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First we will start from the complex representations of
sl(2,C), because it is a complexification of sl(2,R). Also
we first want to outline the theory on the level of Lie
algebras in order to obtain the Lie group representations
by the exponential map.



Lie algebra sl(2,C)

It consists of 2 by 2 traceless matrices equipped with the scalar
product

〈X|Y 〉 = Tr(XY ), X, Y ∈ sl(2,C). (1)

We have the orthogonal basis of sl(2,C) consisting of Pauli
matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2)

and the commutation relation[ iσi
2
,
iσj
2

]
= −εijk

iσk
2
. (3)



Lie algebra sl(2,C)

It is convenient to introduce a triplet of operators A−, A+, N ,
which we will call the standard triplet, satisfying
commutation relations

[N,A±] = ±A±, [A+, A−] = 2N. (4)

Example of such a triplet:

A+ =

(
0 1
0 0

)
, A− =

(
0 0
1 0

)
, N =

(
1
2 0
0 −1

2

)
. (5)

It can be constructed as another basis of sl(2,C) by
transformation

A± =
1

2
(σ1 ± iσ2), N =

1

2
σ3 (6)



Representations of sl(2,C)
Let us introduce the Casimir operator

C =
1

4
(σ2

1 + σ2
2 + σ2

3), (7)

in terms of the triplet A−, A+, N

C =
1

2
(A+A− +A−A+) +N2. (8)

The Casimir operator commutes with the representation.
Let us define a specific representation

Al− = ∂w + lw−1, Al+ = −w2∂w + lw, N l = w∂w, (9)

where l ∈ C. It satisfies the sl(2,C) commutation relations. The
Casimir operator reads

C l = l(l + 1). (10)



Representations of sl(2,C)

Let us define the space of monomials

Wη := {wk | k ∈ Z + η}. (11)

We have the representation

sl(2,C) 3 X 7→ X l,η ∈ L(Wη), (12)

parametrized by l, η ∈ C. The action of X l,η:

Al−w
k = (k + l)wk−1,

Al+w
k = (−k + l)wk+1,

N lwk = kwk.

(13)

We have X l,η = X l,η+n for n ∈ Z.



Representations of sl(2,C)

1. The representation X l,η is irreducible if and only if
l,−l /∈ Z + η.

2. Consider X l,−l. Then it has an invariant subspace
{wk | k = −l,−l + 1, . . .}.
Let us define X l,lw as X l,−l restricted to this subspace. It is
irreducible if l 6= 0, 1

2 , 1, . . .

3. Consider X l,l. Then it has an invariant subspace
{wk | k = . . . , l − 1, l}.
Let us define X l,hw as X l,l restricted to this subspace. It is
irreducible if l 6= 0, 1

2 , 1, . . .

4. If l = 0, 1
2 , 1, . . ., then X l,−l = X l,l and we have an invariant

subspace {wk | k = −l, . . . , l}.
Let us define Xfin as X l,−l = X l,l restricted to this
subspace.



Representations of sl(2,C)

l − 2 l − 1 l l + 1 l + 2
l,−l /∈ Z + η

−l − 2 −l − 1 −l −l + 1 −l + 2
lowest weight

l − 2 l − 1 l l + 1 l + 2
highest weight

−l − 1 −l l l + 1
finite



Equivalence of representations sl(2,C)

For l,−l /∈ Z + η let us introduce diagonal linear map
Wl : X l,η → X l,η.

Wl w
k :=

Γ(−l + k)

Γ(l + 1 + k)
wk. (14)

By direct calculation we can check that

W−1
l X lWl = X−1−l, X ∈ sl(2,C). (15)

This shows the equivalence of representations X l,η and X−l−1,η

for l,−l /∈ Z + η. This condition is given by the behavior of the
Γ function. Consistently the Casimir operator is invariant with
respect to transformation l 7→ −1− l:

C l = l(l + 1) = C−1−l. (16)



Alternative forms of representation

Let us compute X l,− := wlX lw−l. We obtain

Al,−− = ∂w,

N l,− = w∂w − l,

Al,−+ = −w2∂w + 2lw.

(17)

With this representation in the case of X l,lw, the representation
space is {wk|k = 0, 1, . . .}. For the representation X l,fin, the
representation space is {wk|k = 0, 1, . . . , 2l}.



Alternative forms of representation

Another form of representations is X l,+ := w−lX lwl. We obtain

Al,+− = ∂w + 2l,

N l,+ = w∂w + l,

Al,++ = −w2∂w.

(18)

With this representation in the case of X l,lw, the representation
space is {wk|k = 0,−1, . . .}. For the representation X l,fin, the
representation space is {wk|k = 0,−1, . . . ,−2l}.



SL(2,R) group

It consists of 2 by 2 matrices over R whose determinant is equal
to 1. Its center is {1,−1} ∼= Z2. We have the group
PSL(2,R) := SL(2,R)/Z2 with the neutral element as a center.
This group is isomorphic to homographies preserving
C+ := {z ∈ C : Im z > 0}.
The important decomposition (valid also for SL(2,C))(

h11 h12

h21 h22

)
=

(
1 0
s2 1

)(
1 t
0 1

)(
1 0
s1 1

)
, (19)

where

t = h12, s1 =
h11 − 1

h12
, s2 =

h22 − 1

h12
. (20)

If h12 = 0 the decomposition is invalid. We will treat this
decomposition as a tool to heuristically construct group
representations.



Representations of SL(2,R)
Alternative form of decomposition(

1 0
s2 1

)(
1 t
0 1

)(
1 0
s1 1

)
= es2A− etA+ es1A− . (21)

To find representations of the group we need to exponentiate
Al+, N

l, Al−, obtaining

etA
l
−f(w) = (1 + tw−1)lf(w + t),

etN
l
f(w) = f(etw),

etA
l
+f(w) = (1 + tw)lf

( w

1 + wt

)
.

(22)

Thus we have the representation by homographies

hlf(w) = (h11 + h12w
−1)l(h21w + h22)lf

(h11w + h12

h12w + h22

)
(23)



Representations of SL(2,R)

By using operators Al,−+ , N l,−, Al,−− we have

etA
l,−
− f(w) = f(w + t),

etN
l,−
f(w) = e−lt f(etw),

etA
l,−
+ f(w) = (1 + tw)lf

( w

1 + wt

)
.

(24)

The representation

hl,−f(w) = (h21w + h22)2lf
(h11w + h12

h12w + h22

)
(25)

These formulas can suffer from possible multivaluedness of
power functions. This is solved by going to the representations
of the universal cover S̃L(2,R) or by other tricks showed in the
following slides.



Lie algebra sl(2,R)

Lie algebra sl(2,R) consists of matrices of the form

X =

(
X11 X12

X21 −X11

)
. (26)

It has a scalar product

Tr(XY ) = 2X11Y11 +X12Y21 +X21Y12. (27)

Let us consider representation X• of sl(2,R). It can be
extended by complex linearity to representation of sl(2,C).
Therefore representations of sl(2,R) are the same as complex
representations of sl(2,C).



Representations of sl(2,R)
The main parameter describing representations of sl(2,C) was
l and η. This parametrization is standard for the theory of
su(2). In the case of sl(2,R) the popular in the literature
parametrization is given by parameter m, defined by

m = −2l − 1, l = −m+ 1

2
. (28)

The representation X l with l expressed by m, will be
denoted Xm. In our new notation we have

Am−w
k =

(
k − m+ 1

2

)
wk−1,

Nmwk = kwk,

Am+w
k =

(
− k − m+ 1

2

)
wk+1.

(29)

The Casimir operator is given by Cm = m2

4 −
1
4 .



Representations of sl(2,R)

1. The representation preserving Wη is dented Xm,η. It is
irreducible if and only if m,−m /∈ 2Z + 1 + 2η.

2. Consider Xm,m+1
2 . Then it has an invariant

subspace {wk | k = m+1
2 , m+3

2 , . . .}.
Let us define Xm,lw as Xm,m+1

2 restricted to this subspace.
It is irreducible if m 6= −1,−2,−3, . . ..

3. Consider Xm,−m+1
2 . Then it has an invariant subspace

{wk | k = . . . ,−m+3
2 ,−m+1

2 }.
Let us define Xm,hw as Xm,−m+1

2 restricted to this
subspace. It is irreducible if m 6= −1,−2,−3, . . ..

4. If m = −1,−2,−3, . . ., then Xm,m+1
2 = Xm,−m+1

2 and we
have invariant subspace {wk | k = m+1

2 , . . . ,−m+1
2 }.

Xm,lw and Xm,hw give representations of PSL(2,R) for
m ∈ 2Z + 1 and of SL(2,R) for m ∈ Z.



Unitarity of representations of SL(2,R)
Let η ∈ R.

1. Suppose that we equip the space Wη with the sesquilinear
scalar product (f |g) where f, g ∈ W, defined on the
canonical basis by

(wk|wk′) = δk,k′ . (30)

Then
(X−m,ηf |g) + (f |Xm,ηg) = 0. (31)

2. Suppose we have another sesquilinear product, (f |g)m,
where f, g ∈ W, defined on the canonical basis by

(wk|wk′)m = δk,k′
Γ(m2 + 1

2 + k)

Γ(−m
2 + 1

2 + k)
. (32)

Then
(Xm,ηf |g)m + (f |Xm,ηg)m = 0. (33)



Unitary representations of SL(2,R)
We have positive scalar product in the following cases:

1. The principal series: m = iµ ∈ iR, 0 ≤ η < 1. Then
X iµ,η is unitary in the canonical scalar product
(wk|wk) = 1.

2. The complementary series: −1 < m < 1,
−1−|m|

2 < η < 1−|m|
2 . Then Xm,η is unitary in the scalar

product

(wk|wk)m =
Γ(m2 + 1

2 + k)

Γ(−m
2 + 1

2 + k)
. (34)

3. The holomorphic or lowest weight series: m > −1 ,
Xm,lw. It is unitary in the scalar product

(wk|wk)m =
k!

Γ(k +m+ 1)
. (35)

4. The antiholomorphic or highest weight series:
m > −1 , Xm,hw.



Unitary representations of SL(2,R)

Rem

Imm

−1 1

principal series

complementary series

holomorphic and
antiholomorphic series

For general m > −1 the holomorphic and anthiholomorphic
series gives the representations of S̃L(2,R).



Representations by homographies

The group SL(2,R) acts on the R. Let us integrate the flows
generated by Am,−− and Nm,−

etA
m,−
− f(x) = f(x+ t),

etN
m,−

f(x) = e
m+1

2 f(etw).
(36)

The flow generated by Am,−+ for η = 0 and η = 1
2

etA
m,−
+ f(x) = |1 + tx|−m−1f

( x

1 + xt

)
, η = 0,

etA
m,−
+ f(x) = sgn(1 + tx)|1 + tx|−m−1f

( x

1 + xt

)
, η =

1

2
.

(37)



Representations by homographies
This yields representation of PSL(2,R) for η = 0 and of
SL(2,R) for η = 1

2

hm,0f(x) = |h12x+ h22|−m−1f
(h11x+ h21

h12x+ h22

)
,

hm,
1
2 f(x) = sgn(h12x+ h22)|h12x+ h22|−m−1f

(h11x+ h21

h12x+ h22

)
.

(38)

For arbitrary η we obtain representations of universal cover
S̃L(2,R). The center of S̃L(2,R) is {1n|n ∈ Z}. For

h̃ ∈ S̃L(2,R) corresponding to matrix h ∈ SL(2,R) we can find
n such that

h̃ ∈ Elln− 1
2
∪Hypn ∪ Parn ∪ {1n} ∪ Elln+ 1

2
. (39)

This means that h̃ can be accessed from 1n by one-parameter
path.



Representations of S̃L(2,R)

For h̃ belonging to nth sector (as in previous slide) we have

h̃m,η = ein2πη ×

|h22 + h12x|−m−1f
(
h11x+h21
h12x+h22

)
, (−1)n(h22 + h12x) > 0;

e−i2πη|h22 + h12x|−m−1f
(
h11x+h21
h12x+h22

)
, (−1)n(h22 + h12x) < 0,

(−1)nh12 < 0;

ei2πη|h22 + h12x|−m−1f
(
h11x+h21
h12x+h22

)
, (−1)n(h22 + h12x) < 0,

(−1)nh12 > 0;



Principal series representations

Consider spaces L2(R) and L2(S) and a unitary map
U : L2(R)→ L2(S)

Uf(u) =
2

1
2

|u+ 1|
f
(

i
u− 1

u+ 1

)
, (40)

U−1p(x) =
( 2

x2 + 1

) 1
2
p
( i + x

i− x

)
. (41)

Orthogonal basis on L2(S): (uk|uk′) = δk,k′2π, k, k′ ∈ Z + η.
Corresponding basis on L2(R)

U−1uk =
( 2

x2 + 1

) 1
2
( i + x

i− x

)k
. (42)

We have (h−m,ηf |hm,ηg) = (f |g). This gives the conditions for
m and η for this series.



Complementary series representations
Let us introduce the scalar product on functions on R

(f |g)m =
1

2Γ(m)

∫ ∫
f(x)|x− y|m−1g(y)dx dy, 0 < m < 1;

(f |g)0 =

∫ ∫
f(x)g(x)dx,

(f |g)m =

− 1

2Γ(m)

∫ ∫ (
f(x)− f(y)

)
|x− y|m−1

(
g(x)− g(y)

)
dx dy,

− 1 < m < 0.

We have the equivalence of representations for m and −m.
By similar procedure as in the previous slide, we arrive at the
basis in (·|·)m

wk =
(

2π cos
(π

2
m
))− 1

2
( 2

x2 + 1

) 1+m
2
( i + x

i− x

)k
. (43)



Holomorphic series representations
Consider the upper complex half-plane:
C+ := {z = x+ iy ∈ C : y ≥ 0}, where x = Re z and y = Im z.
For F , G analytic on C+, we define the scalar product

(F |G)m =
1

Γ(m)

∫
C+

ym−1F (z)G(z)d2z, 0 < m;

(F |G)0 =

∫
R
F (x)G(x)dx,

(F |G)m =
1

Γ(m)

∫
C+

ym−1
(
F (z)G(z)− F (x)G(x)

)
d2z,

− 1 < m < 0.

Similarly as in preceding frames we obtain basis in (·|·)m

wk = π−
1
2 2m

(i + z)k

(i− z)k+m+1
. (44)

Antiholomorphic series representations are equivalent. They are
obtained by taking antiholomorphic functions on C+.



Thank you for your attention !


