-algebra. Therefore, CAR(Cn) becomes a C∗-algebra.

We have the embedding

CAR(Cn) ' B(⊗nC2) 3 A 7→ A⊗ 1lC2 ∈ B(⊗n+1C2) ' CAR(Cn+1). (7.103)

Consider a Hilbert space W, possibly infinite dimensional. Let a(w), a∗(w)
be symbols satisfying

[a(w), a(w′)]+ = 0, [a(w), a∗j (w
′)]+ = (w|w′). (7.104)

Let CAR0(W) denote the ∗-algebra generated by these symbols, as above.
Clearly, for any finite dimensional Z ⊂ W of dimension n, CAR(Z) is iso-
morphic to B(⊗nC2). Thus CAR0(W) is endowed by a unique norm. Let
CAR(W) := CAR0(W)cpl.

If we fix an o.n. basis e1, e2, . . . ofW, and we identify Cn with Span(e1, . . . en),
then

∞⋃
j=1

CAR(Cn) '
∞⋃
j=1

B(⊗nC2) (7.105)

is dense in CAR0(W). Now (7.105) is UHF0(2∞), whose completion is UHF(2∞).
Hence

CAR(W) ' UHF(2∞). (7.106)

The ∗-algebra CAR(W) has an obvious representation on Γa(W). We will
denote this representation by ρ, so that

ρ(a(w)) = a(w), ρ(a∗(w)) = a∗(w), (7.107)

where on the left we have “abstract symbols”, and on the right “concrete opera-
tors in B(Γa(W))”. We will see that often other representations are preferable.
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7.6 Antiparticles of any dimension

Now let Z is a closed subspace of W of any dimension. Let π be the projection
onto Z. We choose an antiunitary involution Z 3 z 7→ Cz ∈ Z called “charge
conjugation”. Then we set

ρ̃
(
a(w)

)
: = a∗

(
Cπw

)
+ a
(
1l− π)w

)
∈ B(Γa(CZ ⊕ Z⊥), (7.108)

ρ̃
(
a∗(w)

)
: = a

(
Cπw

)
+ a∗

(
1l− π)w

)
∈ B(Γa(CZ ⊕ Z⊥) (7.109)

satisfy the usual anticommutation relations. Therefore, they extend to a ∗-
representation

ρ̃ : CAR(W)→ B(Γa(CZ ⊕ Z⊥) (7.110)

If Z is infinite dimensional, there is no unitary operator U that intertwines
the two kinds of representations of CAR. More precisely, if U : Γa(W) →
Γa(CZ ⊕ Z⊥) and

Uρ(A) = ρ̃(A)U, A ∈ CAR(W), (7.111)

then U = 0.
In particular, there exists no vector killed by ρ̃(a(w)).

7.7 Fermionic positive energy quantization

Seppose now that h is a self-adjoint operator onW. Then on CAR(W) we have
a 1-parameter ∗-automorphism group given by

αt(a(w)) := a(e−ithw), αt(a
∗(w)) := a∗(e−ithw), w ∈ W. (7.112)

In the basic representation

ρ : CAR(W)→ Γa(W) (7.113)

we have for H := dΓ(h)

ρ
(
αt(A)

)
= eitHρ(A)e−itH . (7.114)

Unfortunately, if h is not positive, then neither isH and one can argue that H
is not physical.

Assume for simplicity that 1l0(h) = 0. Set Λ± := 1l[0,∞[(±h). Choose a
conjugation C on Λ−W. Then we can change the representation to Γa(CΛ−W⊕
Λ+W). The new renormalized Hamiltonian is

H̃ := dΓ(−CΛ−hC ⊕ Λ+h), (7.115)

which is positive. We have

ρ̃
(
αt(A)

)
= e−itH̃ ρ̃(A)eitH̃ . (7.116)
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Example 7.3. In infinite volume the Hamiltonian of free Fermi gas is

H =

∫
(k2 − µ)a∗kakdk.

E is infinite and the Slater determinant is ill defined. However, we can change
the representation of CAR replacing H with

Hren =

∫
k2<µ

|k2 − µ|b∗kbkdk +

∫
k2≥µ

|k2 − µ|a∗kakdk.

Example 7.4. Consider the Dirac Hamiltonian

h := ~α~p+ βm+ V (x).

It is a self-adjoint operator on L2(R3⊗C4) The naive quantization of h, that is
dΓ(h), acts on the space Γa

(
L2(R3⊗C4)

)
. It is however physically meaningless—

it yields an operator unbounded from below. Formally, the ground state of dΓ(h)
is the Slater determinant with all negative energy states present. This state is
called the Dirac sea.

In practice, we change the representation of CAR. Set

Λ± := 1l[0,∞[(±h).

The physical one particle space is

CΛ−L2(R3 ⊗ C4)⊕ Λ+L2(R3 ⊗ C4),

where C is an antilinear map, usually the charge conjugation.

7.8 Expectation values of Slater determinants

Theorem 7.5. Let b be an operator on ⊗mW. Let π be an orthogonal projection
onto a subspace of W and ωπ the corresponding Slater determinant state. Then

ωπ
(
b(a∗, a)

)
=
∑
σ∈Sm

Tr b π⊗m Θ(σ)sgn(σ).

Proof. It is enough to check this assuming that

b = |ei1 ⊗ · · · ⊗ eim)(ej1 ⊗ · · · ⊗ ejm |,

corresponding to
b(a∗, a) = a∗i1 · · · a

∗
imajm · · · aj1 .

Now

ωπ
(
b(a∗, a)

)
(7.117)

=(a∗1 · · · a∗nΩ|a∗i1 · · · a
∗
imajm · · · aj1 a

∗
1 · · · a∗nΩ) (7.118)
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is nonzero only if i1, . . . , im are distinct,

{i1, . . . , im} = {j1, . . . , jm} ⊂ {1, . . . , n}.

Then it is sgnσ, where σ is the unique permutation that maps {j1, . . . , jm} onto
{i1, . . . , im}. Clearly,

Θ(σ)ej1 ⊗ · · · ⊗ ejm = ei1 ⊗ · · · ⊗ eim . (7.119)

Thus (7.118) is

sgn(σ)Trπ⊗m|ei1 ⊗ · · · ⊗ eim)(ejm ⊗ · · · ⊗ ej1 |Θ(σ). (7.120)

2

In particular, we have the cases n = 1, 2:

ωπ
(
dΓ(h)

)
= Trπh, (7.121)

ωπ
(
b(a∗, a)

)
= Tr b π⊗π(1l− τ), (7.122)

where τ : W ⊗W → W ⊗W is the transposition of the factors in the tensor
product.

7.9 The Hartree-Fock method

Let h be a self-adjoint operator onW and b onW⊗W. We assume that τbτ = b.
Consider the particle number preserving operator

H = dΓ(h) +
1

2
b(a∗, a) (7.123)

=
∑

hija
∗
i aj +

1

2

∑
bi2i1j2j1a

∗
i1a
∗
i2aj2aj1 , (7.124)

where in the second line we recall the standard definitions of Wick quantizations
using an arbitrary o.n. basis. We would like to find the ground state energy of
H in the n-body sector.

The Hartree-Fock functional is the expectation value of H in a Slater deter-
minant:

EHF(π) := ωπ(H) = Trhπ +
1

2
Tr b π⊗π (1l− τ) (7.125)∑

hijπji +
1

2

∑(
bi2i1j2j1πi2j2πi1j1 − bi2i1j2j1πi2j1πi1j2

)
. (7.126)

The ground state energy of H is clearly estimated from above by its Hartree-
Fock energy

EHF := inf{EHF(π) : π is an n-dimensional orthogonal projection}.
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If a minimizer of EHF exists, we denote it by πHF. We define the Hartree-Fock
Hamiltonian (called also the Fock Hamiltonian) by its expectation value in a
trace class matrix γ:

TrhHFγ := Trhγ + Tr b πHF⊗γ (1l− τ).

Notice the absence of 1
2 .

Theorem 7.6. πHF is a projection onto n lowest lying levels of hHF

Proof. Every orthogonal projection has the kernel

π(x, y) =

n∑
i=1

φi(x)φi(y),

where φ1, . . . , φn is an orthonormal basis of Ranπ. The Hartree-Fock functional
can be written as

EHF(π) =: E(φ1, . . . φn) =
∑
i

(φi|hφi)

+
1

2

∑
ij

(φi ⊗ φj |b φi ⊗ φj)−
1

2

∑
ij

(φi ⊗ φj |b φj ⊗ φi).

Using the method of Lagrange multipliers, EHF is given as the infimum of

EHF(φ1, . . . , φn)−
∑
ij

εij
(
(φi|φj)− δij

)
,

where we may assume that the matrix εij is Hermitian. Writing φi+δφi, εij+δεij
for the variations, we find

δEHF =
∑
i

(
φi|hHFδφi) +

(
δφi|hHFφi) (7.127)

−
∑
ij

εij(φi|δφj)−
∑
ij

εij(δφi|φj) (7.128)

+
∑
ij

δεij
(
(φi|φj)− δij

)
. (7.129)

Comparing the coefficients at δφi on the right of the scalar product and on the
left of the scalar product independently, we obtain

hHFφi =
∑
j

εijφj .

We can diagonalize the matrix [εij ] with a unitary transformation, so that εij =
δijεi, and we obtain

hHFφi = εiφi.
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Thus the minimizing sequence φ1, . . . , φn can consist of normalized eigenvectors
of hHF.

Now assume that there is an eigenvector of hHF, say ψ orthogonal to φ1, . . . φn
and with an eigenvalue β lower than one of the eigenvalues ε1, . . . , εn. For in-
stance,

hHFψ = βψ, β < ε1.

Then we can consider a variation φ1 + δφ1 :=
√

1− t2φ1 + tψ. This variation is
tangent to the constraints. Besides,

δEHF(φ1 + δφ1, φ2, . . . , φn)

=
δ2

δφ2
1

EHFδφ1δφ1 +
δ2

δφ
2

1

EHFδφ1δφ1 +
δ2

δφ1δφ1

EHFδφ1δφ1.

The first two terms are zero because of the operator 1l− τ . The second equals

−t2(φ1|hHFφ1) + t2(ψ|hHFψ) = t2(−ε1 + β),

hence is negative. 2

Note that the Hartree-Fock energy is in general not equal to the sum of the
lowest n eigenvalues of HHF.

7.10 Hartree-Fock method for atomic systems

Suppose now that V (x) = V (−x) and

H =−
∫
a∗x∆xaxdx+

∫
a∗xW (x)axdx (7.130)

+
1

2

∫ ∫
a∗xa
∗
yV (x− y)axaydxdy. (7.131)

Let π be an n-dimensional projection. We set

ρ(x) := π(x, x), ρHF(x) := πHF(x, x).

Then

EHF(π) =−
∫
δ(x− y)∆xπ(x, y)dxdy +

∫
δ(x− y)W (x)π(x, y)dxdy

+
1

2

∫
V (x− y)δ(x− x′)δ(y − y′)

(
π(x, x′)π(y, y′)− π(x, y′)π(y, x′)

)
dxdydx′dy′

=

∫
∂x∂yπ(x, y)

∣∣∣
x=y

dx+

∫
W (x)ρ(x)dx (7.132)

+
1

2

∫ ∫
V (x− y)ρ(x)ρ(y)dxdy − 1

2

∫ ∫
V (x− y)|π(x, y)|2dxdy,

HHF = −∆ +W (x) +

∫
ρHF(y)V (x− y)dy − Tex, (7.133)
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where Tex is a nonlocal operator with the kernel

Tex(x, y) = V (x− y)πHF(x, y).

Above we used the following identities involving integral kernels of operators
A,B on L2(Rd) and C,D on L2(Rd)⊗ L2(Rd) ' L2(Rd × Rd):

TrAB =

∫
A(x, y)B(y, x)dxdy, (7.134)

TrCD =

∫
C(x, y;x′y′)D(x′, y′;x, y)dxdydx′dy′. (7.135)

A semiclassical argument implies that the first term in (7.132), that is the
kinetic energy, can be approximated by

(2π)−d
d

d+ 2
c
−2/d
d

∫
ρ
d+2
d (x)dx, (7.136)

where cd is the volume of a unit ball in d dimensions. We also expect that
the last term, that is the exchange energy is relatively small. This leads to the
so-called Thomas-Fermi functional, which depends only on the density:

ETF(ρ) :=(2π)−d
d

d+ 2
c
−2/d
d

∫
ρ
d+2
d (x)dx

+

∫
W (x)ρ(x)dx+

1

2

∫ ∫
V (x− y)ρ(x)ρ(y)dxdy.

8 Squeezed states

8.1 1-mode squeezed vector

Consider Γs(C).

Theorem 8.1. Let |c| < 1. Then

Ωc := (1− |c|2)
1
4 e

c
2a
∗2

Ω

is a normalized vector satisfying

(a− ca∗)Ωc = 0. (8.137)

Proof. Expanding in power series and using the Lie identity we obtain(
e
c
2a
∗2

Ω|e c2a
∗2

Ω
)

=

∞∑
n=0

|c|2n(2n)!

(n!)222n

=

∞∑
n=0

(−1)n|c|2n(− 1
2 )(− 1

2 − 1) · · · (− 1
2 − n)

n!
=
(
1− |c|2

)− 1
2 ,

e
c
2a
∗2
ae−

c
2a
∗2

=a+
c

2
[a∗2, a] = a− ca∗,
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The first identity shows that Ωc is normalized. The second implies e−
c
2a
∗2

(a−
ca∗)e

c
2a
∗2

= a, which yields (8.137). 2

Theorem 8.2. Set
Ut := e

t
2 (−a∗2+a2).

Then

UtaU
−1
t = a cosh t+ a∗ sinh t, (8.138)

Uta
∗U−1

t = a∗ cosh t+ a sinh t, (8.139)

Ut =
1√

cosh t
e−

tanh t
2 a∗2Γ

( 1

cosh t

)
e

tanh t
2 a2

, (8.140)

Ωtanh t = UtΩ. (8.141)

Proof. We have

[−1

2
a∗2 + a2, a] = a∗, [−1

2
a∗2 + a2, a∗] = a. (8.142)

Hence
d

dt
UtaU

−1
t = Uta

∗U−t,
d

dt
UtaU

−1
t = Uta

∗U−t. (8.143)

This shows (8.138) and (8.139).
Using the identity concerning the derivative of Γ(eh) = eha

∗a contained in
(8.146), we next differentiate in t the right hand side of (8.140) obtaining

− sinh t

2 cosh t
Ut −

1

2 cosh2 t
a∗2Ut −

sinh t

cosh2 t
a∗Uta+

1

2 cosh2 t
Uta

2 (8.144)

=
(
− 1

2 cosh2 t
a∗2 +

1

2 cosh2 t
(cosh ta+ sinh ta∗)2

− sinh t

cosh2 t
a∗(cosh ta+ sinh ta∗)− sinh t

2 cosh t

)
Ut

=
1

2
(−a∗2 + a2)Ut =

d

dt
Ut. (8.145)

This shows (8.140). 2

Lemma 8.3. Let t 7→ h(t) be a complex function. Then

d

dt
eh(t)a∗a = ḣ(t)eh(t)a∗eh(t)a∗aa. (8.146)

Proof.

d

dt
eha
∗a = ḣeha

∗aa∗a

= ḣeha
∗aa∗e−ha

∗aeha
∗aa = ḣeha∗eha

∗aa, (8.147)

where we used eha
∗aa∗e−ha

∗a = eha∗. 2
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8.2 Many-mode squeezed vector

Suppose c is a symmetric complex matrix on Cn. One can show that then
there exists an orthonormal basis such that c is diagonal where all terms on the
diagonal are nonnegative. Therefore, we have the many-mode generalizations
of the results of the previous subsection to Γs(Cn):

Theorem 8.4. Let c be a symmetric n× n matrix such that ‖c‖ < 1. Then

Ωc := det(1− |c|2)
1
4 e

1
2 cija

∗
i a
∗
jΩ

is a normalized vector satisfying

(ai − cija∗j )Ωc = 0. (8.148)

where we write |c| :=
√
c∗c.

Theorem 8.5. Let θ be a symmetric n× n matrix. Set

Uθ := e
1
2 (−θija∗i a

∗
j+θijajai).

Then

UθaiU
−1
θ = (cosh |θ|)ijaj +

(
θ

sinh |θ|
|θ|

)
ij
a∗j , (8.149)

Uθa
∗
iU
−1
θ = (cosh |θ|)ija∗j +

(
θ

sinh |θ|
|θ|

)
ij
aj , (8.150)

Uθ =
1√

det cosh |θ|
e
−
(
θ

tanh |θ|
2|θ|

)
ij
a∗i a
∗
jΓ
( 1

cosh |θ|

)
e

(
θ

tanh |θ|
2|θ|

)
ij
ajai

,

(8.151)

UθΩ = Ω tanh |θ|
|θ| θ

. (8.152)

8.3 Single-mode gauge-invariant squeezed vector

Consider Γs(C2). The creation/annihilation of first mode are denoted a∗, a, of
the second b∗, b.

We assume that in our space there is a “charge operator”

Q := a∗a− b∗b,

and we are interested mostly in gauge invariant states, that is satisfying Q = 0.

Theorem 8.6. Let |c| < 1. Then

Ωc := (1− |c|2)
1
2 eca

∗b∗Ω

is a normalized vector satisfying

(a− cb∗)Ωc = 0, (8.153)

(b− ca∗)Ωc = 0. (8.154)
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Proof. (
eca
∗b∗Ω|eca

∗b∗Ω
)

=

∞∑
n=0

|c|2n(n!)2

(n!)2

=
(
1− |c|2

)−1
.

Using

e−ca
∗b∗aeca

∗b∗ =a− c[a∗b∗, a] = a+ cb∗,

we obtain (8.154). 2

Remark 8.7. Clearly,

eca
∗b∗ = exp

( c
4

(a∗ + b∗)2 − c

4
(a∗ − b∗)2

)
.

Hence a single mode gauge-invariant squeezed vector can be also understood as
a 2-mode squeezed state. However, it is often simple to deal with it directly.

Theorem 8.8. Set
U t := et(−a

∗b∗+ab).

Then

U taU−t = a cosh t+ b∗ sinh t, (8.155)

U ta∗U−t = a∗ cosh t+ b sinh t, (8.156)

U tbU−t = b cosh t+ a∗ sinh t, (8.157)

U tb∗U−t = b∗ cosh t+ a sinh t, (8.158)

U t =
1

cosh t
e− tanh ta∗b∗Γ

( 1

cosh t

)
etanh tba, (8.159)

Ω− tanh t = U tΩ. (8.160)

Proof. We compute

d

dt
U t = (−a∗b∗ + ba)U t

= − 1

cosh2 t
a∗b∗U t +

1

cosh2 t
U tba− sinh t

cosh2 t

(
a∗U ta+ b∗U tb

)
− sinh t

cosh t
U t.

9 Bose gas and superfluidity

n identical bosonic particles are described by the Hilbert space

Hn := L2
s

(
(Rd)n

)
= ⊗ns L2(Rd),
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the Schrödinger Hamiltonian

Hn = −
n∑
i=1

∆i + λ
∑

1≤i<j≤n

V (xi − xj)

and the momentum Pn := −
n∑
i=1

i∂xi . We have PnHn = HnPn, which expresses

the translational invariance of our system.
The potential V is a real function on Rd that decays at infinity and satisfies
V (x) = V (−x).

We enclose these particles in a box of size L with fixed density ρ := n
Ld

and
n large. Instead of the more physical Dirichlet boundary conditions, to keep
translational invariance we impose the periodic boundary conditions, replacing
the original V by the periodized potential

V L(x) :=
∑
n∈Zd

V (x+ Ln) =
1

Ld

∑
p∈(2π/L)Zd

eipxV̂ (p),

well defined on the torus [−L/2, L/2[d. (Note that above we used the Poisson
summation formula).

The original Hilbert space is replaced by

HLn := L2
s

((
[−L/2, L/2[d

)n)
= ⊗ns

(
L2([−L/2, L/2[d)

)
.

We have a new Hamiltonian

HL
n = −

n∑
i=1

∆L
i + λ

∑
1≤i<j≤n

V L(xi − xj)

and a new momentum PLn := −
n∑
i=1

i∂Lxi .

Because of the periodic boundary conditions we still have

PLnH
L
n = HL

nP
L
n .

In the sequel we drop the superscript L.
We use the second quantized formalism

H =
∞
⊕
n=0
Hn = Γs

(
L2[0, L]d

)
' Γs

(
l2
(2π

L
Zd
))
.
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The Hamiltonian and the momentum in second quantized notation are

H :=
∞
⊕
n=0

Hn = −
∫
a∗x∆xaxdx+

λ

2

∫ ∫
dxdya∗xa

∗
yV (x− y)ayax

=
∑
p

p2a∗pap +
λ

2Ld

∑
p,q,k

V̂ (k)a∗p+ka
∗
q−kaqap,

P :=
∞
⊕
n=0

Pn =

∫
a∗x

1

i
∂xaxdx

=
∑
p

pa∗pap.

9.1 Bogoliubov’s approximation in the canonical formal-
ism

We assume that the potential is repulsive, more precisely,

V̂ ≥ 0, V ≥ 0.

The Hamiltonian H commutes with N . We are interested in its low energy part
for large eigenvalues n of the number of particle operator N .

We expect that for low energies most particles will be spread evenly over
the whole box staying in the zeroth mode, so that N ' N0 := a∗0a0. (The Bose
statistics does not prohibit to occupy the same state). Following the arguments
of N. N. Bogoliubov from 1947, we drop all terms in the Hamiltonian involving
more than two creation/annihilation operators of a nonzero mode. We obtain

H ≈ λV̂ (0)

2Ld
a∗0a
∗
0a0a0 +

∑
k 6=0

(
k2 + a∗0a0

λ

Ld
(
V̂ (k) + V̂ (0)

))
a∗kak

+
∑
k 6=0

λ

2Ld
V̂ (k)

(
a∗0a
∗
0aka−k + a∗ka

∗
−ka0a0

)
=

λV̂ (0)ρ

2
(N − 1) +Hbg +R,

where we set

ρ =
N

Ld
,

Hbg :=
∑
k 6=0

(
k2 + λρV̂ (k)

)
a∗kak

+
1

2

∑
k 6=0

λρV̂ (k)
(
a∗ka
∗
−k + aka−k

)
,

R = −λV̂ (0)

2Ld
(N −N0)(N −N0 − 1)

+
∑
k 6=0

λ

2Ld
V̂ (k)

(
(a∗0a

∗
0 −N)aka−k + a∗ka

∗
−k(a0a0 −N)

)
.
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We used

a∗0a
∗
0a0a0 = N0(N0 − 1)

= N(N − 1)− 2N0(N −N0)− (N −N0)(N −N0 − 1).

We argue that R is small because

a∗0a
∗
0 ≈ a0a0 ≈ N0 ≈ N.

A Bogoliubov transformation, is a linear transformation of creation/annihilation
operators preserving the commutation relations. If we demand in addition that
it should commute with translations, it should have the form

ãp := cpap + spa
∗
−p, (9.161)

ã∗p := cpa
∗
p + spa−p, p 6= 0, (9.162)

where
c2p − s2

p = 1, p 6= 0.

We are looking for a Bogoliubov transformation that diagonalizes the quadratic
Hamiltonian Hbg:

Hbg = Ebg +
∑
p 6=0

ω(p)ã∗pãp,

Pbg =
∑
p 6=0

pã∗pãp,

This is realized by

cp :=

√
|p|2 + 2λρV̂ (p) + |p|

2
√
ω(p)

,

sp :=

√
|p|2 + 2λρV̂ (p)− |p|

2
√
ω(p)

,

ω(p) : = |p|
√
|p|2 + 2λρV̂ (p),

Ebg := −1

2

∑
p 6=0

(
|p|2 + λρV̂ (p)− |p|

√
|p|2 + 2λρV̂ (p)

)
.

ω(p) is called the Bogoliubov dispersion relation and Ebg the Bogoliubov energy.
Let us show some computations:

A(a∗kak + a∗−ka−k) +B(a∗ka
∗
−k + a−kak)

=(Ca∗k + Sa−k)(Cak + Sa∗−k) + (Ca∗k + Sa−k)(Cak + Sa∗−k)− 2S2,

where C :=
1

2
(
√
A+B +

√
A−B),

S :=
1

2
(
√
A+B −

√
A−B).
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To obtain ck, sk we divide C, S by the square root of

C2 − S2 =
√
A2 −B2.

Note that cp = coshβp, sp = sinhβp, where

tanh(βp) :=
|p|2 + λρV̂ (p)− |p|

√
|p|2 + 2λρV̂ (p)

λρV̂ (p)
,

Set

U = exp
(∑
p 6=0

βp
2

(
−a∗pa∗−p + apa−p

) )
.

Then U is unitary and

ãp = UapU
∗,

ã∗p = Ua∗pU
∗,

Hbg = Ebg + U
∑
p 6=0

ω(p)a∗papU
∗,

P = U
∑
p 6=0

pa∗papU
∗.

The ground state of the Bogoliubov Hamiltonian is a squeezed state in the
non-zero mode sector:

a∗n0√
n!
UΩ.

The Bogoliubov dispersion relation depends on λ and ρ only through λρ =
λn
Ld

.
The Bogoliubov Hamiltonian depends on L only through the choice of the

lattice spacing 2π
L .

We expect that the low energy part of the excitation spectra of Hn and Hbg

are close to one another for large n, hoping that then n−n0 is small. We expect
some kind of uniformity wrt L.

Note that formally we can even take the limit L→∞ obtaining

Hbg − Ebg = (2π)−d
∫
ω(p)ã∗pãpdp,

P = (2π)−d
∫
pã∗pãpdp.

9.2 Bogoliubov’s approximation in the grand-canonical ap-
proach

For a chemical potential µ > 0, we define the grand-canonical Hamiltonian

Hµ := H − µN =
∑
p

(p2 − µ)a∗pap

+
λ

2Ld

∑
p,q,k

V̂ (k)a∗p+ka
∗
q−kaqap.
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We will mostly set λ = 1.
If Eµ is the ground state energy of Hµ, then it is realized in the sector n

satisfying

∂µEµ = −n.

In what follows we drop the subscript µ.
For α ∈ C, we define the displacement or Weyl operator of the zeroth mode:

Wα := e−αa
∗
0+αa0 . Let Ωα := WαΩ be the corresponding coherent vector. Note

that PΩα = 0. The expectation of the Hamiltonian in Ωα is

(Ωα|HΩα) = −µ|α|2 +
V̂ (0)

2Ld
|α|4.

It is minimized for α = eiτ

√
Ldµ√
V̂ (0)

, where τ is an arbitrary phase.

We apply the Bogoliubov translation to the zero mode of H by W (α). This
means making the substitution

a0 = ã0 + α, a∗0 = ã∗0 + α,

ak = ãk, a∗k = ã∗k, k 6= 0.

Note that
ãk = W ∗αakWα, ã∗k = W ∗αa

∗
kWα,

and thus the operators with and without tildes satisfy the same commutation
relations. We drop the tildes.

Here is the translated Hamiltonian:

H := −Ld µ2

2V̂ (0)

+
∑
k

(1

2
k2 + V̂ (k)

µ

V̂ (0)

)
a∗kak

+
∑
k

V̂ (k)
µ

2V̂ (0)

(
e−i2τaka−k + ei2τa∗ka

∗
−k
)

+
∑
k,k′

V̂ (k)
√
µ√

V̂ (0)Ld
(e−iτa∗k+k′akak′ + eiτa∗ka

∗
k′ak+k′)

+
∑

k1+k2=k3+k4

V̂ (k2 − k3)

2Ld
a∗k1

a∗k2
ak3ak4 .

If we (temporarily) replace the potential V (x) with λV (x), where λ is a
(small) positive constant, the translated Hamiltonian can be rewritten as

Hλ = λ−1H−1 +H0 +
√
λH 1

2
+ λH1.
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Thus the 3rd and 4th terms are in some sense small, which suggests dropping
them. Thus

H ≈ −Ld µ2

2V̂ (0)
+ µ(eiτa∗0 + e−iτa0)2 +Hbg,

where

Hbg =
∑
k 6=0

(1

2
k2 + V̂ (k)

µ

V̂ (0)

)
a∗kak

+
∑
k 6=0

V̂ (k)
µ

2V̂ (0)

(
e−i2τaka−k + ei2τa∗ka

∗
−k
)

Then we proceed as before obtaining the Bogoliubov dispersion relation

ω(p) = |p|

√
|p|2 + 2µ

V̂ (p)

V̂ (0)
.

and the Bogoliubov energy

Ebg := −1

2

∑
p 6=0

(
|p|2 + µ

V̂ (p)

V̂ (0)
− |p|

√
|p|2 + 2µ

V̂ (p)

V̂ (0)

)

Thus, as compared with the canonical approach, we have µ in place of λρ.
Note that the grand-canonical Hamiltonian Hµ is invariant wrt the U(1)

symmetry eiτN . The parameter α has an arbitrary phase. Thus we broke the
symmetry when translating the Hamiltonian.

The zero mode is not a harmonic oscillator – it has continuous spectrum and
it can be interpreted as a kind of a Goldstone mode.

9.3 Landau’s argument for superfluidity

A translation invariant system such as homogeneous Bose gas is described by
a family of commuting self-adjoint operators (H,P ), where P = (P1, . . . , Pd)
is the momentum. If the translation invariance is on Rd, then the momentum
spectrum is Rd. If it is in a box with periodic boundary conditions then eiPiL =
1l, therefore the momentum spectrum is 2π

L Zd.
We can define its energy-momentum spectrum σ(H,P ).

σ(H,P ) ⊂

{
R× Rd, L =∞,
R× 2π

L Zd, L <∞.

By general arguments the momentum of the ground state of a Bose gas is
zero. Let E denote the ground state energy of H. We define the critical velocity
by

ccrit := sup{c : H ≥ E + c|P |}.
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Suppose that our n-body system is described with (H,P ) with critical ve-
locity ccrit. We add to H a perturbation u travelling at a speed w:

i
d

dt
Ψt =

(
H + λ

n∑
i=1

u(xi − wt)
)

Ψt.

We go to the moving frame:

Ψw
t (x1, . . . , xn) := Ψt(x1 − wt, . . . , xn − wt).

We obtain a Schrödinger equation with a time-independent Hamiltonian

i
d

dt
Ψw
t =

(
H − wP + λ

n∑
i=1

u(xi)
)

Ψw
t .

Let Ψgr be the ground state of H. Is it stable against a travelling perturba-
tion? We need to consider the tilted Hamiltonian H − wP .

If |w| < ccrit, then H − wP ≥ E and Ψgr is still a ground state of H − wP .
So Ψgr is stable.

If |w| > ccrit, then H − wP is unbounded from below. So Ψgr is not stable
any more.

10 Fermionic Gaussian states

10.1 1-mode particle-antiparticle vector

Consider Γa(C2). The creation/annihilation of first mode are denoted a∗, a, of
the second b∗, b.

We assume that in our space there is a “charge operator”

Q := a∗a− b∗b,

and we are interested mostly in states with Q = 0.

Theorem 10.1. Let c ∈ C. Then

Ωc := (1 + |c|2)−
1
2 eca

∗b∗Ω = (1 + |c|2)−
1
2

(
Ω + ca∗b∗Ω

)
is a normalized vector satisfying

(a− cb∗)Ωc = 0,

(b+ ca∗)Ωc = 0.

Theorem 10.2. Set
U t := et(−a

∗b∗+ba).
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Then

U taU−t = a cos t+ b∗ sin t, (10.163)

U ta∗U−t = a∗ cos t+ b sin t, (10.164)

U tbU−t = b cos t− a∗ sin t, (10.165)

U tb∗U−t = b∗ cos t− a sin t, (10.166)

U t = cos te− tan ta∗b∗Γ
( 1

cos t

)
etan tba, (10.167)

Ω− tan t = U tΩ. (10.168)

Proof. First we derive (10.163)-(10.166). Then we compute

d

dt
U t = (−a∗b∗ + ba)U t

= − 1

cos2 t
a∗b∗U t +

1

cos2 t
U tba+

sin t

cos2 t

(
a∗U ta+ b∗U tb

)
− sin t

cos t
U t.

2

10.2 Fermionic oscillator

Let
H = (a∗ + a)(b∗ + b).

Theorem 10.3. We have H2 = −1l, H∗ = −H

etH = cos t1l + sin tH,

etH(a∗ + a)e−tH = cos 2t(a∗ + a)− sin 2t(b∗ + b),

etH(b∗ + b)e−tH = cos 2t(b∗ + b) + sin 2t(a∗ + a),

etH(a∗ − a)e−tH = a∗ − a,
etH(b∗ − b)e−tH = b∗ − b,

Ωtan t = etHΩ.

In particular,

e±
π
2H = ±H,

Ha∗H−1 = −a, HaH−1 = −a∗,
Hb∗H−1 = −b, HbH−1 = −b∗.

11 Fermi gas and superconductivity

11.1 Fermi gas

We consider fermions with spin 1
2 described by the Hilbert space

Hn := ⊗na
(
L2(Rd,C2)

)
.
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We use the chemical potential from the beginning and we do not to assume the
locality of interaction, so that the Hamiltonian is

Hn = −
n∑
i=1

(
∆i − µ

)
+ λ

∑
1≤i<j≤n

vij .

The interaction will be given by a 2-body operator on ⊗2
(
L2(Rd,C2)

)
given by

(vΦ)i1,i2(x1, x2) =

∫ ∫
v(x1, x2, x3, x4)Φi1,i2(x3, x4)dx3dx4.

We will assume that v is invariant wrt the exchange of particles, Hermitian, real
and translation invariant:

v(x1, x2, x3, x4) = v(x2, x1, x4, x3)

= v(x1, x2, x3, x4)

= v(x4, x3, x2, x1)

= v(x1 + y, x2 + y, x3 + y, x4 + y).

By the invariance wrt the exchange of particles v preserves ⊗2
a

(
L2(Rd,C2)

)
. By

translation invariance, v can be written as

v(x1, x2, x3, x4) = (2π)−4d

∫
eik1x1+ik2x2−ik3x3−ik4x4q(k1, k2, k3, k4)

× δ(k1 + k2 − k3 − k4)dk1dk2dk3dk4,

where q is a function defined on the subspace k1 + k2 = k3 + k4. An example
of such interaction is a local 2-body potential V (x) such that V (x) = V (−x),
which corresponds to

v(x1, x2, x3, x4) = V (x1 − x2)δ(x1 − x4)δ(x2 − x3),

q(k1, k2, k3, k4) =

∫
dpV̂ (p)δ(k1 − k4 − p)δ(k2 − k3 + p).

Similarly, as before, we periodize the interaction

vL(x1, x2, x3, x4)

=
∑

n1,n2,n3∈Zd
v(x1 + n1L, x2 + n2L, x3 + n3L, x4)

=
1

L3d

∑
k1+k2=k3+k4

eik1·x1+ik2x2−ik3x3−ik4x4q(k1, k2, k3, k4),

where ki ∈ 2π
L Zd. The Hamiltonian

HL,n =
∑

1≤i≤n

(
−∆L

i − µ
)

+
∑

1≤i<j≤n

vLij
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acts on Hn,L := ⊗na
(
L2([−L/2, L/2]d,C2)

)
. We drop the superscript L.

We will denote the spins by i =↑, ↓. It is convenient to put all the n-particle
spaces into a single Fock space

∞
⊕
n=0
Hn = Γa

(
L2([L/2, L/2]d,C2)

)
and rewrite the Hamiltonian and momentum in the language of 2nd quantiza-
tion:

H :=
∞
⊕
n=0

Hn =
∑
i

∫
a∗x,i(∆x − µ)ax,i2dx

+
1

2

∑
i1,i2

∫ ∫
a∗x1,i1a

∗
x2,i2v(x1, x2, x3, x4)ax3,i2ax4,i1dx1dx2dx3dx4,

P :=
∞
⊕
n=0

Pn = −
∑
i

i

∫
a∗x,i∇xax,idx.

In the momentum representation,

H =
∑
i

∑
k

(k2 − µ)a∗k,iak,i

+
1

2Ld

∑
i1,i2

∑
k1+k2=k3+k4

q(k1, k2, k3, k4)a∗k1,i1a
∗
k2,i2ak3,i2ak4,i1 ,

P =
∑
i

∑
k

ka∗k,iak,i.

We also have the generators of the spin su(2).

Sx =
1

2

∑
k

(a∗k↑ak↓ + a∗k↓ak↑), (11.169)

Sy =
i

2

∑
k

(a∗k↑ak↓ − a∗k↓ak↑), (11.170)

Sz =
1

2

∑
k

(a∗k↑ak↑ − a∗k↓ak↓). (11.171)

The Hamiltonian is invariant with respect to the spin su(2).

11.2 Hartree-Fock-Bogoliubov approximation with BCS
ansatz

We try to compute the excitation spectrum of the Fermi gas by approximate
methods. We look for a minimum of the energy among Gaussian states. We
assume that a minimizer is invariant wrt translations and the spin su(2). We use
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the Hartree-Fock-Bogoliubov approximation with the Bardeen-Cooper-Schrieffer
ansatz.

For a sequence 2π
L Zd 3 k 7→ θk such that θk = θ−k, set

Uθ :=
∏
k

e
1
2 θk(−a∗k↑a

∗
−k↓+a−k↓ak↑−a

∗
−k↑a

∗
k↓+ak↓a−k↑).

(Note the double counting for k 6= 0). We are looking for a minimizer of the
form UθΩ.

Note that Uθ commutes with P and the spin su(2). Therefore, UθΩ is
translation and su(2) invariant.

We want to compute

(UθΩ|HUθΩ) = (Ω|U∗θHUθΩ).

To do this we can use the fact that Uθ implements Bogoliubov rotations:

U∗θ a
∗
k↑Uθ = cos θka

∗
k↑ + sin θka−k↓,

U∗θ ak↑Uθ = cos θkak↑ + sin θka
∗
−k↓,

U∗θ a
∗
k↓Uθ = cos θka

∗
k↓ − sin θka−k↑,

U∗θ ak↓Uθ = cos θkak↓ − sin θka
∗
−k↑,

Afteer inserting this into U∗θHUθ be can Wick order the obtained expression.
In practice, this is usually presented differently. One makes the substitution

ak↑ = cos θkb
∗
k↑ + sin θkb−k↓,

ak↑ = cos θkbk↑ + sin θkb
∗
−k↓,

a∗k↓ = cos θkb
∗
k↓ − sin θkb−k↑,

ak↓ = cos θkbk↓ − sin θkb
∗
−k↑,

in the Hamiltonian. Note that

Uθa
∗
k↑U

∗
θ = b∗k↑,

Uθak↑U
∗
θ = bk↑,

Uθa
∗
k↓U

∗
θ = b∗k↓,

Uθak↓U
∗
θ = bk↓.

Then one Wick orders wrt the operators B∗, b. Our Hamiltonian becomes

H = B +
∑
k

D(k)
(
b∗k↑bk↑ + b∗k↓bk↓

)
+

1

2

∑
k

O(k)
(
b∗k↑b

∗
−k↓ + b∗−k↑b

∗
k↓
)

+
1

2

∑
k

O(k)
(
b−k↓bk↑ + bk↓b−k↑

)
+ terms higher order in b’s.
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Note that
(Ωθ|HΩθ) = B.

By the Beliaev Theorem, minimizing B is equivalent to O(k) = 0.
If we choose the Bogoliubov transformation according to the minimization

procedure, the Hamiltonian equals

H = B +
∑
k

D(k)
(
b∗k↑bk↑ + b∗k↓bk↓

)
+ terms higher order in b’s

with

B =
∑
k

(k2 − µ)(1− cos 2θk)

+
1

4Ld

∑
k,k′

α(k, k′) sin 2θk sin 2θk′

+
1

4Ld

∑
k,k′

β(k, k′)(1− cos 2θk)(1− cos 2θk′).

Here,

α(k, k′) :=
1

2

(
q(k,−k,−k′, k′) + q(−k, k,−k′, k′)

)
,

β(k, k′) = 2q(k, k′, k′, k)− q(k′, k, k′, k).

In particular, in the case of local potentials we have

α(k, k′) :=
1

2

(
V̂ (k − k′) + V̂ (k + k′)

)
,

β(k, k′) = 2V̂ (0)− V̂ (k − k′).

The condition ∂θkB = 0, or equivalently O(k) = 0, has many solutions. We
can have

sin 2θk = 0, cos 2θk = ±1,

They correspond to Slater determinants and have a fixed number of particles.
The solution of this kind minimizing B, is called the normal or Hartree-Fock
solution.

Under some conditions the global minimum of B is reached by a non-normal
configuration satisfying

sin 2θk = − δ(k)√
δ2(k) + ξ2(k)

, cos 2θk =
xi(k)√

δ2(k) + ξ2(k)
,

where

δ(k) =
1

2Ld

∑
k′

α(k, k′) sin 2θk′ ,

ξ(k) = k2 − µ+
1

2Ld

∑
k′

β(k, k′)(1− cos 2θk′),

87



and at least some of sin 2θk are different from 0. It is sometimes called a super-
conducting solution.

For a superconducting solution we get

D(k) =
√
ξ2(k) + δ2(k).

Thus we obtain a positive dispersion relation. One can expect that it is strictly
positive, since otherwise the two functions δ and ξ would have a coinciding zero,
which seems unlikely. Thus we expect that the dispersion relation D(k) has a
positive energy gap.

Conditions guaranteeing that a superconducting solution minimizes the en-
ergy should involve some kind of negative definiteness of the quadratic form α
– this is what we vaguely indicated by saying that the interaction is attractive.
Indeed, multiply the definition of δ(k) with sin 2θk and sum it up over k. We
then obtain

∑
k

sin2 2θk
√
δ2(k) + ξ2(k)

= − 1

2Ld

∑
k,k′

sin 2θkα(k, k′) sin 2θk′ .

The left hand side is positive. This means that the quadratic form given by the
kernel α(k, k′) has to be negative at least at the vector given by sin 2θk.
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12 Quantum lattice systems

12.1 Equivalence of representations

Let A be a C∗-algebra. Recall that a ∗-homomorphism π : A → B(H) is also
called a ∗-representation of A on H.

Let (π1,H1) and (π2,H2) be two ∗-representation of A. We say that they
are unitarily equivalent iff there exists a unitary U : H1 → H2 such that

π2(A) = Uπ1(A)U∗, A ∈ A. (12.172)

We say that they are quasiequivalent if there exists a ∗-isomorphism

ρ : π1(A)′′ → π2(A)′′ (12.173)

such that
π2(A) = ρ

(
π1(A)

)
, A ∈ A. (12.174)

Clearly, unitary equivalence implies quasiequivalence. The converse in gen-
eral is not true. E.g. the ∗-representations

B(H) 3 A 7→ A⊗ 1ln ∈ B(H⊗ Cn) (12.175)

are quasiequivalent but not unitarily equivalent for distinct n ∈ N.
In the algebraic approach to Quantum Physics we start from a C∗-algebra

of observables A, which may have many inequivalent representations πi : A →
B(Hi). The choice of the representation is dictated by the physical situa-
tion: the temperature of the system, its chemical potential, its phase. In
many cases, e.g. in Quantum Field Theory, one usually chooses a ground state
representation–a representation with a positive Hamiltonian.

12.2 Basic algebraic framework of quantum physics

Let us describe the basic steps of the algebraic description of a quantum system.

(1) We start with a C∗-algebra A, whose self-adjoint elements describe ob-
servables of our quantum system. We will denote by Aut(A) the group of
∗-automorphisms of A. They describe symmetries of the system.

(2) The Heisenberg dynamics is described by a 1-parameter group of ∗-automorphisms,
that is

R 3 t 7→ ρt ∈ Aut(A), ρ0 = id, ρtρs = ρt+s. (12.176)

We usually assume that ρ is strongly continuous, that is,

R 3 t 7→ ρt(A) is norm continuous, A ∈ A. (12.177)

we then say that (A, ρ) is a C∗-dynamical system.
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(3) We choose a state ω on A. Then we pass to the GNS representation gen-
erated by ω on the Hilbert space Hω with the cyclic vector Ωω:

πω : A→ B(Hω), ω(A) =
(
Ωω|πω(A)Ωω

)
. (12.178)

(4) Assume that ω is time-invariant, that is

ω(A) = ω(ρt(A)
)
, t ∈ R. (12.179)

Then on the GNS Hilbert space we can define a unitary implementation of
ρt. In fact, we set

Uω,tπω(A)Ωω := πω(ρt(A))Ωω. (12.180)

We have (dropping the subscript ω for legibility)(
Utπ(A)Ω|Utπ(B)Ω

)
=
(
π(ρt(A))Ω|π(ρt(B))Ω

)
=
(
Ω|π(ρt(A

∗B)Ω
)

= ω
(
ρt(A

∗B)
)

= ω
(
A∗B

)
=
(
π(A)Ω|π(B)Ω). (12.181)

Thus Uω,t preserves the scalar product on πω(A)Ω. But πω(A)Ω is dense
in H. Hence, Uω,t is unitary. Clearly,

R 3 t 7→ Uω,t (12.182)

is a one-parameter unitary group.

(5) Assume that the dynamics (12.177) is strongly continuous. Then (12.182)
is strongly continuous as well, that is,

R 3 t 7→ Uω,tΦ ∈ Hω, Φ ∈ Hω (12.183)

is norm continuous. By the Stone Theorem, there exists a self-adjoint
operator Hω such that Uω,t = e−itHω . Note that HωΩω = 0.

(6) We say that ω is a ground state of the system (A, ρ) if H ≥ 0.

Example 12.1. Let A = K(H) (the C∗-algebra of compact operators on H).
Consider the dynamics ρt(A) := eitHAe−itH . Let ω(A) = (e|Ae), where ‖e‖ = 1,
e ∈ H. Then Hω ' H. ω is time-invariant if He = Ee (e is an eigenvector of
H). Then Hω = H − E. ω is a ground state of (A, ρ) iff E = inf σ(H).

Example 12.2. Let e1, e2 ∈ H be an orthonormal sequence, λ1, λ2, ... satisfy
λi > 0, λ1 + λ2 + · · · = 1. Consider

ω(A) = λ1(e1|Ae1) + λ2(e2|Ae2) + · · · . (12.184)

Then

Hω = ⊕
i
H⊗ Cei. (12.185)

If e1, e2 are eigenvectors of H, so that Hei = Eiei, then ω is time invariant.
We have

Hω = ⊕
i
(H − Ei). (12.186)

ω is a ground state if E1 = E2 = · · · = inf σ(H).
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12.3 Lattice systems

Choose n, d ∈ N. To every j = (j1, . . . , jd) ∈ Zd we associate a space Hj ' Cn

describing the “spin” at site j. Let 2Z
d

fin denote the family of finite subsets of Zd.
To every Λ ∈ 2Z

d

fin we associate the Hilbert space and the algebra of observables

HΛ := ⊗
j∈Λ
Hj , (12.187)

AΛ := B(HΛ). (12.188)

If Λ ⊂ Λ′ ∈ 2Z
d

fin, then we have the identification

AΛ 3 A 7→ A⊗ 1lΛ′\Λ ∈ AΛ′ . (12.189)

The ∗-algebra of local observables is defined as

Aloc :=
⋃

Λ∈2Zd
fin

AΛ. (12.190)

It is equipped with a norm satisfying the C∗-property. Its completion is called
the C∗-algebra of quasilocal observables

A := Acpl
loc. (12.191)

Note that A ' UHF(n∞).
All spaces Hj , j ∈ Zd can be identified with Cn. Therefore, for any k ∈ Zd,

there exists an obvious unitary map Uk : Hj → Hj+k. By tensoring, we obtain
the unitary map Uk : HΛ → HΛ+k (which we denote by the same symbol). We
also have the corresponding automorphism

τkAΛ → AΛ+k, τk(A) := UkAU
∗
k , (12.192)

which extends to the automorphism of A. Thus we obtain an action of the group

Zd 3 k 7→ τk ∈ Aut(A). (12.193)

Suppose h is a self-adjoint operator on Cn. If Λ ∈ 2Z
d

fin, let us write hj for h
acting on Hj , multiplied by the identity. Set

hΛ :=
∑
j∈Λ

hj . (12.194)

It defines the automorphism

ρΛ,t(A) := eithΛAe−ithΛ A ∈ AΛ. (12.195)

It is easy to see that

ρt(A) := lim
Λ↗Zd

ρΛ,t(A), A ∈ A (12.196)
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exists. We obtain the dynamics

R 3 t 7→ ρt ∈ Aut(A), (12.197)

which commutes with (12.193).
Suppose that γ is a density matrix on Cn. Let us write γj for γ acting on

Hj and
γΛ := ⊗

j∈Λ
γj . (12.198)

It defines a state
ωΛ(A) := TrγΛA, A ∈ AΛ. (12.199)

The following limit exists:

ω(A) := lim
Λ↗Zd

ωΛ(A), A ∈ A. (12.200)

The state ω is invariant wrt (12.193). If γ commutes with h, it is also invariant
wrt (12.197).

Note that different choices of γ lead to inequivalent GNS representations.

12.4 KMS condition on lattice systems

Consider now a lattice quantum system on Zd with the algebra A and the
Hamiltonian given by a self-adjoint operator h on Cn, as in (12.194). For each

Λ ∈ 2Z
d

fin we can define the Gibbs state

ωΛ,β(A) :=
Tr e−βHΛA

Tre−βHΛ
. (12.201)

Hence, this state satisfies the β-KMS condition wrt the dynamics ρΛ. There
exists the limit

ωβ(A) := lim
Λ↗Zd

ωΛ,β(A). (12.202)

ωβ satisfies the β-KMS condition wrt the dynamics ρ. Note that this state is
not given by a density matrix. In fact,

e−βHΛ

Tre−βHΛ
= ⊗
j∈Λ

e−βhj

Tre−βhj
(12.203)

does not have a limit in any sense and limΛ↗Zd Tre−βHΛ typically converges to
infinity.

This suggests that for lattice systems the β-KMS condition is a reasonable
generalization of the β-Gibbs state.
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13 KMS condition

13.1 Gibbs states

Let us go back to the basic setup of Quantum Physics: H is a Hilbert space, H
is a self-adjoint operator called Hamiltonian, and the Heisenberg dynamics is

ρt(A) := eitHAe−itH , A ∈ B(H). (13.204)

Let β ∈ R. The β-Gibbs state is defined as

ωβ(A) := TrγβA, γβ :=
e−βH

Tre−βH
, (13.205)

This is possible iff
Tre−βH <∞ (13.206)

Note that e.g. if H is finite dimensional, then this is satisfied for all β ∈ R. If
the operator H is bounded from below but unbounded, then (13.206) can be
true only for β ≥ 0

The β-Gibbs state describes the system at temperature T = 1
kBβ

. Note that

this state is unique (if exists)—hence we cannot describe multiple phases at a
given temperature using this setup.

Let E0 = inf σ(H). Note that

ω∞(A) := lim
β→∞

ωβ(A) =
Tr1l{E0}(H)A

Tr1l{E0}(H)
. (13.207)

If dim 1lE0
(H) = 1, we obtain the pure state. Otherwise, we obtain the uniform

combination of all ground states.
Gibbs states can be
Let B2(H) denote the set of Hilbert-Schmidt operators on H, that is

B2(H) := {A ∈ B(H) | TrA∗A <∞}. (13.208)

It can be treated as a Hilbert space equipped with the scalar product

(A|B) := TrA∗B, A,B ∈ B2(H). (13.209)

Consider the GNS representation πβ wrt ωβ , with the corresponding Hilbert
space Hβ and cyclic vector Ωβ . Note that we can identify Hβ with B2(H) and
Ωβ =

√
γβ . The representation acts as multiplication from the left:

πβ(A)B := AB, A ∈ B(H), B ∈ B2(H). (13.210)

On the GNS space we have a distinguished generator of the dynamics called the
Liouvillean

LB := HB −BH, B ∈ B2(H). (13.211)
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We have

ρt(πβ(A)) = eitLπβ(A)e−itL, A ∈ B(H); (13.212)

LΩβ = 0. (13.213)

Thus the GNS representation for various β can be viewed in the same Hilbert
space, with the same Liouvillean, and only the cyclic vector is varied.

13.2 From a state to the dynamics

In physics a dynamics is typically more fundamental than a state. Therefore,
we started from the Hamiltonian. One can proceed in the reverse direction.
Let γ be a density matrix which is nondegenerate (Kerγ = {0}), and ω is the
corresponding state. Such states satisfy

A > 0 ⇒ ω(A) > 0 (13.214)

and are called faithful.
Define

H := −β−1 ln γ (13.215)

Then H is a self-adjoint operator. If we define the dynamics ρt by (13.204),
then ω is the β-Gibbs state condition for ρ. Thus every faithful state is the
β-Gibbs state for a certain unique dynamics.

13.3 KMS condition for Gibbs states

Suppose that A,B ∈ B(H). In addition, assume that

R 3 t 7→ ρt(B) (13.216)

extends to an analytic function

C 3 z 7→ ρz(B) = eizHBe−izH . (13.217)

Such B are weakly dense in B(H): e.g. we can assume that B is “localized in
the energy”, that is B = 1l[E0,E](H)B1l[E0,E](H) for some E. If dimension H is
finite, this applies to all B ∈ B(H).

Then

ωβ(Aρiβ(B)) = ωβ(BA). (13.218)

In fact,

ωβ(Aρiβ(B)) = Tre−βHAei2βHBe−i2βH = TrAe−βHB

= Tre−βHBA = ωβ(BA). (13.219)
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13.4 KMS condition on C∗-algebras

Suppose now that A is a C∗-algebra equipped with a strongly continuous dy-
namics

R 3 t 7→ ρt ∈ Aut(A). (13.220)

Lemma 13.1. There exists a norm-dense ∗-subalgebra Aan ⊂ A such that for
every B ∈ Aan

R 3 t 7→ ρt(B) (13.221)

extends to an analytic function

C 3 z 7→ ρz(B). (13.222)

Proof. For z ∈ C and B ∈ A set

Bz,ε :=

∫ +∞

−∞
ρs(B)e−

(z−s)2
2ε

ds√
2πε

. (13.223)

Then we check that

ρt(Bz) = Bz+t, lim
ε↘0

B0,ε = B. (13.224)

In particular, ρt(B0,ε) = Bt,ε extends to an analytic function C 3 z 7→ Bz,ε ∈ A.
2

We say that a state ω on A satisfies the β-KMS condition if

ω
(
Aρiβ(B)

)
= ω(BA), A ∈ A, B ∈ Aan. (13.225)

One can show that the KMS condition implies that the state is stationary.

13.5 KMS condition on UHF algebras

Recall that if n1, n2, . . . are positive integers, Hj := Cnj , with the identifications

B(H1 ⊗ · · · ⊗ Hk) 3 A 7→ A⊗ 1lHk+1
∈ B(H1 ⊗ · · · ⊗ Hk+1),

we define

UHF0 = UHF0(n1, n2, . . . ) :=

∞⋃
k=1

B(H1 ⊗ · · · ⊗ Hk), (13.226)

UHF = UHF(n1, n2, . . . ) := UHF0(n1, n2, . . . )
cpl. (13.227)

Let hj be a self-adjoint operator on Hj . Then we have a dynamics on UHF ,
which for A ∈ B(H1 ⊗ · · · ⊗ Hk) is given by

ρt(A) :=
k
⊗
j=1

eithj A
k
⊗
j=1

eithj (13.228)

= exp
(

it
k
⊕
j=1

hj

)
A exp

(
− it

k
⊕
j=1

hj

)
. (13.229)
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Let β ∈ R and set

γβ,j :=
e−βhj

Tre−βhj
. (13.230)

On UHF we define the state ωβ , which for A ∈ B(H1 ⊗ · · · ⊗ Hk) is given by

ωβ(A) = Tr
k
⊗
j=1

γβ,j A. (13.231)

It is easy to see that ωβ satisfies the β-KMS condition for ρ. It is stationary
and faithful.

Conversely, let γj be nondegenerate density matrices on Hj , j = 1, 2, . . . .
On UHF we define the state ω, which for A ∈ B(H1 ⊗ · · · ⊗ Hk) is given by

ωβ(A) = Tr
k
⊗
j=1

γj A. (13.232)

Set hj := − ln γj
β and defines the dynamics ρ as above. The ω is a β-KMS state

for ρ.

13.6 Gibbs states for multiple observables

Suppose a quantum system is described by a Hilbert space H and a Hamilto-
nian H. Suppose that ~O = (O0, . . . , On) is a sequence of commuting self-adjoint
oparators left invariant by the dynamics (equivalently, commuting with H) de-
scribing “easy to control observables”. One can argue that the following density
matrix can be used to describe such a quantum system:

θ~β =
e−

~β ~O

Tre−~β ~O
, (13.233)

where ~β = (β0, . . . , βn) ∈ Rn+1 are the “inverse temperatures of various observ-
ables”. The above density matrix is clearly time-invariant. But there are many
more time-invariant matrices: in fact, for any function of n variables

f( ~O)

Trf( ~O)
(13.234)

is also time-invariant. Nevertheless, the exponential function is in some sense
distinguished, and one can argue that one can limit oneself to density matrices
of the form 13.233. Here is an argument which indicates good properties of
(13.233).

Suppose we have two systems described by Ha, Ha and Hb, Hb. Suppose
that we “‘put them in contact” obtaining a composite system Ha ⊗ Hb with
the Hamiltonian Ha ⊗ 1l + 1l⊗Hb. Introduce the observables for the composite
system Oi := Oai ⊗ 1l + 1l⊗Obi . Then,

e
~β ~O = e−

~β ~Oa ⊗ e−
~β ~Ob , (13.235)

Tre
~β ~O = Tre−

~β ~OaTre−
~β ~Ob , (13.236)

and hence θ~β = θa~β ⊗ θ
b
~β
. (13.237)
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Thus the ansatz (13.233) is stable with respect putting together non-interacting
systems.

One introduuces the partition function

Z(~β) := Tre−
~β ~O. (13.238)

One can use the partition function to compute the expectation values of the
observables:

〈Oi〉~β = Trθ~βOi =
Tre−

~β ~OOi

Tre−~β ~O
= −∂βi lnZ(~β). (13.239)

Note that 〈Oi〉~β can often be used to parametrize θ~β instead of βi. In particular,

if Oi is positive then 〈Oi〉~β is decreasing.

13.7 Chemical potential

The most common choice of the observables is O0 = H, the Hamiltonian, and
Oi = Ni the number operators of various species of particles. Then β0 = β is
called the inverse temperature, and βi = −βµi, i = 1, . . . n, where µi is called
the chemical potential of the ith species. One introduces the “grand-canonical
Hamiltonian”

Hµ1,...,µn := H − µ1N1 − · · · − µnNn. (13.240)

The grand-canonical Gibbs state is the usual Gibbs state of the grand-canonical
Hamiltonian:

θβ,µ1,...,µn =
e−βHµ1,...,µn

Tre−βHµ1,...,µn
. (13.241)

14 Lattice models

14.1 Nearest neighbor’s interactions

Let us consider d = 2 (Hi ' C2). Denote the canonical basis of C2 by e↑, e↓.
Introduce the Pauli matrices:

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (14.242)

When they act on Hj , they will be denoted σxj , σ
y
j , σ

z
j . Here are some of the

most popular models in statistical physics:

(1) Ising Model. For Λ ∈ 2Z
d

fin we set

HΛ := J
∑

|j − k| = 1,
j, k ∈ Λ

σzjσ
z
k + h

∑
j∈Λ

σzj . (14.243)
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(2) XX Model. For Λ ∈ 2Z
d

fin we set

HΛ := J
∑

|j − k| = 1,
j, k ∈ Λ

(σxj σ
x
k + σyj σ

y
k) + h

∑
j∈Λ

σzj . (14.244)

(3) (Isotropic) Quantum Heisenberg Model or XXX Model. For Λ ∈
2Z

d

fin we set

HΛ := J
∑

|j − k| = 1,
j, k ∈ Λ

(σxj σ
x
k + σyj σ

y
k + σzjσ

z
k) + h

∑
j∈Λ

σzj . (14.245)

In all these models the local Hamiltonian defines the local dynamics

ρΛ,t(A) := eitHΛAe−itHΛ , A ∈ AΛ. (14.246)

Then one shows the existence of the dynamics in thermodynamic limit

ρt(A) := lim
Λ↗Zd

ρt,Λ(A), A ∈ A. (14.247)

The parameter J is sometimes called hopping. If J > 0, we say that the
model is antiferromagnetic, if J < 0 it is ferromagnetic. h is called the external
magnetc field.

Let Adg
Λ denote the algebra of diagonal elements of AΛ (those commuting

with σzj ). It is a commutative subalgebra of AΛ. The operators σzj , j ∈ Λ

belong to Adg
Λ . By taking

Adg
loc :=

⋃
Λ∈2Zd

fin

Adg
Λ , Adg :=

(
Adg

loc)cpl. (14.248)

we obtain a commutative subalgebra of A. The dynamics of the Ising model
preserves the commutative C∗-algebra Adg. (It is actually trivial on Adg) .
Therefore, the Ising model is in reality a classical model, and putting it among
genuinely quantum models may be considered artificial. Nevertheless, it can be
studied by similar methods as quantum models.

14.2 Ground states of Ising model

Here are pure ground states of the Ising model for h = 0 and d = 1:

ω↑ :=
(
⊗
j
e↑j

∣∣∣ · ∣∣∣⊗
j
e↑j

)
, (14.249)

ω↓ :=
(
⊗
j
e↓j

∣∣∣ · ∣∣∣⊗
j
e↓j

)
, (14.250)

ω<n :=
(
⊗
j<n

e↓j ⊗ ⊗
j≥n

e↑j

∣∣∣ · ∣∣∣ ⊗
j<n

e↓j ⊗ ⊗
j≥n

e↑j

)
, (14.251)

ω>n :=
(
⊗
j<n

e↑j ⊗ ⊗
j≥n

e↓j

∣∣∣ · ∣∣∣ ⊗
j<n

e↑j ⊗ ⊗
j≥n

e↓j

)
. (14.252)

98



Of course, we can also take convex combinations of these states, obtaining mixed
ground states. The GNS representations generated by ω<n for distinct n are all
equivalent. The same is true for ω>n .

However, the representations generated by ω↑, ω↓ ω<n and ω>n are inequiva-
lent. Thus we have 4 inequivalent irreducible ground state represetnations.

14.3 Phases of models with nearest neighbor’s interac-
tions

One can show that for β ∈ [0,+∞] all the models described in Subsect. 14.1
have β-KMS states. For high temperatures they are unique: that means, there
exists 0 < βc ≤ +∞ such that for 0 ≤ β < βc there exists a unique β-KMS
state.

For instance, consider the ferromagnetic Ising model (with J < 0). For h 6= 0
and for all β ∈ [0,∞] we have a unique β-KMS state with most spins aligned
with the magnetic field. Denote it by ωh,β .

For h = 0, β < βc the state ωh,β can be extended by continuity to h = 0. For
d = 1 we have βc = +∞. For d ≥ 2 we have βc < +∞, and for βc < β ≤ +∞
the limits

ω±0,β := lim
±h↘0

ωh,β (14.253)

are different.

15 Thermal states of Fermi gases

15.1 Fermions at positive temperature

Consider first 1 degree of freedom. For λ ∈ R let the Hamiltonian be H =
dΓ(λ) = λa∗a on Γa(C). It is easy to compute the Gibbs density matrix θβ , the
partition function Z(β), the average number 〈N〉β and average energy 〈H〉β :

θβ =
e−βdΓ(λ)

Tre−βdΓ(λ)
=

Γ(e−βλ)

1 + e−βλ
, (15.254)

Z(β) = 1 + e−βλ, (15.255)

〈N〉β =
1

1 + eβλ
, (15.256)

〈H〉β =
λ

1 + eβλ
. (15.257)

If we have many degrees of freedom, so that h is a self-adjoint operator on
the space Z with λi on the diagonal and

H = dΓ(h) =
∑

λia
∗
i ai, (15.258)
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then using Γa(Z) = ⊗
i

Γa(C) we obtain

θβ = ⊗
i

Γ(e−βλi)

1 + e−βλi
=

Γ(e−βh)

TrΓ(e−βh)
, (15.259)

lnZ(β) =
∑
i

ln(1 + e−βλi) = Tr ln(1l + e−βh), (15.260)

〈N〉β =
∑
i

1

1 + eβλi
= Tr

1

1l + eβh
, (15.261)

〈H〉β =
∑
i

λi
1 + eβλi

= Tr
h

1l + eβh
. (15.262)

15.2 Fermi gas

Consider now the Fermi gas in a box of sidelength L, that is on L2([0, L[d) with
periodic boundary conditions:

HL := dΓ
(
− 1

2
∆L − µ1l

)
(15.263)

=
∑

k∈ 2π
L Zd

a∗kak

(1

2
k2 − µ

)
. (15.264)

Then

〈N〉β,µ =
∑

k∈ 2π
L Zd

θ
(
− k2

2
+ µ

)
, β = 0 (15.265)

=
∑

k∈ 2π
L Zd

1

1 + eβ( k
2

2 −µ)
, β > 0. (15.266)

Taking the limit L→∞ we obtain

H := dΓ
(1

2
∆− µ1l

)
(15.267)

=

∫
a∗kak

(1

2
k2 − µ

)
dk. (15.268)

Then

〈n〉β,µ := lim
L→∞

〈N〉β,µ
Ld

=

∫
dkθ

(
− k2

2
+ µ)

)
, β =∞; (15.269)

=

∫
dk

1

1 + eβ( k
2

2 −µ)
, 0 ≤ β <∞. (15.270)

Note that

[0,∞[3µ 7→ 〈n〉β,µ, β = +∞; (15.271)

R 3µ 7→ 〈n〉β,µ, 0 ≤ β < +∞. (15.272)

are bijections.
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15.3 CAR algebra

Consider space Z and symbols a(z), a∗(z), z ∈ Z. We can form the ∗-algebra
spanned by monomials

a?(z1) · · · a?(zn) (15.273)

where ? is either empty or ∗. The product is the concatenation, the involution
is putting ∗, where a∗∗(z) = a(z), and reversing the order.

Next we impose the relations

a(λ1z1 + λ2z2) = λ1a(z1) + λ2a(z2), (15.274)

a∗(λ1z1 + λ2z2) = λ1a(z1) + λ2a
∗(z2), (15.275)

[a(z1), a(z2)]+ = [a∗(z1), a∗(z2)]+ = 0 (15.276)

[a(z1), a∗(z2)]+ = (z1|z2). (15.277)

We obtain a ∗-algebra, which we denote CAR0(Z). Note that this algebra is
spanned by “Wick-ordered” (or “normally ordered”) monomials:

a∗(z1) · · · a∗(zn)a(wm) · · · a(w1). (15.278)

It has an obvious representation on the Fock space Γa(Z)

π : CAR0(Z)→ B(Γa(Z)) (15.279)

which endows CAR0(Z) with a norm satisfying the C∗-property. We define the
C∗-algebra

CAR(Z) := CAR0(Z)cpl, (15.280)

Actually, π extends to an isometric representation π : CAR(Z)→ π
(
CAR(Z)

)cl
.

Thus CAR(Z) is isomorphic to a subalgebra of B(Γa(Z)). But we prefer to view
it as an abstract C∗-algebra, which may have many representations.

Let h be a self-adjoint operator on Z. Then

ρt(a
∗(z) = a∗(eithz), ρt

(
a∗(z)

)
= a∗(eithz) (15.281)

extends uniquely to a continuous ∗ automorphism. We obtain a 1-parameter
group

R 3 t 7→ ρt ∈ Aut(CAR(Z)). (15.282)

In the representation (15.279) it is generated by the Hamiltonian dΓ(h):

π(ρt(A)) = eitdΓ(h)π(A)e−itdΓ(h). (15.283)

If Z is finite dimensional, then the Gibbs state for dΓ(h) is given by the
density matrix

θ :=
Γ(γ)

Tr(γ)
, γ = e−βh. (15.284)
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15.4 Fermionic quasifree states

Let ω be a state on CAR(Z). We say that it is gauge-invariant quasifree if

ω
(
a∗(z1) · · · a∗(zn)a(wm) · · · a(w1)

)
(15.285)

is nonzero only if n = m and then it is

∑
σ∈Sn

n∏
i=1

ω
(
a∗(zi)a(wπ(i)

)
sgnσ (15.286)

Clearly the state is uniquely defined by the quadratic form

ω
(
a∗(z)a(w)

)
= (w|ρz), (15.287)

ω
(
a(w)a∗(z)

)
=
(
w|(1l− ρ)z

)
. (15.288)

Hence 0 ≤ ρ ≤ 1l and we can set γ = ρ
1l−ρ , ρ = γ

1l+γ .
We will denote this state by ωγ and rewrite this as

ωγ
(
a∗(z)a(w)

)
=
(
w| 1

1l + γ−1
z
)
, (15.289)

ωγ
(
a(w)a∗(z)

)
=
(
w| 1

1l + γ
z
)
. (15.290)

If γ = e−βh, then ωγ is β-KMS for the dynamics ρt. Let us check it on an
example:

ωγ

(
a(z)ρiβ

(
a∗(w)

))
= ωγ

(
a(z)a∗

(
e−βhw

))
(15.291)

=
(
z| 1

1l + e−βh
e−βhw

)
=
(
z| 1

1l + eβh
w
)

= ωγ
(
a∗(w)a(z)

)
(15.292)

If Z is finite dimensional, then the state with the density matrix θ = Γ(γ)
TrΓ(γ)

is quasifree with the covariance as above. In particular, the β-Gibbs state for
dΓ(h) is quasifree with γ = e−βh. To see this, we diagonalize h. Then we have
an orthonormal basis of Z, and expand everything in this basis.

15.5 Araki-Wyss representation

Let us fix a conjugation C on Z and consider the Fock space Γa(Z ⊕ CZ). Let
γ be a positive operator on Z. Define

a∗γ(z) := a∗
(

(1 + γ−1)−
1
2 z, 0

)
+ a
(

0, C(1 + γ)−
1
2 z
)
, (15.293)

aγ(z) := a
(

(1 + γ−1)−
1
2 z, 0

)
+ a∗

(
0, C(1 + γ)−

1
2 z
)
. (15.294)
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We check that (Ω| · Ω) is quasifree and

[aγ(z1), aγ(z2)]+ = [a∗γ(z1), a∗γ(z2)]+ = 0 (15.295)

[aγ(z1), a∗γ(z2)]+ = (z1|z2), (15.296)

(Ω|aγ(w)a∗γ(z)Ω) =
(
w| 1

1l + γ−1
z
)
, (15.297)

(Ω|a∗γ(z)aγ(w)Ω) =
(
w| 1

1l + γ
z
)
. (15.298)

We can define a representation

πγ : CAR(Z)→ B(Γa(Z ⊕ CZ) (15.299)

by setting
πγ(a(z)) = aγ(z), πγ(a∗(z)) = a∗γ(z). (15.300)

Note that
ωγ
(
πγ(A)

)
= (Ω|πγ(A)Ω). (15.301)

The representation πγ is the GNS representation for the state ωγ and Ω is the
corresponding cyclic vector.

16 Thermal states of Bose gases

16.1 Bosons at positive temperature

Consider first 1 degree of freedom. For λ ∈ R let the Hamiltonian be H =
dΓ(λ) = λa∗a on Γs(C). It is easy to compute the Gibbs density matrix θβ , the
partition function Z(β), the average number 〈N〉β and average energy 〈H〉β :

θβ =
e−βdΓ(λ)

Tre−βdΓ(λ)
= Γ(e−βλ)(1− e−βλ), (16.302)

Z(β) =
1

1− e−βλ
, (16.303)

〈N〉β =
1

eβλ − 1
, (16.304)

〈H〉β =
λ

eβλ − 1
. (16.305)

If we have many degrees of freedom, so that h is a self-adjoint operator on
the space Z with λi on the diagonal and

H = dΓ(h) =
∑

λia
∗
i ai, (16.306)
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then using Γs(Z) = ⊗
i

Γs(C) we obtain

θβ = ⊗
i

Γ(e−βλi)(e−βλi − 1) =
Γ(e−βh)

TrΓ(e−βh)
, (16.307)

lnZ(β) = −
∑
i

ln(e−βλi − 1) = Tr ln(e−βh − 1l), (16.308)

〈N〉β =
∑
i

1

eβλi − 1
= Tr

1

eβh − 1l
, (16.309)

〈H〉β =
∑
i

λi
eβλi − 1

= Tr
h

eβh − 1l
. (16.310)

16.2 Bose gas

Consider now the Bose gas in a box of sidelength L, that is on L2([0, L[d) with
periodic boundary conditions and µ ≤ 0:

HL := dΓ
(
− 1

2
∆L − µ1l

)
(16.311)

=
∑

k∈ 2π
L Zd

a∗kak

(1

2
k2 − µ

)
. (16.312)

Then for β > 0,

〈N〉β,µ =
∑

k∈ 2π
L Zd

1

eβ( k
2

2 −µ) − 1
. (16.313)

Taking the limit L→∞ we obtain

H := dΓ
(1

2
∆− µ1l

)
(16.314)

=

∫
a∗kak

(1

2
k2 − µ

)
dk. (16.315)

Then

〈n〉β,µ := lim
L→∞

〈N〉β,µ
Ld

=

∫
dk

1

eβ( k
2

2 −µ) − 1
.. (16.316)

Set

µd :=
|Sd−1|2 d2−1

(2π)dβ
d
2

∫ ∞
0

s
d
2−1ds

es − 1
. (16.317)

Note that

]−∞, 0[3µ 7→ 〈n〉β,µ ∈]0,+∞[, d = 1, 2; (16.318)

]−∞, 0[3µ 7→ 〈n〉β,µ ∈]0, µd[, d ≥ 3 (16.319)

are bijections. We see that at d ≥ 3 we have a phase transition at a positive
temperature.
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16.3 CCR algebra

Consider space Z and symbols a(z), a∗(z), z ∈ Z. We can form the ∗-algebra
spanned by monomials

a?(z1) · · · a?(zn) (16.320)

where ? is either empty or ∗. The product is the concatenation, the involution
is putting ∗, where a∗∗(z) = a(z), and reversing the order.

Next we impose the relations

a(λ1z1 + λ2z2) = λ1a(z1) + λ2a(z2), (16.321)

a∗(λ1z1 + λ2z2) = λ1a(z1) + λ2a
∗(z2), (16.322)

[a(z1), a(z2)] = [a∗(z1), a∗(z2)] = 0 (16.323)

[a(z1), a∗(z2)] = (z1|z2). (16.324)

We obtain a ∗-algebra, which we denote CCR0(Z). Note that this algebra is
spanned by “Wick-ordered” (or “normally ordered”) monomials:

a∗(z1) · · · a∗(zn)a(wm) · · · a(w1). (16.325)

It has an obvious representation on the finite-particle bosonic Fock space
Γfin

s (Z)
π : CCR0(Z)→ L(Γfin

a (Z)) (16.326)

Unfortunately, the image of this representation consists typically of unbounded
operators and we do not obtain a C∗-algebra.

Let h be a self-adjoint operator on Z. Then

ρt(a
∗(z) = a∗(eithz), ρt

(
a∗(z)

)
= a∗(eithz) (16.327)

extends uniquely to a continuous ∗ automorphism. We obtain a 1-parameter
group

R 3 t 7→ ρt ∈ Aut(CCR0(Z)). (16.328)

In the representation (16.326) it is generated by the Hamiltonian dΓ(h):

π(ρt(A)) = eitdΓ(h)π(A)e−itdΓ(h). (16.329)

If Z is finite dimensional, then the Gibbs state for dΓ(h) is given by the
density matrix

θ :=
Γ(γ)

Tr(γ)
, γ = e−βh. (16.330)

16.4 Bosonic quasifree states

Let ω be a state on CAR(Z). We say that it is gauge-invariant quasifree if

ω
(
a∗(z1) · · · a∗(zn)a(wm) · · · a(w1)

)
(16.331)
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is nonzero only if n = m and then it is∑
σ∈Sn

n∏
i=1

ω
(
a∗(zi)a(wπ(i)

)
(16.332)

Clearly the state is uniquely defined by the quadratic form

ω
(
a∗(z)a(w)

)
= (w|ρz), (16.333)

ω
(
a(w)a∗(z)

)
=
(
w|(1l + ρ)z

)
. (16.334)

Hence 0 ≤ ρ and we can set γ = ρ
1l+ρ , ρ = γ

1l−γ .
We will denote this state by ωγ and rewrite this as

ωγ
(
a∗(z)a(w)

)
=
(
w| 1

γ−1 − 1l
z
)
, (16.335)

ωγ
(
a(w)a∗(z)

)
=
(
w| 1

1l− γ
z
)
. (16.336)

If γ = e−βh, then ωγ is β-KMS for the dynamics ρt. Let us check it on an
example:

ωγ

(
a(z)ρiβ

(
a∗(w)

))
= ωγ

(
a(z)a∗

(
e−βhw

))
(16.337)

=
(
z| 1

1l− e−βh
e−βhw

)
=
(
z| 1

eβh − 1l
w
)

= ωγ
(
a∗(w)a(z)

)
(16.338)

If Z is finite dimensional, then the state with the density matrix θ = Γ(γ)
TrΓ(γ)

is quasifree with the covariance as above. In particular, the β-Gibbs state for
dΓ(h) is quasifree with γ = e−βh. To see this, we diagonalize h. Then we have
an orthonormal basis of Z, and expand everything in this basis.

16.5 Araki-Woods representation

Let us fix a conjugation C on Z and consider the Fock space Γs(Z ⊕ CZ). Let
γ be a positive operator on Z. Define

a∗γ(z) := a∗
(

(γ−1 − 1l)−
1
2 z, 0

)
+ a
(

0, C(1− γ)−
1
2 z
)
, (16.339)

aγ(z) := a
(

(γ−1 − 1l)−
1
2 z, 0

)
+ a∗

(
0, C(1l− γ)−

1
2 z
)
. (16.340)

We check that (Ω| · Ω) is quasifree and

[aγ(z1), aγ(z2)]+ = [a∗γ(z1), a∗γ(z2)]+ = 0 (16.341)

[aγ(z1), a∗γ(z2)]+ = (z1|z2), (16.342)

(Ω|aγ(w)a∗γ(z)Ω) =
(
w| 1

γ−1 − 1l
z
)
, (16.343)

(Ω|a∗γ(z)aγ(w)Ω) =
(
w| 1

1l− γ
z
)
. (16.344)
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We can define a representation

πγ : CCR0(Z)→ L(Γs(Z ⊕ CZ) (16.345)

by setting
πγ(a(z)) = aγ(z), πγ(a∗(z)) = a∗γ(z). (16.346)

Note that
ωγ
(
πγ(A)

)
= (Ω|πγ(A)Ω). (16.347)

The representation πγ is the GNS representation for the state ωγ and Ω is the
corresponding cyclic vector.
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